

ii

iv

Contents

List of Figures vii

List of Tables ix

List of Codes xi

Acknowledgements xiii

Abstract 1

1 Introduction 3

1.1 Twitter and Big Data . 3
1.2 Problem Statement . 3
1.3 Goal & Research Questions . 4

2 Background 7

2.1 Knowledge Discovery . 7
2.2 Related Works . 8

3 Methodology 13

3.1 Event de�nition . 13
3.2 Conceptual Model . 15
3.3 Data Procurement . 17
3.4 Preprocessing . 19
3.5 Distance and similarity metrics . 20
3.6 Clustering . 21
3.7 Classi�cation . 24

4 Results and Discussion 25

4.1 Procedure . 25
4.2 Di�erentiation between events . 25
4.3 Within collection clustering . 25
4.4 Cluster in multiple dimensions . 27
4.5 Classify in multiple dimensions . 29
4.6 Methodology Discussion . 32

5 Conclusion 35

6 Bibliography 39

A Database Attributes 45

B Textual clustering table 46

C K-Means Top 15 words 47

D Cluster Classi�cation 48

E Twitter feed algorithm 48

v

F kNN algorithm 53

G kCS and t�df algorithm 55

H K-Means algorithm 58

I Supporting algorithms for K-Means 60

vi

List of Figures

1 Twitter structuring mechanisms. An "@" with a user name also called a
mention - implies that the tweet is addressing another user. A "hashtag" is
Twitters methodology for grouping Tweets together based on the topic. It is
used by typing the hashtag followed by the topic behind it. Hashtags are used
to identify trending topics, of which an overview can be found on the website.
A retweet implies that the user is sharing a tweet of another user, it allows
messages to be spread beyond the followers of the initial tweet, 75% of the
retweets happen within the same day30. This retweeting mechanism is one
of the main drivers behind making a topic go viral as the reach of the initial
message grows exponentially by the use of a retweet. 4

2 Big Data can be seen as a combination of at least two of three characteristics.
Volume, which indicates that the amount of data stored is large enough to
require a di�erent approach in storage and analysis. Velocity, which means
that Big Data is produced at high rates. The Variety indicates that Big Data
often deals with di�erent types of data at the same time, photos, text and
videos for instance. It also indicates high dimensional data.21;15. 5

3 The BSID Pyramid, derived from the DIKUW pyramid but applied to Big
Data. At the Big Data level unstructured data in large quantities can be
found, such as Tweets, which will need to be procured and stored. At the Small
Data level the Big Data has been clustered, generalized and/or associated
into several collections. At the Information level the Small Data is classi�ed
giving an interpretation of the data. At the Describe level the processes and
the relations between processes can be described. 9

4 Event detection in the PR. A combination of senses is used for perception of
happenings. The happenings are clustered to identify and classify events. . . 14

5 Proposed DR "event" de�nition illustrated as a multi-dimensional entity.
Events are built up from happenings and can contain sub-events. The context,
spatial, temporal and actor dimension describe an event. Each of these dimen-
sions can be quanti�ed in properties. The properties are a centroid, which is
the average value of a dimension, a volume, which indicates the extent of the
dimension, and clustering, which is a measure for the amount of clustering
within an event. 15

6 Event detection in the DR. Each Tweet has characteristics which can be di-
vided in four dimensions: context, spatial, temporal and actor. Tweets are
clustered based on similarity in these dimensions which gives a classi�cation
that includes a centroid, volume and clustering in each dimension. 16

7 Schematic overview of the implementation of the BSID model for Event Detec-
tion. From Big Data to Information; procurement (subsection 3.3), prepro-
cessing (subsection 3.4), clustering (subsection 3.6) and classi�cation (sub-
section 3.7). Clustering and classi�cation require distance metrics that are
examined in subsection 3.5 . 18

8 K-Means algorithm in steps. (A) Centroids, shown as circles, of the clusters
are randomly chosen. (B) The points, shown as squares, are added to a cluster
based on the distance to the centroid. (C) The update step: new centroids
are calculated and the centroid shifts to a new mean. (D) Step 2 and 3 are
repeated until the centroid shift is smaller than the user de�ned threshold c.
Images adapted from57. 22

vii

9 In data set clustering, the PV E value increases with the amount of clusters.
However, the �rst clusters explain a larger amount of the TSS than later
clusters. The point where the the PV E �attens when adding subsequent
clusters is referred to as the elbow point, which is seen as the optimal amount
of clusters. In this example at 4 clusters (image adapted from5). 23

10 A typical result for K-Means clustering where the clusters converge to a local
minima, giving unintuitive results (image adapted from41). 23

11 Elbow plot of the data in Table 4 the amount of clusters on the X axis and
the PVE value on the Y axis. Most variance is explained when K = 2. 28

12 Elbow plot of the data in Table 7 (Appendix B) the amount of clusters on the
X axis and the PVE value on the Y axis. Most variance is explained when
K = 2. 28

13 The data of Table 5 plotted on the map of the Netherlands showing the
spatial distribution. The image labelled "HAGEL" is the initial collection,
the other images are labelled with "SPKXCY", where X indicates the amount
of clusters, and Y the cluster as a result of K-Means optimization. 30

14 Elbow plot of the data in Table 5 the amount of clusters K on the X axis and
the PVE value on the Y axis. The elbow point in this plot is di�cult to identify. 31

15 Given a hypothetical example of Tweets distributed in space. Human inter-
pretation would classify this example as two clusters. The blue cluster which
has a centroid in the middle (the purple dot) and a small distance from this
centroid and a low kNN value. The red cluster which has its centroid in the
middle as well (purple dot) but a large distance from this centroid and a large
kNN value (if k=N). However, as the centroid is identical for both clusters
K-Means clustering would not be able to di�erentiate between these clusters. 32

viii

List of Tables

1 Newtonian approaches versus complex approaches. A Newtonian approach
assumes that a phenomenon is predictable and that the outcome is the sum of
parts. A complex approach takes unpredictability, uncertainties, adaptability
and external factors into account (table adapted from Eoyang 199717). 8

2 Dimensions of an event that have been used to detect events in related works. 11
3 K-Means context clustering (K = 2,K = 20) on �ve combined collections.

Collection 1 (top row, left table) is built up from Tweets with #ns and
#peopleschoice containing 315 Tweets. Collection 2 (top row, middle table)
is built up from Tweets of #hagel and #fyra containing 179 Tweets. Collec-
tion 3 (top row, right table) is built up from #sinterklaas and #acakfilm
containing 315 Tweets. Collections 4 (bottom row, left table) is built up from
#onweer and #storm containing 578 Tweets. Collections 5 (bottom row,
right table) is built up from #pakjesavond and #sinterklaas containing 351
Tweets. Intersections between collections are removed. The two resulting
clusters are annotated with C#A and C#B. The original collections are
compared to the clusters using Cohen's Kappa statistics. The K-Means clus-
ters for C1, C2 and C3 show a perfect inter-rater-agreement, with a κ value
of 1.00. While the κ value for C4=0.42 and C5=0.84. The top 15 words in
each cluster can be found in Appendix C. 26

4 K-Means context clustering results (KI = 20, k = N). K is the amount of
clusters, PVE is the percentage of variance explained, the cluster refers to
the cluster as a result of K-Means optimization, kNN(sd) is the k-nearest
neighbour statistic and its standard deviation, kCS(sd) is the k-nearest cosine
similarity statistic and its standard deviation, N is the amount of Tweets in
a collection. 27

5 K-Means spatial clustering results (KI = 20, k = N). K is the amount of
clusters, PVE is the percentage of variance explained, the cluster refers to
the cluster as a result of K-Means clustering. A visual spatial representation
of each cluster can be found in Figure 13. The kNN(sd) is the k nearest
neighbour statistic and its standard deviation, kCS(sd) is the k-nearest cosine
similarity statistic and its standard deviation, N is the amount of Tweets in
a cluster. 31

6 Attributes as saved in the MongoDB, their original JSON object, the type
and an explanation about the attribute. 45

7 K-Means clustering textual results on a sub collection of the hashtag hagel(KI =
20, k = 5). K is the amount of clusters, PVE is the percentage of variance
explained, the cluster refers to the cluster as a result of K-Means optimiza-
tion, kNN(sd) is the k-nearest neighbour statistic and its standard deviation,
kCS(sd) is the k-nearest cosine similarity statistic and its standard deviation 46

ix

x

List of codes

1 Basic procedure in pseudocode for the procurement of Tweets using the Tweepy
module . 17

2 Basic procedure in Python for accessing MongoDB 18
3 Procedure in Python for converting lists to queries 19
4 Translation of the collection query in SQL . 19
5 Twitter Feed program used to interact with the REST API 48
6 Tweet object used in the Twitter feed . 50
7 Algorithm for calculating the kNN . 53
8 Algorithm for calculating the kCS . 55
9 Algorithm for calculating the t�df values . 57
10 MethodologyAlgorithm for calculating the K-Means 58
11 Point and cluster objects as used by K-Means 60
12 Algorithm to �nd the ideal centroid . 64

xi

xii

Acknowledgements

I wish to thank �rst and foremost my supervisor, Arend Ligtenberg, who not only showed
the ability to understand my often chaotic stories but also has the ability exactly pinpoint
the weaknesses in my theory. The many hours of critical discussion improved the quality
tremendously.
I would also like to thank Mark Kramer, who helped a great deal by providing theoretical

background on how to implement a Big Data project.
In addition, my gratitude to Lieke Melsen. Not only for the many brainstorm sessions, but

also for introducing and guiding me in the world of LaTeX.
A special thanks to Ron Zacharski who introduced me to the wonderful world of data

mining. Without his help I could not have constructed the methodology as it is now.
Last but not least I would like to express my gratitude to Elyn den Hollander, for being a

continuous support and always asking the right questions.

xiii

xiv

Abstract

Twitter is an easily accessible geo referenced data platform which has a large potential
for geo-information science. Many researchers have made attempts to extract events from
Twitter with mixed results. Ad hoc de�nitions are used to solve speci�c problems without
attention for the overall problem. A paradigm which serves as theoretic background for event
detection from social media is missing. This research attempts to provide a de�nitions for
"events" and "Twitter" leading to an objective polymorph methodology that can be applied
regardless of context.
A combination of cross-disciplinary de�nitions is used to form an overarching event def-

inition. Events are identi�ed as multi-dimensional collection of happenings that have four
dimensions: context, spatial ,temporal and actor. As such, event detection needs to consider
the multi-dimensionality of events within its approach. Each dimension has properties which
are identi�ed as a: centroid, volume and clustering. This research lays a focus on events in
the digital reality and attempts to create a methodology that is analogous to event detection
in the physical reality in the human brain. In which happenings of similar dimensionality
are clustered together forming events.
Twitter is classi�ed as a Complex Adaptive System (CAS), which gives implications on

its features and behaviours. Assumptions of homogeneity and linearity are not �tting in
the context of a CAS which requires a complex analysis approach. Big Data analysis is an
especially suitable method to analyse Twitter as it allows describing complex events in great
detail. However, to reach a knowledge level in which the data can be described, several steps
need to be taken. A methodology is created for the �rst three steps following the BSID
knowledge pyramid: procurement (Big Data), clustering (Small Data) and classi�cation (In-
formation) of the data.

The implementation of the procurement of Big Data (Tweets) is done using the Twitter
REST API in a Python interface. Tweets are saved in a MongoDB which is chosen due to its
�exibility in queries. A �exible querying structure is essential as it allows e�cient selections
on the data saving computing resources. The step from Big Data to Small Data is made
by clustering using the K-Means algorithm, with optimized initial centroids, in both the
spatial and context dimension. Small Data is turned into Information by classi�cation of
the created clusters, using the properties of the dimensions in line with the event de�nition.
The clustering of a collection is measured using the k-Nearest Neighbour (kNN) and k-Cosine
Similarity (kCS) algorithms for the spatial and context dimension respectively. The context
dimension is normalized by creating a vector space model term frequency (tf) inverse docu-
ment frequency (idf).
Event collections are often built up using the Twitter structuring mechanisms (hashtags,

mentions). Even if alternative methods are used the data is not classi�ed, which leads to
uncertainty on the contents of the data. The proposed methodology solves these issues by:
identi�cation of event clusters in multiple dimensions, event clustering between/within col-
lections improving the value of the data and an objective multi-dimensional classi�cation
methodology.

1

2

1 Introduction

1.1 Twitter and Big Data

Twitter is a social media micro blogging platform25. Compared to normal blogging it has a
low time investment and is feasible on mobile devices which leads to more frequent posting
compared to normal blogs (hours vs. days). Leetaru et al. 31 found that about 2% of all
Tweets contain geographic meta data. This number seems small, but considering a volume of
9100 Tweets each second49 even the small percentage of Tweets that are geo-tagged has the
potential to be an interesting source of geo-information data53. Twitter is also a convenient
platform to analyse due to several common practices that structure Tweets (see Figure 1)
and an API that allows easy access to the data52.
Due to its velocity and large volumes of data, Twitter can be considered a Big Data source.

The term "Big Data" indicates large volumes of low-value data which can be used to obtain
high-value data. The high-value data has applications in science, technology and business
purposes19. Though often an ad hoc de�nition of Big Data is used, usually a combination of
the three V's (Volume, Velocity and Variety) are used to describe Big Data (see Figure 2).
Big Data analysis (BDA) has the underlying assumption that the data has the potential
for describing complex phenomena which can not be done with conventional methods. For
example; game companies analysed behaviour of their customers. This analysis allowed
focused adjustments of their products, playing into the needs of their customers and making
their games a more enjoyable experience19. E-commerce uses Big Data analysis to align
advertisements with consumer interest by tracking consumer behaviour. Sport organisations
use BDA to optimize scheduling of matches to increase income28 and BDA is used to predict
the stock market �uctuations from Twitter mood9. The challenges with Big Data do not lie
in acquisition of the data, but rather the storage of large volumes of data, accessibility and
analysis. Big Data can be re-used and shared to �nd other complex relationships within the
data, enabling a high value gain out of a single investment of data33.
Twitter can be used as a model for society, though Twitter only represent part of the

population. It is mostly visited and used by people of ages between 18-44 while being
under-represented in the 44-65+ category2. PearAnalytics categorized 80% of all Tweets as
"pointless babbling" or "conversational"27. However, these numbers change drastically with
di�erent categorization. Often an ad hoc approach is taken when de�ning categories and
events making results di�cult to interpret objectively. Kwak et al. 30 categorized the content
of trending topics as predominantly news or headline related. As such, Twitter has potential
applications as a news resource. In their research Twitter was compared to CNN in which
especially events of broadcasting nature were reported faster on Twitter. A downside is that
the legitimacy of reported events are hard to verify, though a self correcting mechanism
concerning false rumours has been observed by Procter et al. 42 . Sakaki et al. 46 proposed a
Twitter data analysis method that can be used to track disasters such as Earthquakes. Their
method converts semantic properties (context) into events. These event clusters are used to
pinpoint the geo-spatial location of the disaster.

1.2 Problem Statement

Event detection is a common theme in Twitter data analysis42;46;35;14;61;54;3;53;62(further ex-
plored in subsection 2.2), though there is a lack of uniformity in de�nition and methodology.
An ad hoc de�nition is used for the term "event" and only the dimensions that are of in-
terest for the research are analysed. Ad hoc de�nitions make it di�cult to compare results
between research and hinder knowledge development in the �eld. An overarching de�nition

3

Figure 1: Twitter structuring mechanisms. An "@" with a user name also called a mention -
implies that the tweet is addressing another user. A "hashtag" is Twitters methodology for grouping
Tweets together based on the topic. It is used by typing the hashtag followed by the topic behind
it. Hashtags are used to identify trending topics, of which an overview can be found on the website.
A retweet implies that the user is sharing a tweet of another user, it allows messages to be spread
beyond the followers of the initial tweet, 75% of the retweets happen within the same day30. This
retweeting mechanism is one of the main drivers behind making a topic go viral as the reach of the
initial message grows exponentially by the use of a retweet.

backed up by theory allows standardized methodologies for event detection, while also giving
a theoretical underpinning on how events should be detected. This is especially important
for automated approaches using algorithms where a di�erent de�nition leads to di�erent
results, even though the goal might be identical.
The most commonly analysed aspects of Tweets with the goal to detect events are the text

and the time. The location from which a Tweet originated or which the Tweet concerns is
barely explored as a factor for event detection (further explored in subsection 2.2).
The assumption of homogeneity and completeness of Tweets belonging to the same hashtag

is a weakness in related works. Users of Twitter can use such hashtags for di�erent purposes
and not every user of Twitter will properly use the hashtag mechanism. As such, there is a
chance that the data is either incomplete or irrelevant to the analysis. This is an indication
that more advanced methodologies than just the common practices of Twitter (Figure 1)
should be used to structure the data.
For Event Detection identi�cation of clusters is the �rst step. The meaning of such clusters

is of importance to interpret the data. An objective methodology for classi�cation of data
gives context to the clusters. Without this classi�cation there is a large uncertainty on what
is analysed. In addition, classi�cation allows grouping of similar clusters giving insights on
the relation between clusters.

1.3 Goal & Research Questions

The goal of this research is to develop a methodology for event detection and classi�cation
on Twitter. An important aspect of this methodology is that it should be capable of detecting
generic events. Generic events detection in this context is event detection that is not speci�ed
for a use case. A requirement of the methodology is that it is polymorphic in nature and as
such can be easily expanded upon. The following research questions are de�ned:

(i) How can Twitter event detection be approached to establish a uniform methodology
suitable for generic event detection?

1. Which approach should be used to analyse Twitter?

2. How can the term "event" be de�ned to cover all facets of events, suitable for
event detection?

4

Figure 2: Big Data can be seen as a combination of at least two of three characteristics. Volume,
which indicates that the amount of data stored is large enough to require a di�erent approach in
storage and analysis. Velocity, which means that Big Data is produced at high rates. The Variety
indicates that Big Data often deals with di�erent types of data at the same time, photos, text and
videos for instance. It also indicates high dimensional data.21;15.

3. How can the approach (RQ1) and de�nition (RQ2) of an event be translated in
a polymorphic methodology for event detection and classi�cation?

In related research Twitter has not been conceptualized by the use of a paradigm. By
answering RQ1 a stronger theoretical underpinning of the methodology can be achieved
(explored in subsection 2.1). Event de�nitions are varied between researchers, a de�nition
for the term event (RQ2) is found by analysing de�nitions in other research in the �elds
of Event Detection and Psychology. The combination of de�nitions will be used to form a
comprehensive de�nition (explored in subsection 3.1). The translation from approach and
de�nition to methodology is explored in RQ3. The analysis approach as a result of RQ1 is
used to determine the type of analysis. The de�nition of "event" as a result of RQ2 is used
as a guideline to form a methodology for event detection (explored in subsection 3.2). Based
on the strengths and weaknesses found in related works requirements of the methodology
will be formulated. The methodology will be tested to establish whether it ful�ls these
requirements.

5

6

2 Background

2.1 Knowledge Discovery

Society can be seen as a Complex Adaptive System (CAS)12, Twitter, as an exponent of
society is likely to be a CAS as well. CAS theory is used in many �elds to get a better
understanding of the requirements and approach to analyse and understand a system. Grus
et al. 22 proposed a framework to identify a CAS using features and behaviours: components,
complexity, sensitivity to initial conditions, scale independence, openness, unpredictability,
non-linearity, self organizing, adaptability and feedback loops. Twitter is build up from sim-
ple components that are linked together and interact, these components are the users. The
complexity means that there is a constant exchange of information and needs between com-
ponents and that the system is more than the sum of its parts. On Twitter there is a
constant communication between users. These communications and interactions create a far
more complex system compared to a system without these interactions. Twitter is an open
system that is sensitive to outside in�uences, users Tweet about Twitter, but also Tweet
about events outside the Twitter domain and are a�ected by these events. Twitter is an
unpredictable medium, though correlations can be drawn to outside in�uences, these outside
in�uences are unpredictable as well and the e�ect of these in�uences is often non-linear.
Twitter is a medium used for self organization, with no higher authority that manages or
plans. This self organizing behaviour was especially apparent in the major role Twitter
played in the revolts of the Arabian spring23. The components of Twitter are capable of
adapting in�uenced by either internal or external factors, the self correcting mechanism as
found by Procter et al. 42 is an example of this. The RT and @ mechanisms from Twitter
allow feedback loops. Twitter is a system that is sensitive to initial conditions. Di�erent
interactions and phenomena take place on Twitter when compared to other social media.
Facebook for instance, had di�erent initial conditions which led to a di�erent velocity of
posts, type of posts and interactions between users.
The only mismatch with a CAS is the scale independence. Twitter does not seem to be

scale independent, as no real fractal structure can be observed in Twitter. Overall according
to the framework proposed by Grus et al. 22 , Twitter is either a CAS or has large similarities
to a CAS. This implicates that it should be analysed as a CAS requiring a complex approach
(see Table 1).

A wide array of complex analysis methodologies exist. Complex phenomena can be
modelled (e.g., using agent based models) but in the case of Twitter the need to model the
complex phenomena is less important as data for analysis is generated every second. Twitter
produces high velocity streams of large volume, high dimensional unstructured data. It can
be classi�ed as a Big Data source (see Figure 2). As such, BDA methodologies could be used
to describe the complex phenomena on Twitter. However, it should be noted that no prior
reports have been identi�ed that link CAS and BDA.
Knowledge Discovery & Datamining (KDD) is de�ned as "non trivial extraction of im-

plicit, previously unknown and potentially useful information", the analysis of Big Data
builds upon that de�nition and has the underlying assumption that with such large data
sets relationships and correlations are hidden within, which allows describing phenomena in
great detail34;10;6. In the context of Geo-Information Science (GIS), Geographic Knowledge
Discovery (GKD) is similar to KDD with the di�erence that GKD concerns low dimensional
spatial data which is interrelated. The distance measures for GKD are often some form
of Euclidean Distance which �ts well with our experience of reality, something that is of-
ten much less obvious when dealing with distance between n-dimensional data39;38. Spatial
Dependence, described as "the tendency of attributes at some locations in space to be re-

7

Table 1: Newtonian approaches versus complex approaches. A Newtonian approach assumes that
a phenomenon is predictable and that the outcome is the sum of parts. A complex approach takes
unpredictability, uncertainties, adaptability and external factors into account (table adapted from
Eoyang 199717).

Use Newtonian approach

when the problem is

Use a complex approach

when the problem is

Quite familiar New and unique
Well de�ned Fuzzy and unknown

Closed to outside in�uences Open to outside in�uences
Small number of people you know well Related to a large volume of people

One you have tried to
solve and succeeded

One you have tried to solve and failed

Linear, the inputs and out-
puts are clearly distinguishable

Nonlinear, the inputs and outputs
are not clearly distinguishable

lated"39, is one of the building stones for GKD. This concept gives theoretical underpinning
for correlating events in space. Though this should be done with care as not all events nec-
essarily are spatially dependent.
For Knowledge Discovery goals can be distinguished between Veri�cation, which tries to

verify a hypothesis de�ned by a user, and Discovery, where the system attempts to �nd
patterns and correlations. Discovery can be subdivided into Prediction, where the system
attempts to predict future phenomena by analysis of patterns and correlations, and De-
scription, where the system translates complicated data into information understandable for
users18. Big Data analysis is especially suitable for describing complex phenomena. Big
Data analysis does not strife to �nd an understanding on why phenomena happen as they
happen. The need to simulate complex phenomena becomes less important when the data
from those complex phenomena is available for analysis. Big Data analysis allows analysts
to describe with large accuracy how these phenomena happen10.
Knowledge building is a step-wise process. Conventional data knowledge models such

as the DIKUW pyramid describe �ve levels of knowledge: Data, Information, Knowledge,
Understanding and Wisdom45;7;39. For Big Data analysis, Knowledge, Understanding and
Wisdom are not quite as applicable while Data is too broad. The Knowledge Discovery
pyramid for Big Data analysis more closely resembles the steps as outlined in the proposed
BSID pyramid (Figure 3). The BSID pyramid can be seen as a model outlining the steps for
Knowledge Dicovery with the goal to Describe. Describing data does not require Knowledge,
Understanding or Wisdom about the data. Also, the step from Big Data is one of where
signi�cant value is added to the data. In this research, the BSID pyramid describes the
required steps to move from Twitter (Big Data) to Events (Describing).

2.2 Related Works

Conventional Twitter research has been done on a Twitter stream �ltered by keywords,
which implicates that only a speci�c interest area is retrieved (e.g.,42;46). A downside of this
methodology is that a �ltered stream is no guarantee for homogeneous data. To homogenize
the data, researchers have tried to detect events by using Big Data analysis in support of
the already existing structuring mechanisms.

8

Figure 3: The BSID Pyramid, derived from the DIKUW pyramid but applied to Big Data. At the
Big Data level unstructured data in large quantities can be found, such as Tweets, which will need
to be procured and stored. At the Small Data level the Big Data has been clustered, generalized
and/or associated into several collections. At the Information level the Small Data is classi�ed
giving an interpretation of the data. At the Describe level the processes and the relations between
processes can be described.

Cataldi et al. 14 have performed event detection on an un�ltered Twitter stream using both
the temporal and context dimension of tweets. In this research each word is given a "content
energy", which considers the frequency of word usage in a time period. Words that show
a similar pattern in usage over a time period are correlated to form events. Similar work
has been done by Weng and Lee 54 who analysed Twitter by creating signals for each word
and relating this to a volume and time dimension. Bursts of word usage are captured and
correlated to other bursts of word usage, the correlated bursts form events. Vossen et al. 53

performed event classi�cation in three dimensions: spatial, temporal and context. Events
are identi�ed by �nding strong spatio-temporal signals, similar to context/temporal bursts.
The dominant word usage within this spatio-temporal collection is used to classify the event.
Marcus et al. 35 proposed a methodology that detects and clusters events from Twitter using
the context. Their methodology aims to move from Small Data to Information by supervised
classi�cation. The downside of this methodology is that it depends supervised classi�cation
which is unrealistic in the scope of Big Data. All three approaches consider bursts of similar
Tweets as an identi�er of an event, usually a sudden increase in Tweets at a time or location
(high volume

time or spatial
time). A limitation of event detection on Tweet "bursts" is that it requires

abnormal signals, events that occur normally or events with a lesser impact or less likely to
be identi�ed. Additionally there is an assumption of homogeneity in the event clusters while
this might not be the case.
The context, in the case of Tweets often the textual component, is commonly analysed us-

ing the tfidf method by Salton and Buckley 47 ; Zhao et al. 61 ; Cataldi et al. 14 a methodology
that puts a weight on terms to select keywords (explored in subsection 3.5). The key words
are given a score based on how important the keyword is in a set of observations. Salton and
Buckley 47 enhance the tfidf context by spatio temporal analysis of the use of keywords.

9

Both temporal and spatial data are used in support of the context data, not as a measure on
its own. This might limit the type of events that can be detected. Trend detection has been
done by Zhao et al. 61 in which social text streams are analysed by considering a context,
temporal and social dimension. Using clustering techniques on the context to extract topics
and then analysing information �ows of topics between actors to detect events. The inclusion
of the actor dimension in event detection is an important �nding for the event de�nition.
However, not all events have a strong actor/social component which limits the amount of
events that can be detected.
Alvanaki et al. 3 have done event detection by considering that hashtags can be corre-

lated to other hashtags, combining these hashtag collections if they are correlated shows an
overlapping event. In their research a step is taken from information (hash tag collections)
to describing (events). This approach heavily relies on the assumption that the structur-
ing mechanisms of Twitter produce homogeneous event collections. Users might incorrectly
label their Tweets, or use the same label while the Tweets concern di�erent events. Zubi-
aga et al. 62 approached the context dimension di�erently, not analysing the text words but
rather the structure of a Tweet. Indicators of a Tweet are identi�ed such as the presence of
exclamation marks, questions marks and website links. These indicators are used to classify
a Tweet as: news, current events, memes and commemorative events. The advantage of this
methodology is its independence of language as well as relatively easy processing. However
similar to30;27 the classi�cation is not objective which makes it di�cult to interpret.
Related works on event detection on Twitter provide key elements which can be built upon.

The dimensions of events are a commonly used identi�er for event detection. A variety of
possibilities on how to detect events using these dimensions is already performed. Analysis
of the context dimension is a key component for Event Detection as it is analysed in each of
the related works (see the overview of analysed dimensions: Table 2).
Research done on analysing Twitter often considers collections to be homogeneous and

complete. No consideration is made that collections consist of sub-collections and Tweets
outside the collection might belong to the collection that is analysed. Though Twitter has
been analysed using a complex approach (BDA), the complex nature of Twitter is not fully
recognized and an underlying paradigm of how to analyse Twitter is missing.
The methodology proposed in this research builds upon the clustering methodologies as pro-
posed in related works14;54;53;47;61. The t�df algorithm can be used to enhance the clustering
procedure, moving from Small data to Big Data. This research includes the spatial dimension
in the event detection methodology as it has barely been explored in related works. Classi�-
cation of clustered Tweets has been identi�ed as an important component for Event Detection
by Marcus et al. 35 ; Zubiaga et al. 62 . However the classi�cations were either arbitrary or
supervised. This research proposes an objective automated methodology for classi�cation to
cope with the volume and velocity of the Twitter platform. The work from Alvanaki et al. 3 is
an example of the last step in the BSID model, used to move from Information to Describing.

Event De�nition

In related works the term event is either not de�ned3;1 or given an ad hoc de�nition de-
pending on the goal of the research. Zhao et al. 61 de�ne an event as: "the information �ow
between a group of social actors on a speci�c topic over a certain time period." which ap-
proaches the event de�ned by the actor dimension. It does not take into account that events
are multi-dimensional in nature. Metzler et al. 37 mention the scalability of events in which
they di�erentiate between di�erent spatial scales. Vossen et al. 53 de�ne events as spatio-
temporal-contextual entities but use the context as the main criteria for event detection.
Sakaki et al. 46 de�ne the event as "An event is an arbitrary classi�cation of a space/time
region" and "An event might have actively participating agents, passive factors, products,

10

Table 2: Dimensions of an event that have been used to detect events in related works.

Event Detection Research Event Dimension

Procter et al.(2013)42 Context
Sasaki et al.(2013)46 Context
Marcus et al.(2013)35 Context, Volume/Temporal
Cataldi et al.(2010)14 Context, Volume/Temporal
Zhao et al.(2007)61 Actors,Context
Weng et al.(2011)54 Context, Volume/Temporal
Alvanaki et al.(2012)3 Context
Vossen et al.(2009)53 Context
Zubiaga et al.(2011)62 Context

and a location in space/time." which describes not just agents that subjectively classify the
space/time region, but also passive factors which are all the factors used in an event and
products which contains everything produced by the event.
De�nitions of the term event are numerous and varied. The ad hoc de�nitions in related

works usually re�ect what the methodology aims to detect instead of what an event actually
is. This makes it di�cult to compare research done on event detection as it is unclear what
type of events are detected. There is a need for coherent de�nition of the term event.

11

12

3 Methodology

3.1 Event de�nition

Events can have di�erent meanings depending on the �eld of research. The goal of this
research is to detect events in a similar way as understood by humans. The way that Sakaki
et al. 46 de�ned events ("An event is an arbitrary classi�cation of a space/time region") is an
important consideration to make. Events are not absolute and when/where an event ends
and begins is highly subjective. Still common ground can be found in the way events are
identi�ed and distinguished.
Event Ontology by Raimond and Abdallah 43 de�ned an event as a multi dimensional en-

tity which has a cause, an e�ect, a time, a place and agents that experience the event. The
ontology also acknowledges a hierarchy in events indicating that an event can be a sub-event
of a larger event. This ontology gives a basic summary in what has already been found
in related works. However, even though events have a cause and e�ect it might not be of
enough signi�cance to Tweet about. Similarly, agents do not necessarily need to experience
an event in order to Tweet about it. Overall, though Tweets can have large similarities to
real happenings, clear di�erences can be observed which should be taken into account for
event detection.
In this research a distinction is made between the physical and digital reality events (PR

and DR respectively). For PR event detection happens inside the brain; happenings are per-
ceived by a combination of senses, brought together and correlated to form an event60. These
events can be broken down in sub events which is called event segmentation29. Segmentation
between events is perceived as such due to change in dimensions40;60. Distinctions between
(sub-)events are made when a clear di�erence in dimensionality is observed. Whether the
observed event is a sub-event or a new event depends on whether the dimensionality of the
event largely stays the same. For example, the spatial dimension changes but the context
stays the same. In DR, data is in a format that is not easily processed as PR in the brain. It
is nearly impossible to read every Tweet, which can be seen as a happening. Still, a similar
approach can be taken for event detection. Using computer analysis Tweets can be clustered
based on similarity in dimensions to form events and distinguish between events.
PR events are classi�ed in the brain (see Figure 4). For example "a wedding" is a clas-

si�cation of an event with an expectation of context (getting married, music, rings etc.),
actors (bride, groom, best man, family and friends), duration (hours) and location (church
or municipality)60. In the DR, clusters of similar happenings can also be classi�ed using
a centroid, a volume and the amount of clustering. The classi�cation gives a measurable
objective interpretation of clusters. Additionally it serves as an identi�er to which other
events it might be related.
For this research a combination of de�nitions is proposed. A graphical representation of

the event de�nition is shown in Figure 5, in which an event is seen as an entity of multiple
dimensions that have quanti�able properties.
The de�nition describes the event as an entity, that is a collection of happenings. An event

can be or contain sub-events which in turn are a collection of happenings. Events are an
arbitrary classi�cation of happenings that show similarities in dimensions. This is in line
with the �ndings of Kurby and Zacks 29 and Zacks et al. 60 and the de�nition proposed by
Sakaki et al. 46 .

Based on related works as shown in Table 2 and the works of Raimond and Abdallah 43 4
dimensions are distinguished. The context dimension indicates what happened, cause, e�ect
and the actual event. This dimension is a combination of perceptions. In the case of Twitter
(DR), PR perceptions such as sight, taste, smell etc. are less profound and captured in the

13

Figure 4: Event detection in the PR. A combination of senses is used for perception of happenings.
The happenings are clustered to identify and classify events.

text. For Twitter it consists of the text of the Tweet, when texts within an event are strongly
clustered the event is speci�c and vice versa broad. The amount of clustering in the context
dimension gives an indication about the broadness of an event. For example, a sunny day can
be an event were people go to the beach, participate in sports, and drinking a cocktail on the
terrace. An example of an event with a broad context. The spatial dimension indicates the
place where an event takes place. It can show correlations and clustering in space. An event
with a low/high amount of spatial clustering can be classi�ed as global or local respectively,
which can be important information about the nature of the event. The temporal dimension
indicates when something happened and the duration of an event. An event clustered in the
temporal dimension is the di�erence between a constant stream of happenings that consti-
tute to one event or the same amount of happenings at a certain time. The agent dimension
indicates who is experiencing the event, whether this is a group of people or individuals.
The amount of clustering in the agent dimension gives an indication on the importance of
speci�c agents in the context of an event. For example a concert is an event that is largely
centralized around a small group of agents (the band) though experienced by many. An
event like New Year's Eve is experienced by many, but the event is not centralized around
speci�c agents.
Dimensions can be characterized using properties. The centroid property is the average of

the entire dimension, often expressed as a vector. Centroids can be used as a quick identi�er
to recognize similar events. The volume property indicates the extent of a dimension.36

mentioned the scalability of events in the spatial dimension. However, scalability can be
found in every dimension: the amount of words that occur in a Tweet, the spatial extent
of the event, the duration of the event and the amount of agents that experience the event.
Similarities in volume combined with another dimension can be used to correlate events, for
instance the space/volume and time/volume of a recurring celebration is likely correlated
over the years. Though a property of a dimension, a volume can also be used to give an
indication of the impact of an event. Counting the amount of happenings that constitute to
an event (in this research, the amount of tweets). This characteristic has been used in Event
Detection research using the "bursts" by Cataldi et al. 14 ; Vossen et al. 53 ; Weng and Lee 54 .
The amount of clustering within a collection gives information on the relative importance
of a dimension within an event. For example: events tightly clustered in space indicate that
the location of an event is of importance for the event.

14

Figure 5: Proposed DR "event" de�nition illustrated as a multi-dimensional entity. Events are built
up from happenings and can contain sub-events. The context, spatial, temporal and actor dimension
describe an event. Each of these dimensions can be quanti�ed in properties. The properties are
a centroid, which is the average value of a dimension, a volume, which indicates the extent of the
dimension, and clustering, which is a measure for the amount of clustering within an event.

3.2 Conceptual Model

Methodology

The goal of this research is to create a methodology that allows event detection on Twitter
in any dimension. In this paper the focus will lie on only two dimensions but the same
principles can be applied for other dimensions. In abstract, the methodology follows the
steps as shown in the BSID pyramid Figure 3. In item (ii) and item (iii) the requirements
and assumptions respectively of the methodology are outlined.
A happening is the smallest entity/classi�cation in dimensions. It is a building block for

collections, clusters and events. In this research a happening is a single Tweet, in line with
Figure 5. A collection (C) is an agglomerate of happenings. Tweets within the collection do
not necessarily need to be related in dimensions, though they can be. In terms of knowledge
level, the collection is Big Data. A cluster (c) is an agglomerate of happenings within a
collection (c ∈ C) which have been put together due to similarities in dimensions. In terms
of knowledge level the clusters are Small Data. An event is a classi�ed cluster of happenings.
Events detected in the DR are not necessarily recognized as events in the PR. An event clus-
ter with a large amount of clustering in the actor and spatial dimension is not comparable
to events that the brain would recognize.
Event detection starts with a collection as input. This can be the entire database of

Tweets or a selection on the database to reduce processing time. This collection is clustered
based on similarities between dimensions (item (iii), 4 and 6). Similarities in dimensions
can be identi�ed using distance or similarity measures (item (iii) point 3). In the process of
clustering the ideal amount of clusters and the ideal cluster distribution is calculated. The
optimal solution is classi�ed based on the centroid, volume and clustering for each cluster in
each dimension (see Figure 6). As a result the collection is divided into classi�ed events. A
schematic overview of the implementation can be found in Figure 7.
The clusters can be classi�ed using the centroids, volume and clustering for each dimension.

15

Figure 6: Event detection in the DR. Each Tweet has characteristics which can be divided in
four dimensions: context, spatial, temporal and actor. Tweets are clustered based on similarity in
these dimensions which gives a classi�cation that includes a centroid, volume and clustering in each
dimension.

While this classi�cation is less convenient for use than for instance "Christmas" or "Lunch
break", it is an objective repeatable classi�cation that allows linking clusters together based
on these attributes. The meaning of these attributes di�ers greatly depending on the topic
analysed. A cluster with a spatial extent of 40 km (volume, spatial) might be large for a
music festival but small for weather phenomena. As such, the classi�cation is not translated
into language as is convention for PR events. However, for a computer an event that takes
place on December 25th (centroid, temporal), with the duration of a day (volume, temporal)
with a large spatial extent (volume, spatial) and no real spatial clustering (clustering, spa-
tial) with "christmas, presents, turkey, etc." as most occurring words (centroid, context) and
not centred around speci�c actors (clustering, actors) is easily recognizable as being related.
In essence, this classi�cation is similar to the translation that is made inside the brain when
labelling an event as explored by Zacks et al. 60 .

(ii) Requirements

1. Polymorphism - the methodology needs to be capable of detecting clusters in
multiple dimensions using the same building blocks.

2. The methodology needs to be capable to go from small data to information (BSID
pyramid Figure 3).

3. The methodology needs to be capable of identifying clusters in multiple dimensions
in an objective manner repeatable.

4. The methodology needs to be capable of detecting clusters within collections and
di�erentiating between events.

5. The methodology needs to be capable of classifying clusters using the properties
of the dimensions as proposed in Figure 5.

(iii) Assumptions

1. Twitter is a CAS, which should be analysed using complex methodologies. BDA
is a suitable method for event detection in a CAS (subsection 2.1).

16

2. Events are multi-dimensional entities with four dimensions: agent, spatial context
and temporal dimensions. The dimensions can be described using properties:
centroid, volume and clustering (subsection 3.1).

3. A low distance in dimensions between happenings indicates similarity.

4. Events can be identi�ed by clustering happenings that share similarities in di-
mensions (subsection 3.1).

5. Separation between events occurs when there is a change in one or more dimen-
sions (subsection 3.1).

6. Spatial Dependence as described by Miller and Han 39 can be an identi�er for
event detection.

Restrictions

In this research only part of the methodology is implemented. The choice is made to only
consider the textual and spatial dimension due to time constraints. The spatial dimension
is chosen as it has barely been explored in related works (see Table 2). The context dimen-
sion is chosen due to its importance for event detection is it encompasses many dimensions.
Without the context it is di�cult to interpret events.
The relation between DR and PR is not explored in this research. The strength of this

relationship likely depends on the topic. This means that for each topic of interest a param-
eter study would need to be done. Though it is of interest whether Twitter events can serve
as a model for events in the PR, a large value can also be gained by considering DR events
on its own. Much of the BDA research can create value by only considering the DR. The
methodology as proposed in this research can serve either goal depending on the interest.
The �nal step of Describing the data (following the BSID knowledge pyramid) is not made

in this research. A large potential lies in relating events together revealing patterns in events
as well as drawing relations between events. This is a similar step as moving from Big Data
to Small Data, the amount of data to analyse decreases creating higher value data. Describ-
ing the classi�ed clusters in the dataset can be done by clustering events together similar
to the work of Alvanaki et al. 3 . However, due to time constraints it could not be realized
within the boundaries of this research.

3.3 Data Procurement

The procurement of Tweets (source data) can be done using the Twitter REST API, an
Applied Programming Interface that streams data. The REST API stream gives a small
fraction of the total number of messages sent at any time. Using the tools of the Twitter
API, �lters can be applied for words, locations users and message types (replies, retweets).
The Twitter stream can be connected by using several programming language interfaces such
as Java and Python. For each of these platforms a multitude of modules are available which
can be tweaked to re�ect the requirements of this project.
The Tweepy module available for the Python programming language allows the initiation of

a �ltered Tweet stream that returns a JSON object the content of the Tweet, the username,
the geotagged location and the time Code 1.

1 #ENABLE TWEETSTREAM
2 #import the neccesary module
3 import tweepy
4 l o g i n= consumer_key , consumer_secret , acces_token , acces_token_secret
5 tweetstream = authent i ca t e (l o g i n)
6 #f i l t e r the tweets tream based on a square o f l on g i t u d e s and l a t i t u d e s
7 f i l t e r s t r e am = tweetstream (l o c a t i o n s : lon , l a t , lon , l a t)

17

Figure 7: Schematic overview of the implementation of the BSID model for Event Detection. From
Big Data to Information; procurement (subsection 3.3), preprocessing (subsection 3.4), clustering
(subsection 3.6) and classi�cation (subsection 3.7). Clustering and classi�cation require distance
metrics that are examined in subsection 3.5

.

8 #wri t e de t e c t ed JSON ob j e c t to a database i f i t conta ins a geotag
9 i f f i l t e r s t r e am de t e c t s JSONobject :
10 #geotag can be e i t h e r a geo re f e r ence in coord ina te s or a placename .
11 i f twee tob j e c t conta in s geotag :
12 writeToDataBase (JSONobject)

Code 1: Basic procedure in pseudocode for the procurement of Tweets using the Tweepy module

The tweepy module downloads a JSON object, similar to a dictionary, which contains
information on a wide spectrum of aspects of a Tweet which can be used for analysis, doc-
umentation can be found52. For the purpose of this research, a selection of attributes has
been made on which the analysis is to be performed. A full overview of the attributes stored
in the database can be found in Appendix A, Table 6.
The data from the Twitter feed is stored inside a Mongo database which is chosen for its

�exibility and intuitive handling of queries inside Python. Accessing this database is done
with the pymongo module which enables a connection to databases and collections inside
databases as seen in Code 2.

1 import pymongo
2 class mongoInt (object) :
3 def pymongoconn (s e l f ,mdb=' d e f au l t ') :
4 try :
5 # I n i t i a l i z e an o b j e c t to connect to the MongoDB
6 conn=pymongo . MongoClient ()
7 # Make the connect ion to the database where mdb r e f e r s to the name

of the database
8 s e l f . db = conn [mdb]
9 # Connect to the c o l l e c t i o n i n s i d e the database
10 s e l f . t c = s e l f . db . tweets
11 except pymongo . e r r o r s . Connect ionFai lure , e :
12 print "Could not connect to MongoDB: %s" % e

Code 2: Basic procedure in Python for accessing MongoDB

18

As Big Data inherently requires a large amount of computing time it is of great importance
that analysis of Big Data is done in an e�cient matter. For this program a standard format
for queries is used which is both the result and input for all analysis. The advantage of
using queries as input and output of analysis is that a database is much more e�cient
at selecting parts of data than the analysis is. Additionally, results can be saved without
putting all entries in memory which drastically speeds up processing. The query construct
which from now on will be referred to as a collection (col ∈ T), is generated by using the
standard dictionary format of Python using Code 3. When the collection is used as an input
for MongoDB it will read the dictionary as a query that is translated to SQL as shown in
Code 4.

1 #Function c a l l , r e qu i r e s a l i s t o f IDs as input
2 def convertToCol (l i s t =[]) :
3 #In i t i a t e a d i c t i ona ry
4 co l = {}
5 #Add to the d i c t i ona ry the l i s t wi th the the query
6 co l [' id '] = { ' $ in ' : l i s t }
7 return c o l

Code 3: Procedure in Python for converting lists to queries

1 SELECT ∗
2 FROM MongoDB
3 WHERE ' id ' IN l i s t

Code 4: Translation of the collection query in SQL

3.4 Preprocessing

The text of a Tweet can contain components that are useful for classi�cation of the Tweets.
These components are extracted in using an automated methodology called Regular Expres-
sion, an optimized methodology for scanning large volumes of text. As an example: websites,
hashtags, mentions, retweets, (place)names and identi�ers for mood can be extracted using
this methodology.
Similarities between the context (text) of a Tweet can also serve as a measure for classi-

�cation and clustering. Stop words in the text are removed using the stop word collection
from the Natural Language Toolkit (NLTK)8. This is done for two reasons: 1. Similarity in
stop words does not necessarily indicate a common topic between Tweets, 2. To speed up
processing. The text without stop words object is vectorized(iv) for use in Cosine Similarity
calculations.

(iv) 1. Remove stop words using the NLTK.

2. Split the text in words, space delimited.

3. Remove all non-letter characters.

4. Count the occurrence of words.

5. Represent the text as a weighted vector "Hello Amsterdam! Life is good #ams-
terdam" becomes {hello:1, amsterdam:2, life:1, good:1}.

The Twitter REST API contains coordinates as part of the JSON-object if the user permits
the Tweet to send the location. If no location is available a Null value is put in the JSON
object (see Table 6). An alternative way to retrieve the coordinates of an object is by
interpreting the toponym location which is stored in the place.name of the API using a

19

geocoder. For this research, the Google geo-coder V3 is used20 which can be queried 25000
times/day, each query is stored in a database after each successful query. The place.name
can be as speci�c as the user requires, it is either manually �lled in, or speci�ed by the
user by doing a query based on the coordinates, the REST API return a list of suggestions
which correspond with the coordinates in several scales. This means that the place object
can also contain data on what the subject is about instead of where the user is situated,
however, which one is the case is not speci�ed52. Potentially, this source of information
is more valuable than the coordinates of a Tweet, but it also has the potential to contain
erroneous or less speci�c information. The capital attribute (see Table 6) can also be used to
deduct a location from the Tweet. For each word a check is done whether it is a geo-location
indicator using the geo-coder. For this research the captial and place.name are only used
when the coordinates attribute is not available.

Coordinates are converted from decimal to radians for use with the Haversine formula
(Equation 1).

coordsradians =
coordsdecimal ∗math.pi ∗ 2

360
(1)

3.5 Distance and similarity metrics

Spatial distance between coordinates is calculated using Equation 2,3 and 4. The Haversine
formula calculates the distance between two positions lat/lon in decimal units, the output is
the distance in kilometre56.

a2 = sin(
lat2 − lat1

2
) + cos(lat1) · cos(lat2) · sin(

lon2 − lon1
2

)2 (2)

b2 = 1− a2 (3)

distance = (2 · arctan(a
b
)) ∗ 6367 (4)

For text analysis, methods for text similarity can be grouped into lexical and probabilistic.
Lexical models directly compare vectors of text against each other while a probabilistic model
creates a probability distribution to cluster text50 also a combination can be used providing
better results at the cost of computing time36. As the focus of this research does not lie
in optimizing textual clusters a lexical model is used due to its speed. Because Tweets are
a sparse type of data (words 6∈ Tweet � words ∈ Tweet) a lexical model is chosen that
only takes non zero values into account: Cosine Similarity (CS), a statistical measure that
indicates how similar two collections of vectors are as well as a distance metric that shows
similarity between individual vectors44. CS is especially useful for Twitter text analysis as
it normalizes document length, which has a large variation amongst Tweets16. The formula
for calculating the CS can be found in Equation 5:

cos(x, y) =
~x · ~y
|~x| ∗ |~y|

(5)

In which x · y is the dot product (
∑N

i=1 xi ∗ yi) and x is the length of the vector x (√∑N
i=1 x

2
i). CS values can range between 0 and 1 which indicates no and perfect correspon-

dence respectively55;48. Usually values can range between -1 and 1 but negative values are
not possible for text applications.
A downside of CS is that homonyms are not taken into account. Additionally, all words

20

are deemed equally important using the CS, this does not re�ect the actual importance of
words in a Tweet. Another aspect of CS is that a sparse data volume puts a much larger
emphasis on a single mismatch. As such it works better for comparing texts than hashtags
and mentions (# or @). Comparing short Tweets will more likely give more extreme cosine
similarity values scores than comparing long Tweets. These downsides are common amongst
lexical analysis of text36 and other lexical small text clustering algorithms do not necessarily
perform better48. Methodologies to mitigate these issues have been suggested, putting more
or less emphasis on either the missing, overlapping or extra terms16. But also normalizing
the weight of each word inside the vector by creating a vector space model known as the
termfrequency (tf) inversedocumentfrequency (idf) model, which diminishes the weight
of words that appear in many Tweets44;47;61;14. The tf(t, T) factor is calculated by frequency
f of a term t in a Tweet T (Equation 6). The idf factor is calculated by taking the total
number of Tweets N and dividing that by the number of times a term t occurs in a Tweet
T that is part of the database D. The tf is multiplied with the idf term giving a weight
w(t,D) (Equation 8) which can be substituted in Equation 5 as shown in Equation 9. The
full code for the calculation of the t�df can be found in Appendix G, Code 9.

tf(t, T) = f(t, T) (6)

idf(t,D) = ln(
N

{t ∈ T, T ∈ D}
) (7)

wt, d = tf(t, T)× idf(t,D) (8)

cos(x, y) =
~x · ~y
|~x| ∗ |~y|

=

∑N
i=1 wi,x × wi,y√∑N

i=1 w
2
i,x ×

√∑N
i=1 wi,y

(9)

3.6 Clustering

The K-Means algorithm is a common clustering methodology characterized by its simplicity
and ease of implementation and e�ciency in handling large datasets. It is used in data
mining, text analysis24;26;44 and typical GIS applications4;13 K-Means requires four user
inputs: the number of clusters (K), a cut-o� value(c), the initial cluster centroids C and a
distance metric. It is an iterative method described in item (v) and Figure 8.

(v) 1. Choose a value for K and c.

2. Assign initial centroids C.

3. Calculate distance from point (vector/spatial) to centroid d(C, p).

4. Assign each point to a cluster from which the centroid is closest to the point.

5. Recalculate the centroid of the cluster.

6. Repeat steps 3-5.

The most suitable value for K is chosen by running the algorithm independently for dif-
ferent K values24. Still the choice for an optimal K value is ambiguous, as increasing the
K value will always decrease the error until the error is zero when K = N . Usually, the
percentage of variance explained (PV E) as a function of the number clusters will show an
elbow shape as shown in Figure 9 indicating an ideal solution for the amount of clusters
K 57. The PV E is calculated by taking the ratio of the Between Sum of Squares BSS) and

21

Figure 8: K-Means algorithm in steps. (A) Centroids, shown as circles, of the clusters are randomly
chosen. (B) The points, shown as squares, are added to a cluster based on the distance to the
centroid. (C) The update step: new centroids are calculated and the centroid shifts to a new mean.
(D) Step 2 and 3 are repeated until the centroid shift is smaller than the user de�ned threshold c.
Images adapted from57.

the Total Sum of Squares (TSS). These are calculated using the Within Sum of Squares
(WSS) as seen in Equation 10:

WSS =
∑N

i=1
d(C, pi)

2 if K > 1 (10)

TSS =
∑N

i=1
d(C, pi)

2 if K = 1 (11)

BSS = TSS −WSS (12)

PV E =
BSS

TSS
(13)

In which d(C, p) is the distance from each point that belongs to a cluster to its centroid. The
TSS is calculated by using the formula for the WSS with only one centroid (Equation 11).
The BSS is calculated by detracting the WSS from the TSS (Equation 12). The full code
for the K-Means algorithm can be found in Appendix H, Code 10.

The initial cluster centroids are picked randomly from the existing collection, making
sure that the distance between centroids is larger than the cut-o� value (d(Cx, Cy) > c).
K-Means as an iterative technique, is especially sensitive to starting conditions. It converges
to a local minima which can lead to unintuitive results as shown in Figure 1024. A common
method to overcome the local minima, is to optimize the initial cluster centroids by repeating
the K-Means algorithm multiple times and choosing the ideal initial centroid based on the
PV E value, the amount of initiations done is labelled as KI 24;11. In the update step, the
centroid is recalculated (item (v) step 4) by calculating the mean of all points as shown in
Equation 14:

Ct+1 =
1

N

∑N

i=1
pi (14)

In which Ct+1 is the calculated centroid for the next iteration, N the total number of points
inside a cluster and pi point i in a collection of points (pi ∈ col(P)). The algorithm for
�nding the ideal centroid using the calculation for the PVE can be found in Appendix I,
Code 12.
The distance metric for text clustering is the distance between vectors for which in this

research the CS is used (Equation 5). For clustering in the spatial dimension the Haversine
formula (Equation 3) is used as a distance metric

22

Figure 9: In data set clustering, the PV E value increases with the amount of clusters. However,
the �rst clusters explain a larger amount of the TSS than later clusters. The point where the the
PV E �attens when adding subsequent clusters is referred to as the elbow point, which is seen as
the optimal amount of clusters. In this example at 4 clusters (image adapted from5).

Figure 10: A typical result for K-Means clustering where the clusters converge to a local minima,
giving unintuitive results (image adapted from41).

23

3.7 Classi�cation

As explored in subsection 3.2, dimensions of an event can be described with three properties:
centroid, volume and clustering (item (vi)):

(vi) 1. Centroids, the centroids of a collection in each dimension.

2. Volume, the extent of a dimension.

3. Amount of clustering, a value that gives an indication on the amount of clustering
in a dimension.

From which the centroid can be calculated using Equation 14. The volume can be calculated
by calculating the extent (temporal,spatial) or the amount (amount of agents, amount of
words used). As examined in subsection 3.1 the number of Tweets can also be a characteristic
used to classify an event. A measure for clustering in the spatial dimension is the k Nearest
Neighbour (kNN) algorithm, an algorithm that is commonly used in data mining59 and
spatial analysis software such as ESRI ArcGIS 10.1. This algorithm can be used to classify
the amount of clustering inside Tweet collections as well as �nding k nearest Tweets. The
kNN value calculated ranges from 0-∞ in which a lower value indicates a larger clustering
within the dataset. Equation 17 shows the basic formula for calculating the kNN :

DO =

k∑
i=1

di

k
(15)

DE =
0.5√
n/A

(16)

kNN =
DO

DE

(17)

In which the Do is the sum of the observed mean distances to k nearest neighbours di divided
by k as shown in Equation 15. The De is the expected mean distance which is calculated
using the total number of features n and the overall area of the study area A as shown
in Equation 16. The interpretation of the kNN value depends on the value chosen for k
which in turn, depends on the purpose of the analysis and the dataset. When classifying
a feature often a lower k value will su�ce. Larger k values reduce the e�ect of noise on
the classi�cation, while low k can lead to a high kNN standard deviation (kNNsd) within
the collection. Due to collections varying in size, a �xed k will in�uence the classi�cation.
As such, the average nearest neighbour (when k = N, kNN = NN) is used for classifying
collections. The full code for the kNN can be found in Appendix F, Code 7.

When classifying the clustering in the context dimension, the CS is used as a distance
metric in a similar way as the Haversine formula is used in kNN for spatial applications.
The kCS value is calculated by taking the average CS value of k nearest neighbours. The
interpretation of the value is opposite however, the the scale for kCS is reversed (0 to 1)
compared to kNN (∞ to 0). The full code for the kCS can be found in Appendix G, Code 8.

24

4 Results and Discussion

4.1 Procedure

To evaluate the performance of the methodology and implementation as proposed in this
research, several case studies are designed. The requirements as outlined in item (ii) point 3,
4 and 5: Di�erentiation between events, Within collection clustering, Cluster in multiple di-
mensions and Classify in multiple dimensions. Finally an overall discussion on the strengths
and weaknesses of the proposed methodology is done.
The Twitter data used is captured on the 5th of December 2013 between 12:00 and 19:00.

The Twitter stream is �ltered, receiving only Tweets with (place_)coordinates between Lon
3.22-7.22 and Lat 50.75-53.33. giving a total of ≈ 51.000 Tweets.
Di�erences between collections are measured using Cohen's Kappa statistics (Equation 1858).

κ =
Pr(a)− Pr(e)
1− Pr(e)

(18)

In which Pr(a) is observed percentage of agreement and Pr(e) the probability of chance
agreement. A κ value of 1 indicates perfect agreement and a value of 0 indicates no agreement.

4.2 Di�erentiation between events

A requirement of the methodology is that it can di�erentiate between events. The method-
ology was tested in this regard by performing contextual K-Means clustering on collections
that consist of two vastly di�erent hash tag collections Table 3 (C1-C3). A collection built
up from Tweets is not an event by de�nition. However, the purpose of this case study is
to investigate whether the clustering methodology can di�erentiate between two obviously
di�erent collections. The clusters as a result of context K-Means clustering and the original
collections are compared. The κ value is calculated, which shows a perfect correspondence
(κ of 1.00). This is to be expected as the Tweets of either collection do not have many words
in common. In this case it means that the best clustering solution corresponds with the
structure provided by Twitter: the hashtags. However, this is not always the case. When
comparing two similar collections such as #onweer and #storm (both translate as storm in
English) the clustering does not show perfect correspondence with the hashtag collections
(Table 3) (C4,C5). Tweets categorized as #storm by users but textually (given a lexical
model) 60 Tweets are closer to the #onweer collection. A similar phenomena occurs when
comparing the similar collections #pakjesavond and #sinterklaas ("presents evening" and
a Dutch celebration in which gifts are given respectively). When Tweets without a hash
tag are also considered and more collections are taken into account the classi�cation would
change even more. A downside of doing this analysis is that it costs computing time. Ad-
ditionally, as a lexical model is used homonyms are not taken into account. However, using
this methodology does give a more focused homogeneous collection compared to the source
data.

4.3 Within collection clustering

One of the requirements of the methodology is that it should be capable of detecting clusters
within collections. In line with the de�nition of the event given in Figure 5. To test this,
a collection is built up with from Tweets labelled with #hagel (#hail in English). In Ta-
ble 4 the results are shown for context clustering. The kCS values increase with the amount
of clusters indicating that the amount of clustering in the text increases. Also the spatial

25

Table 3: K-Means context clustering (K = 2,K = 20) on �ve combined collections. Collection 1
(top row, left table) is built up from Tweets with #ns and #peopleschoice containing 315 Tweets.
Collection 2 (top row, middle table) is built up from Tweets of #hagel and #fyra containing
179 Tweets. Collection 3 (top row, right table) is built up from #sinterklaas and #acakfilm
containing 315 Tweets. Collections 4 (bottom row, left table) is built up from #onweer and #storm
containing 578 Tweets. Collections 5 (bottom row, right table) is built up from #pakjesavond
and #sinterklaas containing 351 Tweets. Intersections between collections are removed. The two
resulting clusters are annotated with C#A and C#B. The original collections are compared to the
clusters using Cohen's Kappa statistics. The K-Means clusters for C1, C2 and C3 show a perfect
inter-rater-agreement, with a κ value of 1.00. While the κ value for C4=0.42 and C5=0.84. The top
15 words in each cluster can be found in Appendix C.

C1 C1A C1B

#ns 100 0
#peopleschoice 0 79

C2 C2A C2B

#hagel 53 0
#fyra 0 113

C3 C3A C3B

#sinterklaas 239 0
#acakfilm 0 76

C4 C4A C4B

#onweer 25 0
#storm 60 493

C5 C5A C5B

#pakjesavond 112 0
#sinterklaas 26 213

clustering improves as the kNN values decrease with increasing K. An overall decreasing
standard deviation with increasing K values is found. This is partly due to more homoge-
neous clusters but also due to less Tweets in a collection.
Cluster CTK2C1 is an anomaly that deserves attention as it has a high kCS value and a

kNN value of zero. This makes it likely that the Tweets from the cluster originate from a
bot sending out similar messages from one location, which is also the case. That bots can
be �ltered out is an unforeseen advantage of this methodology.
As observed in Figure 11 the optimal clustering of this collection can be found at two clus-

ters, giving Text collection 1, where the gain in PVE is the largest. Optimal in this context
is according to the elbow method described in subsection 3.6 which indicates an optimum
PVE/K ratio. CTK2C1 where K=2 (corresponds with CTK3C0,CTK4C0,CTK5C0) has
not been clustered further with increasing K values. In this case because larger di�erences
could be found in the other collection. However, there is a possibility that this cluster can
be optimized with further clustering.

Text collection 1: Top 15 most used words in collection as a result of K-Means (K =
2,KI = 20, k = N) clustering of collection #hagel. The clusters correspond with the clus-
ters in Table 4.

Cluster: CTK2C0
{ hagel: 22, windstoten: 22, zie: 22, regen: 22, onweer: 22, storm: 22, nederland: 22, natte:
22, mm: 22, apeldoorn: 22, http://tco/xzm1bmcgdp: 22, sneeuw: 22, coderood: 12, achtig:
10, codegeel: 10 }
Cluster: CTK2C1
{ hagel: 31, onweer: 21, storm: 16, regen: 8, weer: 6, lekker: 3, zware: 2, windvlagen: 2,
tekeer: 2, zitten: 2, noodweer: 2, echt: 2, gaat: 2, midden: 2, zeer: 2 }

26

Table 4: K-Means context clustering results (KI = 20, k = N). K is the amount of clusters,
PVE is the percentage of variance explained, the cluster refers to the cluster as a result of K-Means
optimization, kNN(sd) is the k-nearest neighbour statistic and its standard deviation, kCS(sd) is
the k-nearest cosine similarity statistic and its standard deviation, N is the amount of Tweets in a
collection.

K PVE Cluster kNN kNNsd kCS kCSsd N

1 0 HAGEL 2.966 1.288 0.256 0.115 53
2 0.358 CTK2C0 3.141 0.81 0.183 0.073 31

CTK2C1 0 0 0.702 0.012 22
3 0.449 CTK3C0 0 0 0.702 0.012 22

CTK3C1 2.6 0.637 0.202 0.074 23
CTK3C2 1.87 0.493 0.188 0.078 8

4 0.507 CTK4C0 0 0 0.702 0.012 22
CTK4C1 1.083 0 0.23 0 2
CTK4C2 2.302 0.605 0.222 0.078 20
CTK4C3 2.145 0.492 0.185 0.075 9

5 0.536 CTK5C0 0 0 0.702 0.012 22
CTK5C1 2.27 0.586 0.232 0.078 19
CTK5C2 1.083 0 0.23 0 2
CTK5C3 2.145 0.492 0.185 0.075 9
CTK5C4 - - - - 1

When collection CTK2C0 is subjected to K-Means clustering an optimal solution is found
at K=2 (Figure 12). As observed in Text collection 2, the clusters are distinguished by the
presence of the word "codegeel" in CTK2C1-A (code yellow) and "coderood" in CTK2C1-B
(code red), both are indicators for extreme weather. A human interpretation of this dis-
tinction could be that the overall event was "extreme weather" with sub events "codegeel"
weather and "coderood" weather. This result in which a cluster consists of sub-clusters is in
support of the de�nition of an event given in Figure 5.

Text collection 2: Top 15 most used words in a collection as a result of K-Means (K =
2,KI = 20, k = N)clustering of collection CTK2C1.

Cluster: CTK2C1-A
{ hagel: 12, coderood: 12, windstoten: 12, zie: 12, regen: 12, onweer: 12, storm: 12, neder-
land: 12, natte: 12, mm: 12, apeldoorn: 12, http://tco/xzm1bmcgdp: 12, sneeuw: 12, 5,1:
3, 10,8: 1 }
Cluster: CTK2C1-B
{ achtig: 10, hagel: 10, codegeel: 10, windstoten: 10, zie: 10, regen: 10, onweer: 10, storm:
10, nederland: 10, natte: 10, mm: 10, apeldoorn: 10, http://tco/xzm1bmcgdp: 10, sneeuw:
10, 14,4: 5 }

4.4 Cluster in multiple dimensions

The methodology needs to be capable of clustering of collections in multiple dimensions.
The implementation for clustering the temporal and actor dimension lied beyond the scope
of this research. However, an implementation for the spatial dimension is made. Spatial

27

Figure 11: Elbow plot of the data in Table 4 the amount of clusters on the X axis and the PVE
value on the Y axis. Most variance is explained when K = 2.

Figure 12: Elbow plot of the data in Table 7 (Appendix B) the amount of clusters on the X axis
and the PVE value on the Y axis. Most variance is explained when K = 2.

28

K-Means clustering has been performed on the #hagel collection. The results can be found
in Table 5. Overall results show a dropping kNN value with increasing K values, indicating
stronger clustering. The kNNsd values also decrease which indicates more homogenized col-
lections. The weighted average of kCS values increase overall (K = 20.30,K = 30.32,K =
40.33,K = 50.35), indicating more context clustering with increasing clusters. The plot
of the the amount of clusters K vs PVE does not show a clear elbow shape like previous
examples(Figure 14). By far the largest PV E is gained at K = 2. Still, the gain in PV E is
signi�cant when K > 2 and does not �atten as much as Figure 11 or Figure 12. The elbow
point in Figure 14 is more ambiguous and open for interpretation. The spatial distribution
of points provides a possible explanation. Clear sub clusters within clusters can be observed
in Figure 13. Calculating the PVE values in other dimensions (actors, context, temporal)
could provide a solution in this scenario.

Both the spatial and context K-Means clustering procedures provide solutions for cluster-
ing the #hagel collection. Which clustering result re�ects events better? Both algorithms
provide clusters with less variance than the original collection. In both case studies the
kCS and kNN values improved. A hierarchy between dimensions might exist. In the
current iteration of the methodology the hierarchy between dimensions is up to the user.
Which hierarchy should be used when attempting to detect events in a similar fashion as
the human brain? If the entire Tweet collection would be clustered using spatial K-Means,
the clusters would indicate spatial hotspots of Tweets (two-dimensional) instead of events
(multi-dimensional). Though the spatial dimension is an important dimension for events,
it requires other dimensions to form event clusters. The context dimension encompasses
many dimensions (as explored in subsection 3.1) making context clusters multi-dimensional
by nature. To increase the certainty in event detection a combination of dimensions could
be a strong indicator for events. This does require alteration of the K-Means algorithm as
it is currently unable to calculate clusters in multiple dimensions.
The current clustering and classi�cation procedures show a strong tendency to cluster ar-

eas which have a high Tweet density (see Figure 13, SPK5C1). Both K-Means and kNN
assume a homogeneous area in terms of Tweet likelihood, a Tweet in a low density rural
area has an equal chance of occurring as a Tweet in a high density urban area. Similar to
the normalisation done by tfidf for the textual dimension, the spatial distance needs to be
normalized.
The context clusters as shown in Table 4 showed that CTK2C1 is a cluster with identical

coordinates on every Tweet. This cluster has a strong spatial component (kNN = 0), but is
not found by spatial clustering with low K values. The reason behind this is a limitation of
the K-Means clustering algorithm as shown in Figure 15. However this problem can likely
be mitigated by the inclusion of the temporal and actor dimension.

The kNN and kCS values are relative values that only have a real meaning in context. A
kNN value of 2 does not indicate a strong or weak clustering as these terms are relative. It is
therefore di�cult to give a "human" interpretation of these values. The value of these mea-
sures lies in classi�cation, for comparing and linking clusters and to support cluster decisions
(ideal K value) in a similar way as the PVE.

4.5 Classify in multiple dimensions

In appendix D a classi�cation of cluster SPK2C1 is shown, which has a spatial centroid
calculated using the methodology as described in subsection 3.6. A spatial volume, which is
the extent. It is calculated by taking the maximum distance between points and a spatial
measure for clustering the kNN. In the context dimension the centroid is calculated in the
same way (see subsection 3.6). The values are the mean of the t�df vectors within the

29

Figure 13: The data of Table 5 plotted on the map of the Netherlands showing the spatial
distribution. The image labelled "HAGEL" is the initial collection, the other images are labelled
with "SPKXCY", where X indicates the amount of clusters, and Y the cluster as a result of K-Means
optimization.

30

Table 5: K-Means spatial clustering results (KI = 20, k = N). K is the amount of clusters, PVE
is the percentage of variance explained, the cluster refers to the cluster as a result of K-Means
clustering. A visual spatial representation of each cluster can be found in Figure 13. The kNN(sd)
is the k nearest neighbour statistic and its standard deviation, kCS(sd) is the k-nearest cosine
similarity statistic and its standard deviation, N is the amount of Tweets in a cluster.

K PVE Cluster kNN kNNsd kCS kCSsd N

1 0 HAGEL 2.966 1.288 0.256 0.115 53
2 0.539 SPK2C0 1.443 0.502 0.185 0.067 18

SPK2C1 1.631 1.108 0.363 0.166 35
3 0.701 SPK3C0 1.35 0.453 0.157 0.053 15

SPK3C1 0.818 0.634 0.417 0.169 32
SPK3C2 0.933 0.17 0.171 0.066 6

4 0.806 SPK4C0 0.904 0.2 0.13 0.039 5
SPK4C1 0.644 0.609 0.453 0.184 29
SPK4C2 0.638 0.076 0.203 0.071 13
SPK4C3 0.933 0.17 0.171 0.066 6

5 0.862 SPK5C0 0.461 0.574 0.505 0.179 27
SPK5C1 0.638 0.076 0.203 0.071 13
SPK5C2 0.904 0.2 0.13 0.039 5
SPK5C3 0.375 0.07 0.082 0.013 4
SPK5C4 0.558 0.051 0.265 0.1 4

Figure 14: Elbow plot of the data in Table 5 the amount of clusters K on the X axis and the PVE
value on the Y axis. The elbow point in this plot is di�cult to identify.

31

Figure 15: Given a hypothetical example of Tweets distributed in space. Human interpretation
would classify this example as two clusters. The blue cluster which has a centroid in the middle (the
purple dot) and a small distance from this centroid and a low kNN value. The red cluster which
has its centroid in the middle as well (purple dot) but a large distance from this centroid and a
large kNN value (if k=N). However, as the centroid is identical for both clusters K-Means clustering
would not be able to di�erentiate between these clusters.

collection. The values behind each word give an indication on the importance of each word
within the cluster. This collection is characterized especially by the terms: regen, onweer,
apeldoorn, natte, sneeuw. The context volume is the amount of unique words (minus stop
words) found in the collection and the clustering in the context dimension is the kCS value.
The classi�cation is a combination of identi�ers which can be used to link events together.
Mostly useful for use within computer algorithms but interpretable. The temporal and
actor component are missing in the current implementation. Even though the use for the
classi�cation is currently limited, it can be seen as meta data of the clusters. Giving more
information on the contents and homogeneity.

4.6 Methodology Discussion

The methodology is largely based on the underlying event de�nition as proposed in subsec-
tion 3.1. In this research evidence has been found in support of this de�nition. The multi-
dimensional nature of events was shown by e�ectively clustering collections using these di-
mensions. Other research has shown similar results for the actor and temporal dimension. As
such, the de�nition of an "event" as a multi-dimensional entity seems to work in the context
of digital event detection. Analogous to event detection in the brain the proposed methodol-
ogy attempts to create clusters based on similarity. This underlying principle seems to work
for the case studies in this research, however, for true event detection a multi-dimensional
approach needs to be taken.
The methodology in its current implementation add value to the data. The classi�ed event

clusters give insights in the data and allow interpretation of events as detected. This classi-
�cation is crucial for any form of event detection, not in the least because of the arbitrary
nature of events. The case study on classi�cation in multiple dimensions shows that spatial
clustering has its merits in event detection. Clusters in space can represent more optimized
clusters in context. Unfortunately, clusters in space have di�culty with �nding bots (due
to a limitation of the K-Means algorithm Figure 15) which can have a large e�ect on the
classi�cation. Additionally, the importance of the spatial dimension for events varies be-
tween dimensions. As such, the underlying assumption of spatial dependence is not a rule
to certain success for event detection (item (iii), 6).

32

The techniques and algorithms used can be easily applied to the temporal dimension, time
already has an inherent distance metric. The actor dimension is more di�cult to implement.
Many aspects of this dimension can be measured: the user who Tweeted, the user mentioned
using "@", a name in the context of a Tweet or event and/or the social stream as explored
by Zhao et al. 61 .
An overarching di�culty in event detection research is veri�cation. Events are arbitrary

classi�cations of happenings in space and time as such a "true" event does not exist. The
methodology shows capability in performing its required features as stated in item (i). How-
ever the success at which these requirements are ful�lled is hard to measure. A human
test panel could help in building a system that detects events as if it were human, unfortu-
nately for this research such an experiment setup was not feasible. An alternative could be
to check whether the events detected by the methodology also occur in the PR. However,
before the e�ectiveness of clustering methodologies can be tested, more research is required
on the correspondence between the DR (Twitter) and PR. This correspondence likely varies
depending on the events. For example, events of broadcasting nature likely have a strong
correspondence while discussions on a subject might only occur on Twitter and not in the
PR. Another aspect is that the dimensions are not the same by de�nition, Tweets can be
made by unrelated actors/hours later/miles away compared to the original event.

33

34

5 Conclusion

In this research a methodology and implementation has been created for multi-dimensional
event detection on Twitter.

In related works, often an ad hoc de�nition is used for the term "event". In this research a
multi-disciplinary de�nition is proposed, in which the event is de�ned as a multi-dimensional
entity with four dimensions, each of these dimensions has three properties as shown in Fig-
ure 5. The event detection and classi�cation as proposed in this methodology is based on
this de�nition. This research made an implementation for the identi�cation and classi�ca-
tion of clusters in the spatial and textual dimension. Uncovering uncharted territory as this
combination has barely been explored for event detection on Twitter (see Table 2).

Many approaches have been taken for Event Detection on Twitter. Often an underlying
assumption of linearity and homogeneity of collections persists. In this research Twitter
has been classi�ed as a CAS using the methodology of Grus et al. 22 , requiring a non-linear
analysis approach. The complex nature suggests that Twitter does not behave in a linear
fashion and assumptions of homogeneity is likely to produce errors.
BDA has been suggested as a complex data analysis to describe the events that occur on

Twitter. The methodology is built up in the form of a knowledge pyramid, with stepwise
value adding to the data (Figure 3). The basic components of the methodology consist of
clustering and classifying. The process of clustering and classi�cation is polymorph. The
polymorph nature of the methodology is clear in both application and implementation. The
methodology can be applied to detect any type of event, unlike event detection method-
ologies in related works which focus on events with speci�c dimension characteristics. The
implementation is polymorph as the components are independent of dimension. The only
required alteration is the distance metric. In this research it is shown that the methodology
works in both the spatial and context dimension.
The implementation in its current form includes: procurement and preprocessing (Twit-

ter REST API) distance measures (CS,Haversine), clustering (K-Means) and classi�cation
(kCS, kNN). These tools allow value adding from Big Data to information.
The results support the hypothesis of heterogeneity in the data. Within hashtag collections

Tweets are found that belong to another collection, collections were clustered further into
sub collections and a Twitter bot was identi�ed using the clustering methodology. Cluster-
ing in both the spatial and context dimension led to intuitive results. However, the cluster
detection implementation in this research is one-dimensional by nature. To identify events
the multi-dimensional approach needs to be completed with the temporal and actor dimen-
sion. This could be done by considering PV E values in all dimensions to optimize clusters
or by performing the K-Means algorithm on four dimensions at once. The clustering mea-
sures kNN and kCS can also serve as support in identifying clusters in which the Tweets
show high dimension similarity. The elbow methodology for identifying the optimal (PV E
vs K) amount of clusters (K) in a collection gave mixed results. For the context clusters
a clear elbow point could be observed, the spatial clusters did not immediately lead to an
unambiguous answer. Another downside of the elbow methodology is that it is supervised,
requiring human interpretation. An automated alternative to the elbow method could be
the gap statistic as proposed by Tibshirani et al. 51 .
There is ambiguity in detected events using this methodology. The current methodology

provided di�erent clusters for the same base collection #hagel. Even when the clustering
is done using both dimensions at the same time the algorithm needs to decide whether the
spatial or context dimension is more important for the clustering procedure. A certain hi-
erarchy in the importance of dimensions for event detection seems inevitable. However, this
does make the classi�cation biased. Perhaps this is inherent to "events" as Sakaki et al. 46

35

("Events are arbitrary classi�cations of the space/time region") and Boyd and Crawford 10

("Big Data analysis does not produce an unbiased objective information source") stated.
When de�ning the mining parameters choices need to be made which by de�nition give a
biased view on the data. These events are a result of the assumptions made when de�ning
the methodology (item (iii)). No claim can be made that clusters found using this methodol-
ogy are the "true" events. However, this methodology does o�er an objective and repeatable
approach to detection and classi�cation of events. Parameter choices are up to the discretion
of the user. Which is important as it makes the methodology polymorph in its applications.

The classi�cation of clusters is an important step when moving from Small Data to
Information. The classi�cation is done using the centroid, volume and clustering in each
dimension. This has been implemented for the spatial and context dimension. The classi-
�cation gives the collections as a result from K-Means clustering an objective classi�cation
(see Appendix D). If fully implemented in all dimensions the classi�cation can serve as an
identi�er for computer algorithms to calculate similarity between clusters, linking events
together in a similar way as the works from Alvanaki et al. 3 . For example, the volume
(amount of Tweets) over time, which in related works35;14;54 is often referred to as bursts,
is a an identi�er for related collections. Using the classi�cation, event clusters with similar
centroids in the spatial and temporal dimension can be identi�ed as related events.
To make an event detection methodology work in a multidimensional Big Data context, a

framework has been designed in which every input and output is a query that described a
data collection. The advantage of this approach is twofold: 1. Every component can commu-
nicate with other components. This is especially important when methodologies that analyse
di�erent dimensions need to communicate. 2. Saving queries instead of data object saves
virtual memory. Which becomes increasingly important when the volume of data increases.
In this research a �rst step is taken in optimizing the algorithms using queries. This can
be further improved upon by using queries that incorporate the centroids of the data, only
considering Tweets that are in the neighbourhood, approximately the same period or use
words that are already present in the collection. Such a query structure could greatly reduce
computing time.
The Nearest Neighbour methodology, used as a distance metric in K-Means and kNN does

not work optimal in the context of Tweets. The underlying assumption of Spatial Depen-
dence38 (item (iii), point 3) only works when Tweets have a uniform likeliness of occurring in
each location of the study area. A possible solution to circumvent this problem is by creating
a statistical model of occurrence, similar to the t�df methodology for context normalization.
Digital event detection research as explored in related works can easily implement elements

of the proposed methodology to improve the value of their data and with that the value of
their conclusions. The methodology can be used to extract events out of any dataset that
has a context, spatial, temporal and/or actor component. For social studies, behaviour of
Twitter users can be monitored and classi�ed in a �exible manner, as this methodology al-
lows event detection on any combination of dimensions. Similarities between dimensional
patterns (i.e.: space/time, context/space events) can be quanti�ed using the classi�cation
as proposed in the methodology, which allows patterns recognition of recurring events in
time and space. The methodology has applications in disaster management by more ac-
curately identifying relevant Tweets, using both the multi dimensional clustering and the
classi�cation. Anomaly detection can be improved using this methodology, as the multi di-
mensional nature of events more accurately indicates whether an event is an anomaly or not.
This research proposed a generic methodology for event detection, based on the multi-

dimensional event de�nition and CAS/Knowledge Discovery theory. The main advantages
of this methodology over methodologies in related works are:

36

(vii) 1. Identi�cation of clusters in multiple dimensions which enables more �exibility and
precision on which (type of) events are detected.

2. Objective multi-dimensional classi�cation which is important for relating events
and giving an interpretable insight into the data.

3. Polymorphism - the methodology can be applied on any type of event and is
independent of dimension.

37

38

6 Bibliography

[1] F. Abel, C. Hau�, G. Houben, R. Stronkman, and K. Tao. Semantics+ �ltering+
search= twitcident. exploring information in social web streams. In Proceedings of the
23rd ACM conference on Hypertext and social media, pages 285�294. ACM, 2012. ISBN
1450313353.

[2] Alexa.com. Alexa site info: Twitter. http://www.alexa.com/siteinfo/twitter.com,
2013. [Online; accessed 28-June-2013].

[3] F. Alvanaki, S. Michel, K. Ramamritham, and G. Weikum. See what's enblogue: real-
time emergent topic identi�cation in social media. In Proceedings of the 15th Inter-
national Conference on Extending Database Technology, pages 336�347. ACM, 2012.
ISBN 978-1-4503-0790-1. doi: 10.1145/2247596.2247636. URL http://dl.acm.org/

citation.cfm?id=2247596.2247636.

[4] T.K. Anderson. Kernel density estimation and k-means clustering to pro�le road acci-
dent hotspots. Accident Analysis & Prevention, 41(3):359 � 364, 2009. ISSN 0001-4575.
doi: http://dx.doi.org/10.1016/j.aap.2008.12.014. URL http://www.sciencedirect.

com/science/article/pii/S0001457508002340.

[5] B Barnard. Wikipedia: Determining the number of clusters in a data
set. http://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_

a_data_set, 2005. [Online; accessed 21-February-2014].

[6] E. Begoli and J. Horey. Design principles for e�ective knowledge discovery from big data.
In Software Architecture (WICSA) and European Conference on Software Architecture
(ECSA), 2012 Joint Working IEEE/IFIP Conference on, pages 215�218. IEEE, 2012.

[7] G. Bellinger, D. Castro, and A. Mills. Data, information, knowledge, and wisdom. http:
//www.systems-thinking.org/dikw/dikw.htm, 2004. [Online; accessed 10-January-
2014].

[8] S Bird, E Klein, and E Loper. Natural Language Processing with Python, pages 10�14.
O'Reilly Media, 2nd edition, 2010. ISBN 978-0-596-51649-9. URL http://nltk.org/

book/.

[9] J. Bollen, H. Mao, and X. Zeng. Twitter mood predicts the stock market. Journal
of Computational Science, 2(1):1�8, 2011. ISSN 18777503 (ISSN). URL http:

//www.scopus.com/inward/record.url?eid=2-s2.0-79953102821&partnerID=

40&md5=ea7c5bb18e5075c65d8c117f5c722300.

[10] D. Boyd and K. Crawford. Six provocations for big data. In A Decade in Internet Time:
Symposium on the Dynamics of the Internet and Society, September 2011. Microsoft
Research, 2011. doi: 10.2139/ssrn.1926431. URL http://papers.ssrn.com/abstract=

1926431.

[11] P.S. Bradley and U.M. Fayyad. Re�ning initial points for k-means clustering. In ICML
'98 Proceedings of the Fifteenth International Conference on Machine Learning, vol-
ume 98, pages 91�99. Citeseer, 1998.

[12] W.F. Buckley. Society�a Complex Adaptive System: Essays in Social Theory, volume 9.
Taylor & Francis, 1998.

39

http://www.alexa.com/siteinfo/twitter.com
http://dl.acm.org/citation.cfm?id=2247596.2247636
http://dl.acm.org/citation.cfm?id=2247596.2247636
http://www.sciencedirect.com/science/article/pii/S0001457508002340
http://www.sciencedirect.com/science/article/pii/S0001457508002340
http://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set
http://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set
http://www.systems-thinking.org/dikw/dikw.htm
http://www.systems-thinking.org/dikw/dikw.htm
http://nltk.org/book/
http://nltk.org/book/
http://www.scopus.com/inward/record.url?eid=2-s2.0-79953102821&partnerID=40&md5=ea7c5bb18e5075c65d8c117f5c722300
http://www.scopus.com/inward/record.url?eid=2-s2.0-79953102821&partnerID=40&md5=ea7c5bb18e5075c65d8c117f5c722300
http://www.scopus.com/inward/record.url?eid=2-s2.0-79953102821&partnerID=40&md5=ea7c5bb18e5075c65d8c117f5c722300
http://papers.ssrn.com/abstract=1926431
http://papers.ssrn.com/abstract=1926431

[13] P.A. Burrough, P.F.M. van Gaans, and R.A. MacMillan. High-resolution landform
classi�cation using fuzzy k-means. Fuzzy Sets and Systems, 113(1):37 � 52, 2000. ISSN
0165-0114. doi: http://dx.doi.org/10.1016/S0165-0114(99)00011-1. URL http://www.

sciencedirect.com/science/article/pii/S0165011499000111.

[14] M. Cataldi, L. Di Caro, and C. Schifanella. Emerging topic detection on twitter
based on temporal and social terms evaluation. In Proceedings of the Tenth Inter-
national Workshop on Multimedia Data Mining, page 4. ACM, 2010. ISBN 978-1-4503-
0220-3. doi: 10.1145/1814245.1814249. URL http://dl.acm.org/citation.cfm?id=

1814245.1814249.

[15] T. K. Das and P. Mohan Kumar. Big data analytics: A framework for un-
structured data analysis. International Journal of Engineering and Technology, 5
(1):153�156, 2013. URL http://www.scopus.com/inward/record.url?eid=2-s2.

0-84875345417&partnerID=40&md5=773695df98b4337f2ede7c540c8ce3cd.

[16] A. Dong, R. Zhang, P. Kolari, J. Bai, F. Diaz, Y. Chang, Z. Zheng, and H. Zha. Time
is of the essence: improving recency ranking using twitter data. In Proceedings of the
19th international conference on World wide web, pages 331�340. ACM, 2010.

[17] G.H. Eoyang. Coping with chaos: Seven simple tools, page 196. Lagumo Corporation
Cheyenne, WY, 1st edition, 1997.

[18] U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Knowledge discovery and data
mining: Towards a unifying framework. In KDD, volume 96, pages 82�88, 1996.

[19] D. Fisher, R. DeLine, M. Czerwinski, and S. Drucker. Interactions with big data ana-
lytics. interactions, 19(3):50�59, 2012. ISSN 1072-5520. doi: 10.1145/2168931.2168943.
URL http://dl.acm.org/citation.cfm?id=2168931.2168943.

[20] Google. The google geocoding api. https://developers.google.com/maps/

documentation/geocoding/, 2013. [Online; accessed 24-July-2013].

[21] K. Gordon. What is big data? ITNOW, 55(3):12�13, 2013.

[22] L. Grus, J. Crompvoets, and A.K. Bregt. Spatial data infrastructures as complex adap-
tive systems. International Journal of Geographical Information Science, 24(3):439�463,
2010.

[23] P.N. Howard, A. Du�y, D. Freelon, M. Hussain, W. Mari, and M. Mazaid. Opening
closed regimes: what was the role of social media during the arab spring? http:

//pitpi.org/index.php/2011/09/11/, 2011. [Online; accessed 02-November-2013].

[24] Anil K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition
Letters, 31(8):651 � 666, 2010. ISSN 0167-8655. doi: http://dx.doi.org/10.1016/
j.patrec.2009.09.011. URL http://www.sciencedirect.com/science/article/pii/

S0167865509002323.

[25] A. Java, X. Song, T. Finin, and B. Tseng. Why we twitter: An
analysis of a microblogging community, 12 August 2007 through 15 Au-
gust 2007 2009. URL http://www.scopus.com/inward/record.url?eid=2-s2.

0-67650498181&partnerID=40&md5=772cb15017b591f08c871d89f1b759ef.

40

http://www.sciencedirect.com/science/article/pii/S0165011499000111
http://www.sciencedirect.com/science/article/pii/S0165011499000111
http://dl.acm.org/citation.cfm?id=1814245.1814249
http://dl.acm.org/citation.cfm?id=1814245.1814249
http://www.scopus.com/inward/record.url?eid=2-s2.0-84875345417&partnerID=40&md5=773695df98b4337f2ede7c540c8ce3cd
http://www.scopus.com/inward/record.url?eid=2-s2.0-84875345417&partnerID=40&md5=773695df98b4337f2ede7c540c8ce3cd
http://dl.acm.org/citation.cfm?id=2168931.2168943
https://developers.google.com/maps/documentation/geocoding/
https://developers.google.com/maps/documentation/geocoding/
http://pitpi.org/index.php/2011/09/11/
http://pitpi.org/index.php/2011/09/11/
http://www.sciencedirect.com/science/article/pii/S0167865509002323
http://www.sciencedirect.com/science/article/pii/S0167865509002323
http://www.scopus.com/inward/record.url?eid=2-s2.0-67650498181&partnerID=40&md5=772cb15017b591f08c871d89f1b759ef
http://www.scopus.com/inward/record.url?eid=2-s2.0-67650498181&partnerID=40&md5=772cb15017b591f08c871d89f1b759ef

[26] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, and A.Y. Wu.
An e�cient k-means clustering algorithm: analysis and implementation. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, 24(7):881�892, Jul 2002. ISSN
0162-8828. doi: 10.1109/TPAMI.2002.1017616.

[27] R. Kelly. Twitter study reveals interesting results about usage - 40pointless babble.
http://www.pearanalytics.com/blog/2009/, 2009. [Online; accessed 01-July-2013].

[28] W. Kelly. Unconventional uses of big data and predictive analytics |
techrepublic. http://www.techrepublic.com/blog/big-data-analytics/

unconventional-uses-of-big-data-and-predictive-analytics/432, 2013. [On-
line; accessed 04-July-2013].

[29] C.A. Kurby and J.M. Zacks. Segmentation in the perception and memory of events.
Trends in cognitive sciences, 12(2):72�79, 2008.

[30] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a news
media? In Proceedings of the 19th international conference on World wide web, pages
591�600. ACM, 2010. ISBN 978-1-60558-799-8. doi: 10.1145/1772690.1772751. URL
http://dl.acm.org/citation.cfm?id=1772690.1772751.

[31] K. Leetaru, S Wang, G. Cao, A. Padmanabhan, and E. Shook. Mapping the global
twitter heartbeat: The geography of twitter. First Monday, 18(5), 2013. ISSN 13960466.
URL http://firstmonday.org/ojs/index.php/fm/article/view/4366.

[32] R. Li, K. H. Lei, R. Khadiwala, and Chang. Tedas: a twitter based event de-
tection and analysis system. In 2012 IEEE 28th International Conference on Data
Engineering (2012), pp. 1273-1276, 2012. URL http://www.citeulike.org/user/

jasonandrewcook/article/11819705.

[33] C. Lynch. Big data: How do your data grow? Nature, 455(7209):28�29, 2008.
ISSN 0028-0836. doi: doi:10.1038/455028a. URL http://www.nature.com/nature/

journal/v455/n7209/full/455028a.html. Nature Publishing Group.

[34] O. Maimon and M. Last. Knowledge discovery and data mining. Kluwer Academic
Publishers, page 2, 2001.

[35] A. Marcus, M.S. Bernstein, O. Badar, D.R. Karger, S. Madden, and R.C. Miller.
Twitinfo: aggregating and visualizing microblogs for event exploration. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, pages 227�
236. ACM, 2011. ISBN 978-1-4503-0228-9. doi: 10.1145/1978942.1978975. URL
http://dl.acm.org/citation.cfm?id=1978942.1978975.

[36] D. Metzler, S. Dumais, and C. Meek. Similarity measures for short segments of text.
Technical report, Microsoft Research, Berlin, Heidelberg, 2007. URL http://dl.acm.

org/citation.cfm?id=1763653.1763660.

[37] D. Metzler, C. Cai, and E. Hovy. Structured event retrieval over microblog archives.
In Proceedings of the 2012 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, pages 646�
655. Association for Computational Linguistics, 2012. ISBN 978-1-937284-20-6. URL
http://dl.acm.org/citation.cfm?id=2382029.2382138.

41

http://www.pearanalytics.com/blog/2009/
http://www.techrepublic.com/blog/big-data-analytics/unconventional-uses-of-big-data-and-predictive-analytics/432
http://www.techrepublic.com/blog/big-data-analytics/unconventional-uses-of-big-data-and-predictive-analytics/432
http://dl.acm.org/citation.cfm?id=1772690.1772751
http://firstmonday.org/ojs/index.php/fm/article/view/4366
http://www.citeulike.org/user/jasonandrewcook/article/11819705
http://www.citeulike.org/user/jasonandrewcook/article/11819705
http://www.nature.com/nature/journal/v455/n7209/full/455028a.html
http://www.nature.com/nature/journal/v455/n7209/full/455028a.html
http://dl.acm.org/citation.cfm?id=1978942.1978975
http://dl.acm.org/citation.cfm?id=1763653.1763660
http://dl.acm.org/citation.cfm?id=1763653.1763660
http://dl.acm.org/citation.cfm?id=2382029.2382138

[38] Harvey J Miller. Geographic knowledge discovery. In S Shektar and H Xiong, editors,
Encyclopedia of GIS, page 363. Springer US, 1st edition, 2008.

[39] H.J. Miller and J. Han. Geographic data mining and knowledge discovery, pages 10�13.
Taylor & Francis Group, LLC, 2009.

[40] D. Newtson. Attribution and the unit of perception of ongoing behavior. Journal of
Personality and Social Psychology, 28(1):28, 1973.

[41] Weston Pace. Wikipedia: K-means clustering algorithm. http://en.wikipedia.org/
wiki/K-means_clustering, 2012. [Online; accessed 23-February-2014. The illustration
was prepared with the Java applet, E.M. Mirkes, K-means and K-medoids. University
of Leicester, 2011.].

[42] R. Procter, F. Vis, and A. Voss. Reading the riots on twitter: Methodological innovation
for the analysis of big data. International Journal of Social Research Methodology,
16(3):197�214, 2013. URL http://www.scopus.com/inward/record.url?eid=2-s2.

0-84876022800&partnerID=40&md5=70477e7c7c1dd4423f778b6635c741f4.

[43] Y. Raimond and S. Abdallah. Event ontology. http://motools.sourceforge.net/

event/event.html, 2007. [Online; accessed 11-June-2013].

[44] Magnus Rosell. Introduction to InformaInfo Retrieval and Text Clustering, pages 6�7.
KTH CSC, 2009. URL http://www.nada.kth.se/~rosell/undervisning/sprakt/

irintro090824.pdf.

[45] J. Rowley. The wisdom hierarchy: Representations of the dikw hierar-
chy. Journal of Information Science, 33(2):163�180, 2007. URL http:

//www.scopus.com/inward/record.url?eid=2-s2.0-33947173628&partnerID=

40&md5=fa1b1dfc5eda039c159178ce6745476d. cited By (since 1996)100.

[46] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes twitter users: real-time
event detection by social sensors. In Proceedings of the 19th international conference on
World wide web, pages 851�860. ACM, 2010. ISBN 978-1-60558-799-8. doi: 10.1145/
1772690.1772777. URL http://dl.acm.org/citation.cfm?id=1772690.1772777.

[47] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Information processing & management, 24(5):513�523, 1988. ISSN 0306-4573.

[48] P. Shrestha, C. Jacquin, and B. Daille. Clustering short text and its eval-
uation. Lecture Notes in Computer Science (including subseries Lecture Notes
in Arti�cial Intelligence and Lecture Notes in Bioinformatics), 7182 LNCS(PART
2):169�180, 2012. URL http://www.scopus.com/inward/record.url?eid=2-s2.

0-84858304474&partnerID=40&md5=f5b5e52e6e6ed4d3e4556c1749295e28. cited By
(since 1996)0.

[49] StatisticBrain.com. Twitter statistics. http://www.statisticbrain.com/

twitter-statistics, 2014. [Online; accessed 13-February-2014].

[50] Y Sun, H Deng, and J Han. Probabilistic models for text mining. In Charu C. Aggarwal
and ChengXiang Zhai, editors, Mining Text Data, pages 259�295. Springer US, 2012.
ISBN 978-1-4614-3222-7. doi: 10.1007/978-1-4614-3223-4_8. URL http://dx.doi.

org/10.1007/978-1-4614-3223-4_8.

42

http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering
http://www.scopus.com/inward/record.url?eid=2-s2.0-84876022800&partnerID=40&md5=70477e7c7c1dd4423f778b6635c741f4
http://www.scopus.com/inward/record.url?eid=2-s2.0-84876022800&partnerID=40&md5=70477e7c7c1dd4423f778b6635c741f4
http://motools.sourceforge.net/event/event.html
http://motools.sourceforge.net/event/event.html
http://www.nada.kth.se/~rosell/undervisning/sprakt/irintro090824.pdf
http://www.nada.kth.se/~rosell/undervisning/sprakt/irintro090824.pdf
http://www.scopus.com/inward/record.url?eid=2-s2.0-33947173628&partnerID=40&md5=fa1b1dfc5eda039c159178ce6745476d
http://www.scopus.com/inward/record.url?eid=2-s2.0-33947173628&partnerID=40&md5=fa1b1dfc5eda039c159178ce6745476d
http://www.scopus.com/inward/record.url?eid=2-s2.0-33947173628&partnerID=40&md5=fa1b1dfc5eda039c159178ce6745476d
http://dl.acm.org/citation.cfm?id=1772690.1772777
http://www.scopus.com/inward/record.url?eid=2-s2.0-84858304474&partnerID=40&md5=f5b5e52e6e6ed4d3e4556c1749295e28
http://www.scopus.com/inward/record.url?eid=2-s2.0-84858304474&partnerID=40&md5=f5b5e52e6e6ed4d3e4556c1749295e28
http://www.statisticbrain.com/twitter-statistics
http://www.statisticbrain.com/twitter-statistics
http://dx.doi.org/10.1007/978-1-4614-3223-4_8
http://dx.doi.org/10.1007/978-1-4614-3223-4_8

[51] R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a data
set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 63(2):411�423, 2001.

[52] Twitter. Twitter api documentation. https://dev.twitter.com/docs/

platform-objects/places, 2013. [Online; accessed 22-December-2013].

[53] G. Vossen, D.E. Long, J.X. Yu, M. Nagarajan, K. Gomadam, A.P. Sheth, A. Ranabahu,
R. Mutharaju, and A. Jadhav. Spatio-Temporal-Thematic Analysis of Citizen Sensor
Data: Challenges and Experiences, volume 5802 of Lecture Notes in Computer Science,
pages 539�553. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-04408-3. doi: 10.1007/
978-3-642-04409-0_52. URL http://dx.doi.org/10.1007/978-3-642-04409-0_52.

[54] J. Weng and B. Lee. Event detection in twitter. In Proceedings of the Fifth International
AAAI Conference on Weblogs and Social Media, 2011.

[55] Wikipedia. Cosine similarity � wikipedia, the free encyclopedia. http://en.

wikipedia.org/wiki/Cosine_similarity, 2013. [Online; accessed 22-December-
2013].

[56] Wikipedia. Haversine formula � wikipedia, the free encyclopedia. http://en.

wikipedia.org/wiki/Haversine_formula, 2014. [Online; accessed 8-January-2014].

[57] Wikipedia. K-means clustering algorithm � wikipedia, the free encyclopedia. http://
en.wikipedia.org/wiki/K-means_clustering, 2014. [Online; accessed 23-February-
2014.].

[58] J.M. Wood. Understanding and computing cohen's kappa: A tutorial. WebPsychEm-
piricist Web Journal, 2007.

[59] X. Wu, V. Kumar, Q.J. Ross, J. Ghosh, Q. Yang, H. Motoda, G.J. McLachlan,
A. Ng, B. Liu, P.S. Yu, Z.-H. Zhou, M. Steinbach, D.J. Hand, and D. Stein-
berg. Top 10 algorithms in data mining. Knowledge and Information Systems,
14(1):1�37, 2008. URL http://www.scopus.com/inward/record.url?eid=2-s2.

0-37549018049&partnerID=40&md5=95cc8d0cbb322c5af5da7ec01e4a9f08. cited By
(since 1996)471.

[60] J.M. Zacks, N.K. Speer, K.M. Swallow, T.S. Braver, and J.R. Reynolds. Event percep-
tion: a mind-brain perspective. Psychological bulletin, 133(2):273, 2007.

[61] Q. Zhao, P. Mitra, and B. Chen. Temporal and information �ow based event detection
from social text streams, 2007. 1619886 1501-1506.

[62] Arkaitz Zubiaga, Damiano Spina, VÃctor Fresno, and Raquel MartÃnez. Classifying
trending topics: a typology of conversation triggers on twitter. In Proceedings of the
20th ACM international conference on Information and knowledge management, pages
2461�2464. ACM, 2011. ISBN 978-1-4503-0717-8. doi: 10.1145/2063576.2063992. URL
http://dl.acm.org/citation.cfm?id=2063576.2063992.

43

https://dev.twitter.com/docs/platform-objects/places
https://dev.twitter.com/docs/platform-objects/places
http://dx.doi.org/10.1007/978-3-642-04409-0_52
http://en.wikipedia.org/wiki/Cosine_similarity
http://en.wikipedia.org/wiki/Cosine_similarity
http://en.wikipedia.org/wiki/Haversine_formula
http://en.wikipedia.org/wiki/Haversine_formula
http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering
http://www.scopus.com/inward/record.url?eid=2-s2.0-37549018049&partnerID=40&md5=95cc8d0cbb322c5af5da7ec01e4a9f08
http://www.scopus.com/inward/record.url?eid=2-s2.0-37549018049&partnerID=40&md5=95cc8d0cbb322c5af5da7ec01e4a9f08
http://dl.acm.org/citation.cfm?id=2063576.2063992

44

A Database Attributes

Table 6: Attributes as saved in the MongoDB, their original JSON object, the type and an
explanation about the attribute.

Attribute Source JSON object Type Notes

id object.id LongInt A unique identi�er.

screen_name object.author.screen_name String
The screen name of the
user who sent the Tweet

text object.text String
Text stored with-
out preprocessing.

textVector object.text Dictionary
Text stored as vector
using procedure (iv)

capital object.text List

The words, extracted from
the Tweet text, that start
with a capital but are not
at the start of the sentence
and are not a stopword

url object.text List
The websites extracted
from the Tweet text.

time time object.created_at Datetime
The time at which
the Tweet was sent

coordinates object.coordinates List [lat,lon]

Not all Tweets have co-
ordinates. The JSON

coordinates are converted
from degrees to decimal.

place object.place.name String
The JSON place.name
is a user speci�ed entry

which contains a toponym

placecoordinates object.place.name List [lat,lon]
The toponym is con-

verted using a geocoder.

lang object.lang String
The language in which a

Tweet is sent, user speci�ed.

45

B Textual clustering table

Table 7: K-Means clustering textual results on a sub collection of the hashtag hagel(KI = 20, k =
5). K is the amount of clusters, PVE is the percentage of variance explained, the cluster refers to
the cluster as a result of K-Means optimization, kNN(sd) is the k-nearest neighbour statistic and its
standard deviation, kCS(sd) is the k-nearest cosine similarity statistic and its standard deviation

K PVE Cluster kNN kNNsd kCS kCSsd

1 0 0 0 0 0.702 0.012
2 0.446 0 0 0 0.74 0.014

1 0 0 0.796 0.017
3 0.526 0 0 0 0.791 0.01

1 0 0 0.866 0
2 0 0 0.74 0.014

4 0.573 0 0 0 0.866 0
1 0 0 0.744 0.014
2 0 0 0.791 0.01
3 - - - -

5 0.605 0 0 0 0.866 0
1 - - - -
2 - - - -
3 0 0 0.743 0.017
4 0 0 0.791 0.01

46

C K-Means Top 15 words

Text collection 3: Top 15 most used words in a collection as a result of K-Means
clustering of collection C1.

Cluster: C1A

{ns: 79, storm: 20, trein: 20, amsterdam: 10, treinverkeer: 8, vertraging: 8, rijden: 8,
treinen: 8, weer: 7, thuis: 6, gaat: 5, wind: 5, centraal: 5, fail: 5, uur: 5}

Cluster: C1B

{peopleschoice: 100, breakoutartist: 91, austin: 70, mahone: 69, rt: 43, austinmahone: 21,
ariana: 20, grande: 19, need: 16, vote: 15, love: 12, us: 11, get: 10, voting: 10, waiting: 9{

Text collection 4: Top 15 most used words in a collection as a result of K-Means
clustering of collection C2.

Cluster: C2A

{ hagel: 53, onweer: 43, storm: 38, regen: 30, windstoten: 24, natte: 23, zie: 22, nederland:
22, mm: 22, apeldoorn: 22, sneeuw: 22, http://tco/xzm1bmcgdp: 22, coderood: 12, achtig:

10, codegeel: 10 }
Cluster: C2B

{ fyra: 113, vanaf: 112, geld: 86, http://tco/wqfqowmogc: 86, zie: 86, terug: 86,
amsterdam: 81, fail: 76, breda: 63, centraal: 61, minuten: 58, vertraagd: 58, vandaag: 54,

rijdt: 54, rotterdam: 53 {

Text collection 5: Top 15 most used words in a collection as a result of K-Means
clustering of collection C3.

Cluster: C3A

{ sinterklaas: 239, storm: 31, pakjesavond: 30, wind: 24, hoor: 19, sint: 18, waait: 18, �jne:
17, bomen: 16, weer: 12, lekker: 10, wel: 10, zwartepiet: 10, vanavond: 9, coderood: 8}

Cluster: C3B

{acak�lm: 76, poin: 54, benar: 38, jawaban: 38, c:usa: 26, yg: 22, ada: 22, tdk: 22, fo: 8,
c:uk: 7, 21: 4, tata: 4, 11: 4, idduy: 4 [hte: 4}

Text collection 6: Top 15 most used words in a collection as a result of K-Means
clustering of collection C4.

Cluster: C4A

{ onweer: 84, storm: 61, hagel: 50, regen: 39, windstoten: 26, natte: 24, nederland: 24,
sneeuw: 23, zie: 22, mm: 22, apeldoorn: 22, http://tco/xzm1bmcgdp: 22, coderood: 14,

achtig: 10 codegeel: 10}
Cluster: C4B

{storm: 493, wind: 42, weer: 36, sinterklaas: 35, waait: 29, sint: 28, wel: 26, ns: 22,
coderood: 22, huis: 22, bomen: 19, thuis: 18, hoor: 18, gaat: 17, pakjesavond: 17}

Text collection 7: Top 15 most used words in a collection as a result of K-Means

47

clustering of collection C5.

Cluster: C5A

{ pakjesavond: 138, sinterklaas: 33, �jne: 26, storm: 19, iedereen: 10, sint: 8, wij: 8,
allemaal: 8, weer: 7, wind: 6, avond: 6, gezellig: 5, rt: 5, eten: 5, jaar: 5 }

Cluster: C5B

{sinterklaas: 213, storm: 26, wind: 23, hoor: 18, waait: 17, sint: 16, bomen: 15, weer: 12,
lekker: 10, wel: 10, vanavond: 9, �jne: 8, zwartepiet: 8, coderood: 7, klaar: 7}

D Cluster Classi�cation

Classi�cation of cluster SPK2C1
Count:35
Spatial dimension

Centroid:[52.28, 6.10]
Extent:190km
Amount of clustering:1.631

Context dimension

Centroid: { zware: 0.2036, zeg: 0.1588, achtig: 2.4116, koufront: 0.2701, 4, 4c: 0.5401,
coderood: 2.061, eerste: 0.1658, hierzo: 0.2637, heerenveen: 0.2287, stormpiek: 0.3097,
5, 1c: 0.2899, midden: 0.2271, 3, 0c: 0.3097, 5, 1: 0.7911, 5, 7: 0.2541, 11, 4: 0.2899, 3, 3:
0.2899, piek: 0.2701, 4, 3c: 0.2783, dak: 0.1818, 3, 8c: 0.3097, ??: 0.2585, tekeer: 0.2343,
6, 3c: 0.3097, 5, 7c: 0.3097, 2, 5c: 0.3097, zoohee: 0.3097, 12, 0: 0.3097, laat: 0.1524,
apeldoorn: 4.4639, kans: 0.2116, 2, 8c: 0.3097, wow: 0.177, 4, 5c: 0.3097, 8, 4: 0.2585,
onweer: 4.2622, lekker: 0.3419, omroepgld: 0.2899, sint: 0.1351, uur: 0.1389, ineenkeer:
0.2899, super: 0.1582, 3, 9: 0.3097, volgt: 0.2227, http : //tco/g0dfh5usle: 0.3097, opeens:
0.1991, 6, 1c: 0.3097, hangt: 0.2256, presikhaaf : 0.3097, 11, 1: 0.2783, zitten: 0.1667,
noodweer: 0.2065, 13, 2: 0.3097, nijmegen: 0.2125, 13, 8: 0.2899, 2, 7: 0.2701, 5, 4: 0.2701,
050: 0.2899, natte: 4.5265, felle: 0.2899, 4, 5: 0.2899, gaat: 0.1256, 5, 0c: 0.2899, zwaar:
0.1985, 2, 6c: 0.3097, slechter: 0.2637, 15 : 40: 0.2783, zie: 3.1239, storm: 3.0355, arme:
0.2081, gaan: 0.1292, stortbui: 0.3097, regen: 7.1042, nederland: 3.5396, 4, 7c: 0.2899,
3, 3c: 0.3097, kloosterhaar: 0.3097, passeert: 0.2899, 2, 9c: 0.3097, arnhem: 0.2135,
vandaag: 0.1282, openstaan: 0.3097, mm: 3.7485, weertje: 0.1831, kapot: 0.1765, mt:
0.2637, zeer: 0.1863, sneeuw: 3.9854, http : //tco/crzdh3ezl9: 0.3097, hagel: 5.3845,
codegeel: 2.4389, inclusief : 0.2701, buien: 0.2541, 3, 9c: 0.5797, 3, 5c: 0.3097, rond:
0.1871, 9, 9: 0.2899, 10, 8: 0.3097, leek: 0.2412, klap: 0.2541, windstoten: 4.8373, boven:
0.1838, fiets: 0.1645, weer: 0.0972, 5, 5c: 0.2783, raam: 0.2107, later: 0.19, 5, 3c: 0.2783,
14, 4: 1.3185, http : //tco/xzm1bmcgdp: 4.8699, }
Extent:111 words
Amount of clustering:0.363

E Twitter feed algorithm

1 import tweepy
2 import os , sys

48

3 from geopy import geocoders
4 import j s on
5 from Tweet import Tweet
6 from mongoInter face import ∗
7
8 class CustomStreamListener (tweepy . StreamListener , mongoInt) :
9 def __init__(s e l f , ap i) :
10 s e l f . ap i=api
11 s e l f . pymongoconn ("dbname")
12
13 def on_status (s e l f , s t a tu s) :
14 i f s t a tu s :
15 tweet = Tweet (s t a tu s)
16 i f tweet . wr i tetodb :
17 s e l f . wr i tetodb (tweet)
18 else :
19 raise Error
20
21 def on_error (s e l f , status_code) :
22 print >> sys . s tde r r , ' Encountered e r r o r with s t a tu s code : ' ,

status_code
23 return False # Ki l l the stream
24
25 def writetodb (s e l f , tweet) :
26 try :
27 data ={}
28 data [' screen_name '] = tweet . name
29 data [' time '] = tweet . time
30 data [' c oo rd ina t e s '] = tweet . c oo rd ina t e s
31 data [' p l a c e c oo rd i na t e s '] = tweet . p l a c e c oo rd i na t e s
32 data [' coordinatesD '] = tweet . coordinatesD
33 data [' p lacecoord inatesD '] = tweet . p lacecoord inate sD
34 data [' id '] = tweet . id
35 data [' lang '] = tweet . lang
36 data [' source '] = tweet . source
37 data [' t ex t '] = tweet . t ex t
38 data [' p l ace '] = tweet . p lace
39 data [' e x c l '] = tweet . e x c l
40 data [' ques '] = tweet . ques
41 data [' u r l '] = tweet . u r l s
42 data [' hash '] = tweet .hash
43 data [' at '] = tweet . at
44 data [' c a p i t a l '] = tweet . c a p i t a l s
45 data [' t extVector '] = tweet . textVector
46 #in s e r t in to db
47 s e l f . t c . i n s e r t (data)
48 except Attr ibuteError :
49 print " couldn ' t f i nd " , sys . exc_info ()
50 except :
51 print "Got the f o l l ow i ng e r r o r : " , sys . exc_info () [0]
52
53 def l o g i n () :
54 CONSUMER_KEY = ""
55 CONSUMER_SECRET = ""
56 ACCESS_TOKEN = ""
57 ACCESS_TOKEN_SECRET = ""
58
59 auth = tweepy . OAuthHandler (CONSUMER_KEY, CONSUMER_SECRET)
60 auth . set_access_token (ACCESS_TOKEN, ACCESS_TOKEN_SECRET)
61 return auth
62
63 def tweetstream () :

49

64 try :
65 auth = l o g i n ()
66 api = tweepy .API(auth)
67 streaming_api = tweepy . streaming . Stream (auth , CustomStreamListener (api

))
68 streaming_api . f i l t e r (f o l l ow=None , l o c a t i o n s = [3 . 2 2 , 5 0 . 7 5 , 7 . 2 2 , 5 3 . 3 3])
69 except KeyboardInterrupt :
70 ex i tF l ag = 0

Code 5: Twitter Feed program used to interact with the REST API

1 from __future__ import d i v i s i o n
2 import math
3 import re
4 import sys
5 from geopy import geocoders
6 import she l v e
7 import unicodedata
8 from c o l l e c t i o n s import Counter
9 from n l tk . corpus import stopwords
10
11 class Tweet (object) :
12 def __init__(s e l f , twee tob j e c t) :
13 s e l f . l o c a t i o n s = she lv e .open(" geocodes ")
14 s e l f . g = geocoders . GoogleV3 () ##GoogleV3
15 s e l f . t ex t = tweetob j e c t . t ex t
16 s e l f . time = tweetob j e c t . created_at
17 s e l f . p l ace = twee tob j e c t . p l ace . name
18 s e l f . name = tweetob j e c t . author . screen_name
19 s e l f . e x c l = s e l f . f indmark (" ! ")
20 s e l f . ques = s e l f . f indmark ("?")
21 s e l f . lang = tweetob j e c t . lang
22 s e l f . id = tweetob j e c t . id
23 s e l f . source = tweetob j e c t . source
24 s e l f . f i n d u r l ()
25 s e l f . f indhash ()
26 s e l f . f i nda t ()
27 s e l f . f indnames ()
28 s e l f . f i nd c oo rd i n a t e s (twee tob j e c t)
29 s e l f . checkcoord inate s ()
30 s e l f . coordinatesD = s e l f . c onve r tdeg ree s (s e l f . c oo rd ina t e s)
31 s e l f . p lacecoord inate sD = s e l f . c onve r tdeg ree s (s e l f . p l a c e c oo rd i na t e s)
32 s e l f . t extVector = s e l f . texToVector ()
33
34 def f i nd c oo rd i n a t e s (s e l f , twee tob j e c t) :
35 i f twee tob j e c t . c oo rd ina t e s :
36 a , b=tweetob j e c t . c oo rd ina t e s [' c oo rd ina t e s ']
37 s e l f . c oo rd ina t e s =b , a
38 else :
39 s e l f . c oo rd ina t e s = None
40 s e l f . f i ndcoo rd s ()
41
42 def f indhash (s e l f) :
43 hashes=()
44 pattern = re . compile (r "(#[a−zA−Z0−9]+)")
45 for a in re . f i n d a l l (pattern , s e l f . t ex t) :
46 hashes+= (a ,)
47 s e l f .hash = hashes
48
49 def f i nda t (s e l f) :
50 at=()
51 pattern = re . compile (r " (@[a−zA−Z0−9]+)")
52 for a in re . f i n d a l l (pattern , s e l f . t ex t) :

50

53 at+= (a ,)
54 s e l f . at = at
55
56 def f i n d u r l (s e l f) :
57 u r l s =()
58 pattern2 = re . compile (r " (? :www. | http [s] ? : / /) (? : [a−zA−Z] | [0 − 9] | [$−_@

.&+] | [! ∗ \ (\) ,] | (? :%[0 −9 a−fA−F][0−9a−fA−F]))+")
59 for a in re . f i n d a l l (pattern2 , s e l f . t ex t) :
60 u r l s+=(a ,)
61 s e l f . u r l s = u r l s
62
63 def f indmark (s e l f , s i gn) :
64 mark=s e l f . t ex t . count (s i gn)
65 return mark
66
67 def f indnames (s e l f) :
68 names = ()
69 pattern2=re . compile (r " (? !^) (? < ! [\ ! \ . \ ?]) ([\ s | \ (]) ([A−Z] [a−zA−Z\−]+?)

([\ s | \ . | \ ? | \ ! | \ | \ , \)]) ") ## (?<!\.\ s) ?
70 c=re . f i n d a l l (pattern2 , s e l f . t ex t)
71 count = 0
72 try :
73 while c :
74 for x , y , z in c :
75 i f s e l f . t ex t . f i nd (y) !=0 and y not in names :
76 names+=(y ,)
77 b = y . lower ()
78 s e l f . t ex t = s e l f . t ex t . r ep l a c e (y , b , 1)
79 c=re . f i n d a l l (pattern2 , s e l f . t ex t)
80 count+=1
81 i f count > 20 :
82 raise ValueError
83 except ValueError :
84 print "Endless loop "
85 except :
86 print sys . exc_info () [0] , " e r r o r with findnames "
87 s e l f . c a p i t a l s = names
88
89 def f i ndcoo rd s (s e l f) :
90 ## check fo r the Nether lands
91 i f s e l f . p l ace != None :
92 s e l f . p l ace = unicodedata . normal ize ('NFKD' , s e l f . p l ace) . encode ('

a s c i i ' , ' i gno r e ')
93 try :
94 i f s e l f . l o c a t i o n s . has_key (str (s e l f . p l ace)) :
95 s e l f . p l a c e c oo rd i na t e s=s e l f . l o c a t i o n s [str (s e l f . p l ace)]
96 else :
97 x , y = s e l f . g . geocode (str (s e l f . p l ace)+" , The Nether lands ")

#was geocode
98 s e l f . l o c a t i o n s [str (s e l f . p l ace)]=y
99 s e l f . p l a c e c oo rd i na t e s=s e l f . l o c a t i o n s [str (s e l f . p l ace)]
100 except ValueError :
101 s e l f . p l a c e c oo rd i na t e s = None
102 except :
103 s e l f . p l a c e c oo rd i na t e s = None
104 ## Check f o r Belgium
105 i f s e l f . p l a c e c oo rd i na t e s == None :
106 try :
107 x , y = s e l f . g . geocode (str (s e l f . p l ace)+" , Belgium")
108 s e l f . l o c a t i o n s [str (s e l f . p l ace)]=y
109 s e l f . p l a c e c oo rd i na t e s=s e l f . l o c a t i o n s [str (s e l f . p l ace)]
110 except ValueError :

51

111 s e l f . p l a c e c oo rd i na t e s = None
112 except :
113 s e l f . p l a c e c oo rd i na t e s = None
114 i f s e l f . p l a c e c oo rd i na t e s == None :
115 s e l f . l o c a t i o n s [str (s e l f . p l ace)]=None
116
117 def checkcoord inate s (s e l f) :
118 s e l f . wr i tetodb = True
119 i f not s e l f . point_in_poly (s e l f . p l a c e c oo rd i na t e s) :
120 i f not s e l f . point_in_poly (s e l f . c oo rd ina t e s) :
121 s e l f . wr i tetodb = False
122 i f s e l f . time == None :
123 s e l f . wr i tetodb = False
124
125
126 def point_in_poly (s e l f , coords) :
127 i n s i d e = False
128 i f coords != None :
129 y , x = coords
130 Nether lands = [(3 . 2 2 , 5 0 . 7 5) , (3 . 2 2 , 5 3 . 3 3) , (7 . 2 2 , 5 3 . 3 3) , (7 . 2 2 , 5 0 . 7 5)

]
131 n = len (Nether lands)
132 p1x , p1y = Nether lands [0]
133 for i in range (n+1) :
134 p2x , p2y = Nether lands [i % n]
135 i f y > min(p1y , p2y) :
136 i f y <= max(p1y , p2y) :
137 i f x <= max(p1x , p2x) :
138 i f p1y != p2y :
139 x i n t s = (y−p1y) ∗(p2x−p1x) /(p2y−p1y)+p1x
140 i f p1x == p2x or x <= x in t s :
141 i n s i d e = not i n s i d e
142 p1x , p1y = p2x , p2y
143 return i n s i d e
144
145 def conve r tdeg ree s (s e l f , coords) :
146 i f coords != None :
147 la t , lon = coords
148 l a t = l a t ∗ math . p i /180
149 lon = lon ∗ math . p i /180
150 return l a t , lon
151
152 def textToVector (s e l f) :
153 text = s e l f . stripRemove (s e l f . t ex t)
154 words = s e l f . removestop (t ext)
155 return Counter (words)
156
157 def removestop (s e l f , words) :
158 l i j s t = []
159 for item in words :
160 i f item in stopwords . words (' dutch ') or item in stopwords . words ('

e n g l i s h ') or item == " i 'm" :
161 pass

162 else :
163 l i j s t . append (item)
164 return l i j s t
165
166 def stripRemove (s e l f , t) :
167 l i j s t = []
168 tokens = t [' t ex t '] . s p l i t ()
169 for token in tokens :
170 i f "#" not in token and "@"not in token :

52

171 token = token . s t r i p (' \ ' " . , ? : − () | ! ')
172 token = token . r ep l a c e (" . " , "")
173 token = token . r ep l a c e ("$" , "")
174 token = token . lower ()
175 i f token != ' ' and len (token) > 1 :
176 l i j s t += [token]
177 for i in t [' hash '] :
178 i=i . s t r i p ("#")
179 l i j s t += [i]
180 for i in t [' at '] :
181 i=i . s t r i p ("@")
182 l i j s t += [i]
183 return l i j s t

Code 6: Tweet object used in the Twitter feed

F kNN algorithm

1 from __future__ import d i v i s i o n
2 import math
3 import numpy as np
4 from mongoInter face import ∗
5
6 class kNN(mongoInt) :
7 def calcANN(s e l f) :
8 s e l f .DE = 0.5 / math . s q r t (s e l f . n / s e l f .A)
9 s e l f .ANN = s e l f .DO/ s e l f .DE
10 s e l f .ANNsd = s e l f .DOsd / s e l f .DE
11 s e l f . SE = 0.26136 / math . s q r t (s e l f . n∗∗2 / s e l f .A)
12 s e l f .ZANN = (s e l f .DO − s e l f .DE) / s e l f . SE
13
14 def averageCol (s e l f) :
15 s e l f . avgDistDict = {}
16 querydic = {}
17 #compare each item aga ins t the r e s t o f the c o l l e c t i o n .
18 for item in s e l f . t c . f i nd (s e l f . query) . batch_size (100) :
19 queryd ic [" id "] = item [" id "]
20 s e l f . avgDistDict [item [" id "]] = [s e l f . i t e r a t o r (queryd ic)]
21 sumAvgDict = []
22 #loop over a l l k−average d i s t ance s as g iven by the i t e r a t o r
23 #move from d i c t i ona ry to l i s t because a d i c t i ona ry can ' t be used f o r

s t a t i s t i c s
24 for item in s e l f . avgDistDict :
25 sumAvgDict+=[s e l f . avgDistDict [item]]
26 s e l f . n = f loat (len (sumAvgDict))
27 arrAvgDict = np . array ([sumAvgDict])
28 s e l f .DO = np .mean(arrAvgDict)
29 s e l f . DOmedian = np . median (arrAvgDict)
30 s e l f .DOsd = np . std (arrAvgDict)
31 s e l f .DOmin = np .min(arrAvgDict)
32 s e l f .DOmax = np .max(arrAvgDict)
33
34
35 def makeCol (s e l f) :
36 ### query1 i s the c o l l e c t i o n you want to add something o f query2 to .
37 i f s e l f . query2 != None :
38 s e l f . n=1
39 for item in s e l f . t c . f i nd (s e l f . query) . batch_size (100) :
40 s e l f . queryIDs += [item [" id "]]
41 s e l f . n +=1
42 s e l f . d i s t d i c = {} ## dic t i onary with the kANN key : d i s t ance from

query1

53

43 querydic = {}
44 for item in s e l f . t c . f i nd (s e l f . query2) . batch_size (100) :
45 i f item [" id "] not in s e l f . queryIDs :
46 queryd ic [" id "] = item [" id "]
47 s e l f . i t e r a t o r (queryd ic)
48 sub =[]
49 ## ca l c u l a t e the kANN
50 for i in s e l f . d i s t d i c :
51 key ,minD = s e l f . d i s t d i c [i]
52 s e l f .DO = minD
53 s e l f . calcANN ()
54 i f s e l f .ANN < 1 :
55 sub += [s e l f . t c . f ind_one ({ " id " : key }) [" id "]]
56 s e l f . colAdd = s e l f . convertToCol (sub)
57 else :
58 print " g ive two que r i e s f o r c o l l e c t i o n c r e a t i on "
59
60 def convertToCol (s e l f , l i j s t) :
61 c o l = {}
62 co l [' id '] = { ' $ in ' : l i j s t }
63 return c o l
64
65 class skNN(kNN) :
66 def __init__(s e l f , query={},k=None , query2=None) :
67 s e l f . pymongoconn ()
68 s e l f . query = query
69 s e l f . query2 = query2
70 s e l f . k = k
71 s e l f .A = 78078.0
72 s e l f . queryIDs = [] ## capture the queryIDs so the i t e r a t o r can ' t

compare to i t
73
74 def mainStat (s e l f) :
75 s e l f . averageCol ()
76 s e l f . calcANN ()
77
78 def i t e r a t o r (s e l f , queryd ic) :
79 key=s e l f . t c . f ind_one (queryd ic)
80 #check which coords to use
81 wc1 =s e l f . whichcoordS (key)
82 d i s t a n c e l i s t = []
83 minimumd = 99999
84 for item in s e l f . t c . f i nd (s e l f . query) . batch_size (100) :
85 i f item [" id "] != key [" id "] :
86 #check which coords to use
87 wc2 =s e l f . whichcoordS (item)
88 d=s e l f . have r s ine (key [wc1] , item [wc2])
89 d i s t a n c e l i s t += [d]
90 i f s e l f . k == None :
91 d i s t a n c e l i s t = np . array (d i s t a n c e l i s t)
92 minimumd = np .mean(d i s t a n c e l i s t)
93 else :
94 d i s t a n c e l i s t = sorted (d i s t a n c e l i s t)
95 minimumd = sum(d i s t a n c e l i s t [: s e l f . k]) / s e l f . k
96 i f s e l f . query2 != None :
97 s e l f . d i s t d i c [key [" id "]] = key [" id "] ,minimumd
98 else :
99 return minimumd
100
101 def have r s ine (s e l f , pos1 , pos2) :
102 lat1 , lon1 =pos1)
103 lat2 , lon2 =pos2

54

104 a1 = (math . s i n ((l a t 2 − l a t 1) /2)) ∗∗2
105 a2 = math . cos (l a t 1) ∗ math . cos (l a t 2) ∗(math . s i n ((lon2 − lon1) /2)) ∗∗2
106 a = math . s q r t (a1 + a2)
107 b = math . s q r t (1−a ∗∗2)
108 d = 2 ∗ math . atan2 (a , b)
109 d i s tance2 = int (d ∗ 6367)
110 return d i s tance2
111
112 def conve r tdeg ree s (s e l f , coords) :
113 la t , lon = coords
114 l a t = l a t ∗ math . p i /180
115 lon = lon ∗ math . p i /180
116 return l a t , lon
117
118 def whichcoordS (s e l f , item) :
119 i f item [" coo rd ina t e s "] != None :
120 a= " coordinatesD "
121 e l i f item [" p l a c e c oo rd i na t e s "] != None :
122 a = " placecoord inatesD "
123 return a

Code 7: Algorithm for calculating the kNN

G kCS and t�df algorithm

1 from __future__ import d i v i s i o n
2 from t e x tCo l l e c t i o n import ∗
3 import re
4 from math import s q r t
5 from math import log1p
6 from c o l l e c t i o n s import Counter
7 import numpy as np
8
9 class cosSim (textCol) :
10 def __init__(s e l f , query={},k=None , query2=None) :
11 s e l f . pymongoconn ()
12 s e l f .N = s e l f . t c . count ()
13 s e l f . k = k
14 s e l f . query = query
15 s e l f . query2 = query2
16 s e l f . queryIDs = [] ## capture the queryIDs so the i t e r a t o r can ' t

compare to i t
17
18 def mainStat (s e l f) :
19 s e l f . i t e r a t o rCo s ()
20 s e l f . avgCosSim ()
21
22 def avgCosSim (s e l f) :
23 avg = []
24 for item in s e l f . cosDict :
25 i f s e l f . k == None :
26 ar r = np . array ([s e l f . cosDict [item]])
27 avg += [np .mean(ar r)]
28 else :
29 l i j s t = sorted (s e l f . cosDict [item] , r e v e r s e=True)
30 kd i s t = sum(l i j s t [: s e l f . k]) / s e l f . k
31 avg += [kd i s t]
32 average = np . array (avg)
33 s e l f .ACS = np .mean(average)
34 s e l f . ACSsd = np . std (average)
35
36 def i t e r a t o rCo s (s e l f) :

55

37 s e l f . v ec to rD ic t = {}
38 s e l f . cosDict = {}
39 for item in s e l f . t c . f i nd (s e l f . query) . batch_size (100) :
40 vec1 = item [" t f i d fV e c t o r "]
41 s e l f . v ec to rDic t [item [" id "]] = vec1
42 for item in s e l f . t c . f i nd (s e l f . query) . batch_size (100) :
43 vec1 = s e l f . v ec to rDic t [item [" id "]]
44 s e l f . cosDict . s e t d e f a u l t (item [" id "] , [])
45 for item2 in s e l f . t c . f i nd (s e l f . query) . batch_size (100) :
46 i f item2 [" id "] != item [" id "] :
47 vec2 = s e l f . v ec to rDic t [item2 [" id "]]
48 s e l f . cosDict [item [" id "]] += [s e l f . getCos (vec1 , vec2)]
49
50 def makeCol (s e l f) :
51 s e l f . queryIDs = []
52 s e l f . v ec to rD ic t = {}
53 s e l f . cosDict = {}
54 for item in s e l f . t c . f i nd (s e l f . query) . batch_size (100) :
55 s e l f . queryIDs += [item [" id "]]
56 s e l f . d i s t d i c = {} ## dic t i onary with the kNN key : d i s t ance from query1
57 s e l f . i t e r a to rCosCo l ()
58 sub = []
59 for i in s e l f . cosDict :
60 key , minCos = s e l f . cosDict [i]
61 i f minCos > 0 . 3 :
62 sub += [s e l f . t c . f ind_one ({ " id " : key }) [" id "]]
63 s e l f . colAdd = s e l f . convertToCol (sub)
64
65 def i t e r a to rCosCo l (s e l f) :
66 s e l f . v ec to rD ic t = {}
67 for item in s e l f . t c . f i nd (s e l f . query2) . batch_size (100) :
68 vec1 = item [" t f i d fV e c t o r "]
69 s e l f . v ec to rDic t [item [" id "]] = vec1
70 for item2 in s e l f . t c . f i nd (s e l f . query) . batch_size (100) :
71 vec1 = item2 [" t f i d fV e c t o r "]
72 s e l f . v ec to rDic t [item2 [" id "]] = vec1
73 for item in s e l f . t c . f i nd (s e l f . query2) . batch_size (100) :
74 i f item [" id "] not in s e l f . queryIDs :
75 vec1 = s e l f . v ec to rDic t [item [" id "]]
76 d i s t a n c e l i s t = []
77 for item2 in s e l f . t c . f i nd (s e l f . query) . batch_size (100) :
78 vec2 = s e l f . v ec to rDic t [item2 [" id "]]
79 d i s t a n c e l i s t +=[s e l f . getCos (vec1 , vec2)]
80 d i s t a n c e l i s t = sorted (d i s t a n c e l i s t , r e v e r s e=True)
81 minimumCos = sum(d i s t a n c e l i s t [: s e l f . k]) / len (d i s t a n c e l i s t [: s e l f

. k])
82 s e l f . cosDict [item [" id "]] = item [" id "] , minimumCos
83
84 def getCos (s e l f , vec1 , vec2) :
85 i n t e r s e c t i o n = set (vec1 . keys ()) & set (vec2 . keys ())
86 numerator = sum([vec1 [x] ∗ vec2 [x] for x in i n t e r s e c t i o n])
87 sum1 = sum([vec1 [x]∗∗2 for x in vec1 . keys ()])
88 sum2 = sum([vec2 [x]∗∗2 for x in vec2 . keys ()])
89 denominator = sq r t (sum1) ∗ s q r t (sum2)
90 i f not denominator :
91 return 0 .0
92 else :
93 return f loat (numerator) / denominator
94
95 def convertToCol (s e l f , l i j s t) :
96 c o l = {}
97 co l [' id '] = { ' $ in ' : l i j s t }

56

98 return c o l

Code 8: Algorithm for calculating the kCS

1 import pymongo
2 import unicodedata
3 from c o l l e c t i o n s import Counter
4 from n l tk . corpus import stopwords
5 from math import log1p
6
7 class mongoInt (object) :
8 def __init__(s e l f ,mdb=" t e s t 3 ") :
9 s e l f .mdb=mdb
10 s e l f . pymongoconn ()
11
12 def pymongoconn (s e l f) :
13 try :
14 conn=pymongo . MongoClient ()
15 #pr in t "Connected s u c c e s s f u l l y to "+mdb+"! ! !"
16 s e l f . db = conn [s e l f .mdb]
17 s e l f . t c = s e l f . db . tweets
18 except pymongo . e r r o r s . Connect ionFai lure , e :
19 print "Could not connect to MongoDB: %s" % e
20
21 def createIDF (query) :
22 a = mongoInt (" t f i d f ")
23 b = mongoInt ()
24 for i in b . tc . f i nd (query) . batch_size (100) :
25 for j in i [" textVector "] :
26 j = j . lower ()
27 a . tc . update ({ "word" : j } ,{ " $ inc " : { " count" : 1}} , True , Fa l se)
28
29 def createTextVector (query) :
30 b = mongoInt ()
31 for i in b . tc . f i nd (query) . batch_size (100) :
32 c o l =textToVector (i)
33 query = convertToCol ([i [" id "]])
34 b . tc . update (query , { " $ s e t " : { " textVector " : c o l }})
35
36 def createTFIDFVector (query) :
37 b = mongoInt ()
38 N = b . tc . count ()
39 c = mongoInt (" t f i d f ")
40 for i in b . tc . f i nd (query) . batch_size (100) :
41 c o l =t f i d f (i [" textVector "] , c ,N)
42 query = convertToCol ([i [" id "]])
43 b . tc . update (query , { " $ s e t " : { " t f i d fV e c t o r " : c o l }})
44
45 def t f i d f (dic , dbconn ,N) :
46 for word in d i c :
47 f a c t o r = dbconn . tc . f ind_one ({ "word" : word}) [" count"]
48 d i c [word] = d i c [word] ∗ log1p (N/ f a c t o r)
49 return d i c
50
51 def convertToCol (l i j s t) :
52 c o l = {}
53 co l [' id '] = { ' $ in ' : l i j s t }
54 return c o l
55
56 def textToVector (t ex t) :
57 text = stripRemove (t ext)
58 words = removestop (t ext)
59 return Counter (words)

57

60
61 def removestop (words) :
62 l i j s t = []
63 for item in words :
64 i f item in stopwords . words (' dutch ') or item in stopwords . words ('

e n g l i s h ') or item == " i 'm" :
65 pass

66 else :
67 l i j s t . append (item)
68 return l i j s t
69
70 def stripRemove (t) :
71 l i j s t = []
72 tokens = t [' t ex t '] . s p l i t ()
73 for token in tokens :
74 i f "#" not in token and "@"not in token :
75 token = token . s t r i p (' \ ' " . , ? : − () | ! ')
76 token = token . r ep l a c e (" . " , "")
77 token = token . r ep l a c e ("$" , "")
78 token = token . lower ()
79 i f token != ' ' and len (token) > 1 :
80 l i j s t += [token]
81 for i in t [' hash '] :
82 i=i . s t r i p ("#")
83 l i j s t += [i . lower ()]
84 for i in t [' at '] :
85 i=i . s t r i p ("@")
86 l i j s t += [i . lower ()]
87 return l i j s t

Code 9: Algorithm for calculating the t�df values

H K-Means algorithm

1 from __future__ import d i v i s i o n
2 import numpy as np
3 from mongoInter face import ∗
4
5 class kMeans (mongoInt) :
6 def __init__(s e l f , query={},k=2, c u t o f f = 0 .01 , t ex t=True) :
7 s e l f . pymongoconn ()
8 s e l f . query = query
9 s e l f . k = k
10 s e l f . c u t o f f = cu t o f f
11 s e l f . t ex t = text
12 s e l f . main ()
13
14 def main (s e l f) :
15 s e l f . po in t s = []
16 for item in s e l f . t c . f i nd (s e l f . query) . batch_size (100) :
17 p=Point (item , s e l f . t ex t)
18 s e l f . po in t s += [p]
19 i f s e l f . t ex t :
20 s e l f . c l u s t e r s = s e l f . kMeansT(s e l f . i n i t i a l C ())
21 else :
22 s e l f . c l u s t e r s = s e l f . kMeansS (s e l f . i n i t i a l C ())
23
24 #This method c r ea t e s an i n i t i a l s e t o f c l u s t e r s
25 def i n i t i a l C (s e l f) :
26 cL i s t = []
27 i f s e l f . t ex t :
28 for p in s e l f . po in t s :

58

29 cL i s t += [p]
30 #crea te i n i t i a l coords f o r the cen t ro i d s
31 i n i t i a l = random . sample (cL i s t , s e l f . k)
32 #check i f t h e s e i n i t u a l coords are not i d e n t i c a l
33 u = getCosL i s t (i n i t i a l)
34 while u :
35 i n i t i a l = random . sample (cL i s t , s e l f . k)
36 u = getCosLi s t (i n i t i a l)
37 else :
38 for p in s e l f . po in t s :
39 cL i s t += [p . coords]
40 unique_data = [l i s t (x) for x in set (tuple (x) for x in cL i s t)]
41 #take a random sample o f po in t s from the po in t s equa l to k .
42 i n i t i a lC o o r d s = random . sample (unique_data , s e l f . k)
43 i n i t i a l = []
44 for i in i n i t i a lC o o r d s :
45 for p in s e l f . po in t s :
46 i f i == p . coords :
47 i n i t i a l += [p]
48 break

49 #s t a r t wi th k c l u s t e r s based on the i n i t i a l va lue
50 c l u s t e r s = [Clus te r ([p]) for p in i n i t i a l]
51 return c l u s t e r s
52
53 def kMeansS (s e l f , c l u s t e r s) :
54 sent = True
55 while sent :
56 #take the cen t ro id from the prev ious c l u s t e r s and put them in a

d i c t i ona ry
57 newPoints = dict ([(c , []) for c in c l u s t e r s])
58 for p in s e l f . po in t s :
59 # for each po in t (p) take the minimum di s tance to a c l u s t e r
60 # the c l u s t e r t ha t i s c l o s e s t i s put in the c l u s t e r o b j e c t
61 c l u s t e r = min(c l u s t e r s , key = lambda c : ge tDi s tance (p , c .

c en t r o id))
62 #add the po in t to the d i c t i ona ry o f c l u s t e r i t i s c l o s e s t s to
63 newPoints [c l u s t e r] . append (p)
64 b i g g e s t_sh i f t = 0 .0
65 #opt imiz ing c l u s t e r s in pseudo language
66 #for each c l u s t e r , i f the c l u s t e r
67 for c in c l u s t e r s :
68 # i f any new po in t s are added to the d i c t i ona ry t ha t be l ongs

to the c l u s t e r
69 i f newPoints [c] :
70 # add the po in t s to the c l u s t e r and re cacu l a t e the

cen t ro id
71 # the s h i f t i s the d i s t ance from cen t ro id to cen t ro id
72 s h i f t = c . update (newPoints [c])
73 b i g g e s t_sh i f t = max(b i gge s t_sh i f t , s h i f t)
74 #stop i f no s i g n i f i c a n t s h i f t s occured
75 i f b i g g e s t_sh i f t < s e l f . c u t o f f :
76 sent = False
77 return c l u s t e r s
78
79 def kMeansT(s e l f , c l u s t e r s) :
80 sent = True
81 while sent :
82 #take the cen t ro id from the prev ious c l u s t e r s and put them in a

d i c t i ona ry
83 newPoints = dict ([(c , []) for c in c l u s t e r s])
84 for p in s e l f . po in t s :
85 # for each po in t (p) take the minimum di s tance to a c l u s t e r

59

86 # the c l u s t e r t ha t i s c l o s e s t i s put in the c l u s t e r o b j e c t
87 c l u s t e r = max(c l u s t e r s , key = lambda c : getCos (p , c . c en t r o id))
88 #add the po in t to the d i c t i ona ry o f c l u s t e r i t i s c l o s e s t s to
89 newPoints [c l u s t e r] . append (p)
90 b i g g e s t_sh i f t = 0 .0
91 #opt imiz ing c l u s t e r s in pseudo language
92 #for each c l u s t e r , i f the c l u s t e r
93 for c in c l u s t e r s :
94 # i f any new po in t s are added to the d i c t i ona ry t ha t be l ongs

to the c l u s t e r
95 i f newPoints [c] :
96 # add the po in t s to the c l u s t e r and re cacu l a t e the

cen t ro id
97 # the s h i f t i s the d i s t ance from cen t ro id to cen t ro id
98 s h i f t = c . update (newPoints [c])
99 b i g g e s t_sh i f t = max(b i gge s t_sh i f t , s h i f t)
100 #stop i f no s i g n i f i c a n t s h i f t s occured
101 i f b i g g e s t_sh i f t < s e l f . c u t o f f :
102 sent = False
103 return c l u s t e r s
104
105 def getCosL i s t (i n i t i a lC o o r d s) :
106 for vec1 in i n i t i a lC o o r d s :
107 for vec2 in i n i t i a lC o o r d s :
108 i f vec1 . r e f != vec2 . r e f :
109 i n t e r s e c t i o n = set (vec1 . coords . keys ()) & set (vec2 . coords . keys

())
110 numerator = sum([vec1 . coords [x] ∗ vec2 . coords [x] for x in

i n t e r s e c t i o n])
111 sum1 = sum([vec1 . coords [x]∗∗2 for x in vec1 . coords . keys ()])
112 sum2 = sum([vec2 . coords [x]∗∗2 for x in vec2 . coords . keys ()])
113 denominator = math . s q r t (sum1) ∗ math . sq r t (sum2)
114 i f not denominator :
115 return True
116 return False
117
118 def getCos (vec1 , vec2) :
119 i n t e r s e c t i o n = set (vec1 . coords . keys ()) & set (vec2 . coords . keys ())
120 numerator = sum([vec1 . coords [x] ∗ vec2 . coords [x] for x in i n t e r s e c t i o n])
121 sum1 = sum([vec1 . coords [x]∗∗2 for x in vec1 . coords . keys ()])
122 sum2 = sum([vec2 . coords [x]∗∗2 for x in vec2 . coords . keys ()])
123 denominator = math . s q r t (sum1) ∗ math . sq r t (sum2)
124 i f not denominator :
125 return 0 .0
126 else :
127 return f loat (numerator) / denominator

Code 10: MethodologyAlgorithm for calculating the K-Means

I Supporting algorithms for K-Means

1 from __future__ import d i v i s i o n
2 import sys , math , random
3 from math import radians , cos , s in , as in , s q r t
4 from c o l l e c t i o n s import Counter
5 from tkANN import ∗
6 from skANN import ∗
7 from cosSim import ∗
8
9
10 class Point :
11 def __init__(s e l f , item , t ext) :

60

12 s e l f . t ex t = text
13 i f isinstance (item , dict) :
14 i f item . has_key (" t f i d fV e c t o r ") :
15 s e l f . coordT = item [" t f i d fV e c t o r "]
16 s e l f . nT = len (s e l f . coordT)
17 i f item . has_key (" coo rd ina t e s ") :
18 i f item [" coo rd ina t e s "] != None :
19 s e l f . coordS = item [" coo rd ina t e s "]
20 s e l f . nS = len (s e l f . coordS)
21 e l i f item . has_key (" p l a c e c oo rd i na t e s ") :
22 i f item [" p l a c e c oo rd i na t e s "] != None :
23 s e l f . coordS = item [" p l a c e c oo rd i na t e s "]
24 s e l f . nS = len (s e l f . coordS)
25 i f item . has_key (" id ") :
26 s e l f . r e f = item [" id "]
27 else :
28 s e l f . r e f = None
29 e l i f isinstance (item , Point) :
30 s e l f . coordT = item . coordT
31 s e l f . coordS = item . coordS
32 s e l f . r e f = item . r e f
33 s e l f . nS = len (s e l f . coordS)
34 s e l f . nT = len (s e l f . coordT)
35 def __repr__(s e l f) :
36 i f s e l f . t ex t :
37 return str (s e l f . coordT)
38 else :
39 return str (s e l f . coordS)
40
41 class Clus te r :
42 #input i s a l i s t o f Points (c l a s s)
43 def __init__(s e l f , po in t s) :
44 ## check i f the po in t s aren ' t empty
45 i f len (po in t s) == 0 : raise Exception ("ILLEGAL: empty c l u s t e r ")
46 s e l f . po in t s = po in t s
47 s e l f . nS = po in t s [0] . nS
48 s e l f . s i z e = len (po in t s)
49 s e l f . t ex t = po in t s [0] . t ex t
50 i f not s e l f . t ex t :
51 s e l f . c ent ro idS = s e l f . c a l cu l a t eCent ro idS ()
52 s e l f . centro idT = None
53 else :
54 s e l f . centro idT = s e l f . ca l cu la teCentro idT ()
55 s e l f . c ent ro idS = None
56 s e l f . c o l = {}
57 s e l f . makeCol ()
58
59 #i f ca l l e d , represen ted as :
60 def __repr__(s e l f) :
61 return str (s e l f . po in t s)
62
63 # update the cen t ro id o f a c l u s t e r to a new one and c a l c u l a t e the d i s t ance

between cen t ro i d s .
64 def update (s e l f , po in t s) :
65 old_centro idS = s e l f . c ent ro idS
66 old_centroidT = s e l f . centro idT
67 s e l f . po in t s = po in t s
68 s e l f . s i z e = len (po in t s)
69 s e l f . c ent ro idS = s e l f . c a l cu l a t eCent ro idS ()
70 s e l f . centro idT = s e l f . ca l cu la teCentro idT ()
71 i f s e l f . t ex t :
72 d i s t ance = 1−getCos (old_centroidT . coordT , s e l f . centro idT . coordT)

61

73 else :
74 d i s t ance = getDis tance (old_centroidS , s e l f . c ent ro idS)
75
76 s e l f . makeCol ()
77 return d i s t ance
78
79 def makeCol (s e l f) :
80 s e l f . c o l [' id '] = { ' $ in ' : [] }
81 for p in s e l f . po in t s :
82 s e l f . c o l [' id '] [' $ in '] += [p . r e f]
83
84 def ca l cu l a t eCent ro idS (s e l f) :
85 ## de f ine a func t i on to c a l c u l a t e the average x , and y coord in t e s
86 #s e l f . po in t s i s the input f o r p , 0.0 i s the s t a r t i n g input f o r x , the

r e s u l t f o r x i s cumulat ive .
87 reduce_coord = lambda i : reduce (lambda x , p : x + p . coordS [i] , s e l f .

po ints , 0 . 0)
88 # devide the t o t a l o f the " reduce coord" thus the t o t a l o f l a t or lon (

i =0, i=1) by the amount o f po in t s .
89 centro id_coords = [reduce_coord (i) / len (s e l f . po in t s) for i in range (

s e l f . nS)]
90 cc = {}
91 cc [" coo rd ina t e s "] = centro id_coords
92 #conver t the cen t ro id to a po in t and return .
93 return Point (cc , Fa l se)
94
95
96 def ca l cu la teCentro idT (s e l f) :
97 o = {}
98 item = {}
99 length = len (s e l f . po in t s)
100 for i in s e l f . po in t s :
101 o = dict ((n , o . get (n , 0)+i . coordT . get (n , 0)) for n in set (o) | set (

i . coordT))
102 for j in o :
103 o [j] = o [j] / l ength
104 item [" t f i d fV e c t o r "] = o
105 return Point (item , True)
106
107
108 def ca l cu la teCentro idT2 (s e l f) :
109 d i s t ance = {}
110 pd i c t = {}
111 for i in s e l f . po in t s :
112 pd i c t [i . r e f] = i
113 for j in s e l f . po in t s :
114 d i s t ance . s e t d e f a u l t (i . r e f , 0)
115 d i s t ance [i . r e f] += (1 − getCos (i . coordT , j . coordT)) ∗∗2
116 centro id_id = min(d i s tance , key=d i s t ance . get)
117 return Point (pd i c t [centro id_id] , True)
118
119 def countwords (s e l f) :
120 s e l f . vocabularyCount = Counter () #counts how many times a word occurs

(a c t u a l l y the same as l en fo r ID . .)
121 for j in s e l f . po in t s :
122 for i in j . coordT :
123 s e l f . vocabularyCount [i] += 1#j . coords [i]
124
125 def statOfCol (s e l f) :
126 #s e l f . time = tkANN(s e l f . co l , 5)
127 #s e l f . time . mainStat ()
128 s e l f . spat = skANN(s e l f . c o l)

62

129 s e l f . spat . mainStat ()
130 s e l f . tx t = cosSim (s e l f . c o l)
131 s e l f . tx t . mainStat ()
132
133 def sumOfSquares (s e l f) :
134 s e l f . SS = 0
135 i f s e l f . t ex t :
136 for i in s e l f . po in t s :
137 s e l f . SS += (1 − getCos (i . coordT , s e l f . centro idT . coordT)) ∗∗2
138 else :
139 for i in s e l f . po in t s :
140 s e l f . SS += (getDis tance (i , s e l f . c ent ro idS)) ∗∗2
141
142 def produceCentro ids (s e l f) :
143 s e l f . extentS = 0
144 for i in s e l f . po in t s :
145 for j in s e l f . po in t s :
146 d i s t ance = haver s ine (i . coordS , j . coordS)
147 i f d i s t ance > s e l f . extentS :
148 s e l f . extentS = d i s t ance
149 print "\\ t ex tb f { C l a s s i f i c a t i o n o f c l u s t e r } \\\\"
150 print "\\ t ex tb f { Spa t i a l dimension } \\\\"
151 print "\\ t e x t i t {Centroid : } "+str (s e l f . c ent ro idS)+"\\\\"
152 print "\\ t e x t i t {Extent : } "+str (s e l f . extentS)+"km"+"\\\\"
153 print "\\ t e x t i t {Amount o f c l u s t e r i n g : } "+str (s e l f . spat .ANN)+"\\\\~\\\\"
154 print "\\ t ex tb f {Context dimension } \\\\"
155 print "\\ t e x t i t {Centroid : } \{"
156 for i in s e l f . centro idT . coordT :
157 print "$" , i , "$: " ,
158 print str (round(s e l f . centro idT . coordT [i] , 4))+" , " ,
159 print "\}\\\\"
160 print "\\ t e x t i t {Extent : } "+str (len (s e l f . centro idT . coordT))+" words"+"

\\\\"
161 print "\\ t e x t i t {Amount o f c l u s t e r i n g : } "+str (s e l f . txt .ACS)+"\\\\"
162
163
164
165
166 ## input needs to be o f po in t c l a s s
167 def getDi s tance (a , b) :
168 i f a . nS != b . nS : raise Exception ("ILLEGAL: non comparable po in t s ")
169 r e t = reduce (lambda x , y : x + pow((a . coordS [y]−b . coordS [y]) , 2) , range (a . nS)

, 0 . 0)
170 return math . sq r t (r e t)
171
172 def have r s ine (pos1 , pos2) :
173 lat1 , lon1 =pos1
174 lat2 , lon2 =pos2
175 lon1 , la t1 , lon2 , l a t 2 = map(radians , [lon1 , la t1 , lon2 , l a t 2])
176 a1 = (math . s i n ((l a t 2 − l a t 1) /2)) ∗∗2
177 a2 = math . cos (l a t 1) ∗ math . cos (l a t 2) ∗(math . s i n ((lon2 − lon1) /2)) ∗∗2
178 a = math . s q r t (a1 + a2)
179 b = math . s q r t (1−a ∗∗2)
180 d = 2 ∗ math . atan2 (a , b)
181 d i s tance2 = int (d ∗ 6367)
182 return d i s tance2
183
184 def getCos (vec1 , vec2) :
185 i n t e r s e c t i o n = set (vec1 . keys ()) & set (vec2 . keys ())
186 numerator = sum([vec1 [x] ∗ vec2 [x] for x in i n t e r s e c t i o n])
187 sum1 = sum([vec1 [x]∗∗2 for x in vec1 . keys ()])
188 sum2 = sum([vec2 [x]∗∗2 for x in vec2 . keys ()])

63

189 denominator = math . s q r t (sum1) ∗ math . sq r t (sum2)
190 i f not denominator :
191 return 0 .0
192 else :
193 return f loat (numerator) / denominator

Code 11: Point and cluster objects as used by K-Means

1 def f i nd Id ea lCen t r o i d (s e l f , k , txt , TSS , query , Ki) :
2 #l i s t wi th c l i s t e r s
3 cL = {}
4 #amount o f C lu te r s
5 aC = k
6 #Ki i s the amount o f t imes K−Means w i l l be performed to f i nd the i d e a l

c en t ro id .
7 for i in range (Ki) :
8 #In i t i a t e the WSS, s t a r t with 0 , add to t h i s o b j e c t
9 WSS = 0
10 #perform kMeans f o r the amount o f c l u s t e r s aC, in e i t e r t e x t u a l or

s p a t i a l con tex t t x t i s True or False
11 kM = kMeans (query , aC , t ext=txt)
12 for j in range (len (kM. c l u s t e r s)) :
13 #ca l c u l a t e the sumOfSquares f o r each c l u s t e r
14 kM. c l u s t e r s [j] . sumOfSquares ()
15 #add the sum of squares to the WSS
16 WSS += kM. c l u s t e r s [j] . SS
17 #ca l c u l a t e the BSS by su b s t r a c t i n g the WSS from the WSS ca l c u l a t i o n

when WSS =1, g iven as inpu t t .
18 BSS = TSS − WSS
19 #ca l c u l a t e PVE f o l l ow i n g the formula
20 PVE= BSS / s e l f .TSS
21 #add the va lue s to a l i s t o f c l u s t e r s , which conta ins the kMeans

o b j e c t kM and va lue s f o r PVE,WSS and BSS.
22 cL [i] = [kM,PVE,WSS,BSS]
23 #f ind the h i g h e s t PVE va lue by loop ing through the cL .
24 maxPVE=0
25 for l in cL :
26 i f cL [l] [1] > maxPVE:
27 maxPVE = cL [l] [1]
28 index = l
29 return {"kM" : cL [index] [0] , "PVE" : cL [index] [1] , "WSS" : cL [index] [2] , "BSS" : cL

[index] [3] }

Code 12: Algorithm to �nd the ideal centroid

64

	List of Figures
	List of Tables
	List of Codes
	Acknowledgements
	Abstract
	Introduction
	Twitter and Big Data
	Problem Statement
	Goal & Research Questions

	Background
	Knowledge Discovery
	Related Works

	Methodology
	Event definition
	Conceptual Model
	Data Procurement
	Preprocessing
	Distance and similarity metrics
	Clustering
	Classification

	Results and Discussion
	Procedure
	Differentiation between events
	Within collection clustering
	Cluster in multiple dimensions
	Classify in multiple dimensions
	Methodology Discussion

	Conclusion
	Bibliography
	Database Attributes
	Textual clustering table
	K-Means Top 15 words
	Cluster Classification
	Twitter feed algorithm
	kNN algorithm
	kCS and tfidf algorithm
	K-Means algorithm
	Supporting algorithms for K-Means

