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Abstract 
 

Light detection and ranging (LiDAR), an active remote sensing (RS) technique, is able to 

describe tree structural attributes by measuring responses of emitted laser pulses from a tree. 

Alterra in cooperation with Geodan and NEO created a tree database which was based on raster 

airborne laser scanning (ALS) LiDAR data and included information about tree locations, tree 

crown projection perimeters, and several tree shape parameters according to SILVI-STAR 

method. SILVI-STAR method was designed to save tree attributes as a parameterized, 3D model. 

The aim of the study was to find a new way of delineating trees and deriving their parameters 

using terrestrial laser scanning (TLS) and ALS LiDAR point data, which can improve the 

existing method of tree parameter extraction and to assess the quality of the existing method.  

The delineation essence was in extraction of aggregated and classified as high vegetation TLS 

points. Individual TLS and ALS tree point clouds were processed in R to derive tree parameters. 

Visual assessment showed that tree height, peripheral height and peripheral points extracted from 

TLS point data were accurate in more than 90% of cases, while the same parameters extracted 

from ALS point data were correct only in 46-77% of the cases. Meanwhile, only in 60.41% of 

cases the height of the first living fork and in 63.07% of cases the DBH and tree location have 

been correctly computed, thus the method of tree parameter extraction from point data needs 

improvements. The suggested enhancements are the separation of solitary trees from the 

aggregation of trees and creation of a better technique for noise removal.  

The quality of tree parameters derived from ALS raster and point data was assessed using 

parameters derived from TLS point data. Based on the results of validation, the tree location 

calculation from ALS raster data was not as precise as urban tree managers may be requiring, 

producer’s accuracy was 0.23 and user’s accuracy was 0.15. However, this result is not very 

much reliable, as only in 63.07% of cases tree locations derived from TLS point data were 

correct. In addition, height parameters retrieval from ALS data were reliable only for tree heights 

extracted from ALS point data (R2 = 0.71 and RMSE = 3.89). This could be explained by the 

fact that the accuracy of ALS raster data is much lower, which is caused by the low density of 

points and averaging these points during the transformation of point data into 0.5m×0.5m raster 

cells. The extraction of periphery points from ALS point, as well as raster, data was perfect (R2 

was no smaller than 0.9). In general validation showed that extraction of parameters using ALS 

point data rather than ALS raster data gives more precise result.  
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Undoubtedly, extraction of tree parameters from TLS point data is more precise compared to 

ALS data. However, taking into account the fact that acquiring TLS data in comparison with 

ALS data for the same area takes more time and requires more labour, the perspective of using 

ALS point data to derive tree parameters seems more realistic.  

Keywords: Terrestrial Laser Scanning, Airborne Laser Scanning, LiDAR, SILVI-STAR tree 

parameters 
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1. Introduction 

1.1. Background 
 

The trees in the cities are highly important, as they perform many useful functions (Sander et al. 

2010). However, tree maintenance is necessary to keep them healthy and to prevent the 

occurrence of events that could have negative consequences for inhabitants of a city. For 

successful urban tree management a database, which includes information about tree locations 

and their attributes, is needed (Benthem 2013).  

In order to explore the possibilities of creating an open tree dataset for the Netherlands, in 2012 a 

Public-Private Partnership has been set up between Wageningen UR-Alterra and two private-

sector companies: Geodan (IT) and Neo (Remote Sensing) (Rip and Bulens 2013). On the base 

of the “AHN2” national digital elevation dataset Alterra has developed a method of canopy 

perimeter extraction (Rip and Bulens 2013). Actueel Hoogtebestand Nederland (AHN) is the 

official governmental dataset, the precise height dataset of the Netherlands, seized through 

airborne LiDAR. AHN2, the new version of AHN, is more accurate and has a higher point 

density compared to the previous version, was being acquired from 2007 (Rafiee et al. 2013). 

The method of canopy perimeter extraction is still under development. In addition, Alterra has 

created a procedure to compute the values of several tree shape parameters according to SILVI-

STAR method (Koop 1989). The derived parameters have been used to produce 3D 

visualizations of trees in urban environment. Urban tree managers are interested in the produced 

result, as it could help them to have a better overview of the trees with less labor.  

According to a field test the tree canopy perimeters derived by Alterra are captured with about 

60% completeness (Rip and Bulens 2013). Further assessment of the quality of the tree canopy 

perimeter dataset and of the SILVI-STAR parameter values derived from this dataset, showed 

that an improvement of the extraction method is needed. This research is focused on 

improvement of the tree parameters extraction from the AHN2 data, using the raw terrestrial and 

airborne LiDAR point cloud data, validation of the results of the tree canopy perimeter extraction 

method and validation of derived SILVI-STAR parameter values. 
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1.2. Research overview 
 

Problem definition  

Trees are very important in urban areas. They protect from soil erosion, provide the habitat for 

wildlife, improve the quality of air, mitigate urban heat island effect, help to save energy through 

building shading and insulation, and reduce stormwater runoff. There are also cultural benefits, 

which urban tree cover provides. Trees in an urban environment improve the quality of urban life 

as they may refine the scenic quality of a neighbourhood, provide privacy, reduce stress, etc 

(Sander et al. 2010).  

As Europe realizes this value, its policy is directed to increase the number of green area and at 

once to decrease agricultural area, because there is an excess in agricultural production. This 

policy should encourage the increase of biodiversity through the presence of small landscape 

elements such as bushes, hedges, trees (Rip and Bulens 2013).  

The owners of the trees in the Netherlands have public responsibility to keep them healthy in 

order to prevent falling of branches or a tree itself to public space. This obliges tree owners to 

keep record of individual tree conditions. However, this information is not uniform and it is not 

collected with the purpose to make one database. Such a database should contain information 

about locations and properties of all non-forest trees of different owners, such as private and 

public organizations and private owners. The absence of the database limits the effectiveness of 

tree maintenance, pests and diseases management (Rip and Bulens 2013).  

The database might be useful for urban tree managers who take care of large amount of trees. 

Despite they are the main inspirers of the database creation; the main focus of this research is not 

an investigation of their needs and desires concerning the database.  This research is 

concentrated on technical part of tree parameters acquisition for creation of the dataset.  

To derive all the necessary information about the trees location and their main attributes there are 

traditional methods, such as field measurements. However, they are very labor-intensive and 

time consuming (Chang et al. 2013). Therefore remote sensing has a potential to supplement or 

even replace field measurements (Homolova et al. 2013).  

The main action to derive single tree information from any kind of remote sensing data is to find 

and delineate individual trees. To delineate separate trees using multispectral imaginary several 

methods have been used: multiple scale edge segmentation (Brandtberg and Walter 1998), 

valley-following method (Gougeon 1995), template matching (Pollock 1996), watershed 

segmentation (Schardt et al. 2002), local maxima filtering (Dralle and Rudemo 1996). However, 
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the spatial resolution of the imaginary has to be higher than the area of tree crowns, otherwise 

tree crown will not be recognizable as discrete objects (Kwak et al. 2007). 

With the appearance of LiDAR and its wide introduction into remote sensing, the number of 

studies on individual tree detection started to increase (Jakubowski et al. 2013). LiDAR is based 

on measurements of laser range to acquire x, y and z coordinates of reflecting objects. This 

provides a modern and powerful tool to derive individual tree data (Chang et al. 2013). To detect 

single trees and get their main attributes different algorithms like k-means clustering (Morsdorf 

et al. 2004), region-growing algorithm (Koch et al. 2006), morphological analyses (Kwak et al. 

2007), spatial wavelet analysis (Falkowski et al. 2008), and a combination of variable windows 

size filtering (Popescu and Wynne 2004) were used (Jakubowski et al. 2013).  

Latter studies focus on operating with point cloud data and not transforming the LiDAR data into 

a raster. An adaptive clustering algorithm implemented by Lee et al. (Lee et al. 2010) is similar 

to watershed segmentation. However, the method was applied to the 3D LiDAR points. The 

algorithm in this method bases on training data to perform segmentation relied on supervised 

learning. However, there is an individual tree segmentation approach, where training data are not 

necessary. The algorithm implemented by Li et al. (Li et al. 2012) uses the distance between the 

tops of the trees to identify and group points into a single tree based on rules of proximity and 

likely tree shape (Jakubowski et al. 2013).  

The method of tree crown perimeter extraction (TCPE), created by Alterra employee Jan 

Clement (Clement 2013), uses the AHN-2 Digital elevation model (DEM) covering the 

Netherlands which was acquired during the period 2007-2012. LiDAR point clouds, Digital 

Terrain Models (DTMs) and Digital Surface Models (DSMs) are available AHN-2 products. On 

average the point cloud has 8 points per m2. DTM and DSM are raster data with a resolution of 

0.5 m and vertical accuracy of 5 cm. The tree crown extraction algorithm uses DTM and DSM. 

A normalized height raster, called delta_h_raster, is gained by subtracting the DTM from the 

DSM. Moreover, to decrease the search area of the algorithm, two exclusion masks were created. 

One of them, called nodata_top10, made on the base of the topographic Top10smart raster, 

excludes buildings from the search area. Additionally, this mask contains no data areas of the 

DTM. Another one, called STD_notrees, made by applying a standard deviation filter on the 

DSM, serves to remove areas with low standard deviation, i.e. no tree areas, which based on Jan 

Clement’s observation that in the AHN2 DTM vegetation shows a relatively high, more than 1.5 

m, standard deviation in grid cell values1. After applying masks and defining the search area, the 

                                                 
1 Source: personal communication with Frans Rip 
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final extraction of the tree crowns is made on the basis of the delta_h_raster. The extraction 

algorithm also records the attributes of the extracted tree crowns (Table 1).  

Table 1. The attributes of the tree crown extractions 
Attribute name  Description 
BLAD_ID Map number of the corresponding AHN-2 sheet 
BOOM_ID Unique tree crown number 
BM_X X coordinate of the crown centroid  
BM_Y Y coordinate of the crown centroid  
GEM_MV Average ground elevation beneath crown (AHN-2 DTM) 
BOOM_HOOGT Maximum normalized height (delta_h_raster) with crown projection 
GEM_HOOGTE Average normalized height (delta_h_raster) with crown projection 
SHAPE_AREA Area of crown projection in m2 

 

There are several versions of the algorithm. The base of the canopy extraction algorithm is 

almost the same; however, there are some minor differences between the versions. The 

differences consist in modification of the filtering of the output, masking of buildings and filling 

of no data. The method is still under improvement.  

From the result, produced by the TCPE algorithm, an additional set of parameters was derived in 

accordance with the SILVI-STAR tree model (Koop 1989). This model is designed to save tree 

attributes as a parameterized, 3D model. SILVI-STAR describes the trees using x, y and z 

coordinated of 8 points: stem base (B), height of first bifurcation (F), top of the tree crown (T), 

base of the tree crown (C), and four peripheral points of the crown circumference (P1, P2, P3, 

P4). The 3D model of the tree is shown in Figure 1.  The horizontal projection of the tree crown 

is indicated by a combination of quarter of ellipses, sketched up by peripheral points, which are 

extremities of the tree crown in x- and y-direction (Figure 2). 

 

 

 
 

Figure 1. The 3D tree model, where B-stem base, 
F-height of the first bifurcation, T-top of the tree 

crown, C-base of the tree crown, P-periphery 
point. “Source: Koop 1989” 

Figure 2. Horizontal projection of the tree crown. 
Peripheral points P1, P2, P3, P4 are connected to 

each other with quarters of ellipses. “Source: Koop 
1989” 
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The vertical projection is approximated with ellipse equations, where the ellipses are used to 

connect both the top of the tree crown and the base of the tree crown with each of the peripheral 

points. As different species of the trees have different forms of the crowns, the ellipse equations 

are adjusted to allow convex or concave crown curves (Benthem 2013). 

The dataset, created by version 9.2 of the TCPE method, is referred to as the Canopy Projections 

(CP) dataset. Several validations were made to find out how good the CP dataset is. An early 

field test in 2011 for a limited area was made (Schouten 2012). It indicated that around 60% of 

the tree canopies were captured (Rip and Bulens 2013). Validation of the tree extraction 

algorithm made in 2013 by Rik van Benthem, intern at NEO, was focused on (1) checking the 

algorithm’s ability to find individual tree locations, (2) comparing extracted crown projections 

with actual crown areas, and (3) verifying the correctness of the extracted height parameters. 

Validation of the algorithm was based on comparing the extracted tree crown projections with 

the ground truth database. The basis of this database was the municipal tree database of 

Amersfoort; it was improved using the available aerial images. The validation indicated that the 

extraction algorithm misses 30 to 50% of the municipal and private trees in the urban study area. 

The accuracy values for the crown areas are higher than for tree locations; the algorithm misses 

25 to 38% of the urban tree crown area. There are no large differences between the heights 

calculated by the algorithm and the extracted heights (Benthem 2013). In 2013 another 

validation was made by Frans Rip (Meijer 2014). The tree crown perimeters, which served as 

reference model, were derived by digitizing tree canopies from the aerial photographs for the 

part of WUR campus. There were two types of trees distinguished within the model: solitary 

trees (SolitaryVegetationObjects) and groups of neighboring trees with adjoining canopies 

(PlantCover). The validation was made for two versions of the tree canopy extraction algorithm: 

V5 and V9.2. The validation was made by finding True Positives (TP), False Positives (FP), 

False Negatives (FN) and then by calculating the value of Quality, which is 

Quality=TP/(TP+FN+FP). The closer the Quality value to 1, the better the quality of the result of 

TCPE method. As a result of validation, the Quality value of PlantCover looking at area in m2 is 

0.78 for V5 and 0.83 for V9.2; the Quality value of SolitaryVegetationObjects looking at the 

number of canopies is 0.44 for V5 and 0.48 for V9.2 (Meijer 2014). 

There are several versions of the tree crown extraction algorithm and each of them has 

limitations. In V5 and V6 the algorithm extracts trees with a height of more than 1 m and crown 

area of more than 1 m2; in V7 the algorithm only extracts trees with height of more than 4 m and 

crown area more than 5 m2.  
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There are some drawbacks in the used method, which reduces the accuracy of the tree crown 

extraction. The extraction algorithm uses raster data as input. In order to derive the raster ALS 

points were resampled in favour of the highest values to a grid, where possible values for the 

underside of the canopy and the stem got lost. Thus there is no possibility to derive the point 

representing the base of the tree crown and the point of the first bifurcation. Moreover, the 

location of the tree stem is based on calculating the centroid of the crown projection, so it can be 

not accurate.  

There are also some problem cases with the form of the trees themselves. First of all, its shape 

may not be ideal; trees are not totally symmetric. Further, there can be several trees, which stand 

close by and their crowns intersect. Thirdly, the trunk of the tree can split on the base of the tree, 

so such a tree has two crowns, a stem can be bent and the crown will be not above the stem or a 

tree can be totally without crown, e.g. freshly cut pollard-willows. This makes it difficult to 

distinguish and extract individual trees from aerial imaginary. 

The TCPE method is still under development and improvement. Further validation of the results 

of the method and the correctness of the derived SILVI-STAR parameters is necessary. To 

derive better accuracy of the tree canopy extraction method, cope with drawbacks of the method 

and with problems with tree shapes indicated above the improvement of the method appears 

necessary. 

Research objectives 

The main objective of this research is to find a new way of delineating individual trees and 

deriving their parameters, which can improve the existing method of tree canopy extraction. 

In order to achieve the main objective of the research the following questions have to be 

answered: 

1. Is it possible to improve the extraction of tree parameters, using the raw point cloud 

terrestrial and airborne LiDAR data, instead of the top-of-canopy raster datasets? 

 

2. How good is the CP dataset for use by municipal tree managers?  

 

3. How good are the SILIVI-STAR parameter values, as derived from ALS point data and 
ALS raster data for use by municipal tree managers?   



 

2. Methodology 

2.1. Study area 

The area selected for this research is the

Research centre campus (Figure 

of the area is around 122 740 

Figure 
 

2.2. Data 
 

To improve the method and to make validation of the latest version (V9.

created by Jan Clement, both terrestrial and aerial LiDAR point cloud data 

Terrestrial Laser Scanning

Terrestrial laser scanning (TLS) is an active sensor technology which uses a LiDAR scanner 

fixed on a tripod on the ground and is capable to record spatial distribution of the tree in the three 

dimensions. TLS gives a possibility to describe vertical tree 

with any other RS techniques, as it has high resolution characteristics and stands at below

canopy level. A terrestrial laser scanner Reigl VZ

in order to acquire TLS data for the 

The area selected for this research is the North-Eastern part of Wageningen University and 

Figure 3). It is located in Wageningen city in the Netherlands.

740 m2. 

Figure 3. Study area (part of Wageningen UR campus)

To improve the method and to make validation of the latest version (V9.

created by Jan Clement, both terrestrial and aerial LiDAR point cloud data 

aser Scanning 

Terrestrial laser scanning (TLS) is an active sensor technology which uses a LiDAR scanner 

fixed on a tripod on the ground and is capable to record spatial distribution of the tree in the three 

dimensions. TLS gives a possibility to describe vertical tree properties more accurate compared 

with any other RS techniques, as it has high resolution characteristics and stands at below

A terrestrial laser scanner Reigl VZ-400 was provided by Wageningen University 

in order to acquire TLS data for the study area.  
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part of Wageningen University and 

). It is located in Wageningen city in the Netherlands. The size 

 
area (part of Wageningen UR campus) 

To improve the method and to make validation of the latest version (V9.2) of the CP dataset, 

created by Jan Clement, both terrestrial and aerial LiDAR point cloud data were used.  

Terrestrial laser scanning (TLS) is an active sensor technology which uses a LiDAR scanner 

fixed on a tripod on the ground and is capable to record spatial distribution of the tree in the three 

properties more accurate compared 

with any other RS techniques, as it has high resolution characteristics and stands at below-

400 was provided by Wageningen University 



 

Airborne Laser Scanning

Airborne laser scanning (ALS) is an active sensor technology which uses a LiDAR scanner 

mounted on aircraft. It is also able to record spatial distribution of the tree in the three 

dimensions and has quite high spatial 

areas with larger extent as the scanner is orbiting at higher altitudes. However, as it scans from 

above the surface, vertical tree properties are described worse than by TLS.

Aerial LiDAR point cloud data

model of the Netherlands 2, AHN2),

product consists of precise and detailed LiDAR database covering the whole Netherlands. The 

density of the points in the AHN data used in this research 

data were acquired in 2010

shows ALS data for the study area.

 

2.3. Used software 

To process the data the following software was used

10.1, LasTools2 v.131105. 

graphics. The following packages were used

                                                
2 Martin Isenburg, LAStools - efficient tools for LiDAR processing.
3 Daniel Adler, Duncan Murdoch and others (2014). rgl: 3D visualization device system
version 0.93.996. http://CRAN.R
4 Ross Ihaka, Paul Murrell, Kurt Hornik, Jason C. Fisher, Achim Zeileis (2013). colorspace: Color Space 
Manipulation. R package version 1.2
5 Robert J. Hijmans & Jacob van Etten (2013). raster
version 2.1-16. http://CRAN.Rproject.org/package=raster

irborne Laser Scanning 

Airborne laser scanning (ALS) is an active sensor technology which uses a LiDAR scanner 

mounted on aircraft. It is also able to record spatial distribution of the tree in the three 

dimensions and has quite high spatial resolution. The advantage of ALS is in its ability to cover 

as the scanner is orbiting at higher altitudes. However, as it scans from 

above the surface, vertical tree properties are described worse than by TLS.

cloud dataset, the Actueel Hoogtebestand Nederland 2 (Actual Height 

model of the Netherlands 2, AHN2), was provided by Wageningen University. 

product consists of precise and detailed LiDAR database covering the whole Netherlands. The 

he AHN data used in this research is approximately 

2010. There were 8 ALS tiles which covered the study area.

shows ALS data for the study area. 

Figure 4. ALS data for the study area 

software  

following software was used: R 3.0.2., RiSCAN pro

. R is a free software environment for statistical computing and 

The following packages were used: rgl3, colorspace

         
efficient tools for LiDAR processing. version 131105, http://lastools.org

Daniel Adler, Duncan Murdoch and others (2014). rgl: 3D visualization device system
version 0.93.996. http://CRAN.R-project.org/package=rgl 

ul Murrell, Kurt Hornik, Jason C. Fisher, Achim Zeileis (2013). colorspace: Color Space 
Manipulation. R package version 1.2-4. URL  http://CRAN.R-project.org/package=colorspace

Robert J. Hijmans & Jacob van Etten (2013). raster: raster: Geographic data analysis and modeling. R package 
16. http://CRAN.Rproject.org/package=raster 
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Airborne laser scanning (ALS) is an active sensor technology which uses a LiDAR scanner 

mounted on aircraft. It is also able to record spatial distribution of the tree in the three 

resolution. The advantage of ALS is in its ability to cover 

as the scanner is orbiting at higher altitudes. However, as it scans from 

above the surface, vertical tree properties are described worse than by TLS. 

set, the Actueel Hoogtebestand Nederland 2 (Actual Height 

provided by Wageningen University. The AHN 2 

product consists of precise and detailed LiDAR database covering the whole Netherlands. The 

is approximately 2-3 pts./16 m2. The 

which covered the study area. Figure 4 

 

, RiSCAN pro v1.7.9., ArcGIS 

software environment for statistical computing and 

, colorspace4, raster5, fields6, sp7, 

http://lastools.org.  
Daniel Adler, Duncan Murdoch and others (2014). rgl: 3D visualization device system (OpenGL). R package 

ul Murrell, Kurt Hornik, Jason C. Fisher, Achim Zeileis (2013). colorspace: Color Space 
project.org/package=colorspace 

: raster: Geographic data analysis and modeling. R package 



9 
 

spatstat8, gstat9, scatterplot3d10, hexbin11, hydroGOF12, rgeos13, circular14, ggplot215. 

RiScan PRO is the accompanying software for RIEGL Terrestrial 3D Laser Scanner 

Systems. It gives opportunity to visualise data right after acquisition and provides a 

multiplicity of functions for data processing. ArcGIS is powerful GIS software for 

working with geographic information. Used functions are: “Create Las dataset”, 

“Multipoint to single point”, “Aggregate”, “Split by attributes”, “Calculate geometry”. 

LAStools is a collection of tools which are able to process LAS, LAZ, BIN, SHP and 

ASCII file formats. The following tools were used: “lasclip”, “lasmerge”, 

“lasground”, “lasclassify”, “las2las”, “las2txt”. 

2.4. Research methodology 

This section is dedicated to give an overview about the content of the research. According to the 

research objective and the research questions, two main stages could be identified. In the first 

stage (Figure 5) the requirements for the tree dataset and the usability of the research were 

investigated, TLS point data were acquired and pre-processed, individual trees were delineated 

and the tree parameters, which were necessary for the 3D modelling of trees, were acquired from 

terrestrial and airborne LiDAR point cloud data. The main purpose of the first stage was to 

improve the TCPE method, to find a new way of delineating trees and deriving tree parameters. 

The second stage (Figure 6) was focused on comparing and validating the tree parameters from 

                                                                                                                                                             
6 Douglas Nychka, Reinhard Furrer and Stephan Sain (2013). fields: Tools for spatial data. 
  R package version 6.9.1. http://CRAN.R-project.org/package=fields 
7 Pebesma, E.J., R.S. Bivand, 2005. Classes and methods for spatial data in R. R News 5 
  (2), http://cran.r-project.org/doc/Rnews/. 
  Roger S. Bivand, Edzer J. Pebesma, Virgilio Gomez-Rubio, 2008. Applied spatial data 
  analysis with R. Springer, NY. http://www.asdar-book.org/ 
8 Adrian Baddeley, Rolf Turner (2005). spatstat: An R Package for Analyzing Spatial Point 
  Patterns. Journal of Statistical Software 12(6), 1-42. URL 
  http://www.jstatsoft.org/v12/i06/. 
9 Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers & 
  Geosciences, 30: 683-691. 
10 Ligges, U. and Machler, M. (2003). Scatterplot3d - an R Package for Visualizing 
  Multivariate Data. Journal of Statistical Software 8(11), 1-20 
11 Dan Carr, ported by Nicholas Lewin-Koh and Martin Maechler (2013). hexbin: Hexagonal 
  Binning Routines. R package version 1.26.3. http://CRAN.R-project.org/package=hexbin 
12 Mauricio Zambrano-Bigiarini (2014). hydroGOF: Goodness-of-fit functions for comparison 
  of simulated and observed hydrological time series. R package version 0.3-8. 
  http://CRAN.R-project.org/package=hydroGOF 
13 Roger Bivand and Colin Rundel (2013). rgeos: Interface to Geometry Engine - Open Source 
  (GEOS). R package version 0.2-16. http://CRAN.R-project.org/package=rgeos 
14 C. Agostinelli and U. Lund (2013). R package 'circular': Circular Statistics (version 
  0.4-7). URL https://r-forge.r-project.org/projects/circular/ 
15 H. Wickham. ggplot2: elegant graphics for data analysis. Springer New York, 2009. 
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the CP dataset and tree parameters, acquired from ALS point cloud data, with the help of tree 

parameters, acquired from the TLS point cloud data. 

 

 

Figure 5. Methodology flowchart (stage 1) 
 



11 
 

 
 

Figure 6. Methodology flowchart (stage 2) 
 

2.4.1. Usability and requirements for the tree dataset 

In order to investigate which parameters are essential to know for urban tree managers, which 

geometrical accuracies tree parameters should have and to assess the usability aspect of the 

research a questionnaire for interviewing urban tree managers was designed.  The questionnaire 

is presented in Appendix 1.  

2.4.2. Data acquisition and pre-processing 

 

Two rules had to be fulfilled during data acquisition process. All the trees in the study area had 

to be covered by terrestrial laser scanner from 2-3 scan positions. Scans had to be derived on 

reasonable distance, around 50 meters from each other.  

Data pre-processing included scans co-registration and artefacts removal. 

 

Scans co-registration 

The origin of each scan refers to the specific position of the scanner. First, in order to have all 

TLS scans in the same coordinate system, they were co-registered together. Reflectors, which 

were already present in the scanned environment, were used as tie-points. The co-registration of 

the scans was based on the locations of tie-points. It was accomplished in RiSCAN PRO v1.7.9. 

software. The settings which were used to find reflectors are presented in Table 2. 



 

Table 2. Reflector extraction parameters
Search radius 
Maximum diameter 
Minimum points 
Maximum reflectors 
Maximum deviation 
Minimum reflectance 

The parameters which were used to find corresponding points in two scans were the following: 

tolerance was equal to 0.1 m, minimal number of corresponding points was set to 15.

The scans contained mistake points mainly because the signal 

windows of the buildings and from water surface. In order to get rid of the 

were filtered by visually selecting and manually deleting

noise and point cloud filtere

Figure 7. An example of TLS point cloud with noise
 

ALS data was already co-regist

applied to ALS data.  

In order to combine points from different scans of the derived data, the LAStools function 

lasmerge was applied to TLS scans, as well as to ALS scans. Both TLS and ALS data were 

clipped by the study area with the help of lasclip function in LAStoo

unnecessary points.  

2.4.3. Point cloud tree parameters extraction (PCTPE) method

This section is dedicated to describe the procedures, which were followed, to delineate trees and 

to derive tree parameters using aerial and terrestrial LiDAR

and each single tree parameter 

undertaken methodology approaches are described.

 The following tree parameters 

1. Location of tree (L) 

2. Perimeter of tree canopy

3. Tree height (crown top) (T)

. Reflector extraction parameters 
0.05 m 
0.8 m 
2 
1000 
0 
5 dB 

The parameters which were used to find corresponding points in two scans were the following: 

tolerance was equal to 0.1 m, minimal number of corresponding points was set to 15.

Artefacts removal 

scans contained mistake points mainly because the signal of the scanner reflected from the 

windows of the buildings and from water surface. In order to get rid of the 

by visually selecting and manually deleting them. The examples of point cloud with 

noise and point cloud filtered from noise are presented in Figure 7 and Figure 

 

TLS point cloud with noise Figure 8. An example of f

registered and without noise, thus co-registration and filtering were not 

n order to combine points from different scans of the derived data, the LAStools function 

lasmerge was applied to TLS scans, as well as to ALS scans. Both TLS and ALS data were 

clipped by the study area with the help of lasclip function in LAStoo

Point cloud tree parameters extraction (PCTPE) method

This section is dedicated to describe the procedures, which were followed, to delineate trees and 

to derive tree parameters using aerial and terrestrial LiDAR point cloud data. Tree delineation 

and each single tree parameter extraction are treated in each corresponding subsection, where the 

undertaken methodology approaches are described. 

The following tree parameters were derived from the collected data: 

Perimeter of tree canopy projection (A) 

Tree height (crown top) (T) 
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The parameters which were used to find corresponding points in two scans were the following: 

tolerance was equal to 0.1 m, minimal number of corresponding points was set to 15. 

of the scanner reflected from the 

windows of the buildings and from water surface. In order to get rid of the artefacts the scans 

The examples of point cloud with 

Figure 8. 

 

An example of filtered TLS point cloud 

registration and filtering were not 

n order to combine points from different scans of the derived data, the LAStools function 

lasmerge was applied to TLS scans, as well as to ALS scans. Both TLS and ALS data were 

clipped by the study area with the help of lasclip function in LAStools in order to exclude 

Point cloud tree parameters extraction (PCTPE) method 

This section is dedicated to describe the procedures, which were followed, to delineate trees and 

point cloud data. Tree delineation 

treated in each corresponding subsection, where the 
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4. Four periphery points (P1,P2,P3,P4) 

5. Periphery height (height of the greatest width of the crown) (P) 

6. Diameter at Breast Height (DBH) 

7. The height of first bifurcation (F) 

Two of the SILVI-STAR parameters, described in Koop’s work (Koop 1989), namely height of 

the crown base and height of first bifurcation, were not derived by the TCPE method. One of 

these parameters, the height of first bifurcation and additionally DBH were used only for 

improvement of this research. The crown base parameter was not possible to derive from the 

existing point data, as both TLS and ALS data were derived in the period of year, when there 

were no leaves on the trees. Another SILVI-STAR parameter, namely the relative height of the 

tree base to the ground level, was not derived as 3D models of trees are usually placed directly to 

existing DTM16. All other parameters listed above were used both for the extraction method 

improvement and for validation of the existing dataset. 

There was an existing R script (Source: Harm Bartholomeus) which removed the noise from 

individual tree point cloud and calculated such parameters of pure solitary tree point cloud as 

tree height, tree location, height of the first bifurcation of the tree, DBH. The script was 

improved in order to be able to derive parameters as periphery height, periphery points’ 

coordinates, perimeter of the tree crown projection and to process the point clouds of all 

individual trees automatically, store the extracted parameters and validate the CP dataset. The 

improved script it presented in Appendix 4.1. It was applied to point clouds of solitary trees. 

Extracted parameters were stored in one dataset, called Terrestrial Laser Scanning reference 

(TLSref ) dataset. The extraction method, which was used to complete the dataset, was referred 

to as the Point Cloud Tree Parameters Extraction (PCTPE) method.  

The PCTPE method was developed in order to apply it to terrestrial LiDAR point cloud data. 

However, it seemed interesting to check how aerial LiDAR point cloud data could improve the 

extraction of tree parameters. Not all the parameters, which were derived from TLS dataset, 

could be derived from aerial LiDAR point cloud data by applying the method. Thus the PCTPE 

method was applied to aerial LiDAR point cloud data to extract only part of the parameters: tree 

height, periphery points’ coordinates and periphery height. The dataset, where the extracted 

parameters were stored, was called Aerial Laser Scanning tree parameter extraction (ALStpe) 

dataset. 

                                                 
16 Source: personal communication with Henk Kramer  
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The TLSref dataset was used for assessing the quality of the tree parameters from the CP dataset 

and ALStpe dataset. 

3.4.3.1. Delineation of trees 

The study area is situated in urban environment. There could be human made objects, which 

could be recognized as trees. To exclude non-vegetation objects in was necessary to create a 

non-vegetation mask.  

Three LAStools functions (lasground, lasclassification, and las2las) were applied to terrestrial 

LiDAR point cloud data to separate vegetation points from non-vegetation. Lasground classified 

LiDAR points into ground points and non-ground points. As the tool was designed for airborne 

LiDAR, for processing of the TLS data the “not airborne” option was used. Settings of the tool 

were adjusted taking into account the fact, that large buildings are situated in the territory of the 

study area and the landscape is mostly flat. The step size was set to 50 meters; granularity was 

set to “fine”. In order to skip using lasheight, the height above the ground for each point was 

computed directly in lasground and elevation value of each point was replaced by this calculated 

value. Function lasclassify was applied in order to classify points into “ground”, “building”, 

“high vegetation” and “unassigned” classes. The default settings of the tool were changed. As 

TLS data has high density of points, search area size was set to 1 meter instead of 2 meters. By 

default the algorithm intends to find neighboring points that are at least 2 meters above the 

ground and form “planar 0.1” or “rugged 0.4”, which correspond with buildings and trees, 

regions. The city of Amsterdam consider a tree as a tree, if the stem is present at DBH and stem 

diameter is more than or equal to 0.1 meter17. Relying on this information the ground offset (the 

height from which neighboring points were being searched) was set to breast height, 1.3 meters.  

The threshold value corresponds with standard deviation that neighboring points can have from 

the region they share. The “building planarity” and “forest ruggedness” was set after set of 

experiments aimed at finding appropriate threshold for more precise classification of points. 

Figure 9 shows an example of classification.  

                                                 
17 http://www.bomenstichtingamsterdam.nl/ visited April 2013 



 

Figure 9. An example

With the help of las2las function points, which belong to “high vegetation” class were 

using “keep classification 5” option. In ArcGIS the LAS files, which were s

vegetation class points were transformed to Multipoint objects using “LAS to Multipoint” 

function (point spacing 0.001). Eventually, applying to the points ArcG

function with aggregation distance of 0.3 meters the 

of the time constraints, it was decided not to delineate individual tree crown projections from the 

aggregation of trees and process only solitary

if their projections had specific shape of tree crown projection. A tree was considered as solitary 

if its crown projection didn’t touch the boundary of neighboring tree crown projection. An 

example of vegetation mask is presented in 

 

 

 

Legend

. An example of classification of the point cloud for the part of study area

With the help of las2las function points, which belong to “high vegetation” class were 

using “keep classification 5” option. In ArcGIS the LAS files, which were s

vegetation class points were transformed to Multipoint objects using “LAS to Multipoint” 

function (point spacing 0.001). Eventually, applying to the points ArcG

function with aggregation distance of 0.3 meters the map of vegetation

of the time constraints, it was decided not to delineate individual tree crown projections from the 

aggregation of trees and process only solitary trees. The trees were chosen by visually assessing 

if their projections had specific shape of tree crown projection. A tree was considered as solitary 

if its crown projection didn’t touch the boundary of neighboring tree crown projection. An 

getation mask is presented in Figure 10. 

 
Figure 10. An example of vegetation mask 
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of classification of the point cloud for the part of study area 

With the help of las2las function points, which belong to “high vegetation” class were selected 

using “keep classification 5” option. In ArcGIS the LAS files, which were storing high 

vegetation class points were transformed to Multipoint objects using “LAS to Multipoint” 

function (point spacing 0.001). Eventually, applying to the points ArcGIS “Aggregation” 

map of vegetation was produced. Because 

of the time constraints, it was decided not to delineate individual tree crown projections from the 

trees. The trees were chosen by visually assessing 

if their projections had specific shape of tree crown projection. A tree was considered as solitary 

if its crown projection didn’t touch the boundary of neighboring tree crown projection. An 
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Crown projections of solitary trees were selected and exported as individual shape files. These 

shape files were applied to raw point cloud TLS and ALS data in order to clip point clouds of 

individual trees.  

2.4.3.1. Pre-processing of individual tree point clouds 

The aim of pre-processing of individual tree point clouds was in deleting from them all the 

points, which didn’t belong to trees and were considered as noise. Noise removal consisted on 

two steps. First, solitary outlier points were removed from the individual tree point cloud. 

Second, understory and ground points were deleted from individual tree point cloud. 

Removal of solitary outlier points 

In the point clouds of individual trees besides the points, which belong to the tree or to the 

ground there were solitary outlier points. In order to remove them filtering was made. To remove 

the outliers, the distance from each point to its nearest neighbour in the point cloud was 

calculated, and threshold, which was investigated by experiments, was set to 10 cm. All points, 

which were further than 10 cm away from their nearest neighbour, were deleted. Figure 11 

presents an example of outlier points’ removal. 

 
 

Figure 11. An example of solitary outlier points’ removal. Tree point cloud before (left) and after (right) 
outliers removal  

Removal of understory and ground points 

DEM 

Point clouds of individual trees were extracted from the raw data, so all the heights were 

absolute, not relative to the ground level. It order to find heights of all points relative to the 

ground level, first, it was necessary to find the ground points. The procedure of finding them 
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was: making a ground raster, deleting all infinite values from it, and dividing all the objects in 

the raster into two classes ground and non-ground depending on their height. If they were less 

than mean height value of the ground raster, they were considered as ground. After that the DEM 

was interpolated. An example of interpolated DEM is presented in Figure 12. For further 

calculations interpolated ground raster was transformed to tree-dimensional point pattern. 

 

Figure 12. An example of interpolated raster DEM for a solitary tree   
 

Individual pure tree point clouds 

In order to reduce the number of errors in calculations of tree parameters from individual tree 

point clouds, it was decided to delete all unnecessary points, namely points, which belong to the 

ground and understory of a tree. Using the DEM tree-dimensional point pattern the minimal 

distance from the original filtered point clouds’ points to ground points was calculated. These 

distances were stored in the individual tree point cloud data frame. First, the points which were 

closer than 1.3 m to the ground were assigned as ground points; other points were classified as 

tree points. Figure 13 shows an example of initial separation of the TLS points to the ground and 

tree points.  
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Figure 13. An example of initial separation of TLS 
point cloud into ground and tree points  

Figure 14. An example of separation of ALS point 
cloud into ground and tree points  

However, for TLS data such separation made the tree 1.3 m shorter, so some stem points should 

have been returned to the tree. The density raster was calculated from the filtered raw data and 

the cell in that raster with the highest number of returns was designated as the tree stem. An 

example of density raster is presented in Figure 15.  

 

Figure 15. An example of density raster of a tree. Dark green raster cell is the cell with the highest 
number of returns (stem position)  

A buffer of 0.3 m was made around the stem cell. This buffer was applied to ground points. All 

points from the ground points, which fell into this buffer, were returned to tree points. An 

example of tree points with understory and ground points is presented in Figure 16, while an 

example of pure tree points is presented in Figure 17. 
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Figure 16. An example of TLS tree points with 
understory and ground points 

Figure 17. An example of  pure TLS tree points   

ALS data consisted mostly from points which belong either to the tree crown, either to the 

ground. It didn’t have any solitary outlier points. In order to extract solitary pure tree point 

clouds, tree points and ground points were separated depending on their height. If they were less 

than mean height value of the point cloud, they were considered as ground, if they were more – 

as a tree. Figure 14 shows an example of separation of a point cloud into ground and tree points. 

The height value was replaced by calculated shortest distance from the tree points towards the 

ground points. 

2.4.3.2. Tree parameters extraction  

Tree location 

In order to derive tree location, first, the cross-section of the point cloud of individual tree was 

done at breast height (1.3 m), which thickness was 10 cm (1.25 m – 1.35 m). After the subsection 

was done, a stem of a tree was represented as a set of points resembling the circular geometry of 

circumference. Second, tree stem was detected by circle fitting using “lsfit.circle” function in R 

software. The assumption was made, that the centre of each circumference represents the 

location of a tree. 

Tree crown projection perimeter 

Crown projections of solitary trees, which were extracted using vegetation mask and stored as 

shape files were used in order to derive tree crown projection perimeters. Perimeter of each tree 

crown object was calculated in ArcGIS using “Calculate geometry” function. 
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Tree height 

As height values of raw point cloud data of each solitary tree was in absolute heights, first, the z-

coordinate was corrected for ground level value. The tree height parameter was calculated as 

maximum height value (maximum of corrected z-coordinate) of the point cloud. 

Periphery points 

In the TCPE dataset there were only x and y coordinates of periphery points, however in PCTPE 

method also z-coordinate of the peripheral points was calculated, in order to use it for computing 

the periphery height. First, the minimum and maximum x and y coordinates of tree crown 

projections, made to horizontal plane, were found. These minimum and maximum x and y 

coordinates represented the coordinates of four points of the boundary box of the tree crown 

projection. On the other side, each of these coordinates was either x or y coordinate of one of the 

periphery points. Afterwards, using alternately each of these coordinates corresponding y and z 

coordinates or x and z coordinates were found. 

Periphery height 

The peripheral height is the height of the maximum width of the crown. In other words, the 

periphery height is the height, where the periphery points are situated. The 3D tree model is 

geometrically correct and symmetric; all the periphery points are situated at the same height. 

However, in reality it is not always the case. So the periphery height was found by averaging the 

z coordinates of four periphery points, calculation of which is described in Section ”Periphery 

points”. 

DBH  

The DBH parameter was computed with the identical approach described in the tree location 

calculation section, in which the location of a tree was retrieved by finding the centre of the 

circle, which was fitted to the cross-section of the point cloud made on breast height. The DBH 

parameter was calculated as diameter of fitted circumference. 

The height of the first bifurcation 

Vertical tree profile slices were made by every 5 cm and the number of returns was calculated 

for each slice. An example of graph, representing number of returns computed per slice of 

vertical tree profile, is presented in Figure 18. 



 

Figure 18. An example of graph, 
number of returns computed per slice of vertical 

tree profile

Afterwards a line was fitted through the plot of the num

Inflection points of the fitted line 

presented in Figure 19. Distances between 

point after which the largest increase was detected was 

branch of the tree starts. 

2.4.4. Assessment of quality of SILVI

ALStpe datasets

Quality of SILVI-STAR tree parameters, which were extracted from TLS and ALS point cloud 

data using PCTPE method,

sections of tree point clouds with derived parameters.

accurate was found and divided to the number of processed trees point clouds in order to 

calculate percent of cases when parameters were computed 

2.4.5. Validation of CP 

Based on previous research (

2006)) the assumption that TLS parameters retrieval is 

measurements was made. Thus the assessment of quality of the CP and the ALStpe datasets were 

made by comparing them with 

The assessment of quality of the CP dataset consist

algorithm ability to find individual tree locations, 2) validating tree crown projection perimeters 

and 3) validating extracted SILVI

points). The assessment of quality of the ALStpe dataset consisted on validating extracted 

SILVI-STAR parameters (tree height, peripheral height and 

2.4.5.1. Assessing the algorithms ability to find 

In order to investigate how well the algorithm finds trees, tree location extracted from CP dataset 

was compared with the ground truth stem locations from TLSref dataset. The distance between 

two corresponding points was

. An example of graph, representing 
number of returns computed per slice of vertical 

tree profile 

Figure 19. An example of inflection points of fitted 
line

a line was fitted through the plot of the number of the retur

of the fitted line were found. An example of inflection points of fitted line is 

istances between all inflection points were computed

point after which the largest increase was detected was considered as a

Assessment of quality of SILVI-STAR parameters

ALStpe datasets 

STAR tree parameters, which were extracted from TLS and ALS point cloud 

method, was assessed visually by comparing side views, top views and cross

sections of tree point clouds with derived parameters. The number 

accurate was found and divided to the number of processed trees point clouds in order to 

cases when parameters were computed correctly. 

Validation of CP and ALStpe datasets 

Based on previous research ((Watt et al. 2003), (Hopkinson et al. 2004

) the assumption that TLS parameters retrieval is as good as deriv

. Thus the assessment of quality of the CP and the ALStpe datasets were 

made by comparing them with TLSref dataset. 

The assessment of quality of the CP dataset consisted of several parts: 1) assessing the 

ability to find individual tree locations, 2) validating tree crown projection perimeters 

and 3) validating extracted SILVI-STAR parameters (tree height, periphery height, periphery 

The assessment of quality of the ALStpe dataset consisted on validating extracted 

STAR parameters (tree height, peripheral height and peripheral points).

Assessing the algorithms ability to find tree locations

investigate how well the algorithm finds trees, tree location extracted from CP dataset 

compared with the ground truth stem locations from TLSref dataset. The distance between 

was calculated and a threshold value was set
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An example of inflection points of fitted 
line 

er of the returns at the different slices. 

An example of inflection points of fitted line is 

computed. The inflection 

considered as a point, where the first 

parameters from TLSref and 

STAR tree parameters, which were extracted from TLS and ALS point cloud 

assessed visually by comparing side views, top views and cross-

The number of parameters extracted 

accurate was found and divided to the number of processed trees point clouds in order to 

Hopkinson et al. 2004), (Henning and Radtke 

derivation of them by field 

. Thus the assessment of quality of the CP and the ALStpe datasets were 

of several parts: 1) assessing the TCPE 

ability to find individual tree locations, 2) validating tree crown projection perimeters 

ers (tree height, periphery height, periphery 

The assessment of quality of the ALStpe dataset consisted on validating extracted 

peripheral points). 

tree locations 

investigate how well the algorithm finds trees, tree location extracted from CP dataset 

compared with the ground truth stem locations from TLSref dataset. The distance between 

set according to results of 
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interviews with urban tree managers. There were three possibilities defined as a result of 

comparison: 

1) True Positive (TP): when the distance between ground truth stem location and extracted 

from CP dataset was not more than threshold value (what was both in CP and TLSref 

datasets). 

2) False Negative (FN): when there were no trees from the CP dataset within the threshold 

value distance from the ground truth stem locations (what was missing in CP dataset 

compared to TLSref dataset). 

3) False Positive (FP): when there were no ground truth trees within the threshold value 

distance from the tree locations, extracted from CP dataset (what is more in CP dataset 

compared to TLSref dataset). 

Calculations of quality aspects were made based on (Xiao et al. 2012). Both producer’s and 

user’s accuracy were calculated with the use of TP, FN and FP. Producer’s accuracy 

(completeness) was calculated as TP/(TP+FN). User’s accuracy (correctness) was calculated as 

TP/(TP+FP). The quality was calculated as TP/(TP+FN+FP). Producer’s accuracy, user’s 

accuracy and quality approach 1. 

2.4.5.2. Assessing the quality of tree crown projection perimeters 

Both CP and ALStpe datasets were validated with TLSref dataset. Validation was done, by 

comparing tree crown projection perimeters from the CP dataset with corresponding tree crown 

projection perimeters from the TLSref dataset. For assessing the quality of tree crown projection 

perimeters such type of statistics as coefficient of determination (R2) and root-mean-square error 

(RMSE) were used. R2 is used to show the goodness of fit between the model and reality. 

Coefficient of determination ranges between 0 and 1, where 0 means no fit and 1 means a perfect 

fit.  

2.4.5.3. Assessing the quality of the SILVI-STAR parameters  

The SILVI-STAR parameters from CP and ALStpe datasets which were validated were: tree 

height, periphery height of a tree and locations of periphery points. Validation of these SILVI-

STAR attributes from CP and ALStpe datasets was made by comparing them with the 

corresponding attributes from the TLSref dataset. For assessing the quality of these parameters 

the coefficient of determination (R2) and root-mean-square error (RMSE) were used.  
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3. Results 

3.1. Usability aspect and requirements to the tree dataset 

Using the questionnaire two urban tree manages were interviewed in order to investigate which 

parameters of trees are necessary to know for them, which geometrical accuracies of this 

parameters they accept and how important are the tree dataset and 3D visualizations in urban tree 

management. Interviewed persons were municipal tree manager of Arnhem city Codi Duyster 

and tree manager of WUR campus Pieter Goedhart. The results of interview were almost 

opposite, most probably this was caused by the amount of trees each of them is managing.  

About 1200 campus trees are managed by Pieter Goedhart. From the interview with him it was 

found that he assesses the conditions of all campus trees visually, doesn’t measure any 

parameters of trees and it is possible to make visual observation of all campus trees easily. Thus 

neither a tree database with tree parameters nor 3D visualizations of trees were interesting to 

him.   

The results of an interview with Codi Duyster were quite different. He manages large amount of 

trees. As he mentioned there are 40 000 solitary trees in Arnhem city, which he manages, and 

about 1.5-2 million aggregated trees in parks and forests in the municipality of Arnhem.  

Answers of Codi Duyster to the part of questionnaire are presented in Table 3. 

Table 3. Answers of Codi Duyster to questions 3-5 of the questionnaire 
Parameter Which parameters 

of the trees are 
important for urban 
tree managers? 

How important is 
the accuracy of 
each parameter? 

What is the required 
accuracy for the 
important parameters? 

Tree location Essential Essential 0.2-0.5m 

Tree crown projection perimeter Neutral Essential 0.2-0.5m 

Tree height Essential Essential 0.5m 

Height of the first bifurcation  Important    Essential 0.5m 

Height of crown base Neutral Neutral     0.3m 

Periphery height  Neutral Neutral     1m 

Periphery points Minor importance   Important    0.3m 

Diameter at breast height (DBH) Important    Essential few cm 

He told that exact position of the tree is one of the essential tree parameters to know. The 

required accuracy for it is around 0.2-0.5 m. It should be quite precise, because in an urban 

environment all the territory is divided and has its owner. Knowing the exact location of the tree 

will improve urban planning.  
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He also mentioned that by themselves, without knowing parameters of the tree crowns, the 

locations of the trees are not such important. He noted that height of the first bifurcation is 

especially important in urban tree management as there is a law, according to which all the trees 

which are growing near the road have to be maintained in a special way, namely depending on 

the class of the road, branches of a tree should start growing at certain height and not lower. If 

the crown will start growing too low it can impede the traffic movement.  The point of the first 

bifurcation is also important to know in order to assess the stability of the tree; the lower this 

point is, the better the stability of the tree. Tree height is important for nursery. The higher the 

tree the more time is required for its maintenance. If the exact height of a tree is known it is 

easier to estimate the amount of time, labor and money, which are necessary for maintenance of 

a tree. Codi Duyster mentioned that by law, if DBH of the tree is more than 25 cm, even if it is 

private tree, it is not possible to cut it down without permission, because each tree costs money 

for the municipality.  

In general, he is convinced that it will be cheaper to have a tree database with information about 

essential parameters of the trees, because tree maintainers will not be obliged to go outside and 

measure it, thus it will save time and money. 

Codi Duyster is further convinced that 3D visualizations of trees could be useful for urban tree 

managers. He thinks they may help in many cases, for instance, in prediction of how diseases 

will spread by wind from one tree to another. During the diseases the tree crown is getting 

smaller – so the quality of the tree is getting worse and it can be shown by use of 3D models. 

The database and 3D models are necessary to have to know the reality outside. They are also 

useful in order to know what kind of investment is necessary to make, which economic value of 

the trees is in the city. Codi Duyster concluded that the quality of the trees in the cities is 

decreasing. Having 3D visualizations of them will serve to show visually the problems or the 

current situation and will help in creating better more persuasive reports to the local government.  

Another reason to support the idea that a tree database is useful for tree managers is given by a 

commercial party. Started in the second half of 2013, the firm Cobra (director Joost Verhagen is 

a recognized European Tree Technician) has the commercial lead for marketing web services 

based on the CP dataset. The basic CP dataset will be made available as Open Data through 

http://www.Boomregister.nl in 201418. 

 

                                                 
18 Source: personal communication with Frans Rip 



 

3.2. Results of data 
 

The terrestrial LiDAR point cloud data were collected during fieldwork 

2013 with a Riegl VZ-400

degrees.  

Terrestrial Laser Scanning data consisted of fifty

area. Each scan was made approximately in 5

2 minutes to move the tripod with the scanner to scan position. The data volume of 55 scans was 

equal to 10.3 Gb. The map, which presents the actual scan 

TLS scan positions The study area was completely covered by the scans, thus there were no 

white spots in the data.  

 

Pre-processing of the collected data included co

artefacts. Figure 21 shows co

Results of data acquisition and pre-processing 

The terrestrial LiDAR point cloud data were collected during fieldwork 

400 terrestrial laser scanner. The angle between the points was 0.06 

Terrestrial Laser Scanning data consisted of fifty-five scans at different locations of the study 

Each scan was made approximately in 5 minutes: about 2-3 minutes of scanning and about 

move the tripod with the scanner to scan position. The data volume of 55 scans was 

Gb. The map, which presents the actual scan positions, is presented in 

The study area was completely covered by the scans, thus there were no 

Figure 20. TLS scan positions 

processing of the collected data included co-registering of all the scans and removal of 

shows co-registered and filtered from artefacts TLS data.
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The terrestrial LiDAR point cloud data were collected during fieldwork on the 17th of December 

terrestrial laser scanner. The angle between the points was 0.06 

five scans at different locations of the study 

3 minutes of scanning and about 

move the tripod with the scanner to scan position. The data volume of 55 scans was 

is presented in Figure 20. 

The study area was completely covered by the scans, thus there were no 

 

registering of all the scans and removal of 

registered and filtered from artefacts TLS data. 



 

Figure 21. Co-registered and filtered from artefacts TLS scans (combination of 10 scans is presented in 

ALS data was already co-registered and without artefacts, thus co

not applied to ALS data.  

In order to combine all the point data, which were stored in different scans TLS and ALS scans 

and clip the data by the boundaries of the study area lasmerge and lasclip function was applied to 

the data. Merged and clipped TLS and ALS data are presented 

  

Figure 22

3.3. Results of data processing using PCTPE method

3.3.1. Delineation of 

Using lasclassify function of LAStools TLS points were classified. 

accomplished in order to investigate, which standard deviation threshold gives more precise 

separation of high vegetation and buildings points. 

registered and filtered from artefacts TLS scans (combination of 10 scans is presented in 
the image) 

registered and without artefacts, thus co-registration and filtering were 

In order to combine all the point data, which were stored in different scans TLS and ALS scans 

and clip the data by the boundaries of the study area lasmerge and lasclip function was applied to 

the data. Merged and clipped TLS and ALS data are presented Figure 22

22. Merged and clipped TLS (left) and ALS (right) data

Results of data processing using PCTPE method 

Delineation of trees 

Using lasclassify function of LAStools TLS points were classified. 

accomplished in order to investigate, which standard deviation threshold gives more precise 

separation of high vegetation and buildings points. The “building planarity” was set to 0.8, the 
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registered and filtered from artefacts TLS scans (combination of 10 scans is presented in 

registration and filtering were 

In order to combine all the point data, which were stored in different scans TLS and ALS scans 

and clip the data by the boundaries of the study area lasmerge and lasclip function was applied to 

22. 

. Merged and clipped TLS (left) and ALS (right) data 

Using lasclassify function of LAStools TLS points were classified. Set of experiments was 

accomplished in order to investigate, which standard deviation threshold gives more precise 

anarity” was set to 0.8, the 



 

“forest ruggedness” to 0.81. 

the study area were quite rugged. The

a 

c 
Figure 23. The result of point classification for different parts of the study area

 Points, which were classified as high 

high vegetation points are presented in 

 

Figure 
 

“forest ruggedness” to 0.81. The high threshold was chosen because the walls of the buildings in 

the study area were quite rugged. The result of the point classification is presented in

 

b 

 

d 
. The result of point classification for different parts of the study area

Points, which were classified as high vegetation, were selected using las2las function

high vegetation points are presented in Figure 24. 

Figure 24. Points, which belong to "high vegetation" class
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The high threshold was chosen because the walls of the buildings in 

result of the point classification is presented in Figure 23. 

 

Legend 

 

 

. The result of point classification for different parts of the study area 

using las2las function. Selected 

 
"high vegetation" class 



 

Initial vegetation mask was produced by making aggregation of the selected points in ArcGIS. It 

included solitary trees, aggregations of trees and objects which were incorrectly classified as 

trees. Thereafter only solitary trees 

Figure 25 shows vegetation mask with aggregation of trees and noise and vegetation mask, 

which consists only on solitary trees. 

Figure 25. Vegetation mask with aggregation of trees and noise (left) and vegetation mask consisting only 

 

3.3.2. Pre-processing of individual tree point clouds

Pre-processing of individual tree point clouds included removal of solitary outlier points and 

removal of ground points and understory. 

individual trees point clouds, were filtered. Side views of filtered individual trees point clouds 

are presented in Appendix 4.2. 

a 
Figure 26

 

Thereafter the understory and ground points were removed from individual tree point clouds, 

thus only pure tree points remain. Pure tree TLS and ALS points are presented in Appendix 

Figure 27 shows pure tree point clouds, which were 

ground points. These TLS and ALS 

processed in order to extract tree parameters.

Initial vegetation mask was produced by making aggregation of the selected points in ArcGIS. It 

included solitary trees, aggregations of trees and objects which were incorrectly classified as 

Thereafter only solitary trees were selected. 

shows vegetation mask with aggregation of trees and noise and vegetation mask, 

which consists only on solitary trees. The total amount of identified solitary trees was 240.

Vegetation mask with aggregation of trees and noise (left) and vegetation mask consisting only 
on solitary trees (right)  

processing of individual tree point clouds 

processing of individual tree point clouds included removal of solitary outlier points and 

removal of ground points and understory. Solitary outlier points, which were present in 

uds, were filtered. Side views of filtered individual trees point clouds 

4.2. Figure 26 shows filtered from solitary outlier points trees. 

  
b 

26. Tree point clouds filtered from solitary outlier points

Thereafter the understory and ground points were removed from individual tree point clouds, 

thus only pure tree points remain. Pure tree TLS and ALS points are presented in Appendix 

shows pure tree point clouds, which were produced after filtering understory and 

These TLS and ALS point clouds, which included only tree points,

processed in order to extract tree parameters. 
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Initial vegetation mask was produced by making aggregation of the selected points in ArcGIS. It 

included solitary trees, aggregations of trees and objects which were incorrectly classified as 

shows vegetation mask with aggregation of trees and noise and vegetation mask, 

ntified solitary trees was 240. 

Legend 

 Vegetation 
mask 

 Study area 

 
 

 

Vegetation mask with aggregation of trees and noise (left) and vegetation mask consisting only 

processing of individual tree point clouds included removal of solitary outlier points and 

Solitary outlier points, which were present in 

uds, were filtered. Side views of filtered individual trees point clouds 

shows filtered from solitary outlier points trees.  

 
c 

. Tree point clouds filtered from solitary outlier points 

Thereafter the understory and ground points were removed from individual tree point clouds, 

thus only pure tree points remain. Pure tree TLS and ALS points are presented in Appendix 4.3. 

after filtering understory and 

point clouds, which included only tree points, were 
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a b c 
Figure 27. Tree point clouds filtered from understory and ground points 

 

3.3.3. Result of extraction and assessment of tree parameters 

The result of the processing of pure tree point clouds extracted from TLS and ALS data with R 

script were tree parameters, which were stored in corresponding datasets. Table 4 shows 

parameters which were extracted and stored in each dataset.  

Table 4. Parameters stored  in the datasets 
Dataset CP dataset TLSref dataset ALStpe dataset 
Data from which the parameters were 
extracted  

AHN raster, ALS 
LiDAR data 

Point cloud, TLS 
LiDAR data 

Point cloud, ALS 
LiDAR data 

Tree location + +  
Tree crown projection perimeter + +  
Tree height + + + 
Periphery height + + + 
Periphery points + + + 
Height of the first bifurcation  +  
DBH  +  

Not all of the parameters from Table 4 could be extracted from ALS data using PCTPE method, 

mostly because it had fewer points. Figure 28 shows side views of tree extracted from TLS data 

and from ALS data, where the differences between TLS and ALS data can be well noticed.  
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Figure 28. Side view of a tree, extracted from TLS data (left) and from ALS data (right) 
 

There were a few stem points or no stem point at all in tree point clouds, extracted from ALS 

data. This made it impossible to extract DBH and the height of the first bifurcation of the tree 

from the ALS data with the created method. As in the PCTPE method tree location was derived 

from the circle fitted on the stem cross-section made on breast height, it wasn’t possible to derive 

this parameter from ALS point data. Tree crown projection perimeter was calculated for the tree 

crown projection shape files, with which both TLS and ALS data was clipped in order to extract 

individual trees point clouds. Thus if it would be extracted the values of this parameter would be 

the same in TLSref and ALStpe datasets. It wasn’t worthwhile to add this parameter to ALStpe 

dataset and validate it.  

Height of the first living fork 
 

The height of the first living fork was extracted from TLS data and stored in TLSref dataset. For 

all of the trees graphs with side view of a tree and a line representing the height of the first 

bifurcation were produced. These graphs are presented in Appendix 4.4. 

In Figure 29 and Figure 30 side views of the different shape trees, where the height of the first 

living fork is shown, are presented. 



31 
 

  

Figure 29. Examples of trees’ side views with vertical profile and the red line, which represents the height 
of the first living fork 

 

Figure 30. Cut pollard-willows, which first branch heights were detected correctly 
 

According to visual analysis of the side view graphs of the trees with the red line, which 

represents the height, where the first living fork starts to grow, in 60.41% of cases the parameter 

was calculated correctly, like it shown in Figure 29 and Figure 30. 

Tree side views, where the height of the first living fork was not detected correct due to different 

reasons are presented in Figure 31, Figure 32 and Figure 33. 
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Figure 31. First branch detection on cut pollard-willows, which branches start growing from the bottom 
of stem  

 

Figure 32. Low amount of tree points on certain height caused by obstruction during scanning. 
 

a b 
Figure 33. Examples of tree point clouds with noise, which caused errors in detection of first branch  

Difference in detection of height of first branch for trees with upwardly directed secondary 

branches and downwardly directed secondary branches is presented in Figure 34. 
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Figure 34. Detection of first branch height on trees with upwardly directed secondary branches(right)  
and downwardly directed secondary branches(left)  

 

DBH 
 

Diameter at breast height values were calculated and stored in TLSref dataset. For all of the trees 

graphs with cross-sections of tree point cloud at breast height and circles fitted through them 

were produced. The graphs are shown in Appendix 4.5. 

Examples of circles fitted through the cross-sections of trees point clouds correctly are presented 

in Figure 35. 

 

Figure 35. Examples of  circles fitted through tree cross-sections made on breast height correctly  

According to visual analysis of the graphs of fitting circle to the tree cross sections about 63.07% 

of circles were fitted correct. This allows assuming that at least 63.07% of DBH values were 

calculated correctly, like it presented in Figure 35.  

Figure 36 and Figure 37 show errors in fitting circle through cross-sections of tree point clouds, 

made on breast height.  
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Figure 36. Not correct circle fitting through cross-sections of trees caused by appearance of foreign 
objects and noise points  

Visual assessment showed that situations than circles were fitted incorrectly, like it presented in 

Figure 36, happened quire rare, only in 8.71% of cases. 

  

Figure 37. Not correct circle fitting through cross-sections of trees caused by appearance of branches on 
the breast height level  

 According to visual assessment, situations, when circle was fitted in the way in presented in 

Figure 37 occurred in 28.21% of cases. 

Tree location 
 

Tree locations extracted with TCPE method were compared with locations extracted with 

PCTPE method, which was used as a reference (Figure 38). 



 

Figure 38. Distances between tree locations from TLSref and CP datasets (part of the study area)
 

There were 240 trees in the TLSref dataset and 364 trees in CP dataset. In order to assess the 

retrieval of trees location, the spatial distance

corresponding tree locations from TLSref dataset were computed

is presented in Table 5. 

Table 5. Result of the comparison of tree locations from the datasets
True Positives (TP) 
False Negatives (FN) 
False Positives (FP) 

The comparison showed that 

dataset compared to TLSref dataset

dataset. Figure 39 shows the map of True Positives, False Negatives and False Positives.

 

Legend

 

 

 

Distances between tree locations from TLSref and CP datasets (part of the study area)

trees in the TLSref dataset and 364 trees in CP dataset. In order to assess the 

retrieval of trees location, the spatial distances between tree location

corresponding tree locations from TLSref dataset were computed. The result of th

Result of the comparison of tree locations from the datasets 
55 
186 
309 

that 55 trees were found in both datasets, 186 

dataset compared to TLSref dataset, and 309 trees were more in CP dataset compared to TLSref 

shows the map of True Positives, False Negatives and False Positives.
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Legend 

 Tree location from 
TLSref dataset 

 Tree location from CP 
dataset 
Distance between tree 
locations from TLSref 
and CP datasets 

 

Distances between tree locations from TLSref and CP datasets (part of the study area).  

trees in the TLSref dataset and 364 trees in CP dataset. In order to assess the 

between tree locations from CP dataset and 

The result of the comparison 

 trees were missing in CP 

trees were more in CP dataset compared to TLSref 

shows the map of True Positives, False Negatives and False Positives. 



 

 

Comparison of percentage of trees with certain height and crown projection perimeter for TP, FN 

and FP trees is presented in 

Figure 40. Comparison of tree heights distribution in TP,
 

In FP around 17.53% of the all trees were very small trees (less than 3 m), approximately the 

same percent were very high trees (more than 15 m). Small trees from the CP dataset seem to be 

infrastructure object, because of the identical shape 

were no small trees (less than 3 m) in TLSref dataset. 

mostly trees separated from aggregations of trees. 
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Legend

Figure 39. Map presenting TP, FN and FP 

Comparison of percentage of trees with certain height and crown projection perimeter for TP, FN 

and FP trees is presented in Figure 40 and Figure 41.  

. Comparison of tree heights distribution in TP, FN and FP

% of the all trees were very small trees (less than 3 m), approximately the 

same percent were very high trees (more than 15 m). Small trees from the CP dataset seem to be 

infrastructure object, because of the identical shape and regularity in spatial distribution. 

were no small trees (less than 3 m) in TLSref dataset. Very high trees from the CP dataset are 

mostly trees separated from aggregations of trees.  

TP FN FP
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Legend 
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Comparison of percentage of trees with certain height and crown projection perimeter for TP, FN 

 

FN and FP 

% of the all trees were very small trees (less than 3 m), approximately the 

same percent were very high trees (more than 15 m). Small trees from the CP dataset seem to be 

and regularity in spatial distribution. There 

Very high trees from the CP dataset are 

>15 m 

6-15 m 

3-6 m

< 3 m 



 

Figure 41. Comparison of tree crown
 

Producer’s accuracy which determines the ability of the algorithm to extract all trees in the study 

area was equal to 0.23. User’s accuracy 

tree in reality was equal to 0.15. The quality was equal to 0.1.

 

Tree crown projections were extracted and stored in the TLSref dataset. 

area with tree crown projections from the CP dataset and the TLSref dataset are 

Figure 42. 

Figure 42. Tree crown projections from TLSref and CP datasets (part of the study area)
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crown projections were extracted and stored in the TLSref dataset. 

area with tree crown projections from the CP dataset and the TLSref dataset are 
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distribution in TP, FN and FP 

which determines the ability of the algorithm to extract all trees in the study 

which defines the probability of a tree extraction being a 

crown projections were extracted and stored in the TLSref dataset. Fragment of the study 

area with tree crown projections from the CP dataset and the TLSref dataset are presented in 

Legend 

Tree canopy 
projections from the 
TLSref dataset 
Tree canopy 
projections from the 
CP dataset 

 

Tree crown projections from TLSref and CP datasets (part of the study area) 

Tree crown projection perimeter 
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The quality of this parameter 

goodness of fit between the

methods. The coefficient of determination 

26.64 m2. Figure 43 shows scatter plot of tree crown projection perimeter

and tree crown projection perimeter from CP dataset.

 

Figure 43. Scatter plot which shows goodness of fit between tree crown projection perimeter from TLSref 
dataset (x-axis) and tree crown projection perimeter from CP dataset (y

 

 

Tree heights were found both from TLS and ALS data and stored correspondently to TLSref and 

ALStpe datasets.  

The graphs of tree side views of all the trees, extracted from TLS and ALS 

height plotted on them as red line are presented in Ap

According to visual assessment of 

the height of the tree from TLSref dataset

Examples of trees, extracted from TLS point data which heights were calculated correctly are 

shown in Figure 44. 

of this parameter was assessed by means of R2 and RMSE, which serve to show the 

goodness of fit between the tree crowns projection perimeters extracted with 

The coefficient of determination is equal to 0.62. Root mean square error 

shows scatter plot of tree crown projection perimeter

tree crown projection perimeter from CP dataset. 

Scatter plot which shows goodness of fit between tree crown projection perimeter from TLSref 
crown projection perimeter from CP dataset (y-axis). T

red. The 1:1 line is plotted in grey 

Tree Height 

found both from TLS and ALS data and stored correspondently to TLSref and 

The graphs of tree side views of all the trees, extracted from TLS and ALS 

height plotted on them as red line are presented in Appendix 4.6. 

According to visual assessment of graphs of trees side views with the red line, which 

from TLSref dataset, 93.62% of tree heights were calculated correctly.

Examples of trees, extracted from TLS point data which heights were calculated correctly are 
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and RMSE, which serve to show the 

tree crowns projection perimeters extracted with PCTPE and TCPE 

. Root mean square error is equal to 

shows scatter plot of tree crown projection perimeter from TLSref dataset 

 

Scatter plot which shows goodness of fit between tree crown projection perimeter from TLSref 
axis). The trend line is plotted in 

found both from TLS and ALS data and stored correspondently to TLSref and 

The graphs of tree side views of all the trees, extracted from TLS and ALS point data, with 

graphs of trees side views with the red line, which represents 

of tree heights were calculated correctly. 

Examples of trees, extracted from TLS point data which heights were calculated correctly are 
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Figure 44. Extracted from TLS data trees side views, which tree height parameters were calculated 
correctly. Red line represents calculated height of a tree. 

Figure 45 shows tree side views, extracted from TLS point data, which heights were 

miscalculated. 

  

a b 
Figure 45. Extracted from TLS data, trees side views, which tree height parameters were calculated 

incorrectly because of noise in data. Red line represents calculated height of a tree. 

According to visual assessment of graphs of trees side views with the red line, which represents 

the height of the tree from ALStpe dataset, 45.99% of tree heights were calculated correctly. 

Examples of trees, extracted from ALS point data which heights were calculated correctly are 

shown in Figure 46. 



 

a 
Figure 46. Extracted from A

correctly. Red line represents calculated height of a tree.

Figure 47 and Figure 48 show

points. The separation in Figure 

ground points was calculated correctly

miscalculated because of wrong separation

Figure 47. ALS tree point clouds, where points are 
divided to tree points and ground points and the 

separation of points is perfect
 

Figure 49 shows tree side views, extracted from ALS point data, which heights were 

overestimated or underestimated.

 

. Extracted from ALS data trees side views, which tree height parameters were calculated 
correctly. Red line represents calculated height of a tree.

show ALS tree point clouds’ separation into ground points and tree 

Figure 47 was perfect, thus shortest distance from tree points towards 

ground points was calculated correctly. For the tree presented in Figure 

wrong separation. 

 
ALS tree point clouds, where points are 

divided to tree points and ground points and the 
separation of points is perfect 

Figure 48. ALS tree point clouds, where points are 
divided to tree points and ground points and some 

tree points are misclassified as ground points

shows tree side views, extracted from ALS point data, which heights were 

underestimated. 
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b 
trees side views, which tree height parameters were calculated 

correctly. Red line represents calculated height of a tree. 

ALS tree point clouds’ separation into ground points and tree 

perfect, thus shortest distance from tree points towards 

Figure 48 tree height was 

 
ALS tree point clouds, where points are 

divided to tree points and ground points and some 
tree points are misclassified as ground points 

shows tree side views, extracted from ALS point data, which heights were 



 

a 
Figure 49. Extracted from A

(a) because of noise in data or underestimated (b)
the ground

 

The quality of tree height parameter was 

and RMSE of are shown in 

 

Table 6. Result of the assessment of tree height
 
CP dataset vs. TLSref dataset 
ALStpe dataset vs. TLSref datas
 
Figure 50 and Figure 51 show scatter plots of TLSref tree height (x

tree heights/ALStpe tree heights (y

Figure 50. Scatter plot which shows goodness of 
fit between tree height from TLSref dataset (x
axis) and tree height from CP dataset (y
The trend line is plotted in red

plotted in grey 
 

 

d from ALS data, trees side views, which tree height parameters were 
or underestimated (b) because of incorrect calculation of shortest 

the ground. Red line represents calculated height of a tree.

The quality of tree height parameter was assessed for CP dataset and for ALStpe dataset. 

and RMSE of are shown in Table 6. 

Result of the assessment of tree height 
R2  RMSE

 0.20 5.41 
dataset vs. TLSref dataset 0.71 3.89 

show scatter plots of TLSref tree height (x-axis) and

tree heights/ALStpe tree heights (y-axis). 

 

Scatter plot which shows goodness of 
fit between tree height from TLSref dataset (x-
axis) and tree height from CP dataset (y-axis). 

plotted in red. The 1:1 line is 
plotted in grey  

Figure 51. Scatter plot which shows goodness of fit 
between tree height from TLSref dataset (x
tree height from ALStpe dataset (y
line is plotted in red. The 1:1 line is plotted in grey 
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b 

LS data, trees side views, which tree height parameters were overestimated 
calculation of shortest distance to 

. Red line represents calculated height of a tree. 

assessed for CP dataset and for ALStpe dataset. The R2 

RMSE, m 

axis) and corresponding CP 

 

Scatter plot which shows goodness of fit 
between tree height from TLSref dataset (x-axis) and 
tree height from ALStpe dataset (y-axis). The trend 

he 1:1 line is plotted in grey  
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Periphery height 
 

Tree periphery heights were calculated both from TLS and ALS data and stored correspondently 

to TLSref and ALStpe datasets. 

The graphs of tree side views of all the trees, extracted from TLS and ALS point data, with 

periphery height plotted on them as green line are presented in Appendix 4.6. According to 

visual assessment of graphs of trees side views with the green line, which represents the 

periphery height of the tree from TLSref dataset, 93.19% of tree periphery heights were 

calculated correctly.  

Examples of trees, extracted from TLS point data with correctly calculated periphery height are 

shown in Figure 52. 

 
 

Figure 52. Extracted from TLS data tree side views, which periphery height calculated by PCTPE method 
are correct. Periphery height is presented by green line. 

 

Examples of incorrectly computed periphery heights from TLSref dataset are presented in Figure 

53. 



 

Figure 53. Extracted from TLS data tree side 
are in

According to visual assessment of graphs of trees side views with the green line, which 

represents the periphery height of the tree

were calculated correctly. 

Examples of trees, extracted from ALS data, which periphery heights were calculated correctly 

are presented in Figure 54. 

Figure 54. Extracted from ALS data tree side views, which periphery height calculated by PCTPE method 
are correct. Periphery height is presented as green line.

 

Examples of trees, extracted from ALS data, which periphery heights were calculated 

are presented in Figure 55. 

 

Extracted from TLS data tree side views, which periphery height calculated by 
incorrect. Periphery height is presented as green line

 
According to visual assessment of graphs of trees side views with the green line, which 

represents the periphery height of the tree from ALStpe dataset, 77.22% of tree periphery heights 

Examples of trees, extracted from ALS data, which periphery heights were calculated correctly 

 

 
LS data tree side views, which periphery height calculated by PCTPE method 

are correct. Periphery height is presented as green line.

Examples of trees, extracted from ALS data, which periphery heights were calculated 
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which periphery height calculated by PCTPE method 
line. 

According to visual assessment of graphs of trees side views with the green line, which 

, 77.22% of tree periphery heights 

Examples of trees, extracted from ALS data, which periphery heights were calculated correctly 

 

LS data tree side views, which periphery height calculated by PCTPE method 
are correct. Periphery height is presented as green line. 

Examples of trees, extracted from ALS data, which periphery heights were calculated incorrectly 



 

Figure 55. Extracted from ALS data tree side views, which periphery height calculated by PCTPE 
method, are 

 

The quality of tree periphery 

dataset. The R2 and RMSE of are shown in 

Table 7. Result of the assessment of 
 
CP dataset vs. TLSref dataset 
ALStpe dataset vs. TLSref dataset
 
Figure 56 and Figure 57 

corresponding CP tree heights/ALStpe tree heights (y

Figure 56. Scatter plot which shows goodness of fit 
between tree periphery height from TLSref dataset (x

axis) and tree height from CP dataset (y
trend line is plotted in red. The 1:1 line is plotted in 

grey
 

 

 
Extracted from ALS data tree side views, which periphery height calculated by PCTPE 

are incorrect. Periphery height is presented as green line.

periphery height parameter was assessed for CP dataset and for ALStpe 

and RMSE of are shown in Table 7. 

Result of the assessment of periphery height 
R2  RMSE

 0.23  5.95 
ALStpe dataset vs. TLSref dataset 0.36 1.69 

 show scatter plots of TLSref tree periphery 

corresponding CP tree heights/ALStpe tree heights (y-axis). 

 

Scatter plot which shows goodness of fit 
between tree periphery height from TLSref dataset (x-

axis) and tree height from CP dataset (y-axis). The 
. The 1:1 line is plotted in 

grey 

Figure 57. Scatter plot which shows goodness of 
fit between tree periphery height from TLSref 
dataset (x-axis) and tree height from ALStpe 

dataset (y-axis). The trend
The 1:1 line is plotted in grey
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Extracted from ALS data tree side views, which periphery height calculated by PCTPE 
correct. Periphery height is presented as green line. 

height parameter was assessed for CP dataset and for ALStpe 

RMSE, m 

periphery height (x-axis) and 

 

Scatter plot which shows goodness of 
fit between tree periphery height from TLSref 

axis) and tree height from ALStpe 
he trend line is plotted in red. 

The 1:1 line is plotted in grey 



 

 

Tree periphery point’s coordinates

correspondently to TLSref and ALStpe datasets. 

The graphs of tree top views of all the 

periphery points plotted on them as red dots are presented in Appendix

assessment of graphs of trees top views with four red 

points of the tree crown from TLSref dataset

were calculated correctly 

Figure 58 shows top views of trees

calculated periphery points on them.

Figure 58. Examples of tree top view

Figure 59 shows examples of tree top views

calculated periphery points.

Periphery points 

point’s coordinates were calculated both from TLS and ALS data and stored 

correspondently to TLSref and ALStpe datasets.  

The graphs of tree top views of all the trees, extracted from TLS and ALS point data with 

periphery points plotted on them as red dots are presented in Appendix

assessment of graphs of trees top views with four red points, which represents the periphery 

from TLSref dataset, for 90,21% of the trees periphery point locations 

shows top views of trees, extracted from TLSref dataset, with marked four 

periphery points on them. 

 

. Examples of tree top view, extracted from TLS, and four periphery points (red dots)
correctly 

shows examples of tree top views, extracted from ALStpe dataset

calculated periphery points. 
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were calculated both from TLS and ALS data and stored 

trees, extracted from TLS and ALS point data with 

periphery points plotted on them as red dots are presented in Appendix 4.7. According to visual 

, which represents the periphery 

of the trees periphery point locations 

with marked four correctly 

 

and four periphery points (red dots) calculated 

, extracted from ALStpe dataset with incorrectly 



 

Figure 59.Examples of tree top view

According to visual assessment of graphs of trees top views with four red points, which 

represents the periphery points of the tree crown from ALStpe dataset, for 65.4% of the trees 

periphery point locations were calculated correctly.

Figure 60 shows top views of trees, extracted from 

calculated periphery points on them.

Figure 60. Examples of tree top view, extracted from 

 

Figure 61 shows examples of tree top views, extracted from ALStpe dataset with incorrectly 

calculated periphery points.

 

Examples of tree top view, extracted from TLS and four periphery points (red dots) calculated 
incorrectly 

According to visual assessment of graphs of trees top views with four red points, which 

represents the periphery points of the tree crown from ALStpe dataset, for 65.4% of the trees 

periphery point locations were calculated correctly. 

shows top views of trees, extracted from ALSref dataset, with marked four correctly 

periphery points on them. 

 
Examples of tree top view, extracted from ALS, and four periphery points (red dots) calculated 

correctly 

shows examples of tree top views, extracted from ALStpe dataset with incorrectly 

calculated periphery points. 
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and four periphery points (red dots) calculated 

According to visual assessment of graphs of trees top views with four red points, which 

represents the periphery points of the tree crown from ALStpe dataset, for 65.4% of the trees 

LSref dataset, with marked four correctly 

 
LS, and four periphery points (red dots) calculated 

shows examples of tree top views, extracted from ALStpe dataset with incorrectly 



 

Figure 61. Examples of tree top view, extracted fro

 

The quality of each coordinate of periphery points

dataset. The R2 and RMSE of are shown in 

 

Table 8. Result of comparison of periphery 
points from TLSref and CP datasets
Periphery point R2 
P1x 0.9957 
P1y 0.9063 
P2x 0.9951 
P2y 0.9134 
P3x 0.9950 
P3y 0.9088 
P4x 0.9948 
P4y 0.9054 
 
Scatter plots of TLSref periphery 

dataset (y-axis) are presented in Appendix 

and corresponding periphery points from ALStpe dataset 

 

 

 

 

 

Examples of tree top view, extracted from ALS, and periphery points (red dots) calculated 
incorrectly 

each coordinate of periphery points was assessed for CP dataset and for ALStpe 

and RMSE of are shown in Table 8 and Table 9. 

Result of comparison of periphery 
nd CP datasets 

 Table 9. Result of comparison of periphery 
points from TLSref and ALStpe datasets

RMSE, m  Periphery point R
11.1754  P1x 0.9915
27.0693  P1y 0.9
11.9899  P2x 0.991
25.8219  P2y 0.9476
12.2233  P3x 0.9915
26.5452  P3y 0.9
12.3760  P4x 0.991
27.2265  P4y 0.9460

periphery points (x-axis) and corresponding CP 

are presented in Appendix 2. Scatter plots of TLSref 

periphery points from ALStpe dataset (y-axis) are presented in Appendix 
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LS, and periphery points (red dots) calculated 

was assessed for CP dataset and for ALStpe 

Result of comparison of periphery 
points from TLSref and ALStpe datasets 

R2 RMSE, m 
0.9915 15.0238 
0.9469 24.3271 
0.9915 14.9665 
0.9476 24.1311 
0.9915 15.0547 
0.9470 24.3031 
0.9915 15.0285 
0.9460 24.6314 

axis) and corresponding CP periphery points from CP 

catter plots of TLSref periphery points (x-axis) 

are presented in Appendix 3. 
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4. Discussion and recommendations 
  

This section is dedicated to discussion of the results of the tree parameters extraction from point 

cloud TLS and ALS data using PCTPE method and discussion of the results of validation of CP 

dataset and ALStpe dataset by TLSref dataset, as well as discussion of results of interview and 

data used in the research. The main focus lies on the causes of errors and inaccuracies of the 

extraction algorithms. This chapter also provides recommendations for improvement of tree 

parameters extraction. 

4.1. Discussion of usability and requirements 

The interviews with urban tree managers were not aiming at investigation of the opinion of all 

tree managers in the Netherlands about the tree dataset. The purpose of it was in defining 

potential need in 3D visualisations of trees, potential necessity of tree database and requirements, 

which it should satisfy.  With the help of the interviews in was found that tree locations, three 

height, first living fork and DBH parameters are essential to know in urban tree management. 

However, 3D visualisations are also have potential use in urban tree management, consequently, 

all SILVI-STAR or other tree parameters which could be used to produce 3D models of trees, are 

important to know. Requirements to geometrical accuracy of the tree parameters were used 

during visual assessment of extracted tree parameters.  

4.2. Discussion of data 

Three different data sources, namely raster ALS point ALS and point TLS data were used to 

delineate trees and extract their parameters. The data specifications were different from each 

other. According to previous research extraction of tree parameters from TLS data gives more 

accurate result. TLS gives opportunity to derive information on below canopy level. This 

information can be hardly acquired with ALS, because of the occlusion by the upper parts of the 

crown (Hilker et al. 2010). However, ALS data scans above the ground and covers larger area 

and TLS in comparison with it is less suitable to investigate trees structure (Hilker et al. 2012). 

There is also one source of LiDAR data, which was not used in the research. It is mobile LiDAR 

data. The advantage of this technique is in ability of catch vertical structure of trees like TLS and 

in possibility to collect data on the same area faster, than TLS (Rutzinger et al. 2010). Hence this 

data could be a good alternative to TLS data. 
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4.3. Discussion of tree delineation 

Initial non-vegetation mask, which was produced by aggregation points, classified as high 

vegetation, included a lot of foreign objects, which did not belong to high vegetation class. This 

happened, because classification of points was not perfect. The classification algorithm was 

checking if the standard deviation of the points which are 1.3 meter above the ground is below 

0.8 (buildings) or above (high vegetation) the standard deviation threshold. Despite the threshold 

of planarity/ruggedness was quite high (0.8), points which in reality were belonging to edges of 

buildings, to bike shed, lamp posts, statues were classified as high vegetation, which is presented 

in Figure 23. The result of point classification for different parts of the study area This could be 

explained by roughness of building walls, which require higher standard deviation values for 

being classified as ‘buildings’. Meanwhile some points, which actually belong to a tree, were 

classified as buildings, like in shown in Figure 23b. This occurred because the threshold for 

ruggedness was too high for separating points of some trees. Recommendations for the 

classification of points using lasclassify tool is to make test classification first in order to find 

appropriate parameters. 

Solitary trees were extracted from the vegetation mask by visual assessment of objects’ shapes. 

This approach was time-consuming. First recommendation is to additionally introduce 

reflectance values of the data in order avoid the occurrence of foreign objects in vegetation 

mask. Second recommendation is to find a way to automatically detect solitary trees and separate 

them from aggregation of trees. This could be done, for instance, by creating top view density 

graphs for aggregations of trees to find stems positions, making a buffer of certain width around 

found stems and clipping aggregation of trees points using the buffer. LiDAR based methods, 

which are were used by other researchers for individual tree delineation could be used to solve 

the problem. The most popular method of tree crown boundaries delineation in 2D data have 

been watershed segmentation (Lee et al. 2010). Marker-controlled watershed separation (Chen et 

al. 2006) gave absolute accuracy of trees delineation of 64.1%. The region-growing algorithm 

gave similar quite result, it was able to detect two third of non-suppressed trees (Solberg et al. 

2006). While the overall accuracy of the crown delineation based on Optimized object 

recognition, Treetop identification, and Hill-climbing (COTH) method was 72.5% (Gleason and 

Im 2012). There are also methods of 3D delineation of trees, presented in works of (Li et al. 

2012) and (Lee et al. 2010). In the research of Lee et al. a new method which was similar to 

watershed segmentation however applicable to raw LiDAR point data was presented. The overall 

tree detection accuracy of this method was 95.1%. An algorithm developed by Li et al. gave the 

overall accuracy of 94%. 
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4.4. Discussion of pre-processing of individual trees point clouds 

Pre-processing of individual tree point cloud was aiming at noise removal. However, in some 

tree point clouds not all the noise was removed. Mostly it concerned foreign objects, which were 

present in the point cloud, like it presented in Figure 33b and grass near tree stem, like it shown 

in Figure 27a. In some cases, as shown in Figure 27b and c, a part of a stem or the whole stem 

was cut. The removal of the whole stem means that there was a foreign object, like lamp post, in 

a point cloud and due to this stem location, which was derived from density top view raster, was 

calculated in the position, where a foreign object was situated. Therefore, instead of stem points, 

part of the foreign object was returned to the pure tree point cloud. In case, when only part of the 

stem is deleted, the buffer which is taken around the stem position should be enlarged, that will 

solve the problem.  

Foreign objects in tree point clouds lead to problems in calculation of tree parameters, hence 

they should be recognized by the algorithm and the method should be adjusted to process such 

point clouds. Filtering of foreign objects could be in individual tree point clouds implemented by 

using intensity information of LiDAR data. 

4.5. Discussion of the results of the improvement of tree parameters 

extraction 
 

One of the aims of the research was in making improvements in extracting parameters of the 

trees. Parameters, which were extracted using TLS point cloud data and PCTPE method, were 

expected to be more precise, were considered as ground truth and were used to validate 

parameters from ALStpe and CP datasets.  

4.5.1. Height of the first living fork of the tree 
 

Problems with extraction of first branch height appeared mostly during the processing of bushes, 

which had no stem or trees, which braches, because of human maintenance, started growing near 

the ground. Such human maintained cut pollard-willows are presented in Figure 31. 

In this case the error in calculation of the parameter happened, because during the cleaning of the 

tree point clouds from noise, understory and ground points, part of a point cloud, which was 

lower and 1.3 m was classified as non-tree points and afterwards, in order to return stem points 

to a tree, non-tree points which were within a buffer of 0.3 m from stem location were added to 

tree points again. This algorithm worked well for trees, which had standard shape, however, for 

trees which had a lot of low branches, it happened, that a part of tree was cut. This caused sharp 
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jump on the vertical profile of a tree on 1.3 m height and, eventually, the first branch was 

detected on this height. 

Another problem was detected during the extraction of first branch height parameter from cut 

pollard-willows. Trees were obstructed by metal frame of bike shed on the approximate height 2-

3 m during their scanning from one side. This caused low amount of points in tree point clouds 

and detection of the first branch at this height (Figure 32).  

However, some of these of trees didn’t have the problems, discussed above, and first branch 

detection was successful for them. Examples of such trees are presented in Figure 30. 

The most precise detection of the first branch height was observed for more or less standard 

shape trees with upwardly directed branches. Detection of first branch height on trees with 

upwardly directed secondary branches and downwardly directed secondary branches is presented 

in Figure 34. For the trees with downwardly directed secondary branches, the first branch was 

detected lower than it starts in reality. In case if the secondary or even the branches of the first 

order were directed downwards and their ends were situated lower than real first branch, the high 

number of returns on vertical profile of a tree occurred right on the height, where downwards 

directed branches were finished. This height was detected by algorithm as a height of first 

branch. 

In some cases not all the noise points were filtered from the tree point cloud, which caused errors 

in detection of first branch height (Figure 33). 

In order to reduce errors described above, several procedures are suggested to accomplish. First, 

after the separation of initial tree point cloud into tree/non-tree points, during the procedure of 

retrieving stem points back to a tree, it is necessary to expand the buffer, which is made around 

tree location. Second, if it is possible scan trees in such a way that minimal amount of objects 

will obstruct it. 

4.5.2. Diameter at breast height 
 

Problems with fitting circle in the tree cross-section at breast height occurred because of the 

noise or some foreign objects were not deleted after the filtering process. As they were not 

removed, circle was fitted both through points, which belong to stem and through noise points 

(Figure 36). These situations lead to overestimation of DBH, however they happened quite rare. 

Problems were also observed for trees, which had branches at this certain height of 1.3 meters 

(Figure 37).  The branches points were not filtered, and the circle was fitted taking them into 
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account. These situations occurred more often in comparison with the previous one; however 

errors in DBH calculation and stem location estimation seem to be smaller. 

Recommendation which can be given in order to avoid errors in fitting circle through cross 

sections is to filter out all foreign objects, which exist in the point cloud. 

4.5.3. Tree location 
 

The correctness of tree locations, extracted with PCTPE method is very much dependent on how 

good the circle was fitted through the cross sections of the trees made on breast height. Thus, if 

the circle fitting will be improved as it described in previous section, the tree location extraction 

will be also improved. According to visual assessment circles were fitted correct in 63.07% of 

cases, consequently, tree locations were computed correct at least for 63.07% of the trees. 

The aggregations of trees were not splitted to solitary trees and tree locations were not calculated 

for aggregation of trees. 

The recommendations which could be given concern the improvement of PCTPE algorithm. 

First, separation of solitary trees from aggregation of trees will make it possible to derive tree 

locations for more trees and therefore will decrease the number of false positives. 

Second, the location of the tree in PCTPE method was calculated as a centre of a circle fitted 

through points at breast height, while it would be more natural to extract it from a cross-section 

of the stem near the ground, because tree stem were not always straight, sometimes they were 

leaning. 

4.5.4.  Tree crown projection perimeter 
 

The tree crown canopy projection perimeter TLSref dataset is very precise, as canopy projections 

were made by aggregating points, which were quite accurate classified as high vegetation. The 

aggregation of classified trees was made with very small aggregation distance, thus the shape of 

the crown projection was very detailed. 

4.5.5. Tree height 
 

In general according to visual assessment of side view graphs of the trees, tree height in TLSref 

dataset was calculated very precise. Examples are shown in Figure 44. However, there were 

issues, which caused errors in estimation of tree height. 

 First, problems appeared, when tree was situated near the ditch or near water object. In this case 

points under the actual ground level appeared and were considered as ground points, thus 
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distance from the tree points towards ground points was overestimated. An example of such error 

is presented in Figure 45 a. 

Second, if there was not filtered noise above the tree, as branches of neighboring trees or 

streetlights, errors in tree height calculation appeared (Figure 45 b). However, both situations, 

described above appeared very rare. 

Visual assessment of tree side views, extracted from ALS point data, was quite often difficult 

due to small amount of points representing a tree. According to visual assessment only for less 

than half of the trees tree height was calculated correct, like it shown in Figure 46. Extracted 

from ALS data trees side views, which tree height parameters were calculated correctly. Red line 

represents calculated height of a tree.In many cases the height of tree was underestimated (Figure 

49b), in some of them overestimated (Figure 49a). Visual comparison of trees side views, 

extracted from ALS and TLS point clouds, showed that, except the fact that ALS data has less 

points, height of the trees is quite often underestimated. Especially this was the case for smaller 

trees. Another issue which caused underestimation of tree heights extracted from ALS point 

cloud data was in calculation of the shortest distance towards the ground. During the separation 

of the point cloud into tree points and ground points, some tree points were misclassified as 

ground points. Figure 48 illustrates such a situation. Thus errors occurred when the shortest 

distance towards these misclassified ground points was calculated and accepted as an actual 

height of the crown points towards ground. This error could be avoided if the threshold of 

separation into tree points and ground points will be changed. Overestimation of tree height in 

ALStpe occurred because of not filtered noise above the tree. 

4.5.6. Peripheral height and peripheral points 
 

Visual comparison of tree side views and top view of trees and the coordinates of peripheral 

points and periphery height (the height of the greatest width of the crown) showed that 

coordinates of periphery points of trees and periphery height in TLSref dataset are very precise, 

for at least 90% of the trees periphery points and for at least 93% of the trees periphery height 

were computed correct. Examples are shown in Figure 52 and Figure 58.  

There could be several points in the coordinate, where crown of a tree touches the boundary box 

surrounding the tree crown projection. This means that for x or y coordinate of one periphery 

point there could be several x, y or z values. This is the reason, why in the PCTPE method mean 

of all found x, y or z coordinates was taken for each peripheral point. However, as visual 

assessment showed it didn’t have negative consequence in periphery height estimation. 
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In order to get the peripheral height of a tree height the mean height of its four peripheral points 

is taken. The one who will make visual assessment of this parameter should keep in mind that 

peripheral height will not be exactly in the height of the greatest width of the crown, it will be 

averaged. 

Errors which appeared in calculation of these parameters were caused by noise in tree point 

clouds. 

Visual assessment of side views and top views of the trees, extracted from ALS point data with 

the periphery height and periphery points from ALStpe dataset showed that the calculation of 

these parameters was satisfactory, at least for 65% of the trees periphery points and at least for 

77% of the trees periphery height were calculated correct. Periphery height and periphery points 

in some cases was not possible to find and as well as visually assess due to small amount of 

points in an ALS tree point cloud. Sometimes there were less than 4 points which belong to a 

tree crown, thus it was not possible to extract four periphery points. Underestimation of 

periphery height from ALStpe dataset occurred due to wrong separation of a point cloud into tree 

and ground points, which caused misclassification of shortest distances from tree crown points to 

ground points.   

4.6. Discussion of the validation results 
 

Assessment of quality of CP and ALStpe datasets was made using TLSref dataset as ground 

truth. As it was shown in Section 4.5 tree parameters in TLSref dataset were not as correct as 

they are in real world. According to visual assessment only 63.07% of circles were fitted through 

cross sections of trees at breast height this implies that validation of tree location from CP 

dataset with TLSref dataset was not very reliable. The evaluation of tree height, periphery height 

and periphery points from CP and ALStpe datasets using TLSref dataset was more reliable, as 

visual assessment of these parameters from TLSref dataset showed , that in not less than 90% of 

cases they were calculated correct. 

4.6.1. Tree location 
 

In CP dataset calculation of trees locations were based on simple centroid calculation of 50x50 

cm raster canopy projections. In TLSref dataset tree locations were found as centres of circles 

fitted through cross-sections of stems at breast height. Thus tree locations from TLSref were 

expected to be more precise, even taking into account the fact that not for all trees circle was 

fitted perfectly.  
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Table 5 shows that the number of FP and FN is very high. Producer’s accuracy, user’s accuracy 

and quality, which were derived as a result of assessing TCPE algorithm’s ability to find 

individual tree locations, are very low, as in ideal situation these values are equal to 1. Such a 

middling result is caused by several factors. 

First, the threshold which was set to compare two datasets was very small (0.5 m). If the 

threshold would be set to 1 m the number of TP increases to 119.  

Second, in general, ALS data in comparison with TLS data have fewer point density, and the 

raster made on the base of the ALS data is even less precise. As raster ALS data were used 

during the delineation of the trees in TCPE method, crowns of trees were underestimated or lost 

completely. In Figure 39 it is well seen that a lot of small trees were set as False Negatives. As it 

was investigated during validation of CP dataset, made by Frans Rip the TCPE method has 

problems with capturing small trees (Meijer 2014). Thus high number of false negatives mostly 

occurred because small trees were not captured by TCPE algorithm. 

Third, according to previous validations of CP dataset ((Meijer 2014), (Benthem 2013)) lamp 

posts and road signs were quite often classified as trees. This caused an increase in false 

positives. 

Forth, important difference lies in the fact that aggregations of trees were not separated into 

solitary trees and processed in PCTPE method, while in TCPE method the trees were delineated 

from aggregations and processed, what lead to increase in FP. 

Fifth, the difference in date of data acquisition should be taken into account. TLS data was 

collected in 2013, while ALS data was obtained in 2010. Apparent errors could have happened 

due to the fact that the landscape of study area has changed; some trees were cut down, what also 

increased the number of FP.  

Analyzing Figure 40 and 41, among the True Positives there were mostly trees of medium height 

(6-15 m) and medium tree crown projection perimeter (15-50 m2). This could be explained by 

the fact that in comparison with very high and low trees the likeliness for medium trees to have 

stem position in the centre of the crown is bigger. For big trees there is more deviation in tree 

location, as tree crown is larger, while for very small trees tree location is restricted by sever 

pixels of the tree crown, which could be underestimated. 

The recommendation which can improve the extraction of tree location from raster ALS data is 

to calculate the location of the tree using density raster made on horizontal plane instead of 

calculating the centroid of crown projection.   
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4.6.2. Tree crown projection perimeter 
 

R2 and RMSE were calculated in order to show how well individual tree crowns were delineated 

by the TCPE method. As it shown in scatterplot (Figure 43. Scatter plot which shows goodness 

of fit between tree crown projection perimeter from TLSref dataset (x-axis) and tree crown 

projection perimeter from CP dataset (y-axis). The trend line is plotted in red. The 1:1 line is 

plotted in grey) tree crown projection perimeter is underestimated. The coefficient of 

determination is satisfactory, but still quite low, which means that fit between the crown 

projection perimeters from TLSref and CP datasets is not bad, but not very good. The fact, that 

fit is not perfect could be explained by two main reasons. 

First, in general, ALS data in comparison with TLS data have fewer points. As ALS data was 

used during the delineation of the trees in TCPE method, crowns of trees were underestimated. 

Second, the tree crown projections in CP dataset are raster based, what makes the shape of the 

crown projection more different from reality and causes overestimation or underestimation of 

tree crown projections. 

4.6.3. Tree height 
 

Table 6 shows that coefficient of determination is very low for validation of CP dataset and quite 

good for validation of ALStpe dataset. Such low R2 for validation of CP dataset can be explained 

by the fact that tree height is extracted from ALS raster data as a difference between digital 

surface model and digital terrain model, where the raster cell is 0.5x0.5m and point height values 

were averaged.  

The situations, which caused underestimation of tree height from point cloud ALS data, 

described in section 4.5.5, resulted in not perfect fit between the tree height extracted from ALS 

and TLS point clouds. 

Whereas R-squared is a relative measure of fit, RMSE is an absolute measure of fit. The smaller 

the difference between crown projection perimeters from two datasets, the smaller RMSE should 

be. It is useful in comparing the results of different models. As it is shown in Table 6 ALStpe has 

lower RMSE, this means that that the difference between ALStpe tree heights and TLSref tree 

heights is smaller than difference between CP tree heights and TLSref tree heights. 
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Previous research (Jung et al. 2011) showed that tree height estimation using ALS data can be 

very precise. Thus if the PCTPE method would be improved, more accurate height values would 

be derived. 

4.6.4. Peripheral height 
 

Table 7, Figure 56 and Figure 57 show that coefficient of determination is very low and the 

validated data doesn’t fit good to data from TLSref. The reasons of this are the same as for tree 

height. In the case when periphery height from CP dataset was validated by corresponding 

parameters from TLSref dataset, this could be explained by the fact, that periphery heights were 

extracted from raster and heights were averaged. For the case, when ALStpe dataset was 

validated by TLSref, low coefficient of determination is explained by underestimation of height 

in ALStpe and low point density in ALS data. 

4.6.5. Periphery points 
 

Very high coefficients of determination were obtained during the validation of coordinates of 

peripheral points from both CP and ALStpe datasets by corresponding parameters from TLSref 

dataset (Table 8 and Table 9) and scatter plots (Appendix 2 and Appendix 3) show very good fit 

between the data. This indicated that extraction of peripheral points from ALS data with TCPE 

method and PCTPE method are both very reliable techniques. 
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5. Conclusions 
 

In this research the potential of TLS and ALS point data in extraction of tree parameters, which 

could be useful in urban tree management was analysed. Structural tree attributes were derived 

from TLS and ALS point clouds as an improvement of the existing method, which received these 

attributes using ALS raster data. Results confirm that extraction of tree parameters using TLS 

point data have remarkable advantage in accuracy comparing to ALS point and raster data, 

mostly due to higher TLS point density. The extraction of parameters from ALS point data also 

gave satisfactory result. Taking into account the fact that acquiring TLS data in comparison with 

ALS data for the same area takes more time and requires more labour, the perspective of using 

ALS point data to derive tree parameters seems more realistic.  

Regarding the specific research questions and recalling the thesis objective the following 

conclusions can be drawn. 

Research question 1: Is it possible to improve the extraction of tree parameters, using the 

raw point cloud terrestrial and airborne LiDAR data, instead of the top-of-canopy raster 

datasets? 

Raw point cloud TLS and ALS data were used to extract tree parameters. Most of the tree 

parameters extracted from TLS data, such as tree height, periphery height, periphery points and 

tree crown projection perimeter were calculated very precise. The improvement was also in 

calculating tree parameters, which were not included in CP dataset, such as height of the first 

living fork and DBH from TLS data. Although results of visual assessment of correctness of 

these two parameters and tree location parameter were quite good, the PCTPE algorithm needs 

improvements in calculating them. Only a few parameters were extracted from ALS data with 

the created method: tree height, periphery height and periphery points. Further research is needed 

to investigate the ways of extracting more parameters, such as relative height of the tree base to 

the ground level, tree location and tree crown projection perimeter. 

Research question 2: How good is the CP dataset for use by municipal tree managers?  

The ability of TCPE algorithm to find individual tree locations and the quality of tree crown 

projections from CP dataset were assessed. The validation was made by comparing the tree 

locations and trees crown projection perimeters from CP dataset with corresponding parameters 

from TLSref dataset.  
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Based on the results of validation, the tree location calculation is not as precise as urban tree 

managers may be requiring (according to interview with Codi Duyster the accuracy should be 

not less than 0.5 m).   

Validation showed that tree crown perimeter extraction with TCPE method is satisfactory. It 

could be improved if delineation of tree crowns was made by using ALS point cloud data instead 

of ALS raster data.  

 

Research question 3: How good are the SILVI-STAR parameter values, as derived from 

ALS point data and ALS raster data for use by municipal tree managers? 

The quality of the SILVI-STAR parameter values, derived from raster ALS data and point ALS 

data was assessed by comparing them with corresponding parameter values derived from TLS 

point data. 

Validation showed that the extraction of all height parameters, such as tree height, periphery 

height and relative height of the tree base to the ground level, calculated from raster ALS data 

using TCPE method is not satisfactory. The same result, except for the tree height, got from 

validation of height parameters, extracted from point ALS data. ALS point data was quite good 

to extract tree height parameter. The conclusion which was drawn, is that ALS point data is 

acceptable to extract tree height parameter.  

In extraction of periphery points both extraction of this parameter from raster ALS data and from 

point ALS data, performed very good. Thus they are reliable techniques to extract periphery 

points for use by municipal tree managers. 
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Appendices 
 

Part of the appendices are presented in the paper, others are stored in the attached DVD. 

Appendix 1 

Questionnaire for urban tree managers 
1. What is the usefulness of Canopy Projection dataset, which stores data about the location of 
trees and perimeters of tree crowns? 
 
2. Are 3D models of trees are important now or will be potentially useful for urban tree 
managers in future? 
If yes, how is it useful or will be useful to have 3D models of trees? 
 
3. Which parameters of the trees are important for urban tree managers?  
 
Parameter Description Ranking of importance 

Tree location The location of a tree (x and y 
coordinates) 

 
- Essential 
- Important 
- Neutral 
- Minor importance 
- Unnecessary 

 

Tree crown 
projection 
perimeter 

The perimeter of tree crown 
projection 

 
- Essential 
- Important 
- Neutral 
- Minor importance 
- Unnecessary 

 

Tree height Crown top  
- Essential 
- Important 
- Neutral 
- Minor importance 
- Unnecessary 

 

Height of the 
first bifurcation  

Height of the first living fork  
- Essential 
- Important 
- Neutral 
- Minor importance 
- Unnecessary 

 

Height of crown 
base 

Height of the base of the crown  
- Essential 
- Important 
- Neutral 
- Minor importance 
- Unnecessary 
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Periphery height  (height of the greatest width of the 
crown) 

 
- Essential 
- Important 
- Neutral 
- Minor importance 
- Unnecessary 

 

Periphery points 4 points on crown circumference on 
peripheral height 

 
- Essential 
- Important 
- Neutral 
- Minor importance 
- Unnecessary 

 

DBH Diameter of the tree stem on the 
breast height 

 
- Essential 
- Important 
- Neutral 
- Minor importance 
- Unnecessary 

 

 

4. How important is the accuracy of each parameter?  

 
Parameter Description Ranking of importance 

Tree location The location of a tree (x and y 
coordinates) 

 
- Essential 
- Important 
- Neutral 
- Minor importance 
- Unnecessary 

 

Tree crown 
projection 
perimeter 

The perimeter of tree crown 
projection 

 
- Essential 
- Important 
- Neutral 
- Minor importance 
- Unnecessary 

 

Tree height Crown top  
- Essential 
- Important 
- Neutral 
- Minor importance 
- Unnecessary 

 

Height of the 
first bifurcation  

Height of the first living fork  
- Essential 
- Important 
- Neutral 
- Minor importance 
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- Unnecessary 
 

Height of crown 
base 

Height of the base of the crown  
- Essential 
- Important 
- Neutral 
- Minor importance 
- Unnecessary 

 

Periphery height  (height of the greatest width of the 
crown) 

 
- Essential 
- Important 
- Neutral 
- Minor importance 
- Unnecessary 

 

Periphery points 4 points on crown circumference on 
peripheral height 

 
- Essential 
- Important 
- Neutral 
- Minor importance 
- Unnecessary 

 

DBH Diameter of the tree stem on the 
breast height 

 
- Essential 
- Important 
- Neutral 
- Minor importance 
- Unnecessary 

 

 

5. What is the required accuracy for the important parameters? 

 

Parameter Description Required accuracy 

Tree location The location of a tree (x and y 
coordinates) 

 
- Millimeters 
- Centimeters 
- Meters 

 

Tree crown 
projection 
perimeter 

The perimeter of tree crown 
projection 

 
- Millimeters 
- Centimeters 
- Meters 

 

Tree height Crown top  
- Millimeters 
- Centimeters 
- Meters 

 

Height of the Height of the first living fork  
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first bifurcation  - Millimeters 
- Centimeters 
- Meters 

 

Height of crown 
base 

Height of the base of the crown  
- Millimeters 
- Centimeters 
- Meters 

 

Periphery height  (height of the greatest width of the 
crown) 

 
- Millimeters 
- Centimeters 
- Meters 

 

Periphery points 4 points on crown circumference on 
peripheral height 

 
- Millimeters 
- Centimeters 
- Meters 

 

DBH Diameter of the tree stem on the 
breast height 

 
- Millimeters 
- Centimeters 
- Meters 

 

 



 

 

Scatter plots which show goodness of fit between periphery points from TLSref dataset (x

and tree height from CP dataset (y

in grey dash. 

P1x 

P2x 

P3x 

goodness of fit between periphery points from TLSref dataset (x

and tree height from CP dataset (y-axis).  The trend line is plotted in red

 

P1y

 

P2y

 

P3y
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Appendix 2 

goodness of fit between periphery points from TLSref dataset (x-axis) 

The trend line is plotted in red. The 1:1 line is plotted 

 

P1y 

 

P2y 

 

P3y 



 

P4x 

 

 

 

P4y
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P4y 



 

Scatter plots which show goodness of fit between periphery points from TLSref dataset (x

and tree height from ALStpe dataset (y

plotted in grey. 

P1x 

P2x 

P3x 

Scatter plots which show goodness of fit between periphery points from TLSref dataset (x

and tree height from ALStpe dataset (y-axis). The trend line is plotted in red
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Appendix 3 

Scatter plots which show goodness of fit between periphery points from TLSref dataset (x-axis) 

axis). The trend line is plotted in red. The 1:1 line is 

 

P1y 

 

P2y 

 

P3y 



 

P4x 
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Appendix 4 
Appendix4 is DVD catalog 

 

4.1. Script for tree parameter extraction 

Path: DVD:\4.1. Script for tree parameter extraction\ 
Description: script (source: Harm Bartholomeus) used in PCTPE method to extract 
tree parameters and to validate CP and ALStpe datasets 

4.2. Tree side views 

Path: DVD:\4.2. Tree side views\ 
Description: Side views of the trees (extracted from TLS and ALS point data) 
cleaned from solitary point outliers. 

4.3.Side views of pure tree points 
Path: DVD:\4.3. Sideviews of pure tree points\ 
Description: Side views of all trees (extracted from TLS and ALS point data) which 
represent only pure tree points without ground and understory points. 

4.4.Height of the first bifurcation 
Path: DVD:\4.4. Height of the first bifurcation\ 
Description: Side views of all trees (extracted from TLS point data) with the red line 
representing the height of the first bifurcation from TLSref dataset. 

4.5.DBH 
Path: DVD:\4.5. DBH\ 
Description: Cross-sections of all the trees (extracted from TLS point data) with a 
circle fitted through points 

4.6.Tree height and periphery height 
Path: DVD:\4.6. Tree height and periphery height\ 
Description: Side views of all trees (extracted from TLS and ALS point data) with 
the red line representing the height of the tree and green line representing periphery 
height. 

4.7.Periphery points 
Path: DVD:\4.7. Periphery points\ 
Description: Top views of all trees (extracted from TLS and ALS point data) with the 
red dots representing the periphery points of the tree. 
 

 

 


