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Abstract 

Spaninks, J.A.M. (1979) Design procedures for solid-liquid 
hydrodynamic instabilities on extractor performance. Agricj. 
bouwk. Onderz.) 885, ISBN 90 220 0693 X, (xi + 100 p., 
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Also: Doctoral thesis, Wageningen. 
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1 Introduction 

1.1 Solid-liquid extraction in the food industry 

Solid-liquid extraction is a unit operation aiming s t the selective removal of soluble 
components from a solid matrix in a solvent phase. Many synonimus names for this 
process are used in the literature, such as leaching, washing and lixiviation. Sometimes 
these names are used in relation to the mechanism that is responsible for the solute 
transfer. This mechanism can be simple washing of adl îering liquid from the surface of a 
solid matrix. This occurs for example in the first stage c f the extraction of oil from flaked 
soybean, after the cells containing the oil have been bioken in the pre treatment stage. In 
other mechanisms, solute diffuses through a permeable barrier. In the extraction of sugar 
from sugar-beet, the cell walls are deliberately kept intact to prevent the transfer of 
colloidal components. Some examples of solid-liquic extraction processes relevant to 
food industry are given in Table 1. The examples in tiris table show that for most of the 
important applications the liquid extract is the major >roduct stream from an extraction 
plant. When the process is directed towards the remova of undesirable trace components, 
the solid phase is the important product. In some case s, both the solid and liquid stream 
are subjected to further processing. In the extraction of oil from soybean for example, 
the upgrading of the extracted solids is of paramount importance for the economy of the 
process. 

Table 1. Some examples of solid-liquid extraction processes in the food industry 

Component to be extracted 

Sugar 

Oils and Fats 

Protein 
Coffee solubles 
Tea solubles 
Chichory 
licorice 

Removal of trace components 

Aflatoxin 
Caffeine 

Solid carrier 

Beets 
Cane 
Fruits 
Oil seeds (soybeans, cotton, 
peanuts, palm fruit, rapeseed 
fish 
Vegetable seeds, green leaves 
Roast and ground coffee beat 
Tea leaves 
Chichory root 
Licorice root 

Cereals, seeds 
Green coffee beans 
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In this work attention will be focussed on solid-liquid extraction in the food industry, 
though most of the results have general applicability. The main reason is the growing 
interest in this unit operation. In the last decades, the extraction of vegetable oil shifted 
from mechanical pressing to solvent extraction. For oil seeds with a high oil content, the 
press cake obtained after mechanical prepressing by expellers is subjected to solvent 
extraction. Even direct solvent extraction has been proposed (Bernardini, 1976). Also 
there is a growing interest in solid-liquid extraction or diffusion for the production of 
sugar from cane (Rein, 1976), instead of the classical imbibition process. Sugar from beet 
has been produced by diffusion for several decades. Further, protein and carbohydrate 
extraction from vegetable food sources will become of increasing importance in the near 
future. 

Compared with other unit operations such as liquid-liquid extraction, limited atten­
tion has been given in the literature to the design of solid-liquid extractors. Even though 
the leaching of metal ores is one of the oldest applications of this unit operation, solid-
liquid extraction is of relatively minor importance to the chemical and petrochemical 
industries compared with distillation and liquid-liquid extraction, for example. On the 
other hand, in the food industry, where this process is of major importance, an overdesign 
of the extraction equipment normally has little impact on the final costs of the product 
as long as the overdesign does not increase the variable costs. For production of sugar and 
soybean oil, the capital cost involve only some percent of the total production costs. In 
the near future, with rising energy prices and an increasing scale of operation, it can be 
expected that a more accurate design of the extractors will be necessary. 

The specific features of the solid-liquid extraction process can be elucidated by an 
inspection of the operation principle of the equipment used. Solid-liquid extractors are 
designed to transport a solid phase with a specified velocity through the extraction 
section. During the time that the solids reside in this part, an intensive contact between 
the particles and the solvent is assured to promote mass transfer. Finally, the apparatus 
must separate the phases efficiently before they are withdrawn from the extractor. In 
order to make efficient use of the solvent, the overall phase contact generally is in 
countercurrence. The mechanical problems associated with processing of large amounts of 
raw material under the conditions just mentioned have been solved more or less satis­
factorily and have resulted in many widely differing designs. 

In the literature, solid-liquid extractors are often classified as extractors of the percola­
tion type and immersion type, operating in batch or continuous flow (Rickles, 1965; 
Milligan, 1976; Silin, 1964; Bernardini, 1976). Although this classification highlights only 
one specific feature of the appartus considered, it will be followed here for a description 
of solid-liquid extraction systems. However, it must be kept in mind that this differen­
tiation does not provide any insight in the stage efficiencies that can be expected in a 
certain extractor. This disadvantage is overcome in an alternative classification that is 
proposed in Section 2.1. The extractortypes mentioned in the following paragraphs have 
been described in some detail by the authors just mentioned. 

In immersion extractors the solids do not form a densely packed bed, but they are 
more or less dispersed in a pool of solvent. In this kind of equipment very finely ground 
solids can be processed, as well as particles that disintegrate upon extraction. This disinte­
gration would certainly choke the bed of solid particles in a percolation type extractor. 
Normally these extraction systems are designed to operate in continuous countercurrent 



flow. Examples are the Hildebrand extractor, that wi s in use for the extraction of oil 
from soybean in the 1950s, the Bonotto extractor an i the BMA diffusor. The latter is 
used primarily for the extraction of sugar from beet. L i some cases intermittent drainage 
of the solids is achieved by lifting the solids periodically out of the solvent. This principle 
is followed in the DDS and Niro diffusors, which are i redominantly used for the extrac­
tion of sliced sugar-beet, and in the Kennedy extrac tor. The main advantages of the 
immersion type extractors are their insensitivity to the jtretreatment of the solids, and the 
ease of operation as the extractor accomodates a widi > range of solid-liquid flow ratios, 
i.e. extraction factors.Disadvantages are a low solids holdup in the system and a consider­
able entrainment of fines by the extract flow. 

In a percolation extractor the solids are transported on a perforated support as a 
compact bed. The liquid flow is distributed over the ted, percolates downwards by the 
action of gravity, and leaves the bed dripping through the perforations in the structure 
supporting the bed of solids (e.g. a perforated belt]. 
holdup makes this extractor attractive for large scale extraction of for example oil from 
oil seeds and of sugar from cane. They are also in use far extraction of components from 
fishmeal, spices, and solubles from tea leaves. 

The Bollman extractor is a well-known example of a percolation type extractor that 
was used in Europe and the US for the extraction of soybean oil. Most of them, however, 

design such as De Smet and Lurgi, 
extractor on a perforated belt, or 
in endless chain. Also extractors 
such as Rotocell and Caroussel, or 

have been replaced by extractors with a more modem 
where the solids are transported laterally through the 
similar types with perforated throughs connected to 
with rotating cells provided with a perforated bottom 
with spargers rotating over stationary cells, such as the| French stationary basket extrac­
tor, are in use on a large scale. The operation principle of these extraction systems is 
elucidated in Fig. 1. The solvent is distributed over a section of the extractor by spargers 
The liquid percolates through the bed of solids by gravity and after dripping through the 
perforated support, it is collected in reservoirs or pans. The net liquid flow from inlet to 
outlet can be accomplished in several ways. The extract from the collection pan in section 
i can be pumped to the sparger in section i +1 , as indicated in the figure. In other cases, 
the extract from pan i is recirculated in section i while the net liquid flow is obtained by 
overflow of the collection pans. A combination of recirculation and transport to the 
sparger downstream is also possible (Milligan, 1976). To avoid entrainment of the liquid 
contained in the interstitial voids of the solids to thç section upstream, the solids are 
often left to drain before leaving a section. 

solvent in 

| i j isporger 

spent 
solids 

pump 

Fig. 1. Belt type percolation extractor. 

fresh 
solids 

I 

extract 
' out 



extract 
out 

column 

solvent 
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Fig. 2. Diffusion battery with 4 col­

in a diffusion battery or Shanks extractor, the percolation velocity is controlled by 
pumping the solvent through the layer of solids. The extractor consists of a series of 
columns in which the solids are held stationary. The operation of the extractor is shown 
in Fig. 2. The liquid flows all the way down through the series of columns as indicated in 
this figure. Fig. 3 illustrates how a diffusion battery with four columns operates. After a 
certain 'cycle time' tc the desired depletion of the solids in the first column is attained. 
The liquid inlet is then switched to the second column. The first column is then recharged 
with fresh solids and is put in the series of columns downstream of the last one (position 
IV in Fig. 3). After the extract has filled the interstitial pore volume of the freshly 
charged column, extract is drawn from the extractor. This cyclic operation is repeated, 
thus establishing an essentially countercurrent phase contacting system. This extraction 
system was traditionally in use for the extraction of sugar from beet but has been 
replaced almost entirely by continuous diffusors nowadays. The diffusion battery is still 
in use for the extraction of roasted and ground coffee, as the water for the extraction is 
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fed to the extractor at temperatures as high as 170 °C 
these conditions it is difficult to feed the solids con 
cases between five and eight columns are used (Si 
factured for small scale extraction of olive pomace 
four columns in series. 

In percolation extractors the solids are held stationary 
implies that no mechanical forces act on the particles, 
fines is considerably reduced. Furthermore the extract 
through the layer of solids, so that the entrainment of 
extractor is relatively small. On the other hand, a 
required since both the particle shape and size affec{t 
solids subjected to the extraction are not in general 
through the layer of solids may restrict the separation 
particle sizes are small with consequently low perm;; 
nelling may occur. This latter phenomenon will be discussed 

This description of extraction systems clearly shows 
solutions to the mechanical problems involved in har dling 
solids, the flow pattern of both phases through the 
viously, this flow pattern must be taken into account 
underlying design procedures for solid-liquid extract01 s 
this study incorporate these specific features of extraction 
dures for other unit operations, e.g. drying and liquid 

at a pressure of 8 x 105 Pa. Under 
tenuously to the extractor. In most 

1963). This extractor is manu-
dBernardini, 1976) and consists of 

on a rigid support. This design 
tnd consequently the formation of 

is filtered while percolating 
fines by the liquid flow leaving the 
carefully designed pretreatment is 

the percolation velocity. As the 
repacked non-uniform liquid flow 

efficiency. In particular when 
ability of the packed bed, chan-

in more detail in Section 1.2. 
that for most of the practical 

large amounts of particulate 
extractor is quite complicated. Ob-

in the mathematical models 
. The design methods proposed in 

into the available design proce-
extraction. 

1.2 Organization of the study 

design 
The present study can be divided into two main 

number of transfer unit (NTU) approach for the 
analysed and an experimental part in which the 
in solid-liquid extractors was measured and analysed. 

Generally the design of mass transfer processes stairts 
centrations in inlet and outlet streams, and the flow rates 
in Chapter 3, the mass flux that occurs in solid-liquid 
the overall driving force for mass transfer, i.e. the local 
solute in both phases. In such cases, the NTU concept 
resistance is lumped at the solid-liquid interface, is a 
dure. An outline of the NTU approach in process desiijn 
to be attained can then be indicated by the number of 
transfer units, defined by Miyauchi & Vermeulen (196:1) 

cout 
N. ext.c ƒ 

dc' 

C* - C 

where cln and co u t are the inlet and outlet concentrations 
respectively; c'* is the hypothetical local concentration 
with the dispersed phase if the phases were contacted in 

liquid I 

parts: a theoretical part in which the 
of solid-liquid extractors was 

hydrodynamic stability of the liquid flow 

from specified or assumed con-
of the phases. As will be shown 

extractors is often proportional to 
concentration difference of the 

in which the mass transfer 
Convenient basis for a design proce-

is given in Fig. 4. The separation 
exterior apparent or 'plug flow' 

(1.1) 

in the continuous phase, 
which would be in equilibrium 

purely countercurrent plug flow. 
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Fig. 4. Outline of the transfer unit approach to the design of solid 
liquid extraction equipment. 

Only for purely countercurrent contact can it be shown that the number of exterior 
apparent transfer units is equal to the number of true transfer units (Colburn, 1939): 

N - M -
J vext , plug flow — -"t , c 

kocaV 

4>c 
(1.2) 

where koc is the mass transfer coefficient on overall liquid phase basis and a is the 
effective interfacial area. Here combination of Eqn 1.1 with a mass balance yields for a 
linear equilibrium relation the well-known Colburn equation which is shown in Fig. 5 : 

N. - _ ! _ , (l -fA\ 
< t . c - j _ A

 M \ l - / / 
(1.3) 

The separation factor ƒ is related to the extraction efficiency r) as ƒ = i?/A and TJ is de­
fined as: 



10 Fig. 5. 
A process. 

M c óu t - C i n ) 

*d(w îh-cIn/m) OTWin-cin 
= A 

When deviations from countercurrent plug flow occuij, 
Nt< c exceeds iVext c, the number of exterior apparent 

efficiency of a purely countercurrent 
Parameter: extraction efficiency TJ. 

(1.4) 

, the number of true transfer units 
transfer units. In fact: 

Table 2. Relation between the number of exterior apparent and true transfer units for some simple 
mass transfer stages. 

Phase contact 

batch 
batch 

Liquid 
phase 

Solid 
phase 

mixed irrelevant 

c in~ cout .= 
c m -ma> o u t 

l - e x p [ - A r , ) C ( l 

exp {(A - l)iVext.c} 
1 - A 

+ A)] 

continuous flow operation 
cocurrent unmixed unmixed 

1 + A 

l - e x p [ - A r t ) C ( l + A)] 

1 + A 

A^t.c 
crosscurrent 

systematic 
movement of the 
solid phase 

unmixed 

mixed 

countercurrent unmixed 

continuous flow mixed 

unmixed 

unmixed 

unmixed 

mixed 

A Nt<c J 

Ni 

, - i : 
'»t,c 
ƒ e - ^ l o C a ^ d r j d ç } - 1 - ! ] 1 , 1 - » 

1 - exp [- Nt 

o 
M 

1 - (1 - A) exp [ 

{ l - e xp [ - JV t > c 

^ t , c / ( l + ^ t , c ) 

<1 

#t ,c Al 

A)]>/(1 - A) 

1. Complete mixing of both phases at the stage inlet. 



Nu c =f(Next> c , A, flow situation) (1.5) 

The flow situation of the phases inside the apparatus is determined on a macro-scale by 
the local mode of phase contact, non-uniform flow of solvent through the solids etc. ; and 
on a microscopic scale by dispersive mixing between the phases. For some simple phase 
contacting systems the relation between Next and Nt is given in Table 2. However, the 
description of extractor types in Section 1.1 has shown that the complex flow situations 
in practical extractors are not adequately covered by the simple examples. Deviations 
from these simple cases are often described by dispersive mixing or backflow models. 
Also these models are not likely to present a realistic picture of the flow situation in 
diffusion batteries and belt type extractors for example. In Chapter 2 of this work new 
ready-to-use correlations between Next and Nt are developed for diffusion batteries and 
countercurrently cascaded crossfiow sections. These correlations are based on mathe­
matical models which account for the local mode of phase contact within the apparatus. 

In order to calculate the required residence time of the solids in the extractor to attain 
the specified separation, a sophisticated guess of the overall mass transfer coefficient k0 is 
inserted in the definition equation for Nt. According to the Lewis two film theory, k0 is 
dependent on both the mass transfer coefficient in the continuous liquid phase, kc, and 
the dispersed solid phase, kd. A constant averaged value of kc can often be assumed 
throughout the extractor, as is pointed out in Section 3.1. Abundant literature data are 
available for estimating kc values for widely differing process conditions and packing 
geometries. The dispersed phase mass transfer coefficient kd is time dependent due to the 
transient nature of the diffusion process. In Section 3.1 it is shown that the Sherwood 
number kdD JIDd assumes an asymptotic value for long contact times so that for a 
constant diffusivity IDd in the solid phase kd has a constant value. These asymptotic 
values are calculated in Chapter 3 from the analytical solution of the diffusion equation 
with boundary conditions relevant to purely cocurrent and countercurrent phase contact. 
Using the additivity rule for mass transfer resistances, kQ can be determined from the 
estimated value of A:c and the asymptotic kd value. Although this rule is exact only for 
a constant value of kd and kc, the error introduced when it is applied to transient mass 
transfer is small (Beek & Muttzall, 1975). The final step indicated in Fig. 4 then is the 
calculation of the size of the extractor from the required residence time and the specified 
throughput. 

In both Chapters 2 and 3, concerned with the effect of local phase contact on extrac­
tion efficiency and the calculation of mass transfer coefficients, plug flow of liquid 
between the phases is assumed. Normally however, residence time distribution in one or 
both of the phases reduces the separation efficiency of the extractor. In Chapter 2, some 
models are discussed which can be used to account for axial dispersion in the liquid and 
solid phases. Another important effect that might cause residence time distribution in the 
liquid phase is flow maldistribution caused by a non-uniform permeability distribution in 
a packed bed (Stanek & Szelkeley, 1972). A well-known example of this phenomenon is 
the preferent flow along the wall of a column packed with particulate solids. The porosity 
gradient in a packed given by Pillai (1977) for example shows that the porosity near the 
wall exceeds the average bed porosity over the distance of about a particle diameter, see 
Fig. 6. The fractional wall flow resulting from this local high permeability is illustrated in 
Fig. 7. In general this effect can be neglected for single phase flow of a liquid with 
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(1-h-) 
(1 -h) 

Fig. 6. Porosity gradients in packed beds, y is distance from 
y / R the wall. FromPillai, J 977. 

uniform physical properties when the ratio column 
20-30. In solid-liquid extractors the physical properties 
and viscosity, often increase in the direction of 
segregation can occur in upward liquid flow due to 
both upward and downward flow, local permeability 
of channels or Viscous fingers', through which the 
mechanism responsible for this phenomenon is disdussed 
existence of such stable and unstable flow regimes 
many authors. Viscous fingering plays an important 

to particle diameter is higher than 
of the liquid phase, i.e. density 

liquid flow. In this case, gravity 
unfavourable density gradient. In 

variations can trigger the formation 
solvent will flow preferentially. The 

at length in Chapter 4. The 
been verified experimentally by 

role in secondary recovery of oil 

thî 
the 

has 

Fig. 7. ! ïffect of particle to column diameter ra­
tio on «all flow in packed columns. From Rie-
tema, 1976. 



from underground reservoirs, where a fluid is injected in the porous rock structure to 
displace residual oil (Dumoré, 1964). Examples related to the food industry are the 
separation of ice crystals from the mother liquor in wash columns (Vorstman & Thyssen, 
1972), filter cake washing (Tondeur, 1970), sweetening on and sweetening off of char 
columns for decoloration of sugar solutions (Hill, 1952), and ion exclusion operations 
(Cooney, 1974). 

Though many studies have been devoted to the onset and growth of flow instabilities 
during displacement of liquid from inert packed beds, little attention has been paid to 
systems where a concentration gradient instead of a discontinuity exists in the liquid 
flowing through a porous medium, as is the case in for example solid-liquid extraction. 
Also the effect of mass transfer between the porous packing and the liquid has not yet 
been studied. Chapter 4 of this work is focussed on these phenomena which can be 
important in solid-liquid extractors. Experiments were performed to check stability cri­
teria which should be met in order to prevent the onset of flow instabilities in these 
systems. 

1 .3 Some general remarks on the model system studied 

An effective study of the chemical engineering aspects of solid-liquid extraction is 
only possible when the problem is reduced to its essential elements. For this reason, if 
not stated otherwise, the following simplifications concerning the mass transfer process 
were assumed to be valid throughout this work. 
- A linear equilibrium exists between the solid phase and the solvent. This assumption 
implies that adsorption of soluble substances on the surface of the porous matrix accord­
ing to a non-linear equilibrium can be neglected. The validity of this approximation is 
shown experimentally by Oplatka (1954), Yang & Brier (1958) and Krasuk et al. (1967). 
- The diffusivity of the extracted species is constant. The mathematics involved in 
solving the diffusion equation can be significantly simplified when the mass transfer rates 
can be described with a constant diffusion coefficient. In Table 3 some extraction pro­
cesses from the food industry are given, for which the extraction rate can be described by 
Ficks law with a constant effective diffusion coefficient. In some cases the diffusivity is 
found to depend on concentration of the solute, particle size or time. Even in these cases 
a proper analysis of the data might sometimes reveal that the extraction can still be 
described by Ficks law with constant diffusion coefficient. For the extraction of flaked 
soybean, Bernardini (1976) found that the extraction rate is essentially constant until 
about 30% wt of the oil is transferred to the solvent. In a later stage of the process the 
mass transfer rate is governed by molecular diffusion. According to Bernardini, deviations 
of the initial extraction rate amount to washing off the oil adhering to the surface of the 
flakes. Brüniche Olsen (1962) observed that the diffusivity apparently varies with the 
particle size for the extraction of sugar from sliced beet. Similar effects were observed for 
the extraction of roast and ground coffee beans (Douwe Egberts Research, pers. com­
mun.). This effect has been explained by a change in particle shape and fraction of 
disruptured cells as a result of variations in particle size. 
- Constant flow rates of both phases in the extractor. When the particles can be con­
sidered as an inert solid matrix with constant internal pore volume, this approximation is 
valid exactly when the flow rates are expressed on a volumetric basis, e.g. m3/s. When the 
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Table 3. References that report mass transfer rates that can 
coefficient. 

be described with a constant diffusion 

Raw material 

Tung seed 

Soybean 

Peanuts 

Sugar beet 

Pickles 

Extracted component S aurce 

OU 

OU 

OU 

Sugar 

Salt 

Pickles Sugar 

Green coffee Caffeine 

Roast and ground coffee beans Solubles 

Solanum laciniatum Solasodine 

Krasuketal., 1975' 

Beek ÄMuttzall, 1972 

Fan & Morris, 1948 

Briiniche Olsen, 1969 

Plugetal., 1967 
Bomben et al., 1974 

E der, 1971 

Bichsel, 1976 

I ouwe Egberts Research, pers. commun. 

lettamantietal., 1975 

1. At elevated temperatures only. 

liquid densities are constant throughout the extractor 
and concentrations are expressed on weigth basis. The 
when the particles shrink or swell considerably during 

it is also valid when the flow rates 
results are not generally applicable 

extraction. 
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2 Effect of local phase contact on extraction efficiency 

Large scale solid-liquid extractors are commonly operated in countercurrence as it is 
well understood that this design reduces solvent requirements. To attain pure counter­
currence between solid granules or powders and a liquid phase usually involves consider­
able mechanical problems. For this reason one often resorts to cascading mass transfer 
sections in an 'overall' countercurrent fashion, while the local phase contact within a mass 
transfer section deviates from the overall counterflow. A classification of countercurrent 
separation cascades relevant to solid liquid extraction is given in Table 4. In Section 2.1. 
this classification is discussed in some detail and available literature dealing with the 
design of such mass transfer cascades is reviewed. In the subsequent sections, the effi­
ciency of countercurrently cascaded fixed beds and cross flow sections is calculated from 
mathematical models. The separation efficiency of these systems is expressed as a relation 
between the number of exterior apparent transfer units, defined in Section 1.2, and the 
number of true transfer units: 

* t ,d /A=-
vod O.V 

0d A 
(2.1) 

The results are presented in concise correlations covering the range of normal operating 
conditions. 

Table 4. Classification of countercurrently cascaded mass transfer sections. 

Local phase contact 
within a mass transfer 
stage 

Examples 
References covering theory 
on design of mass transfer 
cascades 

distributed lumped 
parameter parameter 
model model 

countercurrent U-type and J-type extractor see Table 7 Colburn, 1939 

cocurrent Multiple batch extractors see Table 7 

crosscurrent Rotary and belt extractors Thibodeaux, 1977 

unsteady column Diffusion battery Svedberg, Chen, 1972 
1976 
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in Table 4 does not necessarilly 
However, most of the percolation 

2.1 Classification of solid-liquid extractors 

The classification of extraction systems proposed 
coincide with those presented elsewhere, see Chapter 1.1 
extractors will be found under local cross current co itact, and most of the immersion 
extractors in the other groups. It should be kept in m nd that, where as other classifica­
tions give more direct information on the raw materials that can be processed in the 
apparatus, this classification is related to the stage effic encies that can be expected in the 
extractor. 

Countercurrently cascaded mass transfer sections vJiih local phase contact in counter-
current obviously imply a countercurrent extractor. In practice this model can be used to 
describe some commercial counterflow extractors approximately, such as the DDS dif-
fusor, the NIRO and Olier extractor. Moreover purely countercurrent contact limits the 
separation efficiency of any extraction system. Mass tr insfer in countercurrent extractors 
is undoubtedly analysed in most detail in the literature. When plugflow of both phases 
occurs, the analytical solution of the distributed parameter model is given by Mikhailov 
(1977). Tables of analytical solutions of the diffusion equations when mass transfer 
rate is limited by internal diffusion have been givei by Tettamanti (1975). Plachco 
(1970) discussed the effect of an initial concentration gradient inside a particle on the 
extraction efficiency for particles with slab geometry. The lumped parameter model was 
first solved by Colburn (1939). This latter model has been extended to deviations from 
pure plug flow in the phases. Exact solutions obtained by Miyauchi & Vermeulen (1963), 
Sleicher (1959) and Hartland & Mecklenburg (1966) ising the model of plug flow with 
superimposed axial dispersion, and those derived by Sleicher (1960) and Mecklenburg & 
Hartland (1968) using the model of backmixing between complete mixed stages are not 
convenient for design calculations. Approximate solutions are given by Watson & Cochran 
(1971), Stemerding & Zuiderweg (1963), Pratt (1975), Tolic (1973) and by Pratt (1976). 
Kerkhof & Thijssen (1974) used a dual-cascade model, where the number of ideal mixers 
in both phases can be different. 

Countercurrent cascades of mass transfer sections with local phase contact in cocur-
rence are mathematically similar to multiple batch cou itercurrent extractors. This extrac­
tion system is mainly used for small scale extraction of for example pharmaceutical 
products and spices. The operation of the extractor is described by Treyball (1968). 
Analytical solutions of the diffusion equation with the proper initial and boundary condi­
tions have been numerically evaluated to obtain the efficiency of these cascades by 
Plachco & Lago (1972). Similar results were obtained t>y Schwarzberg (1977) who used a 
different calculation procedure. In both cases, it was assumed that geometry was spherical 
and that internal diffusion limits mass transfer rate. When liquid clings to the particles so 
that the phases are not completely separated when stage transfer occurs, the analytical 
solution of Plachco & Lago (1975) can be applied. 

with local phase contact in cross 
large scale extraction of oil seeds, 

Countercurrent cascades of mass transfer sections 
flow describes extraction systems that are in use for 
sugarcane etc. The operating principle of this extractor is discussed in Chapter 1. In the 
literature little attention has been given to the mathematical modelling of these systems. 
For pure cross flow cascades where no entrainment of one of the phases by the other 
occurs, Thibodeaux (1977) recently proposed a design procedure. He assumed lumped 
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mass transfer resistance and complete mixing of the streams before they enter a new 
stage. Pure cross flow is encountered in cooling or heating of granular products (McGaw, 
1976), cross-flow cooling towers (Thibodeaux, 1969) and heat exchangers (Gardner & 
Taborek, 1977), and is a good approximation for belt type solid-liquid extractors when 
the value of the distribution ratio D, defined in Eqn 2.9 is low. In his simulation model 
for the extraction of sugar from sugarcane, Rein(197 6) accounted for entrainment of sugar 
juice by the moving solids. In his calculation he neglected concentration gradients over 
the height of the bed, perpendicular to the flow direction of the solids. No systematic 
analysis of the efficiency of cross-flow sections in countercurrent cascades is available in 
the current literature. 

Countercurrent cascades of unsteady operated columns are often referred to as mul­
tiple column countercurrent extractors, diffusion batteries or Shanks extractors. Details 
of the operation principle of the extractor are given in Chapter 1. Multiple column 
countercurrent contactors are in use for ion exchange and adsorption processes. Most of 
the literature dealing with the design of this column arrangement is related to adsorption 
on active carbon from the liquid phase. The liquid residence time in a single periodically 
operated column was compared with a countercurrent adsorber by Neretnieks (1975). 
For a linear sorption isotherm, the residence time in the periodic column was at least 70% 
longer for the same efficiency of carbon utilization. Fornwalt & Hutchins (1966) pro­
posed a graphical procedure to determine the number of columns in a multicolumn system. 
They assumed that all the columns have similarly shaped breakthrough curves, so that the 
apparatus is overdesigned. Chen (1972) studied adsorption frorh the liquid phase on 
activated carbon in a multiple countercurrent contactor using the model of a cascade of 
perfectly mixed vessels to calculate the performance of the system. An empirical relation 
for the equilibrium relation and the rate of mass transfer was used, so that it is difficult to 
generalize his results. Svedberg (1976) thoroughly studied the efficiency of multiple 
column adsorption from the liquid phase. Mass transfer rate was calculated from a model 
that takes into account film diffusion and pore diffusion with a constant diffusion coeffi­
cient. Plug flow of liquid through the column and a linear equilibrium relation were 
assumed. He concluded that when four or more columns are used, carbon utlization is 
wihin 10% of the carbon utilization in a purely countercurrent contactor, under normal 
operating conditions. For two columns, this figure was about 15-30% lower than in a 
truly countercurrent apparatus. Klaus et al. (1977) calculated carbon utilization for the 
adsorption of binary mixtures on active carbon. They found that the transient phase 
before the concentration profiles stabilize is much longer than in single component ad­
sorption, where a periodic steady state is attained in one or two cycles. 

2.2 Diffusion battery 

In the following section a mathematical model of a single-stage fixed bed is derived. 
Subsequently it is shown how this basic model can be used as a building block in the 
mathematical simulation of a diffusion battery. The effect of process variables on the 
separation performance of the multicolumn countercurrent extractor is then calculated. 
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2. 2.1 Mathematical model of a single-stage fixed bed 

From Figure 8 it can be derived that mass transfer 
Eqns 2.2 and 2.3 when a linear driving force for mass 
liquid through the bed is assumed: 

^Ä£'=*OC^(C'*-C')-0C |^ 

AL(l-h)jf-=-kocaAL(c'*-c') 

with initial and boundary conditions 

r = 0 W' = Ü>Ó(X) c'=c'0(x) 

x = 0 c=c\n(t) 

With a linear relationship between the equilibrium concentrations in both phases, c'* = 
m <J, the equations can be made dimensionless by introducing the following variables: 

in a fixed bed can be described by 
transfer is used and plug flow of 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

c - c „ 
c = 

m cj 
C*J: 

kocaV 

liquid phase concentration 

solids phase concentration 

number of true transfer units oi t overall liquid phase basis (2.8) 

Fig. 8. Fixed bed extraction. 

(2.6) 

(2.7) 
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D=T, TT distribution ratio (2.9) 
(1 -h) 

x 
f = y dimensionless distance from liquid inlet (2.10) 

'*c 
6 = -T7r- dimensionless time (2.11) 

Vh 

With these variables the differential equations with initial and boundary conditions can be 
written as: 

W + l£=N*-°i0}-c) (2-12) 

3co 
30" = -NttCD(u-c) (2.13) 

= 0 w = co0(f) c=c0(0 (2 14) 

£ = 0 c=c i n ( 0 ) (2.15) 

When at time 6 = 0 the concentration in the solid and the liquid phase are in equilibrium 
and the inlet concentration c jn is constant, the solution of the above equations is well 
known (Anzelius, 1926): 

c = e-(>Mf e-sJ0(2iVsë^)às (2.16) 
o 

where 

eu=NtteD(6-l) (2.17) 

The above relation is tabulated by Furnas (1930). Approximate solutions are given in the 
survey of Klinkenberg (1954) and in the paper of Roetzel & Nicole (1975). For arbitrary 
initial concentration profiles in both phases and time variable concentration at the liquid 
inlet, Klinkenberg & Harmens (1960) gave an unavoidably complicated analytical solu­
tion. As an alternative to this solution, the equations can be solved numerically. Details of 
the computational scheme that was used here are given in Appendix A. 

2.2.2 Mathematical model of a diffusion battery 

In order to simulate a diffusion battery, a number of columns can be put in series as 
shown in Fig. 9. Another approach that is somewhat easier to incorporate in a computer 
program, is to consider the diffusion battery as a single column in which the solids are 
transported intermittently. Since we are interested in the concentration profiles in a 
cyclic 'steady' state and the profiles at the beginning of a cycle are not known before-
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*c 
Hn 

Fig. 9. Diffusion battery with n columns. 

cne 

hand, the equations are solved numerically. Starting 
tion profile, the unsteady state start-up of the system 
of every cycle the concentration profiles are shifted 
in both phases in the last column, i.e. where the solids 
according to the boundary conditions. This operation 
tration profiles in the extractor and the exit 
one cycle time no longer change significantly. In 
profiles stabilized in n cycles. To allow an accurate 
must be continued up to a dimensionless time 0 betWeen 
then halted and the mass balance checked, which closed 

In analogy to the extraction factor in continuous 
an extraction factor or 'draw-off factor' for semi-continuous 
as the ratio of the liquid flow drawn from the extractor 
extractor, multiplied by the slope of the equilibrium 
mined by the volume of solids in one column and the 
that the water filling the interstitial voids in the 
exhausted solids, we can calculate the draw-off factor, 

from an arbitrary initial concentra­
it̂  columns is simulated. At the end 

column and the concentrations 
are fed to the extractor, are reset 

cycle is repeated until the concen-
concentijation of the columns averaged over 

most calculations the concentration 

\ = m 

Vh 1 
C " 'c 

V(\-h) 1 •=D(nB.-l) 

The above equation is used to determine the dimensionless cycle time 0C required to 
attain a chosen draw-off factor A. 

2.2.3 Efficiency of a diffusion battery 

The results of the calculations are shown in Fig 
relation between NUJA and Next. Increasing the 
difference between Nt d/A and Next, showing that 

10 

evaluation of Next, the calculation 
6 and 10. The computation is 

within 0.5% in most cases. 
ccjuntercurrent processes, we defined 

multiple column extraction 
to the flow of solids through the 

curve. The flow of solids is deter-
tycle time tc only. Bearing in mind 

fiist column is discharged with the 
A from: 

(2.18) 

. The plots show an almost linear 
nunjber of columns results in a smaller 

the extractor approaches a truly 
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Fig. 10. Number of exterior apparent 
against true transfer units for a diffusion 
battery with n columns. D is distribution 
ratio; A is extraction factor. 

countercurrent system. An increase in A, the draw-off factor, shows the same tendency, 
which is due to a more favourable ratio of draw-off and cycle time at higher values of A. 
Since the time required to fill the interstitial voids of the freshly charged column is equal 
to tf = (hV/n)l4>c, one can write for this ratio with Eqns 2.9 and 2.18: 

A* I In D 
6C (l+A/Z))/« D + A 

(2.19) 
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The effect of D can be made clearer by writing the expression for D as follows: 

Vh 
0r.A 

A * - • ? ? -
m nt„ 'c,A 

1-A V(\-h) 0C-«C>A 

nt„ 

D/A can thus be interpreted as the ratio of the liquid 
solids, <j>c A and the net liquid flow drawn from the 
liquid in the first column will be lost with the spent 
expects a higher efficiency for a lower value of D, whicji 
The results of the calculations are given in a concise 
whole range of input parameters used in the simulation 

N. ext 

Nt t,d/A 
= 1-0.59 n-111 A-03 N°e£

SA'n D°- 33 

2 < « < 6 0 .25<A<2 0.25 <D<4 
0.25<Arext<10 TJ<0.99 

Within the indicated region this correlation gives an eslimated value of(Nti/A - Next)l 
Next, within 5% of the numerically calculated value. 

(2.20) 

flow entrained by the discharged 
extractor. Since the solubles in the 
solids at the end of the cycle one 

is confirmed by the calculations. 
by Eqn 2.21, which covers the 

runs. 
fcrml 

(2.21) 

2.3 Belt type extractor 

In this section a mathematical model of a single stags 
analogy to an unsteady operated column is discussed, 
proposed in Section 2.2.1 can be used with some modifications 
simulation of a belt type extractor. For extractors without 
ciency has been obtained from numerical calculations 
liquid recirculation is calculated from analytical solutionis 

cross-flow device is derived. The 
It is shown that the algorithm 

for the mathematical 
liquid recirculation, the effi-

The efficiency of extractors with 
of approximate models. 

2.3.1 Mathematical model of a single-stage cross-flow d mce 

From Fig. 11, the folio1 ing equations can be 
under steady state conditions: 

• 5 - = * o c « * ( c " - c ' ) 
<Pc be' 
H bx 

vbS(l-
L 

vbSh 
+ L 

-K) bJ 
by 

be' 
by '-

with boundary conditions 

= -koeaB(c*'-c') 

derived for cross-current extraction 

(2.22) 

(2.23) 
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ydy 

- X 

Vb 

x-o J£L 

cjj(x) 
ü)'o(x) 

y»H y»0 

Fig. 11. Cross current phase contact. 

x»L 

x.g 

y = 0 co' = coó (*) c' = có (x) 

* = 0 c' = c ' i n(y) 

(2.24) 

(2.25) 

The equations are transformed into a dimensionless form by introducing the following 
variable in addition to Eqns 2.6-2.10: 

0 = 
Vh dimensionless residence time of solids in the extractor 

The equations can thus be rearranged to: 

be dc 
3© + a F = A r t , c ( " - 0 

9 co 
â§=~Nt.cD(u-c) 

with boundary conditions: 

0 = 0 co = co0(r) c = c 0 ( f ) 

f = 0 c = c i n ( 0 ) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

The above equations are similar to those given in Section 2.2.1. For pure cross-current 
contact in single stage devices, this analogy is well understood (Nusselt, 1930). It involves 
that the equations describing mass transfer in unsteady operated columns can be reduced 
to those describing pure cross-flow contactors, by transforming the Eulerian system to 
Lagrangian coordinates. When liquid is displaced in the direction of the flow os solids, as 
in solid-liquid extraction, the analogy applies in Eulerian coordinates. This analogy will be 
extended here to multiple fixed beds in series in order to simulate mass transfer efficiency 
in a belt type extractor. 
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>;.0 

Fig. 12. Belt extractor without dripping sections. 

2.3.2 Mathematical model of a belt type extractor wit hout liquid recirculation 

.>'C •„.VbAd-h) 
«in 

«out 

A sketch of the extractor considered in this secticjn 
concentration of liquid leaving section i can be calculated 
of liquid dripping form the belt into the collection pan 
from y = 0 to y =H/n, or from 0 = 0 to: 

0c 

0C, the dimensionless residence time of the solids 
related to the draw-off factor A, defined analogously 
current extractors as: 

A = m 
<t>c-vbSh 

v b 5( l -A) 

Combining Eqns 2.31 and 2.32 gives: 

0. -H> 

is given in Figure 12. The mean 
by averaging the concentration 
below, thus at x = L or % = 1, 

(2.31) 

ijn one section of the extractor, is 
to the extraction factor in counter-

(2.32) 

(233) 

Fig. 13 gives the calculation analogue of the belt extractor from Fig. 12. The liquid 
leaving section i is collected in chamber Ax and mixed up. After one 'cycle time' ©c the 
liquid from Ax is transferred to B{. The liquid entering section (i +1) is withdrawn from 
the latter. The calculation proceeds as follows. Since the concentration profiles in steady 
state are unknown a priori, Eqns 2.27-2.30 are integrated starting from an arbitrary initial 
concentration profile in both phases. After one cycle time ©c, the average concentration 
leaving column i is determined, and the liquid concentration in Bi is set equal to this 
value. Concentration profiles are shifted one column 
umn downstream is reset according to the boundary 
cycles has been worked through, the average liquid 
reaches a constant value. The calculation is then halted and the mass balance is checked 
It should be realized that this calculation method do:s not give any information on the 
unsteady operation of the extractor since we started 
2.23. 

The concentration in the last col-
conditions. After a large number of 
concentration leaving each section 

from the steady equations 2.22 and 
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Fig. 13. Analogue of belt extractor of Fig. 12. 

^ 
cout ( 9 ) 

«out 
•c 

Ci=yc|(9)d9 

The mathematical simulation of a belt extractor without dripping sections has just 
been discussed. However, in most industrial extractors dripping sections are present. In 
the following the mathematical model will be extended to take these into account. 

A rigorous simulation of this case is rather complicated, because both drainage rate 
(Beek & Muttzall, 1972) and static holdup (Dombrowski, 1954) are dependent on the 
physical properties of the liquid and the bed geometry. Therefore the problem is simpli­
fied considerably here by assuming a constant drainage rate, equal to the percolation rate. 
It is further assumed that no liquid remains in the interstitial voids of the bed after 
drainage. This simplified situation can be simulated by shifting the chambers collecting 
the percolating liquid over a distance yt as indicated in Fig. 14. This distance is related to 
the time required to fill the interstitial voids in the fresh solids entering section n. In the 
time required for the liquid front to reach the lower end of the packing, the belt has 
moved over a length yf: 

yf = \ 
hL 

4>J(BH/n) 
(2.34) 

or in dimensionless form: 

0 

1 
1 
1 

1 

lcin 

1 / 
/ 

-

l_ 

"Ai-2 

Aj-1 

1-1 / 
I 
©c 

-l_ 

I / 
/ 

c A n - 1 

. . 0f fl-0 y> 

n / 
/ 

H/n 4 

A1 Ai-1 Ai 
Fig. 14. Belt extractor with dripping sections. 

y«0 

cout 
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e,= -

Since no liquid is entrained by the solids leaving the extractor, the extraction factor can 
now be calculated from: 

A = m 
0c 

(2.35) 

v b 5( l -Ä) 

With Eqn 2.9 the dimensionless residence time of the sjolids in one section is obtained 

A 

(2.36) 

0 c = ^ 

The calculation proceeds as discussed in the previous 
of liquid collected in chamber A{ is calculated from 

f < \>»t , i - id e + ƒ ^out , id 0 >/ 0 c 
u e f ' 

Note that an extra column 0 is used in the calculation; to account for mass transfer during 
drainage. Since only a part of this column contributes to the extractor volume, the 
number of true transfer units used in the simulation. 
Fig. 14 it is found that: 

Nt=Nt 
«©c+0f 

(2.37) 

section. The average concentration 

(2.38) 

Nt aim, is corrected: on inspecting 

't,c "t.sim („ + l ) e c 

2.3.3 Efficiency of belt type extractors without liquid recirculation 

(2.39) 

The results of the simulation of a belt extractor 
without dripping zones are presented in Fig. IS. It shows 
of sections results in a smaller difference between 
extractor approaches a purely countercurrent contactor 
liquid is entrained by the solids on the belt to the 
flow </>cà is related to the distribution ratio in the following 

£> = 
Pc, A mhvbS 

( 1 - A ) v „ s " 0 c - 0 C ) A 

without recirculation of liquid and 
than an increase in the number 

Vext and NttJA, showing that the 
For a higher value of D, more 

upstream sections. This backmixing 
way: 

(2.40) 

Solubles contained in the liquid flow <pc A at the liquid 
lost with the spent solids. Compared with a 
belt extractor gives a lower efficiency due to mixing 
percolation through the bed. In Fig. 13 this mixing 
the liquid leaving the column i (i.e. section of the 
collection pan). When the extraction factor is high or 

feed end of the extractor will be 
diffusion battery discussed previously, the 

of liquid in the collection pans after 
is illustrated in the analogue where 

belt) is mixed in the vessel^ (i.e. the 
the number of transfer units in each 
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Next 
10 

D.O.5 parameter A 

Fig. 15. Number of exterior apparent 
against true transfer units for a belt ex­
tractor with n sections without dripping 
zones. D is distribution ratio; A is ex­
traction factor. 

section is low, the concentration of liquid entering a collection pan does not vary 
significantly during a cycle. Then mixing hardly influences the extractor performance 
which thus approaches the performance of a diffusion battery. 

For higher values of 7Vt d/nA the adverse effect of mixing becomes more important, as 
is clearly shown in Figs. 15 and 16. A correlation was fitted to the data so that the 
results can be easily applied. Within the indicated region the estimated value of (A^ d — 
ANext)/Nt d is within 5% of the numerically calculated value. 
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Fi 5. 16. Number of exterior apparent 
agtinst true transfer units for a belt ex­
tractor with n sections with dripping 
zones. D is distribution ratio; A is extrac­
tion factor. 

- 1 . 4 2 A - 0 . 7 1 r«0.6S AfO.64 

'ext 

AfU-OI 
yvext 

2<«<7 0.3<A<2 0.25<Z)<2 
0.3<JVext<10 TJ<0.99 

t ie If dripping zones are present, no liquid is entrained to 
the variable D/A is thus less pronounced than in the foregoing 

(2.41) 

upstream section. The effect of 
ing case. The value of (Nt d -
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ANext)/Nt d can be estimated with 5% accuracy from Fig. 16 or Eqn 2.42: 

^ = 1 + 1.00 M - 1 - 4 4 A " 0 6 3 D0AS N°e£
2 (2.42) 

2<«<6 0.3<A<2 0.25<£»<1.5 
0.3<A^ext<10 77<0.99 A/Z»>1 

The above equation is valid only for A/D> 1. Since from Eqns 2.35 and 2.37: 

0 c A/Dn A 

6 f l/n D 
(2.43) 

the residence time in a section thus has to be longer than the time required to fill the 
interstitial voids of the packed section in one stage. 

2.3.4 Efficiency of belt type extractors with liquid recirculation 

Although the belt extractor with recirculation can be simulated analogously to the 
procedures we followed for the extractor without recirculation, it often suffices to 
apply an analytical approach for the simplified case of a completely mixed liquid phase in 
each section. Under what conditions this approximation is valid is discussed in Appendix 
B. We first note that the local mode of phase contact in each stage is immaterial because 
the liquid phase is completely mixed. The analytical expressions derived in this section 
can thus be used to estimate the efficiency of the other flow arrangements mentioned in 
Table 4 as well, as long as a uniform liquid phase composition in each section prevails. 

Hartland & Mecklenburg (1966) derived an analytical solution for when the solids are 
completely separated from the interstitial liquid before they leave the extractor. In the 
present notation their relation reads: 

hx -B\ 

(A!-l)fiï 
AxO-Afl?) 

h2 -B\ 

(B2-\)B
n
2 

h2 (1-Aß?) (2.44) 

(5 , -1 )2?? (B2-1)B"2 

where B- is defined in Eqn 2.58 and h, is given by: 

h r l - ^ ( B s - l ) (2.45) 

In the present analysis the entrainment of liquid by the solids leaving the extractor is set 
equal to the interstage liquid entrainment. This assumption is believed to be physically 
more realistic and the results of this model can easily be compared with the correlations 
derived earlier. For the derivation of the equations describing the model we refer to Fig. 
17. 
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Fig. 17. Belt extractor with complete 'mixed liquid phase in esch stage, 

In this simplified model of the belt extractor, plug 
mixing of the liquid within each stage is assumed. Thjen 
slice dx results in: 

du)[ dwj 
V 0 - *) IT = *d "ST = - kocaS ic'* - Ci) 

which can be written in a dimensionless form by introducing Eqns 2.6—2.10 

dcoj Ntii 

The number of true transfer units on solid phase basis k defined as 

* t . d ~ 

knl.aV knAaV od 4 

<t>Jm ^d 

Equation 2.47 can be integrated to give: 

« f - c , 
Oitj_t -Ct w/+i 

= exp(-iV td/«) 

The mass balance on stage i, assuming complete entrapment of the interstitial liquid by 
the solids to the next section, gives: 

*d (Wi+ 1 - «Ö + *c,A («ft , - C/1) + 0C (c;_, - C^ = 0 

where the backflow 0 c A is defined as: 

Equation 2.50 can be written in a dimensionless form using Eqn 2.9 and: 

..ü>in 

eout 

flow of the solids and complete 
a mass balance on the solids in 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 
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A = m ( 0 c - 0 c > A ) / 0 d (2.52) 

Finally the following equation results: 

(co,.+ j - «,) + D (c,+ ! - 2c,. + c,-_, ) + A(c,_, - c,) = 0 (2.53) 

For the last section the balance has to be modified since no liquid is carried by the solids 
entering this stage, so: 

("in - «») +D(c„_1-cn) + A(c„_, -cH) = 0 (2.54) 

Combining Eqns 2.53 and 2.54 results in the following boundary condition at the solids 
inlet end of the extractor: 

cn + i=cn (2.55) 

The solution of Eqns 2.49, 2.53 and 2.55 with the additional boundary conditions c in = 0 
and w in = 1 yields: 

= (fi[ - l)l\BÏ(B -1)] - (B\ - l)l[Bn
2(B2 - 1)] 

C' ~ (5? + » - f t ) / k i B ? (5 , _ l ) ] - ( 5 2 " + 1 -g2)llë2B"2(B2 - 1)] 

where: 

(2.56) 

^ = l - a ( S J - l ) = l - ( f i j - l ) / [ e x p O V t > d / « ) - l ] (2.57) 

and 5j are the roots of the equation: 

B?_l+(A+D)a+D(l+a)B + (l+aHD + A)=Q 
3 Da ' Da 

The number of exterior apparent transfer units can be calculated from this using Eqn 1.7. 
The results of the simplified model for a belt extractor with liquid recirculation in 

each section are shown in Fig. 18. The results are presented as graphs of NextA/n plotted 
against Nt Jn, the number of true transfer units in each section on overall solid phase 
basis in pure countercurrent flow and in the extractor under consideration, respectively. 
For some limiting cases of the model discussed here, a simplified solution can be given: 
- No liquid entrainment to the upstream sections. Since a constant liquid concentration 
in each stage was assumed, the distribution ratio D will only affect liquid entrainment as 
shown in Eqn 2.40. This case can thus be solved by taking D = 0 in the foregoing 
equations. The resulting equation is: 

This equation is shown in Fig. 18c. Equation 2.59 can also be derived from the solution 
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Fig. 18. Number of exterior apparent against 
true transfer units for a belt extractor with 
complete mixed liquid phase in each section, n 
is the nu Tiber of sections; D is distribution ra­
tio; A is extraction factor. 
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of the cascade of mixers model proposed by Kerkhof & Thijssen (1974), by taking the 
limit for n going to infinity in their equation (13a), since the solids move in plug flow. 
- For a large number of true transfer units each section can be considered as an equilib­
rium stage. Then the resulting equation for Nex t is: 

=-—- lnl— - ] (2.60) 
n 1-A \D + h) 

From the reasoning given above under case 1, it can be concluded that the results of this 
model can be used to estimate the number of true transfer units when dripping sections 
are present. Here the parameter D as defined in Eqn 2.9 has to be replaced by 

vbSe m e 
D = A—b-— = f l (2.70) 

where e is the residual liquid hold-up after partial drainage. One should bear in mind that 
the extractor volume calculated from Nt d when dripping sections are present does not 
include the volume of the dripping sections itself. 
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3 Estimation of mass transfer coefficients in soli d-liquid extractors 

3.1 Introduction 

In this work the NTU approach has been adopted 
extractors. In the preceding chapter it has been shown 
units required to meet the design specifications can be 
deals with the estimation of mass transfer coefficients 
required residence time of the solids in the extractor wider 
be calculated from: 

Td = V(l-h)l<t>â=Nttdl(koda') 

for the design of solid liquid 
how the number of true transfer 
determined. The present chapter 
By combining these results, the 

given process conditions can 

(3.1) 

where fcod is the mass transfer coefficient on overall dispersed phase basis. Obviously, the 
use of mass transfer coefficients to describe transfer rat ÎS 
independent of time, position, concentration and driving 
conditions are only fulfilled approximately in solid-liqui 
of Lewis states that k0 is dependent on the mass trans; 
phase kc, and in the dispersed phase kd. This relation 
sions for the flux through a solid-liquid interface (see FigL 

has 

bulk c 
liquid 

c 

oncentr 
bounck 

layer 

y 

xition 
ary so1'0" 

Q j 
Ci j 

jS sol id j 
liquid j 
interface 

i 

is most convenient when k0 is 
force for mass transfer. These 

extractors. The two film theory 
'er coefficient in the continuous 

been derived from the expres-
19): 

Fig. 19. Concentration profiles near a solid li­
quid interface. 
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<t>m=KcCc'* --c') = kod(ü' - « ' • ) 

= fcc(c;-c') = * d ( ö ' - a > 0 (3-2) 

For a linear equilibrium relation c'* = m GO', we obtain the well-known equation: 

1 1 1 1 , , 
+ Z7T 0-3) 

which can be written in a dimensionless form as: 

1 ' + ± 0-4) Shod Shd 2Bi 

where Sh = k D JE), k and 2D refer to the same phase; Bi = m(D l2)kJIDd. As will be 
recalled in Section 3.2, Shc is dependent on the physical properties and the flow velocity 
of the liquid surrounding the particle. Due to the mass transfer process these physical 
properties change with time, while in gravity percolation extractors the flow velocity 
might change accordingly. Moreover, even if the physical properties are uniform and the 
velocity is constant, kc varies over the surface of the particle (Gillespie et al., 1968; 
Frössling, 1938). Fortunately, however, the Bi number which embodies the ratio of the 
mass transfer resistances inside and outside the particle is often rather high in solid-liquid 
extraction processes so that variations of kc have a small effect on the overall mass 
transfer coefficient. Even for moderate Bi numbers the use of a value of kc averaged over 
the particle surface and the time that the solids reside in the extractor will only slightly 
affect the accuracy of the design calculation. The dispersed phase Sherwood number Sh d 

is time dependent due to the transient nature of the diffusion proces. The initial 
decrease of Sh is described by the penetration theory (Higbie, 1935). In a later stage of 
the extraction, the Shd against time curve levels off and approaches a finite asymptotic 
value when entering the so-called 'regular regime' (Kondratiev, 1964), Fig. 20. The value 
of Shd in this regular regime depends on the boundary conditions or concentration 
history at the surface of the particle, and on the geometry of the particle; but it is 
independent of the initial concentration distribution inside the particle. It can be ex­
pected that for high extraction efficiencies a considerable part of the process can be 
described with this asymptotic mass transfer coefficient. 

Fig. 20. Transient Shd numbers for unsteady diffusional 
mass transfer. (...) penetration period; ( ) regular 
regime. 
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In Sections 3.2 and 3.3, literature data on mass transfer 
dispersed phases are reviewed. This information is thereafter 
plete picture of asymptotic SÄd values in cocurrent 
particles with simple geometry. In Section 3.3.4, the 
Sh numbers in mass transfer calculations is discussed, 
how one could proceed in more complicated cases 
sections. 

coefficients in continuous and 
extended to provide a com-

ind countercurrent extractors for 
ringe of applicability of asymptotic 
Moreover it is shown in this section 

are not covered by the previous thst 

3.2 Estimating mass transfer coefficients in the contin nous phase 

are commonly expressed by the Mass transfer coefficients in the continuous phase 
dimensionless Shc number, defined as: 

c IDC 

Dp denotes a characteristic dimension of a particle or 
normally the equivalent diameter y/ÄJm where AA ijs the surface area of the particles. 
The external Shc number is determined by the concentration distribution in the con­
tinuous phase. The equality (Fig. 19): 

-ID, -ke(eK-e) 

yields the following relation for Shc: 

Shc=Dp 

For a stagnant fluidum surrounding a single spherical (article the asymptotic Shc value is 
easily obtained from the solution of the diffusion equation: 

<te 1 3 , m , 9c , 

with boundary conditions: 

r=R c = cB 

r = R0 c = c„ 

(3.5) 

a system that contains n particles, 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

The steady state solution for transfer from a particle i submerged in a stagnant, infinitely 
extending fluidum is well known; when dc/dt = 0 and R0 -*• °°: 

Shc=Dp 

-dc/dr j j 
= 2 (3.11) 
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Table 5. Effect of distance between two spherical particles with 
diameter Dp on Shc in an infinite stagnant medium. Data from 
Cornish 1965. 

Distance between centers of spheres Shc 

Dp 1.39 

2Dp 1.60 

50Dp 1.98 

2.00 

When two particles are placed in an infinite stagnant medium, the external mass transfer 
coefficient decreases with decreasing distance between the particles, see Table 5. For 
multiparticle systems in a stagnant liquid Miyauchi (1971) calculated the value of Shc 

from the concentric sphere model. In this model the particle is supposed to be sur­
rounded by a liquid shell; the dimensions of this shell are adjusted to match the void 
fraction of the packing. Miyauchi assumed a concentric shell ranging from r = Rtor = R0 

around a spherical particle. When the liquid concentration at the particle surface is set 
equal to cR and the concentration at the outer boundary of the liquid shell equal to cR 

the result for Shc in the steady state is: 

Suzuki (1975) solved Eqn 3.8 with a more realistic boundary condition at r = R0 : 

r = R0 (o-c/9r) = 0 (3.13) 

thus avoiding the artificial sink term at r = R0. The transient solution is used to calculate 
the Shc value, defined in Eqn 3.7, where 

c = 3 ƒ cr2dr/(R3
0-R

3) (3.14) 
R 

This time-dependent Shc number approaches an asymptotic value for long contact times t. 
This asymptotic solution is shown in Fig. 21, where also some measured values reported 
in literature are included. 

For small Äe-numbers, correlations for the external Shc number for single particles 
have been derived from Stokes' stream function for creeping flow around particles. For a 
thick concentration boundary layer or small Re Sc numbers, the resulting equations are 
often presented as summation series of the form: 

Shc = 2 + ±(ReSc) +1 (ReScf +... (3.15) 

For thin boundary layers, the relation obtained after summing up the result of the above 
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Fig. 
spherical particles in a stagnant finite 
fluid um as a function of the void fraction 
h. Ksy: o Miyauchi et al., 1976b; A Miya-
uchi et al., 1975;? Miyauchi et al., 1976a; 
I Suzuki, 1975; II Miyauchi, 1971. 

analysis and the limiting value 2 for a quiescent fluid 

Shc = 2+b(ReSc)i'3 

reads 

1W6), 

where b ranges from 0.5 to 1 according to Sideman & 
problems associated with the interpretation of measured 
Re numbers in multiparticle systems are discussed by 
is complicated by several mechanisms that might override 
on the measurements, e.g. dispersion effects (Wakao, 
tion in the void fraction (Martin, 1978) and free 
1973). Also the often assumed symmetry of the 
inside the particles is not valid in the low Re-number régime 
provide a theoretical basis for mass transfer correlations 
Happel (1964) solved the spherical shell model assuming 
tide. Their results agree reasonably well with the 
(197S) combined the solution obtained by Suzuki 
newal theory. Thus, an analytical expression was obtained 
solution with the Ranz Marshall correlation which applie: 
a correlation that has been used to predict mass transfer 
ber regime. Measurements of mass transfer rates in 
Dwivedi & Upadhyay (1977), and by Wakao & Funazk|ri 
10, the first authors proposed the following empirical 
/-factor and the Reynolds number for the liquid flow, Ä ; 

* / * = 
hShc 

Re (Sc)1'3 
= 1.1068Äe-°-72 

21. Asymptotic values of Shc for 

(3.16) 

Shabtai (1964). The fundamental 
mass transfer rates at very low 

Ĉ angwal (1977). This data analysis 
the effect of mass transfer rate 

, channelling caused by varia-
convection (Mandelbaum & Böhm, 

concentration or temperature profiles 
(Wakao, 1976). In order to 

in these systems, Pfeffer & 
creeping flow around the par-

measured data. Nelson & Galloway 
with Danckwerts' surface re-
for Shc. After scaling their 

s for single spheres, they derived 
coefficients in the low Re-num-

ihis regime were re-evaluated by 
(1978). For Re numbers below 

correlation between the Colburn 
= p<v>Z>p / / i( l-A): 

(1975) 

(Re> 10) (3.17) 
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For higher values of Re an overwhelming amount of literature data are available. Based on 
Schlichtings boundary layer theory, correlations for single particles usually take the form: 

Shc = 2 + bRell2Sc1^ {Re>\) (3.18) 

From the survey of Sideman & Shabtai (1964) it is found that the value of b is usually in 
the range 0.5 <b< 0.9. Correlations for external mass transfer coefficients in multi-
particle systems are reviewed (e.g. Barker (1975), Sideman (1966), Upadhyay & Tripathi 
(1975), Dwivedi & Upadhyay (1977) and Kumar et al. (1977)). Based on a critical exami­
nation of previous data, Dwivedi and Upadhyay proposed the following empirical correla­
tion for higher Re numbers: 

hi = 0.4548 Re - 0 . 4 0 6 9 (Re>10) (3.19) 

These authors also suggested a generalized equation that correlates data over a wide Re 
number range: 

0.765 , 0.365 
A/m = — — + 

Re ,0.82 Re 0 . 3 8 6 
(10-2<Äe<15 103) (3.20) 

This relation is shown in Fig. 22 together with some literature data. 
Even though no attempt has been made to be complete, the above survey clearly 

shows that methods for estimating the external mass transfer coefficient for widely 
varying conditions is extensively dealt with in literature. Moreover, as was pointed out in 
Section 2.1, the Biot number Bi = m &0.R/ZDd for solid-liquid extraction is often very 

Re=p<v>Dp/|A 

Fig. 22. Mass transfer factor in fixed beds. Solid line: Eqn 3.20; Cloud: experi­
mental data. From Dwivedi & Upadhyay, 1977. 
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large. Thus a rough guess of A: will prove to be sufficient in most engineering calculations. 
If kç varies over the length of the extractor due to chanj ;es in viscosity or flow velocity, it 
is recommendable to use a constant, averaged value of k( in the design calculation. 

3.3 Estimating mass transfer coefficients in the disperse d phase 

Mass transfer inside rigid particles is generally describsd by Ficks second law: 

22, J-±(m.r-***\ 
dt j»-\ br\ d dr J 

where v, the geometrical shape factor, is 1,2 and 3 for 
respectively. In analogy to the Shc number, the mass transfer 
solid phase is embodied in the Shd number, which can 
tion distribution inside the particles. An overall mass balance 

_ bu 
kdAd(o)-(oi) = -E>dAd — = -VA 

R 

dco 
d7 

(3.21) 

a flat plate, cylinder and sphere, 
coefficient in the dispersed, 

be calculated from the concentra-
yields: 

(3.22) 

By substitution of td = E>dt/R
2, £ = r/R, and v/2 = ÂJVd, the above relation can be 

rearranged to: 

• 2 » d « -

< 3 ^> | £ = 1 -émtd 

CO-Cdl « — 6J| 
l f= l 1 £=i 

posed 
Since the concentration profile inside the particle, u (i 
etry of the particle and the boundary conditions im] 
be a function of the following parameters: 

Shd = f(y, td, initial and boundary conditions) 

For long contact times between the phases, the Shd number 
value Shda, as pointed out in the introduction, 
independent of the initial concentration profile, thus 

This 

Shda = f (v, boundary conditions) 

Mathematically this stems from the fact that the solution 
which can be written as a summation of terms 
\td) multiplied by the related eigenfunction f(Xn), is 
the smallest eigenvalue Xt. The contribution of higher 
nature of the weighting function for higher values of 
'first-term approximation' for heat and mass transfei 
1963; Brüniche Olsen, 1962; and others). It can be shovn 
regular regime can be described with a constant mass transfer 

(3.23) 

rH), is determined by the geom-
on Eqn 3.21, we expect Shd to 

(3.24) 

will approach an asymptotic 
asymptotic value is essentially 

(3.25) 

of the diffusion equation, 
containing a weighting function exp(— 

governed by the term containing 
terms is negligible because of the 
td. Many authors proposed this 
calculations (Pflug & Blaisdell, 

that the extraction rate in this 
coefficient, kd. 
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3.3.1 Survey of literature data 

For a constant surface concentration, Shdta values are given by Beek &Muttzall (1975). 
For a constant bulk liquid concentration with finite Bi values, these data are reported by 
Thijssen (1969). The solutions for constant surface concentration were extended to con­
centration-dependent diffusivities and shrinking systems by Schoeber (1976) (Fig. 23). 
The results of the analysis mentioned so far are summarized in Table 6. For cocurrent and 
countercurrent extraction of heating/cooling of spherical particles, several authors derived 
the asymptotic transfer coefficients when he phases are contacted in pure plug flow. As­
suming a geometrical similar profile in the regular regime: 

CO 
= fft) (3.26) 

CO 

where f(£) is a function of % = r/R only, Gardner (1966) obtained analytical expressions 
for Shd a by substituting the regular concentration profile Eqn 3.26 in the diffusion 
equation 3.21 and combining the resulting relation with an overall mass balance: 

( w 0 - w ) = - ( c 0 U t - c ) A t (3.27) 

where Aj is + A and — A for countercurrent and cocurrent phase contact, respectively. 
The same results were obtained by Wartman & Mertes (1966) from the transient solution 
of the diffusion equation with the appropriate boundary conditions. Vorstman & Thijssen 
(1971) calculated asymptotic Shd a values for countercurrent extraction of spherical par­
ticles by using a different mathematical approach. In solving the diffusion equation 3.21, 
the following general boundary condition was applied at r = R : 

^ = Ä { w - w * ( f d ) > 5=1 (3.28) 

The bulk liquid concentration, m co*(?d), was then obtained from the solution of the 

Shd.a 

- 1 0 2 4 

Fig. 23. Asymptotic Shd<a values for concen­
tration dependent diffusivity JDd - cjr 

constant surface concentration (Bi,A 
Parameter is geometrical shape factor v. From 
Schoeber, 1976. 

a and 
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Table 6. Review of Sh0& values for constant bulk concentration of the liquid phase in the regular regime. 

Diffusion 
coefficient 

constant 

concentration 
dependent, 

a -*oo 

Boundary 
condition 

constant 
surface 
cone, Bi = °° 

finite Bi 

Bi = 00 

Bi = 00 

Geometry 

Sphere 

2zl 
3 

2XÏ/3 
X, = 
(1 - Bi) tan X, 

Fig. 23 

exp(8/3) 

Cylinder 

5.96 

XÎ 
x,J, (x,)» 
ÄiJ0(X,) 

Fig. 23 

4e 

Source 

Slab 

»*/2 

2XÎ 
X, = Bi/tun X, 

Fig. 23 

exp(2) 

e.g. Beek & 
Muttzall, 1975 

Thijssen, 1969 

Schoeber, 1976 

Schoeber, 1976 

lumped parameter model, i.e. the Colbum equation. Their results coincide with those 
obtained by the methods discussed earlier. 

In the subsequent sections 5Ada values are calculated for both cocurrent and counter-
current extraction of particles which can be approximated by slabs, cylinders or spheres. 
Some general procedures for generating these asymptotic mass transfer coefficients are 
discussed. 

3.3.2 Shda values from solutions under coupled boundary conditions 

During the extraction of rigid particles, the transier t concentration distribution can be 
obtained from the solution of the diffusion equation 
sionless form as: 

, which can be written in a dimen-

9w _ _ J _ j j j _ yV-\ da») 

In general, the following initial and boundary conditio is apply 

' a=0 

£ =0 

S =1 

«(S,0) = f(S) 

aw/9? = 0 

dw/d£ = - Bi {oi - c(td)lm} 

0< 

W 

t*> 

The concentration in the continuous phase, c(td), car be calculated from a mass balance. 
For cocurrent and countercurrent extraction this results in the following relations: 
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de _ 1 do? 

dTd " " Ä d !7 

fH = 0 c=c;„ 

de 1 dco 

dTd~
+Adt^ 

r . = 0 c = cr 

cocurrent or batch (3.33) 

• countercurrent (3.34) 

We will indicate this system of equations by the term 'coupled boundary conditions', i.e. 

coupling of c(rd) from the boundary condition Eqn 3.32 with a mass balance relation 

3.33 or 3.34. Analytical solutions of the above equations are summarized in Table 7, with 

special reference to cocurrent and countercurrent phase contact. Only those solutions not 

dealt with extensively in the handbooks (Luikov, 1968; Crank, 1956; Carslaw & Jaeger, 

1959) are included in the table. From these solutions the Shd a values can be derived 

Tabel 7. Analytical solutions of the diffusion equation with coupled and general boundary 
conditions. 

Geometry factor 

cocurrent 
1,2,3 

1 

3 

1 ,2,3 

2 

3 

all 

countercurrent 
1,2,3 

1 

1 

3 

general 
3 

all 

1 ,2,3 

Bi 

oo 

oo 

oo 

finite 

finite 

finite 

finite 

oo 

oo 

finite 

finite 

finite 

finite 

finite 

ftt) 

w0 

f«) 

f(l) 

" o 

" o 

" o 

m 

" o 

m) 
" o 

w0 

" o 

m 
f«) 

Remarks 

tables, graphs 

tables, graphs 

arbitrary geometry 

tables, graphs 

graphs 

mass generation 
included 
sorption included 

axial dispersion 
included 

c = c(t) 

c = c(t) 

c = c(t) 

Source 

Tettamanti et al., 1975 

Hachco & Krasuk, 1972 

Plachco & Lago, 1972 

Mikhailov, 1966 

Edeskuty & Amundson, 1952 

Fanitor & Tao, 1972 

Mikhailov, 1977 

Tettamanti et al., 1975 

Plachco & Krasuk, 1970 

Jeschar, 1966 

Munro & Amundson, 1950 

Kasten & Amundson, 1952 
Barbouteau, 1956 
Wartman & Mertes, 1966 
Neretnieks, 1974 

Vorstman & Thijssen, 1971 

Olçer, 1964 

Mikhailov, 1973 
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from Eqn 3.23. 
The solution of the transient diffusion equation car 

w'-w'(fd=0) 
»*tA 

(c/m-(o)t 0 /=i 

where f(Xj), /=0, °° and g(ju) are functions that depend on the boundary and initial condi­
tions and Xj and ju are the nonzero roots of the characteristic equation, if those roots 
exist. W(rd) is defined in Table 8 for cocurrent and couitercurrent flow. The value of A0 

is also given, which can be verified easily for cocurrent extraction, and for countercurrent 
extraction with an extraction factor A > 1 by taking the limit for rd-+<» in Eqn 3.35 
since no root fi exists in these cases. Combining Eqn 3.35 with the mass balance on both 
phases, the value of G(fd) defined in Table 8 is obtained 
given in Eqn 3.23 can now be written as: 

be written in a generalized form: 

-*/"d (3.35) 

The definition of the Sh number 

Shoä(td)= 
/ i 2 «00e" ' ' d_2 x / f ^ e V<J 

(l-yV'XstAOe" f d + / 2 f ( V e ' > 

where \ = A or - A for countercurrent and cocurrenk 
longer contact times between the phases, the solution will 

Table 8. Asymptotic 5ft-numbers and some related properties 
y = Af/i>; Jfc is the Bessel function of the first kind and k-th ordei 
the first kind and k-th order; X is the first non-zero root of the related 

(3.36) 

phase contact respectively. For 
be determined by the smallest 

>f the differential equations involved. 
; Ife is the modified Bessel function of 

trancedental equation. 

phase 
contact 

cocurrent 

counter-
current 
A > 1 

W 

W - U ) 0 

c0 - w 0 

w - w0 

Cout-"o 

c 
C - Wt 

c„ -u>0 

c - w 0 

Cout-^o 

A0 

A 
A + 

A 
A -

1 

1 

<S%od,a 

^ x > 
V 

V 

XoiM 

tan X = 
Bi + 7 \» 

J, (X) yBi\ 

J, (X) Bi + y\' 

^ , X(5/ + 7X') 

counter- w c _ W o 

current 
A < 1 ^out -"* cout-u>o 

2/1» 

1 - A 
tanh/i 

I, 
I. 

t* 

(M) 
GO 

Bi + y (1 -

y Biß 

Bi + y ß'' 

y Bi ix 

Bi + y il2 

-SOX1 

ßiBi + yn1) 

Bi + 7(1 - 5 0 M' 
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eigenvalue Xi, or by the eigenvalue p if the latter exists. Thus the calculation of the 
asymptotic Sh numbers can be reduced to an analysis of these smallest eigenvalues. In the 
subsequent treatment, we will use Laplace transform techniques to determine the charac­
teristic equations that generate the eigenvalues. 

The solution of Eqn 3.29 with initial and boundary conditions 3.30 and 3.31 in the 
Laplace domain is given by: 

W = / e - s t d H / ( i r d ) d r d 

o 

= A3 sinh (£ V7 )/Vs~ when v = 3 (3.37) 

= A% I0 ( |Vs") when v = 2 (3.38) 

= A i sinh (£ Vs ) when v = 1 

The value of the constant Av can be obtained from boundary condition 3.32 and the 
overall mass balance equation 3.33 or 3.34. Thus, the characteristic equation is obtained 
by setting the denominator of the resulting expression for W equal to zero and solving for 
s. These equations are given below: 

• , K A (Bi-ys)y/s 
tanh (Vs ) = — r\—rx v ' Bi-ys(l-Bi) 

I0(VO~ Bi-ys 

when v = 3 (3.40) 

when v = 2 (3.41) 

yBiVs 
tanh(v7) =-yr. when i> =1 (3.42) 

v ' Bi - y s 

where y = \lv. It can be shown that the above equations have a non-zero real root ju only 
in case A < 1 in the countercurrent situation. This single root determines the asymptotic 
solution for W(rd). In other cases, an infinite number of roots is obtained by substituting 
X = i v ^ The smallest non-zero root determines the asymptotic solution in this case. The 
resulting characteristic equations are included in Table 8. The Shod a values obtained 
from the equations in this table, together with the Shd a values calculated from Eqn 3.4 
are shown in Fig. 24-29. Both for cocurrent and countercurrent extraction the solution 
approaches the constant bulk concentration limit when the extraction factor A goes to 
infinity. These solutions were already summarized in Table 5. The asymptotic mass 
transfer coefficient increases from slab to cylindrical to spherical geometry of the par­
ticles subjected to extraction. In fact, this is a consequence of the definition of the Sh 
number given in Eqn 3.23. Due to the higher value of v = 2 Ad/Vd, a certain flux -
K)d(doj'ldr)R causes a more pronounced concentration reduction in terms of average 
solute concentration for spherical particles. Decreasing the external mass transfer coeffi­
cient or Bi number shifts the Sh d a value towards the value obtained for A = 1. For 
countercurrent extraction, an increase in A causes a reduction in the asymptotic mass 
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Fig. 24. Asymptotic 5/ij and 5Ä0(j values foi countercuiient 
tibn of spherical particles. Bi = mkcR/lD^ is the Biot numbei. 
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10 100 parameter Bi 

10 
A 

_J 1 1 I 1 L_l_ _1 1 I I—I—L_l_ 

0.1 0.2 0.4 10 
A 

Fig. 25. Asymptotic SÄj and SÄ0(j values for countercurrent extrac­
tion of cylindrical particles. Bi = mkcR/lD^ is the Biot number. 
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Fig. 26. Asymptotic SAj and SA0(j values for countercurrent extrac­
tion of particles with slab geometry. Bi = mk^/JD^ is the Biot num­
ber. 
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Fig. 27. Asymptotic S/i<j and S/i0(j values for cocunent extraction of 
spherical particles. Bi = mkcR/lDi is the Biot number. 
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Fig. 28. Asymptotic Sh^ and SA0(j values for cocurrent extractioi 
cylindrical particles. Bi = mkcR/H)d is the Biot number. 
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Fig. 29. Asymptotic S/i<j and 5Ä0<J values for cocutient extraction of 
particles with slab geometry. Bi = mkcRlE>i is the Biot number. 
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11 transfer coefficient. Due to the falling concentration 
tide, the concentration gradients at the solid-liquid 
with the result that was mentioned above. The reserve 
where the liquid concentration rises during the extractio i 

the liquid surrounding the par-
irjterface (3co'/8r)R are steepened 

is true for cocurrent extraction 
process. 

3.3.3 Shd a values from solutions under general bounda ry conditions 

29 The analytical solution of the diffusion equation 3 
through 3.32 can be derived from the generalized solutions 
(1973). For the basic geometries these solutions are summarized 

W = 
CO - CJo 

c'(fA = 0)lm-u'0 

'd 

2*5? 2 [ f C(T?)e-x"('d-T')d7?]/[X^+Ä(Ä + 2-
n—l J 

where G(rd), the bulk liquid concentration at the dimensionless time td, is embodied by: 

c'(td)lm - coó = 1 
LVd)~ c'(P)lm-u'0 l -*( 'd) 

and Xn are the positive, non-zero roots of the characteristic equations: 

tan X„ = Ä'/Xn when v \=-1 

Ji(X„)/Jo(Xn) = Ä/Xn when ^ 2 

tan Xn = XJJO - Bi) when v\=3 

od 

For longer contact times, the regular regime solutions 
described with a constant mass transfer coefficient £, 
values, we are only interested in this limiting behaviourj. 
liquid concentration (Xt^) can be calculated from the 
model. In Section 2.1, some solutions of this model for 
For cocurrent and countercurrent contact in plug flow 
Table 2 when the number of transfer units is replaced bj 

^t,d = *od «' Td C*/0 = -»«od 'd "/2 

where x is the coordinate in the liquid flow direction 
the following relation is obtained: 

with boundary conditions 3.30 
presented by e.g. Mikhailov 

below: 

»)] (3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

result in a mass flux that can be 
. For the calculation of SAod a 

Therefore, the time variant bulk 
solutions of the lumped parameter 

various flow systems were given. 
, C(td) can be determined from 

(3.48) 

anti Shod = kod2R/JDd. In this way 
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tv l ~ \ ) 
At - exp^- td Shod > 

<*'„) = L ^ — { ^ — ' (3-49) 

where Aj equals A for countercurrent phase contact, and —A for cocurrent extraction. 
The extraction rate - d w/d td can be calculated by substitution of the former equation 
in Eqn 3.43, which yields: 

dû __2i>Bi2 £ K\-lK+\A]e-K*é-AeAta 

dtd Aj - 1 n=i (\2n + A) [\2n + Bi (Bi + 2 - c)] 

where A = (i>/2) Shod (1 - \ ) l \ . An expression for the driving force for mass transfer 
is obtained from a mass balance 3.27: 

(u'-J0)l\+(c'out-c')lm = 0 (3.51) 

or in dimensionless notation: 

w - c = ( A t - l ) c - A t (3.52) 

The overall driving force can now be derived from Eqns. 3.49 and 3.52: 

1 _ A t 
u-c = -e\p{- Shnd— td\ = -exp(-Atd) (3.53) 

Iv l - J \ \ 
- e x p | - Shod —— fdJ = - exp (-Atd) 

In fact, this expression is proportional to the extraction rate calculated from the lumped 
parameter model. The Shod number can now be obtained easily from Eqns 3.50 and 3.53 
for a contact time td=Fo: 

-2vBi2 2 
«+ ÄTT " > • - * " - 1 *=!• '""• 

- s h . . ""' N+-*)W+«(«+2-»)] 
*\ —'od 
z -e\p(AFo) 

(\2n + —^—A)e-«n+A'>F°-A 1 

\ - l ' A t -1 
= 2vBi2 2 — -*— (3.54) 

«=i (Xl+A)[X2+Bi(Bi + 2-p)] 

The asymptotic SÄod number for long contact times is derived from this equation by 
taking the limit for Fo -*•<*>. This raises the problem that no information is available 
beforehand about the value of -(X* +A). However, it is known that the Shod a value is 
the lower limiting value of the actual Shod value, and we can only accept finite mass 
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transfer rates. Thus -(\£ + A) must always be less then 
is derived for Fo -*• oo; 

zero. Thus the following relation 

A« 

2vBi2 = 2 <(X* + A)[*}„ + Bi(Bi + 2-v)]y 
n=l 

where A is a function of the asymptotic Sh number 
equation yields Sh values for arbitrary values of Bi, \ 
to those presented in the previous section. 

(3.55) 

The iterative solution of this 
and v. The solutions are identical 

3.4 Asymptotic Shd t numbers in engineering calculatie ns 

The practical use of the asymptotic Sh values obtairied 
the previous sections is restricted to the extraction pf 
geometry, cocurrent or countercurrent phase contact in 
contact times between the phases. In this section attention 
the asymptotic transfer coefficients in practical design 
cated cases are encountered. The error introduced whe i 
finite Fo values is discussed. The determination of these 
for other boundary conditions will be outlined. Subseqm 
for irregular particles and for non-uniform particle size 
an approximate explicit relation is derived that predicts 
extractors when the extraction factor is close to or larger 

from the theory presented in 
uniform particles with simple 

pure flug flow and relatively long 
is paid to the applicability of 

Calculations, where more compli-
Shod a numbers are applied at 
asymptotic transfer coefficients 
lently, the estimation of SÄod a 

distributions is discussed. Finally, 

Range of applicability. The practical significance of 
measured by the critical Fo value, above which the 
specified percentage from the asymptotic value. On this 
discussed in this paragraph. The approximate Fo 
separation is calculated from the lumped parameter 
value, see Eqn 3.48. Also, the exact Fo' value is 
of the diffusion equation. The relative difference 
against Fo'. Due to the large number of parameters i 
contact and Fo', only some sample cases are covered 
results for cocurrent extraction of particles with slab 
expected increasing accuracy of the method with rising 
the critical Fo' value increases since the overall mass 
and more determined by the time-dependent ShA; the 

Shc is gradually reduced. The effect of the extraction 

land 

graph indicates that an increase in A reduces the critica 
tion. The reverse is true for countercurrent extraction, 
ment with the results of Vorstman & Thyssen (1971) 
curve for \ = —30 is essentially identical to the 
concentration. The figure clearly shows that the 
current to cocurrent phase contact. To determine 
in a process, the extraction efficiency has to be calculate^ 
the diffusion equation as a function of the Fo time. 

Shod a values in countercurrent 
than unity. 

asymptotic Shod a numbers can be 
tirre-

tints 
model 

ty 

Fo' 

-averaged Sh differs less than a 
basis the range of applicability is 

required to perform a certain 
using the asymptotic Shod a 

determined from the analytical solution 
between those two is then plotted 

involved: Bi, A, v, mode of phase 
the figures. Fig. 30 shows the 

geometry. It clearly shows the 
' value. For higher Bi numbers, 

transfer coefficient becomes more 
contribution of the constant valued 

factor is shown in Fig. 31. This 
Fo' value for cocurrent extrac-

fhe latter conclusion is in agree-
of BrOniche Olsen (1962). The 

curve obtained for a constant bulk 
critical Fo' value increases from counter-

whether the critical Fo' values are met 
from the analytical solution of 
results are shown in Fig. 32, The 
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Fo-Fo' 
100% 

Q2 0.4 1 

Fig. 30. Relative error in the Fourier value cal­
culated from the Sh& a value for cocurrent ex-

2 3 traction. Slab geometry, v = 1 ; Extraction fac-
Fo' tor A = 10 ; Parameter Bi. 

Fo-Fo 
•100*/. 

Fig. 31. Relative error in the Fourier value cal­
culated from the Sh& a value for cocurrent and 
countercurrent extraction. Spherical geometry, 
v = 3 ; Bi = 100 ; parameter At. 
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Fig. 32. Error in extraction calculations using asymptotic SA, d values 
for cocurrent and countercurrent extractors. Bi = •»; ( ) v = 3; ( ) 
i> = 1; Parameter At-

where the relative error in the Fo value required for the separation, as calculated from the 
asymptotic Sh number, is plotted against the fraction of the solubles remaining in the 
solids, l-W/WFo _ . , = (co'ln - w'out)/(w' in - Jout)Fo ^„.For countercurrent extrac­
tion and plane sheet geometry, the relative error is le ŝ than 10% when the extracted 

value will often be attained in 
For either cocurrent or batch 

fraction is higher than 0.9, or l-W/Wmtx < 0.1. This 
solid-liquid extraction processes in the food industry 
extraction, Fig. 32 shows considerable discrepancy betvjeen actual and approximated Fo 
value; in particular for spherical particles the minimum extracted fraction will not be met 
in practice. 

The asymptotic Shod a value only determines the extraction rate attained after long 
contact times between the phases, Fig. 33. The extracted fraction f can be calculated 
more accurately when a fictious initial condition t& = 0, ƒ = f0 is incorporated in the 
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In(1-f0) 

0.215 

Fig. 33. Graphical representation of calculation procedures for 
heat and mass transfer problems. I first term approximation; II 
penetration/regular regime; III exact solution diffusion equation; 
IV asymptotic transfer coefficients. 

calculation. In fact, this procedure forms the basis of the first term approximations (Pflug 
& Blaisdell, 1963). It has the disadvantage that the solution of the diffusion equation 
with proper initial and boundary conditions must be available. Here, a calculation pro­
cedure is adopted, which is similar to the one proposed for drying calculations by 
Schoeber (1976), that can be used to increase the accuracy of the calculation at small Fo 
values. The first part of the extraction process is calculated from the penetration theory. 
In a later stage the regular regime solution is applied. In Appendix D an analytical 
solution for short contact times is derived, for a plane sheet subjected to cocurrent or 
countercurrent extraction with finite mass transfer rate in the solvent phase. The time-
dependent Shod numbers obtained from this solution are shown in Fig. 34. From this 
figure we learn, that the Shod value decreases rapidly from Shod = Bi at r^ = 0 to some 
minimum value. In all cases, this minimum is located close to yjtd = 0.45 or rd = 0.215, 
independent of Bi, A and the mode of phase contact. Furthermore, this minimum value is 
very close to the asymptotic Shod value. In most cases it is not more than 3% higher. The 
increase of the Shod number at longer times is caused by the fact that the boundary 
condition (D.4) for a semi-infinite slab is applied to a finite particle with finite storage 
capacity for the solute. This increase in the mass transfer coefficient is physically unrealis­
tic. The above results suggest the use of the solution of the diffusion equation in the 
penetration period in the calculation up to t^ = 0.215. The subsequent part of the 
extractor is designed with the lumped parameter model, using the asymptotic value of 
Shod attained in the regular regime. The initial conditions of the solid and liquid phases 
in the second stage of the process are then obtained from the solution in the penetration 
period. The extraction efficiency: 
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Fig. 34a. S%0d values in pénétration 
period for semi infinite slab geom­
etry. Bi = «.; Parameter 1/At. 

Fig. 34b. SAod values in penetration 
period for semi infinite slab geom­
etry. Bi = 10; Parameter 1/At. 
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w = 
có/m-wó 

(3.56) 

at Fo = 0.215 is shown in Fig. 35 for both cocurrent and countercurrent extraction. The 
overall residence time required for the specified separation is then obtained from: 

0.1 0.2 0.4 
Fig. 35a. Extracted fraction in penetration period 
at Fo = 0.215 for semi infinite slab subjected to 
countercurrent extraction. Parameter Bi. 

0.1 02 0.4 

Fig. 35b. Extracted fraction in penetration period 
at Fo = 0.215 for semi infinite slab subjected to 
cocurrent extraction. ( ) extracted fraction at 
equilibrium (Fo - »), W = A/(l + A); Parameter 
Bi. 
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Fo = 0.215+ -
P 5Aod,a 

In 
p W(Fo = 0.215) - 1 

pW(Fo)-l 

where p = (1-1/A,). Th&Fo value calculated by the 
percent with the exact solution for slabs. For Fo values 
has to be determined from the equations given in Appendix 

a Jove procedure agrees up to a few 
smaller than 0.215 the Fo value 

D. 

Irregular shapes and particle size distributions. From 
ter, the Shod a values for the extraction of particle: 
determined. For irregularly shaped particles, the common 
the particle shape by one of the basic geometries. Rutjov 
improve the estimated kA value for slightly irregular 
1, the diffusion coefficient has to be replaced by an effektive 

m'^m^jA^ 

he graphs presented in this chap-
with a simple geometry can be 

procedure is to approximate 
(1958) suggested a method to 
is. For A'-numbers greater than 

diffusivity/Dd: 

(3.58) 

where AA is the surface area of the particle and,4d „ is 
particle. 

For non-uniformly sized particles, Gardner (1966) 
effective overall transfer coefficient when the particle 
procedure involves the determination of the particle 
concentration of the particle cloud. When m is the cumulative 
function, the following relation results: 

the surface area equivalent regular 

ƒ 
d(«) 

1 + 
At Kdlrov = i 

l - A t ( W o * ) * 

where v is the particle velocity relative to the wall. r% cah be determined by trial and error. 
When Aj = 1, a somewhat simpler equation is obtained: 

ƒ 
1 d(m) 

kodlrov (kod/r0v)* 

Boundary conditions. When a specific flow pattern in 
dary condition co*(fd) that cannot be adequately described 
this section, one of the methods discussed in Section 
used to calculate S7iod a values. The coupled bounda(ry 
discussed in Section 3.3.2 produces relatively simple 
related characteristic equations may be rather complex 
not found in literature. Fortunately only one eigenvali e 
The general boundary condition method presented in 
error solution of an equation containing an infinite 
Sh od,a The advantage of this method is that for nume rous 
solutions are published in literature. Furthermore, the 

Fo> 0.215 (3.57) 

] imposed a method to estimate an 
size distribution is known. This 
îze ro which follows the average 

particle size distribution 

(3.59) 

(3.60) 

the extractor gives rise to a boun-
by one of the cases treated in 

3.3.2 or Section 3.3.3 should be 
condition solution method as 

equations for Shod a. However, the 
and the eigenvalues are normally 
is required for the calculations. 

Section 3.3.3 involves trial and 
summation series to determine 

cases the lumped parameter 
expression for <S7joda is applicable 
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to all kinds of boundary conditions C(td), without modification of the characteristic 
equations. The first 7 eigenvalues are readily obtained from the common handbooks, 
while additional roots are tabulated by Hayakawa (1975) for v = 2 and v = 3 and by Bakal 
et al. (1970) for v = 1. For these reasons the method discussed in Section 3.3.2 is only 
recommended for a rather simple problem. When complicated boundary conditions are 
involved, and consequently complex characteristic equations, the method outlined in 
Section 3.3.3 is more suitable. 

Explicit relation for Shod a. A quick estimation of Shod a values without resorting to 
the graphs presented in this chapter can be obtained from the approximate relation 
explicit in Shod a . The equation is valid for countercurrent phase contact, when the 
extraction factor A is close to or greater than 1. The derivation of the equation is 
discussed in Appendix C. For plane sheet geometry the relation reads: 

Bi {6 (Bi + 2.25) + (A - 1) (Bi + 3)TT2/2> 

Bi A(Bi + 2.25) + (A - 1) {3 (Bi + 2.25) - (Bi + 3)TT2 /4} 
Shd a = ^—i ' — (3.61) 

The solution for other geometries can be generated by the conversion rule 

Sh^v = i>Shd^v=l-A(v-\) (3.62) 

For extraction factor A = 1, these equations are exact. 
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4 Liquid maldistribution in solid-liquid extrac 
, instabilities ' 

ors: hydrodynamic 

4.1 Introduction 

It was mentioned in Chapter 1 that viscous fingering may occur in systems where 
viscosity gradients exist in the liquid flowing through a densely packed bed. The mecha­
nism that is responsible for the formation of viscous lingers can be elucidated by means 
of a simple model shown in Fig. 36. For the sake of ! implicity, any interaction between 
the liquid and the packing material is not considered. The figure shows the situation 
where a liquid 2 is displaced downwards by a miscible liquid 1, which has the lower 
viscosity. Since in general density increases with viscosity, the displaced liquid is also said 
to be the denser one. A protrusion of the displacing liquid is supposed to be formed at 
the liquid-liquid interface due to, for example, a local permeability variation in the 
packing material. The displacing liquid will now flow 
sion, since the mobility of the liquid in this region is '. 
liquid. Hence, the disturbance tends to grow. On Ihe other hand, especially at low 
displacement velocities, the favourable density differ mce counteracts any distortion of 
the displacement front. The flow can thus be stabilized 1 
effect of viscous and gravity forces depends on the displacement velocity, physical prop­
erties of the liquids and properties of the packing material. Table 9 gives a schematic 
overview of the relative stability of several displacement conditions. In solid-liquid extrac­
tors viscosity differences may arise from concentrai jn gradients in the solvent phase. 
Since both the shape of the concentration gradient and mass transfer between the solvent 
and the packing material affect the flow stability, the 
liquid extraction equipment present a much more cc mplicated picture than the simple 
case just described. It is the aim of this section to provi de information on whether viscous 
fingering affects extraction efficiency. In order to 
concentration gradient in the liquid flowing througi an inert packed bed is first ex­
amined. Subsequently, mass transfer between the packing and the solvent is taken into 

«v> A 

preferentially through this protru-
ügher than that in the surrounding 

Fig. 36. Definition sketch for the phenomenological description of 
unstable displacement. 
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Table 9. Effect of flow conditions on the stability of displacement from 
packed beds. Index 1 refers to the upper liquid. 

Flow 
direction 

t 

1 

Sign 

( P i - P 2 ) 

+ 

+ 

-

-

+ 

+ 

-

-

Sign 

(Mi - M 2 ) 

+ 

-
+ 

-

+ 

-
+ 

-

Stable displacement 
at flowrates 

none 

high 

low 

all 

high 

none 

all 

low 

account. 
Stability criteria for liquid-liquid miscible displacement from inert packed beds are 

discussed in this section. Some attention is given to flow phenomena in the unstable 
regime, and some methods suggested in literature to describe unstable displacement are 
given. Stability critera were verified experimentally for a stepwise concentration change 
of the solute which increases the viscosity of the liquid flowing through a densely packed 
bed. This study was then extended to the case of a gradually falling concentration in the 
displacing liquid in Section 4.2. This situation is relevant to solid-liquid extraction, where 
the concentration of the solute rises in the direction of the liquid flow. Finally, the effect 
of mass transfer on the flow stability was studied. Two different cases were considered. 
When the liquid in the interstitial voids of the packed bed is initially in equilibrium with 
the liquid in the internal pores of the packing material, mass transfer is expected to stabi­
lize the displacement. Due to mass transfer in the protrusion, the viscosity ratio for the 
liquids outside and inside the protrusion is decreased. The growth rate of the disturbance 
is thus reduced by mass transfer. When the liquid in the interstitial voids is initially not in 
equilibrium with the solids, mass transfer occurs both inside and outside the disturbance. 
Then the overall effect depends on displacement conditions and the physical properties of 
the liquid. The extraction efficiency in a packed column has been measured over a wide 
range of displacement velocities to establish these effects. 

4.1.1 Stability criteria 

For liquid-liquid displacement, both miscible and immiscible, stability criteria are 
reported in literature. In general, interaction between the porous medium and the flowing 
liquid, e.g. adsorption, is neglected. When gravity effects are negligible, as in horizontal or 
matched density experiments, Muskat (1949) found that the flow is stable when the 
mobility ratio of the displacing and the displaced liquid exceeds 1. The mobility is 
defined as the ratio of permeability and viscosity. Hill (1952) included stabilization by 
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gravity during miscible displacement in the analysis, 
tween the displaced and the displacing liquids, as showjn 
both the displaced and the displacing phase, p2 and p 
p. The pressures in the phases at z + Az can be calculated 
pressure gradients in the phases are known. The hypoth etical 
figure will then grow when p\ <p'2 and will be suppressed 
the expression for p\ and p'2, the condition for margin; d 
as: 

dp 
dz 

dp 
dz 

'. ie assumed a sharp interface be-
in Fig. 37. At z the pressure in 

respectively, is assumed equal to 
from this value when the 

disturbance indicated in the 
when pi > p i . According to 

stability can now be formulated 

(4.1) 

The pressure gradients in both phases can be calculate^ from the Darcy Law. When vc is 
the maximum stable velocity we obtain: 

vc Pi vc (12 

- — — + Pig = + Pi g 

The displacement is thus stabilized when <v> <vc wheie vc is given by: 

g(P2 -Pi) 

K2 Kl 

It can be verified easily that this result is in agreement 
During the flow through packed beds, any concentration 

liquids, one of which displaces the other, will be smoothed 
effects. Thus the stability criterion derived by Hill was 
to account for a continuous concentration change in 
displacement any disturbance in the equi-concentration 
pressure gradient is lower than the pressure gradient 
placement will be stable when the pressure gradient 
direction. The condition for marginal stability thus reads 

in 

(4.2) 

(4.3) 

with' Table 9. 
jump between two miscible 

out by diffusion or dispersion 
reformulated by Dumoré (1964) 
the liquids. Since for downward 
planes will grow when the local 
the liquid downstream, the dis-

iiicreases continuously in the flow 

P)" (>2«P 

i <v> 
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Fig. 37. Definition 
bance at the displacement 

sketch of a hypothetical distui-
front. 
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dz \ d z ) 
(4.4) 

Combining the Darcy Law with Eqn 4.4 gives for a constant permeability K 

-T&--- + T <4'5) 

dp. az2 Kg dp. 
dz 

where vs is the maximum stable displacement velocity in the situation under considera­
tion. When the viscosity in the liquid increases in the direction of the flow, dp/dz is 
greater than zero and the stability condition that is obtained for this case is that < v > < 
vs, with vs given by: 

vs = K£ (dp/dp.) (4.6) 

The value of (dp/dp) is only a function of the concentration of the solute. Since Eqn 4.6 
should be satisfied everywhere in the packed column to prevent the formation of viscous 
'fingers', the minimum value of (dp/dp) is inserted in Eqn 4.6. Thus usually (dp/dp) has 
to be determined for the concentration of the displaced liquid in the present case. 

The stability criteria of Hill and Dumoré do not take into account the stabilizing 
effect of axial and radial dispersion in the liquid phase. Small amplitude distortions of the 
displacement front can be smoothed out by axial dispersion. On the other hand, radial 
dispersion tends to supress small wavelength perturbations irrespective of their ampli­
tude. Perkins (1965) stated that the smallest channel that was not smoothed out by radial 
dispersion has a wavelength: 

Xmln = 2V3.95Ä)E>Tf (4.7) 

This result can be obtained assuming a Fourier number of 0.25 required for smoothing of 
the radial concentration gradients in the protrusion. From this discussion it can be con­
cluded that the perturbations with a large amplitude and a long wavelength are the least 
affected by dispersion. The least stable distortion of the displacement front thus has a 
wavelength that is bounded by the size of the apparatus under consideration. 

A marginal stability condition that takes dispersion effects into account can be obtained 
from the simultaneous solution of the equation of change for component A assuming disper­
sion with a dispersion coefficient JDE, the equation of motion with the Darcy constitutive 
equation for the velocity vector ~v and the continuity equation in a three-dimensional 
velocity field. For a binary mixture of A and B: 

-TT + V - p A v - V - Z D E p V ( p A / p ) = 0 (4.8) 
at 

v + (K/|uA)(Vp-p£ + pDv/Dr) = 0 (4.9) 

^ + V - p v = 0 (4.10) 
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d/d/ denotes the partial derivative with respect to t, ÙJDtthi 
derivative. In these equations, both the liquid density p 
the concentration of component A. For the determin ition 
stable displacement, only the stability of the displacement 
small distortions has to be examined. This problem is 
analysis. For small differences between the pure component 
(1961) derived an expression for the initial growth rate 

p =~p e
,(<*x + ßy + ""z) e-7"* 

e Lagrangian or substantial 
and viscosity p are dependent on 

öf marginal conditions for 
front when it is subjected to 

usually solved by perturbation 
densities, àp/pA, Perrine 

yn of a perturbation of the form: 

(4.11) 

where pn is the solution for stable flow; x, y and z are the spatial coordinates of a 
rectangular coordinate system extending infinitely in th <i X and y directions while bound­
ed in the z direction between 0 and L. The bulk liquid I low is in the positive x direction. 
The growth rate parameter yn characterizes the initial gn >wth rate of a perturbation with a 
specific wavelength. For stability analysis in miscible di: placements, only the real part of 
7n has to be considered, because the flow instabilities observed in laboratory experiments 
are found to be of non-oscillatory nature (Schowalter, 1965). This result was derived 
analytically for small density differences between the d splaced and the displacing liquid 
by Lapwood (1948). A condition for marginal stability can thus be obtained by setting 
the value of the growth rate parameter j n for the leas : stable distortion equal to zero, 
thus forcing all possible perturbations to be just suppressed. Only the solution for down­
ward, vertical displacement is given here. Bearing in mind that the least stable perturba­
tion has a maximum possible wavelength and amplituc e, we obtain for the maximum 
stable displacement velocity v,: 

v' = 

Kg 

JL. 
dp 

be 

~bc Bo* £) (-)"' 
where BoT = V'J)VIE)Z,T is the transverse Bo number anix' =x/D p,x being the distance 
coordinate in the direction of the liquid flow in a coordinate system moving with the 
mean flow velocity. For negligible radial dispersion BoT -x», this equation reduces to the 
stability condition that was later derived by Dumoré (19 54). Schowalter (1965) analysed 
the case where no restriction is put on the maximum pure component density differences. 
He assumed that the effective dispersion coefficient 2DE has the same value in both the 
transverse and longitudinal direction. According to Perkins (1965) the following empirical 
relation can be used to estimate radial Pe values in porous i 
by a tortuosity factor F and an interstitial void fraction h 

(4.12) 

media that can be characterized 

Boj1 = 
2D„ 

Fh <v>Dr 
+ 0.0157 a 

where E>c is the molecular diffusion coefficient of 
the parameter a measures the inhomogenity of the packing 
the Bo number in the longitudinal direction: 

(4.13) 

component A in the liquid phase and 
;. A similar expression holds for 
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BoT1 = — — +0.5 a (4.14) 
L Fh<v>Dv

 K ' 

From these equations it is observed that equal dispersion coefficients can only be as­
sumed in the low flow velocity range, where dispersion is controlled by molecular diffu­
sion. From perturbation analysis Schowalter found that the condition for marginal sta­
bility was determined by four dimensionless groups, quantifying the relative importance 
of the effects of gravity, viscosity, dispersion and permeability. For perturbations with a 
wavelength smaller than some critical wavelength Xc, the displacement front is stabilized 
by dispersion and gravity effects. In his paper the author presented graphs of Xc against 
the parameters that characterize the displacement condition. A similar analysis is given by 
Heller (1966) who did not assume the same value for the dispersion coefficients in both 
the longitudinal and the transverse direction. For a ramp-shaped concentration distribu­
tion in the mixing zone at the displacement front, the value of the growth rate parameter 
of the least stable perturbation is given for various displacement conditions. 

In conclusion, simple stability conditions describing the stabilizing effect of gravity 
segregation at the onset viscous fingering are directly obtained from the Darcy Law. A 
more complete analysis that includes dispersion effects shows that the onset of viscous 
fingering depends on the wavelength of the perturbations. The development of the least 
stable distortion of the displacement front is retarded by transverse dispersion effects, 
and also by longitudinal dispersion when small amplitude perturbations are considered. 
The wavelength of the least stable distortion is determined by the size of the experi­
mental equipment, and consequently the onset of flow instabilities depends on the size of 
the apparatus considered. 

4.1.2 Flow behaviour in the unstable regime 

In addition to the formulation of stability criteria, many attempts have been made to 
describe the flow phenomena in the unstable flow regime. The mathematical modelling of 
viscous fingering commonly proceeds along one of the following two routes: 
— Numerical solution of the equations of motion, dispersion and continuity, Eqns 
4.8—4.10. Since the 'dispersion equation', i.e. the continuity equation for a component A, 
is a mixed parabolic and hyperbolic partial differential equation, simple finite difference 
methods lead to numerical smearing of the concentration profiles when the dispersion 
term is small compared with the convective term (Chhatwal, 1973). Therefore, one has to 
resort to complex numerical schemes, see for example Peachman & Ratchford (1962). 
- Phenomenological description of the flow behaviour based on the Buckley-Leverett 
model. This model was origionally derived for the prediction of breakthrough curves for 
immiscible displacement of liquids with equal densities. Two basic equations are involved 
in this model. Firstly the frontal advance equation: 

dx 

dt 

<v> 9 / 
(4.15) h ds 

the result from a simple mass balance, that embodies the rate at which an equi-satura 
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tion plane with solvent saturation s proceeds through tl e porous medium in terms of the 
mean linear flow rate < v >/h and the relation between the fraction of solvent that is 
actually flowing and the local saturation of solvent ;:. Secondly, the fractional flow 
equation that relates the quantity ƒ to the viscosity ratio of the immiscible liquids, M: 

(4.16) / _ <v> (Ai +A2) ~\l + a ' M ' y) 

where a = AxjAi,M =/i2//Ui and 7 = K\\K<I (Fig. 36). This equation can be derived from 
the Darcy Law assuming an equal pressure drop in both the pure solvent channel and the 
displaced liquid regions. Koval (1963) followed this approach for simulating matched 
density displacements. In order to fit his results with ex >erimental data, he replaced M in 
Eqn 4.16 by the effective viscosity ratio Me, which is related to the actual viscosity ratio 
Afby: 

0 . 2 S N 4 Me = (0.78 + 0.22 Mu - 2 5 ) 

Dougherty (1963) included both gravity effects and mixing in the analysis. This results in 
a fractional flow equation of the form: 

H'+VA'TH ' - Ï ÏT 
Kg(l-c)Ap,nt 

(4.17) 

<v> 
(4.18) 

where a linear relation between p and c is assumed, when c is the local solvent concentra­
tion in the liquid mixture;£t0 is defined by: 

The mass balance on slice dz in Fig. 35 now reads for the 

^ £•£-"•(.-.>(.-<)'. 
and for the solvent dissolved in the displaced liquid: 

<v> d ( l - / ) c d(l-s)h 
bz dt 

= Bsp> ( l - s ) ( l - c ) ' 

1 the The dispersive mixing terms are lumped in the term on 
(1972) solved these equations (4.18—4.21) numerically, 
were adjusted to obtain acceptable agreement between 
through curves. B was found to depend on displacement 
tration of solvent in the oil phase and the degree of fingeijing 

Both the methods result in fairly close agreement 
breakthrough curves, the latter however only after scaling 

In addition to the above studies on the onset and 

solvent channels: 

(4.19) 

(4.20) 

(4.21) 

right in the equations. Claridge 
The parameters y,B,Pi andp2 

calculated and measured break-
velocity, viscosity ratio, concen-

qetween calculated and observed 
of several model parameters, 

progression of viscous fingers, some 
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interesting features of fully developed fingers are reported in the literature. Mathematical 
relations were derived for the shape of both the front end (Saffman & Taylor, 1958) and 
the rear end (Outmans, 1963) of the fingers. Apart from this front and rear end, the 
channel occupies a constant fraction of the column cross-sectional area. This fraction 
ranges from about 1 for very low flow rates to an asymptotic value 0.5 at higher displace­
ment velocities (Saffman & Taylor, 1958). Numerical simulations and electric analogue 
studies have shown that in this portion of the channel the flow is in the direction of the 
main liquid flow vector. Only at the front end and at the rear lateral flow of liquid was 
found from the finger towards the surrounding liquid and the reverse. (Richardson, 1961 ; 
Perkins, 1965). 

4.1.3 Experimental verification from literature data 

Many experimental investigations on liquid displacement in packed beds have been 
reported in the literature. Most of these are concerned with the efficiency of the displace­
ment in the stable and in the unstable flow regime, when a liquid is displaced from an 
inert porous medium (Hill, 1952; Brigham, 1961; Slobod & Howlett, 1964; King & 
Denizman, 1961). The results of these measurements are in qualitative agreement with 
Table 9. In most cases, the critical velocity vc where the flow instabilities just develop is 
determined by plotting the length of the mixing zone against the displacement velocity 
<v>. A more or less sharp increase of this length is observed near <v> = vc. The actually 
measured value of this mixing length is dependent on the displacement conditions and the 
experimental setup that was used. Slobod (loc. cit.) found that the mixing length corre­
lated well with the ratio of the actual displacement velocity and the critical displacement 
velocity, as shown in Fig. 38. This ratio <v>jvc can be interpreted as the ratio of viscous 
and gravity force terms in the Darcy equation: 

<v> = <V>AM/« 

"c Z^P 

The effect of a graded mobility zone, i.e. a continuously falling viscosity of the injected 
fluid, on the stability of the flow through a porous medium was first studied by Slobod & 
Lestz (1960). They reported macroscopic stability of the flow when the displacement was 
carried out with a linear falling viscosity of the injected fluid. The displacement condi-

hm,fraction of pore volume 
1.0-1 

Fig. 38. Transition zone length hm foi displacement with 
favourable density and unfavourable viscosity ratio. From 
Slobod, 1964. 
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tions were such that Eqn 4.12 predicted unstable 
applied a linear concentration gradient in the displacing 
tendency for viscous fingers to develop was completely 
tion gradients than those predicted by theory, Eqn 4 
lating the stability criterion based on the least stable 
Increasing the steepness of the concentration gradient 
fingers to develop. Mungan (1971), who used a Hele 
found qualitatively that an exponential falling 
creased flow stability in his immiscible displacement experiments. 

The effect of mass transfer from the packing to the 
extractors, on the stability of the flow has been given 
(1972) mentioned the existence of unstable flow during 
graphy. In their experimental study they measured the 
a function of the displacement velocity, for both porous 
rial. hm was defined by the authors as the time interval 
90% concentration levels in the liquid effluent, mi 
velocity. In all cases they observed a decreased height 
packing was applied instead of a non-porous one. In 
nate between the effect of finite mass transfer rates and 

displacement. Kyle & Perrine (1965) 
liquid. They observed that any 

suppressed at steeper concentra-
12. They concluded that formu-

pjerturbation is quite conservative. 
i icreased the tendency for viscous 
Shaw model in his experiments, 

concentration of the injected liquid in-

value of hm. Nevertheless it can be concluded from 
transfer process considerably stabilizes the flow. The 
sion on this subject in Section 4.1. 

The growth of viscous fingers once they are initiate^ 
equiconcentration plane has been measured for both 
ment by many authors, e.g. Benham & Olsen (1963) 
generally concluded that the growth rate of the 
during the major portion of the displacement. For 
channels the growth rate may be apparently slower or 
tion by transversal dispersion may reduce finger growth 
mechanism seems rather ineffective in practical systems 
ing, 1969). When gravity effects can be neglected in 
the growth rate of a channel becomes independent of 
degger, 1960). For normal flow rates the fractional are: 
in the mixing zone is approximately 0.5; at very low 
ably higher (Perkins, 1965; Saffman & Taylor, 1958). 

The observations just mentioned contribute to the 
haviour of viscous fingers during liquid displacement 
regime. On the other hand it should be realized that the 
is strongly dependent on the scale of the apparatus 
1959), local inhomogenities of the packing (Hawthorne 
wall etc. Thus the quantitative result cannot easily be 
conditions and packing materials. 

liquid, as occurs in solid-liquid 
] ittle attention. King & Denizman 
solid-liquid adsorption chromato-
fieight of the mixing zone, hm, as 

and non-porous packing mate-
between passage of the 10 and 

ultiblied by the mean displacement 
( if the mixing zone when a porous 

analysis they did not discrimi-
îydrodynamic instabilities on the 
their experiments that the mass 

conclusion agrees with the discus-

thsir ; 

at the liquid-liquid interface or 
^liscible and immiscible displace-
and Gupta et al. (1974b). It is 

fingered region is virtually constant 
sh >rt times after the onset of the 

i aster, and at long times stabiliza-
rate, although theoretically the 
(Benham & Olsen, 1963; Wood-

comparison with the viscous effects, 
the displacement velocity (Schei­

that is occupied by the channels 
floty rates this value can be consider-

basic understanding of the be-
in packed beds in the unstable 
jnset and growth of these fingers 

used in the experiments (Blackwell, 
1960), preferent flow along the 

extrapolated to other displacement 
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4.2 Experimental study of miscible liquid displacement from packed beds 

Experiments reported in the literature are mostly concerned with the determination of 
critical displacement velocities and the growth of viscous fingers in the unstable flow 
regime, when a liquid is displaced from an inert packed bed by a miscible or immiscible 
solvent, see Section 4.1. However, little experimental evidence is available on the stabi­
lizing effect of concentration gradients between displacing and displaced liquid, especially 
when those gradients arise from mass transfer between the solids that constitute the 
porous medium and the interstitial liquid. It is the aim of this study to contribute to the 
knowledge on flow phenomena under these conditions. To facilitate the interpretation of 
the measurements, the effect of a concentration gradient on both the onset and growth of 
viscous fingers is established in the first part of the study. The experimental setup that 
was used is sketched in Fig. 39. Both the experimental procedure and the apparatus are 
discussed in detail in Appendix E. The column packed with glass beads and the top 
and bottom mixer were initially filled with glycerol solution. Water was injected in the 
top mixer during the downward displacement experiments. The liquid concentration at 
the bed inlet thus fell exponentially with time. In this way, an arbitrary exponential 
concentration gradient can be applied by varying the size of the top mixed region. The 
breakthrough curve was measured by taking samples at the column outlet and by con­
tinuously monitoring the sample density. In order to assure representative sampling, the 
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Fig. 39. Schematic diagram of the experimental setup. Item 
list: 
1. storage vessel 7. sample pump 
2. packed column section 8. density meter 
3. mixed sample region 9. paper tape punch 
4. mesh wire 10. storage vessel viscous solution 
5. porous glass disk 11. three-way cock 
6. gradient mixer 12. drain 
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outlet stream was mixed in the lower mixed region 
difference caused by channelling was smoothed efficiently, 
experimental study the more complicated case of disp lacement 
transfer between the packing and the interstitial liquid 
consisted of porous silica spheres, impregnated with si igar 
ments. The apparatus used and the experimental proced 
gous to the one just described. 

so that any radial concentration 
In the second part of the 

with simultaneous mass 
was investigated. The packing 
solutions prior to the experi-

ure that was followed are analo-

4.2.1 Effect of a concentration gradient in the liquid p 'tase on flow stability 

Oi ce ! 

Experiments were designed to determine the effect 
displacing liquid on the stability of the displacement 
give information on the residence time distribution in 
which arises from dispersion effects and channelling, 
to describe the measured data, several methods are 
meters involved in the model in order to obtain 
These methods include time-domain, s-plane and 
niques (Johnston, 1971; Abbi & Gunn, 1976), as well 
1975; Gupta, 1974a). Since in the present experimental 
tion can originate from viscous fingering, wall flow, axia 
was assumed beforehand. Instead, the residence time 
the apparatus is characterized by the relative variance 
section, (<X/T)*O1, where the variance and the mean 
tively: 

a2 = ƒ ( f-r)2E(f)df 
o 

and: «. 

T = f tE(t)dt 

of a concentration gradient in the 
measured breakthrough curves 

he packed section of the column 
some mixing model is adopted 

available to adjust the mixing para-
agreement with the experimental data, 
frequency domain curve fitting tech-

is graphical procedures (Vergnes, 
study the residence time distribu-
dispersion etc., no mixing model 

distribution in the packed section of 
of residence times in this column 

residence time are given by respec-

(4.23) 

(4.24) 

te Later on, parameters involved in mixing models can 
value of T and (O/T)IO1, when model fitting should bé 
derived from the relative variance of the frequency distribution 
of the total flow system, (a/r)J. The latter can be calculated 
distribution function, which are defined as: 

M„ = ƒ r»E(f)df 

Combining Eqns (4.23 - 4.25), we obtain the well-know i relation 

{olr)\ = 2 M2MQ 
- 1 

where M0 equals 1 if a normalized frequency distribution is used in the calculation. The 
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adjusted to produce the same 
required. (O/T)*0J can easily be 

of residence times Et(f) 
from the moments of the 

(4.25) 

(4.26) 



procedure followed to calculate the moments from the measured residence time distribu­
tion function is discussed at length in Appendix F. The relative variance caused by the 
packed section (a/r)g0l can be calculated from {plrfi by making use of the additivity of 
variance and mean residence times for cascaded equipment. Since for a complete mixed 
region (a/r)_ equals 1, the following relation holds: 

(o/Ocor {alr)\{\+^+%2f-%\ t\ (4.27) 

where £1 is the ratio of the mean residence times in the bottom mixer and the packed 
section, and £2 represents the same value for the upper mixed region. 

As a base case the breakthrough curve for a steep concentration jump using an inert 
packing material was measured. The results are shown in Fig. 40, where the value of 
2/(a/x)^ol is plotted against the dimensionless displacement velocity <v>/vs, represent­
ing the ratio of inert to viscous forces in the packed bed. For single phase flow through 
packed beds, where the residence time distribution is determined by axial dispersion that 
can be described with an eddy diffusion coefficient 1DE L the following relation holds 
(van der Laan, 1958): 

ax. disp. Pel 
{Peh-\+^V{-Pel}} (4.28) 

Single phase flow PeL-measurements revealed that PeL = 0.25 (L/D ). This value was 
virtually independent of the Äe-number in the range where the experiments were per­
formed (Re = p<v>DJu < 10). This behaviour in the low .Re-number regime is in 
agreement with literature data (Miller & King, 1966; Levenspiel, 1957). For the high 
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Fig. 40. Efficiency of miscible liquid-liquid 
displacement from packed beds: the effect of a 
concentration gradient in the displacing liquid, 
f, is ratio of the volume of the gradient mixer 
and the pore volume of the packed section of 
the column; Column: length 0.7 m, diameter 
0.07 m;Key: x - £, = 0, o - Ç, =0.21. 
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ftL-numbers encountered in the experiments the above 

® ax.disp. 

_2_ 
Pe, 

or PeL = 2/(ff/r)2. For miscible displacement stabilize^ 
higher PeL numbers can be measured resulting from the 
PeT number, characterizing the transversal or radial 
mated from Eqn 4.13. For the high values of PeT 

because of the steep concentration gradient that is a] 
bed, no stabilisation of the flow by transverse mixing 
Eqn 4.12. For displacement velocities below vs, the 
ity, we thus expect Peh values of about 125. In the 
> 1, viscous fingering is likely to occur, so that 
distribution curve increases considerably. For very 
gravity forces becomes negligible, and the growth 
essentially independent of the displacement velocity 
verified easily from a simple model shown in Fig. 41. 
single hypothetical parallel channel and assuming the 
channel and the 'main' flow, we can derive the 
velocity inside and outside the channel from the Darcy 

by gravity segregation somewhat 
favourable density difference. The 

mixing in the column, can be esti-
calculated from this relation and 

pplied at the liquid inlet end of the 
expected as can be verified from 

maximum stable displacement veloc-
ui istable flow regime, where <v>/vs 

the variance of the residence time 
hij h values of <v>/vs, the effect of 
growth rate of the disturbances is 

Scheidegger, 1960). This can be 
umping all viscous fingers into a 

sahie pressure drop over the parallel 
following relation for the ratio of the 

l̂ aw: 

"2 
[(« + 1) 

Mya+l 

My(a + 1) 7(M-1) 
R 

- l 

1-2 
where a = At/A2, y = KX/K2, M = ju2/Mi, and Ä = 

intertial forces. In essence, this equation is identical 
derived by Dougherty (1963), expressed in Eqn 4.18. 
(O/T)2 of the residence time distribution function sho^n 

_t E ( t ) 

t - t -

(j>v.<v>(A,*A2) 

Fig. 41. Two-stream model for the description of liquid-
liquid displacement from inert packed beds in the unstable 
flow regime; and the hypothetical pulse response of this two-
stream model. 

relation reduces to: 

(4.29) 

<v>Ay 

(4.30) 

the ratio of viscous and 
gap' 
to the fractional flow equation 

The value of the relative variance 
in Fig. 41, resembling the pulse 
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response of such a two parallel stream model, is given by: 

a 1_ 
'a \ 1 + a 1 + a 

parr. a 1 
+ r 

~ | 2 

1 + a 1+a 

1 (4.31) 

where we made use of the relation T 2 /TI = vl/v2 = I \ Thus, for high displacement 
velocities <v>, the value of T is virtually independent of the R number. Eqn 4.31 shows 
that then (a/r)2 reaches an asymptotic value that is determined by the parameters y, M 
and a. In Section 4.1.2 it was mentioned that a reaches a constant value at high displace­
ment velocities; Miscible displacement experiments in packed beds that were designed to 
confirm this asymptotic value are reported in Appendix G. Thus for high R values the 
relative variance of the distribution curve reaches a constant value. From the simplified 
model we also learn that (a/r)2

o l is independent of the column length when the residence 
time distribution is controlled by channelling, while for flow of a liquid with uniform 
physical properties through packed beds, the value of 2/(O/T)IO1 is known to increase 
linearly with the column length in the high jReL-number range, as can be verified from 
Eqn 4.29. Experimental results for two different column lengths are shown in Fig. 42. 
The results are in qualitative agreement with the simple flow model. 

From Eqn 4.12 it can be derived that the onset of channelling is not retarded signifi­
cantly when a concentration gradient of the form c = c0 exp(—t/rm) is applied at the 
column inlet, and rm is 21% of the mean residence time in the packed section of the 
column. From the simple flow model we expect, however, that the growth rate of the 
fingers will be attenuated due to a decrease of the effective viscosity ratio M. This 
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Fig. 42. Effect of column length on the apparent Péclet 
number in the unstable flow regime. The columns used 
had diameter 0.054 m, and length 0.5 and 1.0 m, respec­
tively. ( . ) Dispersion is the controlling mecha­
nism; ( ) Channelling is the controlling mechanism. 
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parameter represents the ratio of the average viscosity in the channel and in the main 
flow. Due to this decreased finger growth rate, the valance of the breakthrough curve is 
reduced, as is shown in Fig. 40. Applying an even less steep concentration gradient in the 
displacing liquid causes considerable problems in the data analysis. From Eqn 4.27, it is 
observed that the contribution of the mixing zones in the top and bottom section of the 
apparatus to the total variance in residence time is qu: te significant. The small additional 
variance caused by the packed section of the apparatus is thus more difficult to determine 

the interpretation of the measure-
displacement velocity can be used 

accurately for higher rm values. This fundamental problem is discussed by Otto & Ge-
strich, (1974), who proposed the assemblage of a mixer-column-mixer system for resi­
dence time distribution measurements in single phase flow. 

From the above experiments it is concluded that ir 1 
ments, the ratio of the actual and the maximum stable > 
to discriminate between a stable and unstable flow regime. Although a smooth concentra­
tion gradient with an exponential decaying solute concentration attenuates viscous finger 
growth rate, channelling is not completely inhibited. The displacement efficiency in the 
unstable flow regime can be described qualitatively wit î a very simple model based on the 
Darcy Law. 

4.2.2 Effect of mass transfer from the packing to the , 'iquid on flow stability 

weie 

The effect of mass transfer on flow stability was 
packing. The experimental setup was quite similar to 
material, see Fig. 39 sub a. These porous particles 
sugar solution before the experiment. Dependent on 
quested the interstitial liquid was either washed out 
the liquid remained in the column until equilibrium 
the pore liquid was attained. Subsequently the 
pure water was injected in the apparatus. In all cases, 
Properties of the packing material and details of the 
Appendix E. In order to detect flow instabilities in 
through curves were compared with theoretical 
mathematical model. For plug flow of liquid through 
by Eqns 2.12 to 2.15, where a constant mass 
equations were slightly modified to account for axial 

be 1 b2c be 
-bl = Kw-Tz+N("-c) 

where Pe = < v>L/lDE L and the other dimensionless 
2.11. The initial and boundary conditions that apply in 

studied with the aid of a porous 
the one used with an inert packing 

impregnated with a concentrated 
the initial condition that was re-

bf the column with pure water, or 
between the interparticle liquid and 

breakthrough curves were recorded when 
the flow direction was downwards. 

experimental procedure are given in 
this system, the measured break-

extradtion curves obtained from a simple 
a fixed bed, such a model is given 

transfer coefficient is assumed. These 
dispersion. The final result reads: 

(4.32) 

(4.33) 

variables are defined in Eqns 2.6 to 
our case are: 
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0 = 0 

e > o 
c = s0 

c = 0 

dc/dz = 0 

and co= 1 z > 0 

z = 0 

z = 1 

(4.34) 

(4.35) 

(4.36) 

In Eqn 4.34, s0 embodies the initial saturation of the interstitial liquid. For s0 = 1, initial 
equilibrium exists between the pore liquid inside and outside the porous particle. When s0 

= 0, the external pore liquid is free from the solute. To simplify the mathematics involved 
in solving these equations the second boundary condition has been replaced by: 

o > 0 c = s0 = finite z = °° (4.37) 

Extrapolating from similar dispersion problems it is expected that the effect of this 
modification on the final expression c = c (0) is small for the high Peclet numbers 
encountered in the present study under stable flow conditions (Gerson & Nir, 1969). 
Adjustment of the parameters involved in the model to match the predicted breakthrough 
curve with the measured data is achieved by moment analysis. The zeroth and the first 
moments calculated from the analytical solution of Eqns 4.32 to 4.37 are given below: 

M c 0 = ( l + f 0 f l ) / ö (4.38) 

(4.39) c,l D2 Mi + i , ( 1 + z ? ) ( 1 + S o f l ) 

The index c implies that the moments pertain to the breakthrough curve at the exit of the 
packed section of the apparatus. The moments Mm { of the actually measured concentra­
tion-time curve in the mixed sample region are related to the moments of the break­
through curve at the exit of the packed section of the column Mc j . The mass balance on 
the mixed region with volume Vm reads: 

^ -ijL = t>r(cc-Cm) (4.40) 

where the subscript m refers to the mixed region and c to the exit of the packed section 
of the column. Introducing dimensionless variables 0 = r/(Fcol/z/0v) and % = Vm/Vcolh 
leads to the following equation: 

% =c„-cm (4.41) 
5 d0 c m 

After Laplace transformation and some rearrangement we obtain: 

c c = c m t t s + l ) - { s 0 (4-42) 

From this equation the moments are readily obtained by the well-known method: 
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. d'^is) 
M, = lim ( -1) ' — 

s-+o ds' 

with the following result: 

M c , o = M m , o - £ s o 

MC« = M m , / - ' £ M m , < - l 

1 = 0 

I > 0 

Combining Eqns 4.38 and 4.39 with Eqns 4.44 and 4 
ment of the breakthrough curve: 

M 

M, 
^ , F [ H * + £ ) ( I + / ? ) ( I + , , / > ) _ 

(4.43) 

(4.44) 

(4.45) 

45 gives the normalized first mo-

0,m 
1 +s0D + 1 (4.46) 

+ 1*0 

Thus, the value of the Peclet number can be calculated once the other parameters D and 
N are given. Since D is only determined by the geo netry of the packing, it remains 
unchanged for all the runs. For stable flow, the Pe number can be estimated from 
previous measurements, see Section 4.2, to be .Re = IOC. For the same reason as discussed 
in Section 4.2.1. this value is essentially independent of the Re number in the low Re 
number regime where the measurements are carried out, as long as dispersion is the only 
mechanism that causes deviations from plug flow. Esti nation of the other parameters D 
and N from stable flow displacements is discussed in Appendix H. The results show that 
D = 0.9, and N= 0.0125 T, when stable flow occurs. 

Experiments were performed with initial saturation s0 = 0 and s0 = 1, over a wide 
range of displacement velocities and initial concentration levels. The measured break­
through curves were reduced to their zeroth and fust moment. The Pe number was 
determined from these assuming the theoretically predicted value for N. Also, the ap­
parent number of transfer units N is calculated from liqn 4.46 assuming Pe = 100. The 
results are summarized in Table 10. The Pe and N values contain essentially the same 
information; from Eqn 4.39 it can be derived that: 

^— = l+N(l+D)(l+s0D)(^- -±] 
ref V*ref * j 

Therefore, only the Pe number will be considered in 
nelling occurs, some fraction of the solute is recovered 
the first moment M, m increases accordingly, resulting 
number, see Eqn 4.39. Thus when the Pe number falls 
below 1, it can be concluded that viscous fingering 
distribution, together with axial dispersion and finite 

The results of the s0 = 1 runs are shown in Fig. 43 
flow velocity along the horizontal axis is calculated froni 

it 

mass 

(4.47) 

the further analysis. When chan-
a later stage of extraction. Thus 

in a decrease of the apparent Pe 
blelow 100, or alternatively N/Ntet 

contributes to the residence time 
transfer rates. 

and Table 10. The dimensionless 
Eqn 4.6. The minimum value of 
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Fig. 43. Effect of hydiodynamic instabilities 
in systems with simultaneous mass transfer on 
the apparent Péclet number: pore liquid ini­
tially saturated (s0 = 1). ( ) Stable displace­
ment limit. 

(dp/dp.) is inserted in this equation, which is the value attained at the initial concentration 
in both the particles and the interstitial liquid. The figure clearly shows that the Pe num­
ber is far below 100. The existence of flow instabilities is indicated by breakthrough of 
displacing liquid before t/r = 1 and by deformation of the regular s-shape in the more un­
stable cases. Due to excessive tailing of the breakthrough curve, especially in the unstable 
flow regime, the curves were sometimes truncated before the solute was completely recover­
ed. This tailing can originate from limited mass transfer rates, but also from inclusion of 
displaced liquid when the leading edges of viscous fingers coalesce (Perkins, 1965). In­
spection of Eqn 4.39 shows that when the breakthrough curve is prematurely truncated, 
the value ofPe is overestimated. The data shown in Fig. 43 are conservative in these cases. 
From the figure it can thus be concluded that the stabilizing effect of mass transfer is not 
sufficient to prevent viscous finger growth in case s0 = 1 under the prevailing experi­
mental conditions. 

Fig. 44 and Table 10 show the results of the s0 = 0 runs. In the interpretation of the 
breakthrough curves an additional problem arises here compared with the previous case. In 
the prewash step there is some diffusional loss of the solute when the sucrose solution is 
removed from the interstitial voids of the packing. Since this loss is not known exactly, 
the initial interparticle concentration has to be determined from the zeroth moment of 
the breakthrough curve. Only when the solute is completely recovered from the bed, does 
the value thus obtained equal the actual initial concentration. The maximum concentra­
tion that occurs inside the packed column determines the value of the dimensionless 
displacement velocity along the horizontal axis of Fig. 44. This maximum concentration 
is calculated from the solution of the mass transfer model for a packed bed, Eqns 2.12 to 
2.15. In this calculation the theoretical number of transfer units N = 0.0125 j is assumed. 
This method was believed to give a more reliable reference condition for the (dp/d/i)-term 
in the expression for the stable velocity than the concentration at the maximum of the 
actually measured breakthrough curve. Even though this measured maximum equals the 
maximum concentration obtained in the packed section of the column under stable flow 
conditions, see Eqn 4.40, it may be considerably lower when radial concentration differ­
ences occur since these differences are efficiently smoothed in the sample region. The 
results of the calculations show less then 20% difference between the maximum concen-
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Table 10. Results of displacement runs with simultaneous mass| transfer. 

s , = l 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Initial 
liquid 
cone. 
(kg/m') 

600 
350 
200 
620 
140 
615 
590 
550 
111 
700 
370 
190 

Mean 
residence 
timer 
(s) 

560 
560 
560 
350 
350 
200 
97 
67 
67 
38 
38 
38 

"s 
(1) 

22 
4 
1.7 

45 
2 

70 
65 

130 
9 

500 
60 
30 

N 
AW 
(1) 

0.22 
0.32 
0.27 
0.24 
0.40 
0.28 
0.45 
0.77 
0.91 
0.69 
0.74 
0.54 

Pe 

(1) 

6.5 
10.5 
8.7 
4.6 
9.5 
3.3 
3.5 
9.3 

24.0 
3.7 
4.6 
2.0 

« 0 = 0 

Run Theore- Mean <v> N Pe 
tical residence vs NTef 

maximum timer (1) (1) (1) 
liquid cone, (s) 

590 1.4 0.43 9.4 
590 1.1 0.43 9.6 
590 0.9 0.45 10.0 
195 6.7 0.80 15.0 
195 4.1 0.74 12.0 
195 3.5 0.76 13.0 
195 3.0 0.74 12.0 
195 2.5 0.81 17.0 
98 10.2 0.79 8.1 
98 8.7 0.68 4.8 
98 7.7 0.73 6.0 
98 7.7 0.76 6.9 
98 5.6 0.70 5.2 
47 15.5 0.75 3.3 
38 17.0 0.74 2.5 
38 17.0 0.80 3.3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

187 
128 
73 

259 
173 
150 
108 
71 

212 
179 
156 
152 
98 

154 
133 
131 

Initial 
particle 
cone. w0 

(kg/m3) 

360 
240 
140 
500 
330 
290 
210 
140 
450 
380 
330 
325 
210 
425 
430 
425 
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Fig. 44. Effect of hydrodynamic instabilities 
in systems with simultaneous mass transfer on 
the apparent Péclet number: pore liquid ini­
tially free from solute (s0 = 0). ( ) Stable 
displacement limit. 

tration obtained from the measurements and the calculated value. The final results of the 
s0 = 0 runs, shown in Fig. 44, show that considerable effects of channelling are observed 
in the s0 = 0 case where miscible displacement is accompagnied by transfer of a viscosity 
increasing solute. 

In conclusion, without putting emphasis on the numerical value of the results, the 
experiments clearly show that in systems where there is simultaneous miscible displace­
ment and mass transfer of a solute that increases the viscosity of the liquid, viscous 
fingers may develop and reduce extraction efficiency. 

78 



5 Conclusions 

From mathematical models the effect of local phase contact in countercurrent separa­
tion cascades is established for diffusion batteries and belt type solid-liquid extractors. 
The results are presented as concise correlations between the number of exterior apparent 
and true transfer units. These correlations show that the separation efficiency of a diffu­
sion battery with 4 or more columns in series is within 10% of a purely countercurrent 
extractor under normal operating conditions. Similarly, a belt extractor as shown in Fig. 
12 performs much like a countercurrent extractor when it contains 6 or more extraction 
stages. The beneficial effect of dripping sections is quantitatively discussed. When the 
solvent is recirculated in each section, complete mixing of the solvent in the stages can 
often be assumed. Liquid recirculation restricts the sep iration efficiency of an extractor, 
especially when the number of transfer units per section is high and mixing in the liquid 
phase becomes controlling. 

Asymptotic values of the mass transfer coefficient in the dispersed phase have been 
calculated for purely cocurrent and countercurrent extraction. A simplified design pro­
cedure based on these values is proposed. Only a mir or error is introduced when the 
asymptotic values are used directly in the solutions of the lumped parameter model for 
countercurrent extraction. The error in the estimated residence time required for a speci­
fied separation in such an extractor decreases with incre asing dimensionless Fourier time, 
decreasing ratio of mass transfer resistance inside and outside the particle or Biot number 
and decreasing extraction factor. For cocurrent extraction the use of asymptotic transfer-
coefficients in combination with the solutions of the lumped parameter models seems less 
promising; for the high Biot numbers that normally prevail in solid-liquid extractors, the 
critical Fourier value above which the asymptotic solution applies is only in the region of 
practical interest for a high extraction factor and slab geometry. For those cases where 
the approach just mentioned fails, an accurate short-cu : calculation method is proposed 
which combines the penetration and asymptotic solutions. 

Hydrodynamic instabilities, i.e. viscous fingering, can occur in solid liquid extraction 
systems, in spite of the stabilizing effect of viscosity gradients in the liquid phase. Such 
gradients, rather than viscosity jumps in the liquid flowing through a densely packed bed, 
significantly reduce the channelling intensity in the unstable flow regime. However, a 
significant effect on the point of onset of flow instabilities is not observed. For inert 
packing materials, the onset can be predicted from simple stability criteria reported in 
literature. More experimental results are required to wan ant a conclusion about the onset 
of channelling during displacement with simultaneous mass transfer. However, in the un­
stable flow regime viscous fingering considerably reduces t lie overall mass transfer efficiency 
of the extractor. Finally it was concluded that the prièrent flow along the wall of a 
packed column can be very much higher in the unstable flow regime than one would esti­
mate from the usual correlations that apply for liquids with uniform physical properties. 
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Summary 

Large scale solid-liquid extractors often consist of countercurrently cascaded mass 
transfer sections. The local mode of phase contact within each section usually differs 
from the overall countercurrent. A design procedure for solid-liquid extractors, which 
incorporates the mode of phase contact in the extraction stages, is presented for a 
diffusion battery or Shanks extractor, and for a rotary or belt type extractor. The effect 
of dripping sections, which are often applied to prevent interstage liquid entrainment, is 
included in the analysis. The mathematical models developed in this study are based on 
the equations describing mass transfer in a single-stage fixed bed. The results are reduced 
to ready-to-use correlations that can be applied over a wide range of process conditions. 
The estimation of mass transfer coefficients is an essential part of the current design 
procedures for solid-liquid extractors. Asymptotic values of the transfer coefficients are 
calculated for cocurrent and countercurrent extraction of particles with simple geometry. 
It is shown that these asymptotic values are a convenient tool in design calculations, 
especially for countercurrent extraction. For countercurrent extraction, an explicit semi-
theoretical equation for the asymptotic mass transfer coefficient is derived which applies 
for an extraction factor greater than 0.5. Very accurate short-cut calculation methods are 
suggested based on the combination of mass transfer rates derived from the penetration 
theory and the asymptotic solutions. 

In percolation type extractors, which are often used for large scale extraction pro­
cesses, the solid particles form a densely packed bed. In this study the effect of non-uni­
form liquid flow through this layer of solids on extractor performance is studied. Special 
attention is given to channelling phenomena caused by differences in viscosity and den­
sity in the solvent. Measurements are performed to establish the effect of both the 
concentration gradients in the liquid phase and the mass transfer between the packing 
material and the solvent on the stability of the flow. The results qualitatively show that 
channelling caused by viscosity gradients in the solvent flow direction can occur in many 
solid-liquid extraction systems. The effect of this phenomenon on the extractor perfor­
mance was studied experimentally for a single-stage fixed-bed extractor. 
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Samenvatting 

Extractie van vaste materialen met behulp van een ( iplosmiddel is een, met name voor 
de voedingsmiddelenindustrie, belangrijke unit operaton. Dit onderzoek richt zich op 
twee aspecten van het extractieproces. Eerst wordt ingegaan op het dimensioneren van 
extractieapparaten, die gebruikt worden voor processen op grote schaal. In het tweede 
deel wordt de stroming van het oplosmiddel door een laag van vaste deeltjes bestudeerd. 

Extractieprocessen op grote schaal worden vaak uitgevoerd in apparatuur die bestaat 
uit in tegenstroom geschakelde secties, waarin de vaste en vloeistoffase met elkaar in 
contact worden gebracht. Het fasecontact in elke sectie zal in het algemeen afwijken van 
zuiver tegenstroom. Twee voor de voedingsmiddelen industrie belangrijke voorbeelden 
hiervan zijn de diffusiebatterij of Shanks-extractor, en de band-type-extracteur. Aan de 
hand van mathematische modellen is het extractierenc ement van deze apparaten verge­
leken met het rendement van een pure tegenstroomext acteur. De bij deze berekeningen 
gebruikte modellen zijn gebaseerd op de vergelijkingen die het instationair stoftransport 
in een gepakte kolom beschrijven. Zowel voor de diffusie batterij als voor verschillende 
uitvoeringsvormen van de band-type-extracteur zijn de r »uitaten verwerkt tot correlaties, 
die over een groot gebied van extractiecondities bruikba; r zijn. 

Voor het berekenen van extractieprocessen kan de lokale stoftransportsnelheid vaak 
voldoende nauwkeurig worden beschreven met een con itante stofoverdrachtscoëfficiënt. 
Voor het bepalen van de voor een gespecificeerd extract ierendement benodigde apparaat­
grootte is een nauwkeurige schatting van de waarde van deze overdrachtscoëfficiënt essen­
tieel. Voor zowel meestroom- als tegenstroomextractie van vlakke, cylindervormige of 
bolvormige deeltjes is de asymptotische waarde berekund die de stofoverdrachtscoëffi­
ciënt na lange contacttijden aanneemt. Het gebruik van deze asymptotische waarde in 
ontwerpberekeningen wordt besproken. Vooral voor teg mstroomextractie is de afwijking 
van de uit de exacte oplossingen berekende apparaatgrootte klein. Voor dit praktisch 
interessante geval is een semi-theoretische vergelijking opgesteld, waarmee de asympto­
tische waarde van de stofoverdrachtscoëfficiënt direct ka i worden berekend. 

In vast-vloeistof-extracteurs van het percolatietype vormt de vaste fase tijdens het 
transport door het apparaat een stationair gepakt bed. Het effect van niet-uniforme 
stroming van het oplosmiddel door de laag vaste deelt es op het extractierendement is 
experimenteel bepaald in een gepakte kolom. Behalve < oor inhomogeniteit van de pak­
king kan kanaalvorming optreden ten gevolge van viscositeits- en dichtheidsverschillen in 

s in dit onderzoek aandacht be-
in de vloeistoffase als van stof-

de extractievloeistof. Met name aan dit laatste aspect 
steed. Zowel de invloed van een concentratiegradient 
transport van de vaste deeltjes naar de vloeistof op de stroming door de laag vaste deeltjes 
is bestudeerd. De resultaten laten zien dat kanaalvormifig ten gevolge van concentratie­
verschillen in de vloeistoffase de scheidende werking 
beïnvloeden. 

ran een extracteur nadelig kan 
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Appendices 

Appendix A. Numerical solution of the equations describing mass transfer in a fixed bed 

In Section 2.2.1, the equations describing mass transfer in a fixed bed were derived: 

be be , 
+ — = Nue(a-c) be 9f 

9co 

90 
= -Nt<cD(œ-e) 

(2.12) 

(2.13) 

Solving these equations by finite difference techniques gives accurate results only when 
the number of true transfer units, Nt c is high and the step size used in the integration is 
very small. The reason for this unfortunate situation is that any discontinuity in the 
concentration profiles in the liquid phase is suppressed by numerical dispersion (Rosen-
brock & Storey, 1966). Therefore, Acrivos (1956) suggested the method of characteristics 
for solving the above equations. The principle of this method is that first the position of 
the solid and liquid elements are calculated as a function of time. The solution of the 
equations 2.12 and 2.13 is then calculated along these curves. Since co = oj(f,0) and c = 
c(f, 0) one can write: 

dw = (9co/9f) • df + (9co/90) • dö 

dc = (9c/9f) • df + (bc/bd) • d0 

(A.1) 

(A.2) 

The above equations can be considered as four simultaneous equations in the unknowns 
9c/9f, bc/bd, 9co/9f and 9co/90. These equations can be summarized in matrix notation 
as [A] • b = c, or 

1 1 0 0 

0 0 0 1 

df do 0 0 

0 0 df do 

9c/9f 

bc/bd 

9co/9f 

9co/90 

•JVt>c(w-c) 

-NUeD(u-c) 

dc 

dco 

(A.3) 

The characteristic directions can be obtained by setting the determinant of [A] equal to 
zero (Beckenbach, 1961). Thus the two characteristic curves, indicated by I and II, are 
obtained: 
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iL 
dö 

ÉL 
de 

= i 

=o 
H 

The characteristic grid for the hyperbolic system (2.11) and (2.13) is shown in Fig. A.l. 
The differential equations that hold along the characteristics can be obtained by 

combining the origional PDE with the equations for 
derivative of c with respect to time along characteristic 

(A.4) 

(A.5) 

the characteristic curves. For the 
I the result is: 

dc 
=NUc(u>-c) 

Similarly, the derivative of co with respect to time alcjng characteristic II is obtained by 
combining Eqns 2.13 and A.6: 

dco 

dö" H 
= -iV t (CZ)(co-c) 

Eqn (A.6) is solved numerically along the character stic I, by applying the following 
finite difference approximation: 

M/-d£ c/+i,i+i - c / , '+ 2 U r 
dc 

Z+l . f + i 

Substitution of (A.6) and rearrangement gives: 

Ui) 

(A.6) 

(A.7) 

(A.8) 

*-/+i,/ + i 

cu\ — 1 J + CO.- .- + to,-. , .- . 

AfiV t iC 
+ 1 

Similarly the resulting finite difference approximation 
obtained: 

«me 

Ae • ' 
i £ 

. I M J W tr'lFl\ 

ir" 

(A.9) 

of dcj/dO along characteristic II is 

j (position) 
Fig. Al. Characteristic grid. ( ) I-characteristic; ( ) 
II-chaiacteristic. 
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^A^D-l)+e'+i-t+e'+i't+> 
^+i .i+i= — j — r — x (A.«) 

A6NUCD + 1 

The above equations are solved simultaneously. The initial conditions (2.14) provide the 
values of c- 0 and cOj 0 at the beginning of a cycle. The liquid concentration c0 ; is given by 
Eqn 2.15. The concentration in the solid phase at % = 0, cj; 0 , is calculated from Eqn A.7: 

dö 
= -DNtte(u0tt-c0>i) (A.ll) 

ii 

During the time interval AÖ the concentration cQ {is assumed to remain constant. After 
integration of the above equation the following boundary condition at the liquid inlet 
side of the column results: 

" o . r C o . i + K i - i - f o , / ) - exp(-JV t>c£A0) (A. 12) 

The differential equations (2.12) and (2.13) with the initial and boundary conditions can 
thus be replaced by the finite difference equations (A.9) and (A.10). 

Appendix B. Criteria for the validity of the simplified model of a belt extractor 

The concentration in each section is nearly constant when the concentration of liquid, 
sprayed on a section, c i n , and the concentration of liquid leaving the solids beds, c o u t , do 
not differ too much. From analytical solutions of Eqns 2.12 and 2.13, one can calculate 
the liquid concentration at the bed exit at the moment of breakthrough, cb , when the 
solids entering the section have uniform initial concentration over the bed height. 

c b - C | n = l - e - " t . r / " (B.l) 

where JVt Jn, the number of true transfer units on overall liquid phase basis in one sec­
tion, is defined as: 

NttI kocaV/n Nuc j 
— - = = - (B.2) 

n 0c>r n R 

It will be clear that here cb — cin is the maximum concentration difference within a 
section. 

From Eqn B.l it can be seen that for high recirculation rates R=<j)c Tl4>c and low mass 
transfer rates N t c , the concentration of liquid in the bed is nearly constant. In interpret­
ing this result it should be realized that in general R is not an independent variable, but is 
normally adjusted to assure complete filling of the interstitial voids in the packing. A 
maximum concentration difference of, say, 10% is attained when Nt Jn R = 0.1, as can be 
seen from Eqn B.l. Assuming no liquid entrainment, Nt c can be calculated from Eqns 
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Table B.1. Recirculation ratio resulting 
in 10% maximum concentration differ­
ence at 90% efficiency. 

Number of sections n 

A 
1.5 
2 
4 

5 
9 
5 
2 

8 
5 
3 
1 

1.3 and 2.59. For T? = 0.90, the resulting recirculation 
condition is shown in Table Bl. The situations are oftei 

The simplified model will not be applicable in extraction 
number of sections is low. For these situations, the equations 
fixed bed must be solved to account for concentratior 
in the solid phase perpendicular to the flow direction of 

Appendix C. Approximate relation for estimating Sh( 

In Section 3.3.2, it is shown that the Shod a 

an extraction factor A > 1 is given by: 

ratio required to meet the above 
met in practice. 

of deep beds and when the 
describing mass transfer in a 

gradients in the liquid phase, and 
the solids. 

d j l values 

value ior countercurrent extraction with 

Sh, od,» = —-
A,Bi,v A 

A 2 a 

- 1 v Xl 

where Xi is the first non-zero root of the related characteristic 
A, Bi and v refer to arbitrary value of A, the Biot nunjtber 
factor v. For a linear equilibrium relation it was further 

ShéX =SKi,a -(2Bi)-1 

\,Bi,v A.Bi.v 

equation and the indices 
Bi and the geometrical shape 

shown in Section 3.1 that: 

(C.2) 

Combining the foregoing equations yields the following relation for Sh 

*ü..."*r^£"«) 
The aim of this appendix is to provide a simple method 
X,, thus allowing a straightforward calculation of Shd a 

followed for slab geometry. The results for this case arc 
geometries cylinder and sphere. 

For infinite A, i.e. a constant bulk concentration, 

(CI ) 

d,a 

(C.3) 

for estimating the first eigenvalue 
For convenience this approach is 
there after extended to the basic 

several authors presented simple 
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Table C.1. Approximate relation for the 
first root of tan X, = 5 i / \ , 

X°°,Bi",l Source 

2.5 Bi 

Bi + 2.4 

2.67 Bi 

51 + 2.67 

(7r2/4)fi;'-02 

Bi 1-02 + 2.24 

Rutov, 1958 

Backstrom, 1935 

Kondratiev, 1964 

equations for estimating the first eigenvalue X̂  B{ x. For slab geometry, some equations 
are summarized in Table C.1. In the present analysis the Kondratiev equation was 
adopted since it produces the exact solution for infinite Bi numbers. The equation was 
used in a somewhat simplified form, without forcing the accuracy significantly: 

_z! Bi 

K.Bi.1- 4 Bi +2.25 ( C 4 ) 

To extend this equation to finite values of the extraction factor, it was written as: 

*A Ri i = — f(A,Ä) (C.5) 
A,BI,I 4 5 / + 2.25 

Since the Shd a value for a slab subjected to countercurrent extraction with extraction-
factor A = 1 is 6, irrespective of the Bi number, a combination of Eqns C.3 and C.5 sets a 
constraint to the function f(A, Bi): 

tfK D-\
 A _ 1 ! Ä + 2.25 A , (n,. 

*A-*> — T~T~Mfi-; A = 1 (c-6) 

3 + Bi 
or 

A , = ^ ± 1 2 5 _ 1 2 
A - 1 v ' ' w Bi; + 3 TT2 

From the values of f(A, Bi) calculated from Eqn C5 the Fig. CI is constructed. It is noted 
that for any A the following relation holds with reasonable accuracy: 

A f (A ,Äi )= l+ 7 ( p * - l ) (C.8) 
A - 1 v ' A 

The final result is obtained from Eqns C3, C5 and C8 with v = 1 
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«Sr 
1.20 

1.10 

1.0 

O Q 

f(Aßi)= | i 2 

- . 

-

<v2 
J0^ 

V v 

A Bi* 225 
A-1 (it2/4) Bi 

^ 0 oo 

o ^ ^ ^c^-^* 
v • V V 1 

0 0.25 0.5 0.75 1.0 1.25 Fig. Cl. Graphical determination of f(A, 50; 
1/A Parameter ßi. 

Sh 
Bi [6 {Bi + 2.25) + (A - 1) — {Bi + 3)] 

d,a (C.9) 
A.SI , i AÄ (Ä + 2.25) + ( A - 1 ) [3 (£/ + 2.2 >)-(£ƒ + 3)TT2 /4] 

The deviation of Eqn C9 from the exact solution is shown in Fig. C2. The extension to 
other geometries is based on approximate equations given by Schoeber (1976) which he 
used for correlating Shd a values for concentration dependent diffusivities and constant 
surface concentration: 

5Ädia =2.07 SAd>a 

A,Bi,2 A,Si, 1 
4.45 

SAd>a =3.18 5Ä d a - 2 . 30 
A,Bi,3 A,Bi,l 

S h d a - Shj#0 

Sh 
100°/. 

d,a 

Fig. C2. Error bound of the approximate Eqn C.9. 

(C.10) 

(C ID 
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These relations were reduced to a single equation, which increased the accuracy slightly 
for the case of variable extraction factor and constant diffusivity: 

sy a = " shda 
( " - 1 ) 4 (C.12) 

A,Bi,v A,Bi,l 

As can be verified, the approximate equations presented here are exact for A = 1. Also for 
extraction factors slightly below 1 they can be used to estimate Shd a values with reason­
able accuracy. 

Appendix D. Mass transfer efficiency in the penetration period 

In the following an analytical solution will be derived for the mass transfer problem 
for a slab subjected to cocurrent or countercurrent extraction with finite mass transfer 
resistance in the continuous phase in the penetration period. 

The mass transfer process can be described with Eqn 3.29 with v = 1 : 

dW b2W 

dtA 9?2 
(D.l) 

The dimensionless distance coordinate is now defined according to Fig. Dl. The boundary 
and initial conditions are given by: 

' d = 0 

I = 0 bW/dt = Bi{W-C(td)} 

(D.2) 

(D.3) 

(D.4) 

Again, the value of C (rd) is obtained from a mass balance, with the following result: 

= 0 (D.5) A dC dW 
A, -7— +p 3 / H 9£ £ = o 

with the initial condition rd = 0, C = 1. The solution is derived using Laplace transforma-

c, 
liquid , 
c(td) ^ N , 

1=0 

solid 

I Fig. Dl. Concentration profile near the solid li­
quid interface: semi infinite solid. 
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tion. Thus, the expression for dW/d£|0 and W are readily obtained, where W has been 
defined as 

w=w0-fmd-
0 

v 
r=0 rP 

P . r 3WI 

3? I».. 

The final relation for the SAod number then reads: 

Shod = 
3w/3£lo 

w-c 

a, / ( -a i VTd) - a 2 / ( - a 2 Vr"d) 

—/(-^! VTd)- f /(-a2 VTd)+-J- - f - V r 
«1 «2 a2 "l ' 

In the above equation the following variables are used: 

f(x) = ex* erfc(x) 

-i-{-'-V^} 
For Bi -*• 00, the relation can be reduced to: 

1 1 + T - / ( - ^ / A t ) 

55Aod = 

' « d *» 

The average concentration in the solid phase can be determined 

Bi 
W = 

ai - a 2 

— < - l + / ( - a , >/£)>- — . { - 1 
fli a2 

Appendix E. Apparatus and experimental procedures: measurement of breakthrough 
curves 

Apparatus: The experimental setup used in this 
columns which were kept at a constant temperature 
0.07 m and a length of 0.7 m and a second with diamejter 

df„ 

4 
Bi\ 

from: 

+/(-a2 VTd)> 

(D.6) 

(D.7) 

(D.8) 

(D.9) 

(D.10) 

(D.ll) 

(D.12) 

study is shown in Fig. 39. Two 
Were used, one with a diameter of 

0.054 m and length 0.5 or 1 m. 
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Table El. Properties of the packing material used in the experimental study. 

Property of the packing material 

diameter (m) 

permeability (m2 ) 

interstitial void fraction (1) 

effective internal porosity 
calculated from measured 
value of the distributionratio (1) 

material 

geometry 

Inert packing 

1.4 x 10"3 

0.49 x 10-' 

0.35 

glass ballotini 

sphere 

Mass transfer experiments 

1.4 x 10"3 

0.28 x 10"' 

0.35 

0.6 

porous silica 

sphere 

The properties of the packing material used are summarized in Table E.l. Since the 
concentration of the liquid flow leaving the packed section of the column may vary over 
the cross section of the bed, a complete mixed sampling region was constructed at the 
column outlet. The displacement velocity is kept constant by means of a positive dis­
placement plunger pump. The plunger was driven by an electrical motor with variable 
speed, thus allowing easy control of flow velocity. A sample was withdrawn from the 
sample region and pumped continuously through a PAAR digital density meter. The 
density is measured over a time interval of about 4 seconds. With this time interval as a 
minimum, the measured density is stored on paper tape. 

For experiments directed towards the effect of a concentration gradient on the flow 
stability the configuration shown in Fig. 39b was used. The mixer on top of the column 
provides an exponentially decreasing concentration at the inlet of the packed section of 
the column, when a step function in concentration is applied on the inlet stream: 

' * v 

Co 
-= exp - (E.l) 

where c0 and c„ are the initial and final concentration in the mixer respectively. Vm is 
the volume of the mixed section. The resulting concentration gradient travelling down­
wards through the column is thus: 

c - c „ 

Co - « • p i - ^ « (E.2) 

Vk = hAL is the free volume of the column and z' = z/L is the distance coordinate in the 
flow direction. The shape of the concentration profile thus obtained resembles the one 
that is expected in countercurrent extractors with plug flow in both phases, when the 
extraction factor is greater than 1, see Eqn 1.3. It should be noted that the profile is 
independent of the displacement velocity when plug flow of the liquid occurs. Both from 
literature data (Miller & King, 1966; Levenspiel, 1972) and our own experiments, it was 
concluded that the axial Pe number is virtually independent of Re in the region of 
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interest. The former conclusion can thus be extended to stable displacement conditions in 
general. This allows us to evaluate easily the effect of displacement velocity on the 
hydrodynamic stability of the flow for a fixed concentration gradient. 

The experiments designed to determine the effect of mass transfer on flow stability 
were performed in a set up similar to the one shown in Fig. 39a. The properties of the 
packing material are summarized in Table E.l. 

Experimental procedure: Experiments run with ai inert packing material i.e. glass 
beads proceeded in the following way. From a liquid reservoir a glycerol solution was 
recirculated through the bed until a uniform concentration was observed throughout the 
column. In order to assure complete deaeration of the packed section of the column, the 
flow was directed upwards. After closing the circulatie n loop, water was injected with a 
constant velocity in a downward direction, and the breakthrough curve was measured. 
When a porous packing was applied, the experiments proceeded in three steps. First, a 
sugar solution was recirculated through the bed until squilibrium between the liquid in 
the pores of the particles and the flowing liquid was obtained. There after the column was 
left to drain for several minutes. In the second step, the liquid adhering to the particles 
was washed off with water. To maximize the rinsing effect while reducing diffusional 
losses of sugar from the interior of the particle, the wash liquid was fed to the column at 
a relatively high speed. Measurements of the concent ration of sugar in the wash water 
indicated that the desired effect was obtained when 5 
collected. The flow direction was then reversed and the 1 
at the selected flow velocity. This third step is analogous to the final step in the experi­
ments where an inert packing material was used. 

Scouting experiments with inert packing material using dyed solutions indicated that 
considerable wall flow occurred in the unstable flow regime: the shape of the break­
through curve showed a sudden decrease when breakthrough at the wall occurred. This is 
caused by the higher permeability in this region, a fsct that triggers the formation of 
protuberances near the wall. The magnitude of the wall flow was dependent on the size of 
the equipment and the displacement conditions. To avoid the above effect, glass beads 
were mounted at the wall surface. It was ensured that a glue layer of Tensol cement 
occupied the voids fraction up to about half a partiel; diameter from the wall. Reruns 

pore volumes of wash water were 
breakthrough curve was measured 

Fig. El. Effect of 
variance of the residence 

preferent flow along the wall on the 
time distribution curve. 
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showed a considerable attenuation of the wall flow, see Fig. E.l. At the same time, the 
scatter in experimental data was considerably reduced. Reinterpretation of the residence 
time distribution curves that were affected by wall flow, which showed a significant con­
centration jump when breakthrough in the wall region occured, produced results that 
were very close to the measurements in the wall treated column. 

Appendix F. Determination of the moments of the breakthrough curves 

Several methods have been suggested in literature to determine the moments of the 
distribution function. Direct application of Eqn 4.23 has some significant drawbacks. 
Firstly, since in the experiments a cumulative distribution function F(r) is measured, 
differentiation of the experimental data is required to obtain the frequency distribution 
E(/). Numerical differentiation is a cumbersome procedure that requires careful smooth­
ing of the measured data. Secondly, when the second moment M2 is calculated, measure­
ments in the tail of the distribution curve may contribute significantly because of the 
weighting function t2. Therefore experimental errors in the trailing edge of this curve are 
largely amplified. Procedures that are proposed in literature try to overcome the foremen-
tioned difficulties. The method adopted here was suggested by Gunn (1970) and by 
Paynter (1957). Here the moments are obtained from the Laplace transform of the 
frequency distribution of residence times E(t), that can be written as: 

oo 

£{E(f)} = E(s)= ƒ e~stE(t)dt (F.l) 
o 

After series expansion of the exponent and neglecting higher order terms, which is correct 
for small values of s, we obtain 

E(s) = ƒ E(t)dt-s ƒ rE(f)df + ±s 2 ƒ t2 E(r)dr (F.2) 
0 0 0 

The moments of the distribution function can be recognized on the right side of this 
equation. After some rearrangement the following result is obtained for small values of s: 

s M0 M0
 +S 2 M0

 ( ' ' 

Mi and M2 can thus be easily determined by linear regression. Even though the range of s 
is restricted to small values, an optimum choice exists. For very low values of s the 
truncation error of the computing device may set limits to calculation accuracy. More­
over, for higher s values the weighting function exp(-sr) slightly suppresses the effect of 
errors in the tail of the breakthrough curve. According to Gibilaro & Drinkenburg (1972) 
the values of s should be selected in the range 0.02 < ST < 0.1, where r is the mean 
residence time in the flow system. Since the weighting function exp(-sr) is always close to 
or smaller than unity, the accuracy in the determination of the moments is considerably 
increased compared to direct application of Eqn 4.23. In most of the experiments the 
cumulative distribution of residence times F(r) is measured. By definition, the relation 
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between E(f) and F(f) is: 

E(r) = dF(f)/df 

Since F(0) = 0 by definition, taking the Laplace transform 

E(S) = S F ( Î ) 

where F(s) is defined analogous to Eqn F.l. After 
final result reads after slight rearrangement: 

£{M0 -F(r)}/M0=Mi -sM2 /2 

(F.4) 

of this equation gives: 

(F.5) 

substitution of Eqn F.5 in Eqn F.3 the 

Note that Mt can be determined directly from this 
resulting equation is then identical to the one proposée 

(F.6) 

equation when s - 0 is inserted. The 
by Van der Laan (1958): 

M „ = ƒ t" E(0 dr = - ƒ t" d(M0 - F)=w ƒ (Mo - F) t"- » dt 

that For the calculation of M2, the weighting function t 
by van der Laan is replaced by exp(st), with some gain 

Appendix G. Locating the position of the displacement front in downward miscible 
liquid-liquid displacement from packed beds 

the 

than 
,(19)9) 

In order to get information on the behaviour of vistous 
liquid-liquid miscible displacement, an experimental 
location of the displacement front could be monitored, 
considerable wall flow may occur during unstable displacement 
at a setup where measurements could be made in 
while wall flow was suppressed as much as possible 
more reliable information on viscous finger growth 
measurements near the wall, see e.g. Chuoke et al., 

The rectangular column used in these experiments 
In order to suppress preferent flow along the wall as 
the wall surface as discussed in Appendix E was followed 
of glass ballotini with a diameter of 0.0014 m. Glycerol 
wards with pure water. The location of the displacement 
suring the conductivity of the interstitial liquid between 
plated electrodes with the same dimension as the ps< 
trades were mounted in a 10 x 10 matrix in a vertical 
To speed up the sample rate and to simplify recon 
order of magnitude of the conductivity is determined 
0 or 1 logic level. Thus, at every moment the liquid 
represented by a 10 x 10 matrix of 0 or 1 coded e 
brated to produce a 0 signal for pure water and a 1 si] 

(F.7) 

occurs in the procedure proposed 
in accuracy. 

fingers during unstable flow in 
setup was designed in which the 

As pointed out in Appendix E, 
For this reason we aimed 

interior of the column packing, 
This technique is likely to provide 

interpretation of frontal position 

is shown schematically in Fig. Gl. 
rnuch as possible, a pretreatment of 

The column packing consisted 
solutions are displaced down-
front is determined by mea-

a common electrode and gold 
eking material. 100 Of these elec-
plane in the centre of the column, 

of the data measured, only the 
This signal is converted to either a 

concentrations inside the column are 
ements. The electronics were cali-

for the glycerol solution. Every 

ding 

ig nail 
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Fig. Gl. Schematic picture of the experimental setup. 
Dimensions (m) Item list 

length 0.2 1. gold plated electrode 
width 0.1 2. digitizer, 100 channels 
height 0.5 3. multiplexer, 10 channels 
a 0.01 4. common electrode 
b 0.03 5. digital printer 

Packing: glass beads 6. positive displacement pump 
diameter 0.0014 7. pulse damper 
porosity 0.35 (-) 8. sinewave generator 

row of 10 electrodes thus constitutes a binary number. The decimal representation of this 
binary number is stored for further analysis. This figure can later be uniquely decoded to 
the binary representation. From these data, the time when the displacement front passed 
a specific electrode can be determined. By interpolation, the position of the front can be 
calculated at all times. To transform these results into smooth curves for further analysis, 
spline interpolation was used. Typical results are shown in Fig. G2 for stable displacement 
conditions, and in Fig. G3 and Fig. G4 for ambient and strongly unstable conditions, 
respectively. 

From the measured front positions, the growth rate of the viscous fingers and the 
relative channel width were determined. At low displacement velocity, <v>/vc < 3, the 
fingers once initiated did not grow in size during the displacement. For higher flow 
velocities, the growth rate was essentially constant. The growth rate of the fingers is 
further increased with flow rate, until an asymptotic value is reached where the stabilizing 
effect of gravity can be neglected. The results confirm data reported in literature (e.g. 
Benham & Olsen, 1963; and others); Most of these data have been obtained from mea­
surements in Hele Shaw models, a hydrodynamic analogon of a packed bed. Channel 
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reduced vertical 
position 

woo 
2200 

2800 

3400 

4000 

5200 
Fig. G2. Front 
tions. M = 60; <v>/v 
meter time. 

positions under stable displacement condi-
= 0.6; <v> = 0.33 x 10"4 m/s; Para-

Fig. G3. Front positions 
ment conditions. M = 
Parameter time. 

under slightly unstable displace-
20; <v>/vc = 5; <v> = 6.2 x 10"4 m/s; 

reduced horizontal 
position 

Fig. G4. Front positions 
tions. M = 60; <v>/ 
meter time. 

width was only well defined for high viscosity ratioŝ  
fraction of the column cross section occupied by the 
increasing displacement velocity. This value compares 
value of 0.5 for high displacement velocities reported 
more ambient displacement conditions the area occupied 
direction. 

under unstable displacement condi-
c = 10; <»> = 51.0 x lO"4 m/s; Para-

and displacement velocities. The 
channels varied from 0.4 to 0.7 with 

reasonably with the asymptotic 
by Safmann & Taylor (1958). For 

by the fingers varies in the flow 
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Appendix H. Experimental determination of model parameters D and (ko a) 

In principle the distribution ratio D can be determined from properties of the packing 
material, i.e. the internal and external void fraction e; and h. Yet we preferred to measure 
the value of D in situ since the internal pore volume might not be occupied completely 
with the presaturation liquid. Therefore experiments were designed with relatively low 
initial sugar concentration and rather low displacement velocities. Experimental condi­
tions were chosen such that stable displacement could be expected. At the beginning of 
the experiment equilibrium conditions between the packing and the interstitial liquid was 
assured, s0 = 1. Under this condition the initial solute concentration in both phases is 
known exactly and, moreover, mass transfer stabilizes the liquid flow. From the zeroth 
moment of the breakthrough curve the value of D is calculated with the aid of Eqn 4.36. 
The result, averaged over three runs, showed that the distribution ratio equals: 

£» = 0.90 ±0.05 (H.l) 

From the first moment of the breakthrough curve the number of transfer units is calcu­
lated with Eqn 4.37, assuming that Pe equals 100. From this value the apparent (k0a) is 
determined. The effective interfacial area a is dependent on the packing geometry only 
and thus has the same value for all experiments. The overall mass transfer coefficient k0 is 
dependent on kc and kd. The former coefficient is determined by the physical properties 
of the liquid and by the flow velocity. Fortunately it can be shown from Eqn 3.20 that 
the Biot number Bi = mkcDp/E)d is higher than 50, even for the runs with high sugar 
concentration and low flow velocity. This implies that the mass transfer rate is limited by 
interparticle diffusion. Although the value of k0 is thus in principle a function of time 
and dependent on the concentration history in the liquid surrounding the particle, a 
constant value of k0 is assumed here. This figure serves as a reference value for other 
experiments. Averaging over three runs we obtained: 

(k0a\e{ = (NlT\ef = 0.0125 ± 0.0015 (s"1 ) (H.2) 

100 


