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Nes, Th.J. van de, 1973. Linear analysis of a physically based model of a 
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As part of a model for the rainfall-run-off relation of a catchment, a 
linear distributed model of surface run-off is presented in this report. 

This model, without internal boundary conditions, consists of a cascade 
of linear conceptual elements. It simulates the complex drainage system by 
a network of overland flow and channel-flow elements. These elements obey 
the one-dimensional equations for unsteady flow in a channel. Simplification 
and linearisation of the dynamic equations lead to diffusion type equations. 
Their solution for suitable boundary conditions yield the impulse response 
functions, which characterize the operation of the elements. Special attention 
is given to the application of the techniques of linear system analysis, such 
as moments and spectra. These techniques produce information on the relative 
importance of the various conceptual elements. Consequently it is possible 
to decide on the necessary detail in the variation in time and space of both 
the inflow and structure of the drainage model. 

Results obtained by using the linear model have been compared with results 
of a more exact non-linear model and have been encouraging. At the end some 
practical applications have been given. 
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1. INTRODUCTION 

In catchment hydrology one can distinguish two broad classifications of 

problems. 

i ) hydrograph forecasting on a short term basis 

ii) discharge frequency prediction on a long term basis 

Two major groups of factors affect the run-off from a catchment: hydrometeoro-

logic factors (jrainfall, snow and évapotranspiration) make up one group, and the 

other group consists of physiographic factors (physical characteristics of the 

catchment). 

The understanding of hydrological processes requires modelling, which is the 

reason why scientific hydrology has always been concerned with mathematical 

modelling. 

Hydrologists usually differentiate between deterministic and stochastic models. 

No final concensies of opinion has however been reached as to which techniques 

belong to the fields of either deterministic or stochastic simulation. Broadly 

stated the two approaches can be discerned as follows: 

A deterministic model is essentially an abstraction of the way a system trans

forms the input into the output. Both the structure of the model and the choice 

of the parameters should reflect some conception of the system's structure and 

the principal laws that govern the system's transformation. Consequently the 

model parameters are to a certain degree related to physical characteristics 

of the system. Because of the role which the parameters play in the subsequent 

fitting of the model to the observed system's cause-effect relationship the 

deterministic approach is often indicated as "parametric modelling". The de

terministic model is meant to describe transient responses and it is mainly 

used for the generation of hydrographs from precipitation data either for flood 

forecasting or water management purposes (Schermerhorn and Kuehl, 1968). 

A stochastic model however is meant to generate time series which are statis

tically indistinguishable from certain measured records. Usually the modelling 

of a cause-effect relationship is not the main object and the parameters or 

coefficients are mainly of a pure statistical nature. Consequently a stochastic 

model is a less appropriate tool for describing actual hydrographs but it can 

generate "equally likely" series of smoothly varying responses (Fiering, 1967). 

In this report only the deterministic approach is used for hydrograph fore

casting on a short term basis. The more closely the model approximates the 

physical system, the more accurately does it predict. However an increasing 

complexity of the model makes it also more difficult to handle. Therefore it-



is necessary to compromise between accuracy and simplicity when developing 

models. 

The advent of the digital computer has allowed in all areas of hydrology the 

use of more complex models that are closer to the physical systems. 

In this respect a division can be made into component modelling and integrated 

system modelling (Dawdy, 1969). 

In component modelling the land phase of the hydrologie cycle can be divided 

into several parts (infiltration, évapotranspiration, aquifer response and 

surface streamflow routing). The empirical approach to the mathematical process 

controlling each component is being gradually replaced by a theoretical 

approach, based on the physical laws governing the component, in an attempt to 

make the empirical approximations more equivalent to the theoretical physical 

laws. It must be stressed at this point that even with the theoretical hydro-

dynamic approach many simplifications and approximations have to be made. In 

general for the various flow processes this approach leads to non-linear 

partial differential equations which for given boundary conditions, can be 

solved numerically by a digital computer. The various components will be 

combined in the integrated system modelling. The purpose of developing better 

conceptual models for the individual components is on the one hand to solve 

particular problems in hydrology and on the other to improve the overall model 

of the total system. However the development of the model increases its 

complexity, which to a certain extent limits the use of the better model. The 

difficulty is not lack of understanding of the physical processes but firstly 

not knowing the boundary conditions and their dependence on the interaction of 

the various flow processes, secondly the problem of accurate measurement of 

physical characteristics of the catchment and thirdly the impracticability of 

dealing with detailed variations in time and space. 

In the recent years the systems approach was introduced in hydrology (e.g. Nash 

1959; Dooge, 1959, 1967; Vemuri et al, 1970) with its powerful systems engineer

ing techniques, so that system analysis has had a strong impact upon the metho

dology of mathematical modelling. 

This report shows how the techniques of linear system analysis can be used for 

the optimization of parameters in a conceptual model for the surface 

component, consisting of overland flow and channel flow, as a part of a complex 

simulation model of the rainfall-run-off relation for a catchment. 

The approach of Dooge, Harley and 0'Meara (1967, 1968), who introduced linear 

conceptual models for the surface run-off based on the hydrodynamics of channel 

flow is also followed in this report. Summarizing it can be stated that a 



combination of the linear systems theory and the hydrodynamic approach in the 

study of the surface run-off system seems effective for the following reasóns: 

1. There is a direct relationship between the physical structure of the system 

and the structure of the model as it describes the system's operation. There

fore there is also a relation between physical characteristics and model 

parameters. 

2. Powerful techniques from system analysis can be used. 

3. Approximate solutions for complex systems are possible. 

4. Influence of the initial and boundary conditions can be studied. 

5. Necessary compromise between the desires for accuracy, simplicity and 

physical understanding can be reached in this type of approach. 

1.1. OBJECTIVES AND SCOPE OF THE STUDY 

The complexity of the flow process by which surface run-off flows overland into 

small rivulets then into larger channels and finally into a river channel, makes 

it difficult to find exact solutions, based on hydrodynamics, because of the 

complex boundary conditions. Therefore, simplification is necessary for solving 

this complex problem. Recent technological progress in computer facilities has 

stimulated the hydrodynamic approach to the surface run-off problem. Cheng Lung 

Chen and Ven te Chow (1968) formulated a mathematical model, which describes 

the mechanics of surface run-off of a catchment by treating the watershed as 

a non-linear distributed system subject to hydrodynamic principles, using the 

complete dynamic equation for the one dimensional flow, including the over

pressure of raindrop impact. The non-linear equations were solved by the method 

of characteristics using the explicit scheme for a simplified overland flow 

problem. However, for complex systems with a large number of internal boundary 

conditions this results in an extremely lengthy computer program that is beyond 

the capacity of computers available at present. At the same time Dooge, Harley 

and O'Meara (1967, 1968) used a linearized version of the complete dynamic 

equation and derived analytical solutions for the upstream inflow and lateral 

inflow or overland flow problem. These solutions are used as basic elements 

for a linear distributed model of catchment run-off by Bravo, et al (1970). 

These linear solutions were introduced into the MIT catchment model as an alter

native for the kinematic non-linear solution, as developed by Henderson and 

Wooding (1964, 1965, 1966). However, this model has some disadvantages. Firstly, 

because water is restricted to flowing in one direction only, which physically 

is incorrect. Secondly, because the analytical solutions are very complex, which 



causes difficulties in the calculation. 

For these reasons in this paper the dynamic equation is first simplified and 

then linearised. This leads to a diffusion type equation as proposed by Schön

feld (1948); Hayami (1951); Daubert (1964) and Harley (1967). The latter 

showed that for the upstream inflow the diffusion type solution leads to very 

small deviations with respect to the complete linear solution and it can be 

assumed that the error due to the linearization is much more important. 

For the diffusion type equations analytical solutions are derived for the tri

butary and lateral inflow or overland flow, without restriction for reversed 

flow in the considered channelreach. In combination with the solution for the 

upstream inflow a complex distributed conceptual model can be constructed. In 

combination with the linear systems approach the instantaneous unit hydrograph 

(IUH), the summation curves (S-curves), shape factors and spectra, expressed 

in the model parameters, are derived for the various linear elements. These 

techniques yield information on the relative importance of the various con

ceptual elements. Consequently, it is possible to decide on the necessary 

variation in time and space of both the inflow and the degree of detail in the 

model structure which is needed to provide computed results of sufficient accu

racy. This is an interesting aspect of this study because it appears to add a 

theoretical background to the experimental fact that the run-off process in 

drainage basins can often be simulated by simple conceptual models with lumped 

parameters and lumped inputs, such as the model suggested by Nash (1959, 1960). 



2.THE SYSTEMS APPROACH 

The rainfall and run-off relation of a catchment has been described by 

classic hydrology in terms of surface run-off, interflow and groundwater flow. 

In practice quantitative hydrology usually modifies this concept and considers 

the hydrograph to be made up of a direct storm response and a base flow. 

In Fig. 2.1 a picture of the simplified catchment model is given, which is 

borrowed from Dooge (1967). 
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fig. 2.1 Simplified catchment model (Dooge 1967) 
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This system consists of three subsystems, the subsystem involving the direct 

storm response or surface run-off, the subsystem involving groundwater response 

and the subsystem soil phase, which has a feedback loop to the separation of 

precipitation into precipitation excess and infiltration. 

In this report only the first subsystem involving the surface run-off is 

considered. Speaking in system terminology the surface run-off system 

transforms an input (= inflow or rainfall excess) into an output (= discharge 

or storage expressed as water depth). Quoting Dooge (1967): "the role of the 

system in generating output from input, or in interrelating input and output, 

is its essential feature. The output from any system depends on the nature of 

the input, the physical laws involved, and the nature of the system itself, 

both the nature of the components and the structure of the system according to 

which they are connected". (Fig. 2.2) 
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fig. 2.2 Concept of system operation (Dooge 1967) 

In the system analysis however the overall operation of the system is examined 

without taking into account all the complex details of the system or all the 

complex physical laws involved. Although the system operation depends on the 

physical laws and the nature of the system, this dependence may be ignored in 

this approach to the problem. This is represented by the horizontal components 

in Fig. 2.2. 

Thus in unit hydrograph studies, once the unit hydrograph has been derived from 

records of input and output, it can be used as a prediction tool without 

reference to the nature of the catchment or the physical laws involved. 

In the system synthesis however, where a synthetic unit hydrograph has to be 

derived, or the validity of the unit hydrograph procedure must be examined, it 

is necessary to examine the connection between the unit hydrograph, the 

characteristics of the watershed, and the physical laws governing its behaviour. 

This relation is represented by the vertical components in Fig. 2.2. 

2.1. LINEAR SYSTEMS 

The linearisation of the non-linear differential equations with constant 

coefficients, describing the non-steady channel and overland flow makes it 

possible to consider the surface run-off problem as a linear time invariant 

system, which is characterised by the convolution integral 



y(t) = f x(x)h(t-T) dr 
o 

or (2.1) 

y(t) = ƒ' x(t-T)h(x) dT 

This convolution integral expresses the relation between the output y(t), the 

input x(t) and the instantaneous unit hydrograph (IUH) or the impulse response 

h(t), which characterises the system operation. 

If the input is given as a histogram the convolution integral takes the follo

wing discrete form: 

n 
y(nAt) = At S p(i+l)h(At, (n-i)At) (2.2) 

i=o 

where p(i+l) represents the successive volumes of the input and h(At, (n-i)At) 

the finite period (At) unit hydrograph (TUH). This can be derived from the 

summation curve defined as 

S(t) = f h(o,x) dT (2.3) 

It follows that: 

h(At, (n-i)At)= {S((n-i)At) - S((n-i-l)At)} / At , n > i (2.4) 

h(At, (n-i)At) = 0 , n < i 

The shape of the IUH, can be characterised by statistical moments, shape 

factors (Nash, 1959) and spectra (Eagleson, 1966), expressed in the system 

parameters. 

2.2. STATISTICAL MOMENTS AND SHAPE FACTORS 

As shown by Nash (1959) and Diskin (1967) the moments in the linear systems 

approach are very powerful tools for finding the model parameters from input 

and output, because the following relations between the moments of input, 

output and IUH exist. 



M|(y) = Mj(x) + Mj(h) 

M2(y) = M2(x) + M2(h) (2.5) 

M3(y) = M3(x) + M3(h) 

The relation for the higher moments are more complex. 

The moments of a function f(t) relative to the origin are defined as: 

M'(f) = ƒ ftndt/ ƒ fdt K ' 
n o o 

and relative to the centre of area (first moment) 

Mn(f) = o/°° f ( t -Mp ndt / o /œ fdt (2.7) 

The first moment of the IUH relative to the origin gives the lag or the mean, 

the second, third and fourth moment relative to the mean are the variance, the 

skewness and the kurtosis respectively. 

The Laplace transform of the function f(t), is defined as 

f(X) = r e"X t f(t) dt 
o 

(2.8) 
2 

f(x) = r f(t)dt - x r t f(t) dt + 4T * t f ( t ) dt -
o o 21 o 

This equation shows how the Laplace transform of the function is related to the 

moments of that function. So that Eq. (2.8) can be considered as the moment 

generating function. 

( - i ) n A = r f(t) tndt 
dX , 

X=o 

M' (f) = (-Dn(^4) / f(o) (2.9) 
dX , 

X=o 

The IUH for the different conceptual elements are derived by means of the 

Laplace transform, so with Eq. (2.9) the moments of the IUH can easily be 

derived. 



In fact Nash (1960) does not use the moments of the IUH but the shape factors, 

defined as : 

Sj = Mj(h) 

S 2 =M2(h)/(Mj(h))2 

Sn = M (h)/(M!(h)) 
n n l 

(2.10) 

n 

all of which, except S. are dimensionless and therefore less likely to be 

mutually correlated than M!(h), M„(h), etc., while it has the advantage that 

scale effects have disappeared, when the IUH of different conceptual models are 

compared with each other. In our case, where the IUH for the various types of 

inflow problems are based on two or three model parameters, S, and S„ are 

used for comparison. 

Harley (1967) proposed to use the cumulants for characterising the system, but 

because the first three moments are equal to the first three cumulants, which 

are dominant for the shape of the IUH, the cumulants will not be discussed here. 

2.3. ATTENUATION COEFFICIENT 

If the input and output in the rainfall-run-off process or in flood routing are 

compared it is clear that the system has a translation i.e. lag and an 

attenuation. The time lag can be calculated from the first moment of the IUH. 

It is reasonable to assume that the second moment of the IUH and of the input 

can together be a good index for the attenuation. It is well known that a 

peaked wave attenuates much quicker than a long duration wave. Expressing the 

attenuation of the wave in a coefficient as follows 

M2(y) - M2(x) M2(h) 

CA ÏÇÔÔ ÏÇG7 (2-n) 

By plotting calculated values of this attenuation coefficient CA against 

corresponding values of the specific attenuation R., defined as: 

x - y 
RA = P P . 100% (2.12) 

XP 

where x and y are respectively the peak values of the input and the output, 

an empirical relation was obtained. Thus the attenuation coefficient C. is an 

index for the specific attenuation. 



Because the attenuation coefficient C, for a conceptual model can be expressed 

by model parameters and by characteristics of the input (duration and shape) a 

first quick estimate of the specific attenuation of the peak can be made if the 

model parameters and duration and shape of the input are known or can be 

estimated. 

As will be shown later conversely this relation can be used to find the model 

parameters if the specific attenuation is known. 

Therefore an iteration procedure is required. 

2.4. SPECTRA 

Simular to the Laplace transform, which yielded a simple relation between the 

moments, also the Fourier transforms of input, output and IUH will be shown to 

be simply related. (Eagleson, 1966) 

By this transform the behaviour of the system is replaced from the time domain 

to the frequency domain - as follows: 

h(o) = r h(t) e~^Ut dt (2.13) 
o 

where the spectralfunction h(u)) in general is complex i.e. 

h(tü) = r(u) + ji(w) 

and is commonly described by an amplitude density spectrum 

ha(U) = {r2M + iW (2il4a) 

and a phase density spectrum 

h.(ü>) = tan"1 i ^ 4 (mod IT) (2.14b) 

where r is the real part, i the imaginary part and u the frequency in radians 

per time interval. 

Application of the Fourier transform to the convolution integral yields for 

linear time invariant systems 

10 



y(üi) = x(ü))h(üj) 

and y (OJ) = x (io)h (to) (2.15) 
' a a a 

yQ((ü) = Xg(u) + hgCu) 

which in a similar way to moments, interrelates input, output and IUH. This is 

to be expected because there is a relation between the Fourier transform and 

the Laplace transform. 

Ey applying the Fourier transform the system seems to act as a low pass filter, 

wh'.ch filters out the high frequency energy of the input. The Fourier transform 

of tili impulse (delta input or dirac function) is real and constant over all 

frequencies. Thus the Fourier transform of the impulse response can be inter

preted as the output of a low pass filter, when excited by a signal having 

a uniform amplitude density (i.e. is flat). 

Eagleson, et al (1966) have shown that comparing the spectra of input and IUH 

leads to conclusions about the sampling interval At, with which the input has 

to be measured, i.e. it gives the duration of the unit storm period. The dis-' 

tribution of the input within this unit storm period does not influence the 

output. Therefore the assumption is made that the filter has an upper limit 

to , so that all higher frequencies of the input spectrum will be filtered out. 

This implies that it is not necessary to measure the higher frequencies, 

because they do not supply any significant information. The signal pulse of 

duration At of the input behaves as an impulse to the system in question if its 

amplitude density spectrum is flat for 0 < (D < to , with u » to . 

For some rainfall spectra it is found, that they are flat for u At < 1 radian, 
1 1 ra 

so the unit storm period At < — < — (2.16a) 
r ui to 

which is only valid if the band width of the input signal oo > to . However if 
p c 

to < to than the whole input spectrum is of interest, 
p c r 

Defining the band width of the input signal 

0 « band width < to 
P 

and arbitrarily select a fairly conservative cutoff frequency to such that 

x (;_ ) = 0,05 x (0) 
a p' a 

which represents the 13 db point on the amplitude density curve then 

11 



Hamming (1962) has shown that for band-limited functions the time interval At 

can be expressed as follows: 

At 4 — - (2.16b) 
P 

Comparison of the spectra of the IUH for the different types of inflow problems, 

shows the influence of the system parameters on the shape of the IUH. If the 

amplitude-density spectra are nearly the same then the shapes of the IUH are 

also nearly the same. The time shift between the IUH's follows from the phase 

density spectra. 

The following relation applies: 

-jut 
T h(oi) = e h(w) 

o 

where T is the translator operator defined as: 

Tt h(t) = h(t-tQ) 
o 

and t is the translation time. o 

So (T h) (u) = h (u) 
t a a 

o 

and (T b) (ID) = - ut + hQ(ti)) 
o 

__—-. t 
or log {h (u) - (T h) (u)} = log IMQ + log •£• 

6 fco e Q 

where Q is a characteristic time of the system, as will be shown later. 

It follows that for ixiQ = I 

hQ(u) - (Tt h) (u) = Ahe(u) = -^- (2.17) 
o 9 

so if the characteristic time Q of the system is known the translation time 

t can be calculated, o 

2.5. GOODNESS OF FIT 

In order to determine the goodness of fit between the exact or observed data 

12 



(real world) and the approximate or computed data (model), from the many 

objective criteria for error measurements, which are available, a special form 

of the mean square error of the ordinates is chosen. In statistics (Gringorten, 

1960) this error measure is called the coefficient of determination. Nash 

(1970) has introduced this criterion into the study of run-off models, where 

he used the term efficiency coefficient IL,: 

z(f - f,)2 

Rp = {1 V } (2.18) 
E(f - f) 

Here f stands for the exact or observed data, f. the approximate or computed 

data and f the mean of the exact or observed data. The numerator expresses the 

residual variance and the denominator the initial variance. So if the model and 

the real world fully agree then R̂ , = 1. If the data of the model equal the 

mean value of the data in the real world then Rp = 0. For optimization 

procedures of the parameters in a conceptual model the efficiency coefficient 

is useful as an objective criterion for the goodness of fit. 

In this presentation the efficiency coefficient has been used as an objective 

criterion for the goodness of fit between the linear solution of the 

approximate linear equation and the solution of the complete non-linear 

equation for the surface run-off problem. Further it was used to compare the 

theoretical results with the experiments. 

13 



3.MODELLING OF THE SURFACE RUNOFc 

Ae stated by Dooge & Hurley i'i-jtl) the surface re.ir-oli process c- ' • •:-is •.-• 

three conditions: complex geometry, co:epler physics end complex iircts 

Simplifications from a theoretical, and practical point of view e' eeerci'irc 

necessary for a quantitative approach to the pros" em. 

The question is how far it is justified to simplify trie serf ee e :t,-»;: 

process. 

-,!. A !".T'3VR.IBUT>"': .;; •"•'̂'•-".V " ri'i.̂ MJTÄT HCDFT. 

Inf. surface run-oft p~oc.3S- •: :.r. be divided i.itc e'-̂  i •-••.; 2 : e-e .-.r r-

stream flow. In particular overland flow is difficult to re/e'el, ' - .-vvr.se it 

begins as a thin-sh^éi. 1 iov;, but is focused into sr-.aïl rivulets ••• ,' ,: er; Le c 

irregularities, arc then 'ttc bigger streams cors*:ieut it.e chairs' •'" ' ~e 

Similar to the work of Bravo, et ai (i970) (Fig. 1.1; the cetenmer.. 3 s 

subdivided into smaller elements, for which eithei one dimensional cerl.'tid 

flow or one dimensional channel-flow is assumed. 

These smaller elements are connected with each other by the channel sections. 

Approximating the complex geometry in this way 5 types of elementary problems 

can be selected: 

a. Overland flow problem, which consists of a plane rectangular, impermeable 

surface, which receives a uniformly distributed rainfall. Theoretically 

this problem is handled as turbulent flow in an infinite, vide tectanro.: ae 

channel with uniform slope and recistar.ee and fr.ll\ lateral ir.i'ow. 

The term infinite means that there are no restrictions tor flee in upstream 

and downstream direction:;-, 

b. Fully lateral inflow.' problem into : channel reach. 

This can be handled in 1:1 . s'ae way as the. overland flov nrotl..:,. ••'•-•• n~ •• 

that the infinite _l»anaol re=:h • a.t rflco be ccujidered ar a. p '-••••". -. 

rectangular or tr.ve jzoi" r'. eh'intioi 

c. Partial lateral in; low 7-ton Ian into a channel rc.aer,. where thr .-. iter.;1. 

inflow takes place ovr j. a psrl; c<" the chanr.el reach. 

d. Tributary inflow prob'en enec. a channel reach, where the enfio-e from1 ei . 

channel is concentrated at ? isrtkulsr point or a iecond chat! el. 

In *ee.t the pii-.bie u.-. b tul •-, -j.e .sreeiui I:ÎSCS e; prcbl e> 

af tie apstreer . C' : : . c; iree.e? "; -, rev r. 

http://recistar.ee


J. J- - L < 

<0 

h Drainage 
*- basin 

x bound 
T T T T T T T T > •T 

'Outlet 

Plan view of typical drainage area 

sub 
system 

Outlet 

fig. 3.1 Equivalent block-diagram of the 
surface run-off system for a 
catchment (Bravo et al, 1970) 

a= overland f low 

b= fully lateral inflow 

c= partial lateral inflow 

d= tributary inflow 

e= upstream inflow 
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The downstream movement of the wave is studied, forming a classic problem 

in flood forecasting. 

It is assumed that the catchment can be modelled by a suitable combination of 

these 5 elements. So the complex distributed surface run-off model consists of 

an appropriate number of elements chosen in accordance with the geometry of the 

surface run-off system. It is further assumed that one element cascades into 

the other so that interaction between these elements is excluded. Practically 

the number of elements, determining the complexity of the system, should be as 

small as possible. The systems approach seems to be very helpful for this basic 

problem of integrated system modelling. 

3.2. HYDRODYNAMIC CONSIDERATIONS 

The hydrodynamic aspects of open channel-flow and overland flow can be found in 

many handbooks (Ven te Chow, 1959, 1964; Henderson, 1966; Eagleson, 1970), 

therefore only some points concerning flood routing problems will be given 

here. 

The equations of motion of one dimensional flow in an uniform open channel with 

lateral inflow can after some simplification be written as follows: 

Momentum equation : S,- = S - -^- - — -^— ~ — T - - DT (3.1) 
f o ds g 3s g 3t L 

Continuity equation : •— + ̂ — = i(s,t) (3.2) 
d S a t 

where s and t are distance in flow direction and time respectively, S is the 

bottom slope, y the water depth, v the mean velocity in a cross section of the 

channel, g the acceleration of gravity, A the cross sectional area of flow, Q 

the discharge rate (= vA), i the lateral inflow per unit length of channel, S. 

the friction slope and the term D represents the energy dissipation when the 

lateral flow mixes with the water already in the channel (Henderson, 1966). 

The term D can be expressed as follows: (Strelkoff, 1970) 

v-u 
\ = - ^ i(s,t) (3.3) 

where u is the s-component of the inflow velocity vector. 

Clearly D = 0, if the lateral inflow i(s,t)=0 or if the lateral inflow is in 

direction of flow and v=u . 

Here it is assumed that the lateral inflow is perpendicular to the direction of 
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flow, which yields u=0, so that after introduction of Eq. (3.2) in Eq. (3.3) 
Li 

for D , expressed in Q, can be written: 
Li 

UL ,2 "-3s 3t; (3.4) 

Substitution of Eq. (3.4) in the equation of motion (3.1), expressed in Q 

yields: 

where F is the local Froude number for which the following relation is valid. 

F2 = 4 (3.6) 

where B = -r- the surface width of the channel. 3y 

For lateral inflow i(o,t) = 0 (so D = 0) combining eqs (3.1) and (3.2), 

expressed in Q, yields the same Eq. (3.5), which means that this equation is 

valid for the flow with and without lateral inflow, (assuming u. = 0) 

For the overland flow problem eqs (3.2) and (3.5) are used, assuming a wide 

rectangular channel, where discharge q is expressed per unit width of channel. 

The equations of motion for the one dimensional overland flow therefore can be 

expressed as follows : 

s = s - (1 - F2) ix - 2s_ 13. - J_ ia ( 3 7 ) b f o u r ; 3s 2 3s gy 3t V J - / ; 

gy 

| f + | f = i ( s , t ) / B (3.8) 

where q is discharge per unit width of channel, while for the local Froude 

number the following relation is valid. 

2 
F2 = -3-^ (3.9) 

gy 

Both in the channel-flow and in the overland flow problems the friction slope 

S- is difficult to determine. 

In this report it is assumed that the flow in both cases is turbulent, where 

••he empirical relation of Chezy or Manning may be used. 
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The formulas for channel-flow and overland flow are respectively: 

Chezy Sf " 
QlQl 

2 2 A C R 

q l q l 
r2 3 

C y 

(channel-flow) 

(overland flow) 

where C is the Chezy coefficient and R is hydraulic radius. 

(3 .10) 

Manning Sf = 
Q l Q l 

2 2 A TT R 
• m 

473 (channel-flow) 

(3.11) 

qlql 

K 2 y 
m 3 

1573 
(overland flow) 

where K is the Manning coefficient. 
m 

In the linear systems approach the complex geometry of the channel reach is 

simplified by assuming a uniform trapezoidal channel (Fig. 3.2), from which the 

special cases of a rectangular channel (m=0) or infinite wide rectangular 

channel (m=0, B-*») can be derived. 

** m y -
rrucotg c< 

f ig 3.2 Cross section of a channel reach 

The complex physics can be simplified by the reasonable assumption that the 

quasi-steady state approach (the kinematic wave), where S- = S , is a good 

first approximation of Eq. (3.5). Introducing this in the third and the fourth 

term at the right hand side of Eq . (3.5) (the acceleration terms) which also 

can be expressed as: 

Z2Q ^Q _ J_ 3Q _ _ Be 3y_ 

A 2 3s Ag 3t K ' gA 3s 

30 
where c is the celerity (= -rj- Seddon law) 

(3.12) 

gives after substitution of Eq. (3.12) in Eq. (3.5) the equation of motion, 

assuming Chezy friction formula: 



S. - S - {1 - f - (1 - f £ /l +m2)2} |Z (3.13) 
f O 4 B dS 

while assuming Manning's friction formula this gives: 

S S { I _4F2 . 2 R / T 7 7 ) 2 } | i (3.14) 
t o y B dS 

The continuity equation, assuming no lateral inflow, can be written as: 

As will be shown in Section (3.4), the different types of inflow form one of 

the boundary conditions necessary for solving the differential eqs (3.13) or 

(3.14) and (3.15). 

One way of tackling the problem of the complex geometry of a distributed 

network and the problem of a complex spatial and secular variation of the 

input, is the linearisation of the Eq. (3.13) or (3.14). 

3.3. LINEARIZED DIFFUSION TYPE EQUATIONS 

As proposed already by Schönfeld (1948) linearisation of the Eq. (3.13) or 

(3.14) can be achieved by considering the flow as a small perturbation on an 

initial permanent uniform flow. The discharge Q or q can be expanded in a 

Taylor series, where terms of higher then the first order will be neglected, 

which is correct only if the perturbation is small. 

Starting from Eq. (3.13), based on the Chezy friction formula, the discharge Q 

can be expressed as follows: 

i l 

Q = CR5A(S - C S ) 2 , Q » 0 (3.16) 

where Cj = {1 - — (1 - —• A + m 2 ) 2 } 

and S = T̂ - , the gradient of the water depth. 

In general y and TT- are independent functions. (Van de Nes and Hendriks, 1971) 

So one can consider Q as a function of the variables y and S (= -r̂ ) > Q = Q(y,s). 

In order to linearize Eq. (3.16) the following notations for the discharge, 

water depth and slope of the water level are introduced. 
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Q = Q T + Q , y = y T + y and S = ST + s 

where the subscript I means initial and p the perturbation, for uniform flow 

S =0. The Taylor series for Q can be expressed as follows: 

Q = Q, • (|f) (y - yx) + (f§) (s - s,) • 

,80. -30. 
p 3y Jp 3S p 

(3.17) 

The initial values Q , y and S correspond with the initial values of C and 

C.. When writing the Taylor series these values have been considered constant, 

so that the following relations can be derived: 

^Qs 3 ^ ,, 2,R, /~ 2, 
(Tj\ = 2 V l V ' -3(z\ A + m ] 

(3.18) 

and (f§) 
I o 

Substituting eq. (3.18) into (3.17) it is found that: 

Q 3y 
- £ = A y - D - 3 & 
B T-'p 3s 

(3.19) 

where \ = J^I < I " |(f) <l + m2} the translation coefficient 

and D 2S BT o I 
1 - f- {I - 2(f) A + m 2 } 2 

. 4 B I 

(3.20) 

the diffusion coefficient 

For a wide rectangular channel eq. (3.20) gives: (Harley, 1967) 

A = -x vT T 2 1 

qI F I 

o 
(3.21) 

while for a rectangular channel with width B the following relations can be 

derived. 

K = O- vT (• 
BI + 3 yI 

T 2 I "• B + 2y 

and D 
2Sr 

O -V- 0 4 Bi + 2yi )2> (3.22) 
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From the continuity Eq. (3.15) follows: 

3(QT + Q ) 3(yT + y ) 
_E_ + B - E- = " 3s 3t 

(3.23) 

3QX 3y x 

and T — = 0 and -r—~ = 0 (steady uniform flow) 
dS dt 

therefore Eq. (3.23) gives: 

3s at 
(3.24) 

Combination of the eqs (3.24) and (3.19) produces the two well known linear 

partial differential equations of parabolic form: 

and 

3Q 32Q 3Q 
E = D E _ A 

3t „ 2 T 3s 
dS 

2 
3y 3 y 3y 
_1E- D — £ - A — 2 . 
3t „ 2 T 3s 

OS 

(3.25) 

(3.26) 

Obviously Eq. (3.25) is also valid for q (discharge per unit width of channel). 

These diffusion type equations, which were already given by Schönfeld (1948), 

Hayami (1951), Daubert (1964) and Harley (1967), form the basic equations of the 

different type of flood routing problems, as mentioned before. 

Linearisation of Eq. (3.14) which is based on the Manning friction formula, 

leads to the same differential equation. Here the translation coefficient A 

and the diffusion coefficient D take the following form: 

D = ^2
T{. - 2d) /T77}2 

3 VI 

2S BT o I ¥v 

(3.27) 

For a wide rectangular channel this leads to: 

and 

A » -T vT T 3 1 

2S u 9* l' 
o 

while for a rectangular channel with width B it gives: 

(3.28) 

21 



A 5 A + 5 \ 
A T = 3 V I ( B T + 2yT

 } 

and 
(3.29) 

D =!̂ {i - V (_ï )2} 
2S u 9̂  I V B T + 2 y / J 

o I I 

So the choice of the friction formula and geometry of the channel determine, 

which formulae for A and D apply. 

As mentioned before the differential equations are accurate if the perturbation 

is relatively small compared to initial uniform flow. With the linear systems 

approach the equations will also be used for large perturbations, sc that now 

a constant "reference" discharge Q (or q ) or a constant reference water depth 

y has to be chosen, fixing the parameters A and D. 

It should be noted that contrary to the above initial discharge and water depth 

the reference discharge and water depth are some mean values within the actual 

range of variation. These only apply to the parameters of the flow equations. 

3.4. BOUNDARY CONDITIONS 

The solution of the differential eqs (3.25) and (3.26) requires boundary 

conditions. 

For Eq. (3.25) one needs conditions, expressed in discharge, while for (3.26) 

the conditions must be expressed in water depth. So the boundary conditions 

determine which of the two equations should be used. Because the flow is 

considered as a perturbation on an initial uniform flow the initial conditions 

are : 

q (s,o) = 0 

yp(s,o) = 0 

(3.30) 

while the boundary conditions depend on the type of inflow, which may vary in 

time and space. 

As shown before the parameters A and D depend on the physical characteris

tics of the channel and on a constant reference discharge or water depth. The 

latter depends on the initial conditions of the system and the range of 

variation of flow. 

22 



The choice of a constant reference discharge or water depth, may be criticized 

because it entails a crude approximation, especially in the case of the lateral 

inflow, where the discharge increases with channel distance. A logical choice 

of reference discharge would be 

qo(s) = qj.Cs) +o/S i(Ç) dÇ 

where i(Ç) would be the average inflow over the period under consideration. 

A reference discharge which varies with distance can be approximated and 

brought into the linear systems approach by cutting the channel reach in 

sections. By this process a histogram of reference discharges along the 

channel reach can be obtained. 

Despite the discontinuities in the reference discharge, the results are not 

affected, as is shown in Section 4.2.8. 

Because of the attenuation of the flood wave for the upstream and tributary 

inflow problem it is possible to take a decreasing reference discharge with 

distance. Also here a histogram of reference discharges can be taken, dependent 

on the behaviour of the flood wave. Construction of a very fine network does 

not in general increase the accuracy of the solution. In that case it would 

be better to solve the original non-linear differential equations with the aid 

of differences schemes, losing however the advantages of linear system analysis. 

It is interesting to note that chosing a reference discharge dependent on the 

initial conditions and the inflow, is an essential feature of this quasi-linear 

system. 

The influence of the choice of the reference discharge on the results has 

therefore been specially investigated. This study shows the influence of the 

boundary conditions and physical parameters, which are complex and in general 

not well known, on the results of the rainfall and run-off relation of a 

catchment. •••• • 

The result of this hydrodynamic approach is a mathematical model for a quasi-

linear time invariant system. The indicial response of this system can be 

obtained by solving the differential equation with the delta input as a 

boundary condition. 

This means that a unit of volume is added to the channel reach at a point or 

over a certain distance, depending on the type of inflow problem. In this way 

synthetic IUH's for the different types of problems will be derived and 

subsequently the powerful system engineering techniques will be used to 

analyse the systems behaviour. 
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Integration of the IUH in time yields the S-curve, from which TUH's can be 

derived (Eq. 2.4). If the input is given as a histogram or "distribution 

graph", the output can be calculated, by making use of the convolution integral 

in discrete form (Eq. 2.2). Because every input can be approximated by a 

histogram Eq. 2.2 is a very convenient form of the convolution integral, which 

can be easily programmed for a digital computer, while the computer time is 

relatively small. 

In this paper the theoretical aspects of surface run-off will be studied by 

applying four types of input to each conceptual element: 

a. A long "Thomas wave", (Fig. 3.3) as used by Dooge & Harley (1967), which is 

expressed as follows: 

q (t) = 7 5 - 7 5 cos (-£5-) for 0 < t < 96 hours 
p 4o 

which is superimposed on a baseflow q = 50. Both are expressed in cusecs per 

foot width. Transforming this in metric units yields: 

q (t) = 6,975 - 6,975 cos (£§•) m3/sec, m' 
p 4o 

In order to compare the results of this study with those of Dooge & Harley the 

British unit system will be used. 

This input is approximated by a histogram with an interval of one hour. 

b. An intermediate "Thomas wave" (Fig. 3.4) of the following shape: 

q (t) = 7 5 - 7 5 cos (^-) for 0 < t < 12 hours 
p 6 

approximated by a histogram with an interval of 15 minutes, which is super

imposed on a base flow q_ = 50 cusecs per foot width. 

Comparison of the results of a. and b. shows the effect of input duration on 

wave attenuation. 

In both cases attention is only given to the discharge. Water depth is not 

studied. The three aspects, which are studied are: the influence of the 

reference discharge, the length of the channel and the spatial distribution 

of the input into the system. 

c. A block input (Fig.3.5) expressed as 1 mm/interval, with an interval of 3 

hours. In this case the TUH was derived for various types of problem, where 

water depth was studied. Special attention was also given to the relation 
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fig. 3.4 "Intermediate Thomas" wave 
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fig. 3.6 "Short" wave of special shape 
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VARIOUS TYPES OF INFLOWS 
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between water depth and discharge. 

d. A short wave with a special shape (Fig. 3.6), where the flat top of the 
3 

input occurs within 15 minutes and is expressed in m /sec. This wave is super
posed on an initial water depth of 0,50 m. 

In this case only the water depth is studied. As complete non-linear solutions, 

based on an implicit difference scheme of Amein (1968), have been derived by 

Grijsen (1971), it was possible to compare the linear and non-linear 

solutions. 
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4.LINEAR CONCEPTUAL ELEMENTS 

Complex surface run-off consists roughly of 5 linear elements (Section 3.1). 

In this chapter these elements are mathematically formulated in terms of the 

linear system theory. Some results on the input-output relation are given for 

a channel reach which shows the effects of the spatial and secular variation 

in input, of the reference discharge and of the physical characteristics of the 

channel. 

4.1. INFINITE CHANNEL-LUMPED INPUT 

This element, which is studied as the tributary inflow problem can be 

considered in two different ways (Fig. 4.1). 

main channel 

tributary inflow Qp(t) 
from secundary channel with base flow 

fig.4.1 Concept'of the tributary inflow problem 

a. First as an infinite channel, in which a constant initial flow occurs over 

the whole channel reach. In one point (s=0) this channel is fed by an known 

inflow, which is cascaded into the channel. 

b. Second as an infinite channel with an initial flow, but now this main 

channel is fed at one point by a second channel, which has also an initial 

flow. This causes a discontinuity of the initial flow in the main channel at 

the point, where the second channel enters the main channel. 

From Fig. 4.1 it can be seen that Q_ = QT + Q . If now one is interested 
3 2 1 
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in the discharge at point A, caused by the tributary inflow Q (t), then the 

solution must be superposed on Q and if one is interested at point B the 
3 solution must be superposed on Q . The only problem is to find the reference 

I ] 
discharge, determining the parameters of the main channel. It will be shown 

later that a fair estimation of the reference discharge, which depends on the 

initial flow and the range of variation of flow, can be obtained by applying 

the following relation. 

Q (o) , + Q (s) (4. 1) 
0 = 0 + -E E^i p p e a K , where N = 4 for the tributary 
wo WI N 

and upstream inflow and N = 2 for the fully lateral inflow; where Q (s) k 

is the peak value at point s. 
This agrees with the results given by Bravo et al(1970) and Harley et al(1970). 

Q„(o) , + Q (A) 
So for point A: Q = QT + -E E Ê ^ E EË£k 

o I3 4 

Q (o) . + Q (B) , 
and for point B: Q = QT + -E P e a k

 ; P PJi* 
o i. 4 

The same relations are also valid for the reference water depth. 

It follows that the peak values in the appropriate points must be known. Such 

values may be obtained from an empirical relation between the attenuation 

coefficient and the specific attenuation of a flood. (Section 5.4) 

4.1.1. Impulse Response 

The impulse response can be found by solving the linear differential equation 

for the water depth. (Eq. 3.26) 

2 
3y 3 y 3y 

3/ = D T ^ - N ^ <*•» 

3s 

for the following initial- and boundary conditions : 

a. y (s,o) = (5(s) (Dirac function) 

b. lim y (s,t) = 0 

s •+ <*> 

S " - " (4.3) 

CO 

c* - «/ yp (sjt) ds = 1, which follows from the continuity equation. 
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The physical meaning of 6(s) is, that a unit volume per unit width of channel 

is added to the system at time t=o at one point (s=o). There are no restric

tions for the flow in upstream and downstream directions (infinite channel). 

The solution can be found after the transformation: 

s. = s - A .t (4.4) 
1 T 

which reduces eqs (4.2) and (4.3) to respectively: 

3y 32y 
• ^ = D — £ (4.5) 

as . 

and 

y (sj.o) = 6(s,) (4.6) 

ƒ y (s.,t) ds1 = i, because the solution is symmetrical; so only the 

case s, > 0 has to be considered. 

lim y (s,,t) = 0 

s. -*- » 

The following solution is found with the aid of the Laplace transform method. 

(Van de Nes and Hendriks, 1971) 

- 1 1 
yn(s,,t) = — ! — e 4 D t , (s.,t) * (o,o) (4.7) 

where y (s.,o) = <5(s.) 

The same is true for s. < o. Introducing Eq. (4.4) in (4.7) 
1 (s-AT.t)2 

yields: y (s,t) = e D t , (s,t) j (o,o) and t > 0 (4.8) 

The discharge can be calculated by introducing Eq. (4.8) in Eq. (3.19), which 

yields: , 

(s-A . t r 
Q„ (s+A.t) T 
_E = T 4Dt 
6 I 4/7rDt3 

(4.9) 
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For a rectangular channel -— car. be expressed 

0 
J 
3I 

q (s,t) = / (&.\0) 

For a trapezoidal channel this expression is approximately true if ?T is 

chosen as a mean value over the range of the varying surface width of the 

channel, caused by the. infirm. 

Because of the parti'v'J 3 r r::r,d-;ry condition? t> '. '•(•, ' ('•.?) r.;-A .. ' •:;. 

the IUH of waterdern::. h c'--v '• sr.d of discharge ; •,-'t; ) por '.r4* ', -—h " + 

y "P -i -; 

channel, respect-v. ;; 

In the framework of the systems approach, it is couvraient to CXIKVÜU IK>*; 

IUH's in a dimensionless form, introducing two dimensionless system parameters; 

sA 
T 

P = -z=r— , a dimensionless length parameter 

and T = -j , a dimensionless time (4.11) 

2D . . . . 
where Q = — y is the parameter expressing the characteristic time 

A 

T 

of the system. 

Introducing of Eq. (4.11) into Eq. (4.9) and (4.8) gives: 

h n _i^ïl! 
4 / 2TTT 3 /2irT 

and 

h s - I ^ I Ï I 2 

h = i ! = — ^ 2 T C4.13> 

where h and h are the dimensionle:;s IUH's of discharge and water depth 

and V is the unit volume per unit width of channel. 

4.1.2. Classification 

For the complete linear solution Ear le" '!967) r'.;•. ~;s"'.f ir-.d channel reaches 

•U'.ort, intermediate and long. 7he classificatic-i was based on the ait.c:..:f 

For the diffusion type so'n'.y.cn a sii'iüar ci âjs.'.f ication, car. be ,.,.-u'e ,:•.; 
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fol lows: (Fig. 4 .2) 

R=0 

P « 1.8 short channel reach 

1 . 8 < P « 5 intermediate channel reach 

p > 5 long channel reach 

1 2 3 4 5 6 7 8 9 

fig. 4.2 Dimensionless impulse responses for the tributary inflow problem 

10 11 12 13 
Dimensionless time T 

a. A short channel reach, if in the dimensionless IUH the time to peak T < 1 

3h 
or <«£) « 0 

3 T T=l 

From this condition it follows, using Eq. (4.12) that P « 1,8 

b. An intermediate channel reach, if T > 1 and (h ) > Ç, where Ç is a 
p q T=I 

-4 
small number (ffe 5 x 10 ) from which follows 1,8 < P < 5 

c. A long channel reach, if (h ) < Ç 
q T=l 

For practical purposes this means that the rising limb of the dimensionless 

IUH starts at T > 1. 

This is valid if P > 5. 

In combination with the statistical moments and spectra, this classification 

seems to be useful in analysing the behaviour of the system. 
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4.1.3. Moments 

The moments of the IUH are derived from Eq. (2.9) (Van de Nes and Hendriks,1971). 

They can be expressed as follows: 

M|(h ) = (P + \)Q 

M,(h ) = (P + hg2 (4.14) 
2 q 4 

vy -(3? + Y-^3 

from which for the shape factors (Section 2.2) follow: 

S2= (P + 5/4)/(P + 1/2)2 and S3= (3P + ll/2)/(P + 1/2)3 (4.15) 

For the first three moments of the IUH for the water depth was found: 

Mj(hy) = (P + \)Q 

M2(hy) = (P + 2)Q2 (4.16) 

M3(hy) = (3P + 8)Q3 

Comparison of the moments of discharge and water depth shows that water depth 

fluctuation is more damped then discharge fluctuation. This is in agreement 

with the hysteresis in the discharge-water depth relation for a flood wave. 

For large values of P however the moments become equal. Then the relation 

between water depth and discharge becomes unique. This condition is also 

characteristic for the kinematic wave, which does not attenuate. 

4.1.4. Atténuation coefficient 

As defined in Section 2.3. the attenuation coefficient for the discharge 

C A = ( ^ ) ( f ) 2 (4.17) 

2 
ßt _ is the second moment M,(x) of the incoming wave and t_ is the duration of 

r z r 

the input. 
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fig. 4.3 Amplitude density spectrum of the I U H , »pressed in tht discharge,for the tributary inflow problem (R = 0) 
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fig 4 . i Phase density spectrum of the I U.H., expressed in the discharge, for the tributary inflow problem ( R = 0 ) 

5000 10000 
u O (radians) 
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For the 'Thomas wave': ß = 1/12 - 1/2TT % 0,033, while for a block input 

ß = 1/12 % 0,083. 
F 

So for a small ratio jr- (short wave), a large value of P and or a small value 

of 3 the attenuation is more pronounced. 

4.1.5. Spectra 

The amplitude density spectrum and the phase density spectrum of the IUH of 

the discharge are derived by Van de Nes and Hendriks, 1971, using the eqs (2.13) 

and (2.1 A) given in Section (2.4.). 

The amplitude density spectrum can be expressed as follows: 

" , , P{l-a(a>)} 
h (u) = i e 

qa 2 

2 
2a (ai) + 2a(di) 

2a (u)-l 
(4.18) 

for a) > 0 
and the phase density spectrum of the IUH of the discharge is: 

h (u) = -Pß(co) - tan ' — ^ for to > 0 (4.19) 
q ö a (ü)) + ßZ(üj)+a(cü) 

where a(u) = /(l + /l + 4Q2u2)/2 

(4.20) 

and ß(w) = / ( - l + / l + 4ö2tü2)/2 

In the spectra of figs 4.3 and 4.4, the amplitudes and phases are given as 

function of uQ for a number of values of P. 

The damping effect of the system for an increasing value of P is shown in the 

spectra, while here Q seems to be only a scale factor. 

Also in the frequency domain one can subdivide the area in three parts, which 

agrees with the channel classification of a short, intermediate and long 

channel reach, as is shown in the figures. 

4.1.6. Summat-ion Curves 

Integration of the IUH for the discharge and for the water depth gives the 

summation curves (S-curves), from which TUH's for any period At can be 

derived. Then the numerical convolution of the input with the TUH is a simple 

procedure. 
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The responses given in figs 4.5 and 4.6 have been calculated by a digital 

computer (CD. 3200) within one minute. 

The S-curves for the discharge and the water depth are derived (Van de Nes and 

Hendriks, 1971): 

S = | erfc (—) (4.21) 
q /2T1 

and 

S = fâ { erfc (£1) - e2 P erfc (^)} (4.22) 
y 2 s /2Ï1 /2T1 

where the complementary error function is defined as: 

ƒ e erfc(z) = 1 - erf(z) = 1 - — /Ze 5 dÇ (4.23) 

and is tabulated. (Abramowitz & Stegun, 1965). 

In fact the S-curves are the outputs, due to an input, which has the shape of 

a step function. This means that a constant unit intensity input starts at 

time t=o; For t -* <» the steady state will be reached. 

From the eqs (4.21) and (4.22) it follows for t -*• <*> that: 

S = 1 and S = ̂  (4.24) 
q y s 

For the relation óf q and y then it follows: 
P P 

qp - ATyp (4.25) 

which means by comparing Eq. (4.25) with Eq. (3.19) that for t -»• °° the term 

s i 2 " 0 

Because q = q_ + q , as stated in Section 3.3., it follows for the steady state 

in a wide rectangular channel with A = y v_: 

q = v ^ j + | ^ = Vj (yt • | y ) 

(4.26) 

q = vxy + 1 V lyp 

In this linear systems approach to the problem the increase of velocity, due to 
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the increase of water depth is introduced in Eq. (4.26) by the second term on 

the right hand side. 

4.1.7. Response to given waves of inflow 

For the long 'Thomas wave', with a duration of 96 hours and the intermediate 

'Thomas wave' with a duration of 12 hours, as given in Section 3.4. the 

response is given for different distances from the point of inflow. 

For the long wave distances of 5, 50, 200 and 500 miles are chosen, while for 

the intermediate wave only 5 and 50 miles are considered. 

For comparison with the complete linear solution, as given by Harley (1967) 

for the upstream inflow problem, the same values have been taken, for the 

physical characteristics of the channel (4.4.7.). 

An original base flow of 50 cfs, in a wide rectangular channel with a bottom-
1 

slope S = 1 feet/mile and a Chezy friction coefficient C = 50 feet2/sec is 

assumed. 

The responses given by figs 4.5 and 4.6 show the attenuation of the waves at 

various distances for a number of reference discharges. For all the 

calculations the TUH of Eq. 2.4 was used as derived from the summation curves 

of Eq. 4.21. 

4.1.8. Effect of the reference discharge 

In the linearized diffusion type equations, as explained in Section 3.3., the 

estimation of the reference discharge or water depth is important. In figs 

4.5 and 4.6 the effect of the reference discharge is shown for various 

distances of the channel. 

In the calculations three values of the reference discharge respectively 100, 

150 and 200 cfs were chosen. In some cases the 3 curves were so close together, 

that only one or two curves could be shown in the same figures. 

The system parameter P and Q, as defined by Eq. 4.11, can be calculated from 

the parameters A and D, as defined for a wide rectangular channel by Eq. 3.21. 

It follows that P and Q depend on the physical characteristics of the channel 

and the reference discharge. 

Table 1 shows the effect of the reference discharge on the moments of the IUH 

for the discharge for various distances to the point of inflow; the first 

moment (time lag) M](h), expressed in hours and the second moment M„(h), 
2 

expressed in (hours) . These moments are functions of the parameters P and Q. 
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Discharge cfs 
200 

Distant» s=Smilts 
qo=20Q100 cfs 

/ s =50 mi lts 
~ <lo=200,1O0 cfs 

5=200 mil« 
0=200,150,100 cfs 

Channel flow 
Tributary inflow problem ( R * 0 ) 
Input Thomas wave, duration 96hours 

Base flow =50 cfs 
C=50feet' /2/sec 
S0s 1 feet/mi(e 

fig 4.5 Effect of the reference discharge for different values of the distance s 

for the "Long Thomas" wave 

Discharge cfs 

Channel flow 

Tributary inflow problem (R=0 ) 

Input Thomas Wave, duration 12b 

C= 50 feet 'Vsec 
S0= I feet/mile 

120 144 168 
time (hours) 

fig 4.6 Effect of the reference discharge 
for different values of the distance s 
for the"intermediate Thomas" wave 
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Table 1 - Effect of the reference discharge 

q o 
( c f s ) 

100 

150 

200 

Q 

( h o u r s ) 

4 . 9 

5 .6 

6 . 2 

s = 5 m i l e s 
P |M j ( h ) |M 2 ( h ) 

1 
0 . 27313 . 79 !36.92 

0 . 2 0 8 ' 3 . 9 6 46 . 62 

0 . 1 7 2 , 4 . 1 7 154.68 

50 m i l e s 
P |Mj (h) 'M (h ) 

1 ' 
1 

2 - 7 3 ' 1 5 . 8 3 | 9 6 . 6 

2 . 08 1 4 . 4 5 ( 1 0 6 . 5 

1 . 7 2 | 1 3 . 7 6 1 1 1 4 . 4 

200 m i l e s 
P ' M | ( h ) i M 2 ( h ) 

10 .92 55 .96 245 .5 

8 . 3 2 , 4 9 . 3 9 , 3 0 6 . 0 

6 . 8 8 ' 4 5 . 7 5 I 3 1 3 . 3 

500 m i l e s 
P iMj(h)!M 2 (h) 

| 

27 . 3 136 .2 , 693.0 

20 .8 119 .3 705.2 

17 .2 109 .7 ; 711.1 

Table 1 shows that an increasing reference discharge causes an increasing Q and 

a decreasing P. For the short reach (s = 5 miles) the first and second moment 

are increasing, while for the larger distances the first moment is decreasing 

and the second moment is increasing. The increasing iirst moment f.:-.: die short 

reach is due to the increasing storage in the channel section upstream of the 

inflow point, causing a slower recession in the tail of the IUH. This is also 

why the second moments for all values of P are increasing with an increasing 

reference discharge. For the short reach the relative variation of the second 

moment is large, while for the long reach the relative variation of the first 

moment is large. It is clear from Fig'. 4.5 that for the 'long' Thomas wave the 

attenuation effect is negligible for all values of P and the lag effect 

becomes important only for large values of P. 

For the intermediate 'Thomas' wave (Fig. 4.6) in a short reach (5 miles) both 

effects are small, despite the relative large value and variation of the second 

moment, whereas the intermediate reach (50 miles) shows some translation and 

attenuation. Obviously the actual translation and attenuation also strongly 

depend on the shape of the inflow wave. 

Summarising these observations it can be stated that for both inflows into the 

short channel reach (P « 1.8) the reference discharge has hardly any effect. 

This will be further clarified in Section 5.5. In the intermediate channel 

reach 1.8 < P « 5 for the long wave, there is only a little translation, while 

for the intermediate wave there is some translation and attenuation but it is 

not very pronounced. In the long channel reach (P > 5) an important translation 

only occurs with the long 'Thomas' wave. 

From this example it follows that the reference discharge is not an important 

factor for a short channel reach. In a long reach however it does effect 

the translation. 

4.1.9. Comparison with a somgtete non-linear solution 

In the department of Hydraulics and Catchment Hydrology research is in progress 
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on the non-linear theory of channel-flow and overland flow. (Grijsen, 1971) 

As some results for a special case are available, the linear solution may be 

compared with the non-linear. Conclusions can then be made about the accuracy 

of the linear solution and the optimum value of the reference discharge. 

The non-linear solution is based on the complete non-linear differential eqs 

(3.1) and (3.2), using an implicit difference scheme (Amein, 1968). This 

special case, which was solved can be described as follows: 

An infinite wide channel or a rectangular channel with width B = 1.75 m, has 
1/3 

a bottomslope S = 0.0001, and a Manning friction coefficient K = 31 m /sec. 

This channel is fed in one point (s = 0) by an 'short wave', expressed in 
3 

m /sec, per 1.75 m width of channel (Fig. 4.6), which is superposed on an 

initial uniform water depth of 0.50 m. 

The responses, expressed in the water depth, have been calculated for different 

values of distance. In Fig. 4.7 the results are only given for s = 0 and 

s = 1000 m, which lie within the most interesting range, because this 'short 

wave' attenuated very rapidly. 

Waterdepth m 

0.70 

Channel flow 
Tributary inflow problem (R=0) 
Input Short wave (fig. 3.6) 

Base water depth =0.50 n 
Km=3lmVj/sec 
S0= 0.0001 

linear solution, reference water depth =0.70 m infinite wide channel 
.complete non linear solution 

0.60-

^linear solution,reference water depth:0.70m 
.complete non linear solution 

05 1.0 l . i 2.0 

fig. 1*1 Comparison of linear with complete non linear solution 

For a number of reference water depths the linear solution was calculated by 

using the S-curve for the water depth (Eq. 4.22) and the convolution integral 

in discrete form (Eq. 2.2). A reference water depth of 0.70 m seemed to provide 

the best fit. This solution has been presented in Fig. 4.7. 
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For this 'short wave', especially for s = 0, the effect of the reference water 

depth on the response is important. 

The figures show a fair agreement of the linear solution and the complete 

non-linear solution. Since this simplification and linearisation of the dynamic 

equation apparently do not lead to great errors they seem acceptable for 

practical purposes. 

The results also seem to justify the design rule for the reference water depth 

y as suggested in Section 4.1.: 

yQ = yp( 0 )peak + yp S peak + y^ (4_2?) 

The goodness of fit between the linear and non-linear solution can be 

expressed by the efficiency coefficient R defined as (Section 2.5): 
E 

X(f-f.)2 

R = {1 -x-} 100% (4.28) 
E £(f-f)2 

Here f stands for the data of the non-linear solution, f. for the data of the 

linear solution and f for the mean of the data for the non-linear solution. 

In the above examples of the linear diffusion type models for distances of 

s = 0 and s = 1000 m respectively as compared to the non-linear model, showed 

efficiency coefficients of 83% and 87% respectively. 

For optimization procedures of the reference discharge and the system 

parameters P and Q by a digital computer, the efficiency coefficient is useful 

as objective criteria for the goodness of fit. 

A specific study on the errors due to simplification of the dynamic equation 

and due to the linearisation of this simplified dynamic equation is in 

progress. 

4.2. INFINITE CHANNEL - DISTRIBUTED INPUT 

This element, also called the partial lateral inflow problem, is illustrated 

in Fig. 4.8. In this case an infinite uniform channel is fed by an inflow, 

which is uniformly distributed over a distance I , from upstream point s = 0 to 

downstream point s = I , while the responses can be calculated for J l . No 

attention is paid to responses, for s < 0, which are relevant for the study of 

the backwater effect. The inflow may be the result of the overland flow phase 

or the result of the groundwater flow phase. From the description of the 
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problem it is clear that the tributary inflow problem is a special case, 

where i = 0. 

Lateral inflow over distance L, 
from the overiandflow phase 
or groundwaterflow phase 

fig 4.8 Concept of the partial lateral inflow problem 

4.2.1. Impulse Response 

As compared to the tributary inflow problem, using the same differential 

equation, only the first condition differs as follows: 

and 

yp(s,o) - j 

y (s,o) = 0 

for 0 « s < S, 

(4.29) 

for s > l and s < 0 

which means an instantaneous addition at time t = 0 per unit width of channel 

of a unit volume uniformly distributed over a distance I of the channel reach. 

The solution can be derived from the solution of the tributary inflow problem, 

by integrating over the distance: 

V 8 , t ) "ïs4l y p 1
( a ' , : ) d0 (4.30) 

where y (a,t) is the solution for the water depth of the tributary inflow 

problem, given by Eq. (4.8). 

Substitution of Eq. (4.8) gives for the water depth of the partial lateral 

inflow (Van de Nes and Hendriks, 1971): 

s-A t s-Jl-A t 
y ( s , t ) = jj {erf ( —) - e rf ( —) } (4.31) 

P 2l 2ADt 2AÏÏÎ 

The discharge can be found after introducing Eq. (4.30) into Eq. (3.19) thus: 
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A s-A t s-Jl-A t 
q ( s , t ) = -£ { e r f ( T—) - e r f ( T—)} 

2/Dt 2v/Dt' 

o 2 
( s - J , - A T t ) " ( s - A T t ) 

+ k 7 ^ { e "e } (4-32) 

In the terminology of the systems approach and introducing a new dimensionless 
I 

inflow length parameter R = — the eqs (4.31) and (4.32) expressing the IUH's 

can be written in dimensionless form in the same way as has been done for the 

tributary inflow problem: 

h = - j j - = - = • { e r f ( ) - e r f ( — ) } 
q ¥ 2PR / 2 Ï / 2 T 

(4 .33) 

_ ( P ( l - ^ ) - T ) 2 _ ( P - T ) 2 

. j 2T 2T 
+ 2Pff T ^ { e ~ e } 

h = - £ - = ^ p { e r f ( ) - e r f ( — ) } ( 4 . 3 4 ) 
y ¥ 2R /if / 2 Î 

and 

where the meaning of the symbols is the same as for the tributary inflow 

problem. It can be proved that for the case R •* 0, the solutions for the 

tributary inflow follows from eqs (4.33) and (4.34). 

4. 2. 2. Classification 

Using the same criteria for classification, as has been done for the tributary 

inflow problem, it follows that the classification also depends on the third 

system parameter R: 

a. For discharges the classification of the channel reach as a short reach is 

given in Table 2 for a number of R values: 

Table 2 : Condition for the short channel reach. 

1.0 
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R 

P 

0.01 

< 1 , 8 

0 .1 

1.9 

0 . 2 

2 . 0 

0 . 3 

2 .1 

0 . 4 

2 . 3 

0 . 5 

2 . 4 

0 . 6 

2 . 6 

0 . 7 

2 .9 

0 . 8 

3 .2 

0 . 9 

3 .6 

0 . 99 

4 . 5 



2.586 

R=0.5 

P * 2.4 short channel reach 

2.4 < P * 10 intermediate channel reach 

P>10 long channel reach 

1 2 3 4 5 6 7 . . 

Dimension less impulse responses for the lateral inflow problem (R=0.5) 

10 11 12 13 
Dimensionless time T 

Short channel reach for all values of P 

1 2 3 4 5 6 7 8 9 10 

fig. 4 .9a Dimensionless impulse responses for the fully lateral inflow problem(R»1) 

11 12 13 
Dimensionless time T 
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From Table 2 it follows that for R = 0.01, the same condition is found as 

for the tributary inflow problem, while for R = 1 the channel reach is short 

for every value of P, because then the peak occurs at time t = 0. It is 

interesting to note that for R = 0.99 the value of P is relatively small 

(P « 4.5). 

b. For an intermediate channel reach, the following conditions are valid: 

For 0 < R 4 0.2 P , < P 4 5 (Ç < 3xl0~3) 
short 

and 0.2 < R 4 0.5 P ,_ < P « 10 (Ç < 4xl0~3) 
short 

and 0.5 < R 4 0.9 P ,_ < P « 25 (5 < 6xl0~3) 

short 

where P , are the values given in Table 2 for the appropriate values of 

R. It can be seen that for increasing values of R the value of P has to be 

increased considerably, before the channel can be classified as an 

intermediate reach. 

c. For a long channel reach the following conditions apply: 

For 0 < R 4 0.2 P > 5 

0.2 < R 4 0.5 P > 10 

0.5 < R 4 0.9 P > 25 

For larger values of R the value of P becomes very large, with 

P + », if i? + 1 . In Fig. 4.9a for R = 1 and R = 0.5 the dimensionless IUH 

for the discharge are shown for various values of P. 

4. 2. 3. Moments 

The moments of the IUH of the discharge are derived from Eq. 2.9 (Van de Nes 

and Hendriks, 1971) and can be expressed as follows: 

Mj(h ) = (1 - \R)PQ + | 

,pNT,^ . 1 „2T,2„2 . 5 „2 M 2 ( V = ° ~ 'iR)PQ + 17 R P Q + Î Q (4-35) 

M3(hq) = (1 - IR)3PQ3+ i R2P2Q3 + j-Q3 

from which the shape factors as defined in 2.2 follow: 
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