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ABSTRACT

Nes, Th.J. van de, 1973. Linear analysis of a physically based model of a
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Dutch summaries.

Also: Doctoral thesis, Wageningen.

As part of a model for the rainfall-run-off relation of a catchment, a
linear distributed model of surface run-off is presented in this report.

This model, without iInternal boundary conditions, consists of a cascade
of linear conceptuzl elements. It simulates the complex drainage system by
a network of overland flow and channel-flow elements. These elements obey
the one~dimensional equations for unsteady flow in a channel. Simplification
and lipearisation of the dyramic equations lead to diffusion type equations.
Their solution for suitable boundary conditions vield the impulse respouse
functions, which characterize the operation of the elements. Special attention
1s given to the application of the techniques of linear system analysis, such
as moments and spectra. These techniques produce information on the relative
importance of the various conceptual elements. Consequently it is possible
to decide on the necessary detail In the variation in time and space of both
the inflow and structure of the drainage model,

Results obtained by using the linear model have been compared with results
of a2 more exact nen-linear model and have been encouraging. At the end some
practical applications have been given.
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1.INTRODUCTION

In catchment hydrology one can distinguish two broad classifications of
problems.

i ) hydrograph forecasting on a short term basis

ii) discharge frequency prediction on a long term basis

Two major groups of factors affect the run—off from a catchment: hydrometecro-
logic factors fainfall, snow and evapotranspiration) make up one group, and the
other group consists of physiographic factors (physical characteristics of the
catchment).

The understanding of hydrelogical processes requires modelling, which is the
reason why scientific hydrology has always been concerned with mathematical
modelling.

Hydrologists usually differentiate between deterministic and stochastic models.
No final concensies of opinion has however been reached as to which techniques
belong to the fields of either deterministic or stochastic simulationm. Broadly
stated the two approaches can be discerned as follows:

A deterministic model is essentially an abstraction of the way a system trans-—
forms the input into the output, Both the structure of the model and the choice
¢f the parameters should reflect some conception of the system's structure and
the principal laws that govern the system's transformation. Consequently the
model parameters are to a certain degree related to physical characteristics

of the system. Because of the role which the parameters play in the subsequent
fitting of the model to the observed system's cause-effect relationship the
deterministic approach is often indicated as "parametric modelling"”. The de-
terministic model is meant to describe transient responses and it is mainly
used for the generation of hydrographs from precipitation data either for flood
forecasting or water management purposes (Schermerhorn and Kuehl, 1968).

A stochastic model however is meant to generate time series which are statis-
tiecally indistinguishable from certain measured records. Usually the modelling
of a cause—effect relationship is not the main object and the parameters or
coefficients are mainly of a pure statistical nature. Consequently a stochastic
model is a less appropriate tool for describing actual hydrographs but it can
generate "equally likely" series of smoothly varying responses (Fiering, 1967).
In this report only the deterministic approach is used for hydrograph fore-
casting on a short term.basis. The more closely the model approximates the
physical system, the more accurately does it predict. However an increasing

complexity of the model makes it alsc more difficult to handle. Therefore it-




is necessary to compromise between accuracy and simplicity when developing
models.

The advent of the digital computer has allcowed in all areas of hydrolegy the
use of more complex models that are closer to the physical systems.

In this respect a division can be made into component modelling and integrated
system modelling (Dawdy, 1969).

In component medelling the land phase of the hydrclogic cycle can be divided
into several parts {infiltration, evapotranspiration, aquifer response and
surface streamflow routing). The empirical approach to the mathematical process
controliling each component is being gradually replaced by a theoretical
approach, based on the physical laws governing the component, in an attempt to
make the empirical approximations more equivalent to the theoretical physical
laws. It must be stressed at this point that even with the thecretical hydro-
dynamic approach many simplifications and approximations have to be made. In
general for the various flow processes this approach leads to non—linear
partial differential equations which for given boundary conditions, can be
solved numerically by a digital computer. The variocus components will be
combined in the integrated system modelling. The purpose of developing better
conceptual models for the individual components is on the one hand to solve
particular problems in hydrology and on the other to improve the overall model
of the total system. However the development of the model increases its
complexity, which to a certain extent limits the use of the better model. The
difficulty is not lack of understanding of the physical processes but firstly
not knowing the boundary conditions and their dependence on the interaction of
the various flow processes, secondly the problem of accurate measurement of
physical characteristics of the catchment and thirdly the impracticability of
dealing with detailed variations in time and space.

In the recent yvears the systems apprcach was introduced in hydrclogy (e.g. Nash
1959; Dooge, 1959, 1967; Vemuri et al, 1970) with its powerful systems engineer-
ing techniques, so that system analysis has had a strong impact upon the metho-
dology of mathematical modelling.

This report shows how the techniques of linear system analysis can be used for
the optimization of parameters in a conceptual model for the surface

component, consisting of overland flow and channel flow, as a part of a complex
simulation model of the rainfall-run—off relation for a catchment.

The apptoach of Dooge, Harley and C'Meara (1967, 1968), who intrcduced linear
conceptual models for the surface run—off based on the hydrodynamics of channel

flow is also followed in this report. Summarizing it can be stated that a



combination of the linear systems theory and the hydrodynamic approach in the

study of the surface run—off system seems effactive for the following reasons:

1. There is a direct relationship between the physical structure of the system
and the structure of the model as it describes the system's operation. There-
fore there is also a relation between physical characteristics and model
parameters.

2. Powerful techniques from system analysis can be used.

3. Approximate solutions for complex systems are possible.

4. Influence of the initial and boundary conditions can be studied.

5. Necessary compromise between the desires for aceuracy, simplicity and

physical understanding can be reached in this type of approach.
1.1. OBJECTIVES AND SCOPE OF THE STUDY

The complexity of the flow process by which surface run-off flows overland into
small rivulets then into larger channels and finally into a river channel, makes
it difficult to find exact solutions, based on hydrodynamics, because of the
complex boundary conditions. Therefore, simplification is necessary for solving
this complex problem. Recent technological progress in computer facilities has
stimulated the hydrodynamic approach to the surface run-off problem. Cheng Lung
Chen and Ven te Chow (1968} formulated a mathematical model, which descrihes

the mechanics of surface run—-off of a catchment by treating the watershed as

a non~linear distributed system subject to hydrodynamic principles, using the
complete dynamic equation for the one dimensional flow, including the over-
pressure of raindrop impact. The non-linear equations were solved by the method
of characteristics using the explicit scheme for a simplified overland flow
problem. However, for complex systems with a large number of internal boundary
conditions this results in an extremely lengthy computer program that is beyond
the capacity of computers available at present. At the same time Dooge, Harley
and 0'Meara (1967, 1968) used a linearized version of the complete dynamic
equation and derived analytical solutions for the upstream inflow and lateral
inflow or overland flow problem., These solutions are used as basic elements

for a linear distributed model of catchment run~off by Bravo, et al (1970).

These linear sclutions were introduced intc the MIT catchment model as an alter-
native for the kinematic non-linear solution, as developed by Henderson and
Wooding (1964, 1965, 1966). However, this model has some disadvantages. Firstly,
because water is restricted to flowing in ome direction only, which physically

is incorrect. Secondly, because the analytical solutions are very complex, which




causes difficulties in the calculation.

For these reasons in this paper the dynamic equation is first simplified and
then linearised. This leads to a diffusion type equation as proposed by Schon-
feld (1948); Hayami (1651); Daubert (1964) and Harley (1967). The latter
showed that for the upstream inflow the diffusion type solution leads to very
small deviations with respect to the complete linear solution and it can be
assumed that the error due to the linearizaticn 1¢ much more important.

For the diffusion type equations analytical sclutions are derived for the tri-
butary and lateral inflow or overland flow, without restriction for reversed
flow in the considered channelreach. In combination with the solution for the
upstream inflow a complex distributed conceptual medel cam be constructed. Im
combination with the linear systems approach the instantaneous unit hydrograph
(IUH), the summation curves (S-curves), shape factors and spectra, expressed
in the model parameters, are derived for the various linear elements. These
techniques yield information on the relative importance of the various con-—
ceptual elements. Consequently, it is possible to decide on the necessary
variation in time and space of both the inflow and the degree of detail in the
model structure which is needed to provide computed results of sufficient accu—
racy. This 1s an interesting aspect of this study because it appears to add a
theoretical background to the experimental fact that the run-off process in
drainage basins can often be simulated by simple conceptual models with lumped

parameters and lumped inputs, such as the model suggested by Nash (1959, 1960).



2.THE SYSTEMS APPROACH

The rainfall and run—off relation of a catchment has been described by
classic hydrology in terms of surface run—off, interflow and groundwater flow.
In practice quantitative hydrology usually modifies this concept and considers
the hydrograph to be made up of a direct storm response and a base flow.

In Fig. 2.1 a picture of the simplified catchment model is given, which is

borrowed from Dooge (1967).
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This system consists of three subsystems, the subsystem involving the direct
storm response or surface run—off, the subsystem inveolving groundwater response
and the subsystem soll phase, which has a feedback loop to the separation of
precipitation into precipitation excess and infiltration.

In this report only the first subsystem involving the surface run-off is
considered. Speaking in system terminclogy the surface run-off system
transforms an input (= inflow or rainfall excess) into an ocutput (= discharge
or storage expressed as water depth). Quoting Dooge (1967): "the rdle of the
system in genmerating output from input, or in interrelating input and output,
is its essential feature. The output from any system depends on the nature of
the input, the physical laws involved, and the nature of the system itself,
both the nature of the components and the structure of the system according to

which they are connected". (Fig. 2.2)
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fig. 2.2 Concept of system operation (Daoge 1367)

In the system analysis however the overall operation of the system is examined
without taking into account all the complex details of the system or all the
complex physical laws involved. Although the system operation depends on the
physical laws and the nature of the system, this dependence may be ignored in
this approach to the problem. This is represented by the horizontal components
in Fig. 2.2,

Thus in upnit hydrograph studies, once the unit hydrograph has been derived from
records of imput and output, it can be used as a prediction tocl without
reference to the nature of the catchment or the physical laws involved.

In the system synthesis however, where a synthetic unit hydrograph has to be
derived, or the validity of the unit hydrograph procedure must be examined, it
is necessary to examine the connection between the unit hydrograph, the
characteristics of the watershed, and the physical laws governing its behaviour.

This relation is represented by the vertical components in Fig. 2.2.

2.1. LINEAR SYSTEMS

The linearisation of the non—linear differential equations with constant
coefficients, describing the non-steady chamnel and overland flow makes it
possible to consider the surface run—off problem as a linear time invariant

system, which is characterised by the comvolution integral



y(t) = oft x(T)h(t-1) dt
or (2.1}

y(t) = Oft x(t-1)h(z) dt

This ¢onvolution integral expresses the relation between the output y(t), the
input x(t) and the instantaneous unit hydrograph (IUH) or the impulse response
h{t), which characterises the system operation.

If the input is given as a histogram the convolution integral takes the follo-

wing discrete form:

n
y(nAt) = At ‘Z p{i+1)h(at, (n-i)aAt) (2.2)
1=0

where p(i+]) represents the successive volumes of the input and h{At, (n—-i)At)
the finite period (At) unit hydrograph (TUH). This can be derived from the

sumation curve defined as
5(t) = f% h(o,1) dr (2.3)
It follows that:
h{At, (n-i)at)= {S((n=-i)At) - S{(n-i-1)At)} / At , n > i (2.4)
h{at, (n-i)At) =0 , n<«< i
The shape of the IUH, can be characterised by statistical moments, shape
factors (Nash, 1959) and spectra (Eagleson, 1966), expressed in the system
parameters.
2.2. STATISTICAL MOMENTS AND SHAPE FACTORS
As shown by Wash (1959) and Diskin (1967) the moments in the linear sysiems
approach are very powerful tools for finding the model parameters from input

and output, because the following relations between the moments of input,
output and IUH exist.



Mi(y) = Mi(x) + M(h)
M, (y) = M, (x) + M,(h) {2.5)

My(y) = My(x) + My(h)

The relation for the higher moments are more complex.

The moments of a function £(t) relative to the origin are defined as:

' - b n o (2.6}
Mn(f) of ft dt/of fdt
and relative to the centre of area (first moment)
M_(£) = /7 £(eMN e/ 17 £de (2.7
n o 1 &) '

The first moment of the IUH relative ta the origin gives the lag or the mean,
the second, third and fourth moment relative to the mean are the variance, the
skevness and the kurtosis respectively.

The Laplace transform of the function f(t), is defined as

M E(e) de

i

£{3) o
or (2.8)
2

E £ A
Of £(t)de - A Of tf(t) dt + =+

£(2) -

o 2
of T £(t) dt - ....

This equation shows how the Laplace transform of the function is related to the
moments of that function, So that Eq. (2.8) can be ceonsidered as the moment

generating function.

-
COED = T e R
dx
A=Q -
or
a" "
M (5) = (DY) ./ £(o) - (2.9)
di r=o

The IUH for the different conceptual elements are derived by means of the
Laplace transform, so with Eq. (2.9) the moments of the IUH can easily be

derived.



In fact Nash (1960) does not use the moments of the IUH but the shape factors,

defined as:

- M
S1 M!(h)

\ 2
5, = M,(h)/ 08} (B))
. (2.10)

-
-

1 n
5 = M_(W)/Q1}(0))

all of which, except Sl are dimensionless and therefore less likely to be
mutually correlated than M;(h), Hz(h), etc., while it has the advantage that
scale effects have disappeared, when the IUH of different conceptual models are
compared with each other. In our case, where the IUH for the various types of
inflow problems are based on two or three model! parameters, S3 and S2 are

used for comparisen.

Harley (1967) proposed to use the cumulants for characterising the system, but
because the first three moments are equal to the first three cumulants, which

are dominant for the shape of the IUH, the cumulants will not be discussed here.

2.3. ATTENUATION COEFFICIENT

I1f the input and output in the rainfall-run-off process or in flood routing are
compared it is clear that the system has a translation i.e. lag and an
attenuation. The time lag can be calculated frem the first moment of the IUH.
It is reasonable to assume that the second moment of the IUH and of the input
can together be a good index for the attenuation. It is well known that a
peaked wave attenuates much quicker than a long duration wave. Expressing the

attenuation of the wave in a coefficient as follows

M) - M M)

Cy = AR N ) (2.11)

By plotting calculated values of this attenuation coefficient Cy against

corresponding values of the specific attenuation RA’ defined as:

x -7y
R, = 2P 002 (2.12)
*

where xP and yp are respectively the peak values of the input and the output,
an empirical relation was obtained. Thus the attenuation coefficient CA is en

index for the specific attenuation.



Because the attenuation coefficient C, for a conceptual model can be expressed

by model parameters and by characteristics of the input {(duration and slhepe} 2
first quick estimate of the specific attenuation of the pezk can be made if the
model parameters and duration and shape of the input are known or can be
estimated.

As will be shown later conversely this relationm can be usad to find the model
parameters if the specific attenuation is known.

Therefore an iteration procedure is required.

2.4. SFECTRA

Simular to the Laplace transform, which vielded a simple relation between the
moments, also the Fourier transforms of input, output and IUH will be shown to
be simply related. (Bagleson, 1966)

By this transform the behavicur of the system is replaced from the time domain

to the frequency domain - as follows:

() = 17 h(e) ¢ I de (213
where the spectralfunction h(w)} in general is complex i.e.
hlw) = r(w) + jiw)

and is commonly described by an amplitude density spectrum

B0 = () + 15w}

(2.14a)
and a phase density spectrum
~ _ -1 i(w)

he(m) = tan o) (mod ) (2,14b)

where r is the real part, i the imaginary part and w the frequency in radians
per time interval,
Application of the Fourier transform to the convolutien integral yields for

linear time invariant systems



7(0) = x(@)h(w)

;a(m)ﬁa(m) (2.15)

and ya(w)

%

ye(w) xe(w) + he(w)

which in a similar way to moments, interrelates input, output and TUH. This is
to be expected because there is a relation between the Fourier transform and
the Laplace transform.

By applying the Fourier transform the system seems to act as a low pass filter,
wiileh filters out the high frequency energy of the input. The Fourier transform
¢f &n impulse (delta input or dirac function} is real and comstant over all
frequencies. Thus the Fourier transform of the impulse response can be inter-
preted as the cutput of a low pass filter, when excited by a signal having

a uniform ampliitude density (i.e. is flat).

Eagleson, et al (1966) have shown that comparing the spectra of input and IUE
leads to conclusions about the sampling interval At, with which the input has
to be measured, i.e. it gives the duration of the unit storm period. The dis-~
tribution of the input within this unit storm period does not influence the
output. Therefore the assumption is made that the filter has ap upper limit

w_s 80 that all higher frequencies of the input spectrum will be filtered out.
This implies that it is not necessary to measure the higher frequencies,
because they do not supply any significant information. The signal pulse of
duration At of the input behaves as an impulse to the system in question if its
amplitude density spectrum is flat for 0 < w < 8o with W W

TFor some rainfall spectra it is found, that they are flat for oy At £ 1 radian,
so the unit storm period At < %— < %— (2.1ka)
which is only valid if the band"width of the input signal w_ > @ . However if
W W, than the whole input spectrum iz of interest. ?

P
Defining the band width of the input signal

0 < band width < mp

and arbitrarily select a fairly conservative cutoff frequency Wy such that
s = (0
xa( p) 0,05 x,f 3

which represents the i3 db point on the amplitude density curve then

11



Hamming (19262) has shown that for band-limited functionms the time interval At

can be expressed as follows:

it < —- (2.16D)

B
Comparison of the spectra of the IUH for the different tvypes of inflow problems,
shows the influence of the system parameters on the shape of the IUH. If the
amplitude-density spectra are nearly the same then the shapes of the TUH are
also mearly the same. The time shift between the IUH's follows from the phase
density spectra,
The following relation applies:

-jut .

?ﬁ(w) =e 2w

Q

where Te is the translator operator defined as:
o

Ttoh(t) = h(t-to)

and to 15 the translation time.

So (B, () = h_(u)
o
and (?;Eﬁe(m) = - wtg o+ ﬁe(m)
)
- e, t
or log {he(m) -{1_h) (W} =log w§ + log ==
tc 5] 4

where § is a characteristic time of the system, as will be shown later.

It follows that for wg =1

- e - t,
h(s) = {1, 1) (u) = dhg(w) = 22 (2.17)

so if the characteristic time @ of the system is known the translation time

t, can be calculated,

2.5. GOODNESS OF FIT

In order to determine the goodness of fit between the exact or observed data

12




{real world) and the approximate or computed data (model), from the many
ohjective criteria for error measurements, which are availabie, a special form
of the mean square error of the ordinates is chosen. In statistics {Gringorten,
1960) this error measure is called the coefficient of determination. Rash
(1970) has introduced this criterion into the study of run-off models, where
he used the term efficiency coefficient RE:
(e - £)7
R.E‘-‘ {1 '—_2} {2.18)
E - _
Here f stands for the exact or observed data, f] the approximate or computed
data and T the mean of the exact or observed data. The numerator expresses the
residual variance and the denominator the initial variance. So if the model and
the real world fully agree then RE = 1. If the data of the model equal the
nedn value of the data in the real world then RE = ¢, For optimization
procedures of the parameters in a conceptual model the efficiency coefficient
is useful as an objective criterion for the goodness of fit.
In this presentation the efficiency coefficient has been used as an objective
criterion for the goodness of fit between the linear solution of the
approximate linear equation and the solution of the complete non-linear

equation for the surface run-off problem. Further it was used to compare the

theoretical results with the experiments.

13



3.MODELLING OF THE SU'RFACE RUNQF-
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The downstream movement of the wave is studied, forming a classic problem

in fleod forecasting.
It is assumed that the catchment can be modelled by a suitzble combination of
these 5 elements. Se¢ the complex distributed surface run—off model consists of
an appropriate number of elements chosen in accordance with the geometry of the
surface run-off system. It is further assumed that one element cascades into
the other so that interaction between these elements is excluded. Practically
the number of elements, determining the complexity of the system, should be as
small as possible. The systems approach seems to be very helpful for this basic

problem of integrated system modelling,
3.2. HYDRODYNAMIC CONSIDERATIONS

The hydrodynamic aspects of open channel-flow and overland flow can be found in
many handbooks (Ven te Chow, 1959, 1964; Henderson, 1966; Eagleson, 1970},
therefore only some points concerning flood routing problems will be given
here.

The equations of motion of one dimensional flow in an uniform open channel with

lateral inflow can after some simplification be written as follows:

Momentum equation 8 =5 - Sy yiv_1lawv_ D (3.1)

Continuity equation i %% + E% = i(s,t) (3.2)

where s and t are distance in flow direction and time respectively, So is the
bottom slope, v the water depth, v the mean velocity in a cross section of the

channel, g the acceleration of gravity, 4 the cross sectional area of flow, Q

the discharge rate (= vA), i the lateral inflow per unit length of channel, Sf

the friction slope and the term D_ represents the energy dissipation when the

L
lateral flow mixes with the water already in the channel (Eenderson, 1966}.

The term DL can be expressed as follows: (Strelkoff, [970)

vUu.

b, = gAL is,t) (3.3)

where u is the g-component of the inflow velocity veector.

Clearly D. = 0, if the lateral inflow i{s,t)=0 or if the lateral inflow is in

L

direction of flow and v=u, .

Here it is assumed that the lateral inflow is perpendicular to the direction of
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flow, which yields uL=0, so that after introduction of Eq. (3.2) in Eq. (3.3)

for DL’ expressed in Q, can be written:

-2 .3 LY
D a2 (32 * 5t (3.4)

L

Substitution of Eq. (3.4) in the equation of motion (3.1), expressed in Q

yields:
=5 - (1 -F2ydy_2Q 39 _1 39
Sg= S, - (1 -F) 55 73s  gA 3t 3.5)
gh

where F is the local Froude number for which the following relation is valid.

2 2B
¥ - L3 (3.6)

gA

where B = %% the surface width of the channel.

¥or lateral inflow i(o,t) = 0 (so D, = 0) combining eqs (3.1} and (3.2),

expressed in Q, yvields the same Eq.L(3.5), wvhich means that this equation is
valid for the flow with and without lateral inflow. (assuming u = 0)

For the overland flow problem eqs (3.2) and (3.5) are used, assuming a wide
rectangular channel, where discharge q is expressed per unit width of channel,
The equations of motion for the one dimensional overland flow therefore can be

expressed as follows:

&

=S - (1 -p2y 2y _29 3 1
Sf So ( ) as Byz s y

4+ - iGsand/n (3.8)

(3.7)

oI

t

0

where q is discharge per unit width of chammel, while for the local Froude

number the following relation is wvalid.
2 2
F- = ﬂ_i (3.9)
8y
Both in the channel-flow and in the overland flow problems the friction slope
S¢ ig difficult to determine.

In this veport it is assumed that the flow in both cases is turbulent, where

rhe empirical relation of Chezy or Manning may be used.
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The formulas for channel-flow and overland flow are respectively:

Chezy + 5 = EUilL_ (channel-flow)
£ 2.2
A"C'R
o] (3.10)
_qlg
Sf 73 . (overland flow)
Cy
where C is the Chezy coefficient and R is hydraulic radius.
Manning (channel-flow)
(3.11)

.5 =29

T Uf ) 443
AKT R

m
8¢ = —:flb%g7§ (overland flow)

Km ¥

where Km is the Manning cocefficient.

In the linear systems approach the complex geometry of the channel reach is

simplified by assuming a uniform trapezoidal channel (Fig. 3.2), from which the

special cases of a rectangular channet (m=0) or infinite wide rectangular

channel (=0, B+e} can be derived.

—. . .

Ax wetted area
Q= wetted parimater

L 4

o
. K ny——+

——

Macotg Cx

fig 3.2 Cross section of a channel reach

The complex physies can be simplified by the reasonable assumption that the
quasi-steady state approach (the kinematic wave), where Sf = SO, is a good
first approximation of Eq. (3.5). Introducing this in the third and the fourth

term at the right hand side of Eq. (3.5) (the acceleration terms) which also
can be expressed as:

-2 3@ _ 13 _ -y Be &y
2 38 Ag ot (2 v=c) gh Bs (3.12)
gA
. . g
where ¢ is the celerity (= A Seddon law)

gives after substitution of Eq. ¢3.12) in Eq. (3.5) the equation of motiom,

assuming Chezy friction formula:
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2
—u-E a2 Aaphh
Sp =8, -1 - -z 1+ E (3.13)

while assuming Manning's friction formula this gives:

=g -] -%g2 . 2R/ 242, 3y
Sf = So {i 5 T (1 3 I +m7)7} P (3.14)

The continuity equation, assuming no lateral inflow, can be written as:

QA
=+ ==0 (3.15)

As will be shown in Section (3.4), the different types of inflow form one of
the boundary conditions necessary for solving the differential egs (3.13) or
(3.14) and (3.15),

One way of tackling the problem of the complex geometry of a distributed
network and the problem of a cowplex spatial and secular variation of the

input, is the linearisation of the Eq. (3.13) or (3.14).

3.3. LINEARIZED DIFFUSION TYPE EQUATIONS

As proposed already by Schonfeld (1948) linearisation of the Eq. (3.13) or
(3.14) can be achieved by considering the flow as a small perturbation on an
initial permanent uniform flow. The discharge Q or q can be expanded in a
Taylor series, where terms of higher then the first order will be neglected,
which is correct only if the perturbation is small. .
Starting from Eq. (3.13), based on the Chezy friction formula, the discharge Q

can be expressed as follows:

1 1
Q= CR’A(S0 - cls)’ , Q>0 (3.16)
where C, = {1 -ﬁ (1 -2 1 +m2)2}
1 4 B
2 :
and § = s the gradient of the water depth.

as
In general y and %% are independent functions. (Vén de Nes and Hendriks, 1971)

50 one can consider Q as a function of the variables y and § (= %%-, ¢ = Q(y,s).
In order to linearize Eq. (3.16) the following notations for the discharge,

water depth and slope of the water level are introduced.
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Q=Qp+Q » Y=y +y, and S = 5.+ S

where the subscript I means initial and p the perturbation, for uniform flow

SI=0. The Taylor series for Q can be expressed as follows:

- 3Q _ 2Q -
Q=0+ (ay . vy -—yp) + (BS)I (8 =8+ .vnnns
- (9@ 3Q
or Q, = (3 IR + (as)Isp e . (3.17)

The initial values QI’ Y1 and SI correspond with the initial values of C and
C].

so that the following relations can be derived:

When writing the Taylor series these values have been considered constant,

30, _ 3 _ 2R 2
(—) == VIBI{I E(E}I 1 +m"}

oy 1 2
Q {3.18)
and (%%) = - _é_
I I Q
Substituting eq. (3.18) into (3.17) it is found that:
Q 8y
P = -
BI ATyP D oy (31.19)
where AT = %’VI {1 - %(%) ¥l + mz} the translation coefficient
: (3.20)
O F’ R 7,2
and D = ——=— {1 - =— {1 = 2(=) 1 +m”} the diffusion coefficient
25 B 4 B
o1 I
For a wide rectangular channel eq. (3.20) gives: (Harley, 1967)
=32
Ar=35 Vg
2
1 Py
D-E'g';'(l ‘T) (3.21)

while for a rectangular channel with width B the following relations can be

derived.
4
A 23y (BI "3 1,
T 21 B+ 2yI
2
q F B
L I I 2
and D ?S: {1 - - (W) } (3.22)
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From the continuity Bq. (3.15) follows:

3(Q + Q) Y Ay +v)

s 3T =0 {3.23)
8, I
and =—— = 0 and —— = 0 {steady uniform flow)
EE) at
therefore Eq. (3.23) gives:
3Q 3y
_P _P.
5a * B 5T 0 (3.24)

Combination of the eqs (3.24) and (3.19) produces the two well known linear

partial differential equations of parabolie form:

2

3Q 37Q 3Q

5T D 2 A (3.25)
8

and

3y azy 3y

LR .p—P.4s 2 {3.26)

3t as2 T 38

Obviously Eq. (3.25) is also valid for qp(discharge per unit width of channel).
These diffusion type equations, which were already given by Schonfeld (1948),
Hayami (1951), Daubert (1964) and Harley (1967), form the basic equations of the
different type of flood routing problems, as mentioned before.

Linearisation of Eq. (3.14) which is based on the Manning friction formula,
leads to the same differential equation. Here the translation coefficient Ar

and the diffusion coefficient D take the following form:

=2 - &R 2
A =3V (1 5(B)I 1+m7) (3.27)
Q
D=z | 1~ 22 1 - 2&) /1 + n?)?
28 B 9" 1 B
o1l I
For a wide rectangular chanmel this leads to:
3
A'l:-ivl
and q
1 42
D= ES—; (1 - gF I) (3.28)

while for a rectangular chamnel with width B it gives:
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6

A = ;'-',- v (M)
T 31 BI + ZYI
q
and (3.29)
q B
1 4.2 1 2
D= {1l -F" (z—7—=—)"1
280 g I BI + ZyI

So the choice of the friction formula and geometry of the channel determine,
which formulae for AT and D apply.

As mentioned before the differential equations are accurate if the perturbation
is relatively small compared to initial uniform flow. With the linear systems
approach the equations will alsc be used for large perturbations, sc that now

a constant "reference" discharge Qo (or qo) or a constant reference water depth
Y, has to be chosen, fixing the parameters AT and D.

It should be noted that contrary to the above initial discharge and water depth
the reference discharge and water depth are some mean values within the actual

range of variation. These only apply to the parameters of the flow equations.

3.4. BOUNDARY CONDITIONS

The solution of the differential eqs (3.25) and (3.26) requires boundary
conditions.

For Eq. (3.25) one needs conditions, expressed in discharge, while for (3.26)
the conditions must be expressed in water depth. So the boundary conditions
determine which of the two equations should be used. Because the flow is
considered as a perturbation on an initial uniform flow the initial conditions

are:

i
[

qp(sso) =
(3.30)

1
o

¥,{8:0) =

while the boundary conditioms depend on the type of inflow, which may vary in
time and space.

As shown before the parameters A,E and D depend on the physical characteris—
tics of the chamnel and on a constant reference discharge or water depth. The
latter dependson the initial counditions of the system and the range of

variation of flow,
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The choice of a constant reference discharge or water depth, may be criticized
because it entails a crude approximation, especially in the case of the lateral
inflow, where the discharge increases with channel distance. A logical choice

of reference discharge would be
_ s .
q,(8) = q (s} + " i(E) d¢

where i(£) would be the average inflow over the period under consideration.

" A reference discharge which varies with distance can be approximated and
brought into the linear systems approach by cutting the channel reach in
sections. By this process a histogram of reference discharges along the

channel reach can be obtained.

Despite the discontinuities in the reference discharge, the results are mot
affected, as is shown in Section 4.2.8.

Because of the attenuation of the flood wave for the upstream and tributary
inflow problem it is possible to take a decreasing reference discharge with
distance. Also here a histogram of reference discharges can be taken, dependent
on the behaviour of the flood wave. Construction of a very fime network does
not in general increase the accuracy of the solution. In that case it would

be better to solve the original non-linear differential equations with the aid
of differences schemes, losing however the advantages of linear system analysis.
It is interesting to note that chosing a reference discharge dependent on the
initial conditions and the inflow, is an essential feature of this quasi-linear
system. .

The influence of the choice of the reference discharge on the results has
therefore been specially investigated. This study shows the influence of the
boundary conditions and physical parameters, which are complex and in general
not well known, on the results of the rainfall and run—off relation of a
catchment. L

The result of this hydrodynamic approach is a mathematical model for a quasi-
linear time invariant system. The indicial respoense of this system can be
obtained by solving the differential equation with the delta input as a
boundary condition.

This means that a unit of volume is added to the channel reach at a point or

_ over a certain distance, depending on the type of inflow problem. In this way
synthetic TUH's for the different types of problems will be derived and
subsequently the powerful system engineering techniques will be used to

analyse the systems behaviour.
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Integration of the IUH in time yields the S—curve, from which TUH's can be
derived (Eg. 2.4). If the input is given as a histogram or "distribution
graph”, the output can be calculated, by making use of the convolution integral
in discrete form (Eq. 2.2). Because every input can be approximated by a
histogram Eq. 2.2 is a very convenient form of the convolution integral, which
can be easily programmed for a digital computer, while the computer time is

relatively small,

In this paper the theoretical aspects of surface run-off will be studied by
applying four types of inmput to each conceptual element:
a. A long "Thomas wave", (Fig. 3.3) as used by Dooge & Harley (1967), which is

expressed as follows:
q,(t) = 75 = 75 cos (%) for 0 < t < 96 hours

which is superimposed on a baseflow a; = 50. Both are expressed in cusecs per

foot width. Transforming this in metric units yields:
Tt 3 '
qp(t) = 6,975 - 6,975 cos (ZgJ m /sec, m

In order to compare the results of this study with those of Dooge & Harley the
British unit system will be used.
This input is approximated by a histogram with an interval of one hour.

b. An intermediate "Thomas wave" (Fig. 3.4) of the following shape:
qp(t) = 75 - 75 cos (%E) for 0 < t < 12 hours

approximated by a histogram with an interval of 15 minutes, which is super-
imposed on a base flow q; = 50 cusecs per foot width.

Comparison of the results of a. and b. shows the effect of input duration on
wave attenuation.

In both cases attention is only given to the discharge. Water depth is not
studied. The three aspects, which are studied are: the influence of the
reference discharge, the length of the channel and the spatial distribution
of the input intc the system.

¢. A block input (Fig.3.5) expressed as 1 mm/interval, with an interval of 3
hours. In this case the TUH was derived for various types of problem, where

water depth was studied. Special attention was also given to the relation
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VARIOUS TYPES OF INFLOWS
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between water depth and discharge.

d. A short wave with a special shape (Fig. 3.6}, where the flat top of the
input occurs within |5 minutes and is expressed in m3/sec. This wave is super-—
posed on an initlial water depth of 0,50 m.

In this case only the water depth is studied. As complete non—linear solutioms,
based on an implicit difference scheme of Amein (1968), have been derived by
Grijsen {1971}, it was possible to compare the linear and non-linear

solutions.
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4.LINEAR CONCEPTUAL ELEMENTS

Complex surface run-off consists roughly of 5 linear elements (Section 3.1}.
In this chapter these elements are mathematically formulated jn terms of the
linear system theory. Some results on the input-output relation are given for
a channel reach which shows the effects of the spatial and secular variation
in input, of the reference discharge and of the physical characteristics of the

channel.

4.1, INFINITE CHANNEL-LUMPED INPUT

Tuis element, which is studied as the tributary inflow problem can be

considered in two different ways (Fig. 4.1).

main channel

tributary inflow Qp (t}
from the overfand fiow phase

main channel

tribulary inflow Qplt)
from secundary channel with hase fiow

figi1 Cencept of the tributary inflow problem

a, First as an infinite channel, in which a constant initial flow occurs over
the whole channel reach. In one point (s=0) this channel is fed by an known
inflow, which is cascaded into the channel.

b. Second as an infinite channel with an initial flow, but now this main
channel is fed at one point by a second channel, which has also an initial
fiow. This causes a discontinuity of the initial flow in the main channel at
the point, vwhere the second channel enters the main channel,

From Fig. 4.1 it can be seen that QI = QI + QI . If now one is interested
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in the discharge at point A, caused by the tributary inflow Qp(t), then the
solution must be superposed on Q]:3 and if one is interested at point B the
solution must be superposed on QI . The only problem is to find the reference
discharge, determining the parame%ers of the main channel. It will be shown
later that a fair estimation of the reference discharge, which depends on the
initial flow and the range of variation of flow, can be obtained by applying

the following relation.

Q_(o) +Q (s) (4.1
G, - Q = p__peak m ppeak , where ¥ = & for the tributary

and upstream inflow and N = 2 for the fully lateral inflow; where Qp(s)peak

is the peak value at point s.

This agrees with the results given by Bravo et al (1970) and Harley et al (1970).
+ A

Qp( )
A

Sp(o)peak

peak

So for point A: Q =0 *
3

Qp(o)peak M Qp(B}peak

and for point B: Q, = Q *

The same relations are also valid for the reference water depth,
It follows that the peak values in the appropriate points must be kmown. Such
values may be obtained from an empirical relation between the attenuation

coefficient and the specific attenuation of a flood. (Section 5.4)

4.1.1. Impulse Response

The impulse response can be found by solving the linear differential equation
for the water depth. (Eq. 3.26)

ay 22y iy
Tpay 0 P
st D " Al 5g (4.2)

for the following initial- and boundary conditions:
a. yp(s,o) = §(s) (Dirac function)

b, lim yp(s,t) =0

g8 &> ®
8 > — m

(4.3)

o
e _ o Yp {s,t) ds = 1, which follows from the continuity equationm.
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The physical meaning of &(s) is, that a unit volume per unit width of channel
is added to the system at time t=o at one point (s=o0). There are no restric-

tions for the flow in upstream and downstream directions {infinite chanmel).

The solution can be found after the transformation:

8, = 8 - AT.t {(4.4)

1

which reduces eqs (4.2) and (4.3) to respectively:
2

Yy 3y
a—tE =D ——J;_‘- (4.5)
28
1
and
yp(sl.O) = 8(s) (4.6)

oIwyp(sl,t) ds1 = }, because the solution is symmetrical; so only the
case s, > 0 has to be considered.
1lim yp(sl,t) = ()

sl+m

The following solution is found with the aid of the Laplace transform method.

{Van de Nes and Hendriks, 1971)
)

2
1

1 TS
y {8,:t) # (0,0) (4.7)
2‘/1?589 S1 Q0,0

Yp(sl,t) -
where yP(sl,o) = §(s))

The same is true for §, < o. Introducing Eq. (4.4) in (&4.7)

- 2
) (s Ar't)
yields: 1y (s,t) =——e P (5,t) # (0,0) and t > O (4.8)
P 2v/7D¢
The discharge can be calculated by introducing Eq. (4.8) in Eq. (3.19), which
yields: 2
'(s-AT.t)
Q (s+h_.t) =~ ———
P (4.9)

I 4/me3
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G

For a rectangular channel gE-*an be expressed as
I
Q
q.(s,t) = =2 (41
ju] B
1
For a trapezoidal channel this expression is approwimately true if B, is

[N

chosen as a mean value over the range of the varying surface width of the
channel, caused by tha infi~w,
Because of the parti-ular ~sundsry conditions the »ge (&%) and

the IUH of waterdspul hy{%yp‘ ard of discharya I}zﬁg:
channel, respectiveiy. .
In the framework of the systems approuch, it Ls covuvenlent Lo express doth
IUH's in a dimensionless form, introducing twc dimensionless syster parameters:
SA
T

P = o dimensionless length parameter

and T = , a dimensionless time (4.11)

£
q
2D ., . .. .
where Q= —5 1is the parameter expressing the characteristic time
A
T
of the system,

Introducing of Eq. (4.11) into Eq. (4.9) and (4.8) gives:

r-1)2
- _B® b i, oo
=31 =1¢ ) e (4,12)
1 ¥ Y2773 VE%T
and
2
T
h .s - iV}
Bt U TR
y o ¥ T

where Eﬁ and E} are the dimensionlecrs IUH's of discharge and watcr depth

and ¥ is the unit volume pey uni width of chanael.

4.1.2. Claseificatior

For the complete linear soiution Harles (167 ¢ idled channe® reacher s

shiort, Intermediate and long. The classificaticn was bused on the dwach.oo;

For the diffusion tvpe solulon a sivilar classficeiion, car be ade o

3G




follows: (Fig. 4.2)

R=0

P% 1.8 short channel reach

1.8<Ps 5 intermediate channel reach
P> 5 tong channel reach

o5}
o4f
03}
ozt
o1t

1 T T
0 ] ] 3 4 5 3 7 [ 9 0 i 12 13

fig. 42 Dimensionless impulse responses for the tributary inflow problem Dimensioniess  time T

a. A short chamnel reach, if in the dimensionless IUH the time to peak Tp <1

or (§TS)T=1 <0

From this condition it follows, using Eq. (4.12) that P £ 1,8

b. An intermediate chamnel reach, if TP > 1 and (ﬁﬁ) » E, where £ is a
T=1

smzll mumber (% 5 x 10—4) from which follows 1,8 < P ¢ 5

¢. A long chamnel reach, if (ﬁ&) < E
T=1
For practical purposes this means that the rising limb of the dimensionless

IUH starts at T > 1.
This is walid if P > 5,

In combination with the statistical moments and spectra, this classification

seems to be useful in analysing the behaviour of the system.
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4.1.3. Momente

The moments of the IUH are derived from Eq. (2.9) (Van de Nes and Hendriks,1971).

They can be expressed as follows:

M) = @+

My(h) = (P + %9@2 (4.14)
L1

MB(hq) = (3P + 5_)Q

from which for the shiape factors {Section 2.2) follow:

S, (P + S/4)/(P + 1/2)%  and S,= (3P + 11/2)/(P + 172y° (&.15)

For the first three moments of the IUH for the water depth was found:

M) = B+ 1)Q

My(h) = (P + g (4.16)
~ 3

M3(hy) = (32 + 8)Q

Comparison of the moments of discharge and water depth shows that water depth
fluctuation is more damped then discharge fluctuation. This is in agreement
with the hysteresis in the discharge—water depth relation for a flood wave.
For large values of P however the moments become equal. Then the relation
between water depth and discharge becomes unique. This condition is also

characteristic for the kinematic wave, which does not attenuate.
4. 1. 4. Attenuation coefficient

As defined in Section 2.3. the attenuation coefficient for the discharge

w (Er3lhy @ 2
¢ = EFHED (4.17)

A

2 . . s . . i
Bt is the second moment Mz(x) of the incoming wave and t, is the duration of

F F

the input.
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2 . .
For the 'Thomas wave': B8 = 1/12 - 1/2r” % 0,033, while for a block input
B = 1/12 ¥ 0,083. ¢
So for a small ratio —E-(short wave), a large value of P and or a small value

e

of B the attenuation is more promounced.
4.1.5. Spectra

The amplitude density spectrur and the phase density spectrum of the IUH of
the discharge are derived by Van de Nes and Hendriks, [97!, using the eqs (2.13)
and {2.14) given in Section (2.4.).

The amplitude density spectrum can be expressed as follows:

- 2 3
A (0 =} eP{]-a(m)}{Zu (m% + Zu(w)} (4.18)
qa 20 (w)-1
for w > 0
and the phase density spectrum of the IUH of the discharge is:

1 B(w)

n (w) = -P&(w) - tan for w > 0 (4.19)
a9 o2 (w)+8% (w)+a (w)
where aw) = V{:ﬁ; V1 o+ &szz)IZ
(4,20)

So—
and  8(w) /{—1 s 1+ 4% D2

In the spectra of figs 4.3 and 4.4, the amplitudes and phases are given as
function of w@ for a number of wvalues of P.

The damping effect of the system for an increasing value of P is shown in the
spectra, while here § seems to be only a seale factor.

Also in the frequency domain one can subdivide the area in three parts, which
agrees with the channel classification of a short, intermediate and long

channel reach, as is shown in the figures,

4,1.8. Summation Curves

Integration of the IUH for the discharge and for the water depth gives the
sumnpation curves (S-curves}, from which TUH's for any period At can be
derived, Then the numerical convolution of the input with the TUH is a simple

procedure,
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The responses given in figs 4.5 and 4.6 have been caleculated by a digital
computer (C,D. 3200) within one minute.

The S—curves for the discharge and the water depth are derived (Van de Nes and
Hendriks, 1971):

s =4 erfe 5 (4.21)
1 VT

and
5§ = gg { erfe (2225 - e2P erfc (Eﬁﬂh} {(4.22)
y s V2T V2T

where the complementary error function is defined as:

2
erfe(z) = 1 - erf(z) = 1 %75 a (4.23)

-
?/7?0

and is tabulated. (Abramowitz & Stegun, 1965).

In fact the S-curves are the outputs, due to an input, which has the shape of
a step function. This means that a constant unit intensity input starts at
time t=oj For t -+ = the steady state will be reached.

From the eqs (4.21) and (4.22) it follows for t + = that:

Pg
§ =1 d S =— 2
q an e (4.24)

For the relation of qp and yp then it follows:

q =AYy (4.25)

which means by comparing Eq. (4.25) with Eq. (3.19) that for t + = the term

3y

_E—>0

3s

Because q = q; + qp, as stated in Section 3.3., it follows for the steady state
in a wide rectangular channel with AT = g-vI:

- 3w = 3
TRV v, v Ot F YY)

or (4.26)
q= vy + vy

In this linear systems approach to the problem the imcrease of velocity, due to
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the increase of water depth is introduced in Eq. (4.26) by the second term on

the right hand side.
4.1.7. Respemse to given waves of inflow

For the long 'Thomas wave', with a duration of 96 hours and the intermediate
'Thomas wave' with a duration of 12 hours, as givem in Section 3.4. the
response is given for different distances from the point of inflow.

For the long wave distances of 5, 5C, 200 and 500 miles are chosen, while for
the intermediate wave only 5 and 50 miles are considered,

For comparison with the complete linear solution, as given by Harley {(1967)
for the upstream inflow problem, the same values have been taken, for the
physical characteristics of the channel (4.4.7.).

An original base flow of 50 cfs, in a wide rectangular channel with a bottoem—
slope S0 = ] feet/mile and a Chezy friction coefficient C = 50 feet%/sec is
assunmed.

The responses given by figs 4.5 and 4.6 show the attenuation of the waves at
various distances for a number of reference discharges. For all the
calculations the TUH of Eq. 2.4 was used as derived from the summation curves
of Eq. 4.21.

4.1.8. Effect of the reference discharge

In the linearized diffusicn type equations, as explained in Sectlom 3.3., the
estimation of the reference discharge or water depth is important, In figs

4.5 and 4.6 the effect of the reference discharge is shown for various
distances of the channel.

In the calculations three values of the reference discharge respectively 100,
150 and 200 cfs were chosen. In some cases the 3 curves were so close together,
that only one or two curves could be shown in the same figures.

The system parameter P and &, as defined by Eq. 4.[1, can be calculated from
the parameters AT and D, as defined for a wide rectangular channel by Eq. 3.21.
It fellows that P and @ depend on the physical characteristics of the channel
and the reference discharge.

Table 1 shows the effect of the reference discharge on the moments of the IUH
for the discharge for various distances to the point of inflow; the first
moment (time lag) M{(h), expressed in hours and the second moment.Mz(h),

. 2 .
expressed in (hours)”. These moments are functicns of the parameters P and &.
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Channel flow
Tributary mnflow problem {R=0)

Discharge cfs g"—q‘fﬁ%ﬁ Input Thomas wave, duration 96hours
200- / Ex50mi
00 cts Boase flow =50 cfs
C=50{eel V2/5ec

150

100

Sor ! feet/mile

5500 miles

q,,:iw—,wiqm cfs

bose
flow S0 e i
time (hours)
fig 45 Effect of the reference discharge for different values of the distance s
for the "Long Thomas"” wave
Chanrel flow
Dischage cfs Tributary inflow problem (R=0)
Input Thomas Wave, duration 12h
! | C=50 feet Y2/sac
150 distance S=5 miles A
" dg= 100200 cty S+ | feet/mile
ot
base flow 50 8 ] T %8

time (hours)

fig46 Effect of the reference discharge
for different values of the distance s
for the “intermediate Thomas " wave
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Table 1 — Efifect of the reference discharge

5 = 5 miles 50 miles 200 miles 500 miles
] T T [EYE T ‘
T T T, G, G TG ?Mﬁh)iMzG‘)
]

{cfs)|/(hours ) | | i | X
100 | 4.9 [0.273/3.79 13592 (2.73)15.85 96.6|10.92 55.96:245.5 27.3136.2
|
i
1
[

i 693.0
|
150 | 5.6 |0.208!3.96 46.62 2.08 14.45)106.5 | 8.32/49.39,306.0]20.8 119.3,705.2
|
200 | 6.2 [0.172,4.17154.68 1.72]13.76 114,41 6.88:45.75,313.3]17.21109.7; 711.1

Table | shows that an increasing reference discharge causes an increasing @ and

a decreasing P. For the short reach (s = 5 miles) the first and second moment
are increasing, while for the larger distances the first moment is decreasing
and the second moment is increasing. The increasing rirst mement f2o che short
reach is due to the incresasing storage in the channel section upstream of the
inflow point, causing a slower recession in the tail of the IUH. This is also
why the second moments for all values of P are increasing with an increasing
reference discharge. For the short reach the relative variation of the second
moment is large, while for the long reach the relative variation of the first
moment is large. It is clear from Fig. 4.5 that feor the 'long' Thomas wave the
attenuation effect is negligible for zll values of P and the lag effect
becomes important only for large values of P.

For the intermediate 'Thomas' wave (Fig. 4.6) in a short reach (5 miles) both
effects are small, despite the relative large value and variation of the second
moment, whereas the intermediate reach (50 miles) shows some translation and
attenuation. Obvicusly the actual translation and attenuation also strongly
depend on the shape of the inflow wave.

Summarising these observations it can be stated that for both inflows into the
short channel reach (P < 1.8) the reference discharge has hardly any effect.
This will be further clarified ir Section 5.5. In the intermediate channel
reach 1,8 < P € 5 for the long wave, there is only a little translatiom, while
for the intermediate wave there is some translation and attenuation but it is
not very pronounced. In the long channel reach (F > 5) an important translation
only occurs with the long 'Thomas' wave.

From this example it follows that the reference discharge 1s not an important
factor for a short channel reach., In a long reach however it does effect

the translaticn.

4.1.8. Comparison with a somplete non—linear selution

In the department of RBydraulics and Catchment Hydrology research is im progress
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on the non-linear theory of channel-flow and overland flow. (Grijsem, 1971)
As some results for a special case are available, the linear solution may be
compared with the non-linear. Conclusions can then be made about the accuracy
of the linear solution and the optimum value of the reference discharge.

The non—-linear sclution is based on the complete non-linear differential eqs
(3.1) and (3.2), using an implicit difference scheme {(Amein, 1968). This
special case, which was solved can be described as follows:

An infinite wide channel ér a rectangular channel with width B = .75 m, has

|/3/sec.

a bottomslope So = (0.000], and 2 Manning friction coefficient Km =3lm
This channel is fed in one point (s = 0} by an 'short wave', expressed in
malsec, per 1.75 m width of channel (Fig. 4.6), which is superposed on an
initial uniform water depth of 0,50 m.

The responses, expressed in the water depth, have been calculated for different
values of distance. In Fig. 4.7 the results are only given for s = 0 and

g = 1000 m, which lie within the most interesting range, because this 'short

wave' attenuated very rapidly.

Channel Fflow
Tributary inflow problem {R=0)

Inout Shori wave {fig. 3.6)
Base water depth <060m

Km=3!m Vy/sec

So=00001
Waterdepth m linear solution, referance watef depthz070m infinite wide channel
0.70 {{,wmpuu non linear solution .

afficiency=87 %
080 Distance =00 m
L L L 1 1 n L L L |
base w050 s 1.'n |I5 4 4 %

[+1:11] .

inear solution, reference water depth=070m
<complete non linear solution

fficiencys83 %

Distance 520

1 L Il i L i L A i i 1 )

30
time (hours:
fig. 4.7 Comparison of linear with complete non linear solution

For a number of reference water depths the linear solution was calculated by
using the S-curve for the water depth (Eq. 4.22) and the comvelution integral
in discrete form (Eq. 2.2). A reference water depth of 0.70 m seemed to provide

the best fit, This solution has been presented in Fig. 4.7.
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For this 'short wave', especially for s = 0, the effect of the reference water
depth on the response is important.

The figures show a fair agreement of the linear solution and the complete
non-linear solution. Since this simplification and linearisation of the dynamic
equation apparently do not lead to great errors they seem acceptable for
practical purposes.

The results also seem to justify the design rule for the reference water depth

vy, as suggested in Section 4.1.:

) yp(o) + yp(s)peak .

peak
7 ¥i (&4.27}

Yo

The goodness of fit between the linear and non—linear solution can be

expressed by the efficiency coefficient R, defined as (Sectiom 2.5):
E(£-£)°

RE= {1 - M—-:—E"'} 1007% (4£.28)
L(f-£)

E

Here f stands for the data of the non-linear solution, f1 for the data of the
linear solution and f for the mean of the data for the non-linear solution.

In the above examples of the linear diffusion type models for distances of

s = 0 and s = 1000 m respectively as compared to the non-linear model, showed
efficiency coefficients of 83% and 87% respectively.

For optimization procedures of the reference discharge and the system
parameters P and 4 by a digital computer, the efficiency coefficient is useful
as objective criteria for the goodness of fit.

A specific study on the errors due to simplification of the dynamic equation
and due to the linearisation of this simplified dynamic equation is in

progress.

4.2, TNFINITE CHANNEL - DISTRIBUTED INPUT

This element, also called the partial lateral inflow problem, is illustrated
in Fig. 4.8. In this case an infinite uniform channel is fed by an inflow,
which is uniformly distributed over a distance &, from upstream point s = 0 to
downstream point 5 =4, while the responses can be calculated for 7 g . No
attention 1s paid to responses, for s < 0, which are relevant for the study of
the backwater effect. The inflow may be the result of the overland flow phase

or the result of the groundwater flow phase. From the description of the
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problem it is clear that the tributary inflow problem is a special case,

where £ = 0.

=\

Lateral infleow over disiance L,
from the overlandflow phase
or groundwaterflow phase

fig 48 Concept of the partiol lgtenal inflow problem
4.2.1. Impulse Response

As compared to the tributary inflow problem, using the same differential

equation, only the first condition differs as follows:

1
Yp(s,o) T for 0 € 5 < &
and (4.29)
yp(s,o) o] for s >4 and s <0

which means an instantaneous addition at time t = O per unit width of channel
of a unit volume uniformly distributed over a distance % of the channel reach.
The solution can be derived from the solution of the tributary inflow problem,

by integrating over the distance:

|
e
[
EanY
Q
fad
S’
[+ 8
Q

1 s
vpleat)y =g Ly (4.30)
where LA (o,t)} is the solution for the water depth of the tributary inflow
problem,!given by Eq. (4.8).
Substitution of Eq. (4.8) gives for the water depth of the partial lateral
inflow (Van de Nes and Hendriks, 1971):

1 { s-ATt s-ldATt X
y (s,t) = 55 {erf ( )} = erf (————-) (4.31)
P 4 2/ Dt 2/ D¢

The discharge can be found after introducing Eq. (4.30) into Eq. (3.19) thus:
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A s—A t s—3-A t
q (s,t) = 57 { erf(— ) - erf(——)}
13 - 24/Dt’ 2voc
2 2
) (s—z—ATt) } (s-ATt)
& Dt 4 Dt
1 /D _
AT { e e 1 (4.32)

In the terminology of the systems approach and introducing a new dimensionless
inflow length parameter A = é—the eqs (4.31) and (4.32) expressing the IUE's
can be written in dimensionless form in the same way as has been done for the

tributary inflow problem:

b Q
U .2 N e
hq v SER {erf(gaf) erf{ = Yy}
(4.33)
_eu-n-n’ | @ent
1 1 ‘ 27 2T )
+ === e -~ e
2PR QEEF
and h s
B, o= s b Cers(ED - erp(EALTEIZTy, (4.35)
y 2 Y37 o

where the meaning of the symbols is the same as for the tributary inflow
problem. It can be proved that for the case R -+ 0}, the solutions for the

tributary inflow follows from egs (4.33) and (4.34).
4,8.8, Classification

Using the same criteria for classification, as has been done for the tributary
inflow problem, it follows that the classification also depends on the third
system parameter R;

a. For discharges the classificatiom of the channel reach as a short reach is

glven in Table 2 for a number of R values:

Table 2 ; Condition for the short channel reach.

B 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9 1.0
P <1.8 1.9 2.0 2,1 2,3 2.4 2.6 2,9 3.2 3.6 4.5 »
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