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Abstract 
The area of quantitative trait locus (QTL) analysis has provided the tools and methodology to 

identify and locate genetic factors underlying quantitative trait variation in diploid species for 

many years. More recently, attempts have been made to extend the methods to polyploid 

species which had previously been considered intractable. In particular, the use of co-

dominant markers such as single nucleotide polymorphisms (SNPs) has enabled much denser 

marker sets to be generated which can help in resolving multiple homologues into distinct 

haplotypes. In this project two QTL models for an autotetraploid were tested using SNP 

dosage scores from an F1 mapping population as the starting point. A power study was 

performed to compare the power of detection of unlinked QTL using both models. Major 

factors which influence the power were identified as the QTL size and heritability, the size of 

the mapping population and the proximity of the closest flanking marker. Significance 

thresholds were derived using permutation tests, a subject which is examined in further detail 

in this report.  

 

Key words: Polyploid, quantitative trait loci, QTL mapping, QTL analysis, statistical 

power, autotetraploid, SNP dosage, permutation test, F1 mapping population. 
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1. Introduction 

1.1. General Introduction – A brief history of polyploids 
Ploidy is one of those terms not often heard in ordinary conversation, although from a 

biological perspective it is a rather important concept. Indeed, the word itself is probably 

derived from the more commonly-used terms ‘haploid’ and ‘diploid’ which refer to the state 

of having one ( ) and two (  ) sets of chromosomes, respectively. Ploidy can be defined as 

the number of copies of the entire chromosome set in a cell (Acquaah, 2012). A polyploid is 

an organism that carries more than the diploid set of chromosomes in its (somatic) cells, thus 

having more than two copies of each chromosome (Acquaah, 2012). The focus of this report 

will be for the particular case of n = 4, the tetraploids, which are an important subgroup 

within the polyploids, at least in terms of plants that are of direct use to mankind. 

Previous estimates put the frequency of polyploids at 70% of the angiosperms (Masterson, 

1994), but more recent molecular studies have proposed revising this estimate to 90% or more 

(Cui et al., 2006). Many of these plants have since “re-diploidised” and would no longer be 

classified as polyploids, although the signature of their ancestral genomes can still be 

recognised (Leitch and Leitch, 2008). In the lineages of most flowering plants, 

polyploidisation appears to be more the norm than the exception. The current view is that 

genomes often undergo polyploidisation followed by sub-functionalisation or neo-

functionalisation of genes (Adams and Wendel, 2005a), after which a gradual process of re-

diploidisation occurs (Wang et al., 2005). Recent advances in genomics and sequencing have 

shed more light on this phenomenon through the analysis of orthology and synteny. However, 

as early as 1911 it was recognised that maize (Zea mays) was likely to have formerly been a 

tetraploid after two sets of paralogous chromosomes were identified in its karyotype 

(Kuwada, 1911). Haldane also held the view that duplication events might favour an organism 

by avoiding the effects of deleterious mutations in important genes (Haldane, 1932). 

Polyploidy is not only a condition found among plants but also occurs among fish, 

amphibians, reptiles, insects and fungi (Hieter and Griffiths, 1999; Otto and Whitton, 2000; 

Gallais, 2003; Comai, 2005). 

1.2. The origins of polyploids 
A polyploid individual may arise as a result of either somatic or zygotic chromosome 

doubling, or by a non-reduction event in the formation of gametes (deWet, 1980). The latter 

of the two processes is considered to be the more important in the majority of cases (Harlan 

and deWet, 1975). In this case, an autotetraploid can result either directly from the fusion of 

two unreduced gametes, or through the initial formation of a triploid as a bridging step to 

increase the frequency of diploid gametes and thus likelihood of a tetraploid forming (Ramsey 

and Schemske, 1998). 

1.3. Auto- and Allopolyploids 
Generally-speaking, polyploids are classified as either autopolyploid or allopolyploid. An 

autopolyploid is a polyploid whose genome displays polysomic inheritance (so that all 

homologues of a chromosome can potentially pair during meiosis) and whose basic 
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chromosome sets are homologous (Gallais, 2003). An allopolyploid is generally the result of a 

hybridization between the genomes of different (albeit closely-related) species and exhibits 

disomic inheritance (so there is preferential pairing between pairs of homologous 

chromosomes, as opposed to random pairing). In terms of inheritance patterns and homologue 

pairing behaviour, allopolyploids essentially behave like diploids (Milbourne et al., 2008). 

A third group can also be identified – segmental allopolyploids, which exhibit a mixture of 

autopolyploid and allopolyploid inheritance patterns (Stebbins, 1947; Gallais, 2003). Recent 

studies have shown that in certain species, loci do not follow the same mode of inheritance 

among different tetraploid individuals, suggesting that segregation in tetraploid hybrids are 

not predictable (Stift et al., 2008). It is the mode of inheritance and pairing behaviour that is 

the more important consideration for researchers working in the area of QTL mapping rather 

than the origin of the sub-genomes per se (Doerge and Craig, 2000), while for those interested 

in the evolution of genomes the opposite is probably true, e.g. Ramsey and Schemske (1998). 

There is still some discussion over the precise meanings of the terms or to the most pertinent 

aspects in their definition (Ramsey and Schemske, 1998).  

1.4. Polyploidy in plant breeding 
Polyploids commonly occur among cultivated plants. These include important food crops 

such as potato, wheat and banana, fibre crops such as cotton, fodder crops such as alfalfa, 

commodity crops such as coffee, sugarcane and oilseed rape and ornamental crops such as 

rose and begonia. A list of some of the more well-known polyploid crops and their most 

commonly-occurring ploidy levels is given in Table 1. A simple classification of some of the 

ornamentals like Begonia is not possible given the complexity of the genus, where 

chromosomal number ranges from 2n = 16 up to 2n = 156 (Dewitte et al., 2011).  

In some crops the mode of inheritance has been well-established, such as autotetraploid potato 

or allohexaploid wheat. In others, there is still debate over the mechanisms involved e.g. 

sugarcane (Milbourne et al., 2008) or rose (Koning-Boucoiran et al., 2012). However, it is 

only a matter of time before all such issues are finally resolved due to the increasingly 

widespread use of molecular markers which can be used to investigate segregation patterns in 

more detail (Wu et al., 2001; Stift et al., 2008). In terms of their frequency, polyploids appear 

among domesticated crops at approximately the same frequency as they would had they been 

selected at random from their respective plant families (Hilu, 1993). Autopolyploids often 

display an increased size of certain organs, an effect termed ‘gigas’ feature (Acquaah, 2012). 

This has been exploited in ornamental plant breeding, where the prolonged flowering period 

of polyploids coupled with an increase in flower size and complexity can be desirable. 

Triploid banana is seedless, a commercially desirable trait. In forage production, 

autopolyploid red clovers and ryegrasses have been bred to produce larger, more succulent 

leaves, again which may be due to the gigas feature. The introduction of triploid sugar beet 

(with mono-germ seeds) had a large impact on the sugar beet industry (Acquaah, 2012). 

 

Crop name Species Auto- / Allo- Ploidy level 

Table 1. Some commonly-cultivated polyploid crops and their most common ploidy levels 
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Potato Solanum tuberosum Autotetraploid          
Sugarcane Saccharum officinarum Auto-octaploid           

Durum wheat Triticum durum Allotetraploid            
Bread wheat Triticum aestivum Allohexaploid           

Leek Allium porrum Autotetraploid (Pink, 1993)           
Banana Musa spp. Auto- & Allotriploids           

Strawberry Fragaria × ananassa Interspecific octoploid hybrid           
Oat Avena sativa Allohexaploid           

Peanut Arachis hypogaea Autotetraploid           
Sweet potato Ipomoea batatas Autohexaploid           

Cotton Gossypium herbaceum Allotetraploid           
Oilseed rape Brassica napus Allopolyploid           

Alfalfa Medicago sativa Autotetraploid           
Coffee Coffea arabica Allotetraploid (Lashermes et al., 1999)           

Rose Rosa × hybrida Autotetraploid 
          

          
Petunia Petunia hybrida Autotetraploid           

Chrysanthemum Chrysanthemum spp. Various            
Begonia Begonia spp. Various             

 

1.5. Introduction to QTL analysis  
Many traits of agronomic importance are known to be controlled by multiple genes, in 

contrast to simple Mendelian traits which are controlled by allelic variants of one gene at a 

single locus. The analysis and identification of these multiple genetic loci has been a major 

area of research in both plant and animal science for almost a century, when a model of how 

quantitative traits could be explained by Mendelian inheritance at multiple loci was first 

proposed (Fisher, 1919). More recently, rapid advances in molecular techniques have given 

researchers access to vast amounts of genotypic information with which to investigate the 

possible underlying causes of variation in quantitative traits (Doerge, 2002). The putative 

location of such an underlying factor (usually assumed to be a single gene) has been termed a 

quantitative trait locus (QTL), or collectively referred to as quantitative trait loci (also denoted 

QTL). 

 

1.6. Difficulties with QTL analysis in (auto)polyploids 
There are a number of difficulties in QTL mapping and analysis in autopolyploids which have 

hampered the development and utilisation of modern molecular resources in these crops to 

date. Firstly, much of the research and methodological development in the area of QTL 

mapping has focussed on diploid species up to now (Sax, 1923; Lander and Botstein, 1989; 

Jansen, 1992). This may not be a direct hindrance as such but has perhaps diverted the 

attention of researchers away from the area. The fact that humans are diploid may have also 

edged the bias towards their predominance somewhat more. Somewhat related to this is the 

fact that the techniques used in diploid crops may be applied quite easily to allopolyploids, 

which occur at least as frequently as autopolyploids (Milbourne et al., 2008). For arguably the 
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most important autopolyploid crop species, potato, closely-related diploid potato can be used 

as a substitute in mapping studies (Doerge and Craig, 2000) and indeed already has been with 

some success (Leonards-Schippers et al., 1994; Van Eck et al., 1994; Collins et al., 1999).  

The meiotic behaviour of polyploid species is not always known (whereas that in diploids is 

generally predictable), making it harder to predict segregation patterns in the offspring of an 

experimental cross. A general methodology for predicting meiotic behaviour has been 

developed (Wu et al., 2001) but even when molecular markers are used, it may still be 

difficult to distinguish some segregation patterns, particularly in the case of dominant markers 

(Gallais, 2003). There are also a much larger number of genotype possibilities at any marker / 

QTL locus. At its most extreme, a locus in the F1 offspring of a cross between two tetraploid 

parents may have one of up to eight possible alleles, with 36 possible combinations of 

parental alleles in total.  

As well as this, the increased heterozygosity of polyploids can also pose difficulties in 

developing inbred lines (due to inbreeding depression as well as the impossibility of reaching 

homozygosity through selfing). Again, the result is that traditional QTL approaches involving 

inbred lines most often used in diploids cannot be applied to polyploids. Therefore, QTL 

mapping must be done in genetically-diverse populations. Difficulties may also arise in 

resolving marker dosages in both parents and offspring in which case reconstructing the 

haplotypes may prove extremely difficult. It is also possible that at higher dosages a masking 

of recombination behaviour can occur, since markers become less informative at intermediate 

dosages about possible recombination events (Doerge and Craig, 2000). 

In polyploids with quadrivalent formation double reduction may also occur which results in 

seemingly impossible configurations appearing among the progeny (e.g. offspring carrying a 

duplex dose of a marker allele when the parental segregation was Simplex x Nulliplex). If 

double reductions are not correctly identified, they may adversely affect the construction of 

linkage maps and falsify subsequent QTL analyses. In general however, the rate of double 

reductions tends to be small: a maximum rate of ¼ was recently proposed (Luo et al., 2006) 

while some authors prefer the original limit of 1/6 proposed by Mather (1935); in any case, 

experimental studies have shown it to be relatively small, e.g. Stift et al. (2008). 

 

1.7. Motivation for this work 
Probably the biggest motivation for the use of QTL mapping in polyploids is to benefit from 

the advantages conferred through the use of marker information in breeding programmes. The 

use of marker-assisted selection (MAS) has already proven to be extremely effective in both 

selection and backcrossing schemes at the diploid level and it is hoped that at higher ploidy 

levels these benefits can also be enjoyed. 

Despite the hurdles previously mentioned, the possibilities for conducting QTL analyses in 

polyploid crops are finally being realised due to a number of factors. With the advent of high-

density markers such as single-nucleotide polymorphisms (SNPs) it is possible to generate 

high-quality, reliable, co-dominant marker information at a fraction of the cost of previous 
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methods and with sufficient coverage and density that even small-effect QTL may be 

detected.   

In time, genotyping by sequencing will likely provide even more informative data on 

polyploid haplotypes. The availability of vastly more powerful computers and methodologies 

for constructing linkage maps which exploit iterative algorithms are providing numerical 

solutions to previously intractable problems. It is therefore increasingly feasible to perform 

QTL mapping in polyploids given the available technology. There has also been an increased 

interest from breeding companies who have experienced the benefits of MAS in diploid plants 

and are willing to make the efforts required to conduct QTL analyses in polyploids in the 

hope of developing selectable markers for useful traits at the polyploid level.  

Apart from these practical motivations, another reason why it may be preferable to perform 

experimental work at higher ploidy levels is that there may be differences in the expression of 

certain genes that cannot be simply accounted for by dosage number. For example, it was 

shown in experimental lines of yeast (Saccharomyces cerevisiae) that some genes were 

strongly induced while others were strongly repressed in a set of identical yeast lines with 

different ploidy levels (Galitski et al., 1999). In maize, it was found that when expression 

levels of eighteen genes were studied in an experimental ploidy series (1x, 2x, 3x, and 4x), 

there were a number of important deviations from a model in which gene expression was a 

simple multiple of the expression level for the monoploid case (Guo et al., 1996). A similar 

finding was reported for an autopolyploid series in potato (Stupar et al., 2007) using a 

microarray representing over 9000 genes. It appears that gene silencing is a common 

occurrence following polyploidisation (Adams and Wendel, 2005b). As well as that, up- and 

down-regulation of duplicated genes in polyploids was  found to be organ-specific in certain 

cases (Adams and Wendel, 2005b). In other words, the genetic and molecular dynamics of a 

polyploid may not be fully captured by using diploid plants as an experimental model in a 

mapping population. 

 

1.8. QTL mapping 
There are a number of steps involved in QTL mapping, which can broadly be categorised as 

detection, location and estimation. That is to say, we must detect the presence of segregating 

genetic factors, locate them relative to some known markers and estimate their effects and 

possible interactions (Churchill and Doerge, 1998). QTL mapping in polyploids is no 

different to diploids in this respect. 

At its most basic, QTL mapping involves comparing the means of two groups in a mapping 

population, one of which contain one form of a marker and the other an alternative form (or in 

the case of multi-allelic markers, comparison of means between multiple groups). Standard 

statistical tests like Student’s t-test are then used to see whether there is a statistically 

significant difference between the means of the two groups for some trait of interest for which 

phenotypic data is available. When multiple markers are available multiple comparisons need 
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to be made, leading to the use of more stringent testing criteria so as to control the rate of type 

I errors (false positive results).  

The testing of differences in means is similar to a regression-like or ANOVA approach, where 

the emphasis is no longer on means but the variance explained. Marker locations that 

“explain” the greatest amount of variance in the phenotypic data are said to be more likely 

linked to a QTL than other markers. Again, the approach relies on grouping the data in a 

particular way and observing when the variance between the groups becomes large in 

comparison to the variance within the groups, which forms the basis for an F-test of 

significance.  

Another approach taken in QTL mapping uses maximum likelihood estimations and has 

probably been the more common approach to QTL mapping in diploids since it was proposed 

for a single-marker analysis (Weller, 1986). Whether in a single-marker or interval-mapping 

approach, a ratio is formed between the maximum likelihood scores under the alternative and 

null hypotheses of QTL linkage. In general, the log10 of this ratio (the LOD score) is used as a 

measure of the strength of an association between a location and an effect. In other cases, the 

Wald score can be used in place of the LOD as a test statistic (Chen, 2014). 

 

1.9. QTL mapping in polyploids 
To date, there have been a number of linkage maps of autopolyploid crops published which 

include potato (Meyer et al., 1998; Bradshaw et al., 2004), alfalfa (Brouwer and Osborn, 

1999), sweet potato (Ukoskit and Thompson, 1997; Kriegner et al., 2003), sugarcane (Da 

Silva, 1993; Ripol et al., 1999; Ming et al., 2001) and rose (Gar et al., 2011; Koning-

Boucoiran et al., 2012). Other authors have presented methodologies for linkage mapping in 

autopolyploids, including using the assumption of disomic inheritance (Ripol et al., 1999; 

Hackett et al., 2001) and tetrasomic inheritance (Luo et al., 2006). Some groups have 

simplified the problem by using simplex markers which segregate in a 1:1 ratio in the 

offspring (Wu et al., 1992; Meyer et al., 1998; Ming et al., 2001).  

The creation of a linkage map is not an end in itself, but it usually a precursor to a QTL 

analysis for some trait of interest. For example, the focus of mapping studies in sugarcane has 

tended to be the identification of genes which control the sugar content or sugar yield (Ming 

et al., 2001; Grivet and Arruda, 2002; Ming et al., 2002). Therefore, linkage map construction 

can also be thought of as an integral part of the methodology of QTL analysis which may 

offer constraints or benefits depending on such factors as the marker type, marker coverage 

and density and level of map integration across marker segregations and across different 

homologues.  

More recently, genotyping by sequencing (GBS) using next-generation sequencing has been 

proposed an approach to identify SNPs and haplotypes in more genetically diverse 

populations than traditional mapping populations (Elshire et al., 2011). Genome-wide 

association studies (GWAS) aim to identify allelic variants in panels of diverse material using 

high-density SNP arrays. To date, there have been reports of mixed success with the 
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methodology (Visscher et al., 2012), although this remains a promising area of continuing 

research.  

The earliest efforts at QTL mapping in polyploids used regression models to compare trait 

means for different phenotypes (Hackett et al., 2001). For example, a QTL analysis into 

potato late blight resistance at the tetraploid level by Meyer et al. (1998) tested for 

associations between AFLP markers and resistance scores using the non-parametric Mann-

Whitney test, with significance thresholds determined by permutation tests with N = 1000 and 

α = 0.05 (Churchill and Doerge, 1994). However, it was noted that “simple tests based on the 

presence/absence of a band are insufficiently powerful for QTL mapping in outbreeding 

polyploids, and that a more powerful QTL model needs to be developed” (Meyer et al., 1998). 

A more advanced model was proposed by members of the same group three years later 

(Hackett et al., 2001). In this approach, interval mapping was performed using maximum 

likelihood estimates for the combined trait values and QTL probabilities using an iterative 

approach on genotype probabilities until the likelihood ratio converged. This approach was 

compared to a single weighted regression of the QTL genotype probabilities derived from the 

marker data only (without taking trait values into consideration, and with a single iteration). It 

was found that there was better estimation of the QTL allele effects using the iterative 

approach, and that estimates of the percentage variance accounted for and residual variance 

were also better using the iterative versus the non-iterative approach (Hackett et al., 2001). 

1.10. QTL mapping using SNP dosage data 
The advent of single nucleotide polymorphism (SNP) markers has resulted in a big step 

forward in molecular studies as it offers researchers the possibility of reliable and 

reproducible co-dominant markers which can be easily, quickly and (increasingly) cheaply 

scored at a much higher density along the chromosome than previous marker types. Currently, 

SNP markers are the marker type of choice, although given the pace of developments it is 

likely that they will be replaced by another advancement within the coming years. SNP 

markers are generally bi-allelic and therefore less informative than RFLP or microsatellite 

markers that are multi-allelic (Acquaah, 2012). This need not be a serious issue because of 

their abundance along the chromosome; SNP data has been used for more than a decade in 

diploids to generate haplotype information by considering collections of SNP markers as a 

block (Gabriel et al., 2002).  

One of the more recent publications on QTL mapping in polyploids has been in potato using 

SNP dosage data (Hackett et al., 2013), amended from the approach proposed previously by 

Hackett et al. (2001). This single marker approach was adapted and simplified from an earlier 

model proposed by Kempthorne which included interaction effects between the alleles 

(Kempthorne, 1957). However, Hackett et al. extend Kempthorne’s model to an interval 

mapping approach by considering the genotype probabilities at a grid of points along the 

chromosome (thus becoming independent of the marker positions). 

SNP dosage scores are inferred from allele intensity ratios of SNP array data using normal 

mixture models. Dosage information is then incorporated in a linkage analysis for map 

construction and to generate genotype probabilities from which an iterative weighted 
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regression on the QTL genotype probabilities is used. This publication has served as a useful 

guide in this project and as a source of ideas and inspiration. However, the application to QTL 

mapping remains incomplete as the method was only tested with theta scores (where theta 

refers to the polar coordinates of the signal intensity from the SNP array). It is therefore 

unknown how well this method works when applied to real (or even simulated) phenotypic 

data.  

 

1.11. QTL models considered in this project 
Two separate models were considered based on a regression approach rather than a maximum 

likelihood approach – although had there been more time a maximum likelihood approach 

may also have been implemented. Regression models have a somewhat simpler formulation 

and therefore represent a first attempt at modelling QTL effects.  

1.11.1. Simple Regression on dosage scores 

A very basic approach is to perform a single-marker regression (or ANOVA) analysis using 

marker dosage scores as the predictive variable. The basic model to be fitted is  

              

where xj is a dummy variable for dosage scores according to: 

   

(

 
 

                 
                
                  
                
                

 

  

  corresponds to the mean genotypic value in the duplex case. It should be noted that this 

model is purely additive and ignores dominance effects.  

 

Hypothesis testing can be performed using an F-statistic, the ratio of the residual mean 

squares for the full model and the reduced model (Liu and Knapp, 1997). It is often 

considered more convenient to consider the p-value of the F-statistic, which is the probability 

of the F-statistic occurring under the null hypothesis     . In this case, the null hypothesis is 

that there is no difference in the means between the full model and reduced model, i.e. that the 

marker is not linked to a QTL. We may choose to reject    if p is less than a certain limit, or 

alternatively, if its negative logarithm (         ) exceeds a particular threshold. This 

quantity (         ) is at times referred to as the LOP score in this document (for logarithm 

of p-value). Arbitrarily setting significance thresholds runs the risk of introducing type I 

errors (when no linked QTL exists but we incorrectly declare that there is a significant linkage 

present) due to the multiple comparisons that are performed, which will be examined in more 

detail in §3.5. 
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1.11.2. Regression using parental genotype probabilities 

An alternative approach to model a quantitative trait is to consider the contributions made by 

each of the eight possible parental alleles that may be present at a locus. Each full-sib 

offspring of a cross between two parents P1 and P2 inherits two alleles from P1 and two from 

P2 (assuming no double reduction occurs), resulting in 36 possible combinations of alleles at 

a locus. At any locus, the contribution from the two parents can be represented using a 

dummy variable Xi, where            , such that      if allele i is not present in the 

offspring, and      if allele i is present. At positions where the parental identity of the 

homologues is not fully known, intermediate values between 0 and 1 are used to represent the 

probabilities of that homologue being present. 

The model can be thus written as 

                                                           

where yj is the phenotypic value for the j
th

 individual, µ1 is the overall mean and    is the 

residual error term. For any individual, we also have the constraint that            

       and                  , since two alleles are inherited from each parent. We 

can therefore replace    and    in the above equation, and re-name the coefficients to yield 

                                               

where                            etc. This model is termed the genotype 

probabilities model, or GP model for short. 

1.12. Genotype probabilities 
The model just described relies on having information on the identity of each allele (from 

which of the eight parental homologues it actually came from) at a set of locations along each 

chromosome. These locations are not necessarily at the marker positions, but usually the 

marker positions are used to begin with, and interpolation extends the probabilities to a grid of 

positions (Hackett et al., 2013). Ideally, we would like to be able to track all recombination 

events and thus reconstruct the full parental homologue identities in any individual of the 

mapping population (schematic representation in Figure 1). In practice, the data available to 

us is a linkage map containing the order and distance between marker positions and the 

dosages scores of the progeny at those positions. It is desirable to have a consensus map 

which integrates different marker categories (at least including S x N, S x S and D x N 

markers) as well as integrating the four homologues into a single chromosomal map. For 

example in a previous mapping project in rose, the length (in cM) of different homologues of 

the same chromosome were not equal (Santos Leonardo, 2013) possibly due to poor marker 

coverage in certain regions. This may raise some concerns over the assignment of unique 

positions to all marker on a potential consensus map. For species where a reference genome is 

available, anchoring of marker positions to a map position (in Mbp) may be feasible. 
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Various methods for recovering the identity of the parental homologue identities have already 

been proposed including using a branch and bound algorithm (Hackett et al., 2001) as well as 

a more recent approach using a hidden Markov model (Hackett et al., 2013). 

  

1.13. Significance thresholds 
The topic of significance thresholds has received a lot of attention since QTL mapping was 

initiated, and rightly so. A QTL is only detected when a linked marker exceeds such a 

threshold, meaning that significance thresholds are fundamental to any sort of QTL analysis. 

If significance levels are set too high there is a risk of missing smaller-effect QTL that fall 

just below the bar; on the other hand, if the threshold is set too low there is a risk that areas of 

the genome which harbour no true QTL will be incorrectly identified. 

The basis of QTL mapping is to determine and quantify where there is an increased likelihood 

of locating a genetic factor that influences a particular trait of interest. All QTL mapping 

methods require significance thresholds in order to discriminate between areas of higher 

significance and areas of lower significance. If the trait values are normally distributed (in 

terms of their residuals), it is relatively straightforward to determine a critical threshold for 

Bivalent pairs in ♀ and ♂ cells showing multiple 

chiasmata where recombination can occur. 

Schematic representation of recombination 

segments in gametes during fertilisation 

Desired information – Integrated map with haplotypes Actual information – Linkage map & dosage scores 

Figure 1. Schematic drawing of bivalent pairing and gametes for a single chromosome in an autotetraploid.  
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the test statistic based on a stringency level α. However, it is often the case that trait values are 

not normally-distributed. In these situations, there are a number of different options that have 

been proposed to set a significance threshold (reviewed in Doerge (2002)).  

When highly complex models are involved which may include epistatic interactions between 

multiple loci, one option is to use computer simulations to generate thresholds (Rebai et al., 

1994). This has the advantage of being relatively fast, although it relies on a prior knowledge 

of the expected distribution of the test statistic. In many cases this is not known, or the 

experimenter does not want to assume that all the information has been fully captured by the 

model. In these instances non-parametric tests such as permutation or bootstrap methods are 

generally used (Churchill and Doerge, 1994; Efron and Tibshirani, 1994). These methods 

make no prior assumptions about the distribution of the test statistic, but have the drawback 

that they are computationally expensive.  

An approximate approach to determining a LOD threshold based on tables derived from 

multiple simulations (1,000,000 per population type) was published which provides a fast 

method of determining LOD thresholds in the four main experimental (diploid) population 

types (Van Ooijen, 1999). An alternative set of thresholds was more recently proposed which 

derived the significance threshold from theoretical considerations (Piepho, 2001). This 

method has the slight advantage of being applicable to all population types, although is still 

confined to a diploid species. It was demonstrated that theoretical and re-sampling based 

thresholds are approximately equal in situations where biological and statistical effects are 

minimised (Van Ooijen, 1999); such scenarios include minimal segregation distortion, 

adequate sample size, low scoring errors or incomplete data and high heritability (Doerge, 

2002). 

So far there has been little attention paid to the issue of statistical thresholds in polyploids (to 

the best of my knowledge). For this project, experiment-wise permutation tests were taken as 

the simplest method of arriving at an approximate threshold level which make no prior 

assumptions about the distribution of the data.  

 

1.14. Investigations in this project 
The basis of this work is to investigate the conditions and criteria under which QTL may be 

identified in an F1 mapping population of an autotetraploid plant species (such as rose, potato 

or alfalfa). A number of models will be identified and tested after which a range of topics will 

be investigated, which include: 

 Additive / Dominance effects  

What is the difference (if any) in detection capability between a purely additive-effect 

QTL and one which is purely dominant? How effective is the model at identifying 

both these types of QTL effect? 

 

 Effect of QTL segregation 

11



What effect does the QTL segregation type have on the power of detection, under the 

assumption of additivity or dominance? What is the relationship between the expected 

variance due to a locus, the actual variance in the mapping population and the strength 

of the statistical association in markers linked to that locus? 

 

 Effect of QTL effect size and different heritabilities 

What impact does the QTL effect size have on the power of detection? Or the level of 

heritability for the trait?  

 

 Setting significance thresholds 

How should a threshold for significance be set? If using a permutation procedure, how 

many iterations are needed? What is the relationship between significance thresholds 

and the power of QTL detection (different type I and type II errors)?  

 

 Effect of marker density 

What effect does marker density have on the power to detect QTL? How does marker 

density affect the accuracy of reconstructed genotype probabilities? 

 

 Usefulness of different marker types 

Can we say anything about the relative usefulness / informativeness of different 

marker types / segregations for QTL mapping? (as opposed to their relative usefulness 

in linkage map construction, which is a different issue) 

 

 Effect of mapping population size 

What is the relationship between the size of the mapping population, the power of 

detection and the significance of a detected QTL effect? 

 

In addition to these, the topic of predicting genotype probabilities using SNP dosage data will 

also be dealt with to some extent, as this is a pre-requisite for a QTL mapping approach which 

uses regression of the phenotypic data on genotype probabilities or a likelihood method which 

uses QTL probabilities.  
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2. Materials and methods 
As mentioned in the Introduction, there are three possible types of polyploid that we may 

consider – autopolyploids, allopolyploids and segmental allopolyploids. The remainder of this 

report will focus on the first of these three categories, and in particular, the autotetraploids, 

which include such crops as potato, leek, alfalfa, petunia and rose. Given that this project was 

conducted solely in silico, this section will describe the model development and choice of 

model to use, the assumptions that were made and the steps that were taken in investigating 

these models. 

For an autotetraploid species, an F1 mapping population has been the most widely-used in 

previous mapping studies (Meyer et al., 1998; Hackett et al., 2001; Luo et al., 2001; 

Bradshaw et al., 2004; Bryan et al., 2004; Hackett et al., 2013). An F2 mapping population 

was used in a QTL analysis into cotton quality-traits (Jiang et al., 2000), although it relied on 

the development of near-isogenic lines to generate one of the crossing parents (Thomson et 

al., 1987) and one round of selfing after the first cross. An F1 mapping populations was taken 

as the more general mapping population in this context, which does not require tolerance to 

inbreeding. 

 

2.1. Pedigree Simulation 
One of the key tools in conducting this study was the ability to simulate meiosis in a 

tetraploid population through the use of the PedigreeSim software programme, written in Java 

(Voorrips and Maliepaard, 2012). A number of assumptions were made when choosing the 

settings under which the simulation was run. Firstly, it was assumed that there was completely 

random pairing between all homologues (tetrasomic behaviour) and that bivalents rather than 

quadrivalents are formed during meiosis. As discussed in Hackett et al. (2001), the evidence 

from cytological studies in potato suggests that bivalents predominate but that quadrivalents, 

trivalents and univalents may also occur in low frequencies (Swaminathan and Howard, 

1953). In alfalfa, bivalents were also found to predominate in metaphase 1 (Bingham and 

McCoy, 1988). Therefore, this simplification is justified for some of the more important 

autotetraploid crop species. Bivalent formation also rules out the possibility of double 

reduction occurring (Milbourne et al., 2008). However, the analysis could be extended to 

include quadrivalent formation, or a combination of bivalent and quandrivalents (Voorrips 

and Maliepaard, 2012). It is also possible to extend the analysis from random chromosomal 

pairing to fully preferential pairing, associated with allopolyploidy, or partially preferential 

pairing for segmental allopolyploidy. 

 

2.2. R 
All of the subsequent simulation work, data analysis and plotting was performed in R version 

3.0.3 or earlier (R_Core_Team, 2014). The output files of PedigreeSim (in particular, the 

‘_out_founderalleles.dat’ and ‘_out_alleledose.dat’ files) were used as input files in 
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subsequent scripts to reconstruct QTL genotype probabilities using the marker dosage 

information. An example script is provided in Appendix X. 

 

2.3. Simulation studies 
QTL were simulated as either fully additive or fully dominant throughout all analyses in this 

project. Thus, partial dominance and recessiveness were not considered (although there is 

nothing to prevent extending the analysis to include these situations). A script written in R to 

assign phenotypic scores at a given locus was used to determine the total genetic contribution 

of the QTL to an individual’s trait value (Voorrips 2014, unpublished).  

Following calculation of the genetic contributions, an estimate for the population-wide 

genetic variance   
   was determined.  

Recalling the definition of broad-sense heritability,    
  
 

  
   

  
 

  
     

  (Acquaah, 2012), the 

environmental variance    
   was calculated as 

  
   (

    

  
)  

  

Heritabilities of zero and one were excluded. Environmental effects were simulated by 

randomly sampling from a normal distribution with mean 0 and variance   
   These were 

added to the genetic contributions (and the overall trait mean µ) to generate a phenotypic 

score. 

2.4. Model implementation 
Both the simple regression model on marker dosage scores and the regression on the parental 

genotype probabilities were implemented in R. Using the ‘_out_founderalleles.dat’ output 

from PedigreeSim, complete information for the mapping population in terms of the identity 

of the parental alleles was known. However, a QTL study would not have this information to 

begin with and therefore an attempt was made to reconstruct the parental homologue 

identities using marker dosage information. 

It is assumed that a linkage map already exists and that the identity of the parental haplotypes 

is fully known (so information on the phase of the complete linkage group is known). For 

example, if parent 1 has four homologues A, B, C and D and parent 2 has homologues E, F, G 

and H of a certain chromosome, it is known which of the eight homologues harbours the 

“minor” allele (or “1” allele) in a Simplex x Nulliplex situation etc. Simplex SNPs provide the 

framework from which the identity of all four homologous chromosomes may be determined; 

other SNP markers may then added relative to these by maximising the LOD scores for 

different allele pairs (Hackett et al., 2013). 
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2.5. Reconstruction of parental homologue identities in offspring 
We require information on the parental identity of all four homologues in order to implement 

the GP model. A simple algorithm for assigning the probability of the presence or absence of 

each of the eight parental homologues at the marker positions using marker dosage data was 

implemented in R. This was tested under various scenarios and adjusted until it was found to 

approximate the results obtained when the full parental homologue identities were known. 

The starting point for this approach was to use markers for which the parental identity of at 

least one of the four homologues was known. From these positions, probabilities were 

assigned to nearby linked loci according to the Kosambi mapping function . The Kosambi 

mapping function was chosen over the Haldane mapping function as it models crossover 

interference and can be simply expressed in closed form, which is not true of the more 

complicated Carter-Falconer or Felsenstein mapping functions (Chen, 2014). 

The Kosambi mapping function relates the distance d (in Morgans) to the recombination 

fraction θ (Kosambi, 1943): 

   
 

 
(
     

     
) 

Two situations were considered – the first being where we know the identity of one of the 

homologues at a marker position. The second situation is where we know with certainty that 

one of the parental homologues is not present. Certain marker positions may provide both 

types of information in an individual. We already have information on the estimated 

recombination fraction between marker positions (during map construction), which are 

alternatively expressed as genetic distances through a mapping function. These may be 

converted into a probability of linkage in coupling (so, a probability that no recombination 

actually occurred) at a nearby position on a homologue by considering the what the 

probability of linkage in coupling is at a recombination fraction of 0 and at a recombination 

fraction of 0.5 (the so-called boundary conditions). 

In the first case where we know the identity of one of the homologues, the boundary 

conditions are p(0) = 1 and p(0.5) = 0.5, where p(θ) is the probability of linkage in coupling 

when the recombination fraction is θ. 

We may therefore write 

          
 

 
(

     

       
)       

In the second case (absence) the boundary conditions are p(0) = 0 and p(0.5) = 0.5 and thus 

       
 

 
(
     

     
) 
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These functions are referred to as the Kosambi-1 and Kosambi-0 functions, respectively. They 

express the probability of linkage in coupling at a distance d from a marker position. 

To implement the algorithm, probabilities are initially assigned at all marker positions in the 

offspring of the mapping population using marker dosage information as a guide. Some 

examples of how probabilities were assigned in the case of Simplex x Nulliplex, Simplex x 

Simplex and Duplex x Nulliplex markers are given in Table 2. It will be noted that the 

condition that each set of four Xi probabilities should sum to 2 is in some cases violated – this 

is corrected through normalisation at the end of the procedure. 

 

 

 

 

The algorithm begins at the first marker on the first chromosome and locates individuals for 

which there was a ‘1’ probability at that position. Moving in both directions away from the 

marker position, probabilities are updated if it is found that the Kosambi probability at that 

distance exceeds the probability that was already assigned. The process terminates if a 

probability of less than 0.5, or greater that the Kosambi-derived probability is encountered. 

This procedure is repeated for all marker positions along the chromosome, for all simulated 

chromosomes.  

The procedure is then repeated, targeting the ‘0’ probabilities and assigning linked loci with 

the Kosambi-derived probability if that is smaller. Again, further searching along the 

chromosome in an individual terminates when a smaller probability is encountered, or a 

probability greater than 0.5.  

Subsequently, the probabilities are normalised so that ∑    ∑   
 
       

    at all positions. 

Details of the normalisation procedure can be found in Appendix I. It may be noted that this 

procedure can easily be extended to any grid of loci along the chromosome in an interval-

Marker segregation Dosage Minor allele(s) Genotype probabilities 

  

(e.g.) X1 X2 X3 X4 X5 X6 X7 X8 
           

S x N 
0 homologue 7 0.5 0.5 0.5 0.5 0.5 0.5 0 0.5 

1 homologue 7 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 
                      

 

0 homologues 3, 5 0.5 0.5 0 0.5 0 0.5 0.5 0.5 

S x S 1 homologues 3, 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

 

2 homologues 3, 5 0.5 0.5 1 0.5 1 0.5 0.5 0.5 
                      

 

0 homologues 7, 8 0.5 0.5 0.5 0.5 1 1 0 0 

D x N 1 homologues 7, 8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

 

2 homologues 7, 8 0.5 0.5 0.5 0.5 0 0 1 1 
                      

Table 2. Example starting probabilities for SxN, SxS and DxN markers according to dosage scores. 

Note: The segregation patterns and assigned probabilities for SxN and NxS markers are equivalent. The 

term SxN here refers to the category of marker with Simplex x Nulliplex segregation; it does not necessarily 

imply parent 1 is simplex unless otherwise explicitly stated. c.f. §3.3 for further clarification. 
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Table 3. Simulated combinations of effect sizes and heritabilities to investigate 

effect of QTL segregation. 

mapping like approach; use of the marker positions alone was chosen for simplicity for this 

project.   

 

2.6. Effect of additivity, dominance and QTL segregation 
All possible QTL segregations were simulated for a set of combinations of effect sizes and 

heritabilities as given in Table 3, for a purely additive QTL or a purely dominant QTL on the 

first chromosome. A second QTL with purely additive effect was simulated on a separate 

chromosome both times. The maximum test statistic was recorded in each case and the means 

and standard deviations of these values were determined per QTL segregation type. 

 

 

The expected means and variances of a purely additive QTL given an effect size a can be 

worked out by calculating the probability of transmission of alleles to the offspring. These 

expectation values are provided for reference in Appendix III.  

 

2.7. QTL effect size and heritabilities 
In the previous section, different QTL effect sizes were simulated and compared. A second 

approach to generating different QTL effect sizes is to generate different numbers of equal-

sized QTL. When greater numbers of QTL are present, their individual contributions to the 

genetic variance decreases and so the power to detect each individual QTL diminishes 

(Beavis, 1998). A power study was conducted  for different numbers of QTL and different 

heritabilities, for a range of mapping population sizes and marker densities to generate power 

curves for QTL detection. Both additive and dominant-effect QTL were considered, as well as 

different thresholds for significance (α = 0.05 and α = 0.2). 

The method of determining the power of detection was adapted from a previous simulation 

study in a diploid crop (Beavis, 1998). For each combination of experimental conditions 

(#QTL, h
2
, flanking marker proximity, population size) 50 linkage groups were generated of 

20cM length, with QTL of effect size 5 assigned to the centres of a random subset of these 

linkage groups. Markers were positioned at the ends of each linkage group (both 10cM away), 

QTL1 :  Additive / Dominant QTL2 :  Additive 

 
   

Effect size Effect size h
2
 

5 5 0.2 

5 25 0.2 

25 5 0.2 

5 5 0.7 

5 25 0.7 

25 5 0.7 
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or by moving one of the makers closer to the QTL (to 2cM away), providing a comparison for 

the effect of marker distance. In order to declare a marker location as significant, a suitable 

threshold is required. Therefore, a permutation test with N = 1000 permutations was 

performed for each set of experimental conditions (marker proximity, number of QTL, 

population size and heritability). A random set of phenotypic values was generated with mean 

µ and variance σi
2
, for some               . A SNP set was generated with no QTL 

present (using the same marker proximity), and the maximum test statistic (F-value) from all 

100 marker positions was recorded for each of the 1000 shuffles of the phenotypic values. At 

a significance level of α, the          percentile of the ordered list was taken as the critical 

test statistic Fcrit to control the experiment-wise type I error rate to less than or equal α. This 

threshold was used in all 1000 replications (for the same experimental conditions).  

In the case where both markers on a linkage group were found to be significant, the number of 

QTL identified was counted as one, the same as would occur had only one of the markers 

been significant. The power,    ̂ is defined as the proportion of simulated linkage groups 

with QTL present that were correctly identified. This approach was also taken in the power 

study previously mentioned (Beavis, 1998). For example, in a simulation of 3 QTL per 

marker set, the total number of simulated QTL was 3000 and the total number of linkage 

groups with no QTL present was 47,000. If (e.g.) 789 linkage groups were correctly found to 

have at least one significant marker, the power estimate for that set of conditions was 

789/3000 = 0.263.  

The rate of false positives was monitored in an analogous way to the correctly-identified 

markers – both one or two false positives were recorded as a single linkage group incorrectly 

identified. This approach tended to slightly under-estimate the number of false hits but was 

chosen so that the derivation of  ̂ and    ̂ would be consistent. 

In this analysis, heritability is taken in the broad sense – as the ratio between the genetic 

variance and the phenotypic variance. This is acceptable since in many cases polyploid crops 

are vegetatively propagated (and thus dominant effect loci are of importance) and also 

because a direct comparison could then be made between the additive and dominant cases.  

 

2.8. Setting significance thresholds 
A standard procedure to determine an experiment-wise significance threshold using a 

permutation test was used (Churchill and Doerge, 1994). Some investigations into the 

distribution of test statistics from this permutation procedure were conducted (up to 500,000 

permutations of data, both with and without QTL present) as well as monitoring the type I 

error rate in the power studies ( ̂) and comparing them to the pre-assigned type I error rate α.   
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2.9. Usefulness of different marker categories 
In a tetraploid organism the possible segregations at a locus are Simplex x Nulliplex, Simplex 

x Simplex, Duplex x Nulliplex, Duplex x Simplex and Duplex x Duplex (these segregations 

are denoted SxN, SxS, DxN, DxS and DxD respectively). A marker that segregates as 

Nulliplex x Simplex is also referred to as Simplex x Nulliplex for simplicity etc. It should be 

noted that in this report, these terms refer to the ‘minor’ allele dosages for some locus in the 

two parents of an F1 mapping population. Other possibilities involving higher dosages (i.e. 

triplex or quadruplex) display the same segregation patterns as members of this set.  

The relative usefulness of each marker category in re-constructing the genotype probabilities 

(using the method described in §2.5) was estimated through a series of simulations.  

For each marker category, one hundred marker sets were randomly simulated containing 100 

equally-spaced markers at 1cM spacing per chromosome (2 chromosomes in total). The 

genotype reconstruction function was applied in each case and the resulting arrays were 

compared to the true probabilities based on the full haplotype information.  

A measure of closeness to the “true probabilities”    was defined as 

   
 

 
(∑ (

 

 
 ∑|     ̂|

 

   

)

 

   

) 

where   ̂ is the estimated probability of the presence of homologue i at a marker position m 

and n is the total number of markers (in this case,       since each chromosome had 100 

markers). Note that the term “true probability” refers to the value of      when the identity of 

homologue i at a position is fully known – so taking either a ‘0’ or a ‘1’ value for absence or 

presence, respectively. 

For each simulated marker set the mean deviation δ was recorded. An overall mean for each 

marker category from the 100 replications was determined to give an estimation of the 

‘usefulness’ of that marker category in reconstructing the haplotype probabilities (for a 

mapping population of 150 F1 individuals). A Tukey’s test was performed to test the 

significance of the differences found, following an ANOVA on the deviation data using 

marker category as a treatment to estimate the residual mean square error necessary to 

calculate Tukey’s yardstick. This relies on the independence of treatments which we may 

tentatively assume. An alternative test would be an independent 2-sample t-test with the 

Bonferonni or Šidák correction for multiple comparisons 

(using     
 

 
     or                 for n comparisons, respectively). 

The mean deviations per position over the 100 replications were also estimated (since each 

replication consisted of a random SNP set with markers spaced at 1cM, enabling the 

comparison).  

 

19



2.10. Effect of marker density 
The effect of different levels of marker density was investigated in two manners. Firstly, a 

dense SNP set over two chromosomes was generated, with 198 markers per chromosome 

randomly distributed over a length of 100cM – thus 66 markers of each of SxN, SxS and 

DxN. A single Simplex x Nulliplex QTL was located at the centre of chromosome I and 

genotype probabilities were reconstructed as previously described (§2.5). Using the model 

described in §1.11.2, a regression was performed on the parental genotype probabilities and 

the peak LOP score was recorded. Five markers chosen at random from each chromosome 

were removed from the marker set after which the process was repeated. Following this, ten 

markers were chosen at random and removed from each chromosome, and so on in multiples 

of five until the full marker set was exhausted. The process was repeated 50 times in order to 

see the effect of marker density on the size of the QTL peak (independent of marker category 

or position). 

A second approach to investigate the effect of marker density was based on the method 

outlined in §2.9 for estimating marker usefulness. In this approach, the mean deviations were 

estimated (from 100 replications) per marker category, but with different numbers of markers 

per chromosome (so, different marker densities). The details of this simulation are given in 

Table 4. 

 

 

Nr. Chromosomes Chromosome length Nr. Markers Inter-marker distance Marker range 

  (cM)   (cM) (cM) 

2 100 10 9.1 9.1 - 91 

2 100 20 4.8 4.8 - 96 

2 100 30 3.2 3.2 - 96 

2 100 40 2.4 2.4 - 96 

2 100 60 1.6 1.6 - 96 

2 100 80 1.2 1.2 - 96 

2 100 100 1 1 - 100 

Simulations were run for all five marker categories as well as a mixed marker set containing 

20% of each of the five marker categories (randomly assigned to a grid of positions along the 

chromosomes). 

 

2.11. Effect of mapping population size 
The effect of mapping population size on the power of detection of QTL as well as the 

maximum LOP score (from a flanking marker) was investigated. The first of these 

investigations has already been described in §2.7. Given its practical importance, population 

size was taken as the main variable in the power studies, ranging from a minimum of 50 

Table 4. Details of simulated marker sets outlining different levels of marker density investigated. 

The conditions in each row were replicated over 100 simulations to estimate means.  
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individuals to a maximum of 600, in increments of 50. A slightly more detailed study for the 

case α = 0.05 and additive-effect QTL was performed with a range of F1 = 30, 60, ..., 600 

individuals in increments of 30.  

The relationship between mapping population size and the peak LOP score was also 

investigated for population sizes of 100, 200, ..., 1000. In particular, it was of interest to 

determine whether the relationship between the peak LOP score and the number of 

individuals was linear. For each population size, 1000 replicate marker sets were simulated, 

each containing three Simplex x Nulliplex QTL of equal additive effect size, randomly 

allocated to separate chromosomes over 10 chromosomes of length 100cM (so all QTL were 

unlinked). A (broad-sense) heritability of 0.2 was also chosen. The maximum LOP score over 

all chromosomes was saved per run, allowing an averaging over the 1000 replicates. It was 

therefore possible to plot the peak LOP score versus population size (for this set of 

conditions) and perform a simple linear regression to check the strength of association 

between the two. 
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3. Results 

3.1. Model implementation 
Both models described in §1.11 were implemented in R and tested under various scenarios 

(number of QTL, QTL effect size, heritabilities, QTL segregation etc.). It became clear that a 

simple regression on marker dosages is too simplistic a model for this type of analysis, 

although interestingly, it can be shown to be equivalent to a regression of the genotype 

probabilities in the case where no attempt is made to improve the probabilities from their 

initial base assignments (c.f. Table 2, §2.5). A comparison between the results of both models 

in a simple scenario with two unlinked QTL on four chromosomes is given in Figure 2. The 

simulated mapping population size was 120 F1 individuals. 

It is perhaps worth noting that in certain situations where a close-flanking marker is linked in 

coupling phase to the QTL ‘+’ alleles, the Dosage model can actually give a higher peak than 

the Genotype Probabilities model (GP model). The slight increase in power is a result of the 

higher degrees of freedom available using the simpler Dosage model over the GP model. 

However, this relies on the marker and QTL segregation matching, with a very small distance 

between them (~ 1cM or less).  

For the rest of this report, the GP model will be the main subject of investigation.  

Figure 2. Comparison between results of regression using a. marker dosage scores, b. genotype 

probabilities. 

Note: Simulated marker-set had 2 QTL of equal additive effect; 45 markers / chm. using SxN, DxN and SxS 

markers. h
2
 = 0.7 

a. Marker dosage model b. Genotype probabilities model 
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Figure 3. Comparison between results of QTL analysis using a. true genotype probabilities, b. reconstructed 

genotype probabilities, using a simulated F1 mapping population of 120 individuals. 

Note: Simulated marker-set had 2 equal additive QTL; 45 markers/chm. using SxN, DxN and SxS markers. h
2
 = 0.7 

b. Using reconstructed genotype probabilities a. Using true haplotype information 

3.2. Reconstruction of parental homologue identities 
In order to apply the GP model, it is first necessary to have a good approximation to the 

genotype probabilities. As mentioned in §1.12 in the Introduction, various methods have 

already been proposed and implemented to derive these probabilities from the marker 

information. It wasn’t the primary focus of this project to develop a new or improved method 

for reconstructing parental homologue identities from marker data, nor to compare different 

methods of doing this. Therefore, a rudimentary approach was adopted which used the 

Kosambi mapping function to model probabilities around marker positions where the parental 

identity of the homologue was known with certainty (presence or absence).  

Some refinements were made during the process of implementing this approach, with the final 

version able to reproduce the results using the full information relatively well (assuming that 

we have sufficient marker density). The algorithm was applied to the simulated marker-set 

from the previous section with the resulting significance profile shown in Figure 3.  

The desired profiles are not fully recovered – an area of false significance has appeared near 

the telomere of chromosome IV that cannot be accounted for. As well as that, the strength of 

association (judged by the height of the peak) has slightly decreased, particularly on 

chromosome IV. This has an implication for the power of detection of smaller-effect QTL. 

Nevertheless, it is clear that the results are quite an improvement over those when the raw 

dosage scores were used (Figure 2.a). The effect of order of application of genotype 

reconstruction functions (so using ‘0’ entries first or ‘1’ entries first) is shown in Appendix II 
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for this particular example. It appears that the power decreases and the results disimprove if 

the ‘0’ information is applied last. For the rest of this report, applying the ‘1’ information last 

(as shown in Figure 3.b above) was the approach taken. This and other related points are dealt 

with to a greater extent in the discussion section §4.2. 

 

3.3. Effect of additivity, dominance and QTL segregation 
A simulation was run to determine the effect of QTL mode of action and segregation on the 

detectability of the QTL, producing results that were broadly consistent with those expected. 

In a regression approach to QTL mapping, a higher level of significance results when a larger 

amount of variance in the phenotypic data can be explained by the variables in the model. For 

example, when the gene action is purely dominant, all offspring which have at least one dose 

of the ‘+’ allele will enjoy the same phenotypic advantage as any other with that allele. This 

results in only two groups: those with the ‘+’ allele and those without. Depending on the 

parental configurations (so whether the QTL is SxN or DxD for example), we expect a certain 

segregation among the offspring which results in a different genetic variance associated with 

that loci. The size of this variance has a direct impact on our ability to detect the QTL. In 

contrast, at an additive locus the possibilities for intermediate values increases the number of 

groups segregating in the offspring for most QTL segregations, leading to higher associated 

variances. The expected variances based on different QTL segregation patterns and gene 

actions are given in Appendix III.  

The impact of QTL segregation on the ability to detect a QTL was investigated (c.f. §2.6). For 

now this was taken as the magnitude of the peak LOP score near that locus (the topic of 

power of detection is treated separately in §3.4). If we compare the resulting peak LOP scores 

it is clear that variance plays at least as important a role as effect size in modulating our 

ability to detect a QTL. Consider Figure 4.a where a major dominant QTL (effect size = 25) is 

located on chromosome I and a minor additive DxN QTL (effect size = 5) is located on 

chromosome II. It should be noted that the legend and colour scheme refer to the QTL 

segregation on chromosome I – this is the only factor that varies in this data. 

It is immediately obvious that we are unable to detect a dominant QTL for any of the 

segregations which have a triplex or quadruplex parent (since all offspring will inherit at least 

one of the ‘+’ alleles which is enough to have full expression of the gene effect). In the 

situations where we can detect the dominant QTL, some of the results are not easy to account 

for based on a consideration of the expected variance. For example, in the case where QTL1 

is dominant and DxD (effect size 25) and QTL2 is additive and DxN (effect size 5), the 

expected variances (referring Appendix III) due to each of the loci are: 

  
  

    

    
          and      

  
  

 
     . 
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In other words, we expect a bigger variance component due to the dominant locus and thus a 

more significant association. However, we see from Figure 4.a that this wasn’t the case – the 

additive QTL had on average a higher power of detection. It must be remembered though that 

there is a difference between the expected variance and the actual variance. The proportion of 

offspring expected to inherit 0000 in a DxD situation is    ⁄ . With a mapping population of 

150, that equates to four individuals. It is quite possible that fewer than four individuals 

inherited the 0000 configuration, thus reducing the variance due to that locus and the power of 
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b. QTL(1) = Additive       

Figure 4. Comparison between the peak LOP score in a two QTL scenario with a major QTL on 

chromosome I and a minor QTL on chromosome II:  a. when QTL on chromosome I is dominant, b. when 

QTL on chromosome I is additive. 

Note: Segregation key refers to the segregation of the QTL on chr. I only. The QTL on chromosome II was fixed at 

DxN (additive).  
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detection. Although Figure 4 is the result of averaging the effects over all different 

permutations of a QTL segregation (in the DxD case there are 36 such permutations), a much 

larger simulation study may have resulted in these fluctuations averaging out (but this needs 

to be verified).  

In the second scenario (Figure 4.b) when both QTL have additive effect there is almost no 

power to detect the minor QTL on chromosome II. The only exception to this occurs when the 

QTL on chromosome I is QxN, with no segregation in the offspring.  

However, it is unlikely that major-effect QTL would be so treated, since the advantages of 

including significant markers as cofactors in a model are well-established (Jansen, 1993; 

Zeng, 1993). There wasn’t time to implement an ‘analysis of covariance’-like approach 

although this would appear to be a good idea even from these preliminary results. 

 

3.3.1. Relationship between genetic variance and peak LOP 

The relationship between the genetic variance due to a QTL and the significance value that 

results from a QTL analysis using the GP model was investigated further. The results were 

slightly more difficult to interpret however, and raise some interesting questions of their own. 

It is possible to assign QTL-like effects to any marker position in a simulation study by 

determining the expected phenotypic values in the offspring (assuming a certain heritability) 

if that marker co-locates with a QTL. This was done for a dense marker-set and an F1 

population of 200 individuals with 25 markers of each of the five segregation categories 

(SxN, DxN, SxS, DxS and DxD) randomly shuffled, so with 125 markers every 0.8cM along 

the chromosome. At each marker position in turn, a value (+10) was assigned to the ‘+’ allele 

for that locus and a QTL analysis was performed using the GP model (with full homologue 

identity information). The QTL itself was excluded each time so that the peak LOP score was 

recorded from a nearby marker (usually flanking although not always). 

The results were somewhat intriguing (Figure 5), with two things worth noting initially. In the 

case of a dominant QTL there appears to be a linear relationship between the genetic variance 

and the statistical significance for all segregations but SxN, where four groups emerge. These 

four groups also appear in the case of additivity and also display multiple linearity, although 

for the highest group it appears that significance is independent of variance. Indeed, the two 

graphs could be joined together, since in the SxN case the variance is the same under both 

additive and dominant gene action. The spread of actual variances in the SxN case is also the 

smallest, due to the fact that there are only two groups segregating in the offspring. The slopes 

of the lines between the two graphs do not appear to be equal – with a slope of approximately 

2.5 in the dominant case (Figure 5.a) and 0.9 in the additive cases (Figure 5.b). 

When the process was repeated the same pattern emerged, suggesting that this is a real effect 

and not a peculiarity of a particular simulation. The exercise was then performed using a 

simulation where recombination was supressed (all the markers and potential QTL being at 

the same position). It was found that all data-points in the four bands migrated to the highest 

band, but the linear band in the dominant scenario was unaffected (Appendix IV).  
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Figure 6. Plot of the variance associated with an additive locus where the effect of the major 

allele (a2) varies in comparison to the minor allele (a1). Maximum variance is realised at loci 

where the difference in effect size of the two alleles (a1 – a2) is greatest. 

  

3.3.2. Impact of multiple alleles at a locus 

Another aspect that was considered was the impact of multiple allelic effects at a locus. SNP 

markers are chosen to be bi-allelic (to simplify the fluorescence labelling and calling). 

However, when groups of SNPs are considered together as a block they may describe 

haplotypes with more than two combinations. One of the challenges and opportunities of QTL 

mapping in polyploids is the extra allelic diversity that they may offer, which may be 

associated with a particular (SNP) haplotype.  

 

 

 

 

 

 

 

 

 

Figure 5.  Investigation of the relationship between genetic variance and significance using the GP 

model for  a. a dominant QTL, b. an additive QTL (of effect size 10). 

Note: Results based on a single chromosome with markers evenly-spaced at 0.8cM. F1 = 200 and h
2
 = 0.75 

a. b. 
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Figure 7. Power of detection of additive-effect QTL versus heritability, for different numbers of QTL, 

F1 mapping population sizes (Pop. nr.) and flanking marker distances (Dist.).  

Note: The experiment-wise error rate was controlled at α = 0.05 by permutation tests with 1000 permutations. 

All of the simulations of QTL in this report assume that they are bi-allelic and that one of the 

alleles confers an effect and the other none. The greatest variance results when the difference 

between the effect sizes of the two alleles is greatest – so assuming non-negative effects, the 

case where the ‘-’ allele confers no benefit (Figure 6).  

However, at a QTL locus there can be up to eight different alleles present in an F1 mapping 

population. These may combine in 36 different ways in the F1 offspring. If we know the 

relative contribution of all eight alleles (unlikely in reality, but possible through simulation) 

we can easily determine what the expected variance due to that locus is in a mapping 

population. With 36 classes, we require a relatively large F1 population so that all of the 

classes will tend to be proportionately represented. A short simulation was run using eight 

additive effect sizes of (0, 5, 10, ... , 30, 35). Four of these values were randomly assigned to 

Parent 1 and four to Parent 2, and the expected variance in the offspring was determined. This 

procedure was repeated 1 x 10
6
 times, and a histogram of the resulting genetic variances was 

produced. It can be seen that with an 8-allele QTL, there are a very large number of possible 

variances associated with the locus if all effects are assumed to be additive (c.f. Appendix V 

for the plot). In a single mapping population only one of these bars is relevant of course, but it 

is worth noting nonetheless if considering models which allow for up to eight different alleles 

at a QTL. 

3.4. QTL effect size and heritabilities 
It was noted in the previous section that the effect size of a QTL is only part of the picture. 

The genetic variance associated with different segregation patterns at a locus plays an equally 

important role in determining the power of QTL detection. Therefore, it might make more 

sense to model QTL sizes by the amount of genetic variance they explain (indeed this is often 
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the approach used in simulation studies). A simple way to do this is to simulate various 

numbers of QTL of equal size so that the proportion of genetic variance explained by each 

individual QTL is varied.  

A reasonably high heritability is crucial for the detection of QTL. At low heritabilities, most 

of the phenotypic variance will be due to random environmental factors and thus the strength 

of association between a QTL and the phenotypes will be drowned out by experimental noise. 

From a breeding perspective heritabilities are of central importance since they determine the 

amount of (additive) genetic variance that may be fixed through selection (Acquaah, 2012). 

The power to detect additive QTL under different heritabilities was derived through 

simulation, for three population sizes (100, 250 and 500 F1 individuals) and two closest 

flanking marker distances (10cM and 2cM). The analyses were performed by either assuming 

3 QTL or 6 QTL of equal effect (Figure 7, left and right panels). The results when the 

experiment-wise type I error rate α was set at 0.2 are provided in Appendix VI. The 

simulations were run with 1000 repetitions for each combination of experimental conditions, 

for 50 linkage groups with QTL randomly assigned to a number of these groups (with a 

maximum of one QTL per linkage group, so unlinked QTL). The GP model was used using 

the full parental homologue identity information. Therefore, the results represent the best 

possible scenario – a less than 100% accuracy in the genotype probability predictions would 

be expected to affect the power downwards (needs to be verified). It would have been 

interesting to compare the power estimates when reconstructed probabilities were used but 

this would have taken an inordinate amount of computing time. 

The topic of significance testing and threshold setting will be dealt with in the next section 

(§3.5) – for now, it will just be noted that an experiment-wise threshold was set using a 

permutation test with N=1000 permutations. 

We can see that in the 3 QTL case where the heritability is 0.5 and the closest flanking marker 

to every QTL is 10cM, the power of detection ranges from 25.7% when F1 = 100 individuals, 

to 92.5% with 250 individuals and 100% with 500 individuals. With 3 QTL and a heritability 

of 0.5 each QTL explains 16.67% of the phenotypic variance. In the 6 QTL case with 

       each QTL explains 8.33% of the phenotypic variance. With 10cM between the QTL 

and the flanking markers, the power estimates become 5.6% when F1 = 100, 41.3% when F1 

= 250 and 90.5% when F1 = 500 individuals.  

Increasing the significance threshold by allowing a type I error rate of 0.2 had the effect of 

slightly raising these figures (e.g. in the last estimate for F1=500 individuals and a distance of 

10cM to the nearest marker, the power to detect a QTL that explains 8.33% of the variance 

was increased from 90.5% to 96.8%) 
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Figure 9. Power of detection of additive-effect QTL versus heritability using the dosage model, for 

different numbers of QTL, F1 mapping population sizes (Pop. nr.) & flanking marker distances (Dist.)  

Note: The experiment-wise error rate was controlled at α = 0.05 by permutation tests with 1000 permutations. 

Figure 8. Distribution of the (maximum experiment-wise) test 

statistic from 10,000 permutations of random trait values using 

GP model and Dosage model. Shaded regions represent 5% tail. 

3.4.1. Power using the Dosage model 

The same approach was taken with 

the Dosage model for an additive 

QTL using α = 0.05. 

This model is clearly inferior to the 

GP model (Figure 9). In particular, 

it was noted that very significant F-

values were produced during the 

permutation of random phenotypic 

data, resulting in high thresholds: ~ 

13 in comparison to ~ 4 for the GP 

model (Figure 8). The power to 

detect true QTL was thus 

significantly diminished (Figure 9).  

Apart from the drastic reduction in 

power, the power curves appear to 

fluctuate, suggesting that many 

QTL produced test statistics may have been close to the detection threshold of 12 or 13 and 

therefore lost due to the high stringency imposed through α = 0.05. The results for α = 0.2 are 

included in Appendix VI for reference.  
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3.5. Setting significance thresholds 
As outlined in the introduction (§1.13), there are quite a number of different methods for 

setting significance thresholds, but the method that was adopted for this project was the 

permutation test (Churchill and Doerge, 1994). The main characteristics have already been 

highlighted: a permutation test is a non-parametric test which is distribution-free, very simple 

to apply and has been shown to provide good estimates, but may be computationally-

demanding. Two particular topics were investigated in the course of this project:  

1. How many permutations are needed; 

2. What is the distribution of the test statistics. 

3.5.1. Number of permutations (N) 

One of the more important questions in permutation testing is “How much is enough?”. The 

ability to answer this question has implications both on the feasibility of using permutation 

tests in an experiment as well as the number of QTL versus false positives that are likely to be 

detected. The general procedure in conducting a permutation test is to permute the trait values 

and randomly assign them to individuals, thus breaking the association between QTL and 

phenotypes while retaining the mean and variance of the phenotypic data. An alternative is to 

calculate the mean and variance of the phenotypic data and generate a random sample of 

phenotypes from a Normal distribution with this mean and variance. Of course, the latter is 

assuming normality of the data which the former does not. Both were tested and compared to 

see what difference this made, if any.  

The number of permutations that were needed before the critical test statistic stabilised in a 

single run of 500,000 permutations was examined (Figure 10). There are a few features worth 

pointing out. Firstly, it appears that the Fcrit values using the original data were in general 

higher than the stable estimate (Fcrit = 3.50) whereas the opposite was the case when random 

phenotypic data was used. Both of these tended towards the same stable value of Fcrit 

eventually, which occurred after 50,000 – 55,000 permutations. There was very little 

difference in the results for 50,000 versus 500,000 permutations, although 50,000 is still a 

Figure 10. Behaviour of 95-percentile of the F-statistic as the number of permutations increases. 
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Figure 11. Empirical distribution of the critical F-values from 500,000 permutations with a fitted 

log-normal distribution shown (dashed line). 

great deal larger than the N = 1000 permutation recommended for estimating the 95-

percentile. It is also interesting that the curves for the data with and without QTL present 

converge towards the stable estimate at more or less exactly the same value of N. It is not true 

that the curves always tend towards the asymptote from different directions – when the same 

approach was taken using the 99-percentile, both curves approached the asymptote from 

above, although not as smoothly (Appendix VIII). 

One may ask – does this actually matter? The range of values of Fcrit for the number of 

permutations N between 1000 and 500,000 was (3.498, 3.583) for this particular simulated 

data-set, with a final value of approximately 3.5 (for the case ‘With QTL’). If N=1000 

permutations were used as recommended (Churchill and Doerge, 1994), the critical test 

statistic would have been 0.08 higher than the stable estimate. The question then is – how 

good is good enough? If we are willing to accept an inaccuracy of 2.3% above the stable 

value, then we have gained a big efficiency over running to 50,000 permutations (Figure 8). 

This topic is discussed further in the discussion section (§4.4) with some recommendations 

for further work. 

3.5.2. Distribution of the test statistic 

It would also be useful to know the distribution of the maximum F-values, particularly if 

N=1000 permutations are to be used, so that we may assign levels of significance smaller than 

p=0.001. Given that we are looking at a set of F-values, it was first assumed that these values 

might be F-distributed under the null hypothesis. However, by simulation it was found that 

the peak of the probability density function appeared to lie somewhere close to 2. It can be 

shown analytically that the peak of any F-distribution cannot exceed 1 (Appendix IX). Van 

Ooijen (1999) remarked that “the distribution of the maximum of a series of LOD scores 

cannot be determined in a straightforward manner”. However, there are some good fitting 

routines that have been since implemented in R that may assist us in this (Delignette-Muller et 

al., 2014). Using the decision tree provided in a quick guide to distribution fitting 

(Damodaran, 2007), it was noted that the distribution followed the path: 

Continuous data → Asymmetric → Outliers mostly positive → Lognormal / Gamma / 

Weibull distribution. 
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Figure 12. Average deviation from true probability over 100 replicated marker sets 

 

Using the maximum likelihood approach, a log-normal distribution was fitted to the data, 

producing an extremely good fit (Figure 11) with a log mean estimate of 0.7704 ± 0.0004 and 

a log standard deviation of 0.2887 ± 0.0003. It therefore appears that for this data-set at least, 

the maximum test statistics follow a log-normal distribution. 

3.6. Usefulness of different marker categories 
Different marker categories provide different amounts of information, and this is especially 

true near a QTL where issues such as linkage in coupling or repulsion are important. As part 

of the process of reconstructing genotype probabilities, we would like some measure of the 

relative usefulness of different marker categories in correctly predicting these probabilities. 

As mentioned in the Materials and Methods section (§2.9), a measure for the accuracy of the 

genotypic prediction was defined as the average of the absolute deviations from the true 

probabilities. This quantity (referred to as the mean deviation, δ) was determined when the 

marker set consisted of only one type of marker for each of the five marker categories already 

introduced, as well as a sixth marker set where equal numbers of these five were randomly 

mixed together.  

Running simulations over 100 randomly-generated marker sets, it was found that on average 

the best markers to use (for the method described in §2.5) to reconstruct the genotype 

probabilities were Duplex x Nulliplex markers (Figure 12). 

Tukey’s test was used to test the significance of the differences between the means for each 

marker category (Table 5). It was found that DxN markers performed significantly better than 
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Table 6. Expected frequency of base probabilities in Xi arrays for different marker types 

Figure 13. Mean deviations from true homologue identities (100 replications) versus 

position on the chromosome. Note: simulated population size of 150 individuals. 

all other groups, whereas DxD markers performed significantly worse. The usefulness of each 

marker category can also be directly inferred by consideration of the number of ‘0’ and ‘1’ 

entries expected in the initial assignment of genotype probabilities based on the raw dosage 

information (Table 6). With a more sophisticated method of reconstructing the genotype 

probabilities, it is likely that the mean deviation estimates could be reduced further (c.f. 

Discussion §4.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              

  No DxN No SxS No SxN All No DxS No DxD 

No DxN 0.000 

     No SxS 0.013 0.000 

  

Tukey's W:  0.003 

No SxN 0.012 -0.001 0.000 

   All 0.023 0.009 0.010 0.000 

  No DxS 0.033 0.019 0.020 0.010 0.000 

 No DxD 0.105 0.091 0.092 0.082 0.072 0.000 
              

Marker segregation Proportion of ‘0’ or ‘1’ probs. assigned % of ‘0’ or ‘1’ probs. 

   
Duplex - Nulliplex 1/6 16.67% 

Simplex - Nulliplex 1/8 12.5% 

Simplex - Simplex 1/8 12.5% 

Duplex - Simplex 5/48 10.42% 

Duplex - Duplex 1/18 5.56% 
      

Table 5. Differences between mean deviations per marker category, 

showing Tukey’s yardstick. Note: significant differences are highlighted in red. 
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a. b. 

Figure 14. Peak LOP scores v’s marker density: a. Chm. I with single additive SxN QTL at centre, 

b. Chm. II, with no QTL present. h2 = 0.6. Note: SxN, SxS and DxN markers make up the marker sets. 

It is also interesting to consider how this deviation measure varies with position along the 

chromosome. To this end, the simulations were repeated, but rather than estimating a single 

mean over all marker positions, the means per position were derived. This was possible 

because for each replication, random marker configurations were assigned to a grid of 

positions along 2 chromosomes, allowing comparison over the 100 replications (Figure 13). 

As we can clearly see for all marker categories, there is a sharp drop in the accuracy of 

prediction towards the ends of the chromosomes. For example in the case of DxD markers 

(dark blue line) on chromosome I, the mean deviation at the telomeres was 0.2467, almost 

twice the mean deviation at the centre (0.127). This reflects the fact that at the centre of the 

chromosome there is essentially twice as much information (coming from both sides) as there 

is at the telomeres. Possible improvements in the strategy to reconstruct genotype 

probabilities will be dealt with in more depth in the discussion (§4.3). 

  

3.7. Effect of marker density 
Marker density is a somewhat misleading term, since we may have a ‘dense marker map’ and 

yet still have large gaps where no markers are present. However, the term is loosely employed 

here to refer to the number of markers per cM with the possibility of gaps allowed. Two 

investigations were performed to investigate the effect of marker density on our ability to 

apply the techniques already outlined – the effect of marker density on the size of the peak 

LOP score when a QTL is present, and the effect of marker density on the accuracy of the 

reconstructed genotype probabilities (which will in turn have an impact on the LOP score, as 

higher accuracy will result in a greater amount of variance being explained by markers near 

the QTL). 

3.7.1. Effect on peak LOP score 

For the first of these approaches, a very dense SNP map was simulated as already described in 

the Materials and Methods (§2.10), with almost 200 markers / chromosome and a single QTL 

on chromosome I. Markers were removed in multiples of 5 (independent of previous 

35



selections) and the peak LOP score was determined through regression on the reconstructed 

genotype probabilities. 

We can see that in the case of chromosome I, there is a gradual and steady increase in the 

peak LOP score as the numbers of markers increase (Figure 14). The rate of increase appears 

to be maximal in the range 0 – 60 markers, suggesting that most gains in QTL power and 

precision will occur when marker numbers are increased within in this range. On chromosome 

II it is reassuring to see that as marker density increases there is no corresponding increase in 

the peak LOP score which implies that the false positive rate does not increase despite the 

increased numbers of markers (and hence increase in the number of separate tests that are 

performed). It should be remembered that this data was generated from a single ultra-dense 

marker set with markers being removed from the full set rather than added. To gain further 

insight into the relationship between marker density and the accuracy of QTL detection a 

second, slightly different approach was adopted. 

 

3.7.2. Effect on genotype probability estimates 

As already described in §2.10, different marker densities were simulated and the mean 

deviation in the genotype probabilities was calculated from 100 replicated marker sets (Figure 

15). It was found that with higher numbers of markers (so with a smaller inter-marker 

distance), the mean deviation from the true genotype probabilities decreases. This is not 

surprising, and confirms what was seen in Figure 14. Indeed, there appears to be a similarity 

in the shape of the curves in both figures. Using the data for SxS markers as an example, it 

was found that if marker numbers were log-transformed there was a linear relationship 

between the deviation and the log of the marker numbers (R
2
 = 0.994).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. a. Mean deviation from true genotype probabilities (for different marker categories) versus number 

of markers per Morgan. b. Mean deviation from true probabilities versus inter-marker distance. 

Note: Error bars in DxD case represent standard deviations from 100 replicated marker sets over 2 chromosomes. Other 

error bars are omitted for clarity, but are of comparable size 

b. a. 
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The resulting linear equation (in the SxS case) was 

                       

where N is the number of markers.  

A series of other possible functions were tested but this produced the best fit to the data. This 

equation predicts that the mean deviation should equal zero when N = 198. The same 

approach was used for the other marker types, with the predicted numbers of markers needed 

before the genotype probabilities tend to their true values is given in Table 7. 

 

 

These figures should be taken merely as a general guide to the required marker densities 

needed to accurately reconstruct the genotype probabilities. In reality, it is unlikely that a 

precisely zero deviation will ever be reached using the methods described, but that we can get 

“asymptotically” close with these numbers of markers per Morgan. This will be further 

explored in the Discussion (§4.5). 

 

3.8. Effect of mapping population size 

3.8.1. Effect on power of detection 

Knowing the correct population size to use is of paramount importance when designing an 

experiment. In an ideal situation, the researcher should know beforehand how many 

individuals are needed, given prior information on the expected heritability of the trait of 

interest, the size of the QTL and the density of the marker map. Of course many of these 

parameters will be unknown. Increasing population size is one way of increasing the power to 

detect QTL, but comes at a cost. Efficient experiments should take this into account in order 

to maximise the benefits from a mapping study. 

Previously (§3.4) the results of power simulations where heritability was the main variable 

were presented. In this section, the size of the mapping population was used as the main 

varying factor. Given the time it takes to run multiple simulations, two heritabilities were 

chosen (h
2
 = 0.2 and h

2
 = 0.7) as well as two sets of QTL number (3 and 6 equally-sized 

unlinked QTL). For example, in the situation where h
2 

= 0.2 and #QTL = 6, then 20% of the 

Marker category Regression line R
2
 x-intercept N0 / M 

S x N y = -0.101 loge(N) + 0.534 0.994 5.283 197 

S x S y = -0.101 loge(N) + 0.532 0.994 5.288 198 

D x N y = -0.095 loge(N) + 0.49 0.984 5.145 172 

D x S y = -0.109 loge(N) + 0.59 0.996 5.429 228 

D x D y = -0.107 loge(N) + 0.665 0.995 6.196 491 

Table 7. Predicted number of markers per Morgan needed to accurately reconstruct genotype 

probabilities using the methods described in this report 
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phenotypic variance is explained by 6 QTL in which case each QTL contributes 3.33% to the 

phenotypic variance. As before, markers were assigned either to both ends of each linkage 

group (of 20cM) or one of the markers was at the end and one closer to the centromere (2cM 

from the centre). The simulations were run with 1000 repetitions for sets of 50 linkage groups 

with the QTL randomly assigned to the centre of a number of these groups (unlinked QTL).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As before, we can see that as the number of individuals in the mapping population is 

increased, there is a steady increase in the power of QTL detection. Some slight deviations 

were noted, although the shapes of the curves are pretty clear. Power curves were also 

determined for additive QTL when α = 0.05 and for dominant QTL when α = 0.05 (Appendix 

VII). 

 

3.8.2. Effect on peak LOP score 

It is also of interest to know how the peak LOP scores are affected by the size of the mapping 

population. Intuitively, one could imagine that as the size of the mapping population increases 

so too should the height of the peak in LOP values, since there is greater support (and more 

available degrees of freedom) from the larger population. 

Figure 16. Power curves for additive SxN QTL versus size of the mapping population. Each data-point 

represent the average proportion of QTL detected over 1000 replicated simulations. 

Note: Significance thresholds were set by 1000 permutations of random trait values and selecting the 80-percentile 

(α = 0.2) of maximum test statistics. cM in the legend refers to the distance between QTL and its closest marker. 

38



According to this simulation the size of a QTL peak increases linearly as a function of 

population size (Figure 17). It may be interesting to confirm this result for other QTL 

segregation types or heritabilities, but it is expected the results would be similar across 

different experimental conditions. 

 

 

 

 

 

 

 

 

 

 

Figure 17. Peak LOP score across all chromosomes versus size of the mapping population.  

Note: Each data-point represent the average from 1000 replicate simulation (error bars show standard 

deviation). Three SxN QTL of equal additive effect were randomly assigned to one of 10 chromosomes in 

each run, singly (unlinked QTL). h
2
 = 0.2 
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4. Discussion 
Although the methods used in this project were relatively simplistic, some insights were still 

gained into how one might tackle the question of QTL analysis in a polyploid. More work 

needs to be done in this area but for now some of the points raised during the previous 

sections will be dealt with. 

4.1. Choice of model 
When two single marker approaches were compared it was found that the results using the GP 

model (regressing the trait values on the genotype probabilities) were superior to those using a 

regression on the raw marker dosages. This superiority was evident in both the power of QTL 

detection as well as the ability to locate a QTL even when nearby markers are not linked in 

coupling phase. Indeed, one of the major advantages of using the GP model is that 

information contained in coupling-phase markers may be extended to other positions, 

increasing the likelihood of picking up QTL. This is not the case with a simple regression on 

marker dosages, where markers act alone in the analysis and only prove significant if they 

happen to be both nearby and linked in coupling phase (c.f. Figure 2.a, §3.1). 

It should be pointed out that in extreme cases where one of the markers is closely flanking a 

QTL and is in coupling phase, the level of significance can be slightly higher using the 

Dosage model rather than the GP model (because of the extra degrees of freedom available – 

fewer parameters to estimate with the simpler model). It is also very fast to implement, taking 

a fraction of the time it takes to implement a more complex model such as the GP model 

(particularly so if the haplotype identities must first be reconstructed). It might therefore be a 

good idea to run a simple regression using the marker dosages in order to check whether any 

major QTL happen to be closely linked in coupling phase to a marker. These markers might 

then be used as covariates in a more sophisticated model. Indeed, this was the first step in the 

approach taken by Bradshaw et al. (2004). 

Hackett et al. (2013) used an iterative weighted regression on the genotype probabilities, with 

much of the methodology having already been developed in an earlier paper (Hackett et al., 

2001) and subsequently applied to real data for mapping resistance QTL to late blight in 

potato (Bradshaw et al., 2004). Given the more advanced techniques employed in 

reconstructing genotype probabilities with a hidden Markov model and a weighted regression, 

it is likely that their results are superior to what was achieved during this project.  

It will be interesting to see what further developments take place in this area, particularly 

given that regression approaches have tended to be replaced by maximum likelihood methods 

in diploid analyses. Maximum likelihood estimates may be considered desirable for several 

reasons, including invariance of the maximum likelihood function (i.e. the MLE of f (θ) is 

given by f (MLE(θ))) as well as the fact that the asymptotic distribution of MLE(θ) can be 

derived (Chen, 2014). Maximum likelihood estimates were used by Hackett et al. (2013) in 

their map construction for estimation of recombination fractions and LOD scores but not for 

QTL mapping itself. The use of maximum likelihood is not considered better per se (although 

it has certain attractive properties) but it would be interesting nonetheless to compare more 
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models than just the basic ones implemented in this project. Moving from a single marker 

analysis to multiple markers, or applying composite interval mapping (Zeng, 1993) or 

multiple QTL mapping (Jansen, 1993) might also be worth investigating. 

 

4.2. Power study analysis 
The design of the power study was adapted from one presented by Beavis in the book 

‘Molecular Dissection of Complex Traits’ (1998) in a chapter about power, precision and 

accuracy in QTL mapping. By design, all simulated QTL were unlinked to other QTL, which 

made the analysis more straightforward. Another possible approach might have been to 

simulate fewer linkage groups with more markers on each, closer to the situation in real life. 

If this approach were taken, the calculation of power would have to be changed, counting the 

number of significant markers within a defined distance of the QTL position. How large 

should this window be? Would power be calculated as the fraction of significant markers 

within QTL windows? Would a significant marker that fell just outside the window be 

considered a false positive? When such questions arise, the approach of Beavis does appear to 

have its advantages given that windows are created (±10cM from the QTL when it exists) as a 

separate linkage group with no linkage beyond its boundaries. Thus the approach taken was 

clear, simple, and avoided the possible issues just raised. In reality however, these issues are 

at play and cannot be so easily evaded. 

Another approach taken in power studies has been to use the asymptotic distribution of the 

test statistic to estimate the power. When H0 is false (so, when a QTL is linked to the position 

being tested) the test statistic follows a non-central F-distribution with p-1 and p(n-1) degrees 

of freedom (Cohen, 1988). The power of a test to detect the alternative hypothesis (presence 

of a QTL) is equal to the area under the non-central F-distribution to the right of the critical 

value for the test (Cohen, 1988). This approach has been implemented in R in the pwr 

package (Champely, 2009).  

In QTL analysis multiple tests are performed. There are thus multiple asymptotic F-

distributions to consider. It was assumed that the closest flanking marker would provide the 

maximum power of QTL detection - preliminary tests were carried out using this approach. 

However, a direct comparison with Beavis’ approach was not feasible on the PBR cluster. 

Packages such as pwr need to be installed before they can be used, making them unavailable 

on the cluster unless they are installed there first. Therefore, I am not in a position to say 

whether the derived power estimates (by simulation) and those using closed formulae are 

similar. As was pointed out by Beavis, analytic methods rely on knowledge of the asymptotic 

distribution of the test statistic and are applicable when t and F statistics are available. Other 

models (such as interval mapping or multiple QTL model methods) do not have known 

distributions; therefore Monte Carlo simulations are more appropriate for these approaches 

(Beavis, 1998). For this project, F tests were available and therefore analytical power 

estimates could have been applied. It would have been an interesting check but was not 

pursued in the end. 
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Looking now to the results from the power simulations (§3.4) it is clear that the size of the 

mapping population and the QTL effect size (in terms of % total variance explained) are both 

very important for QTL detection. QTL effect size is essentially out of the experimenter’s 

control, although suitable choice of parents (contrasting for the traits of interest) can make a 

big difference in this. By carefully controlling the experimental conditions, the genotypic 

variance may explain a greater proportion of the phenotypic variation (by reducing the level 

of environmental noise) which can also amplify the power. Probably the simplest way to gain 

extra power is to add more individuals in the mapping population – although after a certain 

point this will be neither economically nor practically feasible.  

It is worth pointing out that the results from these power simulations do not compare 

favourably with the power estimates derived by Beavis for a diploid. Using a significance 

threshold of 0.25, Beavis estimated that with an F2 population of 100, an additive QTL that 

explained 2.375% of the total variance would be detected with a power of 6%, rising to 46% 

when 500 individuals were used (Beavis, 1998). In contrast, using a significance threshold of 

0.2, I estimated that with an F1 population of 100, an additive QTL that explained 2.5% of the 

total variance would be detected with a power of 2%, rising to 25% when 500 individuals 

were used. Beavis used likelihood-based interval-mapping in his approach which, together 

with a slightly higher significance threshold, probably accounts for this difference. This 

should serve as some motivation for looking at other QTL models which might result in some 

gain in power. 

 

4.3. Reconstruction of genotype probabilities 
It was noted in the results section §3.2 that the method for reconstructing genotype 

probabilities used throughout this project was a rather basic first attempt and could be 

improved upon considerably. To expand on this topic slightly, there are a few points to 

consider. The first is that no attempt was made to recover information from intermediate 

marker dosages. The problem with intermediate dosages in a tetraploid (or any higher ploidy 

level) is that it is impossible to predict the identity of the ‘+’ allele using dosage information 

at the marker position alone. For instance, in the case of a SxS marker where an individual 

has a dosage of ‘1’ we know that this is the result of inheriting one of the ‘+’ alleles that both 

parents carry, but we are unable to say which one. The probability of the alleles coming from 

either parent is 0.5 which corresponds to having no information at all. Therefore we would 

like to be able to exploit the information contained in intermediate dosages in order to 

increase our predictive power. 

The importance of intermediate dosages is also highlighted by their frequency – for example 

in the case of a Simplex x Simplex marker, one half of all progeny are expected to inherit one 

‘+’ allele. One may imagine probabilistic algorithms that locate the presence of markers 

which confirm particular homologues and then weight the possible presence of the same 

homologue at a second (intermediate dosage) position by its distance. The method could 

become progressively refined through a sequence of iterations, where weights are adjusted 

accordingly. The approach taken in this project merely located the positions of homologue 

certainty and used this information alone rather than trying to use it to improve the estimates 
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at nearby intermediate dosage positions. In this were done, a network of homologue 

certainties might be built up which with sufficient density might be enough to proceed with in 

the QTL analysis. 

One of the many shortcomings of my approach is that different results are expected depending 

on the order of application of the Kosambi-0 and Kosambi-1 functions (as defined in §2.5). 

The reason that the results are order-dependent is a consequence of the algorithm itself, 

relating to the domain of each function. This is particularly problematic near recombination 

sites where discontinuities appear in the string of parental homologue identities (i.e. non-

smooth boundaries between ‘0’ and ‘1’ probabilities, and vice versa). An entry in the Xi 

probability matrix is only available to be updated by the Kosambi-1 function if it is in [0.5,1). 

Therefore, if that entry has already been updated by the Kosambi-0 function it will have some 

value in (0,0.5) and will not be available to the Kosambi-1 function, even if the probability 

assignment of the Kosambi-1 function would have been more appropriate.  

To illustrate this problem with the data-set used in §3.1 and §3.2, the normal order (applying 

the Kosambi-0 function first) was reversed and instead the Kosambi-1 function was first 

applied followed by Kosambi-0. As can be seen, the results were different (Appendix II). It 

appears in this example at least that it is better to apply the Kosambi-1 function last, as was 

done throughout. One possibility to overcome this issue might be to use inter-marker 

distances as the basis for applying one or the other function. Rather than progressing from the 

first marker position to the last, it would make more sense to first organise the markers 

according to their proximity to other markers and apply the relevant function (Kosambi-1 or 

Kosambi-0) to marker pairs where the distance is smallest and progress along the list of 

paired distances. However, it would be a pity not to use the intermediate dosage information 

as previously advocated, in which case the Kosambi functions could be used to provide 

probability weights as discussed. 

The application of a hidden Markov model to the problem represents a good approach at 

reconstructing the genotypes at the marker positions, described in Hackett et al. (2013). 

Hidden Markov models were first applied to speech recognition in the early 1970’s and have 

since been applied to a whole range of problems including the identification of CpG islands in 

sequence reads (Durbin et al., 1998). It would be interesting to compare the results for a 

number of different approaches to identify what the optimal strategy is. 

It was also noted that there was a loss of power when the reconstructed genotype probabilities 

were used in comparison to the true probabilities. This is hardly surprising given that there is 

a level of uncertainty introduced in the data when the genotype probabilities are not fully 

known. Indeed, the degree of this uncertainty was already investigated in the results sections 

§3.6 and §3.7 for the approach used here. The precise relationship between the level of 

uncertainty and the power and precision of a QTL analysis was not investigated but could 

have been. R has a built-in function (jitter) which adds a specified amount of noise to data 

(for example). It would be interesting to repeat the power analyses with different levels of 

inaccuracy in the genotype probability data to see the robustness of this model to deviations in 

the homologue identities. 
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4.4. Setting significance thresholds 
In order to derive an experiment-wise threshold for significance it was proposed that trait 

values be shuffled a certain number of times (e.g. N = 1000 times) and each time this is done, 

the maximum F-statistic be recorded to assess the maximum association between the data and 

the trait values that would be expected to occur by chance (Churchill and Doerge, 1994). The 

usual next step is to find (for example) the 95 percentile of these 1000 values and declare F-

values that exceed this number to be significant (at a significance level of 0.05). However, 

there is an inherent limitation to strictly following the prescribed methodology. For example, 

in a permutation test of 10,000 permutations the resulting maximum test statistics are sorted 

according to size. To estimate the significance of an association at a position the test statistic 

is compared to the ordered list from the permutation test. With 10,000 permutations even a 

very significant test statistic will still only have a p-value of 0.0001. We are therefore limited 

in our ability discriminate between different significant loci below this threshold.  

One possible solution (pursued briefly in this report) is to use the results from the permutation 

test to construct an empirical distribution for the test statistic. This would then enable 

comparisons to be made at levels of significance greater than those provided by a list of 1000 

or 10,000 test statistics. When a distribution was fitted to the results of a number of 

permutation tests in the course of this work it appeared that a log-normal distribution provided 

a good fit to the data and that an F-distribution did not (in fact, could not; c.f. Appendix IX). 

According to van Ooijen (1999), it is very difficult to predict the distribution of a collection of 

maximum test statistics. The procedure advocated by Doerge and Churchill (1994) to estimate 

an experiment-wise critical test statistic recorded the maximum test statistics over all marker 

positions for each permutation of the trait values. It is curious to contemplate why these 

values should follow such a distribution.  

Log-normal distributions are an important class of distributions, defined as the distribution of 

a random variable whose logarithm is normally distributed (Crow and Shimizu, 1988). The 

distribution appears in many diverse settings, from the growth of organisms or the size of 

incomes (Crow and Shimizu, 1988) to the number of words written in sentences by G. B. 

Shaw (Weisstein, 2014). It would have been interesting to see whether a log-normal 

distribution could be fitted in all cases or whether the fits obtained during this project were 

circumstantial. Using real data (phenotypic as well as marker data) would be an interesting 

test – although an analytical derivation would in the end be  needed. 

An alternative approach is to work exclusively with the test statistics themselves and create a 

significance profile along the chromosomes from these. In theory there is no problem with 

this approach – it is merely another way of representing the data. When this point was 

investigated it was found that there was a strongly linear relationship between the F-values 

and the –log10(p) values associated with those F-values (assuming an F-distribution under the 

Null hypothesis). In other words, it appears that using F-values or –log10(p) values is 

equivalent; from my investigations there doesn’t seem to be any particular reason why F-

values shouldn’t be used. 
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It was found that there was very little difference between the results obtained when the 

phenotypic values were permuted versus a random sample. This is perhaps unsurprising, as 

environmental noise was generated by sampling from a normal distribution (and so we would 

expect the residuals to be normally-distributed). It would be interesting to compare the results 

using skewed data (perhaps real data) to see whether this is also the case in such situations. 

 

Permutation tests and the choice of N 

The recommendation for the number of permutations that would suffice in a typical QTL 

analysis by the original authors was that the higher the desired degree of significance, the 

higher the number of permutations needed (Churchill and Doerge, 1994). For example, if a 

significance threshold of α = 0.05 is required, N=1000 permutations may be enough, whereas 

at α = 0.01 up to N=10,000 permutations or more could be needed (Churchill and Doerge, 

1994). However, the authors were careful not to specify the numbers required but rather gave 

these figures as indications only. I was interested to see whether something could be said 

about the number of permutations needed for QTL mapping in polyploids as this has 

implications for the power of the QTL study (a very high threshold will result in fewer 

detections, as was demonstrated in §3.4.1). 

The topic of how many times one should permute was indirectly dealt with in a seminal work 

on a more general type of non-parametric test referred to as Monte Carlo procedures (Hope, 

1968). It was shown that the number of permutations (the size of the “reference set”) depends 

on α and the procedure adopted for testing significance (Hope, 1968). Monte Carlo 

procedures, of which permutation tests are one example, are particularly useful when little is 

known about the distribution of the test statistic. If one can make assumptions concerning the 

distribution of the test-statistic there seems little point in applying non-parametric tests in the 

first place (Fisher, 1935). 

It was interesting to observe the behaviour of the significance threshold when higher numbers 

of permutations were used (§3.5.1). In the example given, the value of the significance 

threshold (the 95-percentile) settled to a steady value after approximately 50,000 

permutations. Of course, the data was generated in a single run of 500,000 permutations and 

repeated inspections of subsets of this data generated Figure 11. Therefore the data are not 

independent – there is no suggestion that from multiple simulations 50,000 is the point where 

the value of Fcrit will always converge. However, there is a suggestion that after 1000 

permutations Fcrit had not converged. As was noted in §3.5.1, there remains the question of 

how far one should take convergence if there are only minor fluctuations from the final value 

after 1000 permutations. Do all permutation runs produce the same steady state value of Fcrit? 

We would hope this to be true, otherwise too much stochasticity would be introduced by the 

use of permutation tests. Does the estimate of the ‘true’ Fcrit  get better with increasing 

numbers of permutations (assuming it exists after all possible permutations have been 

exhausted)? This would appear to be assumed, although we would like to check this to be 

sure.  
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If the data used to generate Figure 11 is examined in a different way, we have a ‘random’ 

sample of 500 possible sets of 1000 permutations of the same data (Figure 18).  

 

 

 

 

 

 

 

 

 

 

 

 

 

The values for the 95 percentile appear to be evenly distributed around the steady value that 

was identified previously (~3.5) when 50,000 or more permutations were considered. The 

variance in both cases is approximately 0.005 which is relatively small. Indeed, this variance 

gives some measure of how good a sample of size N is at approximating the ‘true’ value of 

the significance threshold – if this variance is small we can assume that N permutations are 

sufficient. Of course it may not be feasible to estimate this variance when N is very large 

because of the time it would take to produce repetitions of this magnitude. It is more useful to 

consider this variance for smaller N. 

One assumption that has apparently been neglected at times in the consideration of 

Permutation Tests is that the data to be permutated must be exchangeable (Anderson and ter 

Braak, 2003; Churchill and Doerge, 2008). Exchangeable data arises if the treatments are 

randomly allocated to experimental units although it must be assumed in observational studies 

(Anderson and ter Braak, 2003). In the context of QTL mapping we can assume that the 

experiment set-up included randomisation and thus trait values can be fully exchanged. In 

more complex experimental designs which include nested treatment structures the 

consideration of exchangeability is more important. 

It has been proposed that in certain situations, more statistical power may be gained through a 

permutation of residuals rather than a permutation of the raw data itself (Anderson and ter 

Braak, 2003). Permuting residuals of the full model (ter Braak, 1992) or residuals of the 

Figure 18. Alternative representation of the data used previously in Figure 10. 95-percentiles from 

1000 permutations of phenotypic data when a. QTL is present, b. no QTL is present. Horizontal lines 

show the value of the 95 percentile when all data is used together. 

a. b. 
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reduced model (Freedman and Lane, 1983) give approximately the same results, although 

Freedman and Lane’s method was shown to be closest to the conceptually exact test 

(Anderson and Robinson, 2001). For example, in a crossed design with two factors A and B 

and interaction term AB, a permutation test using the residuals of the reduced model had more 

statistical power than permuting the raw data when testing for main effects (Anderson and ter 

Braak, 2003). The main advantage of the exact test is that type I error will be controlled at the 

chosen significance level, although in different simulated scenarios (different error 

distributions) permutation of the residuals did not result in an inflation of the type I error 

(Anderson and ter Braak, 2003).  

Ultimately, what we would like to know is whether permutation tests are fit for purpose for 

the case of QTL analysis in polyploids. One may assume that there is no reason why not, 

since they have been tried and tested in the diploid case for at least 20 years already. From the 

investigations performed here, permutation tests appear to be a good method to use (albeit 

somewhat slow). 

 

4.5. Effect of marker density 
We saw that through simulation we were able to predict the density of markers needed to 

accurately reconstruct the genotype probabilities. It was predicted that even when using only 

DxN markers (the best for this approach) a marker every 0.6cM is required to reach a 

relatively low level of error. This is clearly an unrealistic aspiration. Fewer markers still 

produce good results of course (a DxN marker every 2.5cM also worked well), but the quality 

of prediction increases with 

more markers.  

The predictions for the 

‘optimum’ marker densities per 

marker category were tested by 

simulation, and unsurprisingly 

they did not produce the 

perfect results that were 

tentatively claimed (Figure 19). 

In other words, there was still 

some error in the homologue 

identity probabilities even 

when a saturated marker set 

was used. It is clear that the 

deviation from the true 

homologue identities tends to 

zero as the number of markers 

increased, but only ‘reaches’ 

zero in the limit of very large 

numbers. Transforming the 
Figure 19. Extension of the results shown previously in 

Figure 15.a, where the predicted number of markers N0 to 

achieve zero deviation were used. Zero was not reached. 
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data and fitting a linear function was a shortcut used to see approximately what that large 

number might be in each case – but as an approximate estimate only. It turned out that these 

estimates fell somewhat short. But it is clear that the method used falls far short of what we 

would hope to achieve. This may at least motivate us to develop better methods for genotype 

probability reconstruction as previously discussed. 

 

4.6. The effect of multiple QTL alleles 
The principal reason for using homologue identities (e.g. the GP model) is that it simplifies 

the issue of polyploid inheritance. In a diploid mapping population with two founding parents 

(such as a backcross or RIL population etc.) there can be at most four QTL alleles (A1 and A2 

in parent 1 and A3 and A4 in parent 2) which can produce a maximum of four combinations 

in the offspring. It is often assumed that there are only two alleles present (A or a) which 

simplifies the situation further. QTL in a tetraploid may contain up to eight alleles in a bi-

parental cross, increasing the number of possible combinations in the offspring to 36. 

Including all 36 possible QTL genotypes in a model for the offspring results in too many 

parameters to estimate, leading to a loss of power and poor results. Using genotype 

probabilities instead, an eight-allele QTL is still admissible but now with only eight variable 

parameters to estimate (or six if the boundary conditions that each parent contributes two 

alleles are taken into account; estimation of the mean is common to both approaches). 

It is interesting to speculate that different interactions may occur between QTL alleles in ways 

not anticipated through a simple extension of the diploid concepts of additivity, recessiveness 

and dominance. In the introduction (§1.7) it was mentioned that previous studies have shown 

that the polyploid transcriptome can be influenced in non-additive and non-random ways 

(Leitch and Leitch, 2008). One might therefore ask whether certain combinations of alleles 

may produce a phenotypic effect that cannot be predicted by dissecting the effects of its 

component alleles. If such interactions occur, it may help to explain part of the difficulty in 

breeding at the polyploid level where such favourable allele combinations are less likely to re-

assemble in the offspring by chance. How one might screen for such interactions is an 

interesting issue – perhaps necessitating highly controlled experiments with a set of clonal 

material that differ at a single locus only. From a breeding perspective the most important 

aspect will likely remain the identification of sources of desirable genetic variation and 

combining these in the offspring of a breeding programme.  

 

4.7. Genetic variance and peak LOP 
One unresolved question that still perplexes is what the exact relationship between the genetic 

variance due to a QTL and the significance of the resulting test statistic at a nearby marker is. 

In particular, I did not find an easy answer to why in the case of a fully dominant QTL, the 

genetic variance was proportional to the peak test statistic for all marker categories except for 

SxN markers where the pattern resembled that of the additive case.  

Why do we see a qualitative difference between the results for SxN markers and all other 

marker segregations when the nearby QTL is dominant? What are the four groups that seem 
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to emerge when distance between the marker and QTL or genetic variance in the mapping 

population cannot explain the differences? What is the factor which defines these groups? 

One option was to consider the number of recombination events between the marker and the 

QTL. Indeed, when recombination was repressed completely (in which case the genetic 

distance was zero between markers) the effect disappeared – all markers achieved the highest 

level of significance (c.f. Appendix IV). Nevertheless, the difference between SxN and other 

marker segregations remained in the dominant case. It is also hard to understand how 

recombination could be the source of this pattern since each individual is assumed to be the 

product of an independent meiosis with its own recombination signature. In other words, 

grouping should not occur over a population. These result remain as something to think about 

– unfortunately, no definite answer was determined. 
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5. Conclusions 

5.1. Summary of key findings 
Two simple models were compared for QTL mapping in polyploids by regressing phenotypic 

data either using SNP dosage information at the marker positions (dosage model) or the 

homologue parental identities at these positions (GP model). It was found that using raw 

marker dosage information alone resulted in a very low power of detection (or a high false 

positive rate if a less stringent threshold was used) as well as an inability to detect QTL 

without a nearby marker in coupling phase.  

In contrast, regression using homologue parental identities proved to be a relatively powerful 

approach if the heritability is sufficiently high and a suitable mapping population size is used 

(~100 individuals or more). In order to use this model it is first necessary to reconstruct the 

parental homologue identities using SNP dosage information. A basic approach to do this was 

implemented in R but it was found that a dense marker map is needed to accurately 

reconstruct the homologue identities. Certain marker categories provide more information 

than others: DxN markers were found to be the most informative for the methods employed, 

since dosages of ‘0’ and ‘2’ provide full information on four of the eight homologue identities 

at that position. This coupled with the relatively high proportion of ‘0’ and ‘2’ dosages 

expected under normal segregation (  ⁄ ) makes them the best marker type for this approach. 

Some interesting behaviour was observed when the relationship between the genetic variance 

due to a QTL was compared with the significance of the test statistic from the most 

informative flanking marker. For the case of a dominant QTL there was a strongly linear 

relationship between the two quantities for all marker categories except SxN markers, where 

four bands appeared that could not be explained by the level of associated genetic variance. 

These four bands were also found when the simulated QTL had a purely additive effect. It is 

thought that recombination may have something to do with this segregation in the results, but 

this was not confirmed. 

Significance thresholds for marker testing were implemented using a permutation test in R. 

This provided the basis for detecting QTL in the power studies, but was also investigated to 

try to determine how many permutations are needed and whether we can specify the resulting 

distribution. No conclusive findings were reported; it was found that up to 50,000 

permutations (or more) might be needed before a stable estimate of the critical test statistic 

emerges, but that smaller numbers of permutations give good approximations to this value. 

When different functions were used in a fitting approach, a log-normal distribution was found 

to fit the distribution of (maximum) test statistics best, although it is not known whether this 

is generally the case.  
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5.2. Recommendations 
By way of conclusion, a number of recommendations for further work are offered, many of 

which have already been alluded to during this report. There is clearly a need for further work 

in the area of QTL mapping in polyploids. Much of the work presented here was under certain 

assumptions which might not always be applicable using real data. For example the mode of 

inheritance may not always be known in polyploids (Stift et al., 2008). It was originally 

planned to compile information on the segregation behaviour among some common polyploid 

crops (whether the crop species mostly forms bivalents, trivalents, quadrivalents or a mixture 

of these etc.) but this information was not readily available from literature. In this project it 

was assumed that bivalents were exclusively formed. In the end it made little difference to the 

analyses since the method used to reconstruct homologue parental identities did not consider 

what these possible bivalents might have been. However, it would be interesting to explore 

the area further so that methodologies could be tailored to the segregation behaviour of 

individual crops (or mapping populations even) after a diagnostic test using markers (such as 

that according to Stift et al. (2008) for example) has been used.  

It was also assumed that the segregation in the offspring was regular whereas segregation 

patterns of certain markers may in fact be skewed. Any approach to QTL mapping should 

have ways of dealing with this problem (at the very least, identifying skewed data and 

excluding those markers) – such issues were not considered in this report but should not be 

ignored in further studies. 

The method of reconstructing the homologue parental identities was far from ideal and could 

be improved upon greatly. Indeed, this seems to be at the core of any approach to QTL 

analysis (for polyploids) if SNP dosage data is used. Methods using a branch-and-bound 

algorithm and hidden Markov models have already been described in the literature. It would 

be interesting to pursue these and other strategies to compare how each of them perform 

under various circumstances and conditions. 

It would be worthwhile to consider other models as these may offer some advantages over 

regression approaches. In particular, it would be interesting to see whether maximum 

likelihood models could be used or whether multiple-marker or composite-interval models 

might also be applied. Reconstructing the homologue parental identities already uses 

information from other markers and in a sense extends the information content from markers 

to their flanking regions. Interval mapping approaches have been shown to be a more 

powerful strategy for QTL detection in the diploid case; testing this in the case of polyploids 

would be a worthwhile endeavour. 

Finally, although this project relied on simple models, it was still possible to investigate some 

important questions such as the effect of heritability, QTL size, population size and distance 

to the nearest marker to the power of QTL detection. Future work in this area will no doubt 

revisit these important topics to deliver further insights, methods and recommendations for 

QTL mapping in polyploids. 
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Table I.a. Example of normalisation highlighting the problem of exceeding a probability of 1. 

 

 
X1 X2 X3 X4 X5 X6 X7 X8 

post-Kosambi probabilities 0.0010 0.9472 0.0130 0.8407 0.2085 0.8729 0.8654 0.8066 

Sum 

   

1.8019 

   

2.7533 
         

Normalising factor 

   

0.9010 

   

1.3767 
         

Normalised probabilities 0.0011 1.0513 0.0144 0.9332 0.1514 0.6340 0.6286 0.5859 

Sum 

   

2.0000 

   

2.0000 
                  

 Table XX. Example of normalisation where the problem of exceeding a probability of 1 is encountered.  

Table I.b. Previous example continued, where the probability in X2 has been set to 1  

 

Table XX. Previous example continued, where the offending probability in X2 has been set to 1  

7. Appendices 
Appendix I – Normalisation after estimating genotype probabilities 

At any (marker) location where homologue parental identities are estimated we consider the 

eight genotype probabilities (X1, X2, ..., X8). Following the steps described in §2.5 

normalisation of the genotype probabilities is required to ensure that the condition ∑    
 
   

∑   
 
       holds for each set of genotype probabilities Xi at all positions and in all 

individuals of the mapping population. The exact probabilities ‘0’ and ‘1’ are excluded from 

the normalisation step as we do not wish to alter their value. 

Define Sα as the sum of the non-one entries in (X1, X2, X3, X4) and Sβ as the sum of the non-

one entries in (X5, X6, X7, X8), where non-one refers to probabilities ≠ 1.  

The normalisation factors are given by  

   
  

   ∑    ⁄    and             
  

   ∑    
⁄  

where Σ(1) refers to the sum of the ‘1’ probabilities (in the special case of Σ(1) = 2, 

normalisation is not required). 

 The first step in normalisation is to divide all non-one entries in (X1, X2, X3, X4) by nα and all 

non-one entries in (X5, X6, X7, X8) by nβ. However, in certain cases we  may have exceeded 

probabilities of 1 through this step, as demonstrated by an example in Table I.a. 

 

In this example, a normalised probability of X2 = 1.0513 results. The solution adopted was to 

assign a ‘1’ whenever unity was exceeded and then re-apply the normalisation procedure.  

 
X1 X2 X3 X4 X5 X6 X7 X8 

Adjusted probabilities 0.0011 1.0000 0.0144 0.9332 0.1514 0.6340 0.6286 0.5859 

Non-one Sum 

   

0.9487 

   

2 

         

Re-normalising factors 

   

0.9487 

   

1.000 
         

Re-normalised probabilities 0.001 1 0.015 0.984 0.1514 0.6340 0.6286 0.5859 

Sum 

   

2.000 

   

2.000 
  

        

 

 
X1 X2 X3 X4 X5 X6 X7 X8 

Non-normalised probabilities 0.0010 0.9472 0.0130 0.8407 0.2085 0.8729 0.8654 0.8066 

Sum 

   

1.8019 

   

2.7533 
         

Normalising factors 

   

0.9010 

   

1.3767 
         

Normalised probabilities 0.0011 1.0513 0.0144 0.9332 0.1514 0.6340 0.6286 0.5859 

Sum 

   

2.0000 

   

2.0000 
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Lemma I. The re-normalisation procedure described does not require subsequent iterations.  

Proof. If we consider four homologues alone, so for example X1 – X4, there are two 

conceivable scenarios – (a) that one of the entries exceeds 1 after the first normalisation, or 

(b) that two of the entries exceed one. In cases where none of the entries exceed 1, re-

normalisation is not required. 

Suppose scenario (a) holds. Let s1 be the sum of the other three probabilities, so        

(if       it would imply that the probability equals 2, which is impossible). We then apply 

the step of setting the offending probability to 1 and re-normalising. The algorithm now 

calculates s1 and divides it by (2 – 1) = 1, i.e. our new normalising factor is simply s1. Can we 

exceed unity by dividing any of the remaining three probabilities by this number? 

Let us denote these three probabilities by Xi, Xj and Xk where we know that  

Xi + Xj + Xk =     , and therefore (since they are non-negative numbers) each Xi,j,k < 1. 

Suppose there exists   {     } such that 
  

  
  .  Since      we may re-write this as 

      . But    is the sum of three     therefore this clearly cannot hold. We can therefore 

conclude that there is no   {     } such that 
  

  
  . The algorithm will successfully 

terminate after a single iteration. 

Suppose that scenario (b) holds. Let the four non-normalised probabilities be denoted by 

            and let sbefore denote their sum,                     . If    and    are 

the two normalised probabilities which exceed unity, then with safter  to indicate the sum of the 

normalised probabilities, we have               . The normalising factor (assuming 

none of the entries is ‘1’) is    
       

 
.  

After normalising,         
  

 
 

  

 
 

  

 
 

  

 
  

 

 
              

          

       
   

Therefore                   which cannot hold, so (b) cannot be true. (If one of the 

entries equalled 1, then we are back to the same reasoning that concluded (a)).  

Therefore in all cases, this approach terminates after a single re-normalisation iteration, as 

required.  
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Appendix II: Effect of order of application of genotype reconstruction functions 

The reconstruction of probabilities method mentioned throughout this report first works using 

the ‘0’ probabilities and then updates the array using the ‘1’ probabilities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. Applying ‘Kosambi-0’ function last a. Applying ‘Kosambi-1’ function last 

Figure II. Comparison between the results of a regression on genotype probabilities (using the example 

marker set from §3.1 and §3.2), when a. Kosambi-1 function is applied last, b. Kosambi-0 function is 

applied last. 

Note: Simulated marker-set had 2 QTL of equal additive effect; 45 markers / chm. using SxN, DxN and SxS 

markers. h
2
 = 0.7 

Figure II.c. Original graph using full parental haplotype information 

 

c.  
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Table III.a. Expected mean and variance for different segregation types of an additive QTL. 

Appendix III: Expected variances for an additive or dominant QTL 

 

 

QTL segregation Seg. ratio Effect sizes Mean effect σ2
 

 

  

 

    

Q x N 1 1 = a a 0 
          

S x N 1 : 1 
1/2 = 0 

a/2 a
2
/4 

1/2 = a 
          

  

1/6 = 0 

  D x N 1 : 4 : 1  2/3 = a  a  a
2
/3 

 

  1/6 = 2a     
          

  

1/4 = 0 

  S x S  1 : 2 : 1 1/2 = a  a a
2
/2  

 

  1/4 = 2a     
          

  

1/12 = 0 

  
D x S 1 : 5 : 5 : 1 

5/12 = a 
3a/2 7a

2
/12 

5/12 = 2a 

 

  1/12 = 3a     
          

  

1/36 = 0 

  

 

  2/9 = a     

D x D 1 : 8 : 18 : 8 : 1  1/2 = 2a  2a 2a
2
/3  

 

  2/9 = 3a     

 

  1/36 = 4a     
          

QTL segregation Seg. ratio Effect sizes Mean effect σ2
 

 

  

 

    

Q x N 1 1 = d d 0 
          

S x N 1 : 1 
1/2 = 0 

d/2 d
2
/4 

1/2 = d 
     

S x S 1 : 2 : 1  
1/4 = 0 

3d/4 3d
2
/16 

3/4 = d 
  

    

 

D x N 1 : 4 : 1 
1/6 = 0 

5d/6 5d
2
/36 

5/6 = d 
          

D x S 1 : 5 : 5 : 1 
1/12 = 0 

11d/12 11d
2
/144  

11/12 = d 
    

  

D x D 1 : 8 : 18 : 8 : 1 
1/36 = 0 

35d/36 35d
2
/1296  

35/36 = d 
 

        

Table III.b. Expected mean and variance for different segregation types of a dominant QTL. 
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Appendix IV: Relationship between variance and peak LOP (recombination 

suppressed) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.  Investigation of the relationship between variance and significance using the GP model for  

a. dominant QTL, b. additive QTL (of effect size 10), where recombination has been suppressed. 

Note: Results based on a single chromosome with markers evenly-spaced at 0.8cM. F1 = 200 and h
2
 = 0.75 

a. b. 
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Appendix V: Genetic variances associated with an eight-allele QTL 
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Appendix VI: Power curves for different heritabilities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure VI.b. Power of detection of additive-effect SxN QTL versus heritability using the dosage 

model, for different numbers of QTL, F1 mapping population sizes and flanking marker distances.  

Note: The experiment-wise error rate was controlled at α = 0.2 by permutation tests with N=1000 

permutations. 

Figure VI.a. Power of detection of additive-effect SxN QTL versus heritability using the GP model, 

for different numbers of QTL, F1 mapping population sizes and flanking marker distances.  

Note: The experiment-wise error rate was controlled at α = 0.2 by permutation tests with N=1000 

permutations. 
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Appendix VII: Power curves for mapping population size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VII.b. Power curves for dominant SxN QTL (α = 0.05) using GP model 

Figure VII.a. Power curves for detection of an additive QTL (α = 0.05) versus size of the mapping 

population using GP model. Each data-point represent the average proportion of QTL detected over 

1000 replicated simulations. Note: Distances refer to proximity of closest marker to QTL. 
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Appendix VIII. Permutation Testing – supplementary graphs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VIII. Behaviour of the 99-percentiles of the F-statistic with increasing number of 

permutations 
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Appendix IX. Position of the peak in the pdf of an F-distribution 

The probability density function of an F-distribution can be expressed in terms of the gamma 

function as follows: 
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where the  -function is defined, for parameter α > 0 as follows: 
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For a given k and m degrees of freedom, we can estimate the position of the peak in the 

        function by calculating the first derivative          . This yields: 
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Equating this expression to zero yields: 
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For t > 0 we may simplify this to: 
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Also, since        we may write this as: 
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Solving this expression for t yields the result 

      
     

     
 

That is, for a given pair of degrees of freedom k and m, the peak in the probability density 

function of F should occur at a value given by a relatively simple combination of k and m. To 

find the maximum of this expression for k, m > 0 (assuming that negative or zero degrees of 

freedom are not permissible) involves partially maximising the numerator while 

simultaneously minimising the denominator (so, using partial differentials). However, we 

merely wish to demonstrate here that this expression does not exceed 1. We can easily do this 

by assuming the converse to be true: 
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Suppose  

      
     

     
   

Therefore, since         we may multiply both sides by it to obtain 

            

        

      

But k, m > 0, so      clearly cannot hold. Therefore        and therefore we must have 

       as desired. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure IX. Range of positions for the peak in the probability density function of an F-

distribution (z-axis) over different numerator and denominator degrees of freedom. Note 

that z=1 is not exceeded. 
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Appendix X: Example R-script used in the simulation process 

Basic function to generate phenotypes based on user-inputted effect sizes and heritability: 

########################################################################### 

QTLer <- function (flname) { 

 markernames <- rownames(read.genotypes(flname)$geno) 

 genotypenames <- read.genotypes(flname)$individuals 

 nrQTLs <- as.integer(readline("How many QTLs do you want to simulate?  ")) 

 QTLmat <- matrix(, nrow = nrQTLs, ncol=length(genotypenames), byrow=TRUE) 

 colnames(QTLmat) <- genotypenames 

 

 for (i in 1:nrQTLs){ 

 

  QTLlocation <- as.character(readline("Input marker name:   ")) 

  while(QTLlocation %in% markernames == FALSE) { 

   QTLlocation <- as.character(readline("Invalid marker name. Please enter                  

again:   "))} 

 

  max <- as.numeric(readline("Effect of QTL to simulate?   ")) 

  dominant <- readline("Is this a dominant-effect QTL (y/n)?   ") 

  tempvals <- c(max,0) 

  names(tempvals) <- c("1","0") 

 

  if(dominant == "y") { 

   tempvalue <- locus.genovalue(read.genotypes(flname), QTLlocation,  

tempvals, dominant.allele="1")} 

  else { 

   tempvalue <- locus.genovalue(read.genotypes(flname), QTLlocation, 

tempvals)} 

 

  QTLmat[i,] <- tempvalue 

  } 

 

 QTLsum <- colSums(QTLmat) 

 genvar <- var(QTLsum) 

 

 herit <- as.numeric(readline("What heritability is required? (0 - 1)")) 

 while (herit == 0 | herit == 1) { 

  herit <- as.numeric(readline("Error: please choose another heritability 

within (0.0 - 1.0):   "))} 

 

 envar <- genvar*(1-herit)/herit 

 envnoise <- round(rnorm(length(genotypenames), mean = 0, sd = 

sqrt(envar)),digits = 2) 

 QTLandNoise <- rbind(QTLsum,envnoise) 

 

 mu <- as.numeric(readline("Select a basic mean for the trait (mu):   ")) 

 fullvalues <- rbind(QTLandNoise,mu) 

 

 Phenotype <- colSums(fullvalues) 

 return(Phenotype) 

 } #QTLer() 

########################################################################### 
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