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ABSTRACT 

 

Monitoring forest cover dynamics is crucial for any initiative to combat tropical deforestation. Remote 

sensing approaches have the potential to determine forest cover dynamics, providing valuable 

information for monitoring mechanisms, such as REDD+. 

This MSc research assessed the potential of optical time series analysis to capture forest cover 

changes related to harvest operations. Landsat 7 derived NDVI and NDFI time series (2000 - 2012) 

were analysed by BFASTmonitor algorithm to retrieve temporal changes in forest cover of a study 

area. We validated the change detection ability and estimation accuracy of BFASTmonitor based on 

cross-comparison with a generated reference dataset and further, we assessed the performance of the 

examined spectral indices as change indicators. In addition, we examined factors potentially 

influencing the accuracy of the proposed method (e.g. magnitude of change, cloud contamination). 

Our results showed that, forest cover changes in the study area, were depicted similarly by 

BFASTmonitor analysis in NDVI and NDFI time series. The overall accuracy of break-time estimation 

was 61% and 64% for NDVI and NDFI, respectively and mapping accuracy (mean) was 45% for both 

indices over the monitoring years 2007 – 2010. Though, we observed variations in BFASTmonitor 

performance among the monitoring years. For 2007 and 2008, the results were depicted higher rates 

of accuracy (mean mapping accuracy above 52%, 24% and 36%, mean commission and omission 

error, respectively), while significant lower rates were observed for 2009 and 2010 (mean mapping 

accuracy about 35%, 60% and 55% omission and commission error for 2009 and 2010, respectively). 

Further, we estimated the magnitude of change corresponded to an actual forest cover change. High 

rates of agreement between the estimated breaks and the generated reference dataset (above 80% 

and 60%, overall and mean mapping accuracy, respectively for both indices) were obtained by 

applying a magnitude threshold of -0.15 to -0.20. We suggested that for a P.caribea plantation, a drop 

on NDVI and NDFI values with magnitude between -0.15 to -0.20 was likely related to deforestation. 

BFASTmonitor analysis in NDFI time series was demonstrated slightly better ability to correctly 

estimate the time of actual forest cover changes compared to NDVI (overall accuracy 78% and 82%, 

for NDVI and NDFI, respectively).  

Moreover, cloud contamination in time series was affected the accuracy of BFASTmonitor analysis. 

High rates of commission for 2010 were mainly induced by remaining clouds. Our results were 

indicated enhancement of BFASTmonitor break-estimation ability after the removal of cloud 

contaminated scenes. We conclude that BFASTmonitor analysis in optical satellite time series has the 

potential to capture changes in forest cover, associated with deforestation, with sufficient 

spatiotemporal accuracy. 

 

KEY WORDS 

Remote sensing, Time series analysis, Land-cover changes, NDVI, NDFI, BFASTmonitor algorithm, 
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1. INTRODUCTION: CONTEXT AND BACKGROUND 
 

1.1 Land-cover changes and REDD+ policy 
 

Tropical forests cover about 15% of the world’s land surface (FAO, 2006). They are 

considered as major carbon pools (IPCC, 2000), containing about 25% of the carbon in the 

terrestrial biosphere (Bonan, 2008). 

Land-cover changes are one of the major processes of global change (Foley et al., 2005). 

Among the drivers of land-cover change, deforestation has received increasing attention 

(Gasparri et al., 2011). Though, tropical regions have been undergoing rapid changes in 

forest cover since the 1980s (Achard et al., 2002; Hansen et al., 2008; DeFries et al., 

2002) leading to forest degradation (Asner et al., 2009), and further resulting in emissions 

of heat-trapping carbon dioxide (CO2) to the atmosphere (Parker et al., 2009). 

Arcidiacono-Bársony et al. (2011) were reported that carbon emissions from tropical 

deforestation account for 12% of global anthropogenic CO2 emissions, ranking carbon 

emissions from deforestation and forest degradation as the second largest source of 

anthropogenic carbon emissions after the energy sector (IPCC, 2007). Tropical forests play 

an important role to the global carbon cycle (Houghton et al., 2001) and hence their 

conservation should be prioritized in any initiative to combat climate change (Parker et al., 

2009). 

The United Nations Framework Convention in Climate Change (UNFCC) has developed a 

mechanism to Reduce carbon Emissions from Deforestation, forest Degradation and 

enhancement of forest carbon stocks (REDD+) in developing countries (UNFCCC, 2009). 

For monitoring, reporting and verification (MRV) of REDD+ activities countries need to set 

up a robust and transparent national forest monitoring system which is appropriate for 

their national circumstances (UNFCCC, 2010). According to the Intergovernmental Panel 

on Climate Change guidelines (IPCC, 2006) two inputs are necessary to calculate 

greenhouse gas emissions: activity data in forest areas and emissions factors. Activity data 

refer to the location and spatial extent of forest cover loss or degradation. Emissions 

factors describe the emissions of greenhouse gases per unit area of forest cover loss of a 

specific type (e.g. tons of carbon per hectare of cover loss of a specific forest type).  

Remote sensing technologies are able to provide objective, practical and cost-effective 

solutions for developing and maintaining REDD+ monitoring systems (De Sy et al., 2012). 

Hence, remote sensing has the potential to contribute to reach the eventual goal of forest 

carbon assessment under REDD+: continuous annual national assessments forming a 

global REDD+ monitoring system (Baker et al., 2010). 
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1.2 Importance of forest changes monitoring in Fiji  
 

Fiji forested area covers approximately 960000 ha, consisting mainly from indigenous 

forest, softwood plantations (mostly Pinus caribea) and hardwood plantations covering 

89%, 6% and 5% of the total forested area, respectively (Ministry of Forest, 2006:9). 

Over the last decades deforestation threatens forest conservation in Fiji. According to 

Weaver et al. (2009) all forest types in Fiji are under particular pressure for human 

intervention and deforestation or degradation. Among the anthropogenic forces, forest 

clearance, largely attributed to agriculture, is mainly affecting the tropical forests of Fiji 

(Fijian Department of Environment, 2010).  

Fiji government acknowledging the threats and recognising the importance of forest 

conservation has approved in 2010 the Fiji National REDD+ Policy, setting the framework 

for the development of REDD+ activities in Fiji (Fiji REDD+ policy, 2011). The policy aimed 

to have Fiji achieved national REDD – readiness by 2012.  

The development of MRV systems is fundamental for the accomplishment of a national 

scale REDD+ readiness. Though, a fully operational monitoring system for forest cover 

dynamics, in accordance with the objectives of REDD+ has not developed in Fiji yet. This 

study is focusing in optical time series analysis for monitoring forest cover changes, 

related to deforestation in Fiji and is intended to contribute towards to the development of 

a monitoring tool for REDD+ activities.  

 

The study area 

 

For the purposes of the present research, we selected a forested area located at Ba 

province, in North West part of Viti Levu Island, Fiji. The specific study area is a small part 

(900 ha) of a monoculture Caribbean pine (Pinus caribea) plantation. Figure 1, shows the 

location map of the selected study area. 

Logging operations for timber extraction, mainly between 2007 and 2010, have 

fragmented a large part of the forest cover. Aside from partial clearing, forested locations 

remained intact (full grown stable pine) within the study area. The heterogeneous spatial 

patterns of forest cover have made the location suitable to assess the accuracy of the 

proposed methodology for change detection within the disturbed area and further, to 

validate the performance in stable pine. Our aim was to test the suggested methodology in 

a small scale (100 x 100 pixels), with the prospect that later on could be implemented in a 

larger spatial extend. 
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Figure 1. Study area location map.  
Data source: Fiji cadastral and KOMPSAT2 image for the study area were provided by ReCover project (EU-funded 

Framework 7), Image showing Fiji location in the South Pacific Ocean was acquired on Oct. 2013 by Imagery©2013 

TerraMetrics, Map data ©2013 Google, INEGI.  
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2. THEORETICAL CONSIDERATIONS 
 

2.1 Vegetation Spectral Indices 
 

Vegetation indices are commonly employed for characterisation of plant cover (Govaerts et 

al., 1999) and monitoring land-cover changes (Hayes and Sader, 2001). By combining 

different spectral bands, they aim to enhance the information of the spectral reflectance 

data and hence are able to depict the variability due to vegetation characteristics (Viña et 

al., 2011). The relationship between remotely-sensed vegetation indices and canopy 

attributes have been extensively studied (see Verstrate et al. (1996), Glenn et al., 2008 

for a review). For the purposes of this study the Normalized Difference Vegetation Index 

(NDVI), the Normalized Fraction Vegetation Index (NDFI) and the Disturbance Index (DI) 

were selected to explore their potentials for monitoring forest cover changes related to 

deforestation in Fiji. 

2.1.1 Normalized Difference Vegetation Index (NDVI) 

 

The Normalized Difference Vegetation Index (NDVI) (Rouse et al. 1974) is widely used for 

monitoring, analysing, and mapping temporal and spatial distributions of physiological and 

biophysical characteristics of vegetation (Gitelson, 2004). It is calculated by: 

 

NDVI =
���	�
�

�����
�
      (1) 

Where NIR is the spectral response in the near-infrared (Landsat ETM+ band 4) and RED 

(Landsat ETM+ band 3) is the spectral response in the red range of the spectrum.  

 

Healthy green vegetation absorbs strongly in the red range of the spectrum whereas, 

near-infrared (NIR) radiation is strongly reflected (Glenn et al., 2008). NDVI involves this 

distinctive contrast in spectral behaviour of vegetation to account for temporal and spatial 

variations in vegetation structure and density (Gitelson, 2004).  

 

2.1.2 Normalized Fraction Vegetation Index (NDFI) 

 

The Normalized Fraction Vegetation Index (NDFI) was developed by Souza et al. (2005a). 

NDFI computation requires the decomposition of Landsat ETM+ reflectance data of each 

pixel into fraction images of Green Vegetation (GV), Non-photosynthetic vegetation (NPV), 

Soil and Shade through a spectral mixture analysis (SMA) model (Adams et al., 1993). 

Next, the index is computed as follows:   
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NDFI =
�������	(��������)

����������������
   (2) 

Where GVshade is the shade-normalised GV fraction given by: 

GVshade =
��

"##	�����
        (3) 

The GV, NPV, Soil and Shade image spectra are probably expected in degraded forest 

environments (Souza et al., 2005a). Selectively logged forests have lower proportion of GV 

and a higher proportion of NPV, Soil and Shade relative to intact forest (Souza et al., 

2003, Souza et al., 2005b). The NDFI has the advantage of combining in one synthetic 

band, all the information that has been shown to be likely relevant for identifying and 

mapping degraded forests (Souza et al, 2005a). 

 

2.1.3 Disturbance Index (DI) 

 

The Disturbance Index (DI) (Healey et al., 2005) is potentially a change detection metric 

suitable for forest environments (Masek et al., 2008). The DI is a transformation of the 

Landsat Tasseled-Cap data space (Huang et al., 2002) designed to provide sensitivity to 

forest disturbances (Healey et al., 2005). The Tasseled-Cap brightness (B), greenness (G) 

and wetness (W) indices are results of a standard transformation of the original Landsat 

spectral bands. According to Masek et al. (2008) B,G, and W can effectively capture the 

three major axes of spectral variation across the solar reflective spectrum. The DI is 

calculated by: 

DI = B − (G + W)         (4) 

Unlike simple visible and near-infrared ratio indices (e.g. NDVI), the incorporation of the 

Tasseled–Cap wetness index in DI, provides further shortwave infrared information, which 

according to Cohen and Goward (2004) has the potential to detect changes in the forest 

structure. 
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2.2 Change detection algorithms 
 

Several change detection techniques have been proposed for use in satellite image time 

series (see Coppin et al., 2004; Lu et al., 2004). Kennedy et al. (2007) were developed a 

trajectory-based change detection algorithm and Huang et al. (2010) were used thresholds 

of consecutive high and low forest probability observations. Despite the advantages of 

their approaches (see Broich et al., 2011), change detection techniques must allow for 

change detection across complete long-term datasets and further, they need to be 

independent of the data type, change trajectories or thresholds. Additionally, should be 

able to detect changes in non-gap-filled time series (Verbesselt et al., 2010a). To 

overcome these limitations Verbesselt et al. were proposed two algorithms for disturbance 

detection in satellite image time series; BFAST (Verbesselt et al., 2010a and 2010b) and 

BFASTmonitor (Verbesselt et al., 2011) algorithms. 

 

2.2.1 Breaks For Additive Seasonal Trend (BFAST) algorithm  

 

BFAST algorithm (Verbesselt et al., 2010a) is a change detection method in time series. 

The algorithm implements an additive decomposition model that iteratively fits a piecewise 

linear trend and seasonal model Decomposed time series are the sum of trend (Tt), 

seasonal (St), and remainder (et) components. As an improvement of the method 

Verbesselt et al. (2010b) were proposed the implementation of a harmonic seasonal model 

for break detection within the seasonal component of the time series.  

 

2.2.2 BFASTmonitor algorithm 

 

BFASTmonitor (Verbesselt et al., 2011) is a multi-purpose change detection algorithm for 

near real-time disturbance detection in time series. Unlike other proposed change 

detection algorithms BFASTmonitor does not require specific thresholds and is able to deal 

with missing data (Verbesselt et al., 2011). The algorithm is modelling the seasonal-trend 

variation in time series for a certain period (stable history) based on disturbances (breaks) 

can be detected within newly acquired data (monitoring period). To account for seasonal 

and trend changes BFASTmonitor algorithm implements an additive season and harmonic 

model, similar to BFAST algorithm (see Verbesselt et al., 2011, for details). 
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3. RESEARCH NEEDS, OBJECTIVES AND QUESTIONS 
 

3.1 Problem statement 
 

In 2010 the Fiji Government was approved the Fiji National REDD+ Policy (Fiji REDD+ 

policy, 2011) setting the framework for the development of REDD+ activities in Fiji (Fiji 

REDD+ policy, 2011). However, a fully operational monitoring system for forest cover 

dynamics, in accordance with REDD+ objectives, has not established in Fiji yet. 

 

Forests are naturally dynamic ecosystems in continuous change (Gómez et al. 2011). 

Changes in ecosystems can be seasonal, gradual or abrupt, with the latest referring to 

disturbances (e.g. deforestation, fires, and floods) (Verbesselt et al., 2010a). Disturbance 

and post-disturbance recovery are key processes in the development of forest ecosystems 

(Peterken, 2001; Huang et al., 2010) and main drivers of spatiotemporal heterogeneity 

(Turner 2010). Abiotic and biotic ecosystem disturbances raise CO2 levels in the 

atmosphere due to the emission of CO2 from terrestrial biomass loss (Potter et al., 2003). 

Thus, understanding of spatial and temporal extend of these processes is important for 

forest management and carbon cycle modelling (Hirsch et al., 2004; Law et al., 2004; Zhu 

et al., 2012). Furthermore, forest cover dynamics assessment is contributing to REDD+ 

monitoring activities (UNFCCC, 2005).  

 

Remote sensing approaches are suitable for monitoring forest cover changes, accurately 

and consistently (Broich et al, 2011). Further, in combination with ground measurements 

are able to determine loss of forest cover (DeFries et al., 2007), caused both from natural 

and anthropogenic disturbances (Jin & Sader, 2005). For monitoring forest canopy changes 

the use of dense time series is essential since the spatial signature of most logging 

activities can be obscured by regrowing vegetation within a year or two (Stone and 

Lefebvre, 1998; Souza et al., 2005a). Additionally, reduces the risk of confounding 

seasonal variability with change (de Beurs and Henebry, 2005). Landsat images due to 

their spatiotemporal characteristics (30m spatial resolution, 16 days temporal resolution, 

and 185km × 185km area extent) have been the data source of choice for many tropical 

forest monitoring efforts (Broich et al., 2011; Killeen et al., 2007). 

 

However, change estimation from remotely sensed data series can be complicated. Time 

series contain a combination of changes (seasonal, gradual and abrupt) occurring in 

parallel, in addition to noise that originates from the sensing environment (e.g. 

atmospheric scatter, cloud effects) (de Beurs and Henebry, 2005; Roy et al., 2002). 

Particularly in tropical forests, optical remote sensing is challenging because of the 

complex and variable forest structure (Lu, 2005; Steininger, 2000) and furthermore, due 

to persistent cloud-cover (Asner, 2001). Cloud cover in the tropics is affecting the 
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availability and quality of optical image data (Siren and Brondizio, 2009), therefore 

potentially can influence the accuracy of time series analysis. 

 

Different change detection methods have been proposed for use in Landsat and other 

satellite data (see Lu et al., 2004). In the present research the potentials of BFASTmonitor 

algorithm in forest change detection will be further investigated. Until recently, BFAST and 

BFASTmonitor algorithms have been used mainly for Normalized Difference Vegetation 

Index (NDVI) time series analysis, aiming to monitor forest changes in temperate climate 

(Verbesselt et al., 2010a; Verbesselt et al., 2010b; Verbesselt et al., 2011; de Jong et al., 

2012, Lambert et al., 2011). In these studies, BFAST was successfully detected spatial and 

temporal changes in time series with different noise levels and seasonal amplitudes. In 

tropical regions the effectiveness of BFASTmonitor to detect and characterise land-cover 

changes was assessed by Tanago-Meñaca (2012) for a tropical forest in Vietnam. Hence, is 

necessary to evaluate BFASTmonitor break detection ability in different ecosystems, types 

of change events, and moreover to assess the behaviour and responses in forest canopy 

changes for additional spectral indices time series. 

 

3.2 Research objectives and questions 
 

This research aims to propose a remote sensing method in accordance with the REDD+ 

guidelines for monitoring forest dynamics in tropical regions. It is intended to explore the 

potential of long-term time series analysis for capturing changes related to deforestation in 

tropical forest. For the purposes of this research, a plantation of Pinus caribea was selected 

in Viti Levu Island, Fiji. The specific objectives of this research are: 

 

• To evaluate the performance of different candidate indices as temporal change 

indicators in tropical forests.  

• To assess the potential of BFASTmonitor time series analysis algorithm for 

deforestation detection and further to assess the accuracy of break-time 

estimation in a P.caribea plantation. 

• To specify the magnitude of change characterising an actual deforestation event in 

the selected study area. 

 

The following research questions will be investigated: 

i. What is the potential of dense and long-term Landsat derived indices for detecting 

deforestation? 

ii. How accurate BFASTmonitor can estimate the time of change in indices time 

series? 

iii. What is the magnitude threshold that characterises an actual deforestation event 

in the study area? 
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4. MATERIALS 
 

4.1 Available data 
 

Long and dense time-series were required for monitoring changes in tropical forests. 

Landsat image data have proven essential for quantification of tropical deforestation rates 

(Williams et al., 2006), due their temporal (revisit cycle every 16 days) and spatial 

resolution (30m). In the present study data were acquired from the Enhanced Thematic 

Mapper Plus (ETM+) sensor onboard of Landsat 7. ETM+ is an eight-band multispectral 

scanning radiometer (spatial resolution: 30 m (60m – thermal, 15m - pan)) capable of 

providing medium resolution imaging information of the Earth’s surface (NASA, ETM+ 

technical specifications). The data were obtained in Level 1 Product Generation System 

(LPGS) level L1T (full Terrain Correction) from the US Geological Survey's Earth Resources 

Observation and Science (EROS) (data were freely downloaded from USGS Global 

Visualization Viewer at http://glovis.usgs.gov/, on Dec. 2012). Landsat images covered the 

period from May 2000 to November 2012 (see Appendix I). We selected the path/row 

75/72 (WRS-2) for the study area (Figure 2). 

 

Figure 2. Landsat 7 ETM+ imagery coverage of the study area (path/row 75/72, WRS-2). 

Data source: Fiji Cadastral provided by ReCover project (EU-funded Framework 7), Landsat image were downloaded 

by US Geological Survey's Earth Resources Observation and Science (acquired on Dec. 2012), USGS Global 

Visualization Viewer (Earth Resources Observation and Science Center, EROS. 

In addition, a land use map for 2007 (Advanced Visible and Near Infrared Radiometer 

(AVNIR) on-board the ADvanced Earth Observing Satellite (ADEOS), Japan Aerospace 
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Exploration Agency (JAXA)), was provided by SOPAC (Applied Geoscience and Technology 

Division of Secretariat of the Pacific Community, SPC). The land use map was used to 

provide spatial information about the land-cover classes of Fiji. Further, KOMPSAT-2 data 

were used (Korea Multi-Purpose Satellite, Multi-Spectral Camera sensor with spatial 

resolution 1m panchromatic and 4m multispectral) for specific locations of the study area 

in conjunction with other data sources (Figure 3). The data were acquired between 2007 

and 2012 but their spatiotemporal density was limited and varied among the years (2007, 

2010 and 2012 single image, 2008, 2009 and 2011 multiple acquisitions).  

 

Figure 3. Spatiotemporal availability of KOMPSAT-2 images (2007 - 2012) for Viti Levu.  

Data Source: Fiji cadastral and KOMPSAT-2 spot catalogue provided by ReCover project (EU-funded Framework 7). 

Fiji cadastral data were also available. KOMPSAT-2 and Fiji cadastral data were all provided 

by the EU-funded Framework 7 (Theme Space program of the European Commission) 

ReCover project for the purposes of the present research. 

 

4.2 Software and script-programing requirements 

 

The remote sensing data pre-processing and analysis was performed mainly in open 

source R environment (R Development Core Team 2010), version 2.15.1. Specific pre-

processing operations such as Fmask (Zhu and Woodcock, 2012) were performed in Matlab 

(version R2012a). The application of change detection algorithms was conducted in R and 

further GIS analysis was performed in ArcGIS 10.1 and IDL-ENVI 4.8. The statistical 

analysis was performed partially in R and Excel.  
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5. METHODOLOGY 
 

5.1 Pre-processing 
 

We performed radiometric calibration on Landsat 7 ETM+ scenes to remove the effects of 

changes in sun elevation angle and illumination conditions as well as atmospheric 

decontamination (NASA 2011). The acquired images were calibrated to transform digital 

numbers (DN) values into top of the atmosphere (TOA) reflectance and further to remove 

clouds and cloud shadows. DN values were converted to TOA reflectances with the Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS) atmosphere correction tool 

(Masek et al., 2006). The LEDAPS approach was performed in R environment by 

implementing the modified R package “PreFAST” (developed by Detroix, DeVries and 

Reiche). 

In addition, we removed cloud and cloud-shadows from the time series. Cloud 

contamination of images could reduce significantly the derived spectral indices values. 

Change detection algorithms while accounting for abrupt changes related to deforestation 

could misclassify these indices drops as forest cover changes. Thus, the Fmask algorithm 

(Zhu and Woodcock, 2012) was implemented to remove clouds and cloud-shadow 

contamination of Landsat scenes. Fmask algorithm was provided an automated method for 

screening clouds and their shadows from Landsat images. The algorithm first was 

implemented rules based on cloud physical properties and a series of spectral tests to 

produce a layer of potential cloud pixels (PCPs). Next, the darkening effect of the cloud 

shadows in the near infrared (Landsat ETM+ band 4) was used to generate a potential 

cloud-shadow layer. Finally, a 3D object-based cloud and cloud shadow matching was 

performed based on their geometric relationship and illumination conditions, leading to the 

production of the final cloud and cloud shadow mask. The Fmask analysis was conducted in 

Matlab. The algorithm was successfully detected and removed most of the medium and big 

size clouds and cloud-shadows. However, clouds and cloud-shadows were still present in 

the images after the pre-processing. 

Thereafter, the images were re-projected to the UTM WGS 84 60S projection system. The 

pre-processed image time-series were used as inputs for the indices calculations (NDVI, 

NDFI and DI). NDVI and DI computations were performed in R environment, based on 

computation equations (1) and (4) (see Chapter 2.1). To retrieve the NDFI the ImgTools 

were implemented. ImgTools were used to perform the Spectral Mixture Analysis and the 

NDFI calculation from the Landsat band stack (bands 1,2,3,4,5 and 7, path/row 75/72 

Landsat image). All the derived indices were scaled in order to represent the same range 

of values. Then, indices layer stacking was performed by a script in R environment. The 

pre-processing steps and indices computations were performed by Reiche J. and were 

provided prior to the analysis. 



Optical time series analysis for monitoring land-cover changes in Fiji. 

 

12 

 

5.2 Time series analysis 
 

We assessed the change detection capacity of BFASTmonitor algorithm by analysing 

indices time series from 2000 - 2012. Prior to attempting any deforestation detection in 

the selected study area, it was necessary to explore the indices responses in a pixel-level 

approach.  

5.2.1 Pixel-level time series analysis 

 

A series of pixel-level tests were performed in Viti Levu Island to evaluate the indices 

properties. Sensitivity differences towards seasonal variations of different land-cover 

classes and the typical temporal patterns of Fiji pine dynamics were assessed in a pixel-

level time series analysis.  

Sensitivity differences towards seasonal variations 

 

Three land cover classes, mangrove forest, stable hardwood forest (mature and 

undisturbed) and sugarcane plantations were analysed due to their expected distinctive 

temporal characteristics. Figure 4, illustrates the location of the examined land cover 

classes in Viti Levu Island. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Land-use classification map (2007) of Viti Levu Island, Fiji.  
Data source: Land-use classification map provided by SOPAC and Fiji cadastral by the ReCover project (EU-funded 

Framework 7). 
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Forty (40) representative cloud-free pixel time series were selected for each land-cover 

class based on the land-use map of 2007 and visual interpretation of Landsat time series 

and KOMPSAT-2 images (see Appendix II for pixel location). Thereafter, descriptive 

statistics (mean values, variance, and standard deviation) were calculated in R for the 

indices time series (NDVI, NDFI and DI) over the period 2000 - 2012. 

Temporal patterns of Fiji pine dynamics 

 

We retrieved the temporal patterns of undisturbed, deforested and reforested Fiji pine 

from pixel-level time series analysis. Undisturbed (fully grown) pine pixels were selected 

based on visual interpretation of the time series. Descriptive statistics of indices time 

series (2000 - 2012) were computed in R, to assess the indices fluctuations among the 

years. Additionally, we performed BFAST and BFASTmonitor analysis in undisturbed pine 

pixel time series. Further, deforested pine pixels with visible regrowth patterns were 

selected to assess the deforestation and regrowth typical patterns of pines. BFAST 

algorithm was implemented to depict the temporal dynamics of deforestation (forest 

clearance) and regrowth in indices time series. 

 

5.2.2 Area-level time series analysis 

 

We validated the change detection ability of BFASTmonitor algorithm by analysing NDVI 

and NDFI time series (2000 - 2012) for a test area of 100 x 100 pixels (900ha). 

BFASTmonitor algorithm enables the detection of near real-time disturbances in time 

series. Based on a model for stable historical behaviour, abnormal changes within newly 

acquired data can be detected. A regression model with harmonic component of first order 

was used for modelling the historical behaviour, due to low rates of pine seasonality that 

were depicted in Landsat time series. The change detection was limited from 2005 to 

2011, in order to have sufficient number of observations while modelling the historical 

behaviour. Table 1, describes the implemented monitoring years and their corresponding 

historic periods.  

Table 1. Years of change detection and their corresponding monitoring and historic periods. 

Year of change 

detection 
Duration of monitoring period 

Start of historic 

period 

End of historic 

period 

2005 Jan 2005 – Jan 2006 2000 2004 

2006 Jan 2006 – Jan 2007 2000 2005 

2007 Jan 2007 – Jan 2008 2000 2006 

2008 Jan 2008 – Jan 2009 2000 2007 

2009 Jan 2009 – Jan 2010 2000 2008 

2010 Jan 2010 – Jan 2011 2000 2009 

2011 Jan 2011 – Jan 2012 2000 2010 
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The main outcomes of BFASTmonitor time series analysis were three matrices (Figure 5), 

depicting (i) spatiotemporal information of detected breaks in the monitoring period, (ii) 

spatial distribution and magnitude (m) of changes in the monitoring period (without 

classifying them as breaks) and (iii) the length of historic (modelling) period. 

 

 Figure 5. Example of BFASTmonitor time series analysis outcome. 

To retrieve information about potential deforestation patterns in the study area, we limited 

the analysis to BFASTmonitor break estimations with negative magnitude of change (m < -

0.01). Area level BFASTmonitor analysis in NDVI and NDFI time series was performed in R 

environment, using R functions developed by DeVries and Reiche. We repeated the 

procedure for every monitoring year. 

BFASTmonitor analysis was performed in successive monitoring years. Thus, detected 

breaks of prior years were likely present within the results of a following year. To assess 

the break detection rates for a specific year (without considering previously detected 

breaks) we calculated for every monitoring year the “net” break detection.  For each year 

we performed mosaicking and removal of prior detected breaks. Net break calculations 

from 2005 – 2011 were conducted in ArcGIS 10.1. Appendix III, describes the detailed 

work flow for net break detection calculation. Thereafter, break estimations by 

BFASTmonitor were compared to the generated reference dataset. 
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Legend

Magnitude of change

5.3 Reference data generation 

 

We validated BFASTmonitor break estimation accuracy based on comparison with a 

generated reference dataset. Reference dataset was contained the major forest cover 

changes of the study area. We visually interpreted the available Landsat image time series 

and clear canopy changes were delineated on a shapefile in ArcGIS. Additionally, we 

defined the stable pine area (full grown pine trees) in the plantation. 

The observed forest cover changes and intact pine area were further evaluated manually. 

Pixel-level analysis was performed to ensure the integrity of the reference dataset and 

further to limited as possible human bias. Due to the spatial resolution of Landsat images 

(30m) the delineation was eliminated to major visible forest clearances in the study area. 

Thus, minor forest cover changes were excluded from the analysis. Appendix IV, describes 

the generation of the reference dataset and examples of pixel-level analysis. Figure 6, 

shows the generated reference dataset for the study area. 

 

 

Figure 6. Spatiotemporal patterns of  major forest changes in the study area from 2007 – 2010 and 

stable pine area. 

 

 

 

 

Detected forest 

cover changes 
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5.4 Accuracy assessment 
 

We cross-compared the detected breaks for the individual monitoring years with the 

generated reference dataset, to evaluate the accuracy of the BFASTmonitor estimations. 

From the accuracy assessment we excluded break predictions for 2005, 2006 and 2011 

due to lack of changes in the reference dataset. Appendix V, describes the implemented 

methodological flowchart for the accuracy quantification of change detection from 2007 to 

2010 (Appendix Figure 2) and additionally for stable pine (Appendix Figure 3). Thereafter, 

confusion matrices were calculated. Table 2, describes a confusion matrix. 

Table 2. Example of the generated confusion matrix.  

Rows represent the break-time prediction by BFASTmonitor and columns the ground truth. Diagonal elements show 

the correct prediction per monitoring year (true positive (tp) in bold). Off-diagonal values along a row indicate the 

false negative (fn), while off-diagonal values below a column heading indicate the false positive (fp) predictions per 

year. 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 

Predicted year of change 
(BFASTmonitor results)  

2007 tp(2007) fn(2007) fn(2007) fn(2007) fn(2007) 

2008 fp(2007) tp(2008)    

2009 fp(2007)  tp(2009)   

2010 fp(2007)   tp(2010)  

Stable Pine fp(2007)    tp(Stable) 

 

We calculated confusion matrix metrics (Congalton, 1991) to assess the accuracy of break-

time detection of the individual monitoring years. Producer’s / user’s accuracy, commission 

/omission error and mapping accuracy, were computed for the detected changes of 2007 – 

2010 and for stable pine. Producer’s accuracy is the ratio between the true-positive 

predictions of a year and the sum of true and false positives of the specific year. Further, 

omission error was calculated based on the equation: 

Omission error = 1 – producer’s accuracy             (5) 

User’s accuracy is the ratio between the true positives predictions of a year and the sum of 

true and negative positives within the year. It’s indicative of the probability that a pixel 

classification actually represents that category on the ground (Story and Congalton, 1986). 

Commission error was computed by: 

Commission error = 1 – user’s accuracy                (6) 

Finally, we assessed the mapping accuracy for the individual monitoring years. For each 

year, mapping accuracy (MA) was calculated as the ratio of true-positive predictions for a 

certain year divided by the sum of correctly identified pixels for a year plus the pixels 

representing errors of commission (i.e. for X year, all other years in the X row) and 

omission (i.e. for X year, all other years in the X column) associated with that year.  
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5.5 Improving the accuracy of the analysis 
 

To improve the accuracy of BFASTmonitor break detection we estimated the magnitude of 

change that was corresponded to an actual clearance event and further, we excluded 

remaining cloud contaminated layers after the image pre-processing that could potentially 

lead to false break detection. 

5.5.1 Magnitude thresholds 

 

Magnitude thresholds were implemented to the analysis to eliminate indices variations 

unrelated to actual clearance events in the study area. The thresholds were gradually 

divided the magnitude of change from low magnitude changes (m < -0.01) to high 

magnitude changes (m < -0.30). The highest threshold was set to -0.30 due to limited 

occurrence of areas with higher magnitude of change. Table 3, presents the magnitude 

thresholds that were applied in the study. We repeated the BFASTmonitor analysis for 

NDVI and NDFI time series over the varying thresholds. The analysis was performed in R. 

Table 3. Magnitude thresholds and their corresponding range that were applied in the detected breaks. 

Threshold Magnitude of change range (m)  

-0.01 (low) m < -0.01 

-0.05 m < -0.05 

-0.10 m < -0.10 

-0.15 m < -0.15 

-0.20 m < -0.20 

-0.25 m < -0.25 

-0.30 (high) m < -0.30 

 

5.5.2 Cloud contaminated scene removal 

 

Remaining clouds in the time series after the image pre-processing, were dropped 

significantly the derived indices values. Hence, change detection algorithms could 

potentially misclassify remaining clouds as changes. We performed selection and removal 

of remaining cloud contaminated scenes, to reduce the false break detection by 

BFASTmonitor. Visual interpretation of Landsat image time series and pixel-level analysis 

was performed to select scenes with high rates of remaining clouds in the study area. 

Appendix VIII, describes the initial and final length of the time series. Next, indices time 

series were analysed anew by BFASTmonitor algorithm. We performed the analysis over 

the varying magnitude thresholds for the same monitoring years (2005 - 2011). The 

results were cross-compared to the reference shapefile. We recalculated the overall 

accuracy and confusion matrix metrics for the detected breaks based on the initially 

implemented methodology (see Appendices III and IV). Finally, we estimated the 

remaining cloud effect on BFASTmonitor performance and break-time detection accuracy 

by comparing the obtained results before and after the image removal.  
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6. RESULTS 

6.1 Pixel-level analysis  

6.1.1 Spectral indices sensitivity differences towards seasonal variations  

 

Descriptive statistics were calculated for selected pixels of mangrove forest, intact 

hardwood forest and sugarcane plantations (Table 4).  

Table 4. Descriptive statistics for NDVI, NDFI and DI time series analysis (2000 – 2012) of mangrove 

forest, intact hardwood forest and sugarcane plantation (40 pixels per class). 

 Indices time series 

 NDVI NDFI DI 

Land cover 

class     

Mangrove 

forest 

Mean 0,92 0,76 0,91 

SD 0,02 0,01 0,02 

SD (% of mean) 2,6% 1,3% 2,4% 

Intact 

hardwood 

forest 

Mean 0,94 0,74 0,86 

SD 0,01 0,01 0,02 

SD (% of mean) 1,5% 2,1% 2,8% 

Sugarcane 

plantation 

Mean 0,83 0,58 0,73 

SD 0,08 0,11 0,09 

SD (% of mean) 9,5% 19,6% 12,6% 

 

Mangrove forest pixels and intact hardwood forest pixels were demonstrated similar 

temporal patterns. Consistently high indices values and low rates of seasonality (SD < 3% 

of mean values) were depicted in Landsat time series. Figure 7, illustrates an indicative 

example of BFASTmonitor algorithm analysis for NDFI time series (2000 – 2012) of a 

mangrove forest pixel.  

 

Figure 7. Indicative example of BFASTmonitor algorithm analysis for NDFI time series of a mangrove 

forest pixel. 
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Unlike the two previous land-cover classes, sugarcane pixel analysis was depicted lower 

indices values and higher standard deviation. Remarkable difference was observed 

between the standard deviation values for NDVI and NDFI. The standard deviation of NDFI 

(20%) was considerably higher relative to NDVI (10%). Figure 8, shows the results of 

NDVI and NDFI time series analysis for the same sugarcane pixel. 

(a) 

 
(b) 

 
  

 

Figure 8. Example of BFASTmonitor algorithm outcome for NDVI (a) and NDFI (b) time series analysis of 

a sugarcane pixel (path/row 1730/849). 

Further, we retrieved the typical temporal profile of a sugarcane pixel. Two discrete phases 

in sequence were depicted within the temporal profile of sugarcane; the growth phase and 

the change phase. The growth stages of sugarcanes (10-12 months) were characterised by 

a gradual increase of indices values. At the mature point of the plant was observed a peak 

on indices rates. Thereafter, the change phase was followed, where a gradual decrease 

trend was depicted in indices values, reaching eventually the lowest point. Beyond that 

point the growth cycle was repeated. 

BFAST algorithm analysis was performed in NDVI, NDFI and DI the time series, where the 

algorithm was likely able to capture the seasonality of sugarcane without detecting breaks. 

Figure 9, illustrates how BFAST was decomposed NDFI time series (seasonal (St), trend 

(Tt) and remainder (et) components) for a sugarcane pixel. 
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Figure 9. NDFI time series (Yt) 2000 – 2012 of a sugarcane pixel (path/row 1746/869). The estimated 

seasonal (St), trend (Tt) and remainder (et) components are illustrated in red. BFAST did not detect 

breaks within the trend component of the time series. 

 

 

6.1.2 Temporal dynamics of Fiji pine 

 

 

Intact P.caribea  

 

High indices values and low seasonality without significant seasonal variations were 

depicted on Landsat time series for intact P.caribea. Mean values were 0.94, 0.75 and 0.88 

for NDVI, NDFI and DI, respectively. Standard deviation was below 4% of mean values for 

all indices. However, NDFI and DI results were illustrated slightly lower values of standard 

deviation compared to NDVI. 

Figure 10, shows a representative example of BFASTmonitor single-pixel analysis in NDVI, 

NDFI and DI time series on intact pine. The lower standard deviation rates of NDFI and DI 

time series compared to NDVI for intact pines were further visible at BFASTmonitor 

analysis output. Intact pine NDFI and DI time series were demonstrated lower seasonal 

fluctuations compared to NDVI results. 
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(a) 

 
(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(c) 

 
 

Figure 10. BFASTmonitor analysis in DI (a), NDFI (b) and NDVI (c) time series for a P.caribea pixel 

(path/row 1011/1203). The defined historical period is from 2000 -2009 and the monitoring period 

starts on 2010.  
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Deforestation and regrowth temporal patterns of P.caribea 

 

We performed single pixel analysis for P.caribea with documented harvest operations and a 

visible regrowth, to retrieve the deforestation and recovery temporal patterns. Based on 

the obtained results, the harvest cycle of pines was composed by the pre-harvesting 

period, breakpoint (harvest event) and a following recovery phase. Figure 11, illustrates 

the retrieved deforestation and regrowth patterns for a pine pixel, where a harvest 

operation occurred in 2006 and a regrowth period was followed. 

 

 

 

 

 

 

Figure 11. Trend changes in NDVI time series (2000 – 2012) for a P.caribea pixel (path/row 395/492). 

The fitted trend component (Tt) shows the pre-harvest period (2000 - 2006), the detected breakpoint 

(2006) and the following gradual recovery phase (2006 - 2012). 

 

The pre-harvesting period was demonstrated low seasonal variations and high values for 

all indices. At the breakpoint, an abrupt decrease of indices values was observed with 

negative slope. Next, the recovery period was followed, demonstrating a successive 

positive slope and a gradual increase on indices rates.  

Figures 12, illustrates the decomposition and change detection by BFAST algorithm 

analysis in NDVI and NDFI time series of the same P.caribea pixel with a harvest operation 

in 2006.  The main difference between the indices performance was the depicted length of 

the regrowth phase of pines. A series of tests were demonstrated generally longer 

regrowth period in NDFI time series, with a more gradual recovery trend relative to NDVI 

and DI. NDVI and DI time series about four years after the clearance event were reached 

high values representative of healthy P.caribea (above 0.9). Six years after the detected 

change the indices were demonstrated the pre-harvest period values. 
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(a)  

(b)  

 

Figure 12. Decomposition of Landsat NDVI (a) and NDFI (b) time series (Yt) for a single P.caribea pixel 

(Path/Row 395/2492). The time of the detected change and its confidence interval are shown in red. 

In contrast, in NDFI time series we observed a more gradual increase of indices values at 

the recovery phase. Unlike NDVI and DI, four years after the detected break, NDFI values 

were still low and six years after the harvest event the index did not reach the initial 

values. 

In the next section, are presented the area-level BFASTmonitor results for a pine 

plantation. Previously obtained results have depicted high similarities between the 

performances of NDVI and DI time series. DI time series were considered as insignificant 

for comparison purposes. Hence, DI validation was limited to pixel-level exploratory 

analysis. 
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6.2 Area-level analysis 
 

We analysed Landsat derived NDVI and NDFI time series (2000 – 2012) to detect forest 

cover changes (breaks) related to clearance operations in a P.caribea plantation. Initially, 

we applied a static threshold for the magnitude (m) of change, including all detected 

breaks with negative magnitude (m < -0.01). 

6.2.1 Detection and characteristics of land cover changes  

 

Table 5, presents the spatial extend of detected breaks and the areas where changes with 

negative magnitude were depicted (without necessarily a break) by BFASTmonitor analysis 

in NDVI and NDFI time series over the monitoring periods 2005 – 2011. 

 

Table 5. Spatial extend of detected breaks and areas where changes with negative magnitude were 

depicted by BFASTmonitor analysis in NDVI and NDFI time series from 2005 – 2011. 

 

BFASTmonitor analysis was depicted minor changes for 2005 and 2006 (spatial extend less 

than 5% of the study area) in both indices time series, while major changes were observed 

between 2007 and 2010. The highest rates of breaks were detected at 2008 in both time 

series (33% and 45% of the study area for NDVI and NDFI, respectively). In general, 

BFASTmonitor analysis in NDVI time series was revealed higher rates of areas where 

changes with negative magnitude were occurred, while NDFI time series analysis was 

depicted higher rates of breaks. 

 

Figure 13, shows the spatial distribution of land cover changes with negative magnitude 

and detected breaks by BFASTmonitor analysis in NDVI time series for the monitoring 

periods 2005 - 2010. 

 NDVI time series  NDFI time series 

 Negative change Net break detection  Negative change Net break detection 

 
Hectares 

(ha) 

% of 

study area 

Hectares 

(ha) 

% of 

study area  

Hectares 

(ha) 

% of 

study area 

Hectares 

(ha) 

% of 

study area 

Monitoring 
Year 

    

 

    

2005 335 37% 4 1% 
 

208 23% 10 5% 

2006 427 47% 3 0,7% 
 

253 28% 8 3% 

2007 522 58% 65 12% 
 

496 55% 86 17% 

2008 662 74% 217 33% 
 

581 65% 263 45% 

2009 759 84% 79 10% 
 

627 70% 116 18% 

2010 799 89% 168 21% 
 

703 78% 145 21% 

2011 102 11% 0 0 
 

0 0 0 0 
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Figure 13. Spatial distribution of land cover changes with negative magnitude and detected breaks by 

BFASTmonitor analysis in NDVI time series for the monitoring periods 2005 - 2010. 

The detected breaks were appeared mainly in clusters, where high magnitude of change 

(m < -0.15) was depicted. However, breaks were also detected in areas with lower 

magnitude of change (m < -0.05). Very few isolated pixels were depicted as breaks in 

NDVI time series.  Figure 14, presents the spatial distribution of land cover change with 

negative magnitude and the net break detection by BFASTmonitor in NDFI time series from 

2005 to 2010. 

Legend

Study area

Net break detection

Magnitude of change

-0,01 -0,3  -0,6
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Figure 14. Spatial distribution of land cover changes with negative magnitude and detected breaks by 

BFASTmonitor analysis in NDFI time series for the monitoring periods 2005 - 2010. 

In general, BFASTmonitor break detection in NDFI time series was depicted similar spatial 

patterns as in NDVI. Though, in NDFI time series the detected breaks were demonstrated 

generally lower magnitude. 

Figure 15, synopsizes the spatiotemporal patterns of the detected breaks by BFASTmonitor 

analysis for NDVI and NDFI time series over the monitoring years 2005 – 2010.  

Legend

Study area

Net break detection

Magnitude of change

-0,01 -0,3  -0,6
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(a) 

 

(b) 
 

 
Figure 15. Map illustrating the spatial distribution of net break detection by BFASTmonitor analysis in (a) 

NDVI and (b) NDFI time series for the monitoring years 2005 – 2010. 

BFASTmonitor analysis in NDVI and NDFI time series was illustrated similar spatial 

patterns for the major land cover changes. High relevance was observed between NDVI 

and NDFI results for 2007 and 2010. Though, we observed spatial differences in break 

detection for 2008 and 2009. For 2008 and 2009, BFASTmonitor analysis in NDFI time 

series was depicted higher rates of breaks relative to NDVI results. 
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6.2.2 Accuracy assessment (static magnitude threshold) 

 

We compared the estimated breaks by BFASTmonitor time series analysis with the 

generated reference dataset, to assess the prediction accuracy of the monitoring years 

2007 – 2010 and stable pine. Initially, we included all the detected breaks with negative 

magnitude of change (m < 0.01). 

 The overall accuracy of break-time estimation was 61% and 64% for NDVI and NDFI, 

respectively. The mapping accuracy (MA) was lower for both indices time series (mean MA 

45% for both indices). Figure 16, shows the mapping accuracy of predicted breaks in NDVI 

and NDFI time series for each monitoring year and stable pine. 

 

Figure 16. Mapping accuracy (%) for the individual monitoring years (2007 – 2010, stable pine) and 

mean mapping accuracy of breaks by BFASTmonitor analysis in NDVI and NDFI time series. 

The mean omission error was 36% for NDVI and 32% for NDFI. Figure 17, shows the 

omission error of break-time estimation per monitoring year in NDVI and NDFI time series.  

 

Figure 17. Error of omission (%) in NDVI and NDFI time series based on the generated reference dataset 

for detected breaks during 2007 – 2010 and stable pine. 

For 2007 both indices were depicted the lowest rates of omission error, while breaks of 

2009 were illustrated the highest values. Mean commission error was 35% and 40% for 

NDVI and NDFI, respectively. Figure 18, shows the commission error of break-time 

estimation for NDVI and NDFI time series. In general commission error was higher 

compared to omission error. For 2010 we observed the highest commission error for NDVI 

(58%) and NDFI (53%). 

64%
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Figure 18. Error of commission (%) in NDVI and NDFI time series based on the generated reference data 

for detected changes during 2007 – 2010 and stable pine. 

In previous results, we applied a static threshold for the magnitude of change in the 

detected breaks (m < 0.01). Thus, breaks with low magnitude of change were included to 

the analysis. However, breaks with low negative magnitude most likely were associated 

with seasonal indices fluctuations rather than actual forest cover changes. We 

implemented magnitude thresholds to eliminate the occurrence of breaks unrelated to 

actual forest cover changes. The accuracy of BFASTmonitor break-time predictions was re-

estimated for each threshold. 

6.2.3 Accuracy assessment over varying magnitude thresholds 

 

Figure 19, depicts the overall accuracy of BFASTmonitor break-time detection for NDVI and 

NDFI time series over the implemented magnitude thresholds. A systematic raise of break-

time estimation overall accuracy was observed for both indices by increasing the 

magnitude threshold.  

 
 
Figure 19. Overall accuracy (%) of BFASTmonitor break-time detection in NDVI and NDFI over varying 

magnitude thresholds. 

Generally, NDFI was demonstrated higher rates of overall accuracy compared to the 

obtained results for NDVI. Both indices were illustrated high rates of overall accuracy 

(above 80%) when changes with low magnitude were excluded and only breaks with 

higher magnitude of change (m < -0.2) were considered as actual forest cover changes. 

Furthermore, we evaluated the break-time estimation accuracy of BFASTmonitor for the 

individual monitoring years over the implemented magnitude thresholds for NDVI 

(Appendix VI) and NDFI (Appendix VII) time series. Figure 20, illustrates the mapping 
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accuracy of detected breaks for each monitoring year by BFASTmonitor analysis in NDVI 

time series.  

 

Figure 20. Mapping accuracy (%) for the individual monitoring years (2007 – 2010, stable pine) and 

mean mapping accuracy (mean MA) of breaks by BFASTmonitor analysis in NDVI time series over the 

implemented magnitude thresholds. 

For NDVI time series, break estimation for 2007, 2008 and stable pine was demonstrated 

high mapping accuracy (above 50%) and an increasing trend by increasing the magnitude 

threshold. The mapping accuracy of break prediction for 2009 and 2010 was considerably 

lower than the previous monitoring years over all the implemented magnitude thresholds. 

Especially for 2009, we observed a negative trend in mapping accuracy by applying higher 

magnitude threshold. Figure 21, illustrates the omission error of break-time estimation by 

BFASTmonitor analysis in NDVI time series. 

 

Figure 21. Omission error (%) of estimated break-time by BFASTmonitor analysis in NDVI time series 

over the varying magnitude thresholds. 

Error of omission (i.e. break-time incorrectly classified in other than the actual year) was 

general low for 2007, 2008, 2010 and stable pine. Further, a decreasing trend was 

depicted for the abovementioned years. Unlike, 2009 was demonstrated significant higher 

values and an increasing trend of omission error compared to previous monitoring years. 
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Figure 22, shows the commission error of break-time estimation by BFASTmonitor analysis 

in NDVI time series over the varying magnitude thresholds.  

 

Figure 22. Commission error (%) of estimated break-time by BFASTmonitor analysis in NDVI time series 

over the varying magnitude thresholds. 

In general, a negative trend in commission error was observed by increasing the 

magnitude threshold. The results for 2010 were deviated from the general pattern. High 

rates of commission error (above 50%) and an increasing trend were depicted for 2010 

over all the implemented thresholds. 

Unlike the mapping accuracy, where in general a positive trend was observed by increasing 

the magnitude threshold, the true-positive predictions (i.e. spatial agreement with the 

reference) were illustrated a negative trend by increasing the magnitude threshold. Figure 

23, shows the true-positive predictions and overall accuracy of BFASTmonitor in NDVI time 

series, over the monitoring years 2007 – 2010 and stable pine.  

 

Figure 23. True-positive predictions and overall accuracy of BFASTmonitor analysis in NDVI time series 

(as % of total breaks recorded in reference dataset for each monitoring year and stable pine) over 

varying magnitude thresholds. 

True-positive break-time predictions for 2007 and 2008 have shown high rates of 

agreement (above 80%) with the referenced change area for low (-0.05) and medium (-

0.1) magnitude thresholds. As the magnitude threshold was increasing (m < -0.15), a 

negative trend was depicted for 2007 and 2008. True-positive prediction agreement with 

the reference dataset was low for 2009 (below 30%), demonstrating a negative trend as 

the magnitude threshold was increased. For 2010, the correspondence to the reference 

dataset was above 50% for low (-0.05) and medium (-0.1) magnitude thresholds and was 
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decreased for higher magnitude of change, but in general did not reach rates higher than 

62% of the corresponded reference area. Finally, stable pine was illustrated high rates of 

agreement (above 50%) and an increasing trend as the magnitude thresholds was raised. 

Additionally, we performed accuracy assessment of break-time estimations by 

BFASTmonitor in NDFI time series. Figure 24, shows the mapping accuracy of break 

detection for 2007 – 2010 and stable pine in NDFI time series for the applied thresholds. 

 

Figure 24. Mapping accuracy (%) for the individual monitoring years (2007 – 2010, stable pine) and 

mean mapping accuracy (mean MA) of breaks by BFASTmonitor analysis in NDFI time series over the 

implemented magnitude thresholds. 

Mapping accuracy of break detection for NDFI time series was demonstrated similar trends 

and values as NDVI. High mapping accuracy and an increasing pattern was observed for 

2007, 2008 and stable pine by increasing the magnitude threshold. Break detection for 

2009 and 2010 was illustrated again lower rates and a negative trend for higher 

magnitude thresholds. 

High similarity was depicted between the omission error patterns of NDFI and NDVI. Figure 

25, shows the omission error of break-time estimation by BFASTmonitor in NDFI time 

series for the monitoring years 2007 – 2010 and stable pine, over the implemented 

magnitude thresholds. By increasing the magnitude threshold, we observed a negative 

trend of omission error for break-time estimation of 2007, 2008, 2010 and stable pine. 

Alike NDVI, NDFI results for 2009 were differed from the general trend. 

 

 
 
Figure 25. Omission error (%) of estimated break-time by BFASTmonitor analysis in NDFI time series 

over the varying magnitude thresholds. 
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Figure 26, shows the commission error of break-time estimation in NDFI time series over 

the varying thresholds, for the monitoring years 2007 – 2010 and stable pine. Commission 

error in NDFI time series was reached lower values relative to NDVI, by increasing the 

magnitude threshold. Though, breaks detected at 2010 were revealed higher rates of 

commission error in relation to NDVI. Likewise NDVI, BFASTmonitor analysis in NDFI time 

series was depicted lower rates of correct break-time classification for 2010.  

 

Figure 26. Commission error (%) of estimated break-time by BFASTmonitor analysis in NDFI time series 

over the varying magnitude thresholds 

The negative tendency of true-positive predictions by increasing the magnitude threshold 

was also present to NDFI results. Figure 27, shows the true-positive predictions and overall 

accuracy by BFASTmonitor analysis in NDFI time series, over the monitoring years 2007 – 

2010 and stable pine.  Prediction agreement for 2009 was again significant lower than the 

previous year. However, for low (-0.05) and medium (-0.1) magnitude thresholds NDFI 

was revealed higher values compared to NDVI. For 2010, the true-positive predictions 

were higher relative to NDVI for low to medium magnitude thresholds (maximum rates 

57%).  

 

Figure 27. True-positive predictions and overall accuracy of BFASTmonitor analysis in NDFI time series 

(as % of total breaks recorded in reference dataset for each monitoring year and stable pine) over 

varying magnitude thresholds. 
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6.2.4 Improving the accuracy  

  

We re-assessed the accuracy of break-time detection in NDVI (Appendix IX) and NDFI 

(Appendix X) time series after the removal of cloud contaminated scenes.  In general, the 

overall accuracy of BFASTmonitor break-time estimation was increased after the removal 

of cloud contaminated scenes. Figure 28, illustrates the overall accuracy of break-time 

estimation by BFASTmonitor in NDVI and NDFI time series before and after the image 

removal.  

 

Figure 28. Overall accuracy (%) of break-time detection by BFAST monitor analysis in NDVI and NDFI  

before (NDVI, NDFI) and after (NDVI’, NDFI’) the removal of cloud contaminated scenes over the 

implemented magnitude thresholds. 

Break detection in NDVI time series was demonstrated higher rates of improvement 

compared to NDFI. However, break-time estimation by BFASTmonitor in NDFI time series 

was indicated slightly higher overall accuracy related to NDVI results while considering as 

breaks, changes with magnitude higher than -0.20.  

In addition, improvement was observed in mapping accuracy of breaks in NDVI time series 

relative to the initial results. Figure 29, shows the mapping accuracy and the mean 

mapping accuracy for break detection in NDVI time series after the removal of cloud 

contaminated scenes. 

 

Figure 29. Mapping accuracy (%) for the individual monitoring years (2007 – 2010, stable pine) and 

mean mapping accuracy (after the removal: mean MA’ and before: mean MA) of breaks by BFASTmonitor 

analysis in NDVI time series over the implemented magnitude thresholds after the scene removal. 
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Omission error for NDVI after the scene removal was demonstrated high similarity relative 

to the primary results. However, lower rates were observed for 2009 compared  to the 

initial results for high magnitude thresholds. Figure 30, shows the re-computed omission 

error in NDVI time series after the scene removal. 

 

Figure 30. Omission error (%) of estimated break-time by BFASTmonitor analysis in NDVI time series 

over the varying magnitude thresholds after the removal of cloud contaminated Landsat scenes. 

Error of commission for NDVI was illustrated lower rates relatively to the results before the 

scene removal (Figure 31).  

 

Figure 31. Commission error (%) of estimated break-time by BFASTmonitor analysis in NDVI time series 

over the varying magnitude thresholds after the removal of cloud contaminated Landsat scenes. 

Especially, for 2009 we observed a decrease of commission error for magnitude higher 

than -0.2. For 2010, commission error was high compared to previous monitoring years, 

but a small decrease was depicted relative to the primary results.  

BFASTmonitor ability to depict the change area of the reference dataset did not indicate 

major enhancement in NDVI time series (Figure 32). Improvement was observed for stable 

pine, while no alterations were depicted for 2008 and 2009. Further, the results for 2007 

and 2010 were indicated a minor drop. 
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Figure 32. True-positive predictions and overall accuracy of BFASTmonitor analysis in NDVI time series 

(as % of total breaks recorded in reference dataset for each monitoring year and stable pine) over 

varying magnitude thresholds after scene removal. 

Furthermore, accuracy assessment of the detected breaks was performed in NDFI time 

series after the removal of cloud contaminated scenes. Mapping accuracy for break 

detection in NDFI time series was slightly improved compared to the initial results for 

magnitude thresholds higher than -0.15 (Figure 33). For 2009 and 2010, the results 

remained low regarding other monitoring years; however we observed a small 

improvement. In addition, significant differences were not depicted between NDVI and 

NDFI. 

 

Figure 33. Mapping accuracy (%) for the individual monitoring years (2007 – 2010, stable pine) and 

mean mapping accuracy (after the removal: mean MA’ and before: mean MA) of breaks by BFASTmonitor 

analysis in NDFI time series over the implemented magnitude thresholds after the scene removal. 

Figure 34, illustrates the re-calculated omission error of break-time estimation by 

BFASTmonitor over varying magnitude thresholds in NDFI time series. 

 

Figure 34. Omission error (%) of estimated break-time by BFASTmonitor analysis in NDFI time series 

over the varying magnitude thresholds after the removal of cloud contaminated Landsat scenes. 
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Omission error in NDFI did not indicate significant improvement compared to the primary 

results. For 2007 and 2008 omission error in general was revealed the same values, while 

for 2009, 2010 and stable we observed a small reduction.  

Figure 35, shows the re-computed commission error in NDFI time series. The general trend 

was illustrated same rates of commission error, however small improvement was depicted 

for all monitoring years over high magnitude thresholds (m < -0.20).  

 

Figure 35. Commission error (%) of estimated break-time by BFASTmonitor analysis in NDFI time series 

over the varying magnitude thresholds after the removal of cloud contaminated Landsat scenes. 

Finally, the true-positive predictions of BFASTmonitor analysis in NDFI time series did not 

demonstrate significant alterations. Figure 36, shows the true-positive predictions and 

overall accuracy of BFASTmonitor analysis for NDFI time series over the implemented 

magnitude thresholds after the removal of cloud contaminated scenes. 

 

Figure 36. True-positive predictions and overall accuracy of BFASTmonitor analysis in NDFI time series 

(as  % of total breaks recorded in reference dataset for each monitoring year and stable pine) over 

varying magnitude thresholds after scene removal. 

For 2008, 2009, 2010 and stable pine true-positive predictions were illustrated high values 

for low magnitude thresholds and negative trend as the magnitude threshold was 

increased. For 2007 the results were indicated a decrease compared to the initial 

performance for low to medium magnitude thresholds.   
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7. DISCUSSION 
 

7.1 Pixel – level analysis 
 

7.1.1 Spectral indices sensitivity differences towards seasonal variations 

 

We analysed three land-cover classes, mangrove forest, stable hardwood forest and 

sugarcane plantations, to retrieve the sensitivity differences towards seasonal variations in 

pixel-level for NDVI, NDFI and DI time series. For mangrove and stable hardwood forest 

the indices were performed similarly. High rates of biomass and absence of changes 

(typical characteristics of mangrove and intact hardwood forest), were depicted by high 

indices values in time series. Further, Landsat time series captured low rates of standard 

deviation and insignificant seasonal variations. 

Higher rates of standard deviation and sensitivity differences were observed between the 

indices time series for sugarcane pixel-level analysis. The life cycle of sugarcanes was 

characterised by high seasonal fluctuations. At the growth stages of the plant, the 

continuing increase of biomass was depicted by gradual raise of indices values. 

Subsequently, the harvest of sugarcanes was gradually decreased the biomass rates, 

exposing further the soil properties. A gradual decrease of indices rates was observed at 

the harvest phase of the plants. NDFI results were demonstrated higher rates of standard 

deviation in comparison with those for NDVI and DI. Further, higher drop in NDFI values 

was depicted during the harvest phase relative to NDVI and DI. The spectral properties of 

NDFI signal could explain this difference. NDFI combines image fractions, such as Green 

Vegetation (GV), non-photosynthetic vegetation (NPV) and Soil (Souza et al., 2005a). 

Unlike the simple visible-infrared ratio indices (e.g. NDVI) that are computed only based 

on the photosynthetic capacity, NDFI considers further factors and characteristics of 

change (such as the soil exposure). Thus, NDFI has the potential to be more sensitive 

while depicting biomass loss and soil exposure that constituted the spatial signature of 

harvest operations. 

Further, we performed BFAST algorithm analysis for sugarcane pixel time-series. Within 

the seasonal component (St) of the time series were captured the seasonal variations of 

sugarcanes. We observed a repeated pattern of peaks and valleys in the seasonal 

component, illustrating the biomass loss and plant regrowth after the harvest. The 

algorithm was likely able to capture the seasonal fluctuation without misclassifying these 

variations as breaks. BFAST algorithm integrates the decomposition of time series into 

seasonal (St), trend (Tt) and remainder (et) components with methods for detecting 

changes in time series (Verbesselt et al., 2010b). The decomposition of the time series has 

the potential to enhance the ability of the method to identify correctly breaks and seasonal 

variations. 
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7.1.2 Temporal dynamics of Fiji pine 

 

We performed pixel-level analysis on pine forest to retrieve the temporal dynamics of 

undisturbed, deforested and reforested Fiji pine. For intact pines, high biomass rates and 

absence of disturbances were depicted by high values for all the examined indices time 

series. The temporal resolution of Landsat time series (16 days) was illustrated low ability 

to depict the seasonality of pines, which is present in other satellite sources with higher 

temporal resolution (e.g. MODIS data, temporal resolution 1-2 days). However, we 

observed slightly lower detection sensitivity of pine seasonality, in NDFI and DI time series 

compared to the corresponding in NDVI. 

Further we analysed P.caribea pixel time series with documented harvest operations and a 

visible regrowth. Based on the obtained results, we defined the main phases (pre-

harvesting period, breakpoint and regrowth phase) of pine cycle. BFASTmonitor and BFAST 

algorithms were likely able to detect and characterise changes in time series related to 

harvest operations. Additionally, the algorithms were appeared capable to depict the 

regrowth period of the P.caribea plantation. The main difference between the indices 

performance was the depicted length of pine regrowth. In general, NDFI was illustrated 

more gradual increase of values compared to NDVI and DI, during the recovery phase. 

Hence, the spatial signature of the harvest operation could be probably detected for longer 

period of time in NDFI time series.  

The obtained results were suggested that the spectral properties of NDFI signal (see 

section 7.1.1) have the potential to track forest canopy changes of pines for longer period 

of time. This is of particular importance for monitoring purposes, especially in tropical 

regions where satellite image acquisition can be challenging due to persistent cloud. 

 

7.2 Area analysis 
 

7.2.1 Detection and characteristics of land cover changes 

 

We implemented BFASTmonitor algorithm to analyse NDVI and NDFI time series (2000 – 

2012) for a study area. The selected study area was a small part of a pine plantation, 

where harvest operations have altered the forest cover. We validated the break detection 

ability of BFASTmonitor and further we assessed the potentials of NDVI and NDFI time 

series as temporal change indicators. For the purposes of the present study, the results of 

BFASTmonitor analysis were limited to breaks with negative magnitude. Initially, we 

applied a static threshold for the magnitude (m) of change. Hence, we analysed all the 

breaks with negative magnitude (m < -0.01). 
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In general, BFASTmonitor analysis for NDVI and NDFI time series was captured similar 

spatiotemporal patterns for the major breaks in the study area. The breaks were appeared 

mainly in clusters where changes were observed with magnitude between -0.15 and -0.20. 

Though, breaks were also depicted in areas with lower magnitude of change. Both indices 

time series were illustrated the major forest cover changes (breaks) between 2007 and 

2010. Difference between the indices performance was appeared for changes with low 

magnitude unrelated to actual forest cover changes (breaks). NDVI time series were 

illustrated higher rates of areas where changes with low magnitude (m < -0.05) were 

depicted compared to NDFI. The higher sensitivity of NDVI to changes with low magnitude 

was visible for all the monitoring years but was appeared more dominant for 2005 and 

2006.  

Figure 37, highlights the sensitivity differences to changes with low magnitude between 

NDVI and NDFI time series for 2005 and 2006.  

(a) NDVI time series (b) NDFI time series 

 

  

 

Figure 37. Sensitivity differences to changes with low magnitude between (a) NDVI time series and (b) 

NDFI time series for the monitoring years 2005 and 2006. 

Low magnitude changes were probably associated with seasonal variations of pine forest 

rather than deforestation or cloud contamination (deforestation and clouds would 

significantly decrease the indices values). NDVI is strongly associated with the chlorophyll 

content and the photosynthetic capacity of the tree (Rouse et al., 1974). Thus probably 
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NDVI was appeared more sensitive compared to NDFI, detecting biomass fluctuations 

related to seasonal variations. 

In contrast, our results were indicated slightly higher amount of breaks in NDFI time series 

compared to NDVI for all the monitoring years. Particularly for 2008 and 2009, breaks in 

NDFI time series were occupied 45% and 19% of the study area, respectively while in 

NDVI were 33% and 10%, respectively. Figure 38, shows the spatial difference of the 

detected breaks for 2008 and 2009 by BFASTmonitor analysis on NDVI and NDFI time 

series.   

As already mentioned the spectral properties of NDFI signal, were likely more sensitive 

depicting the spatial characteristics (biomass loss and soil exposure) of harvest operations. 

Therefore, NDFI has the potential to enhance the detection of deforestation caused by 

logging operations (Souza et al., 2005). 

(a) NDVI time series (b) NDFI time series 

  

  

 

Figure 38. Detected breaks for 2008 and 2009 by BFASTmonitor analysis in (a) NDVI time series and (b) 

NDFI time series. 

Furthermore, the results were suggested that in NDFI time series the signature of the 

harvest operation (break) was visible for longer period of time. Figure 39, shows the 

breaks and the areas where changes of 2007 and 2010 were detected by BFASTmonitor on 

NDVI and NDFI time series. 

Legend

Study area

Net break detection

Magnitude of change

-0,01 -0,3  -0,6



Optical time series analysis for monitoring land-cover changes in Fiji. 

 

42 

 

Legend
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For NDVI time series, the area where breaks were detected at 2007, three years after the 

break did not show change. Unlike, for NDFI time series, the same area was still appeared 

as area where changes with negative magnitude occurred in 2010. Hence, NDFI has the 

potential to track the spatial signature of forest canopy changes for longer. These results 

are in accordance with the obtained results of the exploratory pixel level analysis on 

deforestation patterns of pines (see section 7.1.2). 

(a) NDVI time series (b) NDFI time series 

  

  

 

Figure 39. Areas where breaks and changes were detected for 2007 and 2010 by BFASTmonitor analysis 

in (a) NDVI time series and (b) NDFI time series. 

 

7.2.2 Accuracy assessment based on reference data 

 

We validated the accuracy of break detection by BFASTmonitor based on comparison with 

a generated reference map for the study area. Initially, we applied a static magnitude 

threshold (m < -0.01), including all the detected breaks with negative magnitude to the 

accuracy assessment. 

The overall accuracy of break detection was 61% and 64%, for NDVI and NDFI time series, 

respectively. In general, BFASTmonitor was able to depict with higher mapping accuracy in 

both time series breaks of 2007, 2008 and also the stable pine area (mapping accuracy 
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above 47%), while lower rates were observed for 2009 and 2010 (mapping accuracy below 

35%). False break detection and consequently low rates of estimation accuracy were 

mainly induced by (i) remaining clouds in the time series after the image pre-processing 

and (ii) the magnitude of change in detected breaks. 

High rates of commission error were strongly related to cloud contamination of the time 

series. Clouds were produced a significant drop of indices values. Hence, BFASTmonitor 

was misclassified these drops with breaks. Thus, within the results of a certain year 

remaining clouds were falsely produced breaks. Cloud contamination of time series was 

mainly associated with lower rates of mapping accuracy that we observed for 2009 and 

2010. Clouds within the images of 2010 were produced false breaks (mainly as breaks of 

2009), increasing the commission error for 2010. Figure 40, shows the true-positive and 

false predictions of 2010 by BFASTmonitor for NDVI time series and examples of pixel-

level analysis on false prediction, which confirms the presence of clouds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40. True-positive and false predictions of 2010 by BFASTmonitor for NDVI time serier and pixel-

level analysis. 

 

In addition, the magnitude of change in the detected breaks has influenced the break 

detection accuracy. Initially, we included all the detected breaks with negative magnitude. 

However, breaks with insignificant magnitude (m > -0.1) were probably related to 

seasonal variations of pine trees rather than actual changes in forest cover. Thus, by 
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including breaks associated with seasonal variations, break overestimation was observed 

within a monitoring year. 

Breaks with low magnitude were detected in both indices time series for all the monitoring 

years. Though, NDVI was demonstrated higher sensitivity compared to NDFI, depicting 

seasonal variations of pines and hence, higher rates of break overestimation were 

observed within NDVI results. Thus, NDVI was illustrated lower rates of accuracy relative 

to NDFI.  

 

7.2.3 Improving break-time estimation accuracy  

 

In order to improve the accuracy of BFASTmonitor break detection for NDVI and NDFI time 

series, we estimated the magnitude of change that was corresponded to an actual harvest 

event and further, we removed cloud contaminated images from the time series. 

 

Applying magnitude thresholds 

 

We applied seven magnitude thresholds (-0.01, -0.05, -0.1, -0.15, -0.20, -0.25 and 0.30), 

to define the minimum reduction on indices values that was triggered by an actual forest 

cover change in the study area. The maximum tested threshold was -0.30 due to limited 

occurrence of breaks with higher magnitude of change. The accuracy assessment was 

repeated over the implemented magnitude thresholds. 

A systematic increase of overall accuracy was depicted for both indices by increasing the 

magnitude threshold. Sufficient spatial agreement (overall accuracy above 80%) with the 

generated reference dataset rates was observed in both time series when low magnitude 

changes were excluded. Hence, actual forest cover changes due to harvest operations 

were probably related to breaks with magnitude higher than -0.15. BFASTmonitor break 

detection in NDFI was illustrated slightly higher ability to classify correctly breaks 

compared to NDVI. The highest overall accuracy (96%) was observed for break detection 

in NDFI time series when we applied the maximum magnitude threshold (m < -0.30). 

Additionally, NDFI was depicted slightly better mapping accuracy of breaks for the 

individual monitoring years relative to NDVI.   

In general, BFASTmonitor was able to classify correctly in NDVI and NDFI time series, 

breaks of 2007, 2008 and further did not detect false breaks within the stable area. 

However, for 2009 and 2010 the algorithm was demonstrated lower ability to classify 

properly breaks in both indices time series over all the magnitude thresholds. Considerably 

higher values of commission error compared to other monitoring years were depicted for 

2010 in both indices over all the implemented magnitude thresholds. This observation was 
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verified the presence of clouds within the time series (especially within the acquired 

images for 2010) and consequently the false break detection. False break detection due to 

cloud contamination could not have been prevented even for high magnitude thresholds 

(m < -0.30), since clouds were decreased significantly the indices values. 

Despite the general improvement of mapping accuracy by increasing the magnitude 

threshold, considerable reduction of the true-positive estimations was depicted for 

BFASTmonitor break predictions for NDVI and NDFI time series. The spatial agreement 

(true-positive) of break estimations with the actual disturbed area (reference dataset) was 

decreased by increasing the magnitude threshold. Hence, the break detection ability of 

BFASTmonitor was downgraded over high magnitude thresholds (m < -0.25). 

 

Removal of cloud contaminated scenes from the time series 

 

In general, the results after the removal of cloud contaminated images were illustrated 

slight increase of break-time estimation overall accuracy for both NDVI and NDFI time 

series. Omission and commission errors were decreased, increasing subsequently the 

mapping accuracy for all the monitoring years in both indices time series. Hence, we 

observed an improvement in mapping accuracy for both indices after the scene removal. 

BFASTmonitor was likely able to classify correctly breaks of 2007, 2008 and further did not 

detect false breaks within the stable area. But, for 2009 and 2010 the algorithm was 

demonstrated lower ability of correct break-time classification. Commission error for 2010 

and omission error for 2009 were remained high compared to other monitoring years, 

though improvement was depicted after the scene removal relative to the primary results. 

For 2010 intensive cloud contamination was observed for all the acquired images after the 

image pre-processing, resulting in high commission error rates for 2010. Although we 

removed a large number (more than 50%) of acquired images, cloud contaminated scenes 

remain, in order to have sufficient number of observation for 2010. Thus, remaining clouds 

were probably affected the break detection ability of BFASTmonitor for 2010. This is in 

accordance with Verbesselt et al., 2011, where the signal-to-noise ratio of the time series 

was influenced the detection ability of BFASTmonitor algorithm. 

Additionally, potentially the length of the historical period that was implemented for 2010 

has affected the break estimation ability of BFASTmonitor for 2010. The algorithm based 

on modelling of a historical period (which is considering as stable) is able to detect breaks 

within newly acquired data (Verbesselt et al., 2011). For 2010, breaks occurred in previous 

years (between 2007 and 2009), were considered as normal (stable) index behaviour. 

Hence, break detection ability of BFASTmonitor within the monitoring period of 2010 was 

probably decreased. 
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Finally, similar trends as in the primary results were observed after the image removal for 

the true-positive break estimations. Although, BFASTmonitor accuracy was increasing, the 

ability to depict the spatial extent of the referenced breaks was likely decreased over 

higher magnitude thresholds.  

The proposed methodology was intended to provide spatial information for REDD+ 

monitoring purposes, by indicating the spatial extend of forest cover changes. Considering 

the above, by applying a magnitude threshold of about -0.15 to -0.20 within the 

BFASTmonitor break estimations for NDVI and NDFI time series, we could extract 

spatiotemporal information of potential forest cover changes of pines with sufficient 

accuracy (above 80%).   

 

7.2.4 Methodological considerations 

 

Reference data generation 

 

The assessment of BFASTmonitor break-time estimation accuracy was performed by 

generating reference data from Landsat image time series depicting the major forest cover 

changes of the study area. Additional actions were implemented (e.g. single-pixel analysis) 

to eliminate as possible the human bias, generally contained in visual interpretation of 

disturbances within time series (Souza et al., 2005a). Due to Landsat spatial resolution 

(30m) the delineation of forest cover changes was limited to major changes. Changes with 

smaller spatial extend (less than 5 pixels) were entailed high risk of commission error, 

thus were excluded from the delineation. Though, we think that this had a minor impact in 

the analysis.  

Further, we acknowledge that the accuracy assessment was performed based on the same 

satellite product, since the reference data and the break detection were derived from 

Landsat time series. However, this was the only available satellite data source. It would be 

ideal to be able to generate reference data from high-resolution dense time series and 

reliable field observations for the study area. 

BFASTmonitor parameters 

 

BFASTmonitor is a multi-purpose change detection algorithm for near real-time 

disturbance detection within time series (Verbesselt et al., 2011). The algorithm is 

modelling the normal behaviour and data variation of the time series within a certain 

period (historical period) based upon breaks can be detected within newly acquired data 

(monitoring period). BFASTmonitor performance is strongly related to the defined historic 

period. In the present study the varying length of the stable history between the 

monitoring years was possibly influenced the accuracy of the estimations. Particularly for 
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2010, where within the implemented historic period breaks occurred in previous years, 

BFASTmonitor ability to correctly classify breaks was appeared lower than in previous 

years. 

Cloud-contaminated scene removal 

 

Removing scenes from the time series entails the risk of reducing the ability of change 

detection algorithms to successfully capture disturbances of a certain year. Excluding 

images potentially could remove the image containing the disturbance event. Further, 

scene removal from the time series could result in early or delay detection phenomena. 

The low accuracy results in capturing forest cover changes of 2010, among other 

influencing factors was further opposed the sufficiency of image acquisition density for 

2010.  

Effect of remaining topography  

 

The selected pine plantation area show moderate morphological variations, thus 

topographic parameters that could possibly influence the indices time series and further 

the results of BFASTmonitor did not consider in the present study. Further analysis should 

be performed to evaluate the influence of topography in the time series in order to 

eliminate the remaining effects of terrain properties from the results. 
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8. CONCLUSIONS  
 

In this research we assessed the change detection ability of BFASTmonitor algorithm and 

we evaluated the break-time estimation accuracy in Landsat derived NDVI and NDFI time 

series in Fiji. Further, we estimated the signifying drop in indices values associated with 

forest cover changes due to harvest operations for a P.caribea plantation.  

Our results showed that, forest cover changes in the study area, were depicted similarly by 

BFASTmonitor analysis in NDVI and NDFI time series. The overall accuracy of break-time 

estimation was 61% and 64% for NDVI and NDFI, respectively and the mean mapping 

accuracy was 45% for both indices over the monitoring years 2007 – 2010. However, 

BFASTmonitor ability to classify correctly the time of change varied among the monitoring 

years. For 2007 and 2008, the results were depicted high rates of accuracy (mean 

mapping accuracy above 52%, 24% and 36%, mean commission and omission error, 

respectively), while significant lower rates were observed for 2009 and 2010 (mean 

mapping accuracy about 35%, 60% and 55% omission and commission error for 2009 and 

2010, respectively). 

In addition, we assessed the magnitude of change associated with an actual forest cover 

change. High rates of agreement between the estimated breaks and the generated 

reference dataset (above 80% and 60%, overall and mean mapping accuracy, respectively 

for both indices) were obtained by applying a magnitude threshold between -0.15 and -

0.20. We suggested that for a P.caribea plantation, a drop on NDVI and NDFI values with 

magnitude between -0.15 to -0.20 would be probably able to characterise a deforestation 

event. BFASTmonitor analysis in NDFI time series was demonstrated slightly better ability 

to correctly estimate the time of actual forest cover changes compared to NDVI (overall 

accuracy 78% and 82%, for NDVI and NDFI, respectively).  Moreover, cloud contamination 

in time series was strongly affected the performance of BFASTmonitor algorithm. High 

rates of commission and omission error for 2010 and 2009, respectively, were mainly 

induced by remaining clouds. Our results indicate enhancement of BFASTmonitor break-

estimation ability after the removal of cloud contaminated scenes. 

According to Verbesselt et al. (2011) BFASTmonitor algorithm enables a rapid response by 

detecting disturbances in near real-time within new available satellite data. Our results 

were proposed that BFASTmonitor is probably able to detect spatiotemporal patterns of 

forest cover changes and further the algorithm under specific pre-conditions (i.e. 

magnitude of change, low rates of remaining cloud-contamination) has the potential to 

estimate the break-time with sufficient accuracy (overall accuracy above 80%) for NDVI 

and NDFI time series.  

Monitoring forest cover changes is crucial for any initiative to reduce deforestation in 

tropical regions. A monitoring system that fits the objectives of REDD+ to calculate 
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greenhouse gas emissions requires two inputs: activity data and emissions factors (IPCC, 

2006). BFASTmonitor analysis can potentially contribute in monitoring deforestation in two 

ways; as a rapid response to forest canopy changes within newly acquired satellite data 

and in addition by providing activity data related to deforestation, since has the potential 

to estimate with sufficient accuracy the spatial extent of forest canopy changes. Further 

investigation of forest degradation and reforestation patterns in the time series could be 

performed based on the obtained results from BFASTmonitor analysis. Combing 

deforestation, forest degradation and regrowth information for an area, is necessary for 

the establishment of a complete forest carbon inventory. Hence, the method could 

potentially contribute in the achievement of the eventual goal of forest carbon assessment 

under REDD+ of policy which according to Baker et al. (2010) is to conduct continuous 

annual national assessments that form a global REDD+ monitoring system. 
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9. RECOMMENDATIONS 
 

The following recommendations are intended to increase the effectiveness of relevant 

studies for monitoring forest cover changes in tropical regions. 

 

BFASTmonitor performance 

 

The ability of BFASTmonitor to detect disturbances is strongly related to the defined stable 

history and monitoring period. Two main factors are likely influencing BFASTmonitor 

results; remaining clouds in the time series after image pre-processing and the inclusion of 

disturbance events within the stable history. Concerning the first influencing factor the 

implementation of combined methods for cloud and cloud-shadows masking should be 

considered to eliminate as possible false break detection. Additionally, identification and 

removal of remaining clouds could be performed by BFASTmonitor analysis in a pixel-level 

approach. Since clouds are producing a significant drop in indices values, detected breaks 

related to cloud-contamination with high magnitude of change (m < -0.35) could be 

removed. Furthermore, in case of remaining clouds, masking and removal of the specific 

area should be preferred rather than scene exclusion, as in this way is preserved the 

decontaminated remote sensed information.  

The presence of disturbances within successive years in the end of historic period is 

probably influencing the ability of BFASTmonitor to detect disturbances within newly 

acquired data. Finally, assessment of the remaining effect of topography in the time series 

would likely contribute to improve BFASTmonitor performance.  

 

Suggested magnitude thresholds 

 

In the present study we suggested a magnitude threshold possibly describing the drop on 

indices values related to deforestation events and potentially improving the break 

estimation accuracy of BFASTmonitor. Specific influencing factors were considered, such as 

the selected spectral indices time series, the change detection algorithm and the conditions 

of the study area (e.g. vegetation cover, morphology etc.). Selection of magnitude 

threshold representing deforestation is challenging as many parameters should be 

considered for the specific case. Generalisation and use of the specified magnitude 

threshold for deforestation in varying environments is not suggested. Moreover, future 

work could estimate the magnitude of change related to forest degradation and regrowth 

of P. caribea trees. 
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Higher spatial resolution time series analysis 

 

In the present study BFASTmonitor algorithm was analysed moderate resolution Landsat 

image time series. The use of satellite sources with higher spatial resolution will possibly 

better represent the fine-scale heterogeneity found in most disturbed areas (Hurtt et al., 

2003), particularly concerning small scale deforestation and selective logging activities.    

 

Further, incorporation and evaluation of different data sources could potentially refined 

remotely sensed measures of forest cover changes. De Sy et al. (2012) were suggested 

synergies of multiple remote sensing data source for REDD+ monitoring purposes.  

 

Validation based on other satellite sources 

 

Higher spatial resolution images should be additionally incorporated for validation purposes 

in conjunction with reliable field data. Such validation would provide more confident 

accuracy quantification of the obtained results.  

 

Exploring further potentials of BFASTmonitor algorithm 

 

Future work should be focussed on BFASTmonitor ability in determining and assessing 

forest degradation and reforestation patterns (changes in forest cover with positive 

magnitude). Information about deforestation, forest degradation and recovery will 

contribute to perform further a full forest carbon inventory. 

 

Automation of the procedure 

The proposed methodology could be further fully automated using R and/or Python scripts 

constituting a fast and cost-effective disturbance monitoring approach within larger spatial 

and temporal extend. The automation of the implemented methodology would further 

enable the effectiveness evaluation of additional spectral indices time series for monitoring 

forest canopy changes. 
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APPENDIXES 

I. Appendix – Available Landsat scenes.  
 

No. Landsat Scene Identifier (ID) 
Date acquired 

(YYYY-MM-DD) 
Landsat 
Product 

Cloud Cover (%) 

1 LE70750722000136EDC00 2000-05-15 ETM+ L1T 6 

2 LE70750722000184EDC00 2000-07-02 ETM+ L1T 73 
 3 LE70750722000216EDC00 2000-08-03 ETM+ L1T 13 

4 LE70750722000264EDC00 2000-09-20 ETM+ L1T 69 

5 LE70750722000312EDC00 2000-11-07 ETM+ L1T 9 

6 LE70750722001026EDC00 2001-01-26 ETM+ L1T 31 

7 LE70750722001042EDC00 2001-02-11 ETM+ L1T 28 

8 LE70750722001138EDC00 2001-05-18 ETM+ L1T 36 

9 LE70750722001186EDC00 2001-07-05 ETM+ L1T 15 

10 LE70750722001218EDC00 2001-08-06 ETM+ L1T 21 

11 LE70750722001266EDC00 2001-09-23 ETM+ L1T 33 

12 LE70750722001314EDC00 2001-11-10 ETM+ L1T 4 

13 LE70750722002045EDC00 2002-02-14 ETM+ L1T 10 

14 LE70750722002125EDC00 2002-05-05 ETM+ L1T 54 

15 LE70750722002141EDC00 2002-05-21 ETM+ L1T 34 

16 LE70750722002253EDC00 2002-09-10 ETM+ L1T 60 

17 E70750722002285EDC00 2002-10-12 ETM+ L1T 7 

18 LE70750722002333EDC00 2002-11-29 ETM+ L1T 46 

19 LE70750722003128EDC00 2003-05-08 ETM+ L1T 10 

20 LE70750722003208EDC01 2003-07-27 ETM+ L1T 35 

21 LE70750722003240EDC01 2003-08-28 ETM+ L1T 32 

22 LE70750722003272EDC01 2003-09-29 ETM+ L1T 9 

23 LE70750722003320EDC02 2003-11-16 ETM+ L1T 16 

24 LE70750722004019EDC01 2004-01-19 ETM+ L1T 3 

25 LE70750722004035EDC01 2004-02-04 ETM+ L1T 25 

26 LE70750722004067EDC02 2004-03-07 ETM+ L1T 18 

27 LE70750722004115EDC01 2004-04-24 ETM+ L1T 5 

28 LE70750722004131EDC01 2004-05-10 ETM+ L1T 0 

29 LE70750722004147EDC01 2004-05-26 ETM+ L1T 8 

30 LE70750722004179EDC01 2004-06-27 ETM+ L1T 53 

31 LE70750722004195EDC01 2004-07-13 ETM+ L1T 1 

32 LE70750722004211EDC02 2004-07-29 ETM+ L1T 24 

33 LE70750722004227EDC02 2004-08-14 ETM+ L1T 6 

34 LE70750722004243EDC02 2004-08-30 ETM+ L1T 15 

35 LE70750722004275EDC02 2004-10-01 ETM+ L1T 13 

36 LE70750722004291EDC01 2004-10-17 ETM+ L1T 51 

37 LE70750722004323EDC00 2004-11-18 ETM+ L1T 17 

38 LE70750722004355EDC00 2004-12-20 ETM+ L1T 46 

39 LE70750722005021EDC00 2005-01-21 ETM+ L1T 27 

40 LE70750722005037EDC00 2005-02-06 ETM+ L1T 6 

41 LE70750722005053EDC00 2005-02-22 ETM+ L1T 43 

42 LE70750722005133EDC00 2005-05-13 ETM+ L1T 52 

43 LE70750722005149EDC00 2005-05-29 ETM+ L1T 4 

44 LE70750722005165EDC00 2005-06-14 ETM+ L1T 7 

45 LE70750722005197EDC00 2005-07-16 ETM+ L1T 0 

46 LE70750722005213EDC00 2005-08-01 ETM+ L1T 11 

47 LE70750722005245EDC00 2005-09-02 ETM+ L1T 46 

48 LE70750722005261EDC00 2005-09-18 ETM+ L1T 11 

49 LE70750722005293EDC00 2005-10-20 ETM+ L1T 18 

50 LE70750722005309EDC00 2005-11-05 ETM+ L1T 89 
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(Table continued) 

No. Landsat Scene Identifier (ID) 
Date acquired 

(YYYY-MM-DD) 
Landsat 
Product 

Cloud Cover (%) 

50 LE70750722006056EDC00 2006-02-25 ETM+ L1T 53 

51 LE70750722006072EDC00 2006-03-13 ETM+ L1T 41 

52 LE70750722006088EDC00 2006-03-29 ETM+ L1T 7 

53 LE70750722006104EDC00 2006-04-14 ETM+ L1T 11 

54 LE70750722006120EDC00 2006-04-30 ETM+ L1T 13 

55 LE70750722006136EDC00 2006-05-16 ETM+ L1T 90 

56 LE70750722006152EDC00 2006-06-01 ETM+ L1T 10 

57 LE70750722006168EDC00 2006-06-17 ETM+ L1T 71 

58 LE70750722006168EDC00 2006-08-20 ETM+ L1T 6 

59 LE70750722006248EDC00 2006-09-05 ETM+ L1T 44 

60 LE70750722006264EDC00 2006-09-21 ETM+ L1T 7 

61 LE70750722006360EDC00 2006-12-26 ETM+ L1T 40 

62 LE70750722007011EDC01 2007-01-11 ETM+ L1T 9 

63 LE70750722007027EDC00 2007-01-27 ETM+ L1T 13 

64 LE70750722007123EDC00 2007-05-03 ETM+ L1T 15 

65 LE70750722007139EDC00 2007-05-19 ETM+ L1T 14 

66 LE70750722007155EDC00 2007-06-04 ETM+ L1T 18 

67 LE70750722007171EDC00 2007-06-20 ETM+ L1T 2 

68 LE70750722007187EDC00 2007-07-06 ETM+ L1T 3 

69 LE70750722007203EDC00 2007-07-22 ETM+ L1T 15 

70 LE70750722007283EDC00 2007-10-10 ETM+ L1T 9 

71 LE70750722007299EDC00 2007-10-26 ETM+ L1T 6 

72 LE70750722007315EDC00 2007-11-11 ETM+ L1T 11 

73 LE70750722007331EDC00 2007-11-27 ETM+ L1T 43 

74 LE70750722007347EDC00 2007-12-13 ETM+ L1T 25 

75 LE70750722008014EDC00 2008-01-14 ETM+ L1T 36 

76 LE70750722008046EDC00 2008-02-15 ETM+ L1T 9 

77 LE70750722008062EDC02 2008-03-02 ETM+ L1T 3 

78 LE70750722008142EDC00 2008-05-21 ETM+ L1T 29 

79 LE70750722008158EDC00 2008-06-06 ETM+ L1T 19 

80 LE70750722008174EDC00 2008-06-22 ETM+ L1T 21 

81 LE70750722008190EDC00 2008-07-08 ETM+ L1T 4 

82 LE70750722008206EDC00 2008-07-24 ETM+ L1T 3 

83 LE70750722008222EDC00 2008-08-09 ETM+ L1T 3 

84 LE70750722008238EDC01 2008-08-25 ETM+ L1T 13 

85 LE70750722008254EDC01 2008-09-10 ETM+ L1T 3 

86 LE70750722008270EDC00 2008-09-26 ETM+ L1T 37 

87 LE70750722008286EDC00 2008-10-12 ETM+ L1T 4 

88 LE70750722008318EDC00 2008-11-13 ETM+ L1T 21 

89 LE70750722008334EDC00 2008-11-29 ETM+ L1T 10 

90 LE70750722008350EDC00 2008-12-15 ETM+ L1T 13 

91 LE70750722009048EDC02 2009-02-17 ETM+ L1T 4 

92 LE70750722009064EDC00 2009-03-05 ETM+ L1T 32 

93 LE70750722009096EDC00 2009-04-06 ETM+ L1T 46 

94 LE70750722009112EDC00 2009-04-22 ETM+ L1T 71 

95 LE70750722009160EDC00 2009-06-09 ETM+ L1T 6 

96 LE70750722009176EDC00 2009-06-25 ETM+ L1T 69 

97 LE70750722009192EDC01 2009-07-11 ETM+ L1T 98 

98 LE70750722009208EDC00 2009-07-27 ETM+ L1T 5 

99 LE70750722009224EDC01 2009-08-12 ETM+ L1T 97 

100 LE70750722009240EDC00 2009-08-28 ETM+ L1T 36 

101 LE70750722009288EDC00 2009-10-15 ETM+ L1T 48 

102 LE70750722009320EDC00 2009-11-16 ETM+ L1T 41 
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(Table continued) 

No. Landsat Scene Identifier (ID) 
Date acquired 

(YYYY-MM-DD) 
Landsat 
Product 

Cloud Cover 
(%) 

103 LE70750722009336EDC00 2009-12-02 ETM+ L1T 11 

104 LE70750722009352EDC01 2009-12-18 ETM+ L1T 18 

105 LE70750722010003EDC00 2010-01-03 ETM+ L1T 16 

106 LE70750722010019EDC00 2010-01-19 ETM+ L1T 8 

107 LE70750722010035EDC00 2010-02-04 ETM+ L1T 16 

108 LE70750722010067EDC00 2010-03-08 ETM+ L1T 4 

109 LE70750722010083EDC00 2010-03-24 ETM+ L1T 22 

110 LE70750722010099EDC00 2010-04-09 ETM+ L1T 9 

111 LE70750722010131EDC00 2010-05-11 ETM+ L1T 5 

112 LE70750722010147EDC00 2010-05-27 ETM+ L1T 0 

113 LE70750722010195EDC00 2010-07-14 ETM+ L1T 8 

114 LE70750722010211EDC00 2010-07-30 ETM+ L1T 17 

115 LE70750722010227EDC00 2010-08-15 ETM+ L1T 7 

116 LE70750722010307EDC00 2010-11-03 ETM+ L1T 6 

117 LE70750722010355EDC00 2010-12-21 ETM+ L1T 82 

118 LE70750722011038EDC00 2011-02-07 ETM+ L1T 9 

119 LE70750722011054EDC00 2011-02-23 ETM+ L1T 14 

120 LE70750722011070EDC00 2011-03-11 ETM+ L1T 4 

121 LE70750722011230EDC00 2011-08-18 ETM+ L1T 19 

122 LE70750722011246EDC00 2011-12-08 ETM+ L1T 83 

123 LE70750722011342EDC00 2012-01-09 ETM+ L1T 5 

124 LE70750722012025EDC00 2012-01-25 ETM+ L1T 47 

125 LE70750722012073EDC00 2012-03-13 ETM+ L1T 67 

126 LE70750722012185EDC00 2012-07-03 ETM+ L1T 6 

127 LE70750722012201EDC00 2012-07-19 ETM+ L1T 9 

128 LE70750722012217EDC00 2012-08-04 ETM+ L1T 71 

129 LE70750722012265EDC00 2012-09-21 ETM+ L1T 59 

130 LE70750722012313ASN00 2012-11-08 ETM+ L1T 21 
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II. Appendix - Location of selected pixels for pixel- 

level analysis. 
 

a. Mangrove forest pixels 

  Mean Standard Deviation (SD) 

X Y NDVI NDFI DI NDVI NDFI DI 

519 1874 0,945 0,764 0,898 0,023 0,008 0,026 

521 1926 0,942 0,761 0,897 0,024 0,017 0,026 

582 1796 0,940 0,767 0,911 0,023 0,009 0,026 

1522 629 0,937 0,765 0,917 0,026 0,006 0,027 

1522 628 0,946 0,766 0,920 0,028 0,008 0,029 

1543 628 0,905 0,758 0,904 0,027 0,010 0,025 

1545 622 0,916 0,760 0,907 0,026 0,011 0,021 

1547 620 0,912 0,759 0,900 0,026 0,012 0,023 

1548 657 0,939 0,765 0,917 0,023 0,009 0,021 

1549 628 0,910 0,760 0,908 0,024 0,010 0,024 

1549 632 0,925 0,763 0,909 0,023 0,006 0,020 

1560 630 0,954 0,766 0,923 0,024 0,009 0,023 

1563 632 0,941 0,764 0,916 0,020 0,007 0,019 

1563 635 0,916 0,761 0,905 0,025 0,009 0,019 

1566 617 0,928 0,764 0,919 0,025 0,009 0,020 

1659 640 0,860 0,734 0,896 0,030 0,026 0,026 

1664 610 0,907 0,759 0,907 0,029 0,015 0,027 

1712 670 0,929 0,762 0,910 0,029 0,013 0,028 

1722 661 0,916 0,761 0,910 0,027 0,010 0,024 

1928 521 0,944 0,764 0,901 0,024 0,015 0,025 

1928 523 0,945 0,764 0,907 0,026 0,015 0,026 

1948 524 0,946 0,766 0,906 0,019 0,007 0,025 

1948 523 0,938 0,763 0,888 0,021 0,011 0,028 

2256 438 0,881 0,748 0,895 0,030 0,019 0,022 

2265 442 0,914 0,764 0,908 0,022 0,005 0,020 

2266 440 0,922 0,765 0,911 0,020 0,004 0,017 

2269 440 0,924 0,764 0,910 0,019 0,004 0,017 

2269 442 0,929 0,765 0,913 0,019 0,004 0,018 

2271 442 0,902 0,761 0,905 0,022 0,009 0,021 

2274 442 0,876 0,752 0,900 0,022 0,017 0,019 

2276 442 0,898 0,760 0,903 0,021 0,011 0,018 

2276 444 0,898 0,761 0,905 0,024 0,010 0,020 

2276 449 0,916 0,763 0,907 0,024 0,008 0,020 

2278 441 0,906 0,763 0,904 0,020 0,007 0,017 

2278 442 0,907 0,762 0,903 0,018 0,008 0,018 

2278 444 0,906 0,762 0,902 0,021 0,008 0,020 

2278 448 0,892 0,759 0,902 0,026 0,012 0,021 

2278 449 0,885 0,754 0,897 0,029 0,016 0,024 

2704 423 0,907 0,761 0,905 0,021 0,008 0,017 

2739 427 0,893 0,758 0,902 0,028 0,012 0,019 
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b. Intact hardwood forest pixels 

  Mean  Standard Deviation (SD) 

X Y NDVI NDFI DI NDVI NDFI DI 

1917 3084 0,931 0,708 0,842 0,018 0,015 0,027 

1918 3084 0,937 0,712 0,842 0,017 0,016 0,028 

1919 3084 0,938 0,716 0,850 0,019 0,016 0,029 

2769 1110 0,940 0,742 0,864 0,019 0,019 0,028 

2770 1123 0,932 0,754 0,878 0,021 0,017 0,025 

2772 1124 0,937 0,745 0,844 0,013 0,016 0,018 

2772 1123 0,937 0,744 0,838 0,013 0,015 0,018 

2772 1121 0,938 0,746 0,843 0,013 0,013 0,022 

2772 1122 0,939 0,745 0,841 0,012 0,015 0,022 

2773 1116 0,949 0,755 0,864 0,009 0,011 0,018 

2773 1115 0,947 0,742 0,840 0,009 0,013 0,019 

2773 1122 0,937 0,741 0,838 0,012 0,015 0,019 

2773 1121 0,938 0,737 0,834 0,013 0,013 0,022 

2773 1114 0,948 0,737 0,835 0,010 0,015 0,022 

2773 1120 0,938 0,731 0,833 0,014 0,017 0,024 

2774 1114 0,946 0,736 0,844 0,010 0,016 0,022 

2774 1113 0,942 0,747 0,876 0,012 0,015 0,025 

2774 1099 0,938 0,748 0,849 0,016 0,015 0,028 

2774 1110 0,934 0,749 0,892 0,021 0,016 0,028 

2775 1122 0,936 0,733 0,854 0,013 0,014 0,019 

2775 1114 0,944 0,747 0,870 0,010 0,018 0,022 

2775 1123 0,933 0,730 0,841 0,014 0,018 0,022 

2775 1116 0,943 0,732 0,833 0,012 0,016 0,022 

2775 1115 0,943 0,735 0,839 0,014 0,018 0,023 

2775 1121 0,936 0,748 0,878 0,017 0,018 0,025 

2775 1117 0,940 0,727 0,829 0,013 0,017 0,025 

2775 1120 0,939 0,764 0,901 0,017 0,015 0,026 

2775 1098 0,941 0,759 0,863 0,016 0,012 0,028 

2776 1119 0,943 0,749 0,854 0,012 0,014 0,020 

2776 1118 0,942 0,738 0,841 0,010 0,015 0,024 

2776 1120 0,943 0,757 0,879 0,014 0,017 0,026 

2776 1121 0,937 0,761 0,895 0,016 0,014 0,028 

2776 1123 0,936 0,752 0,879 0,020 0,019 0,028 

2777 1117 0,940 0,748 0,857 0,010 0,012 0,020 

2777 1116 0,940 0,740 0,855 0,010 0,016 0,020 

2777 1118 0,943 0,746 0,850 0,012 0,013 0,022 

2777 1120 0,945 0,751 0,856 0,014 0,016 0,025 

2777 1121 0,944 0,758 0,872 0,014 0,015 0,025 

2777 1115 0,937 0,742 0,873 0,017 0,019 0,029 

2777 1123 0,941 0,761 0,888 0,018 0,015 0,030 
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c. Sugarcane pixels 

  Mean  Standard Deviation (SD) 

X Y NDVI NDFI DI NDVI NDFI DI 

851 1788 0,830 0,660 0,718 0,083 0,166 0,088 

852 1789 0,827 0,569 0,717 0,084 0,126 0,087 

855 1791 0,842 0,595 0,729 0,079 0,107 0,079 

856 1782 0,839 0,607 0,751 0,073 0,090 0,068 

1678 998 0,833 0,599 0,746 0,077 0,098 0,096 

1678 994 0,830 0,588 0,736 0,092 0,134 0,122 

1678 982 0,832 0,574 0,717 0,082 0,124 0,120 

1678 979 0,832 0,590 0,728 0,088 0,125 0,127 

1682 990 0,821 0,589 0,741 0,089 0,115 0,105 

1682 994 0,817 0,602 0,759 0,082 0,097 0,083 

1682 996 0,830 0,592 0,741 0,080 0,098 0,098 

1697 986 0,849 0,609 0,737 0,087 0,108 0,096 

1697 993 0,845 0,604 0,738 0,082 0,100 0,088 

1697 990 0,847 0,619 0,753 0,082 0,094 0,079 

1704 820 0,836 0,582 0,732 0,080 0,114 0,079 

1716 983 0,836 0,599 0,731 0,077 0,088 0,091 

1719 818 0,801 0,560 0,730 0,076 0,110 0,075 

1725 851 0,821 0,591 0,752 0,060 0,084 0,077 

1725 856 0,834 0,587 0,731 0,083 0,124 0,108 

1725 858 0,785 0,495 0,645 0,067 0,114 0,098 

1730 849 0,802 0,552 0,714 0,084 0,138 0,119 

1730 857 0,830 0,577 0,723 0,082 0,118 0,090 

1730 859 0,840 0,563 0,702 0,076 0,138 0,122 

1733 995 0,829 0,594 0,745 0,088 0,121 0,104 

1736 851 0,838 0,583 0,731 0,081 0,135 0,115 

1736 937 0,844 0,618 0,771 0,082 0,105 0,070 

1740 869 0,828 0,566 0,739 0,081 0,112 0,062 

1744 871 0,840 0,597 0,760 0,074 0,107 0,072 

1745 870 0,846 0,609 0,767 0,078 0,113 0,071 

1746 869 0,838 0,606 0,768 0,083 0,114 0,073 

1746 871 0,848 0,615 0,771 0,074 0,104 0,070 

1758 861 0,833 0,562 0,724 0,068 0,089 0,054 

1758 863 0,819 0,535 0,710 0,067 0,095 0,054 

1758 868 0,845 0,548 0,708 0,063 0,095 0,057 

1767 867 0,829 0,567 0,567 0,071 0,099 0,099 

1785 803 0,815 0,534 0,676 0,088 0,156 0,147 

1804 770 0,840 0,597 0,745 0,082 0,115 0,099 

1805 769 0,842 0,605 0,758 0,076 0,108 0,085 

1816 746 0,814 0,556 0,719 0,091 0,155 0,122 

1825 775 0,823 0,566 0,726 0,079 0,125 0,102 
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III. Appendix – Net break calculation flow chart. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix Figure 1. Net break detection calculation flowchart in NDVI and NDFI time series. 

 
 Landsat 7 ETM+  

2000 – 2012 

Monitoring years 2005 – 2011  
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IV. Appendix –Reference dataset generation. 
 

Year Landsat image 
Pixel 

(Path/row) 
BFASTmonitor single-pixel time series analysis 

2007 

 

ID: LE70750722007187EDC00 

 

 
 

1483/1040 

 

2007 

 

1481/1044 

 

2007 

 

1468/1038 
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(Table continued) 

Year Landsat image 
Pixel 

(Path/row) 
BFASTmonitor single-pixel time series analysis 

2008 

 

ID:LE70750722008190EDC00 

 

 

 

1445/985 

 

2008 

 

1463/1010 
 

 

2008 

 

1479/1016 

 

2008 

 

1490/1032 
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(Table continued) 

Year Landsat image 
Pixel 

(Path/row) 
BFASTmonitor single-pixel time series analysis 

2008 

 

1488/1001 

 

2009 

 

ID: LE70750722009208EDC00 

 

 

1420/984 

 

2009 

 

1419/1007 

 

2009 

 

1411/1017 

 



Optical time series analysis for monitoring land-cover changes in Fiji. 

 

66 

 

(Table continued) 

Year Landsat image 
Pixel 

(Path/row) 
BFASTmonitor single-pixel time series analysis 

2009 

 

1452/1021 

 

2010 

 
ID: LE70750722010099EDC00 

 

1411/958 

 

2010 

 

1415/969 

 

 

2009 

 

1423/1042 
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(Table continued) 

Year Landsat image 
Pixel 

(Path/row) 
BFASTmonitor single-pixel analysis 

2010 

 

1441/961 

 

2010 

 

1455/967 

 

2010 

 

1492/973 

Stable 

 

ID: LE70750722012185EDC00 

 

 

1408/1031 
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(Table continued) 

Year Landsat image 
Pixel 

(Path/row) 
BFASTmonitor single-pixel analysis 

Stable 

 

1431/1020 

 

Stable 

 

1436/986 

 

Stable 

 

1476/974 

 

Stable 

 

1492/959 
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(Table continued) 

Year Landsat image 
Pixel 

(Path/row) 
BFASTmonitor single-pixel analysis 

Stable 

 

1468/994 
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V. Appendix - Accuracy assessment flow chart for 

monitoring years 2007 - 2010 and stable pine 

forest. 
 

 

 

  

 

 

 

  

Appendix Figure 3. Accuracy assessment flowchart 

for stable pine 

 

Appendix Figure 2. Accuracy assessment flowchart 

for monitoring years 2007 - 2010 
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VI. Appendix – Confusion matrices and error matrix 

metrics for NDVI time series. 
 

Magnitude threshold  m < -0.01 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor)    

   

2007 490 89 54 16 28 677 28% 16% 84% 72% 
2008 1 1410 337 40 325 2113 33% 35% 65% 67% 
2009 0 28 638 16 69 751 15% 66% 34% 85% 
2010 0 34 573 616 229 1452 58% 36% 64% 42% 

Stable Pine 89 619 287 276 1689 2973 43% 28% 72% 57% 
Magnitude threshold  m < -0.05 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor)       

2007 490 88 52 16 18 664 26% 4% 96% 74% 
2008 1 1411 152 32 303 1899 26% 24% 76% 74% 
2009 0 27 615 18 56 716 14% 62% 38% 86% 
2010 0 35 762 615 205 1617 62% 31% 69% 38% 

Stable Pine 18 303 56 205 2428 3010 19% 19% 81% 81% 
Magnitude threshold  m< -0.10 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor)       

2007 485 81 32 16 13 627 23% 3% 97% 77% 
2008 2 1407 48 16 274 1747 20% 23% 77% 81% 
2009 0 23 470 22 40 555 15% 69% 31% 85% 
2010 0 41 949 589 143 1722 66% 25% 75% 34% 

Stable Pine 13 274 40 143 2544 3014 16% 16% 84% 84% 
Magnitude threshold  m < -0.15 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor) 

      
2007 445 53 9 6 9 522 15% 5% 95% 85% 
2008 13 1362 13 6 211 1605 16% 20% 80% 85% 
2009 0 18 353 21 16 408 13% 72% 28% 87% 
2010 0 48 854 465 82 1449 68% 20% 80% 32% 

Stable Pine 9 211 16 82 2699 3017 11% 11% 89% 89% 
Magnitude threshold  m < -0.20 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor) 

      
2007 392 24 2 2 7 427 8% 3% 97% 92% 
2008 4 1229 2 2 140 1377 11% 14% 86% 89% 
2009 0 10 179 10 3 202 11% 79% 21% 89% 
2010 0 28 659 326 44 1057 69% 15% 85% 31% 

Stable Pine 7 140 3 44 2823 3017 6% 6% 94% 94% 
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(Table Continued) 

Magnitude threshold  m < -0.25 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor) 

      
2007 332 13 0 2 5 352 6% 2% 98% 94% 
2008 1 984 0 1 71 1057 7% 9% 91% 93% 
2009 0 12 50 5 0 67 25% 90% 10% 75% 
2010 0 5 427 198 19 649 69% 12% 88% 31% 

Stable Pine 5 71 0 19 2926 3021 3% 3% 97% 97% 
Magnitude threshold  m < -0.30 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor) 

      
2007 273 6 0 0 1 280 3% 1% 99% 98% 
2008 1 685 0 1 36 723 5% 6% 94% 95% 
2009 0 2 10 4 0 16 38% 96% 4% 63% 
2010 0 2 236 87 9 334 74% 14% 86% 26% 

Stable Pine 1 36 0 9 2975 3021 2% 2% 98% 98% 
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VII. Appendix – Confusion matrices and error matrix 

metrics for NDFI time series. 
 

Magnitude threshold  m < -0.01 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor)    

   

2007 482 113 159 33 89 876 45% 7% 93% 55% 
2008 6 1462 463 67 619 2617 44% 24% 76% 56% 
2009 0 8 732 75 287 1102 34% 59% 41% 66% 
2010 0 13 338 559 276 1186 53% 42% 58% 47% 

Stable Pine 28 325 69 229 2351 3007 22% 35% 65% 78% 
Magnitude threshold  m < -0.05 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor)       

2007 476 98 54 28 23 679 30% 6% 94% 70% 
2008 10 1477 30 20 362 1899 23% 25% 75% 78% 
2009 0 23 846 84 134 1087 22% 53% 47% 78% 
2010 0 18 737 566 247 1568 64% 40% 60% 36% 

Stable Pine 23 362 134 247 2246 3012 25% 25% 75% 75% 
Magnitude threshold  m< -0.10 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor)       

2007 338 25 2 3 9 377 10% 9% 91% 90% 
2008 25 1501 7 7 263 1803 18% 18% 82% 83% 
2009 0 19 748 72 64 903 17% 55% 45% 83% 
2010 0 29 834 473 108 1444 67% 29% 71% 33% 

Stable Pine 9 263 64 108 2576 3020 15% 15% 85% 85% 
Magnitude threshold  m < -0.15 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor) 

      
2007 285 5 0 1 4 295 3% 3% 97% 97% 
2008 5 1323 1 2 167 1498 12% 15% 85% 88% 
2009 0 29 542 30 17 618 12% 60% 40% 88% 
2010 0 25 787 330 40 1182 72% 18% 82% 28% 

Stable Pine 4 167 17 40 2793 3021 8% 8% 92% 92% 
Magnitude threshold  m < -0.20 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor) 

      
2007 203 0 0 0 1 204 0% 1% 99% 100% 
2008 1 1021 0 1 96 1119 9% 10% 90% 91% 
2009 0 12 189 4 3 208 9% 77% 23% 91% 
2010 0 6 630 211 5 852 75% 5% 95% 25% 

Stable Pine 1 96 3 5 2916 3021 3% 3% 97% 97% 
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(Table Continued) 

Magnitude threshold  m < -0.25 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor) 

      
2007 88 0 0 0 0 88 0% 0% 100% 100% 
2008 0 694 0 1 42 737 6% 6% 94% 94% 
2009 0 1 39 0 0 40 3% 90% 10% 98% 
2010 0 2 338 80 2 422 81% 4% 96% 19% 

Stable Pine 0 42 0 2 2977 3021 1% 1% 99% 99% 
Magnitude threshold  m < -0.30 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor) 

      
2007 22 0 0 0 0 22 0% 0% 100% 100% 
2008 0 405 0 1 5 411 1% 1% 99% 99% 
2009 0 0 0 0 0 0 0% 100% 0% 0% 
2010 0 0 119 17 0 136 88% 6% 94% 13% 

Stable Pine 0 5 0 0 3016 3021 0% 0% 100% 100% 
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VIII. Appendix - Length of time series and available 

Landsat images after the scene removal. 

 

Appendix Figure 2. Annual length of Landsat time series (ts) before and after the removal of cloud-

contaminated scenes. 

 

Available Landsat images after the scene removal 
 

No. Landsat Scene Identifier (ID) 
Date acquired 

(YYYY-MM-DD) 

Landsat 

Product 
Cloud Cover (%) 

1 LE70750722000136EDC00 2000-05-15 ETM+ L1T 6 

2 LE70750722000216EDC00 2000-08-03 ETM+ L1T 13 

3 LE70750722000264EDC00 2000-09-20 ETM+ L1T 69 

4 LE70750722000312EDC00 2000-11-07 ETM+ L1T 9 

5 LE70750722001026EDC00 2001-01-26 ETM+ L1T 31 

6 LE70750722001042EDC00 2001-02-11 ETM+ L1T 28 

7 LE70750722001138EDC00 2001-05-18 ETM+ L1T 36 

8 LE70750722001186EDC00 2001-07-05 ETM+ L1T 15 

9 LE70750722001218EDC00 2001-08-06 ETM+ L1T 21 

10 LE70750722001266EDC00 2001-09-23 ETM+ L1T 33 

11 LE70750722002045EDC00 2002-02-14 ETM+ L1T 10 

12 LE70750722002125EDC00 2002-05-05 ETM+ L1T 54 

13 LE70750722002253EDC00 2002-09-10 ETM+ L1T 60 

14 E70750722002285EDC00 2002-10-12 ETM+ L1T 7 

15 LE70750722003128EDC00 2003-05-08 ETM+ L1T 10 

16 LE70750722003208EDC01 2003-07-27 ETM+ L1T 35 

17 LE70750722003240EDC01 2003-08-28 ETM+ L1T 32 

18 LE70750722003272EDC01 2003-09-29 ETM+ L1T 9 

19 LE70750722003320EDC02 2003-11-16 ETM+ L1T 16 

20 LE70750722004019EDC01 2004-01-19 ETM+ L1T 3 

21 LE70750722004035EDC01 2004-02-04 ETM+ L1T 25 

22 LE70750722004067EDC02 2004-03-07 ETM+ L1T 18 

23 LE70750722004131EDC01 2004-05-10 ETM+ L1T 0 

24 LE70750722004147EDC01 2004-05-26 ETM+ L1T 8 
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(Table continued) 

No. Landsat Scene Identifier (ID) 
Date acquired 

(YYYY-MM-DD) 

Landsat 

Product 
Cloud Cover (%) 

25 LE70750722004179EDC01 2004-06-27 ETM+ L1T 53 

26 LE70750722004195EDC01 2004-07-13 ETM+ L1T 1 

27 LE70750722004211EDC02 2004-07-29 ETM+ L1T 24 

28 LE70750722004227EDC02 2004-08-14 ETM+ L1T 6 

29 LE70750722004243EDC02 2004-08-30 ETM+ L1T 15 

30 LE70750722004275EDC02 2004-10-01 ETM+ L1T 13 

31 LE70750722004291EDC01 2004-10-17 ETM+ L1T 51 

32 LE70750722004323EDC00 2004-11-18 ETM+ L1T 17 

33 LE70750722004355EDC00 2004-12-20 ETM+ L1T 46 

34 LE70750722005037EDC00 2005-02-06 ETM+ L1T 6 

35 LE70750722005053EDC00 2005-02-22 ETM+ L1T 43 

36 LE70750722005133EDC00 2005-05-13 ETM+ L1T 52 

37 LE70750722005149EDC00 2005-05-29 ETM+ L1T 4 

38 LE70750722005165EDC00 2005-06-14 ETM+ L1T 7 

39 LE70750722005197EDC00 2005-07-16 ETM+ L1T 0 

40 LE70750722005213EDC00 2005-08-01 ETM+ L1T 11 

41 LE70750722005245EDC00 2005-09-02 ETM+ L1T 46 

42 LE70750722005261EDC00 2005-09-18 ETM+ L1T 11 

43 LE70750722005293EDC00 2005-10-20 ETM+ L1T 18 

44 LE70750722005309EDC00 2005-11-05 ETM+ L1T 89 

45 LE70750722006072EDC00 2006-03-13 ETM+ L1T 41 

46 LE70750722006088EDC00 2006-03-29 ETM+ L1T 7 

47 LE70750722006104EDC00 2006-04-14 ETM+ L1T 11 

48 LE70750722006136EDC00 2006-05-16 ETM+ L1T 9 

49 LE70750722006152EDC00 2006-06-01 ETM+ L1T 10 

50 LE70750722006168EDC00 2006-06-17 ETM+ L1T 71 

51 LE70750722006184EDC00 2006-07-03 ETM+ L1T 39 

52 LE70750722006216EDC00 2006-08-04 ETM+ L1T 3 

53 LE70750722006264EDC00 2006-09-21 ETM+ L1T 7 

54 LE70750722006360EDC00 2006-12-26 ETM+ L1T 40 

55 LE70750722007011EDC01 2007-01-11 ETM+ L1T 9 

56 LE70750722007027EDC00 2007-01-27 ETM+ L1T 13 

57 LE70750722007123EDC00 2007-05-03 ETM+ L1T 15 

58 LE70750722007139EDC00 2007-05-19 ETM+ L1T 14 

59 LE70750722007155EDC00 2007-06-04 ETM+ L1T 18 

60 LE70750722007171EDC00 2007-06-20 ETM+ L1T 2 

61 LE70750722007187EDC00 2007-07-06 ETM+ L1T 3 

62 LE70750722007203EDC00 2007-07-22 ETM+ L1T 15 

63 LE70750722007299EDC00 2007-10-26 ETM+ L1T 6 

64 LE70750722007315EDC00 2007-11-11 ETM+ L1T 19 

65 LE70750722008014EDC00 2008-01-14 ETM+ L1T 36 

66 LE70750722008046EDC00 2008-02-15 ETM+ L1T 9 

67 LE70750722008062EDC02 2008-03-02 ETM+ L1T 3 

68 LE70750722008142EDC00 2008-05-21 ETM+ L1T 29 

69 LE70750722008222EDC00 2008-08-09 ETM+ L1T 3 

70 LE70750722008238EDC01 2008-08-25 ETM+ L1T 13 

71 LE70750722008254EDC01 2008-09-10 ETM+ L1T 3 

72 LE70750722008270EDC00 2008-09-26 ETM+ L1T 37 

73 LE70750722008286EDC00 2008-10-12 ETM+ L1T 4 

74 LE70750722008334EDC00 2008-11-29 ETM+ L1T 10 

75 LE70750722008350EDC00 2008-12-15 ETM+ L1T 13 

76 LE70750722009048EDC02 2009-02-17 ETM+ L1T 4 

77 LE70750722009064EDC00 2009-03-05 ETM+ L1T 32 
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(Table continued) 

No. Landsat Scene Identifier (ID) 
Date acquired 

(YYYY-MM-DD) 

Landsat 

Product 
Cloud Cover (%) 

78 LE70750722009096EDC00 2009-04-06 ETM+ L1T 46 

79 LE70750722009112EDC00 2009-04-22 ETM+ L1T 71 

80 LE70750722009160EDC00 2009-06-09 ETM+ L1T 6 

80 LE70750722009176EDC00 2009-06-25 ETM+ L1T 69 

81 LE70750722009240EDC00 2009-08-28 ETM+ L1T 36 

82 LE70750722009288EDC00 2009-10-15 ETM+ L1T 48 

83 LE70750722009320EDC00 2009-11-16 ETM+ L1T 41 

84 LE70750722009336EDC00 2009-12-02 ETM+ L1T 11 

85 LE70750722009352EDC01 2009-12-18 ETM+ L1T 18 

86 LE70750722010019EDC00 2010-01-19 ETM+ L1T 8 

87 LE70750722010035EDC00 2010-02-04 ETM+ L1T 16 

88 LE70750722010147EDC00 2010-05-27 ETM+ L1T 0 

89 LE70750722010195EDC00 2010-07-14 ETM+ L1T 8 

90 LE70750722010211EDC00 2010-07-30 ETM+ L1T 17 

91 LE70750722010227EDC00 2010-08-15 ETM+ L1T 7 

92 LE70750722010307EDC00 2010-11-03 ETM+ L1T 6 

93 LE70750722010355EDC00 2010-12-21 ETM+ L1T 82 

94 LE70750722011038EDC00 2011-02-07 ETM+ L1T 9 

95 LE70750722011054EDC00 2011-02-23 ETM+ L1T 14 

96 LE70750722011070EDC00 2011-03-11 ETM+ L1T 4 

97 LE70750722011246EDC00 2011-12-08 ETM+ L1T 83 
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IX. Appendix – Confusion matrices and error matrix 

metrics for NDVI time series after scene 

removal. 
 

Magnitude threshold  m < -0.01 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor)    

   

2007 472 113 97 39 22 743 36% 6% 94% 64% 
2008 2 1252 409 31 282 1976 37% 28% 72% 63% 
2009 0 81 711 27 136 955 26% 55% 45% 74% 
2010 0 7 203 341 72 623 45% 34% 66% 55% 

Stable Pine 22 282 136 72 2467 3021 18% 18% 82% 82% 
Magnitude threshold  m < -0.05 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor)       

2007 422 111 63 27 10 633 33% 6% 94% 67% 
2008 14 1278 294 18 268 1872 32% 28% 72% 68% 
2009 1 81 699 32 91 904 23% 52% 48% 77% 
2010 0 31 296 417 95 839 50% 30% 70% 50% 

Stable Pine 10 268 91 95 2503 2986 16% 16% 84% 84% 
Magnitude threshold  m< -0.10 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor)       

2007 354 56 21 4 2 437 19% 7% 93% 81% 
2008 23 1315 137 13 226 1714 25% 23% 77% 77% 
2009 2 71 563 28 34 698 19% 52% 48% 81% 
2010 0 30 418 433 89 970 55% 24% 76% 45% 

Stable Pine 2 226 34 89 2647 3000 12% 12% 88% 88% 
Magnitude threshold  m < -0.15 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor)       

2007 295 25 4 2 1 327 10% 3% 97% 90% 
2008 9 1265 93 5 173 1545 19% 18% 82% 82% 
2009 0 41 432 20 12 505 14% 53% 47% 86% 
2010 0 31 388 388 72 879 56% 20% 80% 44% 

Stable Pine 1 173 12 72 2746 3004 9% 9% 91% 91% 
Magnitude threshold  m < -0.20 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor) 

      
2007 244 5 0 2 0 251 3% 1% 99% 97% 
2008 3 1121 49 2 113 1288 13% 12% 88% 87% 
2009 0 15 227 12 4 258 12% 61% 39% 88% 
2010 0 19 304 323 52 698 54% 17% 83% 46% 

Stable Pine 0 113 4 52 2852 3021 6% 6% 94%  
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(Table Continued) 

Magnitude threshold  m < -0.25 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor) 

      
2007 192 3 0 1 0 196 2% 1% 99% 98% 
2008 1 845 7 1 59 913 8% 8% 92% 93% 
2009 0 5 76 7 0 88 14% 74% 26% 86% 
2010 0 7 212 235 26 480 51% 13% 87% 49% 

Stable Pine 0 59 0 26 2936 3021 3% 3% 97% 97% 
Magnitude threshold  m < -0.30 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor) 

      
2007 134 2 0 0 0 136 1% 1% 99% 99% 
2008 1 518 1 1 25 546 5% 5% 95% 95% 
2009 0 0 38 4 0 42 10% 73% 27% 90% 
2010 0 2 101 131 8 242 46% 9% 91% 54% 

Stable Pine 0 25 0 8 2988 3021 1% 1% 99% 99% 
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X. Appendix – Confusion matrices and error matrix 

metrics for NDFI time series after scene 

removal. 
 

Magnitude threshold  m < -0.01 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor)    

   

2007 446 156 168 63 93 926 52% 22% 78% 48% 
2008 27 1373 555 75 623 2653 49% 37% 63% 52% 
2009 6 15 577 62 346 1006 43% 71% 29% 57% 
2010 0 10 303 449 112 874 49% 42% 58% 51% 

Stable Pine 93 623 346 112 1759 2957 41% 41% 59% 59% 

Magnitude threshold  m < -0.05 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor)       

2007 336 84 32 18 3 473 29% 6% 94% 71% 
2008 0 0 0 0 0 0 0% 100% 0% 0% 
2009 19 1007 852 70 225 2173 61% 51% 49% 39% 
2010 0 288 643 547 166 1644 67% 32% 68% 33% 

Stable Pine 3 0 225 166 2614 3008 13% 13% 87% 87% 

Magnitude threshold  m< -0.10 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor)       

2007 268 14 0 2 3 287 7% 13% 87% 93% 
2008 37 1516 87 10 297 1947 24% 18% 82% 78% 
2009 0 7 712 47 57 823 13% 53% 47% 87% 
2010 0 24 655 502 94 1275 61% 23% 77% 39% 

Stable Pine 3 297 57 94 2568 3019 15% 15% 85% 85% 

Magnitude threshold  m < -0.15 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor)       

2007 190 1 0 0 0 191 1% 3% 97% 99% 
2008 6 1353 51 2 188 1600 16% 14% 86% 85% 
2009 0 11 504 18 18 551 9% 56% 44% 91% 
2010 0 14 585 445 49 1093 59% 13% 87% 41% 

Stable Pine 0 188 18 49 2766 3021 8% 8% 92% 92% 

Magnitude threshold  m < -0.20 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor)       

2007 118 0 0 0 0 118 0% 1% 99% 100% 
2008 1 1063 3 1 108 1176 10% 10% 90% 90% 
2009 0 4 165 1 5 175 6% 74% 26% 94% 
2010 0 9 466 308 8 791 61% 3% 97% 39% 

Stable Pine 0 108 5 8 2900 3021 4% 4% 96% 96% 
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(Table Continued) 

Magnitude threshold  m < -0.25 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor) 

      
2007 38 0 0 0 0 38 0% 0% 100% 100% 
2008 0 731 0 1 58 790 7% 8% 92% 93% 
2009 0 0 47 0 0 47 0% 84% 16% 100% 
2010 0 4 256 198 1 459 57% 1% 99% 43% 

Stable Pine 0 58 0 1 2962 3021 2% 2% 98% 98% 
Magnitude threshold  m < -0.30 

 Actual year of change (Reference dataset) 

2007 2008 2009 2010 Stable 
Total 

predicted 
Commission 

error 
Omission 

error 
Producer’s 
accuracy 

User’s 
accuracy 

 (No. of pixels)     

Predicted year of change 
(BFASTmonitor) 

      
2007 4 0 0 0 0 4 0% 0% 100% 100% 
2008 0 398 0 0 15 413 4% 4% 96% 96% 
2009 0 0 25 0 0 25 0% 76% 24% 100% 
2010 0 2 79 104 0 185 44% 0% 100% 56% 

Stable Pine 0 15 0 0 3006 3021 0% 0% 100% 100% 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 


