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Abstract 

This research explored the land use and land cover (LULC) change dynamics and the relation to topographic 

features and population data in the Gola forest region, Sierra Leone. Using remote sensing imagery for the 

period 1986 – 2007 to detect LULC changes and explore the relation to different factors using a cluster 

regression tree analysis with 225545 points has generated interesting results. LULC change dynamics are 

important in understanding the relation between human activities such as agriculture and the relation with 

land degradation. Results show that during the first study period vegetation cover increased between 1986 and 

2003 (from 676 km² in 1986 to 710 km² in 2003) with a decline in agricultural land (from 103 km² in 1986 to 75 

km² in 2003). For the second study period (2003 – 2007) vegetation cover (710 km2 in 2003 to 708 km² in 2007) 

and agricultural land (from 75km² in 2003 to 78 km² in 2007) remain stable. The change detection analysis for 

the Gola Rainforest National Park (GRNP) shows little deforestation (0.9 km²/ 0.4% between 1986 and 2003, 

and 2.1 km²/0.9% between 2003 and 2007) taking place inside the park vegetation. The cluster tree analysis 

showed that reduction in vegetation was higher at locations with an elevation between 105 and 150 meters for 

the first study period. For the second study period negative changes in vegetation mostly occurred in areas 

with a population density < 7.5 persons per km². The spatial distribution of LULC change is spread across the 

study area predominantly outside the GRNP during both study periods. A trend analysis show a relationship 

between decrease in total population and an increase in vegetation cover. This relation could be linked to the 

civil war that lasted from 1991 until 2002 however statistical tests to confirm this have not been done. Lack of 

reference data and cloud free satellite imagery hampered the LULC classification. For accuracy improvement 

further research needs to verify the observed LULC changes using reference data and increase the number of 

used satellite imagery. Human land use data and observed LULC change on a village level could deliver 

Interesting results and needs to be further investigated.  

Keywords: Land use/ Land cover change, Remote sensing, Topographical features, Population data, Cluster 

regression tree analysis,   
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1.  Introduction 
 

1.1 General context and background 
Land use and Land cover (LULC) changes are dynamic and have been studied more frequently with increasing 

attention in global climate change (Jansen and Di Gregorio, 2003). LULC are interrelated land surface 

characteristics where land cover (forest, grassland, shrubs) refers to particular surface area that covers the 

earth. Land use refers to the way how humans use land cover for daily activities (agriculture, Mining etc) (Reid 

et al., 2000). LULC changes are a result from human and environmental activities, such as agriculture, climate 

change, and bio-physical drivers. Such activities can have a detrimental effect on biodiversity, soil, water and 

other natural resources (Reid et al., 2000, Pielke et al., 2011, Kiage et al., 2007, Braimoh and Vlek, 2005). With 

increasing population numbers demand for food production grows and thus agricultural intensification or 

expansion is the result.  The intensification and expansion of agricultural land comes at the expense of nature 

ecosystems (Hecht et al., 2006, Rudel, 1998, Skole and Compton, 1993, Achard et al., 2002, Monzón-Alvarado 

et al., 2012, Kiage et al., 2007).  

Forests in various spatial sizes, from local to global, contribute extensively to the Earth’s land cover. Practically 

30% of Earth’s surface is covered with forest (E.J. Lindquist, 2012). Forest plays a vital role in the day to day life 

of human livelihoods. From global carbon storage up to small scale households using harvested wood as fuel, 

forests are intertwined in the human life. Small scale communities rely heavenly on the resources that forests 

provide them. Understanding the dynamics and the changes through time of the forests are important to 

monitor as they absorb carbon dioxide (CO2) from the atmosphere emitted for a large part by human induced 

activities (Saatchi et al., 2011). LULC change contributes to the loss of forests and therefore affecting the 

carbon storage process.   

1.2 Other LULC studies done in Africa 

This research is not the first study documenting land use or land cover in Sierra Leone. (Vaglio Laurin et al., 

2013) documented and classified land cover and land use for the Gola forest region using a combination of 

synthetic aperture radar and Landsat images.  A geological exploration study was done in Sierra Leone using 

Landsat imagery to explore the soil properties of the land in Sierra Leone. Overall little research has been done 

using optical remote sensing to detect LULC changes.  

Unlike this study there are no other studies done for the Gola forest region that attempt to explain observed 

LULC changes in relation to different topographical features and population density. At the same time few 

studies have been undertaken in different regions of Africa that relate LULC change assessment with socio-

economic factors or topographical features. (Serneels and Lambin, 2001) have studied the relation between 

LULC change and different factors. The results show a significant relationship between LULC change and 

distance to road, villages, population density, and elevation in Kenya between 1985 and 1995. A different study 

from (Mertens and Lambin, 2000) show that accessibility to roads, distance to road and towns contribute to 

deforestation using Landsat images from 1973 up to 1996. Another study done by (Braimoh and Vlek, 2005) 

found that population density and distance to road both contributed to forest loss. These results were derived 

from Landsat TM images between 1984 and 1999 acquired above Ghana.  

(Reid et al., 2000), (Rembold et al., 2000) and (Tekle and Hedlund, 2000) all focus on LULC change in another 

African country, Ethiopia. Their studies show that natural vegetation decreases when agricultural production 

increases. Other LULC change studies that do not link LULC change with socio-economic data or topographical 

features do show similar patterns where agriculture increases at the expense of vegetation. These studies were 

done in Zambia (Petit et al., 2001), Kenya (Kiage et al., 2007), and South Africa (Giannecchini et al., 2007). 

Comment [MV1]: In Sierra Leone 
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2. Study area 
 

The Gola region is a dense rainforest area situated on the border connecting the West-African countries Sierra 

Leone and Liberia (Figure 1A) and is one of the few lowland rainforest areas that is left in the West-African 

forest belt. This rainforest is known as a ‘hotspot’ for its rich biodiversity (Davies, 1991). Much of the present 

biodiversity is endemic to the area and encompasses species of flora and fauna that are, due to deforestation 

and poaching, in serious threat of being extinct (McNeely, 2003). The Gola forest is part of a larger vegetation 

area known as the upper Guinea forest that is stretched out among the countries: Sierra Leone, Liberia, Ivory 

Coast, Ghana, and Togo.  

The Gola Rainforest National Park (GRNP) is a protected natural area divided into two parts that are allocated 

as reserves (Gola North, and Gola South). In total the reserves cover an area of 748km², which makes it the 

biggest and most important protected natural habitat of Sierra Leone in terms of conservation (Lindsell et al., 

2011).  The study area is located between latitude 07°18’22” N and 07°51’00” N, and between longitude 

11°21’13” W to 10°37’40” W. Due to data availability this study focuses on the Gola south reserve (Figure 1B). 

The Gola forest is home to a rich collection of natural resources that is used by the many rural  communities 

that live on the forest edge. The forest offer means of food security (game, fruits) as well provide livelihoods 

firewood that is used within the household (cooking, building material).  

 

 
Figure 1A Location of the study area     Figure 1B The Gola Rainforest National park 

 

 

In between Sierra Leone and Liberia lays the Mano river. The river is a frontier between Sierra Leone and 

Liberia separating the two countries. The river is an important water source for many stakeholders such as 

mine companies but also small settlements in close proximity of the river. Surface elevation ranges between 60 

- 600 metres above sea level. The climate is tropical and has two seasons. The rainy season is from May – 

November and the dry season December – April and they determine the agricultural season. The average 

annual rainfall ranges from 2000mm – 2500 mm. The most common agri-system practise is small-scale mixed 

crop-livestock subsistence farming. Rice is the main staple crop although the number of palm oil plantations in 

the area is increasing (Davies, 1991). Two third (around 4 million) of the total population is depended on 

subsistence farming.  

Political instabilities and a civil war have disrupted the economy and LULC during the period 1990 and 2002. 

Sierra Leone is among a group of many African countries that have been exposed to civilian and political 

0 3 6 9 121.5
Kilometers
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clashes among groups of people resulting in a war that has left much damage on its population and natural 

environment.  The civil war hampered land use as people were forced to abandon their lands. Most mining 

activities in the Gola region were stopped around this time period. The Sierra Leone civil war began on March 

23 in 1991 and lasted until 2002. Liberian rebels together with rebels from Sierra Leone formed the RUF 

(Revolutionary United Front) and attempted a coup on the president of Sierra Leone, Joseph Momo. Many men 

and children, often orphans, fought in the war to take revenge on killed family members by rebel groups. 

(Chauveau and Richards, 2008, Draulans, 2002). 

 

3. Problem definition 
 

The application of remote sensing as a method to study the earth’s surface offers many possibilities. In 

agriculture, satellite images are used to analyse crop characteristics and vegetation indices are used to detect 

vegetation health (Lillesand, 2006). In forestry, remote sensing enables researchers to detect illegal logging 

activities in tropical rainforests. By interpreting multiple images with a high temporal resolution a time-series 

analysis is created. With a time-series analysis one can detect change in forest cover over a period of time. 

Without the use of satellite images detecting such activities would be very time-consuming and costly. 

Linking population data and remote sensing is a complex field that has not been explored intensively by many 

scholars (Liverman, 1998, Vance and Geoghegan, 2002, Galvin et al., 2001). Linking population data with 

remote sensing data provides information regarding human behavioural patterns that can explain the observed 

land-use changes from remote sensing images (Vance and Geoghegan, 2002). Remote sensing techniques can 

help to provide spatially-explicit answers to societal issues, such as Land cover conversion & forest degradation 

patterns. These techniques do not explain the contextual notions of people’s behaviour that causes them to 

deforest. In order to overcome this lack of knowledge it is necessary to combine these two disciplines.  

Natural ecosystems are replaced by agricultural land in Sierra Leone (Davies, 1991). Agriculture is the most 

important driver of the economy at the expense of natural ecosystems. Land clearing is influenced by complex 

physical, geomorphological- and socio-economic factors (Vance and Geoghegan, 2002). Land cover clearing 

happens predominantly for agricultural production, especially rice production which requires lots of land. 

These complex factors can have a strong influence on communities’ decision to cut specific parts of the forest. 

Terrain characteristics such as steepness of a slope and elevation in- or decreases the probability of trees being 

cut on that location. Another key factor is the distance to a road. The distance to and from a road plays an 

important role for people where to start cutting trees. Trees positioned closer to a road most likely have a 

higher probability of being cut than trees further away. Beside geomorphological factors likewise socio-

economic factors such as village population play a role. As village population grows the demand for land 

increases (Vance and Geoghegan, 2002). Given the time and the aim of this research only the following factors 

will be considered: distance to road, village population, elevation and steepness of slope. No attempt has been 

made in the Gola forest region to detect lULC changes and assess the relation to topographical features and 

population data.  
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4. Research objective 

4.1 Main objective 

The main objective of this research is to assess the dynamics in Land Use and Land cover change for the Gola 

forest. This has been done, by interpreting satellite images and by assessing the topographic and demographic 

factors that contribute to this change. It is this combination that will contribute to the understanding of spatial 

change LULC change dynamics in relation to these afore mentioned factors. Specific emphasis was placed on 

change dynamics in and around the Gola Rainforest National Park. In order to have full understanding of the 

LULC change concept the main objective has been broken down in sub objectives. This has led to the main 

research question presented in 4.2.  

In particular the sub-objectives have been the following:  

1. Analysis of the land use and land cover change dynamics through the interpretation of satellite data. 

1.1 Create maps that compare the LULC situation in years 1986, 2003 , and 2007 

1.2 Identify which parts of the Gola Rainforest National Park have been deforested or degraded 

through time.  

1.3 Identify the spatial dynamics of LULC change outside the GRNP  

2. Relate satellite data with existing population demographic data.    

2.1 Assess the role of population dynamics on LULC change  

3. Assess the role of topographic factors such as slope, distance to road and Elevation on the observed 

LULC change.  

3.1 Assess the role of the topographical factors on the LULC change inside and outside the GRNP  

 

4.2 Main research question 
What are the observed LULC change dynamics for the Gola forest region and can LULC change be linked to 

topographic factors/ land features or socio-economic data? 

 

  



5 
 

5. Methods and materials 

 

This section outlines the approach that was followed to answer the research question of this study. The 

required data is described and explained in section 5.1. The pre-processing procedure of the satellite imagery 

and digital elevation model (DEM) is explained in section 5.2. Section 5.4 explains the digital image 

interpretation and analysis. Figure 2 is an overview of the workflow that was used in this study. More detailed 

information regarding the different procedures and steps of each analysis is provided in the sub sections.  

Thesis work flow

LULC Change detection 

Ph
as

e

Raw data
(1980-1992
Landsat-5 

TM) 

Raw data
(2000-2007
Landsat-5 

TM)

Pre-process images
-atmos. Correc.

-Geo-ref.
-Cloud remov.

Use SMA to create 
fractions

Soil fraction
- NPV 

-Green 
Vegetation
- Shadow

Unsupervised 
classification

(soil & non-soil)

Apply Majority Filter

Create 5 LULC classes
-Agriculture 

- Settlements
-Water

-Vegetation
-Mine Soil

Perform Change 
detection

21-01-
1986

11-04-
1986

11-01-
1991

28-01-
2003

17-03-
2003

15-01-
2007

20-03-
2007

1986 2002 2007

Intersect Thiessen 
Polygons with 

- Change detection 
maps

Change detection 
Maps

Create Thiessen 
Polygons

Perform cluster 
Tree analysis in R

Calculate Slope

DEM 
- elevation

Demographic 
data

Create population 
density map

Extract data from  
points

Calculate spatial 
change distribution

 

Figure 2 Work flowchart. Green represents input data and orange is output. 
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5.1 Data  
 

For this research only optical remote sensing data were available. Due to budget constraints very high 

resolution imagery for validation purposes was not obtained.   

5.1.1 Landsat image archive 

 

Landsat Thematic Mapper (TM) images were obtained through Nasa’s earth-explorer geo-database
1
 and the 

Glovis USGS Global Visualization Viewer
2
. The images have been systematically categorised into two clusters of 

time periods. The first cluster represents the situation before the start of the civil war (March 23, 1991) and is 

comprised of Landsat 5 images from 1986 up to 1991. The second cluster of images represents the situation 

from 1999 up to 2012, the post-war period. An overview of the selected images for this research is shown in 

Table 1. This time frame corresponds with the household questionnaires that have been conducted by Gola 

Forest Program (GFP) in 2010 and 2011 as part of a baseline survey.  

Landsat 5 launched on March 1 1984, has 7 spectral bands, its spatial resolution is 30 by 30 meters, a swath 

width of 185km and a time interval of 16 days. Both Landsat 4 and 5 are sun-synchronous orbital, near-polar 

orbits satellites. Both satellites have a nominal orbit altitude of 705 km (Lillesand, 2006). Landsat ETM
3
 7 has a 

similar nominal orbit altitude. However this version was launched on April 15
th

 of 1999. It has 7 spectral bands 

and it is currently the latest satellite and serves to update the image archive. Landsat 5 images differ from 

Landsat 7 images where the latter has an extra spectral band, band 7, installed on its sensor. Even though 

Landsat 5 was launched on March 1 1984 it is still in operation as of today.  

The selection of Landsat images has been based on the following factors: 

- availability of the data 

- cloud free data 

- image date  

- Satellite type 

Availability of the data- On average the Gola forest area has only a few images per year suitable for 

land cover & land use analysis. The Landsat geo-data archive for Liberia contains a gap of six years with no 

available images between 1993 and 1999. All in all the data availability for this area is really poor. 

Cloud free data- One of the main factors that impede working with satellite data are clouds. Tropical 

environments such as Sierra Leone and Liberia are frequently covered with clouds (Asner, 2001). Images with 

low cloud cover are mostly available between the months October/November up to February/March. Generally 

a cloud cover threshold of around 30% is considered to be the maximum for land cover assessment. Any image 

with a cloud cover higher than 30% will be very difficult to classify for land cover and land use change. This is 

mostly due to the cloud shadows that will cover the surface area with higher probability of cloud shadow 

contaminated pixels (da C.F. Yanasse et al., 1997).   

Image date- It can be difficult to obtain good quality data due to cloud cover. When interpreting image 

data one has to consider the date and season. Especially in land cover change assessment. For the area of 

Sierra Leone and Liberia the vegetation is weather dependent. The wet season starts in May and lasts until 

October. Hence it would be most suitable to select images from these months. However, since this period is 

characterized by high cloud cover images from the dry season are more suitable. Furthermore, to analyse 

                                                                 
1 http://earthexplorer.usgs.gov/ 
2 http://glovis.usgs.gov/ 
3
 ETM = Enhanced Thematic Mapper, which is Landsat 7’s sensor with an added panchromatic band of 15m spatial resolution. 

Field Code Changed

http://glovis.usgs.gov/
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forest cover & land-use change over time it is essential to select images acquired in the same season, either 

wet- or dry season, to exclude biased results that are due to seasonal changes in vegetation. The best months 

to use for land cover and land use change detection, taking into account all conditions, are the months of 

January up to April. 

Satellite type- Since May 31st, 2003 satellite Landsat 7 ETM+ acquires images that have errors due to a 

Scan line corrector failure. NASA’s satellites have a Scan Line Corrector (SLC) mounted on board that 

compensates for the forward motion. Without the SLC Landsat satellites acquires images in a zigzag pattern, 

making it difficult to line images adjacent to one another (Lillesand, 2006). The SLC failure results in a 

systematic gap of data causing lack in data of around 22% of the total  scene area (Orazietti et al., 2005). There 

are many different techniques available to, up to a certain extent, retrieve part of the lost data. Two 

techniques were tested: ‘mosaicking’ and the ‘NSPI’ (neighbourhood Similar Pixel Interpolator) technique. 

Unfortunately both techniques produced bad gap filling results and low gap pixel quality. Therefore all gap 

filled images were discarded and original images containing gaps were used instead.   

After secure filtering steps, based on the conditions mentioned above, a dataset of 10 images was selected. 

These images, based on their relatively low cloud cover percentage (<30%), showed sufficient cloud free land 

pixels required for land cover and land use assessment.  

Landsat images  

# Path/Row 

Liberia 

Landsat 

Sensor 

Date of image 

acquisition  

1 200/55 TM 5  21-01-1986 

2 200/55 TM 5 11-04-1986 

3 200/55 TM 5 11-01-1991 

4 200/55 TM 7 28-01-2003 

5 200/55 TM 7 17-03-2003 

6 200/55 TM 5 15-01-2007 

7 200/55 TM 5 20-03-2007 

8 200/55 ETM 7 10-01-2008* 

9 200/55 ETM 7 18-01-2011* 

10 200/55 ETM 7 05-01-2012* 

Table 1 Images used for the LULC change detection 

 *Images affected by a SLC failure causing gaps in the image. 

5.1.2 DEM 

 

A Digital Elevation Model (DEM) sometimes referred to as a Digital Terrain Model (DTM) is a digital 

representation of the surface terrain. Differently from a satellite image in which digital numbers (DN) represent 

radiance values, in the DEM DN values represent surface elevation. The DEM from the Shuttle Radar 

Topography Mission (SRTM) was acquired in February 2002 and has a spatial resolution of 90m by 90m. The 

SRTM was obtained through NASA’s earthexplorer website.   

The WGS_1984 geoid was used to determine the surface ellipsoid to minimize the elevation offset that is 

caused when not using a national coordinate system for elevation.  
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5.1.3 Population data  

 

The problem definition chapter described the need for spatial-temporal analysis of land cover and land use 

patterns occurring in-and around the Gola forest. The innovative part of this thesis is to link geo data with on 

the ground information. This study used population data from a baseline survey that was undertaken among 

176 villages in Sierra Leone. This data describes among others the demographical information of the forest 

communities. Unfortunately not all 176 villages fall within the study image scene and after resizing the image 

scene 27 villages remained. Figure 3 is an overview of the 27 selected villages located around the Gola forest. 

The questionnaire data describes among others the demographical information of the forest communities. 

The demographical data draws a village profile for each of the 37 villages. The questionnaire includes many 

useful variables such as: 

- Village population 

o Number of people living in 1990 and 2010 

- Historical data 

o Population of village leaving due to the war and coming back  

The list of questionnaire variables can be used to interpret the spatial observations from satellite images. For 

example if the questionnaire indicates that there has been major forest fires that burned most of the land, the 

effect of this on crops might be visible using satellite images. Hence it might have been happened that due to 

the war people migrated and left their lands fallow. These and other situations can lead to interesting results 

when linking survey data with remote sensing images.  

 

Figure 3 Overview of the 27 villages 

  



9 
 

5.2 Image Pre-processing 
 

Pre-processing is an essential part of the preparation phase before any image analysis can be performed. 

During the image acquisition phase multiple factors can influence the image quality. As an example aerosols in 

the atmosphere influence the emitted radiation from the sun, or a tilting airplane that changing the orientation 

of the sensor towards the earth.  

These distortions need to be corrected. In the case of satellite imagery the image needs to be geometrically 

registered using GPS coordinates from the ground to remove the distortion. If errors are not corrected the 

image does not represent the actual situation on the ground which can have a negative effect on the final 

output.   

The image pre-processing phase entails three different processes:  

- Radiometric correction 

- Geometric correction 

- Atmospheric correction 

Different environmental factors influence the radiation, electromagnetic energy transmitted from the sun, that 

is detected by the satellite sensor. As electromagnetic energy is transmitted by the sun to the earth’s surface it 

travels through the atmosphere where the energy is reflected, scattered, or absorbed (Lillesand, 2006). These 

different processes are caused by energy reacting to different gas molecules that form the atmosphere and 

affect the path of energy travelling to the earth’s surface. 

Atmospheric correction is a critical and important phase in any research done using satellite imagery (Lillesand, 

2006, Hadjimitsis et al., 2010, Xingping and Xiaofeng, 2009). One major obstacle known to arise often in land 

cover assessment in the tropics is the presence of haze (Xingping and Xiaofeng, 2009). The challenge with haze 

is to mitigate its effect on LULC classification as much as possible. Haze alters the measured reflectance at the 

sensor (Xingping and Xiaofeng, 2009). 

In order to mitigate the effect which the atmosphere, has on the signal detected by the sensor, certain pre-

processing steps are necessary. The energy that is detected by the sensor is stored in digital numbers which 

need to be converted to absolute radiance values. These radiance values can be read by geographic 

Information software that is used for further image analysis.  

In order to simulate a signal detected by the sensor that has zero interference from the atmosphere a 

directional surface reflectance is calculated. The surface reflectance signal is then used for any further land 

cover/use analysis (Vermote, 2007).  

 

- Radiometric correction 

o Calibration: converting radiance to at-the-sensor & surface reflectance values. When radiance 

is measured at the sensor it has been altered by many atmospheric influences. Furthermore 

the information received by the satellite is stored in binary numbers, digital numbers (DN 

values), that are not complete for immediate image analysis. The radiance is converted into 

two types of reflectance values: A Surface reflectance and B Top-of-Atmosphere reflectance. 

Within this research the surface reflectance was used for image analysis.  

- Geometric correction 

o Raw images usually contain errors such as geometric distortions so significant that they can’t 

just be ignored. These errors can occur when the satellite during its flight varies in altitude, 
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attitude, or velocity. Fortunately the Landsat images offered on the USGS Glovis
4
 server are 

automatically geometrically corrected by NASA using Ground Control Points thus any 

geometric correction was not necessary to perform.   

- Atmospheric correction 

o The LEDAPS pre-processing tool automatically corrects the Landsat type 1
5
 images for 

atmospheric influences. Every image acquired by the Landsat sensor usually contains some 

atmospheric particles that need to be corrected for. The different processes LEDAPS correct 

for are explained in the following paragraph.  

 

Nasa’s Ledaps software 

LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing System) is a project designed by NASA to map 

forest disturbance and regrowth across North America by using Landsat imagery (Masek et al., 2006). In order 

to automate the pre-processing phase the LEDAPS project has written a script. The script aims to automate the 

following processes: create cloud & shadow masks, convert radiance into top-of-atmosphere reflectance, and 

applies atmospheric correction to obtain the surface reflectance. For a more thorough explanation of the 

algorithms LEDAPS uses see (Masek et al., 2006).  

LEDAPS atmospheric correction was operated from the Linux Ubuntu terminal environment.   

The three main functions of Nasa’s Ledaps program are:  

- Calibration, convert DN numbers to reflectance values. 

- TOA- Top of the atmosphere correction 

- Cloud masking and cloud shadow masking  

Cloud masking and cloud shadow masking 

- Clouds and their shadows form a common obstacle in scientific image analysis. Dense  cloud cover 

block the signal from detecting spectral information on the ground (Asner, 2001). Even light formation of 

clouds can change the spectral signature of the underlying land cover pixels. One could opt to leave these 

pixels intact but for this research all cloud pixels were masked. 

The LEDAPS pre-processing tool was used to perform automatic cloud and cloud shadow masking. Despite the 

LEDAPS’s algorithm to detect clouds and their shadows LEDAPS often failed to mask all clouds and their 

shadows (Figure 4). Furthermore the tool often incorrectly masked certain dark land cover pixels such as dense 

vegetation which look similar due to their dark appearance. In addition to LEDAPS semi-automatic cloud- and 

cloud shadow masking was performed by using the ‘mask’ function in Envi. In Envi masking thresholds were 

used to create cloud- and shadow masks based on their spectral values for different bands.  

                                                                 
4
 http://glovis.usgs.gov/ 

5 Type 1 refers to raw images offered by NASA and not pre-processed. 
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Figure 4 A landsat TM 5 image (23-01-2010) showing a 4,5,7 RGB band composition with cloud shadows not adequately 

masked by the Ledaps tool. 

By using the Z-profile spectrum graph one can combine different spectral bands to find the optimal range for 

detecting exclusively clouds and cloud shadows. Once clouds are detected a mask is build and applied to 

remove clouds, assigning them a value of 0. Cloud shadows on the other hand do contain partly spectral 

information that can be useful for analysis.  One should be careful with using pixels in cloud shadows as cloud 

shadows changes the spectral information of the underlying land cover pixels significantly. This could result 

into erroneous classification of pixels. Hence cloud shadows are masked in order to prevent misclassification of 

land cover classes.   

 

Haze  

- Haze, according to the Oxford dictionary: “a slight obscuration of the lower atmosphere typically 

caused by fine suspended particles”. These particles can be dust, sand or pollution caused by farming and other 

industry. Land clearing by slash-and-burn are common activities in Sierra and Liberia. These activities occur 

usually after the last harvest when land needs to be cleared for the next crop. Land clearing using fire creates 

lots of smoke resulting into filled satellite images with haze (Xingping and Xiaofeng, 2009). Especially in the 

tropics where there is lots of cloud forming haze occurs frequently. This can also be corrected for using the 

LEDAPS tool.  

Water Mask 

For the study area there’s one large river passing, the Gola river. A water 

mask was created to mask the major river. As Landsat’s pixel size is 30x by 

30x meter there could be a possibility that the river would not be detected 

and thus misclassified as for example vegetation or soil (Salomon et al., 

2004). In order to prevent this all water areas including lakes were masked. 

Figure 5 shows the water mask that was produced for the study area.  

 

Figure 5 River water mask 
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5.3 Digital Elevation Model (DEM) and the removal of extreme outliers 
 

All DEMs contain, up to a certain degree, errors. The quality of a DEM determines how much pre-processing of 

the errors is necessary (Hengl, 2008). In order to prepare the DEM for scientific analysis errors need to be 

corrected. 

The following pre-processing steps were carried out: 

- Pitts smoothened; this is done to smoothen the surface roughness (Figure 6). When the 

smoothing is applied one aims to modify the vertical resolution in such a way that it follows the 

true topography (Hengl, 2008).   

- Voids filled; voids are holes (errors) that need to be filled. 

- Data points interpolated; some pixels inside the DEM contain no data and need to be 

interpolated. 

Resampling: In order to use the DEM in combination with the Landsat images the spatial resolution must match 

the pixel size of the Landsat images. As Landsat images have a pixel size of 30m x 30m the DEM was resampled 

from a 90m x 90m cell size to match Landsat’s 30m x 30m.   

For a more thorough description on DEM pre-processing steps see (Hengl, 2008).  

 

Figure 6 The horizontal and vertical resolution of DEMs (Hengl, 2008).  
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5.4 Digital Image Interpretation and Analysis 
 

5.4.1 Spectral Mixture Analysis 

 

Fractions and End members 

Landsat’s cell size is 30m x 30m. These cells are usually measured as a homogenous spectral range. However, 

on the ground there might be a large variety of different land use or land cover classes. In fact most land covers 

are actually more heterogeneous and when one ones to have a more precise estimate of the proportions of 

land cover, a more detailed technique must be used. In order to estimate the approximate proportions of 

possible different land classes spectral mixture analysis can be used (Souza Jr et al., 2005). Spectral mixture 

analysis involves a range of techniques that uses a reference set of spectral ‘pure’ pixels detected through 

linear spectral unmixing. By creating a scatterplot of two spectral bands so called ‘end members’ are selected 

through detecting the most pure pixels (Figure 7) (Hadjimitsis et al., 2010, Lillesand, 2006, Boardman, 1994).  

For each image 4 end members were selected: 

- Vegetation  

- Soil 

- Shade  

- Non-Photosynthetic vegetation 

These end members are used as an input for the ‘Normalized 

Difference Fraction Index’.  

 

5.4.2 Normalized Difference Fraction Index 

 

For this research the Normalized Difference Fraction Index (NDFI) was 

applied. This is a technique that is introduced by Carlos Souza as an 

enhanced technique to analyse and detect deforestation- and “forest canopy damage” patterns that would 

otherwise not be visible using different techniques (Souza Jr et al., 2005, Souza Soler and Verburg, 2010). In 

fact Souza et al. (2005) argue that conventional techniques such as the normalized difference vegetation index 

(NDVI) are not suitable for more detailed deforestation analysis. They mention that:  

 “conventional techniques …. are prone to error due to the spectral ambiguity between selectively logged areas 

of various ages and extraction intensities and intact forest” 

Therefore Souza et al. legitimize the purpose to use an enhanced technique rather than using a conventional 

technique such as NDFI. The NDFI technique is especially applied to rainforest assessment. For NDFI to properly 

function within a GIS environment it needs several input files. The four input parameters required by the 

function are: 

  

Figure 7 Scatterplot of 2 bands used to 
detect pure pixel end members. 
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Green vegetation fraction (GV) 

The green vegetation fraction includes all the living vegetation that reflects most light in the Near Infra-Red 

band.  

Non-photosynthetic vegetation (NPV) 

The Non-photosynthetic vegetation fraction is especially important as a distinction to highlight dead vegetation 

that covers the forest surface. Partly damaged forest parts by burning might have different reflectance values 

than intact vegetation. This distinction is necessary to “quantify levels of forest degradation caused by burning” 

(Souza Jr et al., 2005). 

Soil fraction  

Bare soil show different reflectance values than living vegetation. This fraction is used to indicate where heavy 

forest degradation such as large scale burning, as is done in agriculture, has taken place. Furthermore, bare soil 

likewise can be an indication of road infrastructure used by logging companies (Souza Jr et al., 2005). 

Shade fraction 

The Shade fraction gives an indication of shadow patterns visible in the Landsat image. Shadow fraction and 

reflection values differ depending on whether the forest is intact or degraded. According to Souza Jr et al. 

(2005) shade fractions in forests that were logged in a conventional way, manually, were observed to be higher 

than in forests degraded by logging and burning.  

Each fraction is calculated using statistical pixel analysis in GIS and receives a value between 0 and 1. In order 

to get to this step one must decompose the reflectance values from the original images into DN (digital 

number) values, the so called calibration process. Afterwards the reflectance values need to be decomposed 

into fractions. These fractions (GV, NPV, Soil and Shade) are enhanced in the image by a “Normalized Difference 

Fraction Index’ (function 1) using these four fractions.  

 

NDFI = 
         (        )

                 
   (1) 

The function uses the calculated shade of green vegetation (function 2) where “GV shade is the shade-

normalized GV fraction given by”(Souza Jr et al., 2005).  

GV Shade = 
  

         
   (2) 

As a result, the NDFI values range between -1, indicating very low intact forest, to 1, indicating intact forest 

(function 3). 

               (3) 

 

In total the pixel value is the sum of all four fractions (NPV, Vegetation, Soil, and Shadow). The contrast of all 

images was linear stretched to emphasize the minus and the maximum values of the image pixels. This will 

improve the visual assessment for deforested areas inside the GRNP. 
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5.5 LULC classification 

 

The method explained in this chapter will briefly address the different techniques that were used to reach 

objective 1.  The objective was described as the following:  

1. Analysis of the land use and land cover change dynamics through the interpretation of satellite data. 

When assessing land use and land cover pixels need to be first classified into different lULC classes. There are 

many different techniques available to determine classes. In remote sensing classification are usually divided 

into two classes: Supervised and Unsupervised classification (Lillesand, 2006).  

Supervised classification uses ground truth data from so called ‘training areas’. These training areas are plots in 

the field that have been visited by experts where samples have been taken and can then be used as validation 

for other non-visited plots due to their similarity in spectral radiance. Unfortunately no ground truth data was 

available for this research. In this case an unsupervised classification was more suitable for assigning lULC 

patches. 

An unsupervised classification was used for each image individually. Unsupervised classification is most often 

used when there is a lack of ‘ground truth’ data that can be used as a spectral reference set to classify the 

other pixels. A first attempt was made to use all four endmembers as reference data to perform a supervised 

classification. Unfortunately this gave a fuzzy result with too many pixels classified incorrectly, so this option 

was ignored. Using Envi’s ‘ISODATA’ unsupervised classification 

gave the best results.  

ISODATA stands for Iterative Self-Organizing Data Analysis 

Techniques and is a variant on the K-means clustering algorithm. 

This K-means algorithm works by arbitrarily locating a given 

number of cluster centres within an image feature space. Each 

pixel in the image is then assigned to the cluster whose centre is 

closest by in the feature space. After all pixels have been 

assigned to a cluster, a new cluster centre is calculated using all 

the pixels belonging to the cluster. New distances from all pixels 

to these new cluster centres are calculated and pixels are again 

assigned to a cluster that has its centre closest by. This 

procedure repeats itself until there is no significant change of 

cluster centres or until a given number of iterations is reached 

(Lillesand et al., 2008). The ISODATA classification calculates the 

mean of each class, from the input, and then clusters iteratively 

the remaining pixels (Lillesand, 2006). The ISODATA algorithm works as mentioned before with iterations and 

keeps running until no significant changes occur or until the maximum number of iterations has been reached. 

The ISODATA unsupervised classification tool was used on the two endmembers ‘Soil’ and ‘Vegetation’ to 

classify the study area. Both the classified Soil and vegetation map then were combined. The output is a map 

showing both Soil and Vegetation classes for each image. Figure 8 shows such an example of an Iso data 

unsupervised classification using the two endmembers as input. The Iso data classification technique was from 

all Envi’s classification techniques the best one however small individual heterogenous patches, especially 

small soil pixels, sometimes were wrongful classified as vegetation. As there is no such thing as the perfect 

classification technique ISODATA did seem to give best results.  

Figure 8 Example of Iso data unsupervised 
classification. Default colors were used, Green 
showing soil and red vegetation. 
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5.5.1 Post classification filtering  

 

After pixels are classified what sometimes remains are pixels that are either poorly classified or unclassified.  

These spurious pixels can be caused by speckle and noise and need to be filtered out. As this was the case in 

some of the images, respectively 1991, January 2003 a post classification filter was necessary. This was done to 

homogenise the classification for the entire scene. Envi has multiple options for post classification filtering but 

the ‘majority’ filter gave best smoothing result. A window frame (also known as ‘kernel’) of 3x3 pixels is set and 

is moved along the top row of the scene until it has reached the end. The central pixel in the kernel is 

calculated as the mean of all surrounding 8 pixels. A window frame of 3x3 pixels showed best results as larger 

kernel sizes created too much smoothing, thus losing important pixel information. Filtering techniques are 

always a case of ‘give and take’. In the filtering process you will always lose some valuable pixel information 

however speckle or noise simply can’t be ignored.    

5.5.2 Detection and determination of different land cover- and Land Use classes.  

 

The detection of land use class agriculture is an important but rather challenging, especially when ground 

trothing data is lacking (Bédard et al., 2008). Simply using one image per year to detect agriculture would be 

insufficient as pixels might be classified as vegetation because they haven’t been harvested yet. In order to 

prevent this, a second image for each year is necessary to detect any inter-annual change which especially 

occurs in agriculture due to its growing season. Unlike agriculture forest does not show rapid inter-annual 

change, unless forest clearing has taken place, but rather inter-decennial change. In order to easily manipulate 

the data the GeoTiff satellite images were converted to ArcMap polygon files. All spatial data was manipulated 

using ArcGIS© 9.2.  

An illustration was made to demonstrate the possible scenarios that occur when using two images per year to 

detect Seasonal agriculture changes within a year. An example is shown in Figure 9a and Figure 9b where a 

false band composition is used to highlight soil patches within the dense forest. These satellite images were 

used to create the soil maps through spectral unmixing followed by a unsupervised classification as explained 

in the first paragraph of ‘LULC classification’.  

 Image A 21-01-2986        Image  B, 11-04-1986 

    

Figure 9: A and B show a RGB composite bands 7,4,3 with soil highlighted in pink and vegetation in green. Black shows 
masked clouds.  
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One way to detect land affected by human activity is to select pixels that have converted from either 

vegetation to soil or soil to vegetation within a period of 5 months. Gola villages rely predominantly on 

subsistence farming and expect the crop rotation system to affect the LULC assessment (Leach, 1994). Within a 

crop rotation system or subsistence farming, land may lay fallow for a while which gives the soil time to recover 

before the next crop is sown. Gola farmers tend to harvest around February. This should indicate that using a 

post-harvest satellite image might show a pixel change from vegetation to soil, thus agriculture. Figure 9a and 

Figure 9b show two images where the pixels in January being green, thus vegetation, in the following image, 

April 1986, the same green pixels have converted into soil patches. Land cover change occurring outside the 

reserve is assumed to be either forest clearing or a harvest.  

The Gola region contains many small scale settlements dispersed over the area. Landsat has a pixel size of 

30x30 meters houses and small villages will not be detected and are most likely classified as one ‘soil’ pixel. The 

following schemes display the decision making procedure that was used to assign pixels to a certain LULC class. 

Where:  

Veg. = vegetation & Perm. = permanent  

1
st

 image = January image, 2nd image = March/April image  

Each square represents one pixel inside the Unsupervised ISODATA classification output. The algorithm works 

in such a way that when the pixel is assigned to vegetation for all images it receives the class ‘stable 

vegetation’. A similar approach is used for soil but these are in the assigned to the LULC class ‘settlements’.  

In order to classify a pixel as agriculture the pixel must be either soil or vegetation in the first image and the 

opposite in the following image. If this is true than all permanent vegetation and permanent soil is subtracted 

from these ‘change’ pixels and agriculture remains. All this applies to the area outside the GRNP. For inside the 

GRNP a specific change detection technique is applied to detect    

Detection of Agriculture 

1
st

 Image  2
nd

 Image (same procedure for the subsequent years)   

      = Agriculture 

      = Agriculture  

Whenever a soil pixel in the 2
nd

 image which was vegetation in the 1
st

 image is automatically assigned to the 

class ‘agriculture’. All these changing soil pixels from the 2
nd

 image then were merged with the soil pixels from 

the 1
st

 image creating an output with only agriculture pixels. This procedure was repeated for the subsequent 

January and March/April images of 2003 and 2007.  

 

 

 

 

 

Subtract Perm. Soil & Veg. Soil Veg 

Subtract Perm. Soil & Veg. Veg Soil 

Agriculture 

1986 
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Detection of stable vegetation and settlements/permanent soil 

Where: 

1
st

 image = 1986, 2nd image = 2003, 3rd image =2007 

1
st

 Image  2
nd

 Image 3
rd

 Image .  

     = Stable vegetation 

      = Settlements/ permanent soil  

Settlements are detected whenever soil pixels do not change throughout all images. It is likely that patches of 

agriculture will lay fallow, thus turn into vegetation, or remain soil throughout time, thus settlement. The 

assumption is made when soil that does not change within a time span of 21 years likely belong to a 

settlement.  

Detection of deforestation inside the reserve 

Where: 

1
st

 image = 1986, 2nd image = 2003, 3rd image = 2007  

1
st

 Image 2
nd

 Image 3
rd

 Image   

      = Stable vegetation 

       = bare soil inside reserve  

     = Deforestation   

      = Reforestation  

The main difference with inside the reserve is that the assumption is made that agriculture does not occur 

inside the Gola Forest National park due to its protective directive. Hence all procedures are the same but 

differ in that soil pixels inside the reserve are considered forest clearing. Settlements do not exist inside the 

reserve but are forest clearings that have never had the chance to regrow and are thus called ‘bare soil’.  

Deforestation is the conversion of forest land, not used for plantation purposes, to bare soil.   

Any pixel that was classified as vegetation in the 1
st

 image and then changed to soil in the 2
nd

 image was 

assigned as ‘deforestation’.  

 

 

 

Subtract Perm. Soil & 

Veg. 
Veg Soil 

Subtract Perm. Soil & Veg. Soil Veg 

Soil Soil Soil 

Veg Veg Veg 

Soil Soil Soil 

Veg Veg Veg 
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Mine Soil determined by boundary 

Where: 

1
st

 image = 1986, 2nd image = 2003, (same procedure for 2003 vs. 2007) 

1
st

 Image 2
nd

 Image  

      = Vegetation to Mine soil   

      = Mine soil to Vegetation 

   = Stable mine soil 

With the help from local expertise the presence of a mine in the South Eastern part of the study area, on the 

edge of the GRNP was easily detected. Mine area boundary was determined using the satellite image. The 

digital borders were onwards verified with local knowledge. Figure 10 shows in Green areas with intact 

vegetation, in yellow disturbed vegetation, pink shows cleared vegetation and white is bare soil. The right 

image shows the digitized borders. The road which leads into the mine area is shown in black. The dot 

represents a mine GPS point taken at the mine camp.  

The determination of the mine was done in order to prevent the soil pixels present in this area to be assigned 

as the class ‘agriculture’. Furthermore this allows us to explore the change dynamics of the mine through time.  

To identify any changes occurring inside the mine area all pixels that did show a change were either classified 

as ‘vegetation to Mine Soil’, ‘Mine soil to Vegetation’, or stable mine soil. This procedure was repeated to 

compare 2003 with 2007.  

 

  

Figure 10 left: A 1986 subset of a NDFI satellite image. Right: show digitized mine borders 
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5.6 Distribution of change 
 

This method explained in this paragraph denotes the methodology that was used to reach the objective 1.3 

mentioned.  

1.3 Identify the spatial dynamics of LULC change outside the GRNP  

The distribution of change types can be described by looking at the isolation of individual patches within a 

class. However, it is difficult to capture this isolation of patches within a single measure. The simplest way of 

describing isolation is based on an Euclidean distance between nearest neighbours (Gustafson and Parker, 

1994). 

The standard distance gives a single measure of how much patches are concentrated or dispersed around the 

geometric mean centre of those patches. This measure is also calculated per change type. The formula for 

calculating the standard distance is (ESRI, 2012b): 

    √
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Where    and    are the centre coordinates for segment  , { ̅  ̅} represents the mean centre for all patches 

of the same class and   is the total number of patches per class.  

The standard distance can be weighted based on segment size. Adding these weights extends the standard 

distance formula to (ESRI, 2012b): 
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Where    is the weight at feature   and { ̅   ̅ } represents the weighted mean centre.  

The standard distance is given in meters which, in combination with the mean centre, enable it to be plotted 

on a map. When the standard distance is calculated Arcmap uses ellipses to show the spatial distribution of the 

change patches.   

5.7 Integration of population data and topographical features 
 

The spatial extent of village borders was unfortunately not available, due to time and budget constraints of the 

research project conducting the surveys. In order to demarcate the spatial base unit to integrate the socio-

economic data GPS points from the survey were used and plotted on a map. Onwards, village boundaries were 

then created using Thiessen polygons (also known as the Voronoi diagram (ESRI, 2012a).  

These Thiessen polygons are generated in ArcMap in such a way that each GPS point is c loser to all its 

contained points than to any other point in the layer (Muller and Zeller, 2002). An example of the 27 villages 

and their corresponding Thiessen polygon areas are shown in Figure 11. These polygon layers were then used 

as the spatial extent for the village level assessment.  
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Figure 11 Gps village locations and corresponding Thiessen Polygons 

The socio economic data is used to explore possible relations between any LULC change and topographical 

factors (Vance and Geoghegan, 2002). From a SRTM DEM the slope was calculated in ArcMap 9.1. Furthermore 

distances to road from each GPS village point were calculated and a population density map per km2, using the 

Thiessen Polygons as the base input, was created using the population data from the questionnaire.  

5.7.1 Cluster regression tree analysis  

 

This method explained in this paragraph was used to reach objective 2 and 3. The objectives were described as 

the following:  

2. Relate satellite data with existing population demographic data.    

2.1 Assess the role of population dynamics on LULC change  

3. Assess the role of topographic factors such as slope, distance to road and Elevation on the observed 

LULC change.  

3.1 Assess the role of the topographical factors on the LULC change inside and outside the GRNP  

The use of hierarchical clustering is not an uncommon technique within the field of remote sensing (Pal and 

Mather, 2003) (Friedl and Brodley, 1997, Brown de Colstoun et al., 2003). Decision or regression trees are 

frequently used in the form of a logarithmic decision based model for Land Use and Land Cover classification 

(Thomas et al., 2012). The statistical software programming language R also offers packages for decision based 

modelling.  

The statistical package ‘Rpart’, which can be installed inside the R programming environment, was used to 

determine which independent variables have the most influence on the change of vegetation. 
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For this analysis the data needed to be extracted from the 3 different LULC maps (1986, 2003, and 2007). 

Samples for the cluster tree regression analysis were randomly taken from any pixel changing vegetation to 

either ‘Agriculture’ or ‘Mine Soil’.  

The regression tree analysis explains the variance of a response variable by iteratively splitting the data set into 

increasingly less variable (more homogenous) groups using mixtures of numeric and/or categorical explanatory 

variables (De'ath and Fabricius, 2000). The first iteration of the algorithm searches all the possible splits for 

each explanatory variable to find the split that minimizes the sum of squared error, commonly referred to as 

deviance. The algorithm then continues with the next iteration in both of the new groups, and so on. Each 

branch ends in a terminal node, or leaf, which provides an estimate for the response variable based on the 

mean of the observations that were classified into that leaf (Thomas et al., 2012). 

The idea of the cluster regression tree is to predict a response of class Y (the dependent variable, change in 

vegetation) from inputs X1 (Density), X2 (Distance to road), X3 (Elevation), X4 (Slope). These are the so called 

independent variables. This is done by growing a binary tree.  

Regression tree analysis explains the variance of a response variable by iteratively splitting the data set into 

increasingly less variable (more homogenous) groups using mixtures of numeric and/or categorical explanatory 

variables (De'ath and Fabricius, 2000). Whenever there are too few random samples that do not seem to be 

significant (< .95) enough to fit a cluster they are excluded from the tree. These samples are too heterogeneous 

to fit in a cluster and are removed from the iteration.   

The regression cluster tree is constructed using branches and roots. The model fits the input data based on the 

available independent variables to find the most homogenous cluster (group) of points. Additionally the model 

looks at the significance of each variable and clusters a point until it can’t be clustered anymore. Then the 

iteration comes at a point where it sets a criterion to split the group of values that are True going left and 

values that are False go right. The split is based on the last possible iteration to cluster variables as a 

homogenous group.  Each branch or split in the tree is the final possible step of a group of points that are 

clustered for a specific value in an independent variable. The default split criterion settings of the model were 

used. At the root of the tree is the probability of change in vegetation given for that specific cluster. The model 

presents the total number of points that belong to a specific cluster.  

Before the use of a regression tree analysis a correlation analysis was performed on all independent variables 

to check for colinearity between the independent variables. For each independent variable the colinearity was 

found below the critical threshold value of 0.80 (Menard, 2001). 

5.7.2 The dependent and independent variables 

A total of 225545 random points were taken in Arcmap and were used to extract the values from each of the 

four independent variables. A database was created which included the dependent variable and four 

independent variables. This is depicted in Table 2: 

LC86_03 density DistToRd Elevation Slope 

11 40 4647 90 5 

11 2 2634 115 14 

11 2 3238 112 10 

11 14 6954 91 6 

11 7 7389 141 8 

11 2 7770 145 4 

11 27 3425 97 5 
Table 2 Input database in R with one dependent and four independent variables 
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The two numbers in the first column describe the LULC situation for the first image and the second image. As 

was explained earlier each LULC map had 5 possible classes: 1 Vegetation, 2 Agriculture, 3 Mine soil, 4 Water 

and 5 Settlements. The LULC classes water and settlements do not change
6
 and thus were left out of the 

regression cluster tree analysis. The first row in the first column depicts the LULC situation in 1986 as 

vegetation being ‘1’ and the second number is the LULC situation in 2003. In this case vegetation did not 

change between 1986 and 2003.  

Density:  Density is shown in the second column as a unit per km². The Thiessen polygons 

formed the spatial base for each village. The population density map was calculated 

by taking the total amount of km² for each village divided by the sum of population 

for each of the two years, 1991 and 2010 respectively.  

Distance to Road: The third column explains the distance to road. This unit was measured by 

calculating the distance from each random sampled point towards the nearest road.  

Elevation:  The elevation value is generated by using the Digital Elevation Model and is a unit in 

meters. The Slope values are represented in degrees. 

Slope: The fourth column contains slope values. These values represent the angle of the 

surface in degrees. 

These independent variables form the input data that was used for the Cluster regression tree. The regression 

tree explores the structure of a dataset. In this case a dataset was created that includes only pixels that were 

vegetation (value 1) in the first image. Due to time restrictions no regression cluster tree analysis was 

performed on agriculture and Mine soil.  

A cluster regression tree example is shown in Figure 12 where Thomas et al. (2012) performed a regression tree 

analysis to predict groundwater depths for manual drilling in the Niger delta. 

 

Figure 12 Example of a Regression tree for predicting groundwater depths (Thomas et al., 2012). 

                                                                 
6
 Water was masked and settlements were detected as the accumulation of permanent soil in all images, thus 

becomes one template that does not change through time. This was done as village borders were missing. 

Comment [MV2]: Correct? 
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6. Results 
 

This chapter explains the results generated from the methodological steps explained in the chapter ‘Methods 

and materials’. The results are presented following the same structure as mentioned in the methodology.  

6.1 Overview of the study area and LULC in 1986, 2003, 2007 
 

Table 3 displays the land cover and land use areas in percentages and square kilometres of the years 1986, 

2003 and 2007. The area in total covers 803 km² of which vegetation was the most dominant land cover class 

for this region in 1986 covering 676,8 km² (84 % of the area). Agriculture is the second biggest class with 

coverage of 103.8 km² in 1986 (12.9% of the area) (Error! Reference source not found.). However, between 

003 and 2007 there was a decrease in vegetation of 2.4 km². Mine soil decreased from 13.9 km² (1.7% of the 

area) in 1986 to 8.1 km2 (1% of the area) in 2003. The classes settlements and water did not change as they 

were both not included in the LULC assessment. Overall, between 1986 and 2007 vegetation stays the 

dominant land cover class. 

 

 

Land use/Land cover 

classes 

Land Use/Land cover area in 

km2  

Land Use/Land cover area % 

1986 2003 2007 1986 2003 2007 

Vegetation 

Agriculture 

Mine Soil 

Water 

Settlements 

676.8 710.8 708.4 84.3 % 88.5 % 88.2 % 

103.8 75.6 78.4 12.9 %  9.4 % 9.7 % 

13.9 8.1 7.7 1.7 % 1.0 % 1.0 % 

2.9 2.9 2.9 0.4 % 0.4 % 0.4 % 

5.4 5.4 5.4 0.7 % 0.7 % 0.7 % 

Total 802.8 802.8 802.8 100 % 100 % 100 % 

Table 3 LULC for 1986, 2003 and 2007 in km2 and % 

 

Each image scene was classified into 5 different LULC classes. These classes are: 1 Vegetation 2 Agriculture 3 

Mine Soil 4 Water 5 Settlements. The five LULC classes were used to perform a bi-temporal change detection to 

detect any changes between two image scenes. As a result of the bi-temporal change detection between two 

image scenes 9 possible combinations were created that depict the type of change that was detected. An 

overview of the 9 possible LULC change classes and their properties are presented in Error! Reference source 

ot found.. 

The class deforestation (class 7) and class Forest regeneration (class 8) are two classes that only occur inside 

the GRNP. The assumption was made that any change patches of the class ‘vegetation to agriculture’ is 

deforestation as it occurs inside the GRNP, where agriculture is not common.  
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# LULC class Change class properties 

1 Vegetation to Agriculture - Change outside reserve 

2 Vegetation to Mine Soil - Change outside reserve 

3 Agriculture to Vegetation - Change outside reserve 

4 Agriculture to Mine Soil - Change outside reserve 

5 Mine Soil to Vegetation - Change outside reserve 

6 Mine Soil to Agriculture - Change outside reserve 

7 Deforestation 

- subset of ‘Vegetation to 

agriculture’ 

- Change inside reserve 

8 Forest Regeneration 

-  Subset of ‘Agriculture to 

Vegetation’ 

- Change inside reserve 

9 Bare Soil inside Reserve 

- Subset of ‘Agriculture’  

- No change inside reserve 

Table 4 Overview of the 9 different LULC change classes 
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The two pie charts display the detected changes for the two periods 1986-2003 (Figure 13) and 2003-2007 

(figure 14). The first period (1986 – 2003) shows that the majority, 82 % (654 km²), of the area did not change. 

The biggest change occurred in the class ‘agriculture to vegetation with 10% (56 km²) of agriculture changing to 

vegetation. The second biggest change was observed in vegetation with 7% (56km²) converting to agriculture. 

Overall 18% (148.8 km²) of the total area converted from one class to another. Over the second study period 

2003-2007 82% of the study area did not change. The biggest LULC change was detected for vegetation of 

which 7% (54 km²) was converted into agriculture. The next dominant LULC change was observed for the class 

‘agriculture to vegetation’ with 6% (52 km²). In total 14% (110.8 km²) of the total surface area converted. See 

annex 1 for a histogram showing the observed LULC changes in km². Category 'other' includes classes: 

Vegetation to Mine Soil, Mine soil to Vegetation, Deforestation, Forest regeneration, and bare soil inside 

Reserve 

 

 

Figure 13 and 14  LULC change 1986 – 2003 and 2003 – 2007. 
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The spatial dynamics of land cover and land use are visible in the LULC maps shown in Figure 15,Figure 16, and 

Figure 17.  

The LULC map of 1986 presented in Figure 16 shows the spatial distribution of the 5 LULC classes. Agriculture is 

more concentrated in the south eastern part of the study area. This is especially concentrated around the mine 

area. The Northern and south-western part show a more dispersed pattern of agricultural patches. The 

majority of the GRNP remains intact and large scale deforestation did not occur inside the park. More emphasis 

on deforestation will be placed in the chapter ‘Gola Rain Forest National Park’. In 2003 (Figure 17) vegetation 

covers most of the area. Likewise in 1986 the GRNP shows little evidence of large scale deforestation. 

Differently from the LULC map of 1986 agriculture mostly occurs in the south-western and northern part of the 

study area. The mine area has noticeably decreased in size compared to 1986 going from 13.9 km² to 7.7 km² in 

2007 (Error! Reference source not found.)). LULC in 2007 (Figure 15) looks similar to 2003 with agricultural 

atches mostly concentrated in the south western and North Western part. See appendix Annex 1 Change 

detection per class for large detailed LULC maps of 1986, 2003 and 2007. 

 

 

  

 

 

 

 

 

Legend

Land cover class

Vegetation

Agriculture / bare soil

Mine Soil

Water

Settlements

0 4 8 12 162
Km

±
 

Figure 15 Land use map 2007 

Figure 17 LULC use map 2003 Figure 16 LULC map 1986 

 Figure 15 LULC map 2007  

Pixels shown in green are assigned to 
the class ‘vegetation’ and yellow 
belongs to the class ‘agriculture’. The 
grey area in the south eastern part is 
part of the identified mine area. Red 
shows the settlements and blue 
represents water bodies. 
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6.2 Spatial distribution of LULC change 
 

 

Figure 18 LULC change map 1986-2003  

 

An overview of the location and spatial distribution of LULC change that were 

detected between 1986 and 2003 is shown in Figure 18. Evident are the 

changes from vegetation to agriculture, which are located mostly in the south 

west and the northern part of the study area. The south east part shows little 

sign of vegetation being converted to agriculture. Large patches of 

‘agriculture to vegetation’ occurred predominantly south east of the GRNP. 

Between 1986 and 2003 a large area of mine soil has been converted to 

vegetation (from 13.9 km² in 1986 to 8.1 km² in 2003). Reforestation occurred as well as some patches of 

deforestation. The areas in white depict the ‘no change’ area. As can be seen in figure 11 and 12, 82% (654 

km²) of the total area did not change. Thus 18% (148.8 km²) of the total area has been converted from one 

class to another. The overall scenario depicts fragmented change patches especially located around the GRNP.   
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Figure 19  LULC change map 2003-2007 

 

Figure 19 depicts the LULC changes for the period 2003-2007. While the LULC 

change map of 1986-2003 show a total change area of 18 % (148.8 km²), 

between 2003 and 2007 the total change area decreased to 14 % (110.8 km²). 

Little change can be observed at the south-East border of the GRNP where 

vegetation has been converted to mine soil (indicated in pink). Inside the GRNP 

deforestation and reforestation activities took place.  Overall little change can be 

observed in the South eastern part of the study area.   
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6.2.1 Spatial distance tool 

 

This chapter describes the results obtained through the spatial distance tool in ArcMap. As mentioned in the 

methodology this tool calculates the spatial distribution per change class. The algorithm looks at the isolation 

of patches by using the Euclidean distance between nearest neighbours. Each ellipse’s diameter is equal to the 

standard deviation. The standard deviation of all the weighted distances between segments in a class gives an 

indication of the spread of this class within the study area. The centre of each circle corresponds to the 

weighted average of all patches’ coordinates (Gustafson and Parker, 1994). The ellipses represent the highest 

concentration per change class. The spatial distance tool is useful as a statistic analysis as it provides a simple 

summary of the feature distribution (LULC change) around the geographical centre of its corresponding LULC 

class (ESRI, 2012b). The LULC change ellipses represent the location of the highest concentration of change for 

each specific LULC class. Each LULC change has its own ellipse and can thus vary in size and geometrical shape. 

 

Figure 20 Spatial distribution of change 1986 - 2003 
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The spatial distribution of LULC change occuring between the two time periods differ both in size and location.  

Figure 20 illustrates the LULC change between 1986 and 2003. The red ellipse shows that deforestation inside 

the GRNP took mostly place in the western part of the park. This part of the park shows patches where 

reforestation occurred. Each of the two LULC change classes ‘vegetation to agriculture’ and ‘agriculture to 

vegetation’ display large centred ellipses. This indicates, as could be seen in Figure 18 (1986-2003 LULC change 

map), that patches in these two LULC change classes are more dispersed causing the ellipses to expand.  

The second time period (Figure 21 2003-2007) demonstrates LULC change ellipses of deforestation is 

concentrated in the east part of the GRNP. The green ellipse (reforestation) is concentrated in the west part of 

the GRNP. Similar to the first time period (1986-2003) the two LULC changes ‘agriculture to vegetation’ and 

‘vegetation to agriculture’ show patches of change that are rather dispersed, hence the large ellipses. The 

standard deviation also called “the standard distance” is shown in Table 5. In addition to the map, the table 

shows the total spread of each LULC change class observed between 1986 and 2003.  The distribution of each 

LULC change varies only slightly between the two cluster periods.  

 Classified changes Standard distance (in meters) 

1986vs2003 

Standard distance (in meters) 

2003vs2007 

1 Vegetation to Agriculture 11995 12606 

2 Vegetation to Mine Soil 2116 1927 

3 Agriculture to Vegetation 12497 12091 

4 Mine Soil to Vegetation 2199 2095 

5 Deforestation 7555 7374 

6 Forest Regeneration 7382 7531 

Table 5 Standard distance LULC change classes 1986vs2003 

 

 

 

 

 

 

Figure 21 Spatial distribution of change 2003-2007 
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6.3 Gola Rainforest National Park Change detection 
This chapter presents the detected changes inside the GRNP numerically and spatially. The total surface area of 

the GRNP covers 239 km². This number has not been validated as no official digital park boundary files were 

available but had to be digitized manually. The majority of the park surface area has been classified as 

vegetation (Table 6). In 1986 235.7 km² (98.6 %) of the total area was covered with vegetation. This increased 

in 2003 where vegetation covered 236.9 km² (99.1%) of the total area. For satellite images of 2007, 235.7 km² 

has been classified as vegetation. 

  Land Use Land Cover (LULC) area in km² 

 

LULC class 1986 2003 2007 

1 vegetation 235.7 236.9 235.7 

2 Agriculture / bare soil 2.4 1.5 2.5 

3 Mine soil 0.0 0.0 0.0 

4 water 0.4 0.4 0.4 

5 settlement 0.2 0.2 0.2 

 Total 239* 239 239* 

Table 6 GRNP LULC table. *Numbers have been rounded off. 

In order to detect changes in LULC classes a change detection was performed between the satellite image 

cluster sets (1986, 2003, 2007). Similar to Error! Reference source not found. subsets were created inside the 

ULC change classes. For the GRNP these subsets were ‘forest regeneration’ and ‘deforestation’. The first 

change detection used the set of cluster images from 1986 and 2003. The pie chart (Figure 22) shows that 

within this time frame 98.4% of all vegetation did not change. In total 0.4 % (0.9 km2) of the park surface area 

has been deforested.  A small percentage of 0.9% of the area (2.1km²) was classified as soil that converted into 

vegetation (reforestation). The forest change distribution for the period 2003-2007 is depicted in Figure 23. The 

analysis reveals that 98.3 % (234.9 km²) of the park is stable forest, while roughly 0.9 % (2.1km²) has been 

deforested. This percentage does not include small scale patches of forest degradation.  

 

Figure 22 1986-2003 LULC change detection pie chart

  

Figure 23 2003-2007 LULC change detection pie chart
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Figure 24 Reserve change detection 1986-2003 

 

  Figure 25 Reserve change detection 2003-2007 
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The changes in Land cover dynamics for the GRNP are depicted in Figure 24 and Figure 25. From the total 

deforestation observed between 1986 and 2003, most of the deforestation is concentrated in the western part 

of the GRNP. Overall both deforestation and reforestation occurs mostly on the outskirts of the GRNP 

boundary.  
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Figure 28 NDFI map 15-01-2007 

Figure 27 NDFI map 14-
01-1991 

 

6.4 Forest degradation and deforestation using the NDFI index. 

 

Figures 26-29 illustrate NDFI index used for the GRNP. These maps are maps with values ranging between 0 and 

100.  A linear contrast stretch was applied in order to emphasize the minus and the maximum values of the 

image pixels. 

The intensity of the pixel colour reflects the health of the vegetation. Very dark green pixels (close to a value of 

100) indicate no sign of forest canopy damage. Lower green values and yellow values depict forest canopy 

damage. This is the damage that could be inflicted by forest fires or selective logging (Souza Jr et al., 2005). 

Partly deforested patches can also be detected by the NDFI index. These patches are depicted by a light yellow 

tone. Pink to white coloured patches indicate deforestation. Deforested patches are shown in minus values 

with -100 indicating no sign of detected living vegetation within a 30x30 meter pixel. Small size (m² level) 

canopy damage was difficult to detect within a pixel of 30x30 meters. Each image is a scene from January with 

maximum two weeks seasonal difference. This should minimize differences in vegetation reflectance values 

due to seasonal differences. Similar to the previous analysis, the NDFI shows overall merely little areas of 

change in vegetation inside the GRNP. There is no sign of large scale deforestation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26 NDFI map 21-
01-1986 

Figure 29 NDFI map 28-01-2003 
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6.5 LULC change analysis using Independent variables in a cluster regression 

tree.  
 

Using the independent variables as predictors of LULC change can be a rather challenging task. In LULC change 

assessment binary decision trees or cluster trees are common tools used (Menard, 2001, Otukei and Blaschke, 

2010, Bittencourt and Clarke, 2003). For this analysis the Rpart cluster tree analysis was used. The input data 

for the cluster tree included one dependent variable (LULC class vegetation) and four independent variables 

(slope, distance to road, Elevation, and population density per km²). Each of the four independent variables is 

tested by the cluster tree to assess their influence on the probability of change in vegetation. 

In total a number of 225545 random points per image scene were created. This was the total maximum points 

that could be created for each LULC map. Of each point in the LULC map the following information was 

extracted and used as an input for the regression tree analysis: 

- LULC class ‘change in vegetation’ 

- Elevation in meters 

- Distance to nearest road in meters 

- Slope angle in degrees 

- Population density per km² 

The cluster tree was performed on two datasets.  

1. 1986 vs 2003  

2. 2003 vs 2007 

 

6.5.1 1986 versus 2003 

The position of each variable and the height of the branch inside the tree determine the importance of the 

independent variable (Bittencourt and Clarke, 2003, De'ath and Fabricius, 2000, Thomas et al., 2012). The 

summary statistics of the Rpart model indicate the composition of the tree. Variable importance is measured 

by the regression tree on a scale from 0-100. Results (Table 7) show that elevation is the most important 

variable with a value of 50. Population density is located on the second layer with a value of 26 and Distance to 

road third with 24. The remaining independent variable, slope, has been excluded by the regression tree. The 

observations in this group (slope) are not homogenous with change in vegetation to fit in a cluster. This 

resulted in the following figures: 

 Elevation Population density Distance to road 

Variable importance 50 26 24 

Table 7 Regression tree variable importance 1986-2003 

Figure 30 depicts the visual outcome of the regression tree model. The regression tree has created a split 

regarding points situated at an elevation > 105 meters as significant. All points at an elevation <105 meters do 

not meet the criterion and go right inside the tree. The summary statistics determine population density as the 

second most significant variable in the explanation of vegetation change. The tree splits the cluster of points, 

with an elevation >105 meters, at a population density < 8.5 people per km². Points with a distance to road 

<8536 are considered as the third most significant variable.  
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Figure 30 Regression tree 1986-2003: The tree shows the probability of change of a point (vegetation) that will be 

converted.  

Elevation 
 

The results of the summary statistics of elevation (Table 8) show that of all the 225545 points the mean 

elevation, at which change in vegetation had occurred between 1986 and 2003, was at an altitude of 141 

meters. To emphasize the distribution of observed change in vegetation with respect to the elevation of the 

surface model a histogram was created. Figure 31 shows the histogram that was created in ‘R’ to plot the 

points of change in relation to their elevation. Observed change occurs at 66 meter in elevation up to a 

maximum of 513 meters.  The result shows that the majority of change occurred between 114 meters and 152 

meters (Figure 31), with a median of 114 meters. The histogram shows a rather normal distribution with the 

median occurring at 129 meters elevation. The distribution seems to be positively skewed as the mean is bigger 

than the median. This explains why the tail of the histogram on the right side is longer than the left side 

(Menard, 2001).  

Summary statistics “Elevation” 1986-2003 

Minimum value 1
st

  quartile Median Mean 3
rd

 quartile Maximum value 

66.0 114.0 129.0 140.9 152.0 513.0 

Table 8 Summary statistics Elevation 1986-2003 

True | False 

True | False True | False 
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Figure 31 Histogram showing the distribution of change (1986 – 2003) in relation to elevation. 

The regression tree aids in explaining the importance of each variable on the probability of change in 

vegetation. However the tools lacks the option to visually display the spatial dynamics of change in relation to 

the independent variables. Figure 32 shows a digital elevation map of the gola region depicting spatial 

distribution of change in vegetation in relation to elevation. Areas in green represent low altitudes around 70 

meters and areas in dark red show maximum elevation around 500 meters. Vegetation change patches are 

represented in grey. The change patches solely show patches where vegetation has decreased. The map shows 

that decrease in vegetation has occurred at lower altitudes (<150 meters). The change patches located in the 

dark red area are probably a result of the mine that is located in that area. 
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Population density per km² 

 

All numerical population density results are based on spatial dimension determined by the boundaries set by 

the Thiessen polygons. Large varieties between Thiessen polygon village areas and actual village boundaries 

can affect the outcomes of the regression tree.  

The summary statistics for the independent variable ‘population density per km²’ show the numerical 

distribution of observed change in relation to population density (Table 9). The population density dataset 

included errors (minus population density values) that have been removed. This explains the 152 missing 

values. Summary statistics shows the dataset contains points with a minimum of 1 person per km² up to 3928 

persons per km². The mean population density per km² where change in vegetation has been observed is 

17.39.   

Summary statistics “Population density” 1986-2003 

Minimum 

value 

1
st

 quartile Median Mean 3
rd

 quartile Maximum 

value 

Missing 

values 

1.00 4.00 7.00 17.39 16.00 3928.00 152 

Table 9 Summary statistics Population density 1986 - 2003 

The regression tree determines a split at a population density of <8.5 per km². From the summary statistics it is 

difficult to see the full extent of the proportion of change per density class. Table 10 assists in the explanation 

why the regression tree splits at a population density of <8.5 per km². The density classes up till 8 comprise 

58.3 % (the sum of all areas up till 8) of the total observed change in vegetation. This explains the split in the 

regression tree analysis. 

 

Population density per km² 1 2 4 5 7 8 9 

% of change in vegetation 4.1 7.8 21.4 5.2 13.5 6.3 2.8 

Population density per km² 10 14 16 20 21 27 29 

% of change in vegetation 8.2 2.2 6.6 2.5 1.3 3.3 1.9 

Population density per km² 30 33 37 39 40 66 83 

% of change in vegetation 2.0 1.8 1.9 1.3 3.0 1.2 0.4 

Population density per km² 128 154 162 211 411 2225 3928 

% of change in vegetation 0.2 0.7 0.2 0.1 0.1 0.1 0.0 

Table 10 Proportion (%) of change in vegetation in relation to population density per km² 
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Distance to road 

 

Distance to road is considered by the regression tree statistics as the third most significant variable. The mean 

distance to the nearest road where a change has been observed is at 4275 meters (Table 11). Like with the 

elevation analysis the distribution is rather positively skewed. This is due to the fact that the mean is higher 

than the median which is at 3972 meter distance from a road. Figure 33 shows the distribution of frequency of 

converted vegetation points in relation to the distance to the nearest road. The histogram points out that  in 

close proximity of a road more often a change has been observed than at greater distance.  

 

Summary statistics “Distance to road” 1986-2003 

Minimum value 1
st

 quartile Median Mean 3
rd

 Quartile Maximum value 

0 1850 3972 4275 6353 12240 

Table 11 Summary statistics Distance to road 1986 - 2003 

 

 

Figure 33 Frequency of converted vegetation points in relation to distance from nearest road 
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6.5.2 2003 vs 2007 

 

The 2003 vs 2007 regression tree analysis contains less significant splits and variables than the 1986vs2003 

analysis. The summary statistics (Table 12) show that population density has the highest value (76) of 

importance and is the only significant independent variable that contributes to the tree. The regression tree 

(Figure 34) has created a split at a population density <7.5 people per km² to cluster homogenous points. All 

points with more than 7.5 people per km² (thus receiving a FALSE value for not meeting the split criterion) are 

assigned to the right side of the tree. Looking at the root of the tree the regression value on the right side with 

0.1582 is higher than the left side that has a value of 0.07283. 

The probability of change (0.1582) is higher for points < 7.5 people per km² than points that have >7.5 people 

per km² (0.07283). The iteration stopped after the first split in the tree as the probability values were 

considered significant enough. Expanding the tree after this point would not result in more significant clusters. 

Hence the model ‘pruned’ (discarded) the remaining variables (Distance to road, Elevation and Slope)   

Variable importance 

Population density Distance to road Elevation 

76 21 3  

Table 12 Regression tree variable importance 2003-2007 

 

 

Figure 34 Regression tree 2003-2007: The tree shows the probability of change of a point (vegetation) that will be 

converted. 

 

 

 

  

True | False 
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6.6 Integration of socio-economic data with geo data 
 

The integration of socio-economic data with spatial data may assist in explaining phenomena observed by 

satellites (Liverman, 1998, Vance and Geoghegan, 2002, Mertens et al., 2000, Monzón-Alvarado et al., 2012, 

Souza Soler and Verburg, 2010). The chapter hereafter aims to display possible relations between observed 

spatial data and questionnaire data and draw conclusions from these.Based on data of the total population 

numbers, a trend analysis could be carried out. To analyze the change in population dynamics and change in 

LULC cover, the two variables are plotted in Figure 35. Unfortunately only in 1990 and 2010 a baseline survey 

was conducted among the 27 villages. This results in a lack of population data for 2003. To overcome this data 

gap, data was taken from the questionnaire that includes the ‘total number of people that returned to the 

village after the war’. The assumption was made that the total population that had returned to the village after 

the war was most likely to come back short after 2002 (Leach, 1994, Zack-Williams, 1999, Chauveau and 

Richards, 2008).  

The total population data refers to the specific year in which the baseline survey was conducted. It does not 

take into account people that have migrated or will migrate that year. Nor does it includes new borns and 

people that have deceised.  

The input landcover for this analysis is based upon single annual January images. This is due to the fact that 

population data was solely available for 1990 and 2010. Hence the LULC map for 1991 had to be included. All 

other years represent one image per year as well. There is a slight difference between the satellite acquisition 

dates and years in which the baseline survey was conducted. The following images were used: 1986, 1991, 

2003, and 2007. Population census was conducted in 1990 and 2010. This difference is marked in Figure 35 and 

Figure 36 by an asterisk(*). 

 The following figures solely serve as a rough estimate as validation data for both the LULC assessment, and 

population data for 1991, is missing.  

The graph in Figure 35 represents a trend analysis. The plotted points represent the change in both total 

population dynamics (blue line) and change in vegetation dynamics (indicated by the red line). The vegetation 

trend line shows a steep rise in vegetation cover between 1986 (743km²) and 2003 (770km²). Following the rise 

in vegetation between 1986 and 2003, vegetation cover drops slightly in 2007 from 770km² to 758km². 

Population dynamics show a drop in total population in the 27 villages going from 15489 people in 1990 to 

9748 people in 2003.This is the number of people that had returned to the village after the end of the civil war. 

In 2010 the total population was less than in 2003, with a total population of 9516 people living in all the 

villages.  

Detecting agriculture using only one image scene per year is challenging as crops vary in reflectance values 

considerable within one growing season. Figure 36 serves as a reference to detect whether there could be a 

relation between total population change dynamics and change in  total detected agriculture. The results 

shows that agricultural land use drops from 38km² (in 1986) to 24 km² (in 1991).Agriculture area reaches its 

lowest point in 2003 (17km²). After the drop in 2003 a rise in agriculture is visible in 2010 having a total surface 

area of 30km². No R² is has been calculated for all three trend analysises (vegetation,agriculture, and total 

population) as the sample group for total population is too small.  
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Figure 35 Plotted lines of the observed trend in both vegetation and total population. The blue line indicates the total 

population for all 37 villages and belongs to the right Y-axis. The red line represents observed vegetation cover. The 

asterisk (*) indicates  

 

 

 

 

Figure 36 Plotted lines of the observed trend in both agriculture and total population. The blue line indicates the total 

population for all 27 villages. The right axis corresponds with the blue line. 
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7. Discussion 
 

This chapter briefly discusses the main results and their corresponding methods presented in the previous 

chapter.  

7.1 Under estimation of soil pixels by the Spectral Mixture Analysis 
Small pixel areas such as secondary roads were not classified due to their small size and the fact that they are 

surrounded by overhanging canopy, which made them not detectable. This fact caused under- and 

overestimation leading to slight variations between observed satellite imagery and the classified soil maps. This 

could affect the assigned forest pixels, hence roads were misclassified as forest.  

Figure 37 is a satellite image subset around the Gola forest from 20-01-1986. The corresponding soil fraction 

map that was derived from this satellite image is shown in Figure 38. The Red square indicates a location of a 

soil patch that was not detected in the end member detection process. Its spectral signature, shown in Figure 

39, indicates it has soil properties. Figure 40 shows the soil classification map with the black square showing 

the ‘missing’ or undetected soil patch.   

 

Figure 37 20-01-1986 (3,2,1 band composition) 

   

Figure 38 SMA of soil for the image 20-01-1986 

  

Figure 39 Pixel show a spectral profile of a soil surface Figure 40 ISO soil classification  (green soil, red 

vegetation) 
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7.2 Land cover change detection  
This paragraph critically reflects upon the approaches that were selected to detect the LULC change.  

Analysis of the change detection  

The LULC changes occurring in the Gola study area were successfully detected and classified. However, no 

ground truth or reference data was available for this research. Visually identifying LULC changes proved to be 

difficult. Due to the lack of ground truth data, no quantitative accuracy assessment has been carried out. 

Instead, a visual examination of the classification was performed.  

LULC change is a dynamic and complex domain (Galvin et al., 2001, Pielke et al., 2011). This study provides an 

approach to enhance the understanding of LULC changes and what effect topographical features and 

population density have on such changes. A LULC change assessment was performed to explore both the 

temporal and spatial change dynamics of the Gola forest region. Based on a time period of 21 years (1986 – 

2007), the results show interesting information about the Gola forest and its surroundings. Overall an increase 

in vegetation and decrease in agriculture and mine soil was detected between 1986 and 2003. Even though 

statistical tests are missing, the trend plots (Figure 35 and Figure 36 ) do show that agriculture and vegetation 

are inversely related. Unfortunately statistics validating this relation are missing. If true, these results show 

consistency with other studies which indicate agriculture is a strong driver of change in vegetation or cause of 

deforestation (Pielke et al., 2011, Galvin et al., 2001, E.J. Lindquist, 2012, Achard et al., 2002, Rudel et al., 2000, 

Monzón-Alvarado et al., 2012). The LULC classification provides a good indication of the dynamics occurring 

through time for the Gola Rainforest National Park and its surroundings.  

For this study a large online dataset of more than 50 satellite images has been analysed. No historical data from 

before 1986 was available for the study area. A lack of data for the time period between 1991 and 2003 has 

caused a big data gap in the LULC change assessment. Images were selected with cloud cover <30 %. Due to the 

tropical environment of the study area cloud cover occurs frequently. The final assessment only included 10 

images of which 7 were not affected by the Scan Line corrector Failure, which causes 30% loss of total pixel 

cover. This resulted in a small pool of data sources that could be used for the LULC change assessment.  

Of the 7 Landsat images dense cloud cover resulted in decreasing the overall study area. Agriculture shows 

rapid seasonal changes in vegetation growth. Due to a lack of useful satellite imagery for 1991 this year was 

discarded as only image was available and two were required for the detection of agriculture. This made it 

difficult to evaluate changes in land use between 1986 and 1991.  

The lack of useful satellite data for 1991 showed to be a critical point in time and coincides with the initial 

phase of the Sierra Leonean civil war. Studies have shown that this event caused an increment in migration 

which possibly could have had a an impact on agricultural patches (Chauveau and Richards, 2008, Davies, 1991, 

Leach, 1994, Price et al., 2007, Richards, 1996, Swatuk et al., 2007, Zack-Williams, 1999). This could explain the 

drop observed in agriculture between 1986 and 2003.  

The total population number is a summation of all village population for all 27 villages. It remains a question 

how much the 27 villages have contributed to the ‘total population’ of the entire area. The team conducting 

the baseline survey did not visit all villages in this area and thus information is lacking about the number of 

people in the Gola region who were displaced between 1991 and 2003.  

Despite these limitations, the analysis shows that an increase in vegetation between 1986 and 2003 has taken 

place for the Gola region. The LULC classification approach was unsuitable with the lack of reference data to 

distinguish between forest, shrubs, and plantations or simply grass lands. All patches detected with the 

endmember selection had to be clustered as vegetation. Furthermore, the spatial resolution of Landsat 

(30mx30m) was too coarse to detect small change patches (<30x30m).  
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A key constraint for creating an accurate land use land cover map was the lack of reference data. The lack of 

reference data seems problematic with validating reforested patches of land. Reforestation inside the reserve 

might be grasslands. The assumption was made that converted patches of soil to vegetation inside the reserve 

was an effect of reforestation. The GRNP boundaries protect the forest from agricultural activities or activities 

of deforestation taking place. Little is to say without any reference data whether reforested patches have been 

overgrown with trees, grass or crops.   

This study analyzed the LULC change dynamics for the Gola forest region. The approach described in this study 

provides information that could be vital for local and national authorities. LULC change offers land use planners 

and decision makers useful information to protect natural habitats such as the GRNP. Agriculture has been 

identified in many studies as a main driver of forest degradation and effective land management is essential.  
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8. Conclusion  
 

The main aim of this study was to detect land use and land cover (LULC) changes and to explore their relation 

with topographical features and population data. This study reveals interesting LULC change dynamics between 

1986 and 2007 in the Gola forest region, South Eastern Sierra Leone. LULC change detection show an expansion 

of vegetation cover and a decrease in agriculture between 1986 and 2003. After 2003 agriculture increases at 

the expense of vegetation cover. After 1986 mine soil decreases over time.  

The analysis depicts few signs of deforestation inside the Gola Rainforest National Park as vegetation cover 

remains stable between 1986 and 2007. The use of a regression tree model allowed understanding the 

observed LULC changes in relation to topographical features and population density. The analysis showed that 

in the first period (1986 – 2003) deforestation was higher in locations with an elevation between 105 and 150 

meters. For the second period (2003 – 2007), however, negative deforestation mostly occurred in areas with a 

population density of < 7.5 persons per km². For both study periods LULC change is spread across the study 

area although in the south east part little change occurs, probably due to high elevations of this area. The 

second major finding was that observed LULC changes after 2003 seem to correlate with a drop in total 

population, due to a 10 year civil war, although statistics for this are missing 

This work contributes to the existing knowledge of land use and land cover in the Gola forest region. It provides 

a spatially explicit approach using time-series optical remote sensing that can help to understand LULC changes 

in relation to topographical features and population data. This vital information can assists land use planners in 

the protection of natural habitats. However, with the lack of reference data caution must be taken interpreting 

the LULC classification.  

 

9. Further analysis  
 

Future studies could find interesting results when focusing at the changes in agriculture and their relation with 

different variables. Furthermore, the spatial scale at which this study operated was more on a regional scale. 

Interesting information could be generated when looking at LULC change occurring at the village level and their 

relation to topographical features and socio-economic data. Statistical tests are necessary to verify the relation 

between decrease in total population and increase in vegetation cover for the gola forest region.  

The shortcoming of reference data hampers the accuracy of the LULC classification. Increasing the number of 

satellite images and the use of reference data will improve the overall reliability of the LULC classification 

maps.  Changes in village population numbers occurred in the Gola forest region due to the war. How this 

relates to the observed LULC change is still unknown and should be explored. LULC change dynamics at village 

level have not been investigated and could provide useful information in relation to land conversion and 

human activities. For a thorough analysis of forest degradation inside the GRNP the use of very high resolution 

(a spatial resolution of 0.6m up to 4m) satellite images should be considered. 
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Annex  

Annex 1 Change detection per class 
 

 

 

Figure 41 Histogram illustrating the change detection per class in units of km². *The category 'other' was omitted. This 

class represents an area, between 1986-2003, of just 10 km² and between 2003-2007 just 5km2. Hence the stacks would 

be hardly visible. 
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Annex 2 LULC map 1986  
  

Figure 42 LULC map 1986 All pixels shown in green are assigned to the class ‘vegetation’ and yellow belongs to the class ‘agriculture’. The 
grey area in the south eastern part is part of the identified mine area. Red shows the settlements and blue represents water bodies 
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Annex 3 LULC map 2003  

Figure 43 LULC map 2003.  All pixels shown in green are assigned to the class ‘vegetation’ and yellow belongs to the class ‘agriculture’. The 
grey area in the south eastern part is part of the identified mine area. Red shows the settlements and blue represents water bodies 
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Annex 4 LULC map 2007  

Figure 44 LULC map 2007 All pixels shown in green are assigned to the class ‘vegetation’ and yellow belongs to the class ‘agriculture’. The 
grey area in the south eastern part is part of the identified mine area. Red shows the settlements and blue represents water bodies 
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Annex 5 LULC change maps 
 

 

Figure 45 Agriculture to Vegetation 1986-2003 
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Figure 46 Vegetation to Agriculture 1986-2003 
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 Figure 48 14-01-1991 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 47 21-01-1986 
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Figure 50 28-01-2003Figure 51 28-01-2003 

Figure 49 15-01-2007 
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Figure 52 Frequency of converted vegetation in relation to surface slope angle (1986vs2003) 
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