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ABSTRACT 

Nes, Th.J. van de, 1973. Linear analysis of a physically based model of a 
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As part of a model for the rainfall-run-off relation of a catchment, a 
linear distributed model of surface run-off is presented in this report. 

This model, without internal boundary conditions, consists of a cascade 
of linear conceptual elements. It simulates the complex drainage system by 
a network of overland flow and channel-flow elements. These elements obey 
the one-dimensional equations for unsteady flow in a channel. Simplification 
and linearisation of the dynamic equations lead to diffusion type equations. 
Their solution for suitable boundary conditions yield the impulse response 
functions, which characterize the operation of the elements. Special attention 
is given to the application of the techniques of linear system analysis, such 
as moments and spectra. These techniques produce information on the relative 
importance of the various conceptual elements. Consequently it is possible 
to decide on the necessary detail in the variation in time and space of both 
the inflow and structure of the drainage model. 

Results obtained by using the linear model have been compared with results 
of a more exact non-linear model and have been encouraging. At the end some 
practical applications have been given. 
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1. INTRODUCTION 

In catchment hydrology one can distinguish two broad classifications of 

problems. 

i ) hydrograph forecasting on a short term basis 

ii) discharge frequency prediction on a long term basis 

Two major groups of factors affect the run-off from a catchment: hydrometeoro-

logic factors (jrainfall, snow and évapotranspiration) make up one group, and the 

other group consists of physiographic factors (physical characteristics of the 

catchment). 

The understanding of hydrological processes requires modelling, which is the 

reason why scientific hydrology has always been concerned with mathematical 

modelling. 

Hydrologists usually differentiate between deterministic and stochastic models. 

No final concensies of opinion has however been reached as to which techniques 

belong to the fields of either deterministic or stochastic simulation. Broadly 

stated the two approaches can be discerned as follows: 

A deterministic model is essentially an abstraction of the way a system trans­

forms the input into the output. Both the structure of the model and the choice 

of the parameters should reflect some conception of the system's structure and 

the principal laws that govern the system's transformation. Consequently the 

model parameters are to a certain degree related to physical characteristics 

of the system. Because of the role which the parameters play in the subsequent 

fitting of the model to the observed system's cause-effect relationship the 

deterministic approach is often indicated as "parametric modelling". The de­

terministic model is meant to describe transient responses and it is mainly 

used for the generation of hydrographs from precipitation data either for flood 

forecasting or water management purposes (Schermerhorn and Kuehl, 1968). 

A stochastic model however is meant to generate time series which are statis­

tically indistinguishable from certain measured records. Usually the modelling 

of a cause-effect relationship is not the main object and the parameters or 

coefficients are mainly of a pure statistical nature. Consequently a stochastic 

model is a less appropriate tool for describing actual hydrographs but it can 

generate "equally likely" series of smoothly varying responses (Fiering, 1967). 

In this report only the deterministic approach is used for hydrograph fore­

casting on a short term basis. The more closely the model approximates the 

physical system, the more accurately does it predict. However an increasing 

complexity of the model makes it also more difficult to handle. Therefore it-



is necessary to compromise between accuracy and simplicity when developing 

models. 

The advent of the digital computer has allowed in all areas of hydrology the 

use of more complex models that are closer to the physical systems. 

In this respect a division can be made into component modelling and integrated 

system modelling (Dawdy, 1969). 

In component modelling the land phase of the hydrologie cycle can be divided 

into several parts (infiltration, évapotranspiration, aquifer response and 

surface streamflow routing). The empirical approach to the mathematical process 

controlling each component is being gradually replaced by a theoretical 

approach, based on the physical laws governing the component, in an attempt to 

make the empirical approximations more equivalent to the theoretical physical 

laws. It must be stressed at this point that even with the theoretical hydro-

dynamic approach many simplifications and approximations have to be made. In 

general for the various flow processes this approach leads to non-linear 

partial differential equations which for given boundary conditions, can be 

solved numerically by a digital computer. The various components will be 

combined in the integrated system modelling. The purpose of developing better 

conceptual models for the individual components is on the one hand to solve 

particular problems in hydrology and on the other to improve the overall model 

of the total system. However the development of the model increases its 

complexity, which to a certain extent limits the use of the better model. The 

difficulty is not lack of understanding of the physical processes but firstly 

not knowing the boundary conditions and their dependence on the interaction of 

the various flow processes, secondly the problem of accurate measurement of 

physical characteristics of the catchment and thirdly the impracticability of 

dealing with detailed variations in time and space. 

In the recent years the systems approach was introduced in hydrology (e.g. Nash 

1959; Dooge, 1959, 1967; Vemuri et al, 1970) with its powerful systems engineer­

ing techniques, so that system analysis has had a strong impact upon the metho­

dology of mathematical modelling. 

This report shows how the techniques of linear system analysis can be used for 

the optimization of parameters in a conceptual model for the surface 

component, consisting of overland flow and channel flow, as a part of a complex 

simulation model of the rainfall-run-off relation for a catchment. 

The approach of Dooge, Harley and 0'Meara (1967, 1968), who introduced linear 

conceptual models for the surface run-off based on the hydrodynamics of channel 

flow is also followed in this report. Summarizing it can be stated that a 



combination of the linear systems theory and the hydrodynamic approach in the 

study of the surface run-off system seems effective for the following reasóns: 

1. There is a direct relationship between the physical structure of the system 

and the structure of the model as it describes the system's operation. There­

fore there is also a relation between physical characteristics and model 

parameters. 

2. Powerful techniques from system analysis can be used. 

3. Approximate solutions for complex systems are possible. 

4. Influence of the initial and boundary conditions can be studied. 

5. Necessary compromise between the desires for accuracy, simplicity and 

physical understanding can be reached in this type of approach. 

1.1. OBJECTIVES AND SCOPE OF THE STUDY 

The complexity of the flow process by which surface run-off flows overland into 

small rivulets then into larger channels and finally into a river channel, makes 

it difficult to find exact solutions, based on hydrodynamics, because of the 

complex boundary conditions. Therefore, simplification is necessary for solving 

this complex problem. Recent technological progress in computer facilities has 

stimulated the hydrodynamic approach to the surface run-off problem. Cheng Lung 

Chen and Ven te Chow (1968) formulated a mathematical model, which describes 

the mechanics of surface run-off of a catchment by treating the watershed as 

a non-linear distributed system subject to hydrodynamic principles, using the 

complete dynamic equation for the one dimensional flow, including the over­

pressure of raindrop impact. The non-linear equations were solved by the method 

of characteristics using the explicit scheme for a simplified overland flow 

problem. However, for complex systems with a large number of internal boundary 

conditions this results in an extremely lengthy computer program that is beyond 

the capacity of computers available at present. At the same time Dooge, Harley 

and O'Meara (1967, 1968) used a linearized version of the complete dynamic 

equation and derived analytical solutions for the upstream inflow and lateral 

inflow or overland flow problem. These solutions are used as basic elements 

for a linear distributed model of catchment run-off by Bravo, et al (1970). 

These linear solutions were introduced into the MIT catchment model as an alter­

native for the kinematic non-linear solution, as developed by Henderson and 

Wooding (1964, 1965, 1966). However, this model has some disadvantages. Firstly, 

because water is restricted to flowing in one direction only, which physically 

is incorrect. Secondly, because the analytical solutions are very complex, which 



causes difficulties in the calculation. 

For these reasons in this paper the dynamic equation is first simplified and 

then linearised. This leads to a diffusion type equation as proposed by Schön­

feld (1948); Hayami (1951); Daubert (1964) and Harley (1967). The latter 

showed that for the upstream inflow the diffusion type solution leads to very 

small deviations with respect to the complete linear solution and it can be 

assumed that the error due to the linearization is much more important. 

For the diffusion type equations analytical solutions are derived for the tri­

butary and lateral inflow or overland flow, without restriction for reversed 

flow in the considered channelreach. In combination with the solution for the 

upstream inflow a complex distributed conceptual model can be constructed. In 

combination with the linear systems approach the instantaneous unit hydrograph 

(IUH), the summation curves (S-curves), shape factors and spectra, expressed 

in the model parameters, are derived for the various linear elements. These 

techniques yield information on the relative importance of the various con­

ceptual elements. Consequently, it is possible to decide on the necessary 

variation in time and space of both the inflow and the degree of detail in the 

model structure which is needed to provide computed results of sufficient accu­

racy. This is an interesting aspect of this study because it appears to add a 

theoretical background to the experimental fact that the run-off process in 

drainage basins can often be simulated by simple conceptual models with lumped 

parameters and lumped inputs, such as the model suggested by Nash (1959, 1960). 



2.THE SYSTEMS APPROACH 

The rainfall and run-off relation of a catchment has been described by 

classic hydrology in terms of surface run-off, interflow and groundwater flow. 

In practice quantitative hydrology usually modifies this concept and considers 

the hydrograph to be made up of a direct storm response and a base flow. 

In Fig. 2.1 a picture of the simplified catchment model is given, which is 

borrowed from Dooge (1967). 
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fig. 2.1 Simplified catchment model (Dooge 1967) 
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This system consists of three subsystems, the subsystem involving the direct 

storm response or surface run-off, the subsystem involving groundwater response 

and the subsystem soil phase, which has a feedback loop to the separation of 

precipitation into precipitation excess and infiltration. 

In this report only the first subsystem involving the surface run-off is 

considered. Speaking in system terminology the surface run-off system 

transforms an input (= inflow or rainfall excess) into an output (= discharge 

or storage expressed as water depth). Quoting Dooge (1967): "the role of the 

system in generating output from input, or in interrelating input and output, 

is its essential feature. The output from any system depends on the nature of 

the input, the physical laws involved, and the nature of the system itself, 

both the nature of the components and the structure of the system according to 

which they are connected". (Fig. 2.2) 
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fig. 2.2 Concept of system operation (Dooge 1967) 

In the system analysis however the overall operation of the system is examined 

without taking into account all the complex details of the system or all the 

complex physical laws involved. Although the system operation depends on the 

physical laws and the nature of the system, this dependence may be ignored in 

this approach to the problem. This is represented by the horizontal components 

in Fig. 2.2. 

Thus in unit hydrograph studies, once the unit hydrograph has been derived from 

records of input and output, it can be used as a prediction tool without 

reference to the nature of the catchment or the physical laws involved. 

In the system synthesis however, where a synthetic unit hydrograph has to be 

derived, or the validity of the unit hydrograph procedure must be examined, it 

is necessary to examine the connection between the unit hydrograph, the 

characteristics of the watershed, and the physical laws governing its behaviour. 

This relation is represented by the vertical components in Fig. 2.2. 

2.1. LINEAR SYSTEMS 

The linearisation of the non-linear differential equations with constant 

coefficients, describing the non-steady channel and overland flow makes it 

possible to consider the surface run-off problem as a linear time invariant 

system, which is characterised by the convolution integral 



y(t) = f x(x)h(t-T) dr 
o 

or (2.1) 

y(t) = ƒ' x(t-T)h(x) dT 

This convolution integral expresses the relation between the output y(t), the 

input x(t) and the instantaneous unit hydrograph (IUH) or the impulse response 

h(t), which characterises the system operation. 

If the input is given as a histogram the convolution integral takes the follo­

wing discrete form: 

n 
y(nAt) = At S p(i+l)h(At, (n-i)At) (2.2) 

i=o 

where p(i+l) represents the successive volumes of the input and h(At, (n-i)At) 

the finite period (At) unit hydrograph (TUH). This can be derived from the 

summation curve defined as 

S(t) = f h(o,x) dT (2.3) 

It follows that: 

h(At, (n-i)At)= {S((n-i)At) - S((n-i-l)At)} / At , n > i (2.4) 

h(At, (n-i)At) = 0 , n < i 

The shape of the IUH, can be characterised by statistical moments, shape 

factors (Nash, 1959) and spectra (Eagleson, 1966), expressed in the system 

parameters. 

2.2. STATISTICAL MOMENTS AND SHAPE FACTORS 

As shown by Nash (1959) and Diskin (1967) the moments in the linear systems 

approach are very powerful tools for finding the model parameters from input 

and output, because the following relations between the moments of input, 

output and IUH exist. 



M|(y) = Mj(x) + Mj(h) 

M2(y) = M2(x) + M2(h) (2.5) 

M3(y) = M3(x) + M3(h) 

The relation for the higher moments are more complex. 

The moments of a function f(t) relative to the origin are defined as: 

M'(f) = ƒ ftndt/ ƒ fdt K ' 
n o o 

and relative to the centre of area (first moment) 

Mn(f) = o/°° f ( t -Mp ndt / o /œ fdt (2.7) 

The first moment of the IUH relative to the origin gives the lag or the mean, 

the second, third and fourth moment relative to the mean are the variance, the 

skewness and the kurtosis respectively. 

The Laplace transform of the function f(t), is defined as 

f(X) = r e"X t f(t) dt 
o 

(2.8) 
2 

f(x) = r f(t)dt - x r t f(t) dt + 4T * t f ( t ) dt -
o o 21 o 

This equation shows how the Laplace transform of the function is related to the 

moments of that function. So that Eq. (2.8) can be considered as the moment 

generating function. 

( - i ) n A = r f(t) tndt 
dX , 

X=o 

M' (f) = (-Dn(^4) / f(o) (2.9) 
dX , 

X=o 

The IUH for the different conceptual elements are derived by means of the 

Laplace transform, so with Eq. (2.9) the moments of the IUH can easily be 

derived. 



In fact Nash (1960) does not use the moments of the IUH but the shape factors, 

defined as : 

Sj = Mj(h) 

S 2 =M2(h)/(Mj(h))2 

Sn = M (h)/(M!(h)) 
n n l 

(2.10) 

n 

all of which, except S. are dimensionless and therefore less likely to be 

mutually correlated than M!(h), M„(h), etc., while it has the advantage that 

scale effects have disappeared, when the IUH of different conceptual models are 

compared with each other. In our case, where the IUH for the various types of 

inflow problems are based on two or three model parameters, S, and S„ are 

used for comparison. 

Harley (1967) proposed to use the cumulants for characterising the system, but 

because the first three moments are equal to the first three cumulants, which 

are dominant for the shape of the IUH, the cumulants will not be discussed here. 

2.3. ATTENUATION COEFFICIENT 

If the input and output in the rainfall-run-off process or in flood routing are 

compared it is clear that the system has a translation i.e. lag and an 

attenuation. The time lag can be calculated from the first moment of the IUH. 

It is reasonable to assume that the second moment of the IUH and of the input 

can together be a good index for the attenuation. It is well known that a 

peaked wave attenuates much quicker than a long duration wave. Expressing the 

attenuation of the wave in a coefficient as follows 

M2(y) - M2(x) M2(h) 

CA ÏÇÔÔ ÏÇG7 (2-n) 

By plotting calculated values of this attenuation coefficient CA against 

corresponding values of the specific attenuation R., defined as: 

x - y 
RA = P P . 100% (2.12) 

XP 

where x and y are respectively the peak values of the input and the output, 

an empirical relation was obtained. Thus the attenuation coefficient C. is an 

index for the specific attenuation. 



Because the attenuation coefficient C, for a conceptual model can be expressed 

by model parameters and by characteristics of the input (duration and shape) a 

first quick estimate of the specific attenuation of the peak can be made if the 

model parameters and duration and shape of the input are known or can be 

estimated. 

As will be shown later conversely this relation can be used to find the model 

parameters if the specific attenuation is known. 

Therefore an iteration procedure is required. 

2.4. SPECTRA 

Simular to the Laplace transform, which yielded a simple relation between the 

moments, also the Fourier transforms of input, output and IUH will be shown to 

be simply related. (Eagleson, 1966) 

By this transform the behaviour of the system is replaced from the time domain 

to the frequency domain - as follows: 

h(o) = r h(t) e~^Ut dt (2.13) 
o 

where the spectralfunction h(u)) in general is complex i.e. 

h(tü) = r(u) + ji(w) 

and is commonly described by an amplitude density spectrum 

ha(U) = {r2M + iW (2il4a) 

and a phase density spectrum 

h.(ü>) = tan"1 i ^ 4 (mod IT) (2.14b) 

where r is the real part, i the imaginary part and u the frequency in radians 

per time interval. 

Application of the Fourier transform to the convolution integral yields for 

linear time invariant systems 

10 



y(üi) = x(ü))h(üj) 

and y (OJ) = x (io)h (to) (2.15) 
' a a a 

yQ((ü) = Xg(u) + hgCu) 

which in a similar way to moments, interrelates input, output and IUH. This is 

to be expected because there is a relation between the Fourier transform and 

the Laplace transform. 

Ey applying the Fourier transform the system seems to act as a low pass filter, 

wh'.ch filters out the high frequency energy of the input. The Fourier transform 

of tili impulse (delta input or dirac function) is real and constant over all 

frequencies. Thus the Fourier transform of the impulse response can be inter­

preted as the output of a low pass filter, when excited by a signal having 

a uniform amplitude density (i.e. is flat). 

Eagleson, et al (1966) have shown that comparing the spectra of input and IUH 

leads to conclusions about the sampling interval At, with which the input has 

to be measured, i.e. it gives the duration of the unit storm period. The dis-' 

tribution of the input within this unit storm period does not influence the 

output. Therefore the assumption is made that the filter has an upper limit 

to , so that all higher frequencies of the input spectrum will be filtered out. 

This implies that it is not necessary to measure the higher frequencies, 

because they do not supply any significant information. The signal pulse of 

duration At of the input behaves as an impulse to the system in question if its 

amplitude density spectrum is flat for 0 < (D < to , with u » to . 

For some rainfall spectra it is found, that they are flat for u At < 1 radian, 
1 1 ra 

so the unit storm period At < — < — (2.16a) 
r ui to 

which is only valid if the band width of the input signal oo > to . However if 
p c 

to < to than the whole input spectrum is of interest, 
p c r 

Defining the band width of the input signal 

0 « band width < to 
P 

and arbitrarily select a fairly conservative cutoff frequency to such that 

x (;_ ) = 0,05 x (0) 
a p' a 

which represents the 13 db point on the amplitude density curve then 

11 



Hamming (1962) has shown that for band-limited functions the time interval At 

can be expressed as follows: 

At 4 — - (2.16b) 
P 

Comparison of the spectra of the IUH for the different types of inflow problems, 

shows the influence of the system parameters on the shape of the IUH. If the 

amplitude-density spectra are nearly the same then the shapes of the IUH are 

also nearly the same. The time shift between the IUH's follows from the phase 

density spectra. 

The following relation applies: 

-jut 
T h(oi) = e h(w) 

o 

where T is the translator operator defined as: 

Tt h(t) = h(t-tQ) 
o 

and t is the translation time. o 

So (T h) (u) = h (u) 
t a a 

o 

and (T b) (ID) = - ut + hQ(ti)) 
o 

__—-. t 
or log {h (u) - (T h) (u)} = log IMQ + log •£• 

6 fco e Q 

where Q is a characteristic time of the system, as will be shown later. 

It follows that for ixiQ = I 

hQ(u) - (Tt h) (u) = Ahe(u) = -^- (2.17) 
o 9 

so if the characteristic time Q of the system is known the translation time 

t can be calculated, o 

2.5. GOODNESS OF FIT 

In order to determine the goodness of fit between the exact or observed data 

12 



(real world) and the approximate or computed data (model), from the many 

objective criteria for error measurements, which are available, a special form 

of the mean square error of the ordinates is chosen. In statistics (Gringorten, 

1960) this error measure is called the coefficient of determination. Nash 

(1970) has introduced this criterion into the study of run-off models, where 

he used the term efficiency coefficient IL,: 

z(f - f,)2 

Rp = {1 V } (2.18) 
E(f - f) 

Here f stands for the exact or observed data, f. the approximate or computed 

data and f the mean of the exact or observed data. The numerator expresses the 

residual variance and the denominator the initial variance. So if the model and 

the real world fully agree then R̂ , = 1. If the data of the model equal the 

mean value of the data in the real world then Rp = 0. For optimization 

procedures of the parameters in a conceptual model the efficiency coefficient 

is useful as an objective criterion for the goodness of fit. 

In this presentation the efficiency coefficient has been used as an objective 

criterion for the goodness of fit between the linear solution of the 

approximate linear equation and the solution of the complete non-linear 

equation for the surface run-off problem. Further it was used to compare the 

theoretical results with the experiments. 

13 



3.MODELLING OF THE SURFACE RUNOFc 

Ae stated by Dooge & Hurley i'i-jtl) the surface re.ir-oli process c- ' • •:-is •.-• 

three conditions: complex geometry, co:epler physics end complex iircts 

Simplifications from a theoretical, and practical point of view e' eeerci'irc 

necessary for a quantitative approach to the pros" em. 

The question is how far it is justified to simplify trie serf ee e :t,-»;: 

process. 

-,!. A !".T'3VR.IBUT>"': .;; •"•'̂'•-".V " ri'i.̂ MJTÄT HCDFT. 

Inf. surface run-oft p~oc.3S- •: :.r. be divided i.itc e'-̂  i •-••.; 2 : e-e .-.r r-

stream flow. In particular overland flow is difficult to re/e'el, ' - .-vvr.se it 

begins as a thin-sh^éi. 1 iov;, but is focused into sr-.aïl rivulets ••• ,' ,: er; Le c 

irregularities, arc then 'ttc bigger streams cors*:ieut it.e chairs' •'" ' ~e 

Similar to the work of Bravo, et ai (i970) (Fig. 1.1; the cetenmer.. 3 s 

subdivided into smaller elements, for which eithei one dimensional cerl.'tid 

flow or one dimensional channel-flow is assumed. 

These smaller elements are connected with each other by the channel sections. 

Approximating the complex geometry in this way 5 types of elementary problems 

can be selected: 

a. Overland flow problem, which consists of a plane rectangular, impermeable 

surface, which receives a uniformly distributed rainfall. Theoretically 

this problem is handled as turbulent flow in an infinite, vide tectanro.: ae 

channel with uniform slope and recistar.ee and fr.ll\ lateral ir.i'ow. 

The term infinite means that there are no restrictions tor flee in upstream 

and downstream direction:;-, 

b. Fully lateral inflow.' problem into : channel reach. 

This can be handled in 1:1 . s'ae way as the. overland flov nrotl..:,. ••'•-•• n~ •• 

that the infinite _l»anaol re=:h • a.t rflco be ccujidered ar a. p '-••••". -. 

rectangular or tr.ve jzoi" r'. eh'intioi 

c. Partial lateral in; low 7-ton Ian into a channel rc.aer,. where thr .-. iter.;1. 

inflow takes place ovr j. a psrl; c<" the chanr.el reach. 

d. Tributary inflow prob'en enec. a channel reach, where the enfio-e from1 ei . 

channel is concentrated at ? isrtkulsr point or a iecond chat! el. 
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fig. 3.1 Equivalent block-diagram of the 
surface run-off system for a 
catchment (Bravo et al, 1970) 

a= overland f low 

b= fully lateral inflow 

c= partial lateral inflow 

d= tributary inflow 

e= upstream inflow 
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The downstream movement of the wave is studied, forming a classic problem 

in flood forecasting. 

It is assumed that the catchment can be modelled by a suitable combination of 

these 5 elements. So the complex distributed surface run-off model consists of 

an appropriate number of elements chosen in accordance with the geometry of the 

surface run-off system. It is further assumed that one element cascades into 

the other so that interaction between these elements is excluded. Practically 

the number of elements, determining the complexity of the system, should be as 

small as possible. The systems approach seems to be very helpful for this basic 

problem of integrated system modelling. 

3.2. HYDRODYNAMIC CONSIDERATIONS 

The hydrodynamic aspects of open channel-flow and overland flow can be found in 

many handbooks (Ven te Chow, 1959, 1964; Henderson, 1966; Eagleson, 1970), 

therefore only some points concerning flood routing problems will be given 

here. 

The equations of motion of one dimensional flow in an uniform open channel with 

lateral inflow can after some simplification be written as follows: 

Momentum equation : S,- = S - -^- - — -^— ~ — T - - DT (3.1) 
f o ds g 3s g 3t L 

Continuity equation : •— + ̂ — = i(s,t) (3.2) 
d S a t 

where s and t are distance in flow direction and time respectively, S is the 

bottom slope, y the water depth, v the mean velocity in a cross section of the 

channel, g the acceleration of gravity, A the cross sectional area of flow, Q 

the discharge rate (= vA), i the lateral inflow per unit length of channel, S. 

the friction slope and the term D represents the energy dissipation when the 

lateral flow mixes with the water already in the channel (Henderson, 1966). 

The term D can be expressed as follows: (Strelkoff, 1970) 

v-u 
\ = - ^ i(s,t) (3.3) 

where u is the s-component of the inflow velocity vector. 

Clearly D = 0, if the lateral inflow i(s,t)=0 or if the lateral inflow is in 

direction of flow and v=u . 

Here it is assumed that the lateral inflow is perpendicular to the direction of 
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flow, which yields u=0, so that after introduction of Eq. (3.2) in Eq. (3.3) 
Li 

for D , expressed in Q, can be written: 
Li 

UL ,2 "-3s 3t; (3.4) 

Substitution of Eq. (3.4) in the equation of motion (3.1), expressed in Q 

yields: 

where F is the local Froude number for which the following relation is valid. 

F2 = 4 (3.6) 

where B = -r- the surface width of the channel. 3y 

For lateral inflow i(o,t) = 0 (so D = 0) combining eqs (3.1) and (3.2), 

expressed in Q, yields the same Eq. (3.5), which means that this equation is 

valid for the flow with and without lateral inflow, (assuming u. = 0) 

For the overland flow problem eqs (3.2) and (3.5) are used, assuming a wide 

rectangular channel, where discharge q is expressed per unit width of channel. 

The equations of motion for the one dimensional overland flow therefore can be 

expressed as follows : 

s = s - (1 - F2) ix - 2s_ 13. - J_ ia ( 3 7 ) b f o u r ; 3s 2 3s gy 3t V J - / ; 

gy 

| f + | f = i ( s , t ) / B (3.8) 

where q is discharge per unit width of channel, while for the local Froude 

number the following relation is valid. 

2 
F2 = -3-^ (3.9) 

gy 

Both in the channel-flow and in the overland flow problems the friction slope 

S- is difficult to determine. 

In this report it is assumed that the flow in both cases is turbulent, where 

••he empirical relation of Chezy or Manning may be used. 
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The formulas for channel-flow and overland flow are respectively: 

Chezy Sf " 
QlQl 

2 2 A C R 

q l q l 
r2 3 

C y 

(channel-flow) 

(overland flow) 

where C is the Chezy coefficient and R is hydraulic radius. 

(3 .10) 

Manning Sf = 
Q l Q l 

2 2 A TT R 
• m 

473 (channel-flow) 

(3.11) 

qlql 

K 2 y 
m 3 

1573 
(overland flow) 

where K is the Manning coefficient. 
m 

In the linear systems approach the complex geometry of the channel reach is 

simplified by assuming a uniform trapezoidal channel (Fig. 3.2), from which the 

special cases of a rectangular channel (m=0) or infinite wide rectangular 

channel (m=0, B-*») can be derived. 

** m y -
rrucotg c< 

f ig 3.2 Cross section of a channel reach 

The complex physics can be simplified by the reasonable assumption that the 

quasi-steady state approach (the kinematic wave), where S- = S , is a good 

first approximation of Eq. (3.5). Introducing this in the third and the fourth 

term at the right hand side of Eq . (3.5) (the acceleration terms) which also 

can be expressed as: 

Z2Q ^Q _ J_ 3Q _ _ Be 3y_ 

A 2 3s Ag 3t K ' gA 3s 

30 
where c is the celerity (= -rj- Seddon law) 

(3.12) 

gives after substitution of Eq. (3.12) in Eq. (3.5) the equation of motion, 

assuming Chezy friction formula: 



S. - S - {1 - f - (1 - f £ /l +m2)2} |Z (3.13) 
f O 4 B dS 

while assuming Manning's friction formula this gives: 

S S { I _4F2 . 2 R / T 7 7 ) 2 } | i (3.14) 
t o y B dS 

The continuity equation, assuming no lateral inflow, can be written as: 

As will be shown in Section (3.4), the different types of inflow form one of 

the boundary conditions necessary for solving the differential eqs (3.13) or 

(3.14) and (3.15). 

One way of tackling the problem of the complex geometry of a distributed 

network and the problem of a complex spatial and secular variation of the 

input, is the linearisation of the Eq. (3.13) or (3.14). 

3.3. LINEARIZED DIFFUSION TYPE EQUATIONS 

As proposed already by Schönfeld (1948) linearisation of the Eq. (3.13) or 

(3.14) can be achieved by considering the flow as a small perturbation on an 

initial permanent uniform flow. The discharge Q or q can be expanded in a 

Taylor series, where terms of higher then the first order will be neglected, 

which is correct only if the perturbation is small. 

Starting from Eq. (3.13), based on the Chezy friction formula, the discharge Q 

can be expressed as follows: 

i l 

Q = CR5A(S - C S ) 2 , Q » 0 (3.16) 

where Cj = {1 - — (1 - —• A + m 2 ) 2 } 

and S = T̂ - , the gradient of the water depth. 

In general y and TT- are independent functions. (Van de Nes and Hendriks, 1971) 

So one can consider Q as a function of the variables y and S (= -r̂ ) > Q = Q(y,s). 

In order to linearize Eq. (3.16) the following notations for the discharge, 

water depth and slope of the water level are introduced. 
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Q = Q T + Q , y = y T + y and S = ST + s 

where the subscript I means initial and p the perturbation, for uniform flow 

S =0. The Taylor series for Q can be expressed as follows: 

Q = Q, • (|f) (y - yx) + (f§) (s - s,) • 

,80. -30. 
p 3y Jp 3S p 

(3.17) 

The initial values Q , y and S correspond with the initial values of C and 

C.. When writing the Taylor series these values have been considered constant, 

so that the following relations can be derived: 

^Qs 3 ^ ,, 2,R, /~ 2, 
(Tj\ = 2 V l V ' -3(z\ A + m ] 

(3.18) 

and (f§) 
I o 

Substituting eq. (3.18) into (3.17) it is found that: 

Q 3y 
- £ = A y - D - 3 & 
B T-'p 3s 

(3.19) 

where \ = J^I < I " |(f) <l + m2} the translation coefficient 

and D 2S BT o I 
1 - f- {I - 2(f) A + m 2 } 2 

. 4 B I 

(3.20) 

the diffusion coefficient 

For a wide rectangular channel eq. (3.20) gives: (Harley, 1967) 

A = -x vT T 2 1 

qI F I 

o 
(3.21) 

while for a rectangular channel with width B the following relations can be 

derived. 

K = O- vT (• 
BI + 3 yI 

T 2 I "• B + 2y 

and D 
2Sr 

O -V- 0 4 Bi + 2yi )2> (3.22) 
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From the continuity Eq. (3.15) follows: 

3(QT + Q ) 3(yT + y ) 
_E_ + B - E- = " 3s 3t 

(3.23) 

3QX 3y x 

and T — = 0 and -r—~ = 0 (steady uniform flow) 
dS dt 

therefore Eq. (3.23) gives: 

3s at 
(3.24) 

Combination of the eqs (3.24) and (3.19) produces the two well known linear 

partial differential equations of parabolic form: 

and 

3Q 32Q 3Q 
E = D E _ A 

3t „ 2 T 3s 
dS 

2 
3y 3 y 3y 
_1E- D — £ - A — 2 . 
3t „ 2 T 3s 

OS 

(3.25) 

(3.26) 

Obviously Eq. (3.25) is also valid for q (discharge per unit width of channel). 

These diffusion type equations, which were already given by Schönfeld (1948), 

Hayami (1951), Daubert (1964) and Harley (1967), form the basic equations of the 

different type of flood routing problems, as mentioned before. 

Linearisation of Eq. (3.14) which is based on the Manning friction formula, 

leads to the same differential equation. Here the translation coefficient A 

and the diffusion coefficient D take the following form: 

D = ^2
T{. - 2d) /T77}2 

3 VI 

2S BT o I ¥v 

(3.27) 

For a wide rectangular channel this leads to: 

and 

A » -T vT T 3 1 

2S u 9* l' 
o 

while for a rectangular channel with width B it gives: 

(3.28) 
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A 5 A + 5 \ 
A T = 3 V I ( B T + 2yT

 } 

and 
(3.29) 

D =!̂ {i - V (_ï )2} 
2S u 9̂  I V B T + 2 y / J 

o I I 

So the choice of the friction formula and geometry of the channel determine, 

which formulae for A and D apply. 

As mentioned before the differential equations are accurate if the perturbation 

is relatively small compared to initial uniform flow. With the linear systems 

approach the equations will also be used for large perturbations, sc that now 

a constant "reference" discharge Q (or q ) or a constant reference water depth 

y has to be chosen, fixing the parameters A and D. 

It should be noted that contrary to the above initial discharge and water depth 

the reference discharge and water depth are some mean values within the actual 

range of variation. These only apply to the parameters of the flow equations. 

3.4. BOUNDARY CONDITIONS 

The solution of the differential eqs (3.25) and (3.26) requires boundary 

conditions. 

For Eq. (3.25) one needs conditions, expressed in discharge, while for (3.26) 

the conditions must be expressed in water depth. So the boundary conditions 

determine which of the two equations should be used. Because the flow is 

considered as a perturbation on an initial uniform flow the initial conditions 

are : 

q (s,o) = 0 

yp(s,o) = 0 

(3.30) 

while the boundary conditions depend on the type of inflow, which may vary in 

time and space. 

As shown before the parameters A and D depend on the physical characteris­

tics of the channel and on a constant reference discharge or water depth. The 

latter depends on the initial conditions of the system and the range of 

variation of flow. 
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The choice of a constant reference discharge or water depth, may be criticized 

because it entails a crude approximation, especially in the case of the lateral 

inflow, where the discharge increases with channel distance. A logical choice 

of reference discharge would be 

qo(s) = qj.Cs) +o/S i(Ç) dÇ 

where i(Ç) would be the average inflow over the period under consideration. 

A reference discharge which varies with distance can be approximated and 

brought into the linear systems approach by cutting the channel reach in 

sections. By this process a histogram of reference discharges along the 

channel reach can be obtained. 

Despite the discontinuities in the reference discharge, the results are not 

affected, as is shown in Section 4.2.8. 

Because of the attenuation of the flood wave for the upstream and tributary 

inflow problem it is possible to take a decreasing reference discharge with 

distance. Also here a histogram of reference discharges can be taken, dependent 

on the behaviour of the flood wave. Construction of a very fine network does 

not in general increase the accuracy of the solution. In that case it would 

be better to solve the original non-linear differential equations with the aid 

of differences schemes, losing however the advantages of linear system analysis. 

It is interesting to note that chosing a reference discharge dependent on the 

initial conditions and the inflow, is an essential feature of this quasi-linear 

system. 

The influence of the choice of the reference discharge on the results has 

therefore been specially investigated. This study shows the influence of the 

boundary conditions and physical parameters, which are complex and in general 

not well known, on the results of the rainfall and run-off relation of a 

catchment. •••• • 

The result of this hydrodynamic approach is a mathematical model for a quasi-

linear time invariant system. The indicial response of this system can be 

obtained by solving the differential equation with the delta input as a 

boundary condition. 

This means that a unit of volume is added to the channel reach at a point or 

over a certain distance, depending on the type of inflow problem. In this way 

synthetic IUH's for the different types of problems will be derived and 

subsequently the powerful system engineering techniques will be used to 

analyse the systems behaviour. 
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Integration of the IUH in time yields the S-curve, from which TUH's can be 

derived (Eq. 2.4). If the input is given as a histogram or "distribution 

graph", the output can be calculated, by making use of the convolution integral 

in discrete form (Eq. 2.2). Because every input can be approximated by a 

histogram Eq. 2.2 is a very convenient form of the convolution integral, which 

can be easily programmed for a digital computer, while the computer time is 

relatively small. 

In this paper the theoretical aspects of surface run-off will be studied by 

applying four types of input to each conceptual element: 

a. A long "Thomas wave", (Fig. 3.3) as used by Dooge & Harley (1967), which is 

expressed as follows: 

q (t) = 7 5 - 7 5 cos (-£5-) for 0 < t < 96 hours 
p 4o 

which is superimposed on a baseflow q = 50. Both are expressed in cusecs per 

foot width. Transforming this in metric units yields: 

q (t) = 6,975 - 6,975 cos (£§•) m3/sec, m' 
p 4o 

In order to compare the results of this study with those of Dooge & Harley the 

British unit system will be used. 

This input is approximated by a histogram with an interval of one hour. 

b. An intermediate "Thomas wave" (Fig. 3.4) of the following shape: 

q (t) = 7 5 - 7 5 cos (^-) for 0 < t < 12 hours 
p 6 

approximated by a histogram with an interval of 15 minutes, which is super­

imposed on a base flow q_ = 50 cusecs per foot width. 

Comparison of the results of a. and b. shows the effect of input duration on 

wave attenuation. 

In both cases attention is only given to the discharge. Water depth is not 

studied. The three aspects, which are studied are: the influence of the 

reference discharge, the length of the channel and the spatial distribution 

of the input into the system. 

c. A block input (Fig.3.5) expressed as 1 mm/interval, with an interval of 3 

hours. In this case the TUH was derived for various types of problem, where 

water depth was studied. Special attention was also given to the relation 
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fig. 3.4 "Intermediate Thomas" wave 
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fig. 3.6 "Short" wave of special shape 
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VARIOUS TYPES OF INFLOWS 

25 



between water depth and discharge. 

d. A short wave with a special shape (Fig. 3.6), where the flat top of the 
3 

input occurs within 15 minutes and is expressed in m /sec. This wave is super­
posed on an initial water depth of 0,50 m. 

In this case only the water depth is studied. As complete non-linear solutions, 

based on an implicit difference scheme of Amein (1968), have been derived by 

Grijsen (1971), it was possible to compare the linear and non-linear 

solutions. 
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4.LINEAR CONCEPTUAL ELEMENTS 

Complex surface run-off consists roughly of 5 linear elements (Section 3.1). 

In this chapter these elements are mathematically formulated in terms of the 

linear system theory. Some results on the input-output relation are given for 

a channel reach which shows the effects of the spatial and secular variation 

in input, of the reference discharge and of the physical characteristics of the 

channel. 

4.1. INFINITE CHANNEL-LUMPED INPUT 

This element, which is studied as the tributary inflow problem can be 

considered in two different ways (Fig. 4.1). 

main channel 

tributary inflow Qp(t) 
from secundary channel with base flow 

fig.4.1 Concept'of the tributary inflow problem 

a. First as an infinite channel, in which a constant initial flow occurs over 

the whole channel reach. In one point (s=0) this channel is fed by an known 

inflow, which is cascaded into the channel. 

b. Second as an infinite channel with an initial flow, but now this main 

channel is fed at one point by a second channel, which has also an initial 

flow. This causes a discontinuity of the initial flow in the main channel at 

the point, where the second channel enters the main channel. 

From Fig. 4.1 it can be seen that Q_ = QT + Q . If now one is interested 
3 2 1 
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in the discharge at point A, caused by the tributary inflow Q (t), then the 

solution must be superposed on Q and if one is interested at point B the 
3 solution must be superposed on Q . The only problem is to find the reference 

I ] 
discharge, determining the parameters of the main channel. It will be shown 

later that a fair estimation of the reference discharge, which depends on the 

initial flow and the range of variation of flow, can be obtained by applying 

the following relation. 

Q (o) , + Q (s) (4. 1) 
0 = 0 + -E E^i p p e a K , where N = 4 for the tributary 
wo WI N 

and upstream inflow and N = 2 for the fully lateral inflow; where Q (s) k 

is the peak value at point s. 
This agrees with the results given by Bravo et al(1970) and Harley et al(1970). 

Q„(o) , + Q (A) 
So for point A: Q = QT + -E E Ê ^ E EË£k 

o I3 4 

Q (o) . + Q (B) , 
and for point B: Q = QT + -E P e a k

 ; P PJi* 
o i. 4 

The same relations are also valid for the reference water depth. 

It follows that the peak values in the appropriate points must be known. Such 

values may be obtained from an empirical relation between the attenuation 

coefficient and the specific attenuation of a flood. (Section 5.4) 

4.1.1. Impulse Response 

The impulse response can be found by solving the linear differential equation 

for the water depth. (Eq. 3.26) 

2 
3y 3 y 3y 

3/ = D T ^ - N ^ <*•» 

3s 

for the following initial- and boundary conditions : 

a. y (s,o) = (5(s) (Dirac function) 

b. lim y (s,t) = 0 

s •+ <*> 

S " - " (4.3) 

CO 

c* - «/ yp (sjt) ds = 1, which follows from the continuity equation. 
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The physical meaning of 6(s) is, that a unit volume per unit width of channel 

is added to the system at time t=o at one point (s=o). There are no restric­

tions for the flow in upstream and downstream directions (infinite channel). 

The solution can be found after the transformation: 

s. = s - A .t (4.4) 
1 T 

which reduces eqs (4.2) and (4.3) to respectively: 

3y 32y 
• ^ = D — £ (4.5) 

as . 

and 

y (sj.o) = 6(s,) (4.6) 

ƒ y (s.,t) ds1 = i, because the solution is symmetrical; so only the 

case s, > 0 has to be considered. 

lim y (s,,t) = 0 

s. -*- » 

The following solution is found with the aid of the Laplace transform method. 

(Van de Nes and Hendriks, 1971) 

- 1 1 
yn(s,,t) = — ! — e 4 D t , (s.,t) * (o,o) (4.7) 

where y (s.,o) = <5(s.) 

The same is true for s. < o. Introducing Eq. (4.4) in (4.7) 
1 (s-AT.t)2 

yields: y (s,t) = e D t , (s,t) j (o,o) and t > 0 (4.8) 

The discharge can be calculated by introducing Eq. (4.8) in Eq. (3.19), which 

yields: , 

(s-A . t r 
Q„ (s+A.t) T 
_E = T 4Dt 
6 I 4/7rDt3 

(4.9) 
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For a rectangular channel -— car. be expressed 

0 
J 
3I 

q (s,t) = / (&.\0) 

For a trapezoidal channel this expression is approximately true if ?T is 

chosen as a mean value over the range of the varying surface width of the 

channel, caused by the. infirm. 

Because of the parti'v'J 3 r r::r,d-;ry condition? t> '. '•(•, ' ('•.?) r.;-A .. ' •:;. 

the IUH of waterdern::. h c'--v '• sr.d of discharge ; •,-'t; ) por '.r4* ', -—h " + 

y "P -i -; 

channel, respect-v. ;; 

In the framework of the systems approach, it is couvraient to CXIKVÜU IK>*; 

IUH's in a dimensionless form, introducing two dimensionless system parameters; 

sA 
T 

P = -z=r— , a dimensionless length parameter 

and T = -j , a dimensionless time (4.11) 

2D . . . . 
where Q = — y is the parameter expressing the characteristic time 

A 

T 

of the system. 

Introducing of Eq. (4.11) into Eq. (4.9) and (4.8) gives: 

h n _i^ïl! 
4 / 2TTT 3 /2irT 

and 

h s - I ^ I Ï I 2 

h = i ! = — ^ 2 T C4.13> 

where h and h are the dimensionle:;s IUH's of discharge and water depth 

and V is the unit volume per unit width of channel. 

4.1.2. Classification 

For the complete linear solution Ear le" '!967) r'.;•. ~;s"'.f ir-.d channel reaches 

•U'.ort, intermediate and long. 7he classificatic-i was based on the ait.c:..:f 

For the diffusion type so'n'.y.cn a sii'iüar ci âjs.'.f ication, car. be ,.,.-u'e ,:•.; 
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fol lows: (Fig. 4 .2) 

R=0 

P « 1.8 short channel reach 

1 . 8 < P « 5 intermediate channel reach 

p > 5 long channel reach 

1 2 3 4 5 6 7 8 9 

fig. 4.2 Dimensionless impulse responses for the tributary inflow problem 

10 11 12 13 
Dimensionless time T 

a. A short channel reach, if in the dimensionless IUH the time to peak T < 1 

3h 
or <«£) « 0 

3 T T=l 

From this condition it follows, using Eq. (4.12) that P « 1,8 

b. An intermediate channel reach, if T > 1 and (h ) > Ç, where Ç is a 
p q T=I 

-4 
small number (ffe 5 x 10 ) from which follows 1,8 < P < 5 

c. A long channel reach, if (h ) < Ç 
q T=l 

For practical purposes this means that the rising limb of the dimensionless 

IUH starts at T > 1. 

This is valid if P > 5. 

In combination with the statistical moments and spectra, this classification 

seems to be useful in analysing the behaviour of the system. 
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4.1.3. Moments 

The moments of the IUH are derived from Eq. (2.9) (Van de Nes and Hendriks,1971). 

They can be expressed as follows: 

M|(h ) = (P + \)Q 

M,(h ) = (P + hg2 (4.14) 
2 q 4 

vy -(3? + Y-^3 

from which for the shape factors (Section 2.2) follow: 

S2= (P + 5/4)/(P + 1/2)2 and S3= (3P + ll/2)/(P + 1/2)3 (4.15) 

For the first three moments of the IUH for the water depth was found: 

Mj(hy) = (P + \)Q 

M2(hy) = (P + 2)Q2 (4.16) 

M3(hy) = (3P + 8)Q3 

Comparison of the moments of discharge and water depth shows that water depth 

fluctuation is more damped then discharge fluctuation. This is in agreement 

with the hysteresis in the discharge-water depth relation for a flood wave. 

For large values of P however the moments become equal. Then the relation 

between water depth and discharge becomes unique. This condition is also 

characteristic for the kinematic wave, which does not attenuate. 

4.1.4. Atténuation coefficient 

As defined in Section 2.3. the attenuation coefficient for the discharge 

C A = ( ^ ) ( f ) 2 (4.17) 

2 
ßt _ is the second moment M,(x) of the incoming wave and t_ is the duration of 

r z r 

the input. 
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fig. 4.3 Amplitude density spectrum of the I U H , »pressed in tht discharge,for the tributary inflow problem (R = 0) 
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hqe phase density 
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fig 4 . i Phase density spectrum of the I U.H., expressed in the discharge, for the tributary inflow problem ( R = 0 ) 

5000 10000 
u O (radians) 
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For the 'Thomas wave': ß = 1/12 - 1/2TT % 0,033, while for a block input 

ß = 1/12 % 0,083. 
F 

So for a small ratio jr- (short wave), a large value of P and or a small value 

of 3 the attenuation is more pronounced. 

4.1.5. Spectra 

The amplitude density spectrum and the phase density spectrum of the IUH of 

the discharge are derived by Van de Nes and Hendriks, 1971, using the eqs (2.13) 

and (2.1 A) given in Section (2.4.). 

The amplitude density spectrum can be expressed as follows: 

" , , P{l-a(a>)} 
h (u) = i e 

qa 2 

2 
2a (ai) + 2a(di) 

2a (u)-l 
(4.18) 

for a) > 0 
and the phase density spectrum of the IUH of the discharge is: 

h (u) = -Pß(co) - tan ' — ^ for to > 0 (4.19) 
q ö a (ü)) + ßZ(üj)+a(cü) 

where a(u) = /(l + /l + 4Q2u2)/2 

(4.20) 

and ß(w) = / ( - l + / l + 4ö2tü2)/2 

In the spectra of figs 4.3 and 4.4, the amplitudes and phases are given as 

function of uQ for a number of values of P. 

The damping effect of the system for an increasing value of P is shown in the 

spectra, while here Q seems to be only a scale factor. 

Also in the frequency domain one can subdivide the area in three parts, which 

agrees with the channel classification of a short, intermediate and long 

channel reach, as is shown in the figures. 

4.1.6. Summat-ion Curves 

Integration of the IUH for the discharge and for the water depth gives the 

summation curves (S-curves), from which TUH's for any period At can be 

derived. Then the numerical convolution of the input with the TUH is a simple 

procedure. 
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The responses given in figs 4.5 and 4.6 have been calculated by a digital 

computer (CD. 3200) within one minute. 

The S-curves for the discharge and the water depth are derived (Van de Nes and 

Hendriks, 1971): 

S = | erfc (—) (4.21) 
q /2T1 

and 

S = fâ { erfc (£1) - e2 P erfc (^)} (4.22) 
y 2 s /2Ï1 /2T1 

where the complementary error function is defined as: 

ƒ e erfc(z) = 1 - erf(z) = 1 - — /Ze 5 dÇ (4.23) 

and is tabulated. (Abramowitz & Stegun, 1965). 

In fact the S-curves are the outputs, due to an input, which has the shape of 

a step function. This means that a constant unit intensity input starts at 

time t=o; For t -* <» the steady state will be reached. 

From the eqs (4.21) and (4.22) it follows for t -*• <*> that: 

S = 1 and S = ̂  (4.24) 
q y s 

For the relation óf q and y then it follows: 
P P 

qp - ATyp (4.25) 

which means by comparing Eq. (4.25) with Eq. (3.19) that for t -»• °° the term 

s i 2 " 0 

Because q = q_ + q , as stated in Section 3.3., it follows for the steady state 

in a wide rectangular channel with A = y v_: 

q = v ^ j + | ^ = Vj (yt • | y ) 

(4.26) 

q = vxy + 1 V lyp 

In this linear systems approach to the problem the increase of velocity, due to 

35 



the increase of water depth is introduced in Eq. (4.26) by the second term on 

the right hand side. 

4.1.7. Response to given waves of inflow 

For the long 'Thomas wave', with a duration of 96 hours and the intermediate 

'Thomas wave' with a duration of 12 hours, as given in Section 3.4. the 

response is given for different distances from the point of inflow. 

For the long wave distances of 5, 50, 200 and 500 miles are chosen, while for 

the intermediate wave only 5 and 50 miles are considered. 

For comparison with the complete linear solution, as given by Harley (1967) 

for the upstream inflow problem, the same values have been taken, for the 

physical characteristics of the channel (4.4.7.). 

An original base flow of 50 cfs, in a wide rectangular channel with a bottom-
1 

slope S = 1 feet/mile and a Chezy friction coefficient C = 50 feet2/sec is 

assumed. 

The responses given by figs 4.5 and 4.6 show the attenuation of the waves at 

various distances for a number of reference discharges. For all the 

calculations the TUH of Eq. 2.4 was used as derived from the summation curves 

of Eq. 4.21. 

4.1.8. Effect of the reference discharge 

In the linearized diffusion type equations, as explained in Section 3.3., the 

estimation of the reference discharge or water depth is important. In figs 

4.5 and 4.6 the effect of the reference discharge is shown for various 

distances of the channel. 

In the calculations three values of the reference discharge respectively 100, 

150 and 200 cfs were chosen. In some cases the 3 curves were so close together, 

that only one or two curves could be shown in the same figures. 

The system parameter P and Q, as defined by Eq. 4.11, can be calculated from 

the parameters A and D, as defined for a wide rectangular channel by Eq. 3.21. 

It follows that P and Q depend on the physical characteristics of the channel 

and the reference discharge. 

Table 1 shows the effect of the reference discharge on the moments of the IUH 

for the discharge for various distances to the point of inflow; the first 

moment (time lag) M](h), expressed in hours and the second moment M„(h), 
2 

expressed in (hours) . These moments are functions of the parameters P and Q. 
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Discharge cfs 
200 

Distant» s=Smilts 
qo=20Q100 cfs 

/ s =50 mi lts 
~ <lo=200,1O0 cfs 

5=200 mil« 
0=200,150,100 cfs 

Channel flow 
Tributary inflow problem ( R * 0 ) 
Input Thomas wave, duration 96hours 

Base flow =50 cfs 
C=50feet' /2/sec 
S0s 1 feet/mi(e 

fig 4.5 Effect of the reference discharge for different values of the distance s 

for the "Long Thomas" wave 

Discharge cfs 

Channel flow 

Tributary inflow problem (R=0 ) 

Input Thomas Wave, duration 12b 

C= 50 feet 'Vsec 
S0= I feet/mile 

120 144 168 
time (hours) 

fig 4.6 Effect of the reference discharge 
for different values of the distance s 
for the"intermediate Thomas" wave 
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Table 1 - Effect of the reference discharge 

q o 
( c f s ) 

100 

150 

200 

Q 

( h o u r s ) 

4 . 9 

5 .6 

6 . 2 

s = 5 m i l e s 
P |M j ( h ) |M 2 ( h ) 

1 
0 . 27313 . 79 !36.92 

0 . 2 0 8 ' 3 . 9 6 46 . 62 

0 . 1 7 2 , 4 . 1 7 154.68 

50 m i l e s 
P |Mj (h) 'M (h ) 

1 ' 
1 

2 - 7 3 ' 1 5 . 8 3 | 9 6 . 6 

2 . 08 1 4 . 4 5 ( 1 0 6 . 5 

1 . 7 2 | 1 3 . 7 6 1 1 1 4 . 4 

200 m i l e s 
P ' M | ( h ) i M 2 ( h ) 

10 .92 55 .96 245 .5 

8 . 3 2 , 4 9 . 3 9 , 3 0 6 . 0 

6 . 8 8 ' 4 5 . 7 5 I 3 1 3 . 3 

500 m i l e s 
P iMj(h)!M 2 (h) 

| 

27 . 3 136 .2 , 693.0 

20 .8 119 .3 705.2 

17 .2 109 .7 ; 711.1 

Table 1 shows that an increasing reference discharge causes an increasing Q and 

a decreasing P. For the short reach (s = 5 miles) the first and second moment 

are increasing, while for the larger distances the first moment is decreasing 

and the second moment is increasing. The increasing iirst moment f.:-.: die short 

reach is due to the increasing storage in the channel section upstream of the 

inflow point, causing a slower recession in the tail of the IUH. This is also 

why the second moments for all values of P are increasing with an increasing 

reference discharge. For the short reach the relative variation of the second 

moment is large, while for the long reach the relative variation of the first 

moment is large. It is clear from Fig'. 4.5 that for the 'long' Thomas wave the 

attenuation effect is negligible for all values of P and the lag effect 

becomes important only for large values of P. 

For the intermediate 'Thomas' wave (Fig. 4.6) in a short reach (5 miles) both 

effects are small, despite the relative large value and variation of the second 

moment, whereas the intermediate reach (50 miles) shows some translation and 

attenuation. Obviously the actual translation and attenuation also strongly 

depend on the shape of the inflow wave. 

Summarising these observations it can be stated that for both inflows into the 

short channel reach (P « 1.8) the reference discharge has hardly any effect. 

This will be further clarified in Section 5.5. In the intermediate channel 

reach 1.8 < P « 5 for the long wave, there is only a little translation, while 

for the intermediate wave there is some translation and attenuation but it is 

not very pronounced. In the long channel reach (P > 5) an important translation 

only occurs with the long 'Thomas' wave. 

From this example it follows that the reference discharge is not an important 

factor for a short channel reach. In a long reach however it does effect 

the translation. 

4.1.9. Comparison with a somgtete non-linear solution 

In the department of Hydraulics and Catchment Hydrology research is in progress 
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on the non-linear theory of channel-flow and overland flow. (Grijsen, 1971) 

As some results for a special case are available, the linear solution may be 

compared with the non-linear. Conclusions can then be made about the accuracy 

of the linear solution and the optimum value of the reference discharge. 

The non-linear solution is based on the complete non-linear differential eqs 

(3.1) and (3.2), using an implicit difference scheme (Amein, 1968). This 

special case, which was solved can be described as follows: 

An infinite wide channel or a rectangular channel with width B = 1.75 m, has 
1/3 

a bottomslope S = 0.0001, and a Manning friction coefficient K = 31 m /sec. 

This channel is fed in one point (s = 0) by an 'short wave', expressed in 
3 

m /sec, per 1.75 m width of channel (Fig. 4.6), which is superposed on an 

initial uniform water depth of 0.50 m. 

The responses, expressed in the water depth, have been calculated for different 

values of distance. In Fig. 4.7 the results are only given for s = 0 and 

s = 1000 m, which lie within the most interesting range, because this 'short 

wave' attenuated very rapidly. 

Waterdepth m 

0.70 

Channel flow 
Tributary inflow problem (R=0) 
Input Short wave (fig. 3.6) 

Base water depth =0.50 n 
Km=3lmVj/sec 
S0= 0.0001 

linear solution, reference water depth =0.70 m infinite wide channel 
.complete non linear solution 

0.60-

^linear solution,reference water depth:0.70m 
.complete non linear solution 

05 1.0 l . i 2.0 

fig. 1*1 Comparison of linear with complete non linear solution 

For a number of reference water depths the linear solution was calculated by 

using the S-curve for the water depth (Eq. 4.22) and the convolution integral 

in discrete form (Eq. 2.2). A reference water depth of 0.70 m seemed to provide 

the best fit. This solution has been presented in Fig. 4.7. 
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For this 'short wave', especially for s = 0, the effect of the reference water 

depth on the response is important. 

The figures show a fair agreement of the linear solution and the complete 

non-linear solution. Since this simplification and linearisation of the dynamic 

equation apparently do not lead to great errors they seem acceptable for 

practical purposes. 

The results also seem to justify the design rule for the reference water depth 

y as suggested in Section 4.1.: 

yQ = yp( 0 )peak + yp S peak + y^ (4_2?) 

The goodness of fit between the linear and non-linear solution can be 

expressed by the efficiency coefficient R defined as (Section 2.5): 
E 

X(f-f.)2 

R = {1 -x-} 100% (4.28) 
E £(f-f)2 

Here f stands for the data of the non-linear solution, f. for the data of the 

linear solution and f for the mean of the data for the non-linear solution. 

In the above examples of the linear diffusion type models for distances of 

s = 0 and s = 1000 m respectively as compared to the non-linear model, showed 

efficiency coefficients of 83% and 87% respectively. 

For optimization procedures of the reference discharge and the system 

parameters P and Q by a digital computer, the efficiency coefficient is useful 

as objective criteria for the goodness of fit. 

A specific study on the errors due to simplification of the dynamic equation 

and due to the linearisation of this simplified dynamic equation is in 

progress. 

4.2. INFINITE CHANNEL - DISTRIBUTED INPUT 

This element, also called the partial lateral inflow problem, is illustrated 

in Fig. 4.8. In this case an infinite uniform channel is fed by an inflow, 

which is uniformly distributed over a distance I , from upstream point s = 0 to 

downstream point s = I , while the responses can be calculated for J l . No 

attention is paid to responses, for s < 0, which are relevant for the study of 

the backwater effect. The inflow may be the result of the overland flow phase 

or the result of the groundwater flow phase. From the description of the 
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problem it is clear that the tributary inflow problem is a special case, 

where i = 0. 

Lateral inflow over distance L, 
from the overiandflow phase 
or groundwaterflow phase 

fig 4.8 Concept of the partial lateral inflow problem 

4.2.1. Impulse Response 

As compared to the tributary inflow problem, using the same differential 

equation, only the first condition differs as follows: 

and 

yp(s,o) - j 

y (s,o) = 0 

for 0 « s < S, 

(4.29) 

for s > l and s < 0 

which means an instantaneous addition at time t = 0 per unit width of channel 

of a unit volume uniformly distributed over a distance I of the channel reach. 

The solution can be derived from the solution of the tributary inflow problem, 

by integrating over the distance: 

V 8 , t ) "ïs4l y p 1
( a ' , : ) d0 (4.30) 

where y (a,t) is the solution for the water depth of the tributary inflow 

problem, given by Eq. (4.8). 

Substitution of Eq. (4.8) gives for the water depth of the partial lateral 

inflow (Van de Nes and Hendriks, 1971): 

s-A t s-Jl-A t 
y ( s , t ) = jj {erf ( —) - e rf ( —) } (4.31) 

P 2l 2ADt 2AÏÏÎ 

The discharge can be found after introducing Eq. (4.30) into Eq. (3.19) thus: 
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21 

A s-A t s-Jl-A t 
q ( s , t ) = -£ { e r f ( T—) - e r f ( T—)} 

2/Dt 2v/Dt' 

o 2 
( s - J , - A T t ) " ( s - A T t ) 

+ k 7 ^ { e "e } (4-32) 

In the terminology of the systems approach and introducing a new dimensionless 
I 

inflow length parameter R = — the eqs (4.31) and (4.32) expressing the IUH's 

can be written in dimensionless form in the same way as has been done for the 

tributary inflow problem: 

h = - j j - = - = • { e r f ( ) - e r f ( — ) } 
q ¥ 2PR / 2 Ï / 2 T 

(4 .33) 

_ ( P ( l - ^ ) - T ) 2 _ ( P - T ) 2 

. j 2T 2T 
+ 2Pff T ^ { e ~ e } 

h = - £ - = ^ p { e r f ( ) - e r f ( — ) } ( 4 . 3 4 ) 
y ¥ 2R /if / 2 Î 

and 

where the meaning of the symbols is the same as for the tributary inflow 

problem. It can be proved that for the case R •* 0, the solutions for the 

tributary inflow follows from eqs (4.33) and (4.34). 

4. 2. 2. Classification 

Using the same criteria for classification, as has been done for the tributary 

inflow problem, it follows that the classification also depends on the third 

system parameter R: 

a. For discharges the classification of the channel reach as a short reach is 

given in Table 2 for a number of R values: 

Table 2 : Condition for the short channel reach. 

1.0 
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R 

P 

0.01 

< 1 , 8 

0 .1 

1.9 

0 . 2 

2 . 0 

0 . 3 

2 .1 

0 . 4 

2 . 3 

0 . 5 

2 . 4 

0 . 6 

2 . 6 

0 . 7 

2 .9 

0 . 8 

3 .2 

0 . 9 

3 .6 

0 . 99 

4 . 5 



2.586 

R=0.5 

P * 2.4 short channel reach 

2.4 < P * 10 intermediate channel reach 

P>10 long channel reach 

1 2 3 4 5 6 7 . . 

Dimension less impulse responses for the lateral inflow problem (R=0.5) 

10 11 12 13 
Dimensionless time T 

Short channel reach for all values of P 

1 2 3 4 5 6 7 8 9 10 

fig. 4 .9a Dimensionless impulse responses for the fully lateral inflow problem(R»1) 

11 12 13 
Dimensionless time T 
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From Table 2 it follows that for R = 0.01, the same condition is found as 

for the tributary inflow problem, while for R = 1 the channel reach is short 

for every value of P, because then the peak occurs at time t = 0. It is 

interesting to note that for R = 0.99 the value of P is relatively small 

(P « 4.5). 

b. For an intermediate channel reach, the following conditions are valid: 

For 0 < R 4 0.2 P , < P 4 5 (Ç < 3xl0~3) 
short 

and 0.2 < R 4 0.5 P ,_ < P « 10 (Ç < 4xl0~3) 
short 

and 0.5 < R 4 0.9 P ,_ < P « 25 (5 < 6xl0~3) 

short 

where P , are the values given in Table 2 for the appropriate values of 

R. It can be seen that for increasing values of R the value of P has to be 

increased considerably, before the channel can be classified as an 

intermediate reach. 

c. For a long channel reach the following conditions apply: 

For 0 < R 4 0.2 P > 5 

0.2 < R 4 0.5 P > 10 

0.5 < R 4 0.9 P > 25 

For larger values of R the value of P becomes very large, with 

P + », if i? + 1 . In Fig. 4.9a for R = 1 and R = 0.5 the dimensionless IUH 

for the discharge are shown for various values of P. 

4. 2. 3. Moments 

The moments of the IUH of the discharge are derived from Eq. 2.9 (Van de Nes 

and Hendriks, 1971) and can be expressed as follows: 

Mj(h ) = (1 - \R)PQ + | 

,pNT,^ . 1 „2T,2„2 . 5 „2 M 2 ( V = ° ~ 'iR)PQ + 17 R P Q + Î Q (4-35) 

M3(hq) = (1 - IR)3PQ3+ i R2P2Q3 + j-Q3 

from which the shape factors as defined in 2.2 follow: 
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Q - (4-2J? P + 1/3 RZPZ f 5 
S 2~2 a n d S3 

z (2-fl) P + (4-2ff)P + 1 J 

( H i ? ) 24P + 2i?2P2 + 44 

{1 + (2-i?)P}3 

(4.36) 

In Fig. 4.9b S, is given as a function of S„ for a number of values of R. For 

R = 0 the shape factors of the tributary inflow problem is found. It is 

remarkable that for 0 < R < 0.5 the shape factor diagrams are very near to each 

other. This means that the shape of the IUH for these values of R is about the 

same, although a time lag, dependent on the value of P may occur. 

fig. « 

"SS rfï j& if Ô fl î3 Ï3 u f5~~ 

3 b Shop« factor diagram for the lateral inflow problem 

The first three moments of the IUH for the water depth are: 

Mj(hy) - (1 - i R)PQ +'« 

M2(hy) = (1 - 1 R)PQZ + \jRZP2Q2 + 2QZ 

M (h ) = (1 - J R)3PQ3 + J RZPZQ3 + 8Q3 

ô y 

(4.37) 

Here again it follows that for large P-values the moments and therefore the 

IUH for the discharge becomes equal to the corresponding moments and the IUH 

for the water depth. 
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4. 2. 4. Attenuation coefficient 

As defined in Section 2.3. the attenuation coefficient for the discharge is: 

C A = { P + 5 / 4 + IPP(U6RP- 1) } ( £ _ ) 2 (4_38) 

F 

where 3 is dependent on the shape of the input and t is the duration of input. 

Comparing Eq. 4.38 with Eq. 4.17 shows that 

for 1/6 ifP - 1 > 0 or 1 > R > 6/P (4.39) 

the attenuation for this lateral inflow is greater than the attenuation for the 

tributary inflow. 

For if < 6/P « 1 the attenuation of the system is smaller than the attenuation 

of the tributary inflow. 

The results of calculations in Section 5. illustrate this effect. 

4. 2. 5. Spectra 

The amplitude density spectrum and phase density spectrum of the IUH of the 

discharge are derived by Van de Nes and Hendriks, 1971. 

The amplitude density spectrum can be expressed as follows: (4.40) 

P(l-ii?)(l-a(o))) r 
h qa ( u ) = 2§ff 

and the phase density spectrum: 

2(l+a(M)Xcosh PP(l-a(oj)) - cos PPß(oj)} 

(a(u))-l)(2a2(tü)-l) 

2 
Z t \l n/i \-a\nl \ ~' a (ai) + ß (u) hq9(u)lx = -p('-^)e(-) - tan g(u) ( „ ^ 1 , j 

+ tan"1 {tan ̂ PPß(to) coth £Pif(a(w) -1)} 

(4.41) 

for ID > 0 and PPß(u)ex = [O,TT) 

and h 0(u)I is the restriction of h _ to X qu A qo 

In the case that PPß(ü))£X = [(2k-l )TT , (2k+l )TT) , k = 1, 2 

it follows: 

h q 6 ( w ) ! X k = h q 0 ( U ) | x + kTT , k = l , 2 , (4.42) 
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h q a amplitude density 

Q,Ot 0,05 O,! 

fig. 4.10 a Amplitude density spectrum 

0,5 1 5 10 50 100 500 1000 

of the I U H , expressed in the discharge, for the lateral inflow problem (R=0.3) 

5000 10000 
Q (radians) 

hqe phase density ,âuî o , I D B I 

0,01 0,05 0,1 0,5 1 5 10 50 100 500 1000 

fig. t i l a Phase density spectrum of the I U H , expressed in the discharge, for the lateral inflow problem IR»Q3) 

5000 10000 
w Q (radians) 
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h qQ amplitude density 
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fig U 10 b Amplitude (tensity spectrum of the I U H , expressed in the discharge, for the lateral inflow problem (R«0 5) 

n qô phase density 

50 

m 

_ 

0,5 

01 

0,05 

—m— ! 
; i ; 

! 
* ! 

--M4 

-+ 
i 

\\ 
! • : 

• / \v / 

/ ^v / 
/ '-• w / 

K 
/ /y 

/ 

VW 

46 

i 

W\ i 

i 

p ATS 

2D 

J -

'T s 
y s 

v^ ****' 

'V*"'^***" 

y 

y 

A T * 

^ 

R= 

' f ' 

^y 

,<^ "'t) 

~ï\^" 
' 1 ^s** 

'tJ——^ 

- n ' ^ 

.--—"~ 
COS 

0) 

h .5 

—1 — f ~y~'i 
• 

'&•' J<\ î -r'-r 
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t)q a amplitude density 

<V» 005 41 0,5 t S 10 

f ig.4.10c Amplitude density spectrum of the IU H , expressed in the discharge, for the lateral 
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f ig. 4. t ic Phase density spectrum of the I U H , expressed in the discharge, for the lateral inflow problem (RBO.71 
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h q Q amplitude density 
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t ig . 4.1Q d Amplitude density spectrum of the I U H > expressed in the d ischarge, for the lateral inf low problem (R=Q9) 
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fig, i , 10e Amplitude density spectrum of the I U H , expressed in the discharge, for the lateral inflow problem (R=1) 
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For a number of combined R and P values, both spectra are presented in the 

figs 4.10 and A.11. 

In the amplitude density spectra oscillations for large value of P occur. The 

value of P, where the oscillations start, depends on the value of R. For an 

increasing value of R the oscillations start at a lower value of P. The reason 

for these oscillations is that in the IUH, a nearly horizontal part occurs. 

This is shown by the results of the corresponsing calculations (see Section 

4.2.7.). The same phenomenon can be observed in the phase density spectra. 

Referring to the criterion R > 6/P for the relative attenuation (Section 

4.2.4.) comparing the spectra shows the same criterion for the filtering effect 

on the lateral inflow as compared with the tributary inflow. 

The phase density spectra show that the translation for a certain value of P 

becomes more important for decreasing values of R. 

In Section 5.2., where the different types of problems are compared this 

comparison of spectra is more detailed. 

4. 2. 6. Summation ourves 

The S-curves for the discharge and the water depth are derived by integration 

of the eqs 4.32 and 4.31 for two different conditions of R. (Van de Nes and 

Hendriks, 1971). 

a. For 0 < i? « ! or s > H : 

2 - n 2 

S
q

 = WP rW { "n e r f n - 77 e _n + Vrf \ + 7? e n* } + * ( 4 - 4 3 ) 

Q / T , „ I -n 2 l . 2P _., 
S = -5— v — { -n erf n — 7 - , e + (erfc n - e erfc Ç)} + y Rs 2 /ir 2 / ^ 

2 

- RE / 2 { ~\ e r f \ - 77 e + 7 ^ ( e r f c n* 

2P(\-R) , r . , PQ n n\ e e r fc Ç.)} + -£- (4.44) x. 2s 

P-T r P+T 
where n = , 4 = 

/2T / 2T 
(4 .45) 

a„A n - P ( ' - i ? ) - T F - P ( ' -R) +T 
and m ——— , t,j 

* /2F /2T 
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b . For R > \ or 0 « s < ü: 

2 

s
q " WP ^ { " n e r f n - 77 e _ n + Vrf \ + 77 e n ' } + 

R + -h - L2 (4 .46) 

2 Q PT . , 1 -ri 1 , . 2P , _ . , 
S = ^ - / - { - n e r f n - - 7 p e + ( e r fc n - e e r fc 0 } + 
y s 2/2T1 

2 

- A Ï / 2 { " \ e r f \ " ^ e + ^ ( e r f C \ + 

- e^'^erfc ^J + f (I - J) + ^ (1 - . * < > - » > 

(4.47) 

where n» Ç» n and ç are defined as given before. 

The solutions for the S-curves were derived for the condition that the system 

is fed by a constant intensity of inflow, expressed in a unit of volume per 

time, per unit width of channel over a distance I. 

If the intensity of inflow to the channel reach is expressed in units of water 

depth per time over the drainage area D , it follows that: unit water depth 

per time = 1 x D unit volumes per time. This volume of water is uniformly 

distributed over the surface area of the channel C (= B.d). 
a 

Introducing the storage capacity of the channel as: 

C 
a 

y c D (4.48) 
a 

it follows that in the expressions for the S-curves of the water depth the term 

Rs(.=i) may be replaced by u . Expressing the intensity of inflow in units of 

depth per time over the drainage area does not effect the S-curves for the 

discharge. 

For t •*• °° it follows from the eqs (4.43) and (4.44) for the condition R 4 1: 

q = A y — (steady state) (4.49) 

Under condition Ï > 1 or 0 < s < î the discharge and water depth over the 
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distance i of the channel reach vary as: 

lim S = ̂  (4.50) 
T-x» q R 

and lim S = — + -r— (1 - e ) (4.51) 
m y u 2u 
T-x» y c Mc 

From the eqs 4.50 and 4.51 it follows for R •+ °° (s = 0 ) , expressed in 

parameters A,, and D. 

and 

S = 0 
q 

s = D , (i -
y u A 2 

A 
- - H - t 

- e ) 

(4.52) 

C T 

This means, according Eq. 3.19 that then (y) „ = -r— (̂  ) _n 
S U A dS S — i / 

T 

It can be concluded from eqs 4.50 and 4.51 that t ->• °° the first term on the 

right hand side of the equation shows the linear increase of the discharge and 

water depth with distance, while the second term in the equation of the water 

depth shows the relative non-linear increase, which decreases with the distance. 

For R = 1 this term vanishes completely. It should be noted that the shape of 

the water depth profiles depends on the choice of the constant reference 

discharge or water depth. 

4.2.1. Response to given waves of inflow 

The four types of input, described in Section 3.4. have been used for 

demonstrating the various aspects of this type of problem (figs 3.3, 3.4, 3.5 

and 3.6): 

Fig. 4.12 gives the discharge and water depth profiles for a blockinput of 3 

hours and for a number of values of the time t. 

In this example the following data were used: 
1/3 

A reference water depth y = 1 m, K = 25 m /sec, S = 0.0001, u = 0.02 and 1 J o ' m ' o c 

I = 25 000 m. 

For the fully lateral inflow problem (R = 1) Fig. 4.13 illustrates the effect 

of the dimensionless length parameter P on the discharge and the water depth. 

Here the above data were used. It shows that the peak discharge, expressed in 

water depth, decreases with channellength. Naturally if the peak discharge 

were expressed in unit volumes per unit of time, it would increase. 
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L= 25000 m 

Km= 25 rtJ /̂MC. 

Y0= l m P mm/int 

tint. 

0 nu» 20000 30000 MODO 
fig. 1.12 Oischargt and waterdepth profiles for a block input 

60000 70000 
Distinct In f 

The peak of discharge occurs at the end of the block input. The peak of the 

water depth increases and is delayed by an increase of channellength. Further 

the water depth is plotted against the discharge, showing the decrease of the 
3yp 

gradient of the water depth (—«-) with increasing length of the channel reach. 
oS 

In Fig. 4.14 for three values of P the effect of R is demonstrated for a 

constant value of Q 

For comparison some results of the upstream inflow problem have been given. 

This problem will be fully dealt with in Section 4.4. 

It shows that for a small value of P (= 0.74), the solution of the fully lateral 

inflow (R = 1) problem is very close to the upstream inflow problem, while the 

tributary inflow problem differs considerably. For a larger value of P (= 3.7), 

tributary, upstream and partial lateral (i? =0.2) inflow problems are close to 

each other, but differ considerably with the fully lateral inflow problem. The 

same is true for the case P = 7.4. 
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TU H Discharge 
mm/int 

. . 5 0 0 0 m IPrO.70 

Km * 25 m'^/sec. 

Yo • 1 m 

S0 = 0.0001 

R » t 

Q m 1.65 interval 

1 interval * 3 hour 

20 22 24 26 28 t intervals 

2 t ~ï s io 12 il « iS i5 ~~S 5 26 t intervais 

fig. 4.13 Effect of the dimensionless length parameter P 
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TUH mm/nt. Oischarge 

K m s 25 m /sec. 

Y0 = 1 m 

S0 = 0.0001 

S = 5000 m 
AT * 0.37 m/sec 

D s 1248 m2/sec. 

1 interval : 3 hour 

P = ^ = 0 . 7 4 
20 

Q= i û = 1.65 interval 
AT2 

Input mm/int. 

Lateral inflow 

Upstream inflow 

io 12 u 16 18 t intervals 

TUH mm/int. 
o.2n R = 1 

S = 25000 m 

P = 3.7 

Q = 1.65 interval 

Lateral inflow 

Upstream inflow 

10 12 u )6 18 20 22 24 t intervals 

TUH mm/nt. 
0.2 

S > 50000 m 

P = 7.4 

Q * 1.65 interval 

Lateral inflow 

Upstream inflow 

fig. 4.14 Effect of the spatial distribution of inflow for three values of P t intervals 
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The effect of the reference water depth and the bottom slope is shown in Fig. 

4.15, for the fully lateral inflow problem (i? = 1). 

TU H Discharge 
mm/int. 

0.6-, 

Influence of the reference 
waterdepth on the T U H 

S = 25000 m 
R . I 

K m = ÎSm'tysic. 

S0= 0.0001 

0.4-

Influence of the S0 

on the TU H 

S = 25000 m 

R = 1 . , 

Km » 25 nrVW. 
Y0= tm 

2 4 6 8 10 12 14 16 18 0 2 4 6 8 

fig. 4.15 Effect of the reference water depth and the bottom slope 

For a long and intermediate 'Thomas' wave and using the same physical data as 

for the tributary problem, the responses are given for R = 1 in the figs 4.16 

and 4.17. 

For all the calculations the TUH of Eq. 2.4 was used as derived from the 

summation curves of eqs 4.43, 4.44, 4.46 and 4.47. 

4. 2. 8. Effect of reference discharge 

Table 3 shows the effect of the reference discharge on the system parameters P 

and Q and on the first and the second moments of the IUH, for the examples with 

the 'Thomas' wave, given in the figs 4.16 and 4.17 for the fully lateral inflow 

problem (R = 1). In this case the Thomas'wave inflow is uniformly distributed 

over the whole reach of the wide rectangular channel. 
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Channel flow 
Fully lateral inflow (R=1) 
Input Thomas wave, duration 96 hours 

C=50 feet^/sec 
SQSI feet/mile 
Base flow=50cfs 

fig 4.16 Effect of the reference discharge for different values of the distance s 
for the "Long Thomas" wave 

Discharge cfs 

base ftow 50' 

Channel flow 
Fully lateral inflow (R=1) 
Input Thomas wave, duration 12hours 

Base flow =50 cfs 
C= 50 feet Vlfsec 
S0= 1 feet/mite 

96 120 
time (hours) 

fig 4.17 Effect of the reference discharge 
for different values of the distance s 
for the "intermediate Thomas "wave 

59 



Discharge cfs 
2 0 0 r Input Thomas wave 

duration 96 hours 

Fully lateral inf low (R=1) 

Comparison of constant reference 

discharge w i th varying reference discharge 

C = 50 feet W /sec 
S0=1 fee t /mi le 

f ig. 4.18 Ef fect of a varying reference discharge w i t h distance 

for the "Long Thomas" wave 

Waterdepth m 
0.70 

Channel f l o w 
Lateral inf low over a distance of 1000m 
Input Short wave ( f ig . 3.6) 

linear solution, reference water depth=070m 
complete non linear solution 

Base water depth = 0.50 m 
Km=31m1/3/sec 
So=0.0001 
infinite wide channel 

efficiency = 69 % 

Distance s= 0 

base w 0.50 

^.linear solution,reference water depth=070rr 
complete non linear solution 

0.5 1.0 1.5 2.0 

f ig 4.19 Comparison of linear w i t h complete non l inear solution 

3.0 
t ime (hours) 
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Table 3 : Effect of reference discharge for R = 1, 

fl0(fs) 

100 

150 

200 

Q 

4.9 

5.6 

6.2 

5 miles 
P | Mj | H2 

0.273l3.12l33.42 

0.208 3.38J42.57 

0 .17213.63|51.45 

50 miles 
P | Mj ' M, 

2.73 9.14177.64 

2.08 8.62 83.12 

1 .72 I 8.43190.53 

200 miles 
P | Mj i M2 

10.92 I29.20l399.4 

8.32 26.09J350.6 

6.88124.43|331.9 

500 mi les 
P j Mj j M2 

27.3169.3 J1848.0 

20.8 J61.0 ,1495.9 

17.2 |56.4 11326.2 

The system parameters P and Q are. the same as in the case of the tributary 

inflow problem (ƒ? = 0 ) , however the moments are not the same, which is shown 

in the equation for the moments and in the given responses. From Table 3 it can 

be seen that for the 5 mile reach, the first moment increases about 15% to an 

increase of reference discharge of 100%, while for the longer channel reaches 

the value of Mj decreases. This phenomenon has been discussed in Section 4.1.8. 

In comparison with the tributary inflow problem (Table l,p45) the values and 

variation of the first moment are smaller. However the values and variation of 

the second moment are larger for the longer reaches. Fig. 4.5 shows the 

dominant translation of a tributary inflow, whereas Fig. 4.16 illustrates the 

dominant attenuation of a fully lateral inflow. The figs 4. 6 and 4.17 show a 

less pronounced difference for an inflow of short duration. 

For these inputs it is found that the variation of the reference discharge does 

not greatly influence the response. 

As mentioned in Section 3.4 for the lateral inflow problem, where the discharge 

is increasing with distance, the assumption of a constant reference discharge 

over the whole channel reach may be critisized. Therefore in Fig. 4.18 the 

response, due to the long Thomas wave, in the 200 miles reach, using a constant 

reference discharge (100 cfs) is compared with the response that would occur 

with a uniform increase of reference discharge towards the end of the reach. 

This uniform increase is approximated by a stepwise increase of the reference 

discharge from 0 to 150 cfs. 

The results show that the introduction of a varying reference discharge has a 

small effect. 

4. 2. 9. Comparison with a complete non-linear solution 

The comparison of the linear with the complete non-linear solution is based on 

the same inflow and the same channel as used for the tributary inflow (Section 

4.1.9), with the only difference that the inflow (short wave) is now uniformly 

distributed over 1000 m. The responses, expressed in the water depth, are 
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calculated for the distances s = 0 and s = 500 m. 

Fig. 4.19 shows that a reference water depth of 0.70 m provides a fair agreement 

between linear and non-linear solutions with an efficiency coefficient of 90%. 

4.3. OVERLAND FLOW PROBLEM 

As mentioned in Section 3.1. the overland flow problem is considered as 

turbulent flow in an infinite, wide rectangular channel, although this 

turbulency is not essential for the diffusion approach. 

The assumption of turbulent flow in particular, is arbitary because it is 

possible that laminar flow may also occur, in some places. 

Bravo, et al (1970) found that the solution of 0'Meara (1968), based on the 

linearisation of the complete dynamic equation was not stable for large values 

of t. Therefore an approximate linear solution for the overland flow problem 

was derived by integration of the solution of the upstream inflow problem with 

respect to distance. This approximation is not physically correct because it 

implies that the flow at any point of the reach of lateral inflow would not be 

influenced by the inflow of precipitation downstream from that point. 

Therefore an alternative solution of the overland flow problem, is suggested 

which is based on the linear diffusion type differential equation, as derived 

in Section 3.3., with no restrictions for the upstream effect of inflow. 

The solution for this problem is a special case of the partial lateral inflow 

problem (Section 4.2) by taking R = 1 and assuming an infinite wide rectangular 

channel. Therefore only the mathematical expressions for the IUH's, their 

moments and spectra and the S-curves will be given here. 

Some results of laboratory experiments of overland flow are given in Section 7.3. 

4.3.1. Impulse response 

The IUH for the discharge and the water depth can be derived in dimensionless 

form from the eqs (4.33) and (4.34) by taking R = 1: 

\ = ̂  = b{ erf <^§> + erf ( /? } + 

T ( P _ T ) 2 (4.53) 

1 1 , 2 2T , 
+ yp — — { e - e } 
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h - - £ - - i { erf ( £2 ) + erf ( / | ) } (4.54) 
y ¥ /2T1 2 

4.3.2. Classification 

From Table 2 in Section 4.2.2., it follows that for all values of P this 

overland flow should be classified as flow through a short channel reach 

because the time to peak of the IUH for the discharge is zero and therefore 

smaller than Q. 

4.3.3. Moments 

The moments of the IUH for the discharge follow from Eq. 4.35)! 

Mj(h ) = J Q (P+l) 

M2(hq) = | <22(l/6 P 2 + P + 5/2) (4.55) 

, ,,, , _ i r?fi. T£ 

so that for the shape factors (Fig. 4.9b): 

c _ 1/3 P2 + 2P + 5 , . 2P2 + 12P + 44 ,. .,. 
S, = 5 and S = -z (4.56) 

1 (P+l) (P+l) 

Ttoe moments of the IUH for the water depth follow from Eq. (4.37): 

Mj(hy) = \ Q (P+2) 

M2(h ) = i Q2(l/6 P2 + P + 4) (4.57) 

M3(hy) = | «3(| P2 + 3P + 16) 

4.3.4. Attenuation coefficient 

The attenuation coefficient can be derived from Eq. (4.38): 

CA = ( 1 / 1 2 P 2 V P + 5 M ) ( f ) 2 (4-58) 
F 
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where ß depends on the shape of the input and t is the duration of the input. 

4.3.5. Spectva 

The amplitude-density and the phase-density spectra of the IUH for the 

discharge can be derived from the eqs 4.40, 4.41 and 4.42. For the overland 

flow problem (R = 1, figs 4.10 and 4.11) this results in: 

p 
l-a(tu)) rin^^,,u;„„„i, Dn-™i,,^> _ n„„M^.,u n "• 

(4.59) h (w) = £_ 
qa 2P 

2(l+q(iü)){cosh P(l-q(üi)) - cosPg(io)} 

(a(co)-l)(2a2(œ)-l) 

, s i IT,«/ s ~l a(ü)) + 3 (") 

V^L = -'P6(W) - tan g(oo)(«(a,)-l) + 

A 

+ tan '{ tan ̂ PB(ü))coth |P(ct(to) - l)} (4.60) 

This expression is valid for to > 0 and Pß(to)eX = \0,^) 

whereas for u > 0 and Pß(u) eXfc = [(2k-l) TT, (2k+l)ir), k = 1,2 

the phase density spectrum of the IUH for the discharge is: 

h (co) I = h (U))| + kTT ( 4 . 6 1 ) 
q0 'x, q° Ix 

k 

a(to) and B(io) were defined by Eq. 4 .20 . 

4.S.6. Summation curves 

The S-curves for the d ischarge and the water depth for s = I or R = 1 can be 

derived from the eqs (4.43) and ( 4 . 44 ) : 

2 , i T 
S

q
 = h "rW {"n e r f n - 77 e_n + J \ e r f * 2 + 7? e" T'} + * 

(4.62) 

c 6 / T ; , 1 -n l , , 2P c - . , 
S = — / — { -X] erf n - -7—, e + (erf c n - e erf c £) } + 
" ^ 2 /2 Ï 
y s 2 

T 
Q / T ' , / T , / T 1 2 1 

7 / 2 1 - /T e r f ' 2 - 7? e + - 2/2T1 

+ P«/2s 

(1+erf/y) - e r f c / y j } -

(4.63) 
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n and Ç were defined Eq. (4.45). 

4.4. SEMI-INFINITE CHANNEL - LUMPED INPUT 

This system element, which is studied as the upstream inflow problem, was 

considered by Harley (1967). For the completeness of this report some of his 

work, concerning the diffusion type solution will also be included. 

In this case a semi-infinite uniform channel is fed by an inflow at the 

upstream end (s = 0 ) , where no flow can occur in an upstream direction. 

Comparison of the upstream and tributary inflow problems for the latter shows 

the effect of storage in the channel reach, upstream of the point of inflow. 

4.4.1. Impulse response 

The impulse response is found by solving the linear differential equation, ' 

expressed in the discharge per unit width of channel. 

2 
3q 3 q 3q 

at* - D T T * - A T 3 3 E (4-64) 

dS 

for the following boundary conditions: 

a. q (0,t) = 5(t) Dirac function 

q (s,0) = 0 for s > 0 
(4.65) 

The physical meaning of 6(t) is, that a unit volume per unit width of channel 

is instantaneously added to the system at the upstream end (s = 0) of the 

channel. 

Laplace transforms are used to find the following solution (Van de Nes and Hen-
2 

driks, 1971): (s_A
T

t) 

q (s,t) = S ,,e 4 D t (4.66) 
p 2/irDt 

The IUH for the water depth is derived by introducing Eq. 4.66 in the continuity 

Eq. 3.24: 2 
T A s 

4Dt A -~— s+A t 
y(s,t) = ̂  ÔÏÏ e « f c ( — ) (̂ -67) 
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In dimensionless form the IUH's for the discharge and the water depth can be 

written as follows: 

(P-T)2 

h - -^-^ / , ,e 2 T ( 4 . 6 8 ) 
ffT~ 

v2 
< ¥ A^ 

(P-T)' 
h s - — 

h = - £ - = P { - 2 — e 2 T - e2 P erfc (—)} (4.69) 
y V / M 1 /2f 

P, Q and T were defined by Eq. 4.11. 

4. 4. 2. Classification 

Using the criteria introduced in Section 4.1.2. classification based on the 

discharge, can be derived from Eq. 4.68. 

a. short channel reach (Tp <s 1), if P < 2 

b. intermediate channel reach (Tp > 1) and (h ) _ . > Ç, where Ç is a 
-L q 

small number (% 8x10 ) if 2 <; P < 5. 

c. long channel reach, where (h )_ . < Ç if P > 5. 
q T=l 

The results are simular to these found for the tributary inflow problem, with 

the exception of the short reach (P < 1,8). 

4.4.3. Moments 

The moments of the IUH for the discharge and water depth are derived by Harley, 

1967: 

M|(h ) = PQ 

M,(h ) = PQ2 (4.70) 
2 q 

M,(h ) = 3PQ3 

3 q 

from which for the shape factors follow : 

S 2 = j and S3 = |z or S 3 = 3 S 2
Z (4.71) 
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For the first three moments of the IUH for the water depth was found 

(Van de Nes and Hendriks, 1971): 

M|(h ) = (P + l)Q 

M2(hy) = (P + 3/4)«2 (4.72) 

M3(hy) = (3P + 5/2)Q3 

Comparison of the moments for the discharge with the moments of the water 

depth leads to the same conclusions, as drawn for the tributary inflow problem. 

(Section 4.1.3.). Further for large values of P(a long channel reach), the 

moments of the tributary inflow problem approximate the moments of the upstream 

inflow problem. This means that the upstream boundary for a long channel has no 

significant effect on the responses. 

4.4.4. Attenuation coefficient 

As defined in Section 2.3. the attenuation coefficient for the discharge is: 

C A - f (f-)2 (4.73) 

r 

where ß depends on the shape of the input t_ is the duration of the input. 

For the short reach the attenuation coefficient differs considerably from the 

C. for the tributary inflow problem, whereas for the long reach they are nearly 

the same. 

4. 4. 5. Spectra 

The amplitude density spectrum and the phase density spectrum of the IUH for the 

discharge are derived by V.d. Nes and Hendriks 1971, using the eqs (2.13)and (2.14). 

The amplitude density spectrum of the IUH can be expressed as follows: 

h (U) = e P ( 1 _ a ( ü ) ) ) for u > 0 ^ (4.74) 
qa 

and the phase density spectrum: 

h „(u) = - Pß(u) for ai > 0 (4.75) 
qe 
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In the spectra of figs 4.20 and 4.21 the amplitudes and phases are given as 

functions of uQ for a number of values of P. 

The spectra show the damping effect of the system for increasing values of P. 

Q seems to be only a scale factor. Also in the frequency domain one can sub­

divide the area in three parts, which agree with the channel classification of 

a short, intermediate and long channel reach, as is shown in the figures. 

4. 4. 6. Summation aurves 

The S-curves for the discharge and the water depth can be derived from the 

eqs 4.66 and 4.67 by integration with respect to time. (Van de Nes and Hendriks, 

1971): 

S„ = J { erfc (^) + e 2 P erfc (^)} (4.76) 
q /2T y/2? 

and 

S = ̂  { - (P + T + J) e2 P erfc (—) + J erfc (^) + 
y s /2T1 JT? 

r-, -rp"V 
/2T1 WW' 

+ / — e V-1 } (4.77) 
TT 

Similar to the tributary inflow problem the following relations are valid for 

the steady state (t ->•<»): 

S = Vp (4-78) 

and q = v y + { v y (4.79) 

In this linear systems approach, the increase of velocity, due to the increase 

of water depth is introduced in Eq. 4.79 by the second term at the right hand 

side. 

4.4.7. Response to given waves of inflow 

For the long and intermediate 'Thomas wave' with a duration of 96 and 12 hours 

respectively, the response is given for various distances from the point of 

inflow. For the long wave, distances of 5,50, 200 and 500 miles are chosen, 

while for the intermediate wave only reaches of 5 and 50 miles are considered. 
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For the physical characteristics of the channel the same values have been 

chosen as for the other inflow problems: an original baseflow of 50 cfs, 
i 

bottom slope S = 1 ft/mile, a Chezy coefficient C = 50 ft2/sec in a wide 

rectangular channel. In figs 4.22 and 4.23 the responses are given for the 

discharge per unit width of channel, based on the eqs 4.76, 2.4 and 2.2. 

Both figures show the attenuation and translation of the floodwave. The 

attenuation for the intermediate wave is much greater than for the long wave. 

Harley (1967) has also presented the responses for the same data, based on the 

complete linearized dynamic equation. 

By comparison of the linear diffusion type solution with the complete linear 

solution only a small difference is found, which cannot be shown in figs 4.22 

and 4.23. In the given examples the Froude number F % 0.1. This agrees with 

the statement of Dooge and Harley (1967), that for the upstream inflow problem 

the diffusion type of solution is accurate in comparison with the complete 

linear solution if F v 0.5. 

4.4.8. Effect of reference discharge 

In the linearized theory, as explained in Section 3.3., the estimation of the 

reference discharge or water depth is important. In figs 4.22 and 4.23 the 

effect of the reference discharge is shown for various distances. The same 

values of the reference discharge were chosen as for the other inflow problems 

(100, 150 and 200 cfs). In some cases the three curves were so close together, 

that only one or two curves could be shown in the same figure. 

Table 4 shows the effect of the reference discharge en the system parameters P 

and Q (hours) and on the first moment of the IUH for the discharge, expressed 
2 

in hours and the second moment, expressed in (hours) . 

Table 4 : Effect of reference discharge. 

q o 
( c f s ) 

100 

150 

200 

Q 

( h o u r s ) 

4 .9 

5 .6 

6 .2 

5 m i l e s 
P ^ ' ( h ) [ M 2 ( h ) 

I 

0 .273 ' 1.33' 6 . 6 3 

0.2081 1.161 6 .65 

0.172] 1.06 6 . 6 3 

50 m i l e s 
P |Mj(h)JM2(h) 

1 1 
2 . 7 3 [ 1 3 . 3 8 66 . 29 

2 . 08 1 1 1 . 6 4 | 6 6 . 5 0 

1 .72 110.66 I 66 .27 

200 m i l e s 
P | M j ( h ) | M ( h ) 

1 1 
10.92 , 5 3 . 3 1 ' 2 6 5 . 2 

8 . 3 2 ) 4 6 . 5 9 , 2 6 6 . 0 

6 . 88 1 4 2 . 6 6 | 2 6 5 . 2 

500 m i l e s 
P | M j ( h ) | M ( h ) 

| I 

27 . 3 133 .8 662.9 

2 0 . 8 | 1 16 .5 | 665 .1 

17 .2 106.6 | 662 .7 

Comparison of Table 4 with Table 1 for the tributary inflow problem shows a 

large difference for the short channel reach. For such short reaches the values 

of the moments are much smaller for upstream inflow, while the variation of the 

70 



Discharge cfs 
200 

Oistanct s» S milts 
q0= 200,tOO cfs 

^ »»50 mil« 
• "10,100 cfs 

Channel f low 
Upstream inflow problem 
Input Thomas wave, duration 96 hours 

Base flow = 50 cfs 
C = 50feet1/2/sec 
Sos1 feet/mile 

base flow 50 

fig 4.22 Effect of the reference discharge for different values of the distance s 
for the "Long Thomas" wave 

240 264 
time (hours) 

Discharge cfs 
200 r-Input 

Distance ««Smiles 
q 0 »200,100 cfs 

Channel f low 
Upstream inflow problem 
Input Thomas wave, duration 12hours 

Base flow s 50 cfs 
Cs 50 feet V j / s tc 
SQ=1 feet/mile 

96 120 
time (hours) 

fig 4.23 Effect of the reference discharge for different 
values of the distance s 
for the "intermediate Thomas* wave 

71 



first moment with the reference discharge is larger and the variation of the 

second moment smaller. For the long channel reaches both the first and the 

second moments converge, showing the diminishing effect of the upstream 

boundary. Table 4 shows that an increase of the reference discharge increases 

the translation. This effect dominates the attenuation for all values of P. 

From Fig. 4.22 it is clear that for the long Thomas wave the reference dis­

charge does not significantly effect the attenuation for all values of P, 

while the translation becomes important for large values of P. In the case of 

the intermediate 'Thomas' wave, where the moments of the IUH have a more 

pronounced effect on the shape of the responses, Fig. 4.23 shows both 

translation and attenuation in a 50 miles reach. 

Summarising the results it can be stated that in short channel reaches (P 4 2) 

the reference discharge has hardly any effect for both types of inflow. In the 

intermediate channel reach (2 < P ^ 5) there is some translation of the long 

Thomas'wave, whereas the intermediate wave shows both some translation and 

attenuation. In the long channel reach (P > 5) only the long 'Thomas' wave 

shows translation. For the intermediate wave it may be assumed (there are no 

results available) that the attenuation becomes less important and the transla­

tion becomes more important. From this example it follows that the reference 

discharge is not an important factor for a short channel reach. In a long 

reach however it does effect the translation. 

4.4.9. Comparison with a complete non-linear solution 

The comparison of the linear with the complete non-linear solution is based on 

the same inflow and the same channel as used for the tributary inflow (Section 

4.1.9.), with the only difference that the inflow at point S = ó has no effect 

in the upstream direction. The responses, expressed in the water depth, are 

calculated for the distances s = o and s = 1000 m for an infinite wide channel 

and for a rectangular channel with a width of 1.75 m. Figs 4.24 and 4.25 show 

that a reference water depth of 0.75 m provides a fair agreement between 

linear and non-linear solution, with an efficiency coefficient of 90%. For a 

wide rectangular channel the coefficients A and D are calculated from Eq. 3.28. 

For a channel of limited width Eq. 3.29 must be used. 
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5. COMPARISON OF THE DIFFERENT CONCEPTUAL ELEMENTS 

Introductory note: In the following the word 'distance' indicates the length of 

channel downstream from the local (upstream or tributary) inflow or the length 

of channel downstream from the upstream end of a distributed (fully or partial 

lateral) inflow. 

In Section 4 the effect of the channel length and the reference discharge as 

expressed in the system parameters P and Q, and of the type of inflow has been 

studied for the different types of elementary inflow problems. It was found that 

the linear solutions agreed reasonably well with the complete non-linear 

solutions. 

In this Section however, the effect of the spatial distribution of inflow of 

both an intermediate and a long 'Thomas' wave is studied separately. This 

implies that the model parameters P and Q are considered as constants. The 

independence of P and Q from the spatial inflow distribution will be shown to 

be a reasonable assumption. 

This effect which results from computational experiments will then be inferred 

from the characteristics of the impulse responses for the tributary, lateral 

and upstream inflow problem. 

5.1. RESPONSE TO GIVEN WAVES OF INFLOW 

Fig. 5.1. shows the response at a distance of 50 miles and a reference 

discharge of 100 cfs (P = 2.73 and Q = 4.9 hours) to the long 'Thomas' wave 

input. 

Comparison of the responses for the tributary inflow (R = 0 ) , the fully 

lateral inflow (R = 1) and the upstream inflow shows only a small time lag of 

about 10 hours. 

For a distance of 5 miles (P = 0.273), no results are given, as the curves are 

very close together, which means that for the short reach and a long 'Thomas' 

wave input the spatial distribution of the inflow does not influence the 

response significantly. 

In Fig. 5.2 the responses are given for a distance of 200 miles (P = 10,92), 

besides the response is given for the partial lateral inflow problem (R = j). 

For the tributary, upstream and partial lateral inflow it is found that this 

channel is to be classified as a long reach, whereas for the fully lateral 

inflow the channel is to be classified as a short reach. 
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The results for the upstream and tributary inflow problem appear to be close 

together. As compared with the tributary inflow the result of the partial 

lateral inflow (R = {) only shows a translation (12.5 hours). The result for the 

fully lateral inflow however shows both some attenuation and a translation 

of about 30 hours. It is interestimg to note that for R = 5 the attenuation of 

the partial lateral inflow (RP = 5.46) is smaller, while the attenuation of the 

fully lateral inflow (RP = 10.92) is larger than the attenuation of the 

tributary inflow. This is in agreement with the Eq. 4.39, which states that 

for R > — the attenuation of the lateral inflow is larger than the attenuation 

of the tributary inflow. 

In Fig. 5.3 the responses are given for the distance of 500 miles (P = 27.4). 

Discharge cfs 
150 

bas« 
flaw SO 

Channtl flow 
Reference discharge s 100 cfs 
Distance s s 500 miles 

upstream inflow 

Base flow'SO cfs 
C.SOfeettysec 
So« 1 feet/mile 
Input Thomas wave 
duration 96 hours 

P. 27,4 
Q= 6,9 hours 

fig. S.3 Effect of the spatial distribution of the "Long Thomas " wave 
input for the 500 miles channel reach 

The responses of the tributary and upstream inflow are close to each other, but 

the partial lateral inflow (R = 0.5) shows a translation of about 48 hours and 

some attenuation. The results of the fully lateral inflow and the tributary 

inflow differ considerably. 

For the long channel reach therefore the conclusion can be drawn that the 

responses of the partial lateral inflow for 0 < R < 0.5 have nearly the same 

shape as the responses of the tributary and upstream inflow, only the transla­

tions differ. For 1 > R > 0.5 also an important attenuation occurs. 

For the intermediate channel reach it may be concluded that for all types of 

inflow the shapes of the response are nearly identical. For 1 > R > 0.5 the 

translation of the partial lateral inflow decreases with R. 

For the intermediate 'Thomas' wave the results for a distance of 5 miles 

(P = 0.274) are given in Fig. 5.4. 
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It shows a difference in attenuation for the tributary and upstream inflows. 

The responses of the fully lateral (R = 1) and the tributary inflow are close 

together. For the distance of 50 miles (P = 2.74) Fig. 5.5 shows that the 

responses of the tributary and upstream inflows are close together, whereas a 

translation of the fully lateral inflow occurs. Compared with the 5 miles 

reach the difference between the responses to the fully lateral and tributary 

inflow has increased. 

For the long channel reach no results are given. However a persisting tendency 

is found for the responses of the tributary and upstream inflows to become 

identical for increasing values of P. Also an increasing difference between the 

responses of the fully lateral and tributary inflow is apparent. 

Therefore the conclusion can be drawn that for the short channel reach the 

spatial variation of the inflow, has little effect on attenuation. For the 

intermediate reach this variation also effects the translation. For the long 

reach the responses to the partial lateral inflow for 0 < R < 0.5 have the same 

shape as the responses for the tributary and upstreams inflow, only the 

translations differ. For 1 > R > 0.5 also an important attenuation occurs. 

Summarising the results, for large values of P (the long reach) the difference 

between the responses to the tributary and upstream inflow becomes negligible, 

the responses of the tributary and the partial lateral inflow differ 
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considerably for 1 > R > 0.5 and for R < 0.5 only a translation effect remains. 

For small values of P(the short channel reach) the responses of the tributary 

and lateral inflow are close together, while the difference between the 

responses of upstream and tributary inflow increases for waves of shorter 

duration. 

For intermediate values of P (intermediate channel reach) comparison of the 

responses of the different types of inflow shows only a little difference in 

attenuation and translation. 

5.2. MOMENTS 

Understanding difference in responses of the different types of inflow, as 

shown in the figures, can be derived from the shape factor diagrams of the 

IUH's for the different inflow problems. In Fig. 4.9bof Section 4.2.3. the 

shape factor diagrams are given for the lateral inflow problem for different 

values of R, while in Fig. 5.6 the shape factor diagrams are given for the 

upstream, tributary and fully lateral inflow problem (R = 1). 

The diagram shows that in the lateral inflow problem (Fig. 4.9) for 0 < R < 0.5 

the shape factors are close together. This means that the shapes of the IUH are 

nearly the same, only a translation may occur. For 0.5 < R < 1 the differences 

are increasing. In general it can be concluded that for 0 < R < 1 the band of 

shape factors is narrow, showing a not very pronounced effect of the lateral 

inflow distribution on the shape of the IUH. Fig. 5.6 also shows that for the 

short reach the lines for the tributary and the fully lateral inflows 

converge, while there is an increasing difference between the tributary and 

upstream inflow problems. For the long reach (large values of P) however the 

lines representing the upstream and tributary inflow problems converge. 

The conclusions drawn from the shape factor diagrams and from the responses to 

the different types of inflow (Section 5.1) appear to be identical. 

It should be noted that the shape factors do not provide any information on the 

translation. 

5.3. SPECTRA 

In the figs 5.7 and 5.8 the amplitude density spectra and the phase density 

spectra of the IUH's are given for the tributary, lateral (with varying value 

of R) and the upstream inflow problem for values of P = 0.1; 1.0; 10 and. 100 

respectively. 
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fig. 5.6 Effect of the spatial distribution of the inflow on 

shape factors 

After Eagleson et al (1966) it is assumed that significant variations in the 

shape of the IUH are only expressed in relative amplitudes greater than 0.1. 

Fig. 5.7 shows for P = 0.1 (the short channel reach) relatively small 

variations of the spectra for different values of if. For this small P value 

however there is a large difference between the tributary and upstream inflow 

problems. For increasing values of P these amplitude spectra converge. In the 

range of 1 < P < 10 (about the intermediate channel reach) all spectra converge. 

In the range of 10 < P < 100 (long channel reach) the spectra for the IUH of the 

lateral inflow diverge from the spectra for the tributary and upstream inflow 

with increasing values of i?. 

This means that in the intermediate channel reach the shape of the IUH's is not 

79 



AMPLITUDE: DL.NSIT ipL.CTRUM 

—1 Channe' f low 

f i g 57 Ef fect of the spat ia i dit.tr • t i e inf low on the ampl i tude density specrr i 

PHASE DENSITY SPECTRUM 

• i i l i i I i/L_j ._L_Li_Liii [__J._ii.!_ijiL LJ_LLJ I1 I I I LJ_L±IJ1L 

fig. 66 Effect of the spatial distribution of the inflow on the phase density spectrum 

30 

http://dit.tr


very sensitive to the spatial distribution of inflow, while for the long 

reach the spatial distribution of inflow has a dominant effect on the shape of 

the IUH's. In the short channel reach however the spectrum for the fully 

lateral inflow (fl = 1 ) lies above the spectrum for the tributary inflow (i? = 0 ) , 

whereas in the long channel reach the reverse applies. 

Apparently in the intermediate channel reach the spectra cross each other. This 

is demonstrated for P = 10, where the spectrum for R = 0.5 lies just above the 

tributary spectrum and the spectrum of i? = 1 is just below the spectrum for the 
p 

tributary. Eq. 4.40 shows that for R = -r the attenuation of the tributary and 

lateral inflow are equal. This is an agreement with the corresponding spectra. 

The phase density spectra in Fig. 5.8 show for P = 0.1 (the short channel 

reach) a large difference between tributary and upstream inflow. For the 

lateral inflow the value of R has a small effect, which effect is increasing 

with larger values of P. However for larger values of P the phase density 

spectra for the tributary and upstream inflow converge. Because of similar 

amplitude and phase spectra for the tributary and upstream inflow into a 

long channel reach, both the shape and the time lag of the IUH are the same. 

It has already been shown that in the intermediate reach the shape of the IUH's 

was not very sensitivefor the type of inflow, which was demonstrated Fig. 5.2 

for the example of a long 'Thomas' wave input into an intermediate channel 

reach (P = 10) 

The difference of translation of the tributary and the partial inflow (for R = £) 

can be derived from the phase density spectra. (Fig. 5.8). This difference of 

translation can be calculated using Eq. 2.17. 

For P = 10 and ug = 1 : 

Ane(W) = 8 - 51 = f 

For Q = 4.9 hours the difference of lag t =12.5 hours. 

The difference for fully lateral and tributary inflow is found to be: 

t 
8 - 1 .5 = TT— , and t = 32 hours 

Q o 

These results are in agreement with the translations, measured from the 

responses given in Fig. 5.2. 



5.4. SPECIFIC ATTENUATION 

As mentioned in Section 2.3. it is assumed that there is a relation between the 

specific attenuation of the inflow (Eq. 2.12) and the attenuation coefficient 

(Eq. 2.11). In Fig. 5.9 the specific attenuation is plotted as a function of 

the attenuation coefficient C, for the different types of inflow problems. 

Although these results do not definitely prove the assumed relation they 

indicate however that further research could produce a practical rule for 

determining the attenuation of an inflow wave from the characteristics of a 

channel. 

RA specific attem 

• upstream mflpw 
o tributary infipw 

i + fully lateral inflow 
v partial lateral inflow 

fig 5 9 , Relation between the specific attenuation and the 

10000 looo 
C^ attenuation coefficie 

5.5. SAMPLING INTERVAL 

Section 2.4. explains how the interval duration At, for the measurement of 

the input can be derived from the amplitude density spectrum of the IUH's for 

the different types of conceptual elements by the following relation: 
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At « — for u > ID (5.1) 
to p c 

c r 

If the channel is considered as a filter the upper limit of its passband is 

chosen where the relative amplitude equals 0.1. This subjective criterion should 

be verified in later work. 

From the amplitude density spectrum for the lateral inflow problem can be 

coneluded that: 

w Q = f,(R,P) radians (5.2) 
c i 

for the upstream inflow problem: 

u Q = f„(P) radians (5.3) 
c z 

The values for u Q can be read from the amplitude density spectra. 

A dimensionless sampling interval can be derived by introduction of Eq. 5.2 or 

5.3 into Eq. 5.1. For the lateral inflow problem follows: 

and for the upstream inflow problem 

""r'tfc (5-5) 

For the case to < u however the entire band width of the input signal is of 

interest; then the filtering effect of the system is small and the following 

relation for the sampling interval is valid: 

At « — (5.6) 
in 

P 

For the 'Thomas' wave the relative amplitude density spectrum (Fig. 5.10) can 

be expressed as follows: 

2 
x , (w ) ,~ = 5 a—5— . I s i n Jut J (5 .7) 

' x ^ o ) |utF(47r2 - < A F
2 ) | F 
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where t is the duration of this cosinus wave, 
r Ä A 

Using the c r i t e r i o n x (to ) = 0.05 x (to ) y i e ld s GO = 1 1 / t_,. a p a o p F 
So with the condi t ion co < to i t follows from Eq 5.2 or 5 . 3 : 

p c 
f , ( ? , # ) 

t„ 

f 2 (P) 

and 

11 
fAP,R) 

11 
f2(P) 

(5.8a) 

For u > U) : 
P c 

11 
f,(P,Ä) 

11 
f2(P) 

(5.8b) 

For the example of the upstream inflow problem for the 500 miles reach 

(Section 4.4) where P % 20, Q % 5 hours Fig. 4.20 shows that £(P) = 0.55. The 

duration of the long 'Thomas' wave is t_ = 96 hours. With 
r 

5 hours and 

f2(P) 0.55 it follows t„/Q < ll/f„(P). Therefore to < to and the sampling r z C p 
interval is to be derived from Eq. 5.5. 

AT « ̂  2 

The same applies to the intermediate 'Thomas wave 

For the 50 mile reach (P ̂  2, < 5 hours) f„(P) = 4. Then for the intermediate 

'Thomas wave' also to < to and c p 
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AT $ \ 

For the long 'Thomas wave' however u > u and since u = 11/t., it follows 0 c p p F 

from Eq. 5.6 

At -* -— =27.3 hours 

For the 5 mile reach (P % 0.2, Q = 5 hours) f„(P) = 150, so that for both 
waves u < ID . 

P c 

For the intermediate wave the sampling interval is: 

At < -rj~ "3.42 hours 

The chosen values of At for the 'Thomas waves' input, with which the responses 

were calculated, are in agreement with this criterion. In this way the chosen 

time interval At have been checked for all types of inflow problems, so that it 

can be concluded that the sampling of the input did not effect the shape of the 

calculated responses. 

The above calculations were based on the criterion to = 11/t_ for a 'Thomas 
p F 

wave'. 

Eagleson et al (1966) gave for a block input the cut off frequency 10 = 39/t_ 

and for a triangular input u = 10/t_. 
fl(Pff) n p 

If a < ii) , or g — < — the system filters all frequencies > u> . Eq. (5.8b) 

shows that this filtering effect of the system depends both on the ratio of the 

duration t_ of inflow and the characteristic time Q of the system and also on 

the ratio of a coefficient (11 radians), determined by the shape of the inflow 

and another shape coefficient, dependent on the dimensionless system parameters 

P and R corresponding with the shape of the IUH. 

The classification of the channels in short, intermediate and long channel 

reaches is based on these parameters P and if. 

The requirement for a short reach to act as a filter (ID > to ) is stated in 
tF ' P C 

Eq. 5.8b. Therefore — should be small. Fig. 5.7 shows that the sampling interval 
W 

depends on R. In the calculated examples (Fig. 5.4) however u < u so that the 

effect or R on the sampling interval was suppressed. 

In Section 5.3 it has already been explained for the intermediate reach that R 

which represents the spatial distribution of the inflow, hardly affects the 

responses. This is in agreement with Fig. 5.7 which shows that in the inter-
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mediate reach R hardly affects u (0.75 < u Q < 1.0) and therefore At is 
c c 

practically independent of R. 
The amplitude spectrum for the long reach in Fig. 5.7 shows that f (P,R) and 

f„(P) are smaller than 0.5. Therefore it follows from Eq. 5.8b that t„/Q must 
Z r 

be smaller than 20 for the reach to act as a filter (w > io ) . 
P c 

Unlike the response of the intermediate reach, the response of the long reach 

is also determined by values of R between 0.5 and 1, so that these values also 

affect the sampling interval. 



6. A LINEAR DISTRIBUTED MODEL OF SURFACE RUNOFF 

A complex distributed surface run-off system can be composed of the linear 

elements as discussed and compared in Section 4 and 5. 

Schematically this is represented in Fig. 3.1. In each series the output from 

one element is the input for the next element. To each element the convolution 

integral can be applied. The first three moments of the IUH for a series of 

elements can be obtained by adding the appropriate moments of the elements, 

while the amplitude density spectrum can be obtained by multiplication and the 

phase density spectrum can be obtained by summation. These moments and spectra 

are the characteristics of a series of linear elements. 

By studying the change of these characteristics through the series of components 

it can be decided which component does not significantly affect the response 

and can therefore be neglected. Also a decision can be made with respect to the 

required sampling interval. 

Because the whole complex system is linear and time-invariant the principle 

of superposition applies and the responses of all series can be added. 

In this approach interactions between the elements cannot be studied, because 

no internal boundary conditions are built into the distributed model. A next 

step in the presented development of linear distributed models could be the 

introduction of such internal boundary conditions between linear elements. 

6.1. COMPLEXITY OF THE SYSTEM 

Bravo et al (1970) defined the problem of dealing with complex distributed 

systems as follows: 'Criteria for choosing the general arrangement of elements, 

size of elements and spatial distribution of rainfall inputs have not as yet 

been formally established. At present, iudgeraent based on past experience and a 

feeling for the physical processes which are involved, tempered by the practical 

need to keep the number of elements reasonably small, has been used as a guide'. 

In our linear systems approach to the surface run-off problem the size of the 

elements is expressed by the model parameter P, while the spatial distribution 

of rainfall inputs over these elements is expressed by the model parameter R. 

The filtering effect of each element determines its right to exist in the model. 

In this way the complexity of the model is determined. The actual filtering of 

each element follows from the spectra of the input and the impulse response. 

In Section 5 it was shown that the filtering effect of each system element 

depends on one hand on the ratio of the duration of inflow to the characteristic 
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time of the system and on the other hand on tne ratio of a coefficient, deter­

mining the shape of inflow to a coefficient, determined by the dimensionless 

model parameters P and if. In the short channel reach the spatial distribution 

of the inflow can only influence the filtering effect of the model if t„/Q is 

very small, so that to > u . J c p 

In the intermediate channel reach the spatial distribution of the inflow has 

little influence on the filtering effect of the system. 

It is interesting to note that if the points for a number of British catcnments: 

(Nash, 1960) are plotted in the shape factor diagram for the upstream inflow 

problem (Fig. 5.6) these points fall within the range 2 < ? < j . '\a.sh ' m e ^ t c 

the system's response o;: these catchments in gammi • di ?; tr:. ':H. :..: jris Ù .. in !-..:. -,, .. 

dimensionless parameter n and a characteristic time k. The spectra ji these 

gamma-distributions and of the impulse responses of the upstream inflow problem 

are very similar for P = n and Q = k. 

This illustrates the feasibility of Nash's lumped model to cope nith the 

intermediate channel reach where the spatial distribution (if) of inflow has 

little effect on the response. 

In a long channel reach (high values of P) the spatial distribution of the 

inflow (i?) strongly effects the system's response. Therefore it cannot be 

considered as a lumped system. It can either be divided into a number of 

intermediate reaches or the spatial distribution of the inflow must be taken 

into account. 

When composing a conceptual model for the surface run-off it is advisable to 

start with estimates of P for the channel system beginning at the outlet of 

the catchment. 

In this way every channel section of the catchment can be analysed, so that 

conclusions can be drawn about the required complexity of the system. Therefore 

it is necessary to estimate the values of the model parameters and because thes 

depend on the physical characteristics of the system, physical iniormation about 

the system must be available. 

6.2. COMPUTER PROGRAM 

A computer program, written in Fortran IV, consisting of a master c-oip;r̂ l 

-.rogram and a number of subroutines, h;..s be m devflop>~d. In this computer 

rcaram not only the Surface run-off coirponeTt fas he.cv- taiven into -ccount, 

1 ut also the base flow, which consists of flc./ through the unsaturated I C Û ; 

followed by flow throu^n tne saturaced zone, as oiiown iu ii«. 2, 

file://'/a.sh


The separation of precipitation into precipitation excess and infiltration 

has as yet not been achieved. 

This report is however restricted to surface run-off. 

The complex surface run-off system is composed of the spatially distributed 

sub-systems of the catchment. These sub-systems are connected by channel 

reaches (Fig. 3.1). The rainfall excess of each sub-system is routed separately 

through the channel system to the outlet of the catchment. In this way the 

conceptual model of the surface run-off system consists of a number of parallel 

series of linear elements. The sequence of calculations for these parallel 

series is carried out by a master control program according to the chosen 

conceptual model. 

Each subroutine calculates the ordinate of the TUH at the end of the intervals. 

The histogram ordinates of the corresponding distribution graph are obtained 

as the areas between adjacent ordinates of the TUH, using a straight line 

approximation between these ordinate values. This distribution graph may 

subsequently be convolved with the TUH of the following linear element. In 

this way each conceptual element can be either studied separately or in a 

series with other elements. The output of each series is stored in the memory 

of the computer, so that the results of the whole complex surface run-off 

system can be obtained by summation of the outputs of all series. 

These results show how the TUH has been changed by the various conceptual 

elements in a series, and by comparing the TUH for the various series it can 

be clearly seen how the TUH of the whole complex system is composed of the 

spatially distributed sub-systems of the catchment. 

With the control Data 3200 computer of the Department of Mathematics at the 

Agriculutral University, the calculations of TUH for a complex system, 

consisting of 25 elements takes about 4 min. Also the convolution of the TUH 

with an input in the form of a histogram takes a relatively short time, which 

depending on the length of the input is of the order of seconds or minutes. 
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7. APPLICATIONS 

This chapter will discuss some applications of the proposed linear distributed 

model. To verify this model the following pieces of experimental work were used: 

Takahashi (1971) on the Kizu River in Japan, Kellerhals (1969) on steep channel 

networks in Canada and finally a laboratory experiment of the Department of 

Hydraulics and Catchment Hydrology. 

7.1. KIZU RIVER (JAPAN) 

Takahashi studied unsteady flow in irrigular open channels. He considered both 

the effect of storage in regions abutting on the main channel and the effect of 

large scale horizontal mixing. Figure 7.1 shows the concepts of main channel 

and dead zone (storage region). 

Dead Zone 

Dead Zone 

Fig. 7.1 Concept of main channel and dead zone. 

Figure 7.2 is a plan of the Kizu River downstream of Kamo. 

0 | 4000 m 

Fig. 7.2 Plan of the Kizu River downstream of Kano 

The discharge has been measured in Kamo, Iloka (+ 14 km downstream of Kamo). The 

channel width in the reach from Kamo to Yawata ranges from 260 m to 860 m. In 

this reach no significant local inflow occurs. Takahashi assumed a Manning's 

roughness coefficient value K 25 m' s ' and S 0.0008. 
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From the recorded river hydrograph he further assumed a reference waterdepth 

of 5 m. In his calculations Takahashi accounted for the above inequality of 

channel width B and storage width B. + B . In his study however, the channel 
m d m 

profile is assumed to be wide and rectangular with a 5 m reference depth over 

the whole width. Notwithstanding this simplification,the calculated results 

compared favourably with those given by Takahashi. Figure 7.3 gives the 

recorded hydrographs of discharge at Kamo, Iloka and Yawata together with the 

calculated results for Iloka and Yawata. 

Distance 

14 Km 

28Km 

P 

3.74 

748 

Q (hour) 

O 3 0 

0.30 

Mi(hour) 

1.13 

2.26 

Aij- m/sec 

1 4 4 

3 4 4 

D m3s-1 

6 4 4 8 

6 4 4 8 

M i (hour) 

0 3 4 

0.68 

• • m e a s u r e d discharge at Iloka (14 Km) 
O O measured discharge at Yawata ( 2 8 K m ) 

/ ^"^ calculated discharge 

Efficiency 97% 

5 10 15 20 
Fig 73 Experimental results of Kizu River (Takahaski 1971) 

The hydrograph of Kamo was used as the input for a semi-infinite channel 

(Section A.4.). The goodness of fit, expressed by the efficiency coefficient, 

was 97% for both downstream points. 

For this upstream inflow problem the incoming wave can be considered as a 

"Thomas" cosine wave with a wave length t„ = 25 h and g = 0.033 in 4.17 where 
2 . . 

3t is the second moment about the mean of the incoming wave. The second 
2 

moment of the IUH reads PQ and for the Kamo-Yawata reach P = 7.48 and Q = 

0.3 h. It follows that the attenuation coefficient (Eq 4.17) is C = 0.03. 

Introducing this value in Fig. 5.10 we indeed find a negligible attenuation. 

The same conclusion can be drawn from the spectral analysis as follows: 

In Fig 5.10 we find the cut-off frequency OJ in u t_ = 11 so that co = 11/25 = 
_, P P F P 

0.44 rad hour 
In the considered reach the cut-off frequency of the IUH in Fig 4.20 is found 
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for P = 7.48 and u Q = 1 .5 rad to be u = 1.5/0.3 = 5 rad hour '. 
c c 

We find co is much smaller than u and this means (section 2.4.) that there 
p _ c 

should indeed be very little attenuation. 

The translation expressed in the lag of the model is PQ = 7.48 x 0.3 = 2.24 hours. 

This is also in agreement with Takahashi's experimental results. 

7.2. PHYLLIS CREEK (ROCKY MOUNTAINS, CANADA) 

Kellerhals (1969) combined a "flow equation" A = a with a continuity equation 

for a tumbling stream consisting of pools and riffles. For his parameters a and 

b he found correlations with characteristics which could be derived directly 

from the topography of the stream channel and the corresponding catchment area. 

He tested his method in a number of mountainous stream-channels where he could 

effect inputs of certain shapes and he could measure the resulting outputs. 

His data of the Phyllis Creek,located below Marion Lake, have been used here to 

find out if the present "diffusion type" model can also be used in this case 

of a "tumbling stream". Obviously the normal wave equation 3.5 does not apply 

and therefore the physical meaning of an "equivalent" formula like Manning's is 

not real anymore. Nevertheless an equivalent Manning coefficient in a wide 

rectangular channel derived from Kellerhals' flow equation with the values for 

the coefficients a and b and the channel slope S as given in his thesis. 

Subsequently the reference discharge q was used as a free parameter to determine 

A and D in the diffusion type equation such that a good agreement between 

calculated and observed outflow hydrographs was obtained (Fig 7.4). 

Table 5 gives the Kellerhals' data and the derived K-Manning values for the 

various channel reaches. 

Table 5 : Physically characteristics. 

Gauge 1-2 

2-3 

3-4 

4-6 

Length 

770 

716 

617 

305 

(m) Width (m) 

11.48 

12.57 

12.64 

12.88 

Slope 

0.0307 

0.0488 

0.0641 

0.0995 

K 
m 

, 1/3 -(m s 

3.30 

2.40 

2.40 

1.90 

') 

Kellerhals ascribes the decreasing quality of his calculated results to a non-

linearity which should increase with the number of channel reaches. However the 

linear diffusion type model for this upstream inflow problem appeared to be 
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Gauge 6 

• Measuered 
— Computed 

Efficiency: 9 2 % 

^ /~^* 

discharge 
discharge (reference discharge 

^ A 
\ \ 

\ \ 

V—7 

2.20n?s-1) 

s — 
/ 

/ / 
/ / 

/ / 

ƒ 

0 10 20 30 4 0 50 

Fig 74 Experimental results of Phillis creek (Kellerhals 1969) 
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successful both for short and long channels. The values obtained for the 

efficiency coefficient were 0.94 and 0.92, respectively against Kellerhals' 

values of 0.82 and 0.72. 
i 

The parameter values P = 65 and Q = 0.3 min in reach 1-2 yield M = PQ = 
2 2 . 

18.5 min and M = PQ = 5 . 3 min for the IUH. These values indicate the major 
effect of translation. The same applies for reach 1-6. 

7.3. LABORATORY EXPERIMENT 

At the Laboratory of Hydraulics and Catchment Hydrology a series of surface 

run-off experiments were done in a 15m long tilting flume with rectangular 

cross-section of 1.02 m width. Over the flume a rainfall simulator, consisting 

of 184 elements, was constructed. In this way the inflow to the surface run-off 

system can be distributed in time and space with reasonable accuracy. The 

outflow was measured at the end of the flume. The hydrograph of outflow 

presented in Fig 7.5 shows a satisfactory sensitivity of the measurement 

equipment. 

At the upstream end of the channel it was possible to introduce a constant 

initial flow, upon which the rainfall was superimposed. 

An artificial uniform roughness was brought into the channel. From steady state 
1/3 -1 

experiments a mean Manning coefficient K = 30.5 m s was chosen. 
m 

In the experiment the bottom slope of the flume was 0.0025 and the initial 
-3 3-1 

base flow was set up at 0.7 x 10 m s . I n Fig 7.5 the rainfall histogram 

has been given. 

Theoretically this experiment must be represented by the model for fully lateral 

inflow into a wide rectangular channel (Section 4.3.). Both the results of the 

complete non-linear solution and of the linear solution with a reference 
-3 -3 -1 

discharge of 1.35 x 10 m s show an efficiency coefficient of about 96%. 

The computer took about 20 minutes to calculate the non-linear solution and 

half a minute for the linear solution. 

The value of P, 5.2, and Q, 0.34, minute, follow from the physical parameters 
2 

and it follows from Eq. 4.55 that M' = 1.1 minute and M = 0.69 min for the 

IUH, indicating both significant translations and attenuation. 
39 

For a block input in Section 5.5. the cut-off frequency was given as u = — , 
P F 

so that in this experiment where t_ varies between 2 and 3 minutes 
.F-l 

to varies between 13 and 19 rad m m 
P 

From Fig 4.10e it follows that to Q = 2 rad, so that for Q - 0.34 min u = 
-1 C C. 

5.9 rad min . In this case u > u , so the model acts as a filter, which is 
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Fig.75 Rainfall run-off relation from a Laboratory experiment 



in agreement with the experiment that shows the attenuation of the rainfall 

histogram. Eq. 4.58 for the attenuation coefficient yields a value C 1 à 2, 

however from Fig 5.9 it is not yet possible to find the specific attenuation, 

because the empirical curves are not complete. More research has to be done 

to refine these curves. 

In contrast to this experiment, a histogram describing a natural input, such as 

effective precipitation, will only approximate the true sequence of inflow 

rates. So the maximum duration of the histogram intervals to give an adequate 

description of events, should be determined. In this experiment the cut-off 

frequency u was found to be 5.9 rad min '. Eq. 2.. 1 yields the corresponding 
C 1 

sampling interval At = — = C.17 m m . 
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8. SUMMARY AND CONCLUSIONS 

8.1. SUMMARY 

A linear distributed model of surface run-off, consisting of a number of linear 

conceptual elements, has been developed to calculate the discharge or stage 

hydrograph of a complex catchment area from the rainfall excess data distributed 

in time and space. 

The run-off system is simulated by a network of overland flow and channel flow 

elements similar to that proposed by Bravo, et al (1970). The present approach 

however differs from the latter because 5 types of linear conceptual elements 

have been introduced. Their behaviour is based on a linearized version of the 

simplified one-dimensional equation of motion for flow in prismatic channels. 

This approach leads to linear diffusion type equations, for the discharge and 

water depth. The impulse response of each conceptual element is derived for 

the appropriate boundary conditions. 

In this way a link is made between the hydrodynamic approach and the linear 

systems theory. The following conceptual elements are considered: 

a. The overland flow component. This element is considered as an infinitely 

wide rectangular channel subjected to uniformly distributed lateral inflow. 

b. The channel flow component, subdivided in the tributary, the partial lateral, 

the fully lateral and the upstream inflow problem. 

In the systems approach to the surface run-off component where the model 

parameters are expressed in physical characteristics two types of mathematical 

models are used. First a two-parameter model for the upstream inflow problem, 

where the model parameter P is a dimensionless length parameter and Q represents 

the characteristic time of the model. Second a three parameter model for the 

lateral inflow problem with the model parameters P, Q and R, where R is a 

dimensionless inflow length parameter. For the tributary inflow problem R = 0 

and for the fully lateral inflow problem and the overland flow problem R = 1. 

For these special cases the three parameter model is reduced to a two parameter 

model 

The various conceptual elements, characterized by their impulse response 

functions, are classified, analysed and compared according to their shape 

factors and spectra. 

With these techniques the effect of variations of the inflow in space and time 

on the system's response are studied. These effects provide criteria for the 

required complexity of the conceptual model and they also provide criteria for 
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the sampling interval of the input. 

Because the hydrodynamic approach is linked to the linear systems theory the 

model parameters are expressed in the physical characteristics of the surface 

runoff system (channel length and cross section, bottom slope and friction 

coefficient) and a chosen reference discharge or water depth. The effect of the 

reference discharge or water depth on the response of 'Thomas wave' inputs of 

various durations has been studied. Some linear results were compared with the 

corresponding complete non-linear solution. An empirical relation between the 

attenuation coefficient C. and the specific attenuation of the peak value of 

the input is suggested for the optimization procedure. 

However if for a sub-system the input and output data are known the linear 

system analysis can be used to derive the model parameters without any 

knowledge of the physical characteristics, using the simple relation between 

the moments of input, output and impulse response. 

The above theoretical aspects were demonstrated in some simple examples. 

8.2. CONCLUSIONS 

1. The complexity of a distributed model of surface run-off can be determined 

by techniques of linear system analysis. Physical information about the 

surface run-off system should be available. 

2. The techniques of linear system analysis show the effect of the model para­

meters P (the dimensionless length parameter) Q (the characteristic time of 

the system) and R (the dimensionless inflow length parameter, expressing the 

spatial distribution of inflow) on the behaviour of each conceptual element 

in relation to a given input. The following channel classification is 

introduced: 

a. In the short channel reach the variation of both P and R have a dominant 

effect on the attenuation of the input. 

b. In the intermediate reach the variation of both P and R have relatively 

small attenuation and translation effects. 

c. In the long reach the variation of both P and R have dominant translation 

effects f or 0 < R < 0.5. For 0.5 < R < 1 an important attenuation effect 

also occurs. 

The filtering effect of the model for a given input depends on the ratio 

of the duration of input to the characteristic time Q. 
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3. The sampling interval of the input depends on the filtering effect of the 

model and can be derived from the amplitude density spectrum of the impulse 

response. 

4. For one input wave the linear diffusion type solutions were compared with 

the complete non-linear solutions for the various conceptual elements of the 

surface run-off model. The results showed good agreement for the presented 

examples with a proper choice of reference discharge or water depth. The 

goodness of fit, expressed by the efficiency coefficient R, is 90% for most 
E 

examples. 

5. The variation of the reference discharge has a dominant attenuation effect 

on the model's behaviour for the short reach, a relatively small attenuation 

and translation effect for the intermediate reach, and a dominant translation 

effect for the long reach for 0 < R < 0.5, while for 0.5 < R < 1 an important 

attenuation effect also occurs. The magnitude of these effects depends on 

the ratio of the duration of input to the characteristic time Q of the 

model. 

6. The linear diffusion type solutions for the various conceptual elements, 

breaks down if the Froude number F > "x» 2, assuming Chezy friction and 

F > <\< l£, assuming Manning friction, because then the parameter D < 0. 

Henderson (1966) has however shown that for the steady state for these 

values of the Froude number rolling waves occur, for which the hydrodynamic 

considerations, as presented in this report, are not valid. Moreover 

normally this situation will not occur. 

7. The application of the linear theory on the results of experiments in 

a river in Japan, in a mountainous stream channel in Canada and in a 

tilting flume in the laboratory shows a good agreement between observed 

and computed hydrographs. 
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LIST OF SYMBOLS 
dimension 

2 
A = cross-sectional area of the channel L 

A = translation coefficient L/T 

B = surface width of the channel L 
i 

C = Chezy coefficient L2/T 
C, = attenuation coefficient -
A 

c = celerity L/T 
2 

D = 'diffusion' coefficient L /T 

D = term for the energy dissipation as the lateral inflow 

mixes with the water already in the channel -

F = local Froude number 

f(X) = Laplace transform of the function f(t) 

f(üj) = Fourier transform of the function f(t) 

f (u) = amplitude density spectrum of the function f(t) 

f.(io) = phase density spectrum of the function f(t) 
2 

g = acceleration of gravity L/T 
2 

h = impulse response for the discharge L /T 

h = impulse response for the water depth L 

h = dimensionless impulse response for the discharge 

h = dimensionless impulse response for the water depth 

I = subscript for initial uniform flow 
2 

i(s,t) = lateral inflow per unit length of channel L /T 

K = bottom width of the channel L 
1/3 

K = Manning coefficient L /T 

il = distance over which the lateral inflow takes place L 

M'(f) = n momentof the function f(t) relative to the origin T n 

n , 
M (f) = n momentof the function f(t) relative to the mean T 

n 
m-' = tangent of the side slope of a trapezoidal channel 

o = subscript for reference value 

P = dimensionless length parameter of the system 

p = subscript for perturbation 
3 

Q = discharge rate L /T 
2 q = discharge rate per unit width of channel L /T 

Q = characteristic time of the system T 

R = dimensionless inflow parameter of the system 

RA = specific attenuation 
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s 
T 
P 

T 

At 

AT 

t o 
t 

UL 
v 

X 

y 

ß 

6(t) or 

&(x) 

lu 

U 

c 
0) 

= hydraulic radius 

= coefficient of determination or efficiency coefficient 

= slope of the water level 

= bottom slope 

= friction slope 

= dimensionless shape factors 

= summation curve for the discharge 

= summation curve for the water depth 

= distance in flow direction 

= dimensionless time to peak 

= dimensionless time parameter 

= duration of inflow 

= sampling interval 

= dimensionless sampling interval 

= translation time 

= time 

= component of the inflow velocity vector in flow direction L/T 

= velocity L/T 

= input 

= output or waterdepth 

= coefficient determining the shape of the inflow graph 

= Dirac function 

storage capacity 

frequency (radian per time interval) 

upper limit of the filter characteristic 

cut-off frequency of the input signal 

unit volume per unit width of channel 

L2/T 

L 

L 

T 

T 

T 

T 

rad/T 

rad/T 

rad/T 
,2 

101 



REFERENCES 

Abramowitz, M. and Stegun, I.A. (1965). Handbook of mathematical functions. 

Dover Publications, Inc., New York. 

Amein, M. (1968). An impliciet method for numerical flood routing. 

Water Resources Research, vol. 4, no. 4, p. 719-726. 

Bravo, C.A. et al. (1970). A linear distributed model of catchment run-off. 

M.I.T., Hydrodynamics Laboratory Techn. Report, no. 123. 

Chen, C.L. and Chow, V.T. (1968). Hydrodynamics of mathematically simulated 

surface run-off. Department of civil engineering, University of Illinois, 

Hydraulic engineering series no. 18. 

Chow, V.T. (1959). Open channel hydraulics. McGraw-Hill Book Company, 

New York. 

Chow, V.T. (1964). Handbook of applied hydrology. McGraw-Hill Book Company, 

New York. 

Daubert, A. (1964). Quelques aspects de la propagation des crues. 

La Houille Blanche, no. 3, p. 341-346. 

Dawdy, D.R. (1969). Mathematical modelling in hydrology. Proceedings of the 

first international seminar for hydrology professores. University of 

Illinois, Urbana, U.S.A., vol. 1, p. 346-362. 

Diskin, M.H. (1967). A Laplace transform proof of the theorem of moments for 

the instantaneous unit hydrograph. Water Resources Research, vol. 3, no. 2, 

p. 385-388. 

Dooge, J.C.I, and Harley, B.M. (1967). Linear routing in uniform open channels. 

I.A.S.H. Hydrology Symposium, Fort Collins, Colorado, vol. 1, p. 57-63. 

Dooge, J.C.I. (1967). The hydrologie system as a closed system. I.A.S.H. Hydro­

logy Symposium, Fort Collins, Colorado, vol. 2, p. 241-256. 

Eagleson, P.S. and Shack, W.J. (1966). Some criteria for the measurement of 

rainfall and run-off. Water Resources Research, vol. 2, no. 3, p. 427-436. 

Eagleson, P.S. (1970). Dynamic hydrology. McGraw-Hill Book Company, 

New York. 

Fiering, M.B. (1967). Stream flow synthesis. Harvard University Press, 

Cambridge, Mass., 139 p. 

Gringorten, I.I. (1960). Extreme value statistics in meteorology, a method of 

application. Air Force Surv. Geophys., 125 p. 

102 



Grijsen, J.G. (1971). Een direkte impliciete methode voor de berekening van 

de niet-permanente stroming in open leidingen. Ingenieursscriptie, Afde­

ling Hydraulica en Afvoerhydrologie, Landbouwhogeschool, Wageningen. 

Hamming, R.W. (1962). Numerical methods for scientists and engineers. 

McGraw-Hill Book Company, New York, 303 p. 

Harley, B.M. (1967). Linear routing in uniform open channels. M.Eng.Science 

Thesis, National University of Ireland, Dept. of Civil Engineering. 

Harley, B.M. and Dooge, J.C.I. (1968). Problems in simulating and evaluating 

various methods of linear flood routing using a small digital computer. 

I.A.S.H. Hydrology Symposium, University of Arizona, Tucson, vol. 2, 

p. 417-426. 

Harley, B.M. et al (1970). A modular distributed model of catchment dynamics. 

M.I.T., Hydrodynamics Laboratory Techn. Report no. 133. 

Hayami, S. (1951). On the propagation of floodwaves, Disaster Prevent Res. Inst. 

Bull. 1, Kyoto University. 

Henderson, F.M. and Wooding, R.A. (1964). Overland flow and groundwater flow 

from a steady rainfall of finite duration. J.Geophys.Res., vol. 69, no. 8, 

p. 1531-1540. 

Henderson, F.M. (1966). Open channel flow. Macmillan Company, 

New York. 

Kellerhals, R. (1969). Runoff concentration in steep channel networks. Ph.D. 

Thesis, The University of British Columbia, Dept. of Geography. 

Nash, J.E. (1959). Systematic determination of unit hydrographs. J.Geophys. 

Res., vol. 64, no. 1, p. 111-115. 

Nash, J.E. (1960). A unit hydrograph study, with particular reference to 

British catchments. Proceedings Inst, of Civil Engineers p. 17-249. 

Nash, J.E. (1968). A course of lectures on parametric or analytical hydrology 

as delivered at the Universities of Guelph, Ottawa and Queen's University. 

Nash, J.E. and Sutcliffe, J.V. (1970). Riverflow forecasting through conceptual 

models, Part 1 - A discussion of principles. Journal of Hydrology, no. 10, 

p. 282-290. 

Nes, Th.J. van de and Hendriks, M.H. (1971). Analysis of a linear distributed 

model of surface runoff. Laboratorium voor Hydraulica en Afvoerhydrologie, 

Landbouwhogeschool, Wageningen, Rapport 1. 

0'Meara, B.E. (1968). Linear routing of lateral inflow in uniform open channel. 

M.Eng. Science Thesis, National University of Ireland, Dept. of Civil 

Engineering. 

103 



Sherman, L.K. (1932). Stream flow from rainfall by the unit-graph method. 

Engineering - News Record, April 7. 

Schermerhorn, V.P. and Kuehl, D.W. (1968). Operational stream flow forecasting 

with the SSARR model. I.A.S.H. Pub., no. 80, p. 317-328. 

Schönfeld, J.C. (1948). Voortplanting en verzwakking van hoogwatergolven op 

een rivier. Ingenieur, B., Jan. p. 1-7. 

Strelkoff, Th. (1970). Numerical solution of Saint-Venant equations. Journal 

of the Hydraulics Division, vol. 96, no. HY3, p. 861-876. 

Takahashi, T. (1970). Flood low in an irregular channel. Disaster Prevent Res. 

Inst., Bull. 13 B, March, Kyoto University, p. 299-310. 

Vemuri, V. and Vemuri, N. (1970). On the systems approach in hydrology. 

Bulletin of the I.A.S.H., XV, 2 6/(1970), p. 17-38. 

Wooding, R.A. (1965). A hydraulic model for the catchment stream flow, part 1. 

Kinematic wave theory. Journal of Hydrology 3, p. 254-267. 

Wooding, R.A. (1965). A hydraulic model for the catchment stream flow, part 2. 

Numerical solutions. Journal of Hydrology 3, p. 268-282. 

Wooding, R.A. (1966). A hydraulic model for the catchment stream flow, part 3. 

Comparison with run-off observations. Journal of Hydrology 4, p. 21-37. 

104 


