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Abstract 

The SolarMal project aims to reduce the malaria vector population of Rusinga Island, Kenya. 

Within this project there is information about the spatial and temporal component of those 

vectors, but analyses with those data where never performed. While those components are 

important determinants of vector abundance and spread. Therefore, the objective of this study 

was to study the spatial relationship between specific land use patterns and malaria vector 

abundance for the two crop growing seasons (March and October) separately in the SolarMal 

study area, Rusinga Island. The first step was to perform land use classifications for both 

seasons on basis of information about the different crop types occurring on the island. 

Furthermore data gathered in the field for two study areas in October 2013 and February/March 

2014 about the different land use classes was used for this. The classifications were validated 

by means of an error matrix via which the total accuracy of the different classifications was 

calculated. The relational analysis by means of ordinary least squares (OLS) was performed 

in ArcGIS 10.1. The final products are the two agricultural land use classification maps, 

validation results and the coefficients of determination for the OLS analysis of the relationship 

between vector abundance and land use patterns. 

 

The validation results for the land use classifications were < 30% in terms of total accuracy. 

Therefore, the separate crop type classes were merged, the classifications were repeated and 

the validation was performed again. From the classifications, it became clear that Rusinga 

Island is heterogeneous and the agricultural fields are mainly located along the lake shore. 

The hill tops are covered with shrubs and trees and slopes are mainly bare. The accuracy of 

the new classifications increased to 57% for the whole of Rusinga Island and to 55% and 44% 

for study areas 1 and 2 respectively for March and 35% for Rusinga Island as a whole and 

36% and 43% for study areas 1 and 2 respectively for October. After the OLS analyses were 

performed, it became clear that there is no relationship between any land use pattern and 

vector abundance. Other studies indicated that there is a relationship between land use and 

larvae of the malaria vector, which can be studied in the future by use of the same models. 

Furthermore, a combination of land use patterns (percentages) near houses could possibly 

lead to finding a relationship between those land use type combinations and vector abundance. 
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1. Introduction 

Malaria is studied intensively in terms of entomological and health aspects, but the spatial-

temporal component of vector abundance is often lacking (Appendix A). Preventive measures, 

such as insecticide treated bed nets, do not reduce the malaria vectors and the parasite has 

an emerging resistance to drugs and insecticides. Therefore, the health risk of malaria 

increases and other methods are needed to be able to reduce the risk of malaria. One of those 

methods is studied within the SolarMal project. The aim is to eliminate the malaria vector: 

mosquitoes of the Anopheles gambiae s.l. complex and the Anopheles funestus complex, on 

Rusinga Island (Appendix A – 6). In this project, data about the spatial-temporal component 

was gathered, but no analyses were done yet. This study focusses on those spatial-temporal 

component by using geo-information for studying the relationship between vector abundance 

and agricultural land use types for two different seasons. This is important, since different types 

of land use affect mosquito habitats differently and affect the abundance and distribution of 

those mosquitoes.  

The vector population is related to space and time (Appendix A-3). Malaria is focussed around 

specific mosquito vector breeding habitats. In Africa the daily-movement of malaria vectors is 

typically between a few hundred metres and one km, it rarely exceeds 2-3 km (Carter et al. 

2000). Furthermore, certain sites are hotspots of human malaria and clinical symptoms as well 

as asymptotic cases, usually households or clusters of households (Ernst et al. 2006). Spatial 

geographical knowledge permits vector control interventions to be targeted since spatial risk 

areas can be defined. This can increase the effectiveness of control measures (Wen et al. 

2006; Moss et al. 2011). The use of geographical information systems (GIS) therefore can 

assist in targeted interventions against malaria. (Carter et al. 2000) However, the use of geo-

information in the SolarMal project and thus within this study is different. It is only used to 

understand and study vector abundance and malaria transmission and not for adapting the 

placement of the intervention traps. 

Moss et al. (2011) performed a landscape characterization by means of remote sensing (RS). 

They identified the environmental risk factors for malaria transmission and created a spatial 

risk map for the Southern Province, Zambia. This map could be used to guide the malaria 

control interventions. Their conclusion was that only 24% of the households would require 

malaria control interventions since there was clustering of observed malaria cases near certain 

land use types, such as third-order streams. This study thus gives more information on 

understanding vector abundance.  

 

Furthermore, Myers et al. (2009) showed that malaria infection is significantly related to lower 

elevation areas and further away from administrative centres in the East Sepik province, Papua 

New Guinea (P < 0.05). Their aim was to evaluate geographic parameters, such as  lower 

elevation and greater distance from administrative centre in a rural area in Papua New-Guinea. 

Another evaluation studied whether those geographic parameters were associated with 

malarial infection. They stated that knowledge of geography is important when studying insect-

borne infectious disease, such as malaria.  
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Both studies of Moss et al. (2011) and Meyers et al. (2009) did not look at the vector abundance 

and the relationship between observed abundance and geographical factors such as land use. 

While  there is also a relationship between agricultural land use and vector abundance (Diuk-

Wasser et al. 2007). They found that the number of An. gambiae increased with irrigated rice 

cultivation. Young rice areas explained 86% of the inter-village variability abundance. Mutero 

et al. (2004) also found a relationship between rice cultivation and vector abundance. 

Furthermore, Beck et al. (1994) found a relationship between swamps, unmanaged pasture 

and vector abundance. 

 

Rusinga Island has two rainy seasons of different lengths (3 months and 4 months) during 

which crops are grown by the farmers. There exists a correlation between the abundance of 

An. gambiae s.s. and rainfall in previous months (Mbogo et al. 2003). Since there appears to 

be an effect of seasonality on vector abundance and spread, it is important to study the 

difference between the land use and the relationship with vector abundance in those two 

seasons as well. 

 

Thus, land use in relation with seasonality can be an important factor in explaining vector 

abundance. Therefore, the geographical spatial aspect possibly is important to get more 

information on vector abundance and malaria transmission on Rusinga Island. 
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1.1 Problem definition 

The spatial relationship between land use types and vector abundance is important. Land use 

change affects mosquito habitat and in this way the abundance and distribution of those 

mosquitoes. (Van Wambeke et al. 2007) Certain habitats provide more favourable and more 

mosquito habitats than others as is proven by Beck et al. (1994). Swamps and unmanaged 

pasture are related to a higher vector abundance. The same is true for rice cultivation (Diuk-

Wasser et al. 2007; Mutero et al. 2004).  

 

Other studies showing the importance of including spatial relationships in malaria studies with 

regard to agricultural land use patterns are the studies of Van der Hoek et al. (2001), Boussalis 

et al. (2012) and Bukhari et al. (2011). For example, the study of Van der Hoek et al. (2001) 

proved that by means of a different management technique of rice fields the amount of 

mosquito habitats is reduced and therefore also the amount of vectors. Furthermore, Kebede 

et al. (2005) showed that the intensity of maize cultivation is associated with an increased risk 

for local inhabitants of getting malaria.  

 

An explanation is that the variation of landscape characteristics affect the local climate 

differently. Different land use types influence microclimatic conditions including temperature, 

evapotranspiration and surface run off differently. Those can be all determinants for mosquito 

abundance and survivorship. Afrane et al. (2005) and Munga et al. (2006) found that open, 

treeless habitats experience warmer midday temperatures than forested habitats which leads 

to a shorter gonotrophic cycle of females of the Anopheles gambiae complex (Gonotrophic 

cycle = taking a blood meal and laying eggs, taking a blood male and laying eggs etc.). The 

same is found in Uganda. Cultivated fields had higher temperatures compared to natural 

wetlands and the amount of vectors increased with minimum temperatures (Lindblade et al. 

2000). Thus, deforestation and cultivation create favourable conditions for the survival of An. 

gambiae larvae. This makes analysis of land use with regard to vector abundance essential 

for final malaria risk assessment and reducing malaria prevalence. (Patz and Olson 2006; 

Munga et al. 2006) 

 

Especially the study of Mutero et al. (2004) showed that only reducing the vectors is not a 

solution for the reduction in malaria prevalence. As long as there are vectors present as well 

as people who are infected with the malaria parasite Plasmodium falciparum, malaria 

continues to exist. People need to take prophylaxis to reduce the amount of infections. Mutero 

et al. (2004) state that opportunities for reduction in vector abundance can be found in the local 

farming systems and that the success of such a project depends on the participation of the 

local farming community as well. The SolarMal project aims to reduce the malaria vector 

population of Rusinga Island, Kenya. The project emphasizes the need of participation of the 

local inhabitants in the research and in this way inform them about the health risk which malaria 

causes. Furthermore, the population is involved in decision making, ideas of implementation, 

assisting in data collection and instalment of traps. Thus, the participation of the local 

population is represented by the SolarMal project. However, the role of agriculture and the 

different types of land use within this sector with regard to the vector abundance are important 

aspects that are still lacking. 
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The studies carried out so far on malaria vector abundance were rarely based on spatial-

temporal aspects by using geo-information. The SolarMal project does contain such GIS 

analysis including social-demographic data. However, the project is lacking the spatial-

temporal relationship of vector abundance with agricultural land use patterns and seasonality 

(Moore and Carpenter 1999; Vanwambeke et al. 2007).  Therefore, the relationship between 

agricultural land use patterns and the spatial-temporal aspect of vector abundance were 

analysed by use of geo-information within this study. 
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1.2 Objective and research questions 

The objective of this study was to find out whether there is a spatial relationship between 

specific agricultural crops and malaria vector abundance for the two crop growing seasons 

separately in the  SolarMal study area: Rusinga Island. 

The hypothesis is that crops which need more irrigation in comparison with other crops are 

associated with different microclimatic conditions. Increased humidity leads to an increase in 

the amount of mosquito breeding sites (warm water pools) and therefore the amount of vectors 

in the direct surroundings of that area. Despite the high coverage of bed nets inside the houses 

for around a decade there is still malaria transmission. Therefore, the expectation is that 

increased vector densities lead to increased malaria transmission risk. (Ijumba et al. 2002; 

Klinkenberg et al. 2005; Norris 2004) 

The first of two annual crop growing seasons starts in mid-March with sowing and ends in mid-

August. The second crop growing season starts mid-August with sowing and the harvesting 

takes place in December/January. However the exact timing depends on which crop is used 

and on the timing of the rainy season of that year. (Table 1) When looking at the weather data 

of 2013 of those periods, it becomes clear that the first crop growing season has more rainfall 

peaks than the second season, especially in April 2013 (Figure 1). The relative humidity in this 

period is also higher when comparing it to the second season (above 60%, while in the second 

season there are also dips below 50%). The temperature for both seasons is comparable and 

fluctuates around the 25 degrees Celsius. (Kenya Meteorological Department 2013) The 

higher relative humidity and more rainfall peaks in the first season are an indication that the 

vector abundance in the first crop growing season probably is higher than in the second crop 

growing season. This is correlated with the abundance of the An. gambiae s.l. complex 

according to Minakawa et al. (2004) and Mbogo et al (2003).  

Table 1: Crop calendar data per crop type used on Rusinga Island, Kenya, including 

information in which season the crops are planted (FAO 2013a). 
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Figure 1: Weather data Rusinga Island, Kenya for the two crop growing seasons, including 

Rainfall in mm, Humidity as a % and Temperature in degrees Celsius. (Kenya Meteorological 

Department 2013) 

 

According to the Food and Agriculture Organization of the United Nations (FAO 2013b) and 

Biovision (2012) the crop that has the highest water demand is maize, assuming that irrigation 

is necessary. So according to the hypothesis whenever maize is planted in an area, the 

abundance of vectors is highest in comparison to the other crops. Beans attract the least 

mosquitoes (Table 2). According to Kebebe et al. (2005) maize is associated with a higher 

vector abundance, since the maize pollen provide nutrition for larval Anopheles mosquitoes. 

Furthermore, mosquitoes need places to hide from their predators. Dense vegetation and thus 

densely growing crops such as maize and sorghum provide those hiding places (Walton 2003). 

This can be another reason why mosquito density near especially maize is highest. 
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Table 2: Water requirements per growing season per crop type, based on data of the (FAO 

2013b). 

 
*The FAO did not have data on kales, so used information from Biovision (2012). However, this amount is based 

on growing kales in Western countries which are less dry than Kenya and the amount was given in cm/week. To 

get the amount of water needed in mm, the amount was multiplied by 10. The cropping period based on the crop 

calendar of the FAO was 60 days which is ~9 weeks, so the amount was multiplied by 9, which resulted in 225 mm 

water needed for the whole growing season 

Since much of the land cover close to homesteads of local families of Rusinga Island is devoted 

to agriculture and families are depending on them, the relationship between agriculture and 

vector abundance will be studied during this research by means of the following questions 

using two smaller study areas (Figure 2 & Chapter 2.1): 

 

1. What agricultural land use patterns* based on crops are typical for Rusinga Island?  

  *The term “land use patterns” is defined as spatial-temporarily delineated units of 

specific crop classes. 

2. What is the accuracy of the created land use classification maps? 

3. Is there a relationship between specific agricultural crops and vector abundance for the 

two crop growing seasons separately? 
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Figure 2: Distribution of households on Rusinga Island, Kenya, based on data gathered in the 

SolarMal project. Including study area 1 (west of Rusinga Island) and study area 2 (east of 

Rusinga Island). 
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1.3 Reading guide 

In the methodology section of this thesis report, see Chapter 2, there is an elaboration on how 

the objectives were reached and how the expectations were studied in more detail. It contains 

more information about the study area (2.1), the data that is used for the analyses (2.2) and 

the method for the different types of analyses that were performed: data gathering, 

classification, validation and regression (2.3). Chapter 2.3 was divided in the seven phases of 

the flowchart as displayed in Figure 3. Chapter 3 contains the results of the different analysis 

according to the same set up as Chapter 2.3. Chapter 4 contains the conclusion, discussion 

and recommendation, after which the list of used literature is given together with the 

appendices which contain additional information according to the written text. 

Furthermore, some references to a DVD are present in the text. On this DVD, the models built 

for the analyses of this study are included, together with PDF’s of the literature used and 

additional data sources used. 
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2. Methodology 

The  steps taken to address the primary research objective of this thesis are given by the  

methodological framework (Figure 3). 

 

 

 
 

Figure 3: Flowchart global methodology: from research questions towards end products. 

To get the final product of research question 1, collection of information on the agricultural land 

use patterns of the case study area, Rusinga Island, was needed. Furthermore, information 

was gathered about the different crop types that were used on the island. With this information, 

a land use classification was carried out for two crop growing seasons (March 2012 and 

October 2012) on the island and this map was validated by means of data gathered on Rusinga 

Island, Kenya. The validation was the result of research question 2 for which the accuracy of 

the classifications needed to be assessed. The newly created land use classification maps 

based on this validation were the results of research question 1. A validation was necessary 

since there was no land use map existing yet and accurate land use maps were needed for 

the study areas as defined in Chapter 2.1 (Hightower et al. 2000;Sipe and Dale 2003), which 

were interpolated for the whole island. Following the completion of land use classification the 

analysis for research question 3 of finding a relationship between vector abundance and 

agricultural land use was performed. This analysis contained a relational study between the 

agricultural land use patterns and the data on vector abundance on the island gathered during 

the SolarMal project. (Figure 3) Figure 4 shows the different activities done during this study 

divided in different phases. 
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Figure 4: Flowchart methodology 
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2.1 Study area  

Rusinga Island is located along the shores of Lake Victoria, Western Kenya in the Mbita 

division part of the South Nyanza district. This island was recently connected to the mainland 

through a causeway. Figure 5 shows the location of this island which is approximately 44 km2 

in size and lays at a mean elevation of 1125 m above sea level. The island population consists 

of 23,335 individuals and 4,062 households according to the census data gathered during the 

baseline phase of the SolarMal project (May 2012). Most households are found in the flat areas 

around the periphery of the island. The hill at the centre of the island is uninhabited, which is 

also displayed in Appendix B, Figure 38. The primary occupations of the local inhabitants are 

fishing and small-scale agriculture. Most people in the area are subsidence farmers with 

sorghum, maize, tomatoes and sukumawiki (kale) as the main crops. (Conelly 1994; Hiscox et 

al. 2012a) 

 

Figure 5: Rusinga Island, Kenya which is the study area of the SolarMal project. 1) Africa with 

its countries (Kenya), 2 Kenya with its counties (Homa Bay district), 3) Homa Bay county with 

Rusinga island (34 7’ 5” E  , 0 26’46” S  /  34 14’ 8” E, 0 20’ 35” S). 

A large part of the island is covered with rolling terrain and steep slopes (Figure 6). The average 

rainfall on the island lies between 700 and 1000 mm per year. There are traditionally two rainy 

seasons with a long rainy season from March to June and a short rainy season from October 

to December. During those rainy seasons, crops are planted and harvested (Table 1). Even 

during the long rainy season, precipitation is often insufficient to guarantee a good harvest. 

The average rainfall during that period is 535 mm in total for that season and the main crops 

used in that season are sorghum and maize. The land is divided in strips of approximately 50 

m long and 20 m wide which are mostly located from the hillsides down to the lakeshore. 
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Figure 6: Topographical map of Rusinga Island, Kenya which is the study area of the SolarMal 

project. (34 7’ 5” E  , 0 26’46” S  /  34 14’ 8” E, 0 20’ 35” S). 

The agricultural fields of Rusinga Island are of particular interest according to the problem 

definition and objective mentioned in Chapter 1.2. To be able to study the relationship between 

agricultural crops and mosquito abundance and malaria prevalence, two study areas on 

Rusinga Island were defined. Those two study areas were defined in such a way that the first 

study area was located at a place where a high density of malaria vectors was found and where 

farmers were also present. The second study area was located at a place where the density 

of malaria vectors is low, but farmers and thus agricultural fields were present. 

The vector abundance data and locations of farmers were already gathered by the SolarMal 

project and also mapped based on data gathered in April and June 2012. Figure 39, 40 & 41 

in Appendix B, show those maps, including place indication of the two study areas. The map 

of Figure 7 which contains a hotspot analysis of the vector abundance data, shows that the 

hotspots (highest amount) of mosquito catches were found in the area which was defined as 

initial study area 1 and the coldspots (lowest amount) of mosquito catches were found in the 

area defined as initial study area 2. The method of this hotspot analysis is described below. 
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Using the WGS84 projection system the locations of the two study areas were as follows: 

 

Study area 1: 

X min:  34.147 dd  

Y min:  -0.418 dd  

X max: 34.166 dd 

Y max: -0.397 dd 

 

Study area 2: 

X min:  34.205  

Y min:  -0.418  

X max: 34.217 

Y max: -0.4 

 

Those two study areas were used for doing the fieldwork on Rusinga Island. The two study 

areas were adapted by means of a hotspot analysis for the analyses that followed after the 

fieldwork (land use classification improvement, validation and regression) to improve the 

classification results (Chapter 2.3.4). This hotspot analysis determined where most of the 

vectors were (the hotspots) and whether those hotspots were significant or not. The two study 

areas described above were used to select the mosquito data for which the hotspot analysis 

was performed, since both areas contained agricultural fields, study area 1 contained a high 

vector abundance and study area 2 contained a low vector abundance. 

Hotspots were defined as areas with a positive z-score > 1 and a p-value < 0.05 according to 

the Getis-Ord local statistic (Esri 2013a). Based on the results of this test, the first new study 

area 1, was defined in combination with the location of the initial study area 1. After the 

selection of those hotspots, the hotspots were buffered with a radius of 1 km, those buffers 

were merged and the “new” Study Area 1 was used for further analyses. The radius of 1 km 

was based on the estimation that mosquitoes rarely fly further than 1 km in search of blood 

according to a study of Beck et al. (1994) and Carter et al. (2000) The same was done for 

study area 2. However, instead of hotspots, so called coldspots were located in initial study 

area 2 according to the following conditions: a negative z-score < -1 and a p-value < 0.05 

according to the Getis-Ord local statistic. Most coldspots were located in areas where there 

was no agriculture and outside initial study area 2. Therefore, the “new” study area 2 shifted 

to the right were coldspots still were found inside initial study area 2, but were not significant 

any more ( 0.05 > p-value  < 0.1). The final result contained the hotspot analysis and the “new” 

study areas which can be found in Figure 8. In the end, the goal was to interpolate the analyses 

done for those two areas to the whole of Rusinga Island. 
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Figure 7: Entomology data SolarMal hotspot analysis indoor mosquito catches: most hotspots 

can be found in “initial” study area 1 and the coldspots in “initial” study area 2. (Based on 

Quikcbird image March) 



22 
 

 

Figure 8: Entomology data SolarMal hotspot analysis indoor mosquito catches used for the 

creation of the two new study areas which are also displayed: most hotspots can be found in 

“new” study area 1 and the least in “new” study area 2. (Based on Quickbird image March) 
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2.2 Data 

During this study the following datasets were used: 

1. Research question 1 (Figure 3) 

- Crop type information via Ibrahim Kiche  

- Crop calendars (planting period, sowing/planting rate, sowing/planting rate unit, 

preferred sowing/planting period, length of cropping cycle and harvesting period, 

Table 1, Chapter 1.2). (FAO 2013a) 

- Agrozone information of Rusinga Island = (lowlands – midland – humid zone)  

(Biovision 2012). 

- Data on locations (x- and y- coordinates) agricultural fields per crop type on 

Rusinga Island, Kenya, gathered from 15th - 18th of October 2013.  

- Quickbird satellite images of Rusinga Island (34 7’ 5” E  , 0 26’46” S  /  34 14’ 8” E, 

0 20’ 35” S) provided by Digital Globe. The standard of March 2012 was used, 

which already had radiometric and sensor correction. Ortho-rectification was not 

conducted yet, however an OR2a product was delivered to do this. Geometric 

correction was also not done, but the image had the basic spheroid WGS84. Both 

the panchromatic and the multispectral (4-band) images were used and both were 

16-bit. The panchromatic image had a pixel resolution of 0.6 m. and one image 

band was panchromatic. The multispectral image had a pixel resolution of 2.4 m. 

and the image bands were blue, green, red and NIR. The file formats in use were 

TIF (for coordinates in meters) and TIL (for coordinates in degrees). (Digital globe 

2013) 

- The same satellite image was needed, but than for October 2012. This image 

needed to be requested from Digital Globe by SolarMal. However, it was not 

possible to request a new image for this period. Therefore, Landsat ETM+ 7 

imagery was used for Rusinga Island. This Landsat image contained a 

panchromatic band with 15 m spatial resolution and in the visible bands (blue, 

green, red, NIR and MIR) 30 m spatial resolution. Furthermore, there was a TIR 

band with 60 m spatial resolution. The satellite had 5% absolute radiometric 

calibration and the file format that was used is GEOTIFF. Although the Scan Line 

Corrector (OLC) failed, Rusinga Island was free from stripes, so the image from the 

first of October 2012 was used directly for classification (USGS 2014). 

- Dataset on land use patterns of October and March, gathered in February and 

March 2014 in the two study areas on Rusinga Island, Kenya. This gathering was 

based on predefined sampling locations. 

 

2. Research question 2 (Figure 3) 

- Quickbird satellite image, as described above. 

- Landsat satellite image, as described above. 

- Dataset on land use patterns gathered in February and March 2014 as described 

above 
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3. Research question 3 (Figure 3) 

- Vector abundance data (SolarMal project). This dataset contains data on the 

amount of indoor and outdoor Anopheles catches including the exact GPS locations 

of those traps. This data was gathered using MMX traps in 80 randomly selected 

households every month from 2012 till 2015 on Rusinga Island, Kenya. For this 

study, the most recent data closest to March and closest to October were used for 

the analysis of all female Anopheles gambiae and Anopheles funestus together in 

that period, but also of the female Anopheles gambiae and Anopheles funestus 

mosquitoes separately. (Hiscox et al. 2012a) 

- Vector abundance data gathered from 07-09-2012 till 10-12-2013, still with the 

separation between Anopheles gambiae, Anopheles funestus and both vectors in 

total for the analysis. (Hiscox et al. 2012a)   
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2.3 Methods 

To achieve the objectives and answer the research questions, tailor made methods were 

developed. Since the analyses was done in ArcGIS, all the models/toolsets to which is referred 

in the text are attached with a DVD. An overview of the toolsets and models used is given in 

Figure 9 a, b and c. Appendix D gives a description of the choices made within the particular 

models. In Figure 3 and 4 the flowcharts were given for the work that was completed during 

the study.  

2.3.1 Research question 1 

The first research question focussed on which agricultural land use patterns occur on Rusinga 

Island, Kenya. First, the obtained satellite images needed to be pre-processed. To be able to 

answer this question, data on the different crop types used on the island were collected. 

Furthermore, an unsupervised classification was done and fieldwork was performed to obtain 

more information about the land use patterns on Rusinga Island. Afterwards a supervised 

classification was carried out for March and October 2012 based on which the question was 

answered. 

2.3.1.1 pre-processing 

Figure 9a displays the toolset and the models that were used for the pre-processing of the 

satellite images. First, pre-processing of the Quickbird image of March was necessary. Then 

the study areas for this image were defined according to the hotspot analysis in which places 

with a lot of mosquitoes (hotspots) and places with no mosquitoes (coldspots) were defined. 

(Chapter 2.1) 

2.3.1.2 Collect information on crop development 

To identify the land use patterns on Rusinga Island, Kenya, information gathering on the 

different crop types used on the island is necessary. For this, the information of Ibrahim Kiche 

and the collected crop calendars were used (Chapter 2.2). Furthermore, the data about 

different crop types that was gathered by a fieldworker in October 2013 was used.  

 

The data of October 2013 was collected by means of a Samsung tablet with Android OS (~10m 

accuracy). The field worker visited the two study areas (Chapter 2.1) and took one GPS point 

per field. The GPS point was taken in the middle of the agricultural fields and the fieldworker 

asked the owners of the fields which crops were growing there in March and which were 

growing there in October. This was written down per GPS point. The process was repeated 

until 4 fields were found for each crop in March and another 4 in October. Figure 10 displays 

how the sampling point was taken in the field and a sketch figure of the fieldwork was added 

in Appendix C. If the field had another shape as displayed in Figure 10 and it was possible to 

measure the length and width, the midpoint was determined based on the measurements 

(length/2 and width/2) and the ropes placed in a straight line from those midpoints onwards. If 

this was impossible as well, the midpoint of the field was estimated visually. 
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Figure 8: Sampling methods fields. 
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Figure 9a: Phase 1 – 4 including what was done per phase, which toolbox was used, which toolsets were 

created and which models were created within ArcGIS 10.1. 
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Figure 9b: Phase 4, 5 & 6 including what was done per phase, which toolbox was used, which toolsets were 

created and which models were created within ArcGIS 10.1. 
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Figure 9c: Phase 4, 5 & 6 and 7 & 8 including what was done per phase, which toolbox was used, which 

toolsets were created and which models were created within ArcGIS 10.1. 
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2.3.1.3 Classification & preparation of fieldwork 

After the pre-processing and data collection, the first unsupervised and supervised land use 

classifications were performed for the Quickbird image of March (Figure 9a). The analysis for 

October was done later, since it was not available yet. Both the unsupervised and the 

supervised classification were performed after the field data of October 2013 was imported. 

Then, the histograms per band were checked and a principal component analysis (PCA) was 

done. The PCA was performed to select the bands of the image for which the data was not 

correlated. 

 

For the unsupervised classification, the Iso-cluster unsupervised classification tool of ArcGIS 

10.1 was used. The tool calculated different clusters of neighbouring pixels which contained 

similar reflection values, produced a signature file and provided the classified image as output 

by means of the maximum likelihood classification function. The signature file contained a 

statistical description of the classes that were derived from the samples that were identified on 

the input raster. It consisted of two different parts: general information about all classes, such 

as input raster names, number of layers and number of classes and a part about signature 

statistics for each class: number of samples and the means and covariance matrices. Both the 

class mean vectors and covariance matrices were used by the Maximum Likelihood 

Classification tool. (Esri 2013b; Panda et al. 2009)  

After the classification was done, the classification result needed to be smoothed by means of 

post-classification processing. This is necessary since the classification result can be very 

speckled containing a lot of small areas of different classes. This speckling makes the 

interpretation of a classification confusing and unclear. In order to make the classification more 

smooth, the majority filter, boundary clean and region group tool were used. The majority filter 

tool “replaces cells in a raster based on the majority of their contiguous neighbouring cells” 

(Esri 2013c; Fuller and Brown 1996). The boundary clean tool “smooths the boundary between 

zones by expanding and shrinking it” and the region group tool was used “to remove small 

regions together with the set null tool which removed areas which are smaller than 10 pixels” 

(Droppová 2011; Esri 2013d; Esri 2013e; Zhang et al. 2007). In the end, the nibble tool was 

used to dissolve the small areas. This tool “replaces cells of a raster corresponding to a mask 

with the values of the nearest neighbours” (Droppová 2011; Esri 2013f). (Figure 9a & Appendix 

D) 

After the unsupervised classification, the supervised classification was carried out for Rusinga 

Island as a whole and the two study areas. This classification was based on the data that was 

gathered in October 2013. The first step of the supervised classification is not displayed in one 

of the models, but was performed via the spatial analyst image classification toolbar in ArcMap 

10.1. The gathered samples were used to create training areas. A training area is an area with 

known properties, in this case which land use type occurs within that training area. The 

statistics within the training area are used to determine the decision boundaries for the 

classification of the whole study area. To create the training areas, the training sample drawing 

tool “polygon” was used from the image classification toolbar to create a polygon around the 

sampling point to select pixels of the same class containing the same reflection values which 

were defined as training samples. (Erdey-Heydorn 2008; Esri 2013g)  
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For the evaluation of the training samples, the histograms window, the scatterplot window and 

the statistics window were used to check the spectral characteristics of the training samples 

by means of the image classification toolbar (Dewan and Yamaguchi 2009; Esri 2013h). This 

means that was checked whether there is no overlap in reflection values between the different 

training samples. During the creation and evaluation of the samples, the training sample 

manager was used for saving, merging, deleting and clearing of the different classes (Dewan 

and Yamaguchi 2009; Esri 2013i).  

 

The decisions of merging particular training samples were based on whether the 

histogram/scatterplot points overlap. If overlapping occurred, the training samples were 

merged into one class (Appendix D; Figure 42). (Esri 2013j; Erdey-Heydorn 2008). However, 

merging a particular class was also done if the results of the dendrogram showed that certain 

classes still had too much overlap. The dendrogram tool “constructs a tree diagram 

(dendrogram) showing attribute distances between sequentially merged classes in a signature 

file” (Erdey-Heydorn 2008; Esri 2013k). Those distances are also called between-class 

distances. In some cases the merging of the classes was adapted if the output of the 

dendrogram tool showed that the between-class distance was smaller than 0.9. This value was 

used, since any higher value results in only two defined classes during the classification and 

more classes were needed for the regression analysis.  

 

If the results were acceptable, the maximum likelihood classification was performed. This 

classification method “assumes that the cells in each sample are being normally distributed in 

the multidimensional space and is based on Bayes’ theorem of decision making. It considers 

both covariance and variance of the class signatures when assigning each cell to one of the 

classes represented in the signature file. With the assumption that the distribution of a class 

sample was normal, a class was characterized by the mean vector and the covariance matrix. 

Given these two characteristics for each cell value, the statistical probability was computed for 

each class to determine the membership of the cells to the class.” (Esri 2013l; Pawlak 2002). 

In order to make the classification more smooth as was described above for the unsupervised 

classification, the majority filter, boundary clean and region group tool were used. The process 

of supervised classification is displayed in Figure 10. (Appendix D) 

 

Those supervised classifications were used to create a map with the sampling locations based 

on the initial study areas and the order of those locations for the improvement of the supervised 

classification and the validation. Important is that all land use types are covered more or less 

equal in number of occurrences. Therefore, systematic random sampling was chosen, since 

this method made sure the sample plots were distributed evenly to all parts of the target area. 

It was spatially well-balanced. The difference with simple random sampling is that some land 

use types in that case may have many plots, while other land use types are not covered at all. 

Since there was a lot of variation in terms of land use on Rusinga Island, the chance that a 

particular land use type was not sampled with simple random sampling was too high (UPCC 

2013). Systematic random sampling means that a random point was generated by means of a 

model (model b12; Figure 9a). In order to designate all the sampling points in the area, the 

points were placed from the first point with an equal distance between them. The outcome was 

a spatially well-balanced sampling points map that was used during the fieldwork in Kenya. 
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Li and Heap (2011) proved in their study that the sampling density had little impact on the 

performance of methods even over different spatial scales. Therefore, they think there is still 

a relationship between the number of sampling points and the performance of methods. They 

state that small scale phenomena, such as the land use patterns on Rusinga Island, need a 

high sampling density due to the relatively small study area. Large scale phenomena have a 

lower sampling density due to the larger study area. Thus, the size of the study area plays an 

important role in determining the sampling density. Since Rusinga Island and the two study 

areas defined for doing the sampling were relatively small (Chapter 2.1), a high sampling 

density was necessary. Kotrlik and Higgins (2001) noted that the type of data also 

determines the amount of sampling points. 

 

In this case, categorical data (land use patterns) were studied for which the marginal error = 

5%, α = 0.05 and a t-value = 1.96 was allowed. In order to determine the amount of variation 

in the area, a pilot study was performed on agricultural land use on Rusinga Island in October 

2013. This data was used for a first classification via which the amount of variation in the area 

was determined. Both study areas were small (Study area 1 ≈ 5 km2 and Study area 2 ≈ 2.5 

km2) and the amount of pixels per study area was large due to the high resolution of the 

Quickbird imagery. Furthermore, there was a lot of variation existing according to the first land 

use classification. Therefore, more than the maximum amount of 370 sampling points were 

needed to reflect the variation on the island properly according to the method of Kotrlik and 

Higgins (2001).  

 

However, due to time limits it was not even possible to reach 370 sampling points per study 

area. It was estimated that a total amount of 50 points could be finished each week equating 

to 350 points over a seven week period. Therefore, based on the size and the time limit of two 

months sampling in Kenya the amount of sampling points and the distance between them was 

determined. For study area 1 the distance between the points was 150 m. which gave in total 

210 sampling points and for study area 2 this was 75 m. which gave in total 270 sampling 

points. Since study area 1 was larger than study area 2, there was chosen to sample at a larger 

distance between the points in order to be able to cover the whole area within the time limits 

of the fieldwork. The points were placed by means of the drawing tools in ArcGIS and the 

points were exported as a layer file. Those layers were transformed into KML files to be able 

to upload them on the tablet which was used for the fieldwork.  

  

 
Figure 10: Scheme of supervised classification (Research question 1 and validation (Research 

question 2). 
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2.3.1.4 Fieldwork and Analysis: Improving the supervised classification 

Since the first classification that was made for both March and October was only based on 

agricultural field data containing different crop types, the accuracy was not high. Furthermore, 

the amount of sampling points (24) per study area was too low to have a good enough 

accuracy. Therefore, the fieldwork on Rusinga Island was performed during February and 

March 2014 for the two study areas (Figure 9b & c). Per sampling point, the land use type for 

March and for October was recorded. In order to determine which part of the collected data 

was used for the improvement of the classification and which part of the dataset was used for 

the validation of the classification, random numbers were generated in the column behind the 

data. The data was sorted on basis of those random numbers (from low to high) and the first 

half was taken for the improvement of the classification. The other half was used for the 

validation of the dataset. Those datasets can be found on the DVD: 

- Fieldworkdata_Rusinga_Validation   

- Fieldworkdata_SA1_validation2 

- Fieldworkdata_SA2_validation2 

- Fieldworkdata_SA1_classification 

- Fieldworkdata_SA2_classification 

(For the classficiation of Rusinga island, both datasets of SA1 and SA2 are used) 

Since the data exploration of the two study areas and of Rusinga as a whole was already done, 

a new data exploration of the same images used for the analyses was not necessary. Based 

on the imported data, more training samples per study area were created by means of the 

image classification toolbar. The histogram/scatterplot function on this toolbar helped to decide 

which classes were merged/were too different from each other to be merged before the 

dendrogram tool was used on the created signature files. Based on the outcome of this tool 

there was determined whether certain classes were merged. This was depending on the type 

of research and the amount of classes that should remain to have a valid study (Esri 2013m; 

Johnston et al. 2001). 

For the classification done after the fieldwork, the threshold for merging was a between-class-

distance of 0.9 in order to keep enough classes with a “large” enough between-class-distance. 

At least three classes should remain per study area in order to be able to continue with the 

data for the next analyses. (Chapter 2.3.3; Appendix D) This was done for the two new study 

areas and eventually the classification training samples were merged by using the training 

sample manager toolbar and the classification was also done for the whole of Rusinga Island. 
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2.3.2 Research question 2: Validation 

Research question 2 focussed both on gathering groundtruth data in the field in February and 

March 2014 with which the supervised classification image was improved and on the validation.  

 

The gathering of the groundtruth data and the improvement of the classification were already 

described in Chapter 2.3.1.4. After the improvement of the classification, the classification 

image was validated by means of the part of the data collected in February and March 2014 

specified as validation data (Figure 9b; Appendix D). The points defined as validation points 

were adapted according to the merged classes in the classification and given the same 

“names” for each land use type. The data was interpolated by means of IDW (inverse distance 

weighted) and transformed from vector into raster.  

 

IDW was chosen as interpolation method, since “it estimates cell values by averaging the 

values of sample data points in the neighbourhood of each processing cell. If the point is closer 

to the centre of a cell being estimated, the more influence it has in the averaging process.” 

(Esri 2013n; Johnston et al. 2001) This method was important, because there were not a lot of 

mosquito data and the data were not well spread over the area: only near households, since 

sampling was done in- and outside the houses. Therefore, it was necessary that the points 

closer to the centre of the cell that is being estimated had more influence on the estimation of 

the value of that cell. Afterwards the error matrices were created (Appendix F). 

 

By means of the created error matrices, the accuracy of the classifications were studied. The 

values of total accuracy were given in the range between 0 and 1 for which 0 means the 

accuracy does not deviate from a random classification and 1 means the classification is 

perfect. Also the kappa coefficient was calculated, which is a statistical measure of inter-raster 

agreement or inter-annotator agreement for qualitative (categorical) items. 0 means a low 

agreement, 1 a high agreement. The user and producer accuracy were calculated as well and 

given in percentage. If the accuracy was low, this meant the classification of that class was 

less good compared to other classes and compared to the validation dataset. The user’s 

accuracy refers to the probability (%) that a pixel that is given a certain land use class is really 

that class. The producer’s accuracy refers to the probability (%) that the land cover of a certain 

area on the ground is classified as such. Eventually the land use classification was adapted 

again in order to improve this accuracy if necessary. When this was finished, there was 

continued with the regression analyses. (GIS & Map Library 2013) 
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2.3.3 Research question 3: Relational analysis 

In order to be able to answer the third research question, the vector abundance data was 

projected in ArcGIS as xy-data points. Furthermore, the land use classification maps were 

needed to find out the relationship between vector abundance and the agricultural land use 

patterns. To study this relationship, both datasets were merged by creating a raster dataset of 

the vector abundance dataset and extracting the values to the classification dataset. Then, the 

regression process started. Two methods of regression were used in ArcGIS. The first one is 

Ordinary Least Squares regression (OLS). This method was used in the first place, because it 

provides a global model for the variable that is tried to be understood or predicted. Only R2 is 

used for analyses of the results. The coefficient of determination (R2) shows how well the data 

points fit the developed statistical method. The values range from 0 to 1. A value of 0 means 

that the data does not fit the statistical model, a value of 1 means that there is an exact match 

between the data and the statistical model. 

However, only one single regression equation is created  and every land use type was 

separately investigated. Therefore, also Geographically weighted regression (GWR) was used. 

This method provides a local model by fitting a regression equation to every feature in the 

dataset. In this way, the relationship between the entomology data and each agricultural land 

use type can be investigated in total, including the non-stationarity of the regression 

coefficients over space. (Esri 2013o; Brunsdon 1998) The regression analyses was performed 

for every study area and for the whole of Rusinga Island investigating three different 

relationships: one containing all malaria vectors (both Anopheles gambiae females and 

Anopheles funestus females), one for Anopheles gambiae females only and one for Anopheles 

funestus females only. (Sounny-Slitine 2012) 
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3. Results 

3.1 Research question 1 

 

3.1.1  Information collection on crop development 

To perform a supervised land use classification as a pilot study to define the amount of 
sampling points for the fieldwork, first information was gathered about the different crop types 
grown on the island. This was done via Ibrahim Kiche and crop calendars from the FAO (Table 
1).  

After those first data was studied in more detail, data on crop use was collected in October 
2013. (Appendix C) The Excel file containing the data gathered in October 2013 can be found 
on the DVD belonging to this study and is named: Data_Tobias_15_18_October_2013. Based 
on those data the land use classes were determined (Appendix E). 

The data  of October 2013 was compared with the crop calendars of the (FAO 2013a) (Table 
1) and some discrepancies were found as is given in Table 3. 

Table 3: Comparison between data (FAO 2013a) and field data about the occurrence of 
particular crop types in a particular season on Rusinga Island, Kenya. 

 FAO (2010) Field data 

 1st season 2nd season 1st season 2nd season 

Beans x x x x 

Cow peas  x x  

Tomatoes  x x x 

Sukumawiki 

(Kale) 

x x x x 

Maize  x  x 

Sorghum x x x  

Sweet potato  x x  

Sweet pepper x  x x 

 

Only for beans, kale and maize both datasets agreed in terms of their growing season. 

Sorghum and sweet potato grew only in one season according to the data gathered and could 

be grown in both seasons. Since only 24 points were sampled per study area it is possible that 

those crops are also growing in the other season and therefore the information from the (FAO 

2013a) is assumed to be true.  

The data gathered about cow peas, tomatoes and sweet pepper indicate that the crops are 

growing in another season than indicated by the (FAO 2013a). Unless the fact that only 24 

points per study area were gathered and some crop types were missed in a particular season, 

the real-time gathered data give a better indication of the current situation and therefore were 

assumed to be true for the mentioned crop types. So, cow peas, beans and sorghum are the 

crop types that grow within a particular season and the other crop types grow in both seasons. 

This means that in terms of seasonality only three crop types deviate from each other. 
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3.1.2 Unsupervised land use classification 

The first classification that was done in this study was the unsupervised classification to get a 

global idea of the variation of the land use on Rusinga island. The result of this for the whole 

of Rusinga is displayed in Figure 11 for March and Figure 14 for October. The results of this 

for the two study areas are displayed in Figure 12 & 13 for March and in Figure 15 and 16 for 

October. 

As can be seen from Figure 11, 12 and 13, the spatial distribution of the land use was very 

heterogeneous on Rusinga Island. Especially, this becomes clear on the unsupervised 

classification results of the two study areas (Figures 12 & 13). At least every 50 meters a 

different type of land use occurred according to this land use classification. From Figure 14 it 

appeared that the variation is considerable less. However, the resolution of the image was 

lower. This means if the variation was occurring within the 30 m resolution this was not 

displayed within the classification. According to Figure 12, the variation occurred every 100 m 

at most. What was seen in the different classification results was that the amount of classes is 

lower than the specified number of classes in the model both for Rusinga Island (Figure 11 

and 14), study area 1 (Figure 15) and study area 2 (Figure 13 and 16). An explanation for this 

is again the lower resolution of the Landsat image of October and/or that the specified number 

of classes in the model is the maximum number of clusters that can result from the clustering 

process and has the following conditions: 

- “The values of data and the initial cluster means are not evenly distributed. In certain 

ranges of cell values, the frequency of occurrences for these clusters may be next to 

none. Consequently, some of the originally predefined cluster means may not have a 

chance to absorb enough cell members. 

- Clusters consisting of fewer cells than the specified Minimum class size value will be 

eliminated at the end of the iterations. 

- Clusters merge with neighbouring clusters when the statistical values are similar after 

the clusters become stable. Some clusters may be so close to each other and have 

such similar statistics that keeping them apart would be an unnecessary division of the 

data.” (Esri 2013p) 

 

In terms of visual inspection of the Figures, the classification of Rusinga Island (Figure 11 and 

14) did show the larger patterns of land use on the island. The hill in the centre was clearly 

visible, just like the patterns of bare soil/rocks and even some agricultural fields were 

distinguished along the shoreline on the northern side of the island. The classification of study 

area 1 (March, Figure 12) showed a high variability and the only clear pattern that was seen is 

that from agricultural fields on the northern part of the study area. Furthermore, some part of 

the road is slightly visible. The classification of the same area, but than for October shows less 

variation (Figure 15). Only two classes were determined although the same dataset was used. 

Here, the image resolution plays a role again. The classification of study area 2 (March, Figure 

13) also showed a high variability and some agricultural fields along the shoreline in the 

southern part of the study area were distinguished. However, those fields were not as clear as 

in study area 1. Some roads were distinguished as well. Figure 16 shows that the classification 

of October for the same area with the same dataset again has a low amount of variation due 

to the low resolution of the Landsat image. As a result, only 1 class was determined during the 

unsupervised classification. 
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Figure 11: Unsupervised classification result of Rusinga Island – March, performed with 14 

classes, only 7 are remaining (Since it is an unsupervised classification, the classes are not 

specified, instead each class has a number). 
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Figure 12: Unsupervised classification result study area 1, Rusinga Island, Kenya - March. (14 

classes) 
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Figure 13: Unsupervised classification result study area 2, Rusinga Island, Kenya - March. (14 

classes was the goal, only 13 remained after the analysis was done) 
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Figure 14: Unsupervised classification result of Rusinga Island – October, performed with 14 

classes, only 6 are remaining (Since it is an unsupervised classification, the classes are not 

specified, instead each class has a number). 
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Figure 15: Unsupervised classification result study area 1, Rusinga Island, Kenya – October, 

performed with 14 classes, only 2 are remaining (Since it is an unsupervised classification, the 

classes are not specified, instead each class has a number) 
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Figure 16: Unsupervised classification result study area 2, Rusinga Island, Kenya – October, 

performed with 14 classes, only 1 is remaining (Since it is an unsupervised classification, the 

classes are not specified, instead each class has a number) 
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From visual inspection of the images it became clear that for Rusinga Island (March, Figure 

17) tomatoes and sorghum appear along the shoreline on the northern part of the island where 

the agricultural fields occurred during the unsupervised classification. However, for the image 

of October (Figure 20) only two classes were classified: beans and cow peas. Due to the low 

resolution of the image several classes felt in one pixel, which mixes the reflection values. For 

study area 1 the same is true for sorghum again (Figure 18). For the image of October (Figure 

21), again less variation was displayed. The whole area was covered with cow peas, except 

for some small parts which were covered by beans or tomatoes. Most of the area was classified 

as cow peas, sukumawiki or sweet pepper. From the dendrogram, it also appeared that the 

between class distance was much smaller for this study area than for the other one and for 

Rusinga as a whole. The image of October for study area 2 (Figure 22) contained more 

variation. Although there were the same amount of classes, those classes were more spread 

over the area and the surface per class was larger. The result did not give any indication about 

a general pattern occurring as Figure 17 and Figure 18 did. 
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Figure 17: Supervised classification result of Rusinga Island – March. 
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Figure 18: Supervised classification result study area 1, Rusinga Island, Kenya - March. 
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Figure 19: Supervised classification result study area 2, Rusinga Island, Kenya - March. 
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Figure 20: Supervised classification result of Rusinga Island – October. 
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Figure 21: Supervised classification result study area 1, Rusinga Island, Kenya - October. 
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Figure 22: Supervised classification result study area 2, Rusinga Island, Kenya - October. 
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3.1.3 Preparation Fieldwork 

The first supervised classifications were only based on the agricultural land use types which 

influences the accuracy and the completeness of the classification. For example in Figure 17, 

the central hill of Rusinga Island was covered with beans, while the main land use type there 

was shrubs and/or trees. To improve the land use classification, more classes were added and 

more agricultural fields were sampled. The fieldwork was done on Rusinga Island, as is 

described in Chapter 2.3.3 and 2.3.4. For the sampling, systematic random sampling was 

chosen as is explained in Chapter 2.3.3. The fieldwork maps that were produced can be found 

in Figure 23 and Figure 24. 

 

 
 

Figure 23: Fieldwork map study area 1, Rusinga Island, Kenya, containing the sampling 

locations. 
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Figure 24: Fieldwork map study area 2, Rusinga Island, Kenya, containing the sampling 

locations. 
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3.1.4 Improving the supervised classification  

The data gathered during the fieldwork were used for the improvement of the supervised 

classification. The result of the improved supervised classification for Rusinga Island can be 

found in Figure 25 and Figure 28, for study areas 1 & 2 in Figures 26 and 27 and Figures 29 

and 30. 

 

By means of visual inspection of the images it became clear that for Rusinga as a whole, the 

classification was accurate for the classes shrubs, water and rocks/bare soil. However, the 

classes building and agriculture were overrepresented in the classification. The classification 

of Rusinga Island in October was less good when comparing it to reality. The class containing 

bare soil, rocks as well as agriculture and pasture was underrepresented, especially the 

agricultural part along the lake shores was missing. The shrubs were overrepresented on the 

island. The class for trees seemed good. Trees were classified on top of the hill and along the 

lake shore. For study area 1 (Figure 26), rocks/bare soil was underrepresented due to 

classification of rocks/bare soil as agriculture and shrubs were overrepresented due to the 

same reason. The classification of study area 1 for October (Figure 29) had classified the class 

bare soil and agriculture and building/pasture quite well. However, the class containing rocks 

and shrubs/trees seemed to be underrepresented in this classification. Study area 2 (Figure 

27) only had three classes in which agriculture also contained shrubs/trees and pasture when 

comparing it with the real-life situation. Therefore, agriculture was underrepresented, while 

building and rocks/bare soil were overrepresented. Figure 30 displays the classification of 

study area 2 for October. It seems that this classification is better in terms of global patterns 

within that area. However, there were more trees than there were in reality and less shrubs. 

The class agriculture was found along the lake shore. This was based only on knowledge on 

the area, however a validation dataset was created as well so there was looked at how 

accurate the land use classifications actually were. 
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Figure 25: Supervised classification result of Rusinga Island – March – after fieldwork. 
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Figure 26: Supervised classification result of study area 1 (SA1) – March – after fieldwork. 
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Figure 27: Supervised classification result of study area 2 (SA2) – March – after fieldwork. 
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Figure 28: Supervised classification result of Rusinga Island – October – after fieldwork. 
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Figure 29: Supervised classification result of SA1 – October – after fieldwork. 
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Figure 30: Supervised classification result of SA2 – October – after fieldwork. 
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3.2 Research question 2: Validation 

The first objective of this study was to study the relationship between vector abundance and 

agricultural land use patterns. However, the overlap of the histograms of the different crop type 

classes was considerable and the between-classes values of the created dendrograms during 

the classification was exceeding the defined threshold of 0.9. Furthermore, the validation 

results showed an accuracy below 30%. Therefore, there was decided to merge those classes 

into one class: agriculture. The same is true for “rocks and bare soil” and “shrubs, trees and 

pasture”.  

 

The classification process was repeated for the newly defined classes, which indeed increased 

the value of the between class distance, the total accuracy and the Kappa coefficient. The 

analyses were carried out both for the initial and for the new study areas. The initial study areas 

did match the study areas of the fieldwork, the new study areas did not match the fieldwork 

study areas, which can be found back in the results (Table 4a and b). The total accuracy of the 

initial study areas classification was higher than the total accuracy of the new study area since 

almost half of the validation data felt outside the ranges of the newly defined study areas. This 

means those validation data could not be used and together with the non-matching areas of 

the fieldwork and the analyses. This explains the lower values of total accuracy for the newly 

defined study areas. 

 

0.00 values for the classes wet nature and for shrubs/trees as well for both old and new study 

area 2 were found in the table. Those classes were not classified during the classification as 

such, but were present in the validation dataset which leads to a value of 0.00. When using 

the formula to calculate the accuracy of those classes (Appendix F), there would always be a 

0.00 value which caused the accuracy to be 0.00 as well. Furthermore, the classification of 

Rusinga Island had an accuracy of 56%, new study area 1 had an accuracy of 55%, while the 

new study area 2 only had a total accuracy of 22%. This means that the classification was not 

much better than a random classification. The accuracy for the images of October was for 

Rusinga Island 35%, for study area 1 36% and for study area 2  43%. So, study area 2 had a 

considerable better classification result than the image of March (43% compared to 22%). 

Since the classification accuracy of study area 2 was that low, an unsupervised classification 

for this study area was done in the hope that the accuracy improved by this. In this 

unsupervised classification, the classification data were used for defining which class is which 

after the unsupervised classification was finished. The result of this unsupervised classification 

can be found in Figure 31 and Table 4a and b contain the validation results. (Appendix F) 
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Table 4a: Error matrices outcomes March: Rusinga Island and both study areas including the 

total accuracy (range is between 0 and 1), kappa coefficient (range is between 0 and 1) and  

user’s and producer’s accuracy (%). 

 
 

 
 

 
 

 
 

 
 

Rusinga island User's accuracy Producer's accuracy

Shrubs/trees&pasture 85,14 53,85

Water 50,00 100,00

Rocks/bare soil 68,97 46,51

Agriculture 38,79 75,00

Building 38,46 55,56

Total accuracy 0,57

Kapa coefficient 0,38

Study area 1 - old User's accuracy Producer's accuracy

shrubs/trees&pasture 70,00 80,77

rocksANDbaresoil 62,50 52,63

agriculture 45,45 47,62

building 83,33 35,71

Total accuracy 0,64

Kapa coefficient 0,45

Study area 1 - new User's accuracy Producer's accuracy

shrubs/trees&pasture 63,46 70,21

rocksANDbaresoil 21,05 36,36

agriculture 38,10 38,10

building 14,29 33,33

Total accuracy 0,55

Kapa coefficient 0,25

Study area 2 - old User's accuracy Producer's accuracy

Agriculture 45,65 53,85

Bare soil/rocks 48,57 60,71

Shrubs/trees 76,09 59,32

Water 100,00 100,00

Building 16,67 33,33

wet nature 0,00 0,00

Total accuracy 0,56

Kapa coefficient 0,36

Study area 2 - new User's accuracy Producer's accuracy

Agriculture 26,67 12,50

Bare soil/rocks 23,53 66,67

Building 14,29 100,00

Wet nature 0,00 0,00

Shrubs/trees 0,00 0,00

Total accuracy 0,22

Kapa coefficient 0,03



62 
 

 

Table 4b: Error matrices outcomes October: Rusinga Island and both study areas including the 

total accuracy (range is between 0 and 1), kappa coefficient (range is between 0 and 1) and  

user’s and producer’s accuracy (%). 

 

 
 

 

Rusinga island User's accuracy Producer's accuracy

Shrubs 27,36 37,66

Trees <10 18,46 52,17

bare soil, rocks, pasture and agriculture64,06 30,37

Total accuracy 0,35

Kapa coefficient 0,03

Study area 1 - new User's accuracy Producer's accuracy

shrubs/trees&pasture 75,00 10,34

rocksANDbaresoil 8,33 33,33

agriculture 43,18 73,08

building 32,00 29,63

Total accuracy 0.36

Kapa coefficient 0.13

Study area 2 - new User's accuracy Producer's accuracy

shrubs/trees&pasture 35,00 26,92

rocksANDbaresoil 13,79 57,14

agriculture 71,43 49,02

Total accuracy 0,43

Kapa coefficient 0,11



63 
 

 
 

Figure 31: Unsupervised classification result of new study area 2, Rusinga Island, Kenya – 

March – after fieldwork. 

 

Table 5: Error matrix outcome unsupervised classification “new” study area 2, including user’s 

and producer’s accuracy. 

 

Table 5 makes clear that the unsupervised classification of the new study area 2 had a higher 

accuracy (44%) compared to the supervised classification of this area (22%). Since the 

outcome of the classification also influences the regression analysis, the unsupervised 

classified image of new study area 2 was used for further analysis. 

Study area 2 - new - Unsupervised User's accuracy Producer's accuracy

Shrubs/trees 26,67 25,00

Agriculture 23,53 71,88

Bare soil/rocks 14,29 33,33

Building 0,00 33,33

Wet nature 0,00 0,00

Total accuracy 0,44

Kapa coefficient 0,17
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3.3 Research question 3: relational analysis 

To answer the third research question, the relationship between vector abundance and land 

use was studied by means of a regression analysis (OLS). As became clear during the land 

use classification and in the validation of the land use classification (Chapter 3.1 and 3.2),  the 

agricultural crop type classes on their own were not different enough. Therefore, those classes 

were merged into one class: agriculture. The classification and the regression analyses were 

performed for the remaining land use classes including the class “Agriculture” to find out 

whether the low accuracy was the cause of finding no relationship between agricultural land 

use types and vector abundance. The results of the R2 and R2 adjusted values are given in 

Table 6 per analysis (Anopheles gambiae and Anopheles funestus, Anopheles gambiae, 

Anopheles funestus, each per study area and for Rusinga Island as a whole). An R2 of 0 means 

the data does not fit the developed statistical model at all, a value of 1 means there is a perfect 

fit between the data and the model: the dependent variable is totally explained by the defined 

model. 

Based on fieldwork experiences the definition of Rocks did not only contain rocks. This class 

also contained bare soil and the same is true for shrubs. Shrubs also contained trees and 

pasture. What was prominent was that there was no relationship at all between a particular 

land use type and malaria vector abundance, while this was expected according to the 

hypothesis (Chapter 1.2). The highest R2 was found for the class Rocks in study area 2 for the 

combination of both malaria vectors, which had a value of 0.010529 for March. In October, the 

highest value was found for shrubs & pasture which was 0.048. This means that the goodness 

of fit of the model was 1%  and even less for other land use types in March and 4.8% and less 

for other land use types in October. Those results did not say anything about a possible 

relationship and therefore it was decided not to continue with the geographically weighted 

regression. The geographically weighted regression had as goal to combine the classes into 

one model, but with those low R2 values the regression results would not improve significantly. 

What can be seen in Table 6 is that the class building in both analyses of study area 2 (March) 

had no results, since the data were multi-collinear. Furthermore, the analysis in study area 2 

was not done for the malaria vector Anopheles, because there were not enough mosquitoes 

to do a viable analysis. The interpolation gave only values of 0.0 for the vector abundance and 

there was only 1 spot in study area 2 which contained a catch of 1 vector. This means that the 

regression analysis output certainly does not show any relationship, since every land use type 

contained the same amount of mosquitoes: 0.0. While in study area 1 there were enough 

mosquitoes of Anopheles gambiae present to perform the analysis. 
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Next to the values of the R2 that are given, other statistics were calculated as well by the OLS 

tool in ArcGIS. Such as the Akaike’s Information Criterion (AIC), which is a relative measure 

of the performance used to compare models, the smaller AIC indicates a superior model. In 

this case all AIC values were high, which means there is no superior model within the models 

determined. Furthermore, the joint F-statistic value was calculated which is used to assess the 

overall model significance. All models were non-significant according to those values. The joint 

F-statistics probability was calculated as well which is the probability that none of the 

explanatory variables have an effect on the dependent variable and this was indeed the case. 

The fourth value that was computed was the Wald statistics probability value, which is the 

probability that none of the explanatory variables have an effect on the dependent variables 

which was also the case for those models. Also the Jarque-Bera statistic was calculated which 

is used to determine whether the residuals deviate from a normal distribution. The probability 

values state that the residuals were also not normally distributed. The variance of the error 

term (residuals) was calculated as the last value and determined as sigma-squared. The 

variance appeared to be very large for all explanatory variables.  

  



66 
 

Table 6a: Outcomes OLS tool ArcGIS March: R2 and R2 adjusted per land use type for the three 

different datasets: both Anopheles gambiae and Anopheles funestus, Anopheles gambiae 

alone and Anopheles funestus only.  

 

Rusinga Island - Both gambiae & funestus

Land use type R2

Rocks 0,000148

Agriculture 0,002429

Water 0,005367

Shrubs 0,002131

Building 0,000018

Rusinga Island - gambiae

Land use type R2

Rocks 0,000148

Agriculture 0,002426

Water 0,005365

Shrubs 0,002128

Building 0,000018

Rusinga Island - funestus

Land use type R2

Rocks 0,000148

Agriculture 0,002429

Water 0,005367

Shrubs 0,002131

Building 0,000018

study area 1 - Both gambiae & funestus

Land use type R2

Rocks 0,002527

Agriculture 0,001233

Shrubs 0,0029

Building 0,000126

study area 1 - gambiae

Land use type R2

Rocks 0,002529

Agriculture 0,001234

Shrubs 0,002902

Building 0,000126

study area 1 - funestus

Land use type R2

Rocks 0,002527

Agriculture 0,001233

Shrubs 0,0029

Building 0,000126

study area 2 - Both gambiae & funestus

Land use type R2

Rocks 0,010529

Agriculture 0,000233

Water 0,001984

Shrubs 0,000567

Building multicolinearity

study area 2 - funestus

Land use type R2

Rocks 0,000567

Agriculture 0,001984

Water 0,000233

Shrubs 0,000112

Building multicolinearity
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Table 6b: Outcomes OLS tool ArcGIS October: R2 and R2 adjusted per land use type for the 

three different datasets: both Anopheles gambiae and Anopheles funestus, Anopheles 

gambiae alone and Anopheles funestus only. 

 

Rusinga Island - Both gambiae & funestus

Land use type R2

Trees < 10 0,003431

Shrubs 0,001985

bare soil, rocks, pasture and agriculture 0,000542

Rusinga Island - gambiae

Land use type R2

Trees < 10 0,003427

Shrubs 0,001982

bare soil, rocks, pasture and agriculture 0,000541

Rusinga Island - funestus

Land use type R2

Trees < 10 0,003431

Shrubs 0,001985

bare soil, rocks, pasture and agriculture 0,000541

study area 1 - Both gambiae & funestus

Land use type R2

Rocks 0,000131

Agriculture & bare soil 0,005907

Shrubs 0,012353

Building & pasture 0,000049

study area 1 - gambiae

Land use type R2

Rocks 0,000131

Agriculture & bare soil 0,005903

Shrubs 0,012352

Building & pasture 0,000049

study area 1 - funestus

Land use type R2

Rocks 0,000132

Agriculture & bare soil 0,005907

Shrubs 0,012353

Building & pasture 0,000049

study area 2 - Both gambiae & funestus

Land use type R2

Shrubs&pasture 0,047978

Trees<10 0,041917

Agriculture&baresoil&rocks 0,000262

study area 2 - funestus

Land use type R2

Shrubs&pasture 0,047978

Trees<10 0,041917

Agriculture&baresoil&rocks 0,000262
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3.4 Comparison of March and October 

According to the third research question, a comparison between the two seasons in terms of 

land use and in terms of relationship with vector abundance data was necessary. It was difficult 

to compare the two seasons, since two different datasets with a difference in resolution and 

thus in accuracy were used. The land use was not displayed correctly (accuracy = 35% only) 

for the low resolution Landsat image (30m resolution), which made a comparison with March 

(2.4m resolution) not worthwhile. However, when looking at the gathered data without looking 

at the maps, it became clear that the land use in both areas was comparable both in terms of 

the proportion of land covered by those land use types and number of different land use types 

and this was not the aspect that causes the difference in low/high amount of mosquitoes in 

study area 2 and 1 respectively. Furthermore, the agricultural crop type classes were merged 

to increase the accuracy of the classified images and the original objective of assessing the 

relationship between vector abundance and agricultural crop types was not reached. However, 

the relationship between vector abundance and land use types more general was assessed. 

The difference between the two seasons with regard to the relationship between vector 

abundance and land use types was not studied. Since there is no relationship found at all 

between any land use type and vector abundance on the island in any of the seasons, a 

comparison for the two seasons was not made. 

 

  



69 
 

4. Conclusion, discussion and recommendation 

In this study, the objective was to find out whether there is a spatial relationship between 

specific agricultural crops and malaria vector abundance for the two crop growing seasons 

separately in the SolarMal study area: Rusinga Island. To reach this objective, three research 

questions were formulated and answered accordingly: 

1. What agricultural land use patterns* based on crops are typical for Rusinga Island? 

 *The term “land use patterns” is defined as spatial-temporarily delineated units of 

specific crop classes. 

2. What is the accuracy of the created land use classification maps? 

3. Is there a relationship between specific agricultural crops and vector abundance for the 

two crop growing seasons separately? 

4.1 Conclusions 

The first research question focussed on the agricultural land use patterns that occurred on 

Rusinga Island. According to the data gathered in October 2013, the following land use types 

were defined: beans, cow peas, tomatoes, kales (sukumawiki), maize, sorghum, sweet potato, 

sweet pepper, bare soil, pasture, trees, water, shrubs, swamp and building. More information 

about the sowing and harvesting dates and in which crop growing season the different crops 

grow was given in Table 1, Chapter 1.2 . The data gathered in February/March 2014 can be 

found with the DVD: fieldwork data study area 1 and fieldwork data study area 2. Those 

datasets were used to improve the first classification and to validate the data. Based on this 

knowledge, the data gathered in the field in October 2013, the data gathered in February/March 

2014 and the first land use classification, the final land use classifications were performed.  

From the fieldwork done in February and March 2014, it became clear that Rusinga Island was 

very heterogeneous in terms of land use patterns. Since the pixels within the satellite images 

agreed with 2.4 m and 30 m in reality and even variation within one meter did occur, those 

pixels should contain more than 1 class.  

The final land use classifications that were created were based on the data gathered both in 

October 2013 and in February and March 2014. It became clear from those classifications and 

thus from the data gathered in the field that shrubs and trees were mainly growing on top of 

the hills of Rusinga island, water was only occurring in Lake Victoria (along the edges of 

Rusinga island) and rocks and bare soil were mainly located on slopes near the hill tops and 

along the shoreline. However, some bare soil/rock areas seemed to be classified as agriculture 

and this was also the reason why agriculture was overrepresented in the image of March 

(Figure 25). What can be seen is that most agriculture was found near the lake shore, although 

it also includes bare soil/rock areas. The class “building” was overrepresented as well. Along 

the lake shore there was one line of pixels determined as building, while it should be water. 

Since the image of October (Figure 28) only had three classes left from which one class was 

a mixture of all classes except trees and shrubs as was already expected and the class shrubs 

and the class trees were overrepresented. Those last classes probably include mixed pixels 

as well, which means they include pixels that belong to another class as well. 
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The second research question focussed on the validation of the classifications done. According 

to the validation done for the new study areas and Rusinga island as a whole, the classification 

of Rusinga island (March) had the highest accuracy of 57%, study area 1 had an accuracy of 

55% and study area 2 one of 22%. After this validation the classification of study area 2 was 

adapted to an unsupervised classification with an accuracy of 44%. The validation results of 

October were the following: Rusinga island had an accuracy of 35%, study area 1 an accuracy 

of 36% and study area 2 an accuracy of 43%. 

The third research question tried to reach the objective of this study which was finding out 

whether there is a relationship between specific agricultural crop types and vector abundance 

for the two crop growing seasons. The part of the objective to study the relationship between 

agricultural crop types and vector abundance was not reached, since the accuracy of the 

created maps was too low to work with. In this case, no relationship was found between a 

particular crop type and vector abundance which could be the answer to the last question. 

However, the analyses were performed for the merged class: agriculture and the other land 

use types. Still, no relationship was found for any type of land use with vector abundance.  

Thus, the regression analysis did not reveal any relationship between vector abundance and 

land use which did not match the hypothesis as given in Chapter 1.2. One explanation is that 

the sampling of the land use classes was done differently when comparing it to the sampling 

method of the vector abundance. Land use was sampled according to the systematic random 

sampling principle and thus covered all the classes more or less equal. The difference with the 

vector abundance data is that those vector data are linked to the households on the island and 

there was sampled on basis of simple random sampling of 80 households per 6 weeks’ time 

interval. Each household was sampled on two occasions. Every household had an equal 

chance of selection. However, due to the random sampling pattern, areas with a high housing 

density were oversampled. This means that there were not only few mosquitoes per location, 

but that the sampling points were also not spread equally over the island as well and only 

focussed on the populated areas of the island, where particular land use types such as shrubs 

are less common. (Hiscox et al. 2012b) 

4.2 Discussion 

4.2.1 Data 

The first issue to discuss is the data that was used. The data gathered in the field was gathered 

at a different point in time then the satellite images were taken. The Quickbird image was taken 

on the 10th of March 2012 and the Landsat image was taken on the 1st of October 2012, while 

the data in the field was gathered between the 15th and 18th of October 2013 and during the 

whole month February and the first two weeks of March 2014. This mismatch caused a 

discrepancy between the data gathered and the images that were analysed with those data 

which leads to a lower accuracy of the classification done. It was possible to ask the farmers 

what they were growing on their fields two years ago, but this information was probably biased 

due to errors in the recall of information. Another problem faced was that especially in March, 

but also in October (Table 1, Chapter 1.2) crops were just sowed at the moment the satellite 

image was taken and not fully grown yet when the fieldwork was done. Which made the 

classification of the different crop types very hard. The satellite image only showed bare soil 

reflection values and agricultural fields were therefore classified as bare soil instead of 

agriculture. Engvall et al. (1977) and Mutua et al. (2010) used another method for specific crop 

type classification and was able to overcome this problem. There is elaborated on this method 

in section 4.3.1. 
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To improve the accuracy of the classifications done, the data could be gathered using a more 

accurate GPS or using a different sampling method. Especially for the Quickbird image this is 

necessary, since the resolution of that image is 2.4 m. while the GPS on the tablet could have 

a deviation of 10 m. and sometimes even 20 m. This means that there is discrepancy between 

the collected data and the Quickbird image. To reduce this error, the sampling can be done 

differently. What can be done to reduce the deviation of the tablet is approaching the sites from 

four directions to obtain a GPS fix of the sampling points. If the coordinates are all the same 

(GPS fix), the correct site is reached. The accuracy of the tablet is studied at the moment by a 

student and the results of his study can be used for the improvement of this study. One of the 

methods that can be used is called differential sampling (Cornelius et al. 1994). This method 

requires two (similar) GPS receivers and by use of those 2 receivers they cancel out their 

errors and give an accuracy of 2 – 15m. 

The goal was in the end to compare the classification and regression results for Rusinga for 

two seasons: March and October. Therefore, another Quickbird image was necessary for the 

analysis of October 2012. Unfortunately, the company from which the image should be ordered 

stopped existing and it was not possible to acquire this image in time. This became clear after 

the fieldwork already was finished and some adaptations regarding the time schedule of 

finishing the study needed to be made. Another image was requested: a Landsat ETM+ image 

of the 1st of October, 2012 (section 3.2). This Landsat image has a much lower resolution (30 

m) when comparing it to the Quickbird resolution (2.4 m), which makes the comparison 

between the two different seasons complicated due to the discrepancy in resolution.  

The change to a Landsat image brought some troubles in ArcGIS: classifying the image was 

impossible, since the histogram function on the training sample manager toolbar gave an error: 

“out of memory”. However, the computer which was used for the analysis had a lot of memory 

left. It took a lot of time to solve it, but when one of the bands of the original image is displayed 

and the toolbar is opened first then everything works normal and the altered study areas could 

be uploaded and classified. Otherwise, the classification could have been done in Erdas 

Imagine or the data could be re-saved within ArcGIS or the mask tool in ArcGIS for the creation 

of the study areas could have worked out. 

4.2.2 Methods 

The first land use classifications of both study areas and of Rusinga Island as a whole showed 

that the island is very heterogeneous in terms of land use patterns. However, after performing 

the final classification, the different agricultural land use patterns were too similar and had to 

be merged into one class which is named agriculture. This became clear after using the 

dendrogram tool for which the between-class values for the separated agricultural land use 

patterns were smaller than the defined threshold of 0.9 and the accuracy was < 30%. After the 

merging, those values increased towards acceptable levels above 0.9 for the between-class 

values and between the 40% and 60% for the total accuracy. Since the pixels within the 

satellite images agreed with 2.4 m and 30 m in reality and even variation in land use patterns 

within one meter did occur on Rusinga Island, those pixels should contain more than 1 class. 

According to Forzieri et al. (2012) this causes mapping errors and thus a lower accuracy due 

to mixed spectral signatures. 
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Several studies proved that other land use types then specific agricultural crop types, such as 

unmanaged pasture, swamp and agriculture in general,  can explain mosquito abundance as 

well (Afrane et al. 2005; Beck et al. 1994; Lindblade et al. 2000; Munga et al. 2006). Since only 

agriculture was defined as agricultural land use on the island, only something can be said 

about agriculture in general and about the four classified land use patterns occurring on the 

island, which are shrubs/trees and pasture, rocks/bare soil, buildings and water.  

This means that the objective of this study is only partly reached, not the relationship between 

specific agricultural land use patterns and vector abundance was studied, but the relationship 

between agriculture/ other land use patterns and vector abundance was studied. This means 

the study did not focus on specific crop types, but on agriculture in general. However, the set-

up of the study was not changed. 

During the first supervised classifications done after the data gathering of October 2013 it 

became clear that some classes should be merged, since the distance between the classes 

according to the dendrogram was too small (< 0.9). Another issue that was already mentioned 

in section 4.1, was that some classes did not occur in one study area, while they did in the 

other. For example tomatoes did not occur in study area 1 according to the data, but did occur 

in study area 2 and bare soil did not occur in study area 2, but did in study area 1. Furthermore, 

study area 2 contained sweet pepper and cow peas, while study area 1 did not. Study area 1 

contained maize and sorghum and study area 2 did not. Rusinga as a whole contained 

everything, except cow peas and sweet pepper. An explanation for this is that cow peas and 

sweet pepper were very similar to another class, Sukumawiki, in terms of how they appear in 

the image of March and were merged into that class. In Figures 17 and 18 this merged class 

is named Sukumawiki.  

 

Agriculture appeared to exist especially close to the shoreline according to the classifications 

done before the fieldwork. Since there is no water on the island, the people depend on the 

water from the lake, which makes irrigation of crops in the middle of the island very difficult. 

When looking at the classification images after the fieldwork data is included, agriculture seems 

to be overrepresented in the image when comparing it to the real-life situation. The 

classification of shrubs/trees and pasture, water and rocks/bare soil seemed to be more 

reliable. The class building was overrepresented in both classifications done before and after 

the fieldwork. This means that more pixels were classified as building than there were in reality, 

which reduces the accuracy of the classification. An explanation for this is that the reflection of 

the roofs of the buildings is very high and can be compared to the reflection values of the 

waves breaking at the shoreline: when looking close to the classification of study area 2 the 

shoreline was classified as building. Some bare soil and rock areas were classified as building 

as well, probably the reflection of the light grey rock areas on the island is comparable to that 

of the light roofs of the buildings as well. 

 

The classes shrubs and trees appeared to have similar reflection values according to the 

between-class values (< 0.9). Since trees were defined in the field as trees < 10, areas 

containing trees had a soil cover of shrubs. An explanation for this is that the trees often did 

not have a closed canopy which leads to similar reflection values of both classes. Rocks and 

bare soil both did not have vegetation cover and had a bright colour. This resulted in 

comparable reflection values as well. 
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The only clear pattern for the unsupervised classifications of study area 1 were the agricultural 

fields along the shoreline and the road. However, in the classification based on the land use 

pattern dataset of February and March 2014, the road could not be distinguished any more. 

The reason for this was that road was not defined as a separate class, it was defined as 

rocks/bare soil. This made the difference between road and its neighbouring land use patterns 

less clear, because the neighbouring land use types were often rocks/bare soil.  The land use 

pattern rocks/bare soil seemed to be underrepresented and the land use pattern agriculture 

overrepresented. A reason for this is that the satellite image was taken in March, when crops 

were not fully grown yet. This means that a lot of bare soil was still visible and during the 

classification, the bare soil areas which were not agriculture in the image had the same 

reflection values as the training samples of agriculture and were therefore classified as 

agriculture. 

Muthuri et al. (2005) showed that for example for maize it takes 90 days to be fully grown after 

sowing. This means for the second season for which the onset of maize on Rusinga Island 

was the first of September, that it was fully grown at the end of December. This can explain 

why agricultural fields often are classified as bare soil instead of agriculture. 

Study area 2 basically showed the same patterns in land use as study area 1 in the first 

supervised classifications done before the fieldwork, but the classification after the fieldwork 

was slightly different. Only three classes were left, containing the classes agriculture, 

rocks/bare soil and buildings. Agriculture was merged with shrubs/trees and pasture since 

those classes showed too much overlap to perform a classification. Including this knowledge, 

the class agriculture seemed to be underrepresented, while building  and rocks/bare soil 

seemed to be overrepresented based on knowledge of the area according to the same reasons 

as mentioned for study area 1. However, this time for rocks/bare soil and agriculture it seemed 

to be turned around: most agriculture is defined as rocks/bare soil instead of rocks/bare soil 

that was classified as agriculture. 

According to the validation done for the new study areas and Rusinga island as a whole, the 

classification of Rusinga had the highest accuracy of 57%. Study area 1 had an accuracy of 

55% and study area 2 one of 22% for March. For October this accuracy was respectively 35% 

for the whole of Rusinga Island and 36% and 43% for study area 1 and 2. So the over- and 

underestimation of the different classes is indeed the case. The classification result is not very 

accurate, since the accuracy values were lower than the lowest value found in literature: 64.5% 

(García-Mora et al. 2011). The accuracy of study area 2 (March) was very low compared to 

the other classifications and there was decided to do an unsupervised classification as well for 

which the classes were based on the classification dataset. The accuracy indeed became 

higher: 44%. This is not surprising since the different classes defined within the supervised 

classification were too similar. While the unsupervised classification defined classes in such a 

way that there is a large enough difference between the classes. Furthermore, an accuracy of 

22% means that the difference with a random classification is small and therefore a higher 

accuracy result was expected as well.  
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One of the factors that caused this accuracy not to be higher was that the histograms of the 

different bands of the image were not normally distributed, but skewed to the right for every 

band due to atmospheric influences/background interference (Manolakis and Shaw 2002). A 

different factor were the classes which were determined during the fieldwork. In the field every 

crop type was determined as a specific agricultural crop type. However the sizes of the fields 

were very different. The fields near the houses were usually small (10 m length and width as 

maximum size), while the fields further away were larger (50 length and 20 m width). A different 

classification could be made when the small fields are defined as “small-scale agriculture” and 

the larger fields are defined as “large-scale agriculture” since the smaller fields have the 

greatest impact on mosquito house entry risk. The reason for this is that the crops grown there 

affect the humidity in and around the houses (Ijumba et al. 2002; Klinkenberg et al. 2005; 

Norris, 2004). Furthermore, the sampling points occurred in a heterogeneous environment for 

which several classes occurred within 1 m2. Therefore, some classes were not similar to the 

class that was distinguished by the satellite due to mixed pixels. Other factors are already 

described in Chapter 4.2.1. 

When the classification results of both March and October are compared to classification 

results of other studies by means of the results of the error matrices (Diuk-Wasser et al. 2007; 

Beck et al. 1994; Manandhar et al. 2009; Garcia-Mora et al. 2011) , it appears that the accuracy 

is low especially for the classifications of October. The studies that are already done have an 

accuracy of their classification between 60 and 90 %. When comparing the results of October 

(35%, 36% and 43% respectively) to those values, it appears that improvement of the 

classification still is necessary. The results for Rusinga and study area 2 for March are valid to 

be used for the regression analysis, since the values of 57% and 55% are just lower than the 

lowest accuracy found in literature. When looking at the user’s accuracy which were calculated 

by means of the error matrices of the classified images of October for Rusinga and study area 

1 and 2, it appears that the classes shrubs and trees for Rusinga contained the largest errors 

(user’s accuracy was only 18% and 27% respectively). Furthermore, for study area 1 and 2, 

the class bare soil and rocks contained the largest errors, user’s accuracy was only 8% for 

study area 1 and 14% for study area 2. This is explained by the discrepancy between date of 

satellite image and the date on which crops are fully grown (Chapter 5.2.1).  

Since Ge et al. (2007) proved that the accuracy of land use classifications influence analyses 

that use those classifications as input afterwards and in their case on climatic simulations. 

Probably, this is also the case for the regression analysis. However, the exact effect is not 

studied and could include a whole new study.   

The R2 values were lower than expected, since a relationship between a particular land use 

type and vector abundance was expected. An explanation is that the fieldwork study areas 

were different from the study areas for which the analyses afterwards were done. The study 

areas were adapted, since the size of the first study areas was not based on something, while 

the new study areas now are based on the hotspot analysis and the distance a malaria vector 

can fly (Chapter 2.1). 

Furthermore, the low R2 values can be caused by the fact that the gathered mosquito 

abundance data of the whole year over the whole island in the SolarMal project are not 

representing correct numbers for the areas outside households, since those data are linked to 

the households. Next to this, the interpolation tool cannot cover the whole island with this 

dataset. This can lead to a lower R2 than there actually is for particular land use types. 
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Another problem faced here, is that the household sampling was not accurate enough when 

comparing the data with the Quickbird image of March. This also has to do with the GPS of the 

tablets (Chapter 4.2.2) which is not accurate enough to provide data that matches the exact 

location of the sample points in the Quickbird image (Figure 32). 

 

Figure 32: Pansharpened Rusinga Island, Kenya (Quickbird, March), displaying the 

discrepancy between the accuracy of the data gathering of the households (green point) and 

the household itself on the image.  

R2 adjusted was not used. It takes into account the phenomenon of increasing the value 

automatically when extra explanatory variables are added to the model, but only single 

variables are studied due to the low R2 outcomes. 
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Since the relationship was that low, there was not continued with doing a geographically 

weighted regression (GWR) and also the autocorrelation of the residuals was not checked. 

The Global Moran’s I tool, ArcGIS 10.1,  measures the spatial autocorrelation based on feature 

locations and attribute values using the Global Moran’s I statistic, which should be checked 

before continuing the analysis (Esri 2013q; Varga et al. 2013). So, if the regression results 

would be improved somehow, those analysis can still be done by another student for example.  

4.2.3. Fieldwork 

Also in terms of fieldwork some issues can be discussed. For a classification, a total accuracy 

of 100% would be great, however, it is impossible to reach this in practice. (Beck et al. 1994; 

Diuk-Wasser et al. 2007; Garcia-Mora et al. 2014; Manandhar et al. 2009) When comparing 

the classification results with other studies, the results were lower than the accuracy values 

found in literature (lowest was 64.5% from the study of Garcia-Mora et al. 2014). There 

were/are some options to obtain an even better result. In the first place both the sampling done 

by the fieldworker in October and the sampling done in March/April was facing some difficulties. 

Sometimes, a point could not be reached due to a (too) steep slope or too dense bushes and 

the land use type should be estimated from a distance. This can lead to a wrong land use class 

given to that point since there was not known were the point exactly was. Those points were 

not skipped in the analysis, because otherwise the idea of covering the whole study area 

equally would be lost. There were approximately 30 points per study area that could not be 

reached out of the 210 sampling points for study area 1 and 270 sampling points for study area 

2. 

Another issue was that areas contained two or three different types of land use even within 1 

m2. It was decided to look at which type of land use was present most and this was the land 

use type that was used for that sampling point. During the fieldwork, it appeared to be the case 

often. Together with the inaccuracy of the GPS this can lead to a discrepancy between the 

exact data point within the satellite image and the belonging land use type. A possibility is that 

this pixel is a mixed pixel within the image, which makes it difficult to classify not only in the 

field but also with regard to the land use pattern classification. 

Furthermore, some of the points that fell in an agricultural field could not be reached, because 

of dense bushes and fences made by the farmers themselves and neighbours were asked 

what was growing there. Since it is possible that there were some translation and 

understanding problems with the farmers during the fieldwork, the data collected from those 

points could be different from reality. This is a known problem for gathering data about mixed 

cropping. There was also asked for those agricultural fields what was planted there in the other 

season (March or October). Those are all issues that influence the accuracy of the 

classification and indirect the results of the regression analysis. 

An explanation for the non-presence of several crop types in the study area 1 and 2 is that 

there were only a limited amount of points sampled (24) and only four points per crop were 

located. Therefore, it could be possible that for one crop type, four fields of that crop were 

already sampled and the analysis was continued with another crop type. 
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4.3 Recommendation 

4.3.1 Data 

The first recommendation about the data is that it is wise to use the same satellite image for 

both seasons to be able to make a proper comparison between those seasons. Furthermore, 

the accuracy of the satellite images used needs to be the same as the accuracy of the GPS 

used for data gathering (Chapter 4.2.1). This is needed to get a more reliable classification 

result in terms of accuracy of the classified image. What also improves the accuracy is that the 

data that is gathered in the field should be matching the timing of the acquisition of the satellite 

images. In this case this means that the sampling and the satellite image should be gathered 

in the period for which the crops are fully grown.  

Another option was that the different growth stages of the crop types in March 2014 were 

written down during the fieldwork. In this way, there could be known if and in what way the 

satellite images show the reflection values of the gathered crops. This was done in the study 

of (Mutua et al. 2010) 

4.3.2 Methods 

If the results of this study are going to be used, it is recommended to first improve the 

classification results as those influence all further analyses (Ge et al. 2006). This can be done 

by doing the fieldwork at the same time as the satellite image is taken and when the crops are 

fully grown as is stated in Chapter 4.2.1. The classes used also can be revised, since they are 

often  a combination of several classes as was discovered in the field. When this is done, future 

sampling is more accurate. However, there are other methods of classification that can be 

used and which probably lead to a higher accuracy. 

An example of this is doing the classification based on the vegetation cover. This is also done 

in the study by Beck et al. (1994) which had an accuracy of 90%. They used Landsat imagery 

as well as remotely sensed data to be able to identify the elements within their study area. So 

their classification was not based on data gathered in the field which solves the problem of 

discrepancies between data, the time of acquisition and the accuracy of the data. This leads 

to a higher accuracy of the classification. So on base of remote sensing classification 

techniques for example on base of the NDVI, the classification results will be improved.  

In terms of the fieldwork done for the classification, the variation within the area was only 

determined by means of visual inspection. However, there are methods available that 

determine the variation within an area. In a follow up study, landscape metrics can be used to 

calculate the variation within the area in terms of land use. (McGarigal 2012) 

4.3.3 Fieldwork 

Agriculture appeared to exist especially close to the shoreline according to the classifications 

done before the fieldwork. To proof this an additional regression analysis could be done in 

ArcGIS which gives the relationship between the distance from the lake with the amount of 

land cover dedicated to agriculture. 
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4.3.4 Other options 

In terms of the different satellite imagery used within this study, Landsat and Quickbird, the 

comparison is not impossible. However, if a proper comparison is made, the cell resolution of 

one of the images should be changed. 

The regression analysis can be performed in a different way, since there are several methods 

for doing so which probably lead to an improved regression result. The first option is to do the 

same analysis, but than with larval data instead of adult female mosquitoes. Since larvae 

depend on water pools and certain land use patterns are linked with those, a relationship 

possibly is found. (Nmor et al. 2013) already studied other environmental factors to be linked 

with larvae (topographic variables derived from SRTM and ASTER DEMs) and did find 

relationships. The same study was done by a student for adult female mosquitoes and no 

relationship was found. For this land use classification this can also mean that due to the adult 

mosquito data there is no relationship found and when larvae data would have been used a 

relationship may have been found, since the spread of the mosquitoes is based on the location 

of the breeding sites (Figure 33). The studies which proved that there was a relationship 

between a particular land use pattern and malaria vectors also focussed on larvae and not on 

mosquito adults. (Beck et al. 1994; Van der Hoek et al. 2001; Kebede et al. 2005) 

 

Figure 33: Comic with explanation why a relationship of vector larvae with land use is more easy to 

predict when comparing it to adult vectors (mosquitoes).  

What also is a possibility, is to look specifically at the land use patterns near the houses as is 

done by Beck et al. (1994) as well. This can be done by creating a buffer around the houses, 

e.g. 1 km as that is the flight distance of mosquitoes. There can be calculated which 

percentages of different land use patterns the created buffer contains to get to know more 

about the proportion of particular land use patterns in the neighbourhood of houses. Then, 

statistical analysis can be done with the larvae and/or adult mosquito data to find out whether 

there is a relationship between vector abundance and a particular land use patterns. 

Furthermore, the malaria vector abundance data could be used in a different way. Instead of 

using the exact numbers of malaria vectors, it can be changed into binomial data: are there 

mosquitoes at that particular location: yes (1) or no (0). Since there is difference in amount of 

mosquitoes, it probably can make a difference in what way the vector abundance data is used 

for the outcome of the regression. 
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If there is coming out a relationship with a particular patterns of land use after the changes 

being made to the analysis, it will be possible for the project to place their intervention traps 

more efficiently in a future malaria project: more traps in the mosquito attracting land use 

patterns. Another option is to reduce this land use pattern as much as possible, which is called 

land use management. However, if the land use is agriculture, this will be ethically, 

economically and probably politically impossible to do. 

Another option for improving the classification results is to use the approach of Engvall et al. 

(1977). This approach does not use data gathered in the field, but used a time series of Landsat 

mean vectors for selecting agricultural fields for which ground truth data was available. This 

procedure was applied to individual Landsat pixels. The result was comparable to the ground 

truth data, which makes the method of Engvall et al. (1977) interesting for classifying the 

agricultural land use patterns on Rusinga Island with a high accuracy. 
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Appendix A – Background on Malaria 

 

A-1 Malaria in Africa 

In Sub-Saharan Africa, malaria has been a serious problem for a long time and is third in rank 

in deaths for the African population after pneumococcal acute respiratory infections and 

tuberculosis. Approximately 8.2 million cases of malaria are reported in Kenya every year out 

of a population of 30 million. Children younger than five years old and pregnant women are 

exposed to the highest risk. Every day, 72 children are dying due to a malaria infection. (Opiyo 

et al. 2007; World Health Organisation 1996, 2012) The factors that probably caused the rapid 

spread of malaria in Africa are: resistance of the malaria parasite to antimalarial drugs, such 

as chloroquine, the other quinolines and ACTs, and population movements of people who are 

not immune to malaria (Dondorp et al. 2009; Gouagna et al. 2004; Sauerwein et al. 2011). 

Other reasons for malaria still existing in Africa are that health care is not always accessible, 

education for the local inhabitants about malaria is not provided and local house constructions 

are not mosquito proof. (Lindsay et al. 2003; Mubyazi et al. 2008b) 

 

A-2 Malaria and people 

The type of malaria which is most common in Africa is caused by a parasite named 

Plasmodium falciparum, which causes the most deadly type of malaria. Malaria is transmitted 

to humans by means of a bite of a female mosquito during a blood meal to develop eggs. In 

Africa, mosquitoes of the Anopheles gambiae s.l. complex are responsible for most 

transmission. However, also Anopheles funestus and Anopheles arabiensis are common in 

Sub-Saharan Africa. (Lindsay et al. 1998; Organisation 2012) The parasites, in this stage 

called sporozoites, enter the human body after the bite and the sporozoites are released into 

the bloodstream from where they enter liver cells. After their multiplication, they cause the 

refraction of the liver and the parasite, merozoites in this stage, are released into the 

bloodstream where they invade the blood cells. When they are entering the blood cells they 

are asexual. However, some merozoites transform into gametocytes, which can be taken up 

by another susceptible female mosquito during a blood meal. (Sauerwein et al. 2011) This 

process is displayed and described in Figure 34. 

 Figure 34: Process of sporozoites entering the human body and 

finally the infection of another vector (Sauerwein et al. 2011). 
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A-3 Malaria vectors in Africa 

In Africa, the female mosquitoes that are most commonly infected with malaria are of the 

mosquito complex Anopheles gambiae. (Lindsay et al. 1998; Organisation 2012). This complex 

is widely distributed over Africa (Wikimedia 2013). Temperature has been identified as a key 

factor distinguishing the distribution of the complex. However, also rainfall and the relation 

between urban and rural areas are important factors. Furthermore, the temporal factor in terms 

of seasonality is of importance (Blackwell and Johnson 2000; Evans 1938; Roberts 2000; de 

Souza et al. 2010).  

 

The mosquito has four life stages. First mosquitoes mate, than the first life stage is the egg, 

which should be directly laid on a water surface. In the second life stage the egg develops into 

a larva, which feeds on algae, bacteria and other micro-organisms in the water surface micro-

layer and only dives below the water surface when disturbed. The water should have a warmer 

daytime temperature. After the larval stage, the mosquito transforms into a pupa. A pupa is 

comma shaped and it should come to the water surface to breathe. Both larvae and pupa can 

be found in small, sunlit (warm), temporary and turbid pools which are created by human or 

animal activity. After two or three days the pupa transforms into an adult mosquito. (Evans 

1938; Meijerink et al. 2000; Minakawa et al. 2004) 

 

The male adults survive on nectar, the female adults both on nectar and blood meals, which 

are needed for the development of eggs. (Evans 1938; Meijerink et al. 2000; Minakawa et al. 

2004) Since female Anopheles mosquitoes are the disease vectors for malaria, they can 

become infected with the malaria parasite during this blood meal and transmit it to another 

person during the next blood meal, see Figure 32 (Sauerwein et al. 2011).  

 

A-4 Symptoms & treatment 

As a person is infected with the malaria type Plasmodium falciparum via a mosquito bite, the 

person usually experiences the symptoms 10 to 14 days later. This period is referred to as an 

incubation period. Those symptoms are observed when red blood cells lyse and release 

merozoites (Sauerwein et al. 2011). The symptoms of malaria include headache, joint pain, 

chills, vomiting and diarrhoea. Life-threatening symptoms are not common and quick response 

is only needed if the infected person suffers from acute malaria. For P. falciparum, the 

symptoms are more serious in nature, since small blood vessels of vital organs can get 

blocked, causing life-threatening organ failure. (Sauerwein et al. 2011) 

 

Chloroquine was used for a long period in order to treat people with malaria. However, the 

parasite has become immune to chloroquine. Therefore, artemisinin combination therapies 

(ACTs) are now recommended by the World Health Organization (WHO). (Gouagna et al. 

2004; Sauerwein et al. 2011) A problem that is recently occurring is that the parasite also 

becomes immune for those ACTs. This is shown in a research  which is done in West 

Cambodia and North-Western Thailand (Dondorp et al. 2009). So malaria control research as 

well as curative research is vital. 
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A-5 Preventive measures 

Since malaria is influencing the health condition of infected people and the malaria parasite is 

becoming resistant to all variants of drugs, infection should rather be prevented instead of 

treated afterwards and avoid becoming dependent on drugs (Gouagna et al. 2004; Sauerwein 

et al. 2011; Dondorp et al. 2009; (Organisation 1996, 2012)). The most common measure that 

is proven to be effective against bites of malaria vectors is using a long lasting insecticide-

treated (LLIN) bed net (Alonso et al. 1991). However, also IRS and proper case management 

are also measures of the WHO. In some instances, the most vulnerable population: young 

children of less than 5 years old and pregnant women will receive intermittent preventive 

treatment. However, the policies for those treatments vary between countries. A combination 

of treatments leads to even better protection of people at risk. (Kleinschmidt et al. 2009; 

Mubyazi et al. 2008a) 
 

A-6 The SolarMal project 

Taking into account the preventive measures mentioned in A-5 and emerging resistance to 

drugs and insecticides, the scientific community need to find other ways to prevent and control 

malaria. Within the SolarMal project, the aim is to eliminate malaria from Rusinga Island, 

Western Kenya (Figure 35), by means of a novel malaria control measure in combination with 

the already existing national malaria control strategies of long-lasting nets and case 

management. The project will provide odour baited traps (OBTs) to all households to achieve 

mass trapping of malaria vectors.  

In order to let the traps do their work, the traps should attract mosquitoes. Therefore, odour 

bait was developed and formulated in such a way that it mimics humans. Furthermore, a 

synthetic CO2 replacement is used in the traps. An advantage of the odour is that it is 

reproducible, objective and has low development costs. (Mukabana et al. 2012; Okumu et al. 

2010) This developed odour will be used in the newly developed mosquito trap, the Suna trap, 

which will be installed on Rusinga Island during the SolarMal interventions (Figure 36). 

 

After a period of 2 years, SolarMal’s hypothesis is that by lowering mosquito vector 

populations, the number of potentially infective bites a person receives will be reduced and this 

will eventually lead to malaria elimination on the island. To measure progress in the elimination 

of malaria, the demographic situation is constantly monitored in the field by gathering data on 

health and demography using a Health and Demographic Surveillance System (HDSS). This 

is vital to attribute effects to the intervention, geography and individuals. Also vector 

populations are continuously monitored, detecting seasonal and long-term changes in 

mosquito population density and species composition. Monitoring malaria is another important 

component of the project and parasite prevalence surveys are conducted continuously over 

the island, and RDT (Rapid Diagnostic Test) positive cases are treated with ACT or referred 

to local health services. (Hiscox et al. 2012a; Hiscox et al. 2012b) 

 

For the SolarMal project, the nationwide adapted strategies of LLINs and case management 

are used together with mass trapping of the mosquito vectors. (Hiscox et al. 2012a; Hiscox et 

al. 2012b) 
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Figure 35: Rusinga Island, Kenya: the study area of the SolarMal project. 1) Africa with its 

countries (Kenya), 2 Kenya with its counties (Homa Bay district), 3) Homa bay county with 

Rusinga island (34 7’ 5” E  , 0 26’46” S  /  34 14’ 8” E, 0 20’ 35” S). 

 

 

 
 

Figure 36: The Suna trap, an odour baited solar system (Hiscox et al. 2012a; Mukabana et al. 

2012; Okumu et al. 2010). 
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The traps installed in- and outside the houses on Rusinga Island are solar-powered and the 

battery and wires are contained in a box. In addition to the OBT, residents receive a connection 

for charging their mobile phone. Furthermore, two LED light bulbs are installed in each 

household, thus providing a source of indoor lighting and reducing dependency on biofuels for 

lighting. All devices are powered by the solar panel which is installed on their roof. The solar 

panels and the traps are installed for free, since it is tried to let the SolarMal project be a holistic 

project that also develops other things for the people, like electricity and light. (Hiscox et al. 

2012a; Hiscox et al. 2012b) For an overview, see Figure 37. 
 

 

 

Figure 37: The different types of supplies provided during the SolarMal project (Hiscox et al. 

2012a). 
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The SolarMal intervention done on the island will provide experimental outcomes, which can 

be divided into the health and demographic surveillance system (HDSS), parasitology, 

entomology and sociology. The roll out of the traps started in mid-2013 and should be finished 

within 24 months. A hierarchical study design is used to measure an effect of the intervention 

by randomly selected clusters of 50-51 households. Those households are linked to the 

neighbouring clusters that are similarly provided with a mosquito control tool within the same 

week. 9 of these clusters together form a metacluster and the island is divided into 9 

metaclusters (a total of 81 clusters). At this time (July 2013), preliminary testing of the odour 

baited mosquito trapping system is already done and the roll-out of SolarMal interventions 

already started. It appears that the system met all requirements of the inhabitants and was 

efficient in providing enough power for all the electrical devices. (Hiscox et al. 2012b) 

The SolarMal project as described above aims to let the local inhabitants participate in the 

research and in this way inform them about the health risk which malaria causes. Furthermore, 

the population is involved in decisions, ideas of implementation, helping in data collection and 

SMoT instalment. The communication is done by means of stakeholder groups, such as 

churches, women groups, beaches etc. and an official CAB (community advisory board) which 

represents the island. Since African people have their own methods for disease management, 

this public awareness is needed in order to increase awareness and understanding of the 

treatments being used. Furthermore, the SolarMal project is needed in order to get more 

background in epidemiology, socio-economic impact of the disease and the dynamics of the 

vector population in this region of Kenya. By means of good communication and placing this 

SolarMal project into a national context, the results can probably be translated into practical 

applications in other risk areas. (Nchinda 1998)  
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Appendix B – Maps 
 

 

 

Figure 38: Distribution of households on Rusinga Island, Kenya, based on data gathered in the 

SolarMal project. 
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Figure 39: Distribution of farmers on Rusinga Island: in both areas farming practices are 

performed (Homan et al. Unpublished). 

 

 

Figure 40: Amount of indoor Anopheline catches: a lot of catches in study area 1, (almost) no 

catches in study area 2   (Homan et al. Unpublished). 
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Figure 41: Amount of outdoor Anopheline catches on Rusinga Island: a lot of catches in study 

area 1, (almost) no catches in study area 2 (Homan et al. Unpublished). 
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Appendix C - Sketch image field work 
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Appendix D - Toolbox description 

The toolbox: IA_Thesis_Annemieke_SolarMal_”savingdate”.tbx is used for doing the different 

pre-processing and analysis steps which are necessary for this particular study. This toolbox 

contains four different toolsets: 

1. a_preprocessing_March 

2. b_ClassificationMarch_preparation_fieldwork 

3. d_Landuse_classification_and_validation_March 

4. e_preprocessing_classification_validation_October 

5. f_relate_mosquitodata_to_landuse 

6. xx_proposal 

7. zz_backup 

Each of the above toolsets contains different models which are built to finally lead to viable 

results and answers to the proposed research questions of chapter 1.2. Underneath, the 

models will be discussed separately per toolset to explain certain choices which are made 

during the development of the models. 

D-1 a_preprocessing_March 

This toolset contains the following ten models, which were needed in order to pre-process the 

images. The choices made within those models will be explained here: 

1. a01ProjectAsterDEM 

In this model, the given AsterDEM is being projected to the coordinate system which 

will be used for all the analyses done for this study: WGS_1984_UTM_Zone_36S with 

an output cell size of 30 as is induced from the raster information of the original DEM. 

 

2. a02OrthorectificationImages 

The next step was to ortho-rectify the image which is done by means of the DEM which 

is created in the previous model. The raster was copied in order to preserve the 

previous adjustments. Both the panchromatic and the multispectral image were ortho-

rectified by means of the provided DEM. 

 

3. a03DefineOverallStudyArea 

Now that the images are in the correct coordinate system and are ortho-rectified, 

Rusinga Island should be selected from the images. In order to do so, the water bodies 

of Lake Victoria should be removed from the image to reduce the calculation time in 

future calculations. The SRTM water body with the code: e034s01f.shp is used for this 

purpose (USGS 2013). This file needs to be projected in the same coordinate system 

(WGS_1984_UTM_Zone_36S) first. After this, the polygon dataset needs to be 

transformed into a raster dataset. The new dataset gets the same cell size as the DEM 

of model a02. Furthermore, the default settings of the tool are being used. The water 

bodies are being set to null by use of the isnull tool. Those water bodies are being 

clipped to the same extent as the DEM dataset and by the tool set null, the waterbodies 

are being removed. In order to get rid of the small islands in the neighbourhood of 

Rusinga Island, the dataset is transformed into polygons again in order to be able to 

select only Rusinga Island. When this is done, Rusinga is copied to preserve this file 

and transformed into a raster file again since all analyses will be done with raster files. 
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4. a04CreateRasterLayerForMultispectralBands 

Now that the extend of Rusinga Island is created, the multispectral image should be 

adapted towards this shape. Before this can be done, the different bands (blue = band 

1, green = band 2, red = band 3 and NIR = band 4) should be extracted from the image 

and copied to preserve the images of the different bands. 

 

5. a05DefineStudyAreaInMultispectralImage 

To define the study area per band of the multispectral image, the raster calculator is 

being used. For the blue band, the following condition was used: 

Con("a03_Rusinga_final" == 1,"a04_blueband"). "a03_Rusinga_final” was the final 

extent of Rusinga created in model a03. The same condition is being used for the other 

bands, using the other raster layers created in model a04 of the correct bands. 

 

In order to get the correct reflection factor, the different values in the images of the 

different bands should be multiplied by a specific factor given in the metadata of the 

image. This is done by means of the raster calculator and for the blue band the 

condition was: "a05_Rusinga_Blueband" * 1.604120000000000e-02. The same 

condition is being used for the other bands, only with other factors: 

 

Green band  =  1.438470000000000e-02 

Red band  = 1.267350000000000e-02 

NIR band =  1.542420000000000e-02 

 

After those corrections, the bands could be combined into one image again by means 

of the tool ‘composite bands’. 

 

6. a07ImportAndProjectHouseholdData 

The data gathered during the SolarMal project are gathered in an Excel file. In order to 

be able to use those date it should be imported in ArcGIS and projected in the correct 

coordinate system: WGS_1984_UTM_Zone_36S. 

 

7. a08DefineStudyArea1AndStudyArea2 

In this study, two smaller study areas are defined: study area 1 on West Rusinga and 

study area 2 on East Rusinga. Since the multispectral image will be used for all the 

analyses, this image is clipped to the clip boxes of the two study areas, giving the two 

pre-processed images of the study areas. 

 

8. a10StudyArea1AndStudyArea2BasedOnMosquitoHotspotAnalysis 

In this model, the hotspot/coldspot points where selected inside the old study areas. A 

buffer was created around those points of 1km (maximum flight distance of 

mosquitoes). Those buffers were dissolved and together formed the outside borders of 

the new study areas based on the hotspot anaylsis. 

 

9. XXXa06DeletingWaterbodiesFromPan 

In this model, also the water bodies around the panchromatic image are deleted and 

Rusinga island is remaining together with the other islands. This was done when 

exploring both the panchromatic and the multispectral image. 
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10. XXXa09PansharpeningHR 

By the tool pan-sharpening, the resolution of the multispectral image is adapted to the 

resolution of the panchromatic image, which leads to a sharper image. The pan-

sharpening type that is used is IHS. This type is chosen, because it uses Intensity, Hue, 

and Saturation colour space for data fusion. The other types were also investigated, 

but IHS resulted in the sharpest/detailed image. The pan-sharpened image was not 

used for the analyses phase, since the calculation time would become too long with 

such a high-resolution image. 

D-2 b_ClassificationMarch_preparation_fieldwork 

This toolset contains the following fourteen models, which focus on investigating the spread in 

land use on Rusinga Island and the preparation of the fieldwork maps. The choices made 

within those models will be explained here: 

1. b01ImportFieldDataTobias 

In order to get a general idea of which types of agricultural land use there are on 

Rusinga Island, a fieldworker gathered some data in October 2013 via Tobias Homan. 

Those data are imported by means of this model and projected to the correct coordinate 

system: WGS_1984_UTM_Zone_36S. 

 

2. b02ExtractbandsStudyArea1&2forHistogramCreation 

Exploring the data within the images before the classification is important, since the 

assumption in classification analysis is that the band data and the training sample data 

follow a normal distribution. Therefore, the different bands of the multispectral image 

created in model a05 are extracted from the image again. Per band, the distribution of 

the data is checked by using the histogram tool on the Training Sample Manager and 

therefore is not included in this model. The results are described in Chapter 3. (Esri 

2013m) 

 

3. b03PrincipalComponentAnalysisRusinga 

In this model, the bands created in model a05 are used as input for the principal 

component analysis (PCA) of those bands to remove correlation among the bands 

which is in fact still part of some pre-processing. The created text file is included in 

Chapter 3. Since the amount of information appeared to be limited in the NIR band, the 

NIR band was not included in the new multispectral image composite which was 

created after the PCA results had been evaluated. 

 

4. b04PCAStudyArea1 

Model b03 contains the description of what is happening in this model as well. The only 

difference is that the focus here is on the first study area: Study Area 1, while the focus 

of the model b03 was on Rusinga Island as a total. 

 

5. b05PCAStudyArea2 

Model b03 contains the description of what is happening in this model as well. The only 

difference is that the focus here is on the second study area: Study Area 2, while the 

focus of the model b03 was on Rusinga Island as a total. 
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6. b06UnsupervisedClassificationRusinga 

According to the description as given by (Esri 2013m), the unsupervised classification 

is performed for Rusinga Island as a whole in order to get a general idea of the 

distribution of the different land use types on the island. To perform the unsupervised 

classification, the “iso cluster unsupervised classification” tool is used. For this, the 

different bands needed to be extracted from the combined multispectral image which 

was created in model b03. The minimum class size for this classification is 30. This is 

based on the fact that the minimum class size should be 10x larger than the number of 

layers (3 bands in this case) (Esri 2013p). 

The number of classes is fixed on 14. This is based on the data which was gathered in 

the field in October 2013 by the fieldworker, study area had the highest variability and 

in total 14 classes. It contains both agricultural land use types and other types of land 

use to make the classification more complete. For the different land use types found 

on the island by the fieldworker, see Appendix E. 

In order to make the classification more smooth (post-classification processing), the 

majority filter, boundary clean and region group tool are being used. The region group 

tool is used to remove small regions together with the set null tool which removes areas 

which are smaller than 10 pixels. In the end, the nibble tool is used to dissolve the small 

areas.  

 

7. b07UnsupervisedClassificationStudyArea1 

The same description counts for this model as is given for model b06. The only 

difference is that the unsupervised classification is only done for study area 1 instead 

of Rusinga Island as a whole. 

 

8. b08UnsupervisedClassifcationStudyArea2 

The same description counts for this model as is given for model b06. The only 

difference is that the unsupervised classification is only done for study area 2 instead 

of Rusinga Island as a whole. 

 

9. b09SupervisedClassificationRusinga 

For this classification, the first steps of the unsupervised classification done in model 

b02 and b03 can be used: the histogram creation and PCA. Than some steps follow 

which cannot be displayed in the model. For collecting the training samples the image 

classification toolbar is used. The polygon drawing is used for creating the training 

samples and the new class is shown in the training sample manager in which the name 

of the class can also be given. If this is finished, the training samples can be evaluated 

by means of the statistics tool and scatterplots tool (Figure 42).  
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Figure 42: An example scatter plot of two training areas (both defined as pasture) which show 

overlap and were merged before the classification was done. 

 

If there is not enough separation between the classes, there can be decided to adapt 

the classes and for example merge them. When the classification is good enough, the 

signature file is created. In order to investigate the signature file, the dendrogram tool 

is used. If the separation between the classes is too large, this can be adapted again, 

but it depends on the situation. In this case, all classes are preserved although they 

are very close to each other. Otherwise a too small amount of classes remains for this 

study.  

After the creation of the signature file, the real classification can be done by means of 

the maximum likelihood classification tool. After this, the post-classification processing 

should be done. In order to make the classification more smooth, the majority filter, 

boundary clean and region group tool are being used. The region group tool is used to 

remove small regions together with the set null tool which removes areas which are 

smaller than 10 pixels. In the end, the nibble tool is used to dissolve the small areas.  

10. b10SupervisedClassificationSA1 

The same description counts for this model as is given for model b10. The only 

difference is that the supervised classification is only done for study area 1 instead of 

Rusinga Island as a whole. 

 

11. b11SupervisedClassificationSA2 

The same description counts for this model as is given for model b10. The only 

difference is that the supervised classification is only done for study area 2 instead of 

Rusinga Island as a whole. 
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12. b12RandomPointgenerationStudyArea1&2 

Since Rusinga Island is never mapped in terms of land use, both study areas should 

be covered in a way that every land use type on the island is covered more or less 

equally. Systematic random sampling is chosen for this, since it is spatially well 

balanced. Therefore, one random point per study area is needed to be generated within 

the extent of those study areas which is done in this model. In order to get all the 

sampling points in the area, the points should be placed from the first point with an 

equal distance between them. For study area 1 this is 150 m. which gives in total 210 

sampling points and for study area 2 this is 75 m. which gives in total 270 sampling 

points. Since study area 1 was larger than study area 2, there was chosen to sample 

at a larger distance between the points in order to be able to cover the whole area 

within the time limits of the fieldwork (2 months). The points were placed by means of 

the drawing tools in ArcGIS and exporting the points as a layer file. 

 

13. b13TransformSamplePointsToKML 

The layer files of the sampling points of both study areas were transformed into KML 

files in this model. This was necessary since Google Earth was used as the operating 

GPS system in the field and the files needed to be uploaded on the tablet into Google 

Earth. 

 

14. b14ToFinishLast4LinesOfFieldworkSA1 

Unfortunately, the fieldwork could not be finished due to illness, therefore, someone 

else finished it. Only four lines of study area 1 needed to be done still, therefore those 

lines were exported in a map again, so that the other data points were not visible in the 

map anymore. This was necessary to have a better overview within the map of what 

still was needed to be done. 

D-3  d_Landuse_classification_and_validation_March 

This toolset contains the following eighteen models, which focus on the land use classification 

improvement after the fieldwork and the validation of those maps. The choices made within 

those models will be explained here: 

1. d01ImportFieldworkdataSA2Classification 

The fieldwork data of study area 2 gathered in February and March 2014 is imported 

from excel to ArcGIS and projected to the correct coordinate system 

(WGS_1984_UTM_Zone_36S). 

 

2. d02ImportFieldworkdataSA1Classification 

The same is done as in model d01, the only difference is that it is done for study area 

1 instead of study area 2. 

 

3. d03SupervisedLandUseClassificationSA2 

The same is done as in model b09, only with different input: fieldwork data of study 

area 2 of the fieldwork done in February and March 2014. The count is determined as 

<5 in this case, otherwise no classes are remaining and classes are needed to be 

able to find a relationship between mosquito vector abundance and agricultural land 

use types. 
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4. d04SupervisedLandUseClassificationSA1 

The same is done as for d04, with input of study area 1. 

 

5. d05ImportValidationDataFieldworkSA1March 

To be able to validate the classification maps, validation data of study area 1 is 

necessary. This data is half the data of February and March 2014 which is uploaded 

from Excel to ArcGIS and projected in the correct coordinate system 

(WGS_1984_UTM_Zone_36S). 

 

6. d06ImportValidationDataFieldworkSA2March 

The same is done as in model d05, only for the data of study area 2. 

 

7. d07ValidationPointsToRasterSA2March 

To be able to compare the classification dataset with the validation data, both 

datasets should be in the same format: raster. Therefore, the validation points are 

transformed from vector to raster for study area 2 in this model. 

 

8. d08CombineClassificationAndValidationDataforErrorMatrix 

Now that the datasets are in the same format, they are combined and a pivottable is 

created, which is the base of the error matrix (which is created in Excel) of study area 

2. 

 

9. d09ValidationPointsToRasterSA1March 

Same as model d07, only than for study area 1. 

 

10. d10CombineClassificationAndValidationDataForErrorMatrix 

Same as model d08, only than for study area 1. 

 

11. d11UnsupervisedClassificationSA1AfterFieldwork 

This model was created since first was thought that the accuracy of study area 1 was 

too low. Therefore, an unsupervised classification was done for this study area and 

indeed the accuracy increased. However, according to literature, the accuracy was 

not that bad, so there was decided to use the original classification result. 

 

12. d12CombineUnsupervisedClassAndValDataForErrorMatrix 

The same as model d08, only than for the unsupervised classification of study area 2. 

 

13. d13SupervisedLandUseClassificationRusinga 

The same as model d03, only then for Rusinga as a whole. 

 

14. d14ImportValidationDataFieldworkRusingaMarch 

The same as model d01, only then for validation data of Rusinga as a whole. 

 

15. d15ValidationPointsToRasterRusingaMarch 

The same as model d07, only then for Rusinga as a whole. 

 

16. d16CombineClassAndValDataForErrorMatrix 

The same as model d08, only then for Rusinga as a whole. 
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17. d17UnsupervisedClassificationSA2AfterFieldwork 

The same as model d11, only this time for study area 2. Since the accuracy of the 

classification of this area was too low and it improved with this unsupervised 

classification, there was decided to use this classification result for further analyses. 

 

18. d18CombineUnsupervisedClassAndValDataForErrorMatrixSA2 

The same as model d12, only now for study area 2. 

D-4  e_preprocessing_classification_validation_October 

This toolset contains the following 23 models, which focus on preprocessing, investigating the 

spread in land use on Rusinga Island and the improvement and validation of the classification 

maps after the fieldwork. The choices made within those models will be explained here: 

1. e01ProjectLandsatImage 

Same as model a01, only for Landsat (October) instead of Quickbird (March) image. 

 

2. e02SelectStudyAreaRusingaIsland 

Same as model a05, only for Landsat instead of Quickbird image. 

 

3. e03SelectStudyArea1AndStudyArea2 

Same as model a10, only for Landsat instead of Quickbird image. 

 

4. e04SeparateBandsForHistogramCreation 

Same as model b02, only for Landsat instead of Quickbird image. 

 

5. e05PCAStudyAreas 

Same as model b03-b05, PCA’s are combined now within 1 model, only now for 

Landsat instead of Quickbird image. 

 

6. e06UnsupervisedClassificationRusinga 

Same as model b06, only for Landsat instead of Quickbird image. 

 

 

7. e07UnsupervisedClassificationSA1 

Same as model b07, only for Landsat instead of Quickbird image. 

 

8. e08UnsupervisedClassificationSA2 

Same as model b08, only for Landsat instead of Quickbird image. 

 

9. e09SupervisedClassificationDTSA1 

Same as model b10, only for Landsat instead of Quickbird image. 

 

10. e10SupervisedClassificationDTSA2 

Same as model b11, only for Landsat instead of Quickbird image. 

 

11. e11SupervisedClassificationDTRusinga 

Same as model b09, only for Landsat instead of Quickbird image. 
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12. e12SupervisedClassificationAfterFieldworkSA2October 

Combines the models d01 and d03 in one model for Landsat instead of Quickbird. 

 

13. e13SupervisedClassificationAfterFieldworkSA1October 

Combines the models d02 and d04 in one model for Landsat instead of Quickbird. 

14. e14SupervisedClassificationAfterFieldworkRusinga 

The same as model d13, however, the analysis is done for Landsat instead of 

Quickbird. 

 

15. e15ImportValidationDataFieldworkSA1October 

The same as model d05, however, the analysis is done for Landsat instead of 

Quickbird. 

 

16. e16ImportValidationDataFieldworkSA2October 

The same as model d06, however, the analysis is done for Landsat instead of 

Quickbird. 

 

17. e17ValidationPointsToRasterSA2October 

The same as model d07, however, the analysis is done for Landsat instead of 

Quickbird. 

 

18. e18ValidationPointsToRasterSA1October 

The same as done in model d09, however, the analysis is done for Landsat instead of 

Quickbird. 

 

19. e19CombineClassificationAndValidationDataforErrorMatrix 

The same as done in model d08, however, the analysis is done for Landsat instead of 

Quickbird. 

 

20. e20CombineClassificationAndValidationDataForErrorMatrix 

The same as done in model d10, however, the analysis is done for Landsat instead of 

Quickbird. 

 

21. e21ImportValidationDataFieldworkRusingaOctober 

Same as model d14, only the analysis is done for Landsat instead of Quickbird. 

 

22. e22ValidationPointsToRasterRusingaOctober 

Same as model d15, only the analysis is done for Landsat instead of Quickbird. 

 

23. e23CombineClassAndValDataForErrorMatrixRusinga 

Same as model d16, only the analysis is done for Landsat instead of Quickbird. 
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D-5  f_relate_mosquitodata_to_landuse 

This toolset contains the following 30 models, which focus on relating the land use 

classification maps and thus the different land use types to the vector abundance data. The 

choices made within those models will be explained here: 

1. f01ImportMosquitoData 

This model is made to import the data of the vector abundance on the island. This 

data is projected in the correct coordinate system (WGS_1984_UTM_Zone_36S). 

 

2. f02SelectMosquitoDataSA2 

This model selects the mosquito data that is falling within study area 2 and the data is 

projected in the correct coordinate system (WGS_1984_UTM_Zone_36S). 

 

3. f03InterpolateMosquitodataSA2 

This model is used to interpolate the mosquito data to the whole of study area 2. This 

is done by means of IDW (inverse distance weighting) for both Anopheles gambiae 

and Anopheles funestus as well as for both of them separately. 

 

4. f04MergeMosquitoAndLandUseDataSetsForRegressionAnalysisSA2 

In this model, the mosquito vector abundance data that was interpolated in model f03 

is transformed into a raster dataset and merged with the land use data set for the 

regression analysis that is coming. 

 

5. f05OLSAllLanduseTypesSA2 

After the merging of model f04 is done, the regression analysis by means of the 

Ordinary Least Squares (OLS) tool is performed in this model for all land use types 

together. 

 

6. f06landuseSeparatedSA2 

In this model, all land use types are separated to be able to perform the OLS per land 

use type to see if there is one land use type that explains the vector abundance best. 

 

7. f07OLSLandUseTypesSeparatelySA2 

In this model the OLS is performed for every land use type separately. 

 

8. f08SelectMosquitoDataSA1 

9. f09InterpolatemosquitodataSA1 

10. f10MergeMosquitoAndLandUseDataSetsForRegressionAnalysisSA1 

11. f11OLSAlllandusetypesSA1 

12. f12LandUseSeparatedSA1 

13. f13OLSLandUseTypesSeparately 

Models f08 - f13 are exactly the same models as the models f02 - f07, however they 

are performed for a different study area: study area 1 and study area 2 respectively. 

14. f14InterpolateMosquitiodataRusinga 

15. f15MergeMosquitoAndLandUseDataSetsForRegressionAnalysisRusinga 

16. f16OLSAlllandusetypesRusinga 

17. f17landuseSeparatedRusinga 

18. f17Part2landuseSeparatedRusinga 
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19. f18OLSLandUseTypesSeparatelyRusinga 

Models f14 – f18 are exactly the same as the models f03 – f07, however they are 

performed for Rusinga island as a whole instead of study area 2. 

 

20. f19OctoberMergeMosquitoAndLandUseDataSetsForRegressionAnalysisSA2 

21. f20OctoberOLSAllLanduseTypesSA2 

22. f21OctoberlanduseSeparatedSA2 

23. f22OctoberOLSLandUseTypesSeparatelySA2 

24. f23OctoberMergeMosquitoAndLandUseDataSetsForRegressionAnalysisSA1 

25. f24OLSAlllandusetypesSA1October 

26. f25LandUseSeparatedSA1oct 

27. f26OctoberOLSLandUseTypesSeparately 

28. f27MergeMosquitoAndLandUseDataSetsForRegressionAnalysisRusinga 

29. f28OLSAlllandusetypesRusinga 

30. f29landuseSeparatedRusingaOctober 

31. f30OLSLandUseTypesSeparatelyRusingaOctober 

 

Those models (model f19 – f30) are exactly the same models as the models f03 – 

f18, only the interpolation models are not done again since the same vector 

abundance data is used. Furthermore, the satellite image of October: the Landsat 

image is used in the analyses and not the Quickbird image. 

D-6  xx_proposal 

In this toolset, there is only one model included: xxhotspotanalysis. This model was created in 

order to investigate the distribution of the Anopheles mosquitoes over the island and in this 

way decide where the two study areas should be located. Since one area should be containing 

a lot of mosquitoes and the other a few. This is done by first uploading the data from the 

SolarMal project out of Excel and projecting those data to the correct coordinate system: 

WGS_1984_UTM_Zone_36S. After which the Hotspot Analysis Tool is being used. The 

distance method that is used is the Euclidean distance (default setting). 
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Appendix E - Land use types based on data fieldworker 

 

Land use types Rusinga (March) 

1. Tomatoes 

2. Maize 

3. Sorghum 

4. Beans 

5. Sukumawiki 

6. Sweet potatoes 

7. Cow Peas 

8. Bare soil 

9. Pasture – Grassland used for grazing or area with a mixture of grass and shrubs 

10. Trees <10 

11. Water 

12. Shrubs -  Short mature trees < 2m tall 

13. Swamp -  Presence of emergent aquatic plants 

14. Building 

Land use types Rusinga (October) 

1. Sukumawiki 

2. Cow peas 

3. Beans 

4. Tomatoes 

5. Sweet pepper 

6. Bare soil 

7. Pasture – Grassland used for grazing or area with a mixture of grass and shrubs 

8. Trees <10 

9. Water 

10. Shrubs -  Short mature trees < 2m tall 

11. Swamp -  Presence of emergent aquatic plants 

12. Building 
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Pictures different crops 

 

1. Tomatoes (Pictures taken on Rusinga) – both study area 1 & 2 

 

2. Maize (Google) – Only study area 1 
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3. Sorghum (Google) – Only study area 1 

 

 
 

4. Beans (Pictures taken on Rusinga) – both study area 1 & 2 
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5. Sukumawiki (Pictures taken at Rusinga) – both study area 1 & 2 

 

6. Sweet potatoes (Google) – Only study area 1 

 

7. Cow Peas (Pictures taken at Rusinga Island) – both study area 1 & 2 

 

8. Sweet pepper (Pictures taken at Rusinga) – only study area 2 
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Appendix F - Error matrix procedure 

In order to obtain a value for the accuracy of the land use classification, the error matrix 

procedure is used. The error matrix itself is displayed in Figure 43. The calculations behind the 

procedure are explained in this appendix. (Map & GIS Library 2013) 

 

 
 

Figure 43: An example error matrix with which the total accuracy, producer’s and user’s 

accuracy could be calculated. 

 

 The total accuracy of the classification shows how close the classification result is 

to reality. 0 means that there is no relation with reality at all, 1 means the land use 

classification is matching reality completely. 

To obtain the total accuracy of the classification: (sum of the blue cells)/red cell.* 

 The kappa coefficient is a statistical measure of inter-rater agreement or inter-

annotator agreement for qualitative (categorical) items, 0 means a low agreement, 1 

a high agreement. 

To obtain the kappa coefficient: ((red cell * (sum of blue cells)) – ((total rocks vertical 

pink* total rocks horizontal green)+(total shrubs vertical pink*total shrubs horizontal 

green)+(total Agriculture vertical pink*total agriculture horizontal green)))/((red2) - 

((total rocks vertical pink* total rocks horizontal green)+(total shrubs vertical pink*total 

shrubs horizontal green)+(total Agriculture vertical pink*total agriculture horizontal 

green))).* 

 Ground truth is used to compare pixels on the satellite image to what is there in 

reality in order to verify the contents of the pixel on the image. A value of 0 shows 

there is no similarity with reality, a value of 1 shows the classified pixels are similar 

to reality. 

To obtain the ground truth values: value land use type white cell/pink cell (total of that 

land use type).* 

 Commission is the percentage of test pixels that are incorrectly classified as a 

particular class. To obtain the commission values: sum horizontal cells non-blue cells 

land use type/green cell land use type * 100.* 

 Omission is the opposite of commission, also defined as percentage. 

To obtain the omission values: sum vertical cells non-blue cells land use type/ pink 

cell land use type * 100.* 

 The user’s accuracy refers to the probability (in percentage) that a pixel that is given 

a certain land use class is really that class. 

To obtain the user’s accuracy: blue cell particular land use type/ green ground truth 

value that land use type * 100.* 
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 The producer’s accuracy refers to the probability (in percentage) that the land cover 

of a certain area on the ground is classified as such:  

To obtain the producer’s accuracy: blue cell particular land use type/ pink total value 

that land use type * 100.* 

 

The total accuracy does not give details of the accuracy of individual classifications (per class), 

while they influence the total accuracy indirectly. In case of a low accuracy, the user and 

producer accuracy can be studied to find out which classes cause the low accuracy. Therefore 

also the user and producer accuracy is calculated per class: 

 

*For more insight in the formulas, take a look at the excel tables of the different error 

matrices which can be found on the DVD belonging to this research. The three error 

matrices for the Quickbird image of March can be found under the following names:  

- error matrix March SA1 

- error matrix March SA2 - merged agriculture 

- error matrix March Rusinga 

 


