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ABSTRACT

Nes, Th.J. van de, 1973. Linear analysis of a physically based model of a
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Dutch summaries.

Also: Doctoral thesis, Wageningen.

As part of a model for the rainfall-run-off relation of a catchment, a
linear distributed model of surface run-off is presented in this report.

This model, without iInternal boundary conditions, consists of a cascade
of linear conceptuzl elements. It simulates the complex drainage system by
a network of overland flow and channel-flow elements. These elements obey
the one~dimensional equations for unsteady flow in a channel. Simplification
and lipearisation of the dyramic equations lead to diffusion type equations.
Their solution for suitable boundary conditions vield the impulse respouse
functions, which characterize the operation of the elements. Special attention
1s given to the application of the techniques of linear system analysis, such
as moments and spectra. These techniques produce information on the relative
importance of the various conceptual elements. Consequently it is possible
to decide on the necessary detail In the variation in time and space of both
the inflow and structure of the drainage model,

Results obtained by using the linear model have been compared with results
of a2 more exact nen-linear model and have been encouraging. At the end some
practical applications have been given.
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1.INTRODUCTION

In catchment hydrology one can distinguish two broad classifications of
problems.

i ) hydrograph forecasting on a short term basis

ii) discharge frequency prediction on a long term basis

Two major groups of factors affect the run—off from a catchment: hydrometecro-
logic factors fainfall, snow and evapotranspiration) make up one group, and the
other group consists of physiographic factors (physical characteristics of the
catchment).

The understanding of hydrelogical processes requires modelling, which is the
reason why scientific hydrology has always been concerned with mathematical
modelling.

Hydrologists usually differentiate between deterministic and stochastic models.
No final concensies of opinion has however been reached as to which techniques
belong to the fields of either deterministic or stochastic simulationm. Broadly
stated the two approaches can be discerned as follows:

A deterministic model is essentially an abstraction of the way a system trans-—
forms the input into the output, Both the structure of the model and the choice
¢f the parameters should reflect some conception of the system's structure and
the principal laws that govern the system's transformation. Consequently the
model parameters are to a certain degree related to physical characteristics

of the system. Because of the role which the parameters play in the subsequent
fitting of the model to the observed system's cause-effect relationship the
deterministic approach is often indicated as "parametric modelling"”. The de-
terministic model is meant to describe transient responses and it is mainly
used for the generation of hydrographs from precipitation data either for flood
forecasting or water management purposes (Schermerhorn and Kuehl, 1968).

A stochastic model however is meant to generate time series which are statis-
tiecally indistinguishable from certain measured records. Usually the modelling
of a cause—effect relationship is not the main object and the parameters or
coefficients are mainly of a pure statistical nature. Consequently a stochastic
model is a less appropriate tool for describing actual hydrographs but it can
generate "equally likely" series of smoothly varying responses (Fiering, 1967).
In this report only the deterministic approach is used for hydrograph fore-
casting on a short term.basis. The more closely the model approximates the
physical system, the more accurately does it predict. However an increasing

complexity of the model makes it alsc more difficult to handle. Therefore it-




is necessary to compromise between accuracy and simplicity when developing
models.

The advent of the digital computer has allcowed in all areas of hydrolegy the
use of more complex models that are closer to the physical systems.

In this respect a division can be made into component modelling and integrated
system modelling (Dawdy, 1969).

In component medelling the land phase of the hydrclogic cycle can be divided
into several parts {infiltration, evapotranspiration, aquifer response and
surface streamflow routing). The empirical approach to the mathematical process
controliling each component is being gradually replaced by a theoretical
approach, based on the physical laws governing the component, in an attempt to
make the empirical approximations more equivalent to the theoretical physical
laws. It must be stressed at this point that even with the thecretical hydro-
dynamic approach many simplifications and approximations have to be made. In
general for the various flow processes this approach leads to non—linear
partial differential equations which for given boundary conditions, can be
solved numerically by a digital computer. The variocus components will be
combined in the integrated system modelling. The purpose of developing better
conceptual models for the individual components is on the one hand to solve
particular problems in hydrology and on the other to improve the overall model
of the total system. However the development of the model increases its
complexity, which to a certain extent limits the use of the better model. The
difficulty is not lack of understanding of the physical processes but firstly
not knowing the boundary conditions and their dependence on the interaction of
the various flow processes, secondly the problem of accurate measurement of
physical characteristics of the catchment and thirdly the impracticability of
dealing with detailed variations in time and space.

In the recent yvears the systems apprcach was introduced in hydrclogy (e.g. Nash
1959; Dooge, 1959, 1967; Vemuri et al, 1970) with its powerful systems engineer-
ing techniques, so that system analysis has had a strong impact upon the metho-
dology of mathematical modelling.

This report shows how the techniques of linear system analysis can be used for
the optimization of parameters in a conceptual model for the surface

component, consisting of overland flow and channel flow, as a part of a complex
simulation model of the rainfall-run—off relation for a catchment.

The apptoach of Dooge, Harley and C'Meara (1967, 1968), who intrcduced linear
conceptual models for the surface run—off based on the hydrodynamics of channel

flow is also followed in this report. Summarizing it can be stated that a



combination of the linear systems theory and the hydrodynamic approach in the

study of the surface run—off system seems effactive for the following reasons:

1. There is a direct relationship between the physical structure of the system
and the structure of the model as it describes the system's operation. There-
fore there is also a relation between physical characteristics and model
parameters.

2. Powerful techniques from system analysis can be used.

3. Approximate solutions for complex systems are possible.

4. Influence of the initial and boundary conditions can be studied.

5. Necessary compromise between the desires for aceuracy, simplicity and

physical understanding can be reached in this type of approach.
1.1. OBJECTIVES AND SCOPE OF THE STUDY

The complexity of the flow process by which surface run-off flows overland into
small rivulets then into larger channels and finally into a river channel, makes
it difficult to find exact solutions, based on hydrodynamics, because of the
complex boundary conditions. Therefore, simplification is necessary for solving
this complex problem. Recent technological progress in computer facilities has
stimulated the hydrodynamic approach to the surface run-off problem. Cheng Lung
Chen and Ven te Chow (1968} formulated a mathematical model, which descrihes

the mechanics of surface run—-off of a catchment by treating the watershed as

a non~linear distributed system subject to hydrodynamic principles, using the
complete dynamic equation for the one dimensional flow, including the over-
pressure of raindrop impact. The non-linear equations were solved by the method
of characteristics using the explicit scheme for a simplified overland flow
problem. However, for complex systems with a large number of internal boundary
conditions this results in an extremely lengthy computer program that is beyond
the capacity of computers available at present. At the same time Dooge, Harley
and 0'Meara (1967, 1968) used a linearized version of the complete dynamic
equation and derived analytical solutions for the upstream inflow and lateral
inflow or overland flow problem., These solutions are used as basic elements

for a linear distributed model of catchment run~off by Bravo, et al (1970).

These linear sclutions were introduced intc the MIT catchment model as an alter-
native for the kinematic non-linear solution, as developed by Henderson and
Wooding (1964, 1965, 1966). However, this model has some disadvantages. Firstly,
because water is restricted to flowing in ome direction only, which physically

is incorrect. Secondly, because the analytical solutions are very complex, which




causes difficulties in the calculation.

For these reasons in this paper the dynamic equation is first simplified and
then linearised. This leads to a diffusion type equation as proposed by Schon-
feld (1948); Hayami (1651); Daubert (1964) and Harley (1967). The latter
showed that for the upstream inflow the diffusion type solution leads to very
small deviations with respect to the complete linear solution and it can be
assumed that the error due to the linearizaticn 1¢ much more important.

For the diffusion type equations analytical sclutions are derived for the tri-
butary and lateral inflow or overland flow, without restriction for reversed
flow in the considered channelreach. In combination with the solution for the
upstream inflow a complex distributed conceptual medel cam be constructed. Im
combination with the linear systems approach the instantaneous unit hydrograph
(IUH), the summation curves (S-curves), shape factors and spectra, expressed
in the model parameters, are derived for the various linear elements. These
techniques yield information on the relative importance of the various con-—
ceptual elements. Consequently, it is possible to decide on the necessary
variation in time and space of both the inflow and the degree of detail in the
model structure which is needed to provide computed results of sufficient accu—
racy. This 1s an interesting aspect of this study because it appears to add a
theoretical background to the experimental fact that the run-off process in
drainage basins can often be simulated by simple conceptual models with lumped

parameters and lumped inputs, such as the model suggested by Nash (1959, 1960).



2.THE SYSTEMS APPROACH

The rainfall and run—off relation of a catchment has been described by
classic hydrology in terms of surface run—off, interflow and groundwater flow.
In practice quantitative hydrology usually modifies this concept and considers
the hydrograph to be made up of a direct storm response and a base flow.

In Fig. 2.1 a picture of the simplified catchment model is given, which is

borrowed from Dooge (1967).
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This system consists of three subsystems, the subsystem involving the direct
storm response or surface run—off, the subsystem inveolving groundwater response
and the subsystem soll phase, which has a feedback loop to the separation of
precipitation into precipitation excess and infiltration.

In this report only the first subsystem involving the surface run-off is
considered. Speaking in system terminclogy the surface run-off system
transforms an input (= inflow or rainfall excess) into an ocutput (= discharge
or storage expressed as water depth). Quoting Dooge (1967): "the rdle of the
system in genmerating output from input, or in interrelating input and output,
is its essential feature. The output from any system depends on the nature of
the input, the physical laws involved, and the nature of the system itself,
both the nature of the components and the structure of the system according to

which they are connected". (Fig. 2.2)
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fig. 2.2 Concept of system operation (Daoge 1367)

In the system analysis however the overall operation of the system is examined
without taking into account all the complex details of the system or all the
complex physical laws involved. Although the system operation depends on the
physical laws and the nature of the system, this dependence may be ignored in
this approach to the problem. This is represented by the horizontal components
in Fig. 2.2,

Thus in upnit hydrograph studies, once the unit hydrograph has been derived from
records of imput and output, it can be used as a prediction tocl without
reference to the nature of the catchment or the physical laws involved.

In the system synthesis however, where a synthetic unit hydrograph has to be
derived, or the validity of the unit hydrograph procedure must be examined, it
is necessary to examine the connection between the unit hydrograph, the
characteristics of the watershed, and the physical laws governing its behaviour.

This relation is represented by the vertical components in Fig. 2.2.

2.1. LINEAR SYSTEMS

The linearisation of the non—linear differential equations with constant
coefficients, describing the non-steady chamnel and overland flow makes it
possible to consider the surface run—off problem as a linear time invariant

system, which is characterised by the comvolution integral



y(t) = oft x(T)h(t-1) dt
or (2.1}

y(t) = Oft x(t-1)h(z) dt

This ¢onvolution integral expresses the relation between the output y(t), the
input x(t) and the instantaneous unit hydrograph (IUH) or the impulse response
h{t), which characterises the system operation.

If the input is given as a histogram the convolution integral takes the follo-

wing discrete form:

n
y(nAt) = At ‘Z p{i+1)h(at, (n-i)aAt) (2.2)
1=0

where p(i+]) represents the successive volumes of the input and h{At, (n—-i)At)
the finite period (At) unit hydrograph (TUH). This can be derived from the

sumation curve defined as
5(t) = f% h(o,1) dr (2.3)
It follows that:
h{At, (n-i)at)= {S((n=-i)At) - S{(n-i-1)At)} / At , n > i (2.4)
h{at, (n-i)At) =0 , n<«< i
The shape of the IUH, can be characterised by statistical moments, shape
factors (Nash, 1959) and spectra (Eagleson, 1966), expressed in the system
parameters.
2.2. STATISTICAL MOMENTS AND SHAPE FACTORS
As shown by Wash (1959) and Diskin (1967) the moments in the linear sysiems
approach are very powerful tools for finding the model parameters from input

and output, because the following relations between the moments of input,
output and IUH exist.



Mi(y) = Mi(x) + M(h)
M, (y) = M, (x) + M,(h) {2.5)

My(y) = My(x) + My(h)

The relation for the higher moments are more complex.

The moments of a function £(t) relative to the origin are defined as:

' - b n o (2.6}
Mn(f) of ft dt/of fdt
and relative to the centre of area (first moment)
M_(£) = /7 £(eMN e/ 17 £de (2.7
n o 1 &) '

The first moment of the IUH relative ta the origin gives the lag or the mean,
the second, third and fourth moment relative to the mean are the variance, the
skevness and the kurtosis respectively.

The Laplace transform of the function f(t), is defined as

M E(e) de

i

£{3) o
or (2.8)
2

E £ A
Of £(t)de - A Of tf(t) dt + =+

£(2) -

o 2
of T £(t) dt - ....

This equation shows how the Laplace transform of the function is related to the
moments of that function, So that Eq. (2.8) can be ceonsidered as the moment

generating function.

-
COED = T e R
dx
A=Q -
or
a" "
M (5) = (DY) ./ £(o) - (2.9)
di r=o

The IUH for the different conceptual elements are derived by means of the
Laplace transform, so with Eq. (2.9) the moments of the IUH can easily be

derived.



In fact Nash (1960) does not use the moments of the IUH but the shape factors,

defined as:

- M
S1 M!(h)

\ 2
5, = M,(h)/ 08} (B))
. (2.10)

-
-

1 n
5 = M_(W)/Q1}(0))

all of which, except Sl are dimensionless and therefore less likely to be
mutually correlated than M;(h), Hz(h), etc., while it has the advantage that
scale effects have disappeared, when the IUH of different conceptual models are
compared with each other. In our case, where the IUH for the various types of
inflow problems are based on two or three model! parameters, S3 and S2 are

used for comparisen.

Harley (1967) proposed to use the cumulants for characterising the system, but
because the first three moments are equal to the first three cumulants, which

are dominant for the shape of the IUH, the cumulants will not be discussed here.

2.3. ATTENUATION COEFFICIENT

I1f the input and output in the rainfall-run-off process or in flood routing are
compared it is clear that the system has a translation i.e. lag and an
attenuation. The time lag can be calculated frem the first moment of the IUH.
It is reasonable to assume that the second moment of the IUH and of the input
can together be a good index for the attenuation. It is well known that a
peaked wave attenuates much quicker than a long duration wave. Expressing the

attenuation of the wave in a coefficient as follows

M) - M M)

Cy = AR N ) (2.11)

By plotting calculated values of this attenuation coefficient Cy against

corresponding values of the specific attenuation RA’ defined as:

x -7y
R, = 2P 002 (2.12)
*

where xP and yp are respectively the peak values of the input and the output,
an empirical relation was obtained. Thus the attenuation coefficient CA is en

index for the specific attenuation.



Because the attenuation coefficient C, for a conceptual model can be expressed

by model parameters and by characteristics of the input {(duration and slhepe} 2
first quick estimate of the specific attenuation of the pezk can be made if the
model parameters and duration and shape of the input are known or can be
estimated.

As will be shown later conversely this relationm can be usad to find the model
parameters if the specific attenuation is known.

Therefore an iteration procedure is required.

2.4. SFECTRA

Simular to the Laplace transform, which vielded a simple relation between the
moments, also the Fourier transforms of input, output and IUH will be shown to
be simply related. (Bagleson, 1966)

By this transform the behavicur of the system is replaced from the time domain

to the frequency domain - as follows:

() = 17 h(e) ¢ I de (213
where the spectralfunction h(w)} in general is complex i.e.
hlw) = r(w) + jiw)

and is commonly described by an amplitude density spectrum

B0 = () + 15w}

(2.14a)
and a phase density spectrum
~ _ -1 i(w)

he(m) = tan o) (mod ) (2,14b)

where r is the real part, i the imaginary part and w the frequency in radians
per time interval,
Application of the Fourier transform to the convolutien integral yields for

linear time invariant systems



7(0) = x(@)h(w)

;a(m)ﬁa(m) (2.15)

and ya(w)

%

ye(w) xe(w) + he(w)

which in a similar way to moments, interrelates input, output and TUH. This is
to be expected because there is a relation between the Fourier transform and
the Laplace transform.

By applying the Fourier transform the system seems to act as a low pass filter,
wiileh filters out the high frequency energy of the input. The Fourier transform
¢f &n impulse (delta input or dirac function} is real and comstant over all
frequencies. Thus the Fourier transform of the impulse response can be inter-
preted as the cutput of a low pass filter, when excited by a signal having

a uniform ampliitude density (i.e. is flat).

Eagleson, et al (1966) have shown that comparing the spectra of input and IUE
leads to conclusions about the sampling interval At, with which the input has
to be measured, i.e. it gives the duration of the unit storm period. The dis-~
tribution of the input within this unit storm period does not influence the
output. Therefore the assumption is made that the filter has ap upper limit

w_s 80 that all higher frequencies of the input spectrum will be filtered out.
This implies that it is not necessary to measure the higher frequencies,
because they do not supply any significant information. The signal pulse of
duration At of the input behaves as an impulse to the system in question if its
amplitude density spectrum is flat for 0 < w < 8o with W W

TFor some rainfall spectra it is found, that they are flat for oy At £ 1 radian,
so the unit storm period At < %— < %— (2.1ka)
which is only valid if the band"width of the input signal w_ > @ . However if
W W, than the whole input spectrum iz of interest. ?

P
Defining the band width of the input signal

0 < band width < mp

and arbitrarily select a fairly conservative cutoff frequency Wy such that
s = (0
xa( p) 0,05 x,f 3

which represents the i3 db point on the amplitude density curve then

11



Hamming (19262) has shown that for band-limited functionms the time interval At

can be expressed as follows:

it < —- (2.16D)

B
Comparison of the spectra of the IUH for the different tvypes of inflow problems,
shows the influence of the system parameters on the shape of the IUH. If the
amplitude-density spectra are nearly the same then the shapes of the TUH are
also mearly the same. The time shift between the IUH's follows from the phase
density spectra,
The following relation applies:

-jut .

?ﬁ(w) =e 2w

Q

where Te is the translator operator defined as:
o

Ttoh(t) = h(t-to)

and to 15 the translation time.

So (B, () = h_(u)
o
and (?;Eﬁe(m) = - wtg o+ ﬁe(m)
)
- e, t
or log {he(m) -{1_h) (W} =log w§ + log ==
tc 5] 4

where § is a characteristic time of the system, as will be shown later.

It follows that for wg =1

- e - t,
h(s) = {1, 1) (u) = dhg(w) = 22 (2.17)

so if the characteristic time @ of the system is known the translation time

t, can be calculated,

2.5. GOODNESS OF FIT

In order to determine the goodness of fit between the exact or observed data

12




{real world) and the approximate or computed data (model), from the many
ohjective criteria for error measurements, which are availabie, a special form
of the mean square error of the ordinates is chosen. In statistics {Gringorten,
1960) this error measure is called the coefficient of determination. Rash
(1970) has introduced this criterion into the study of run-off models, where
he used the term efficiency coefficient RE:
(e - £)7
R.E‘-‘ {1 '—_2} {2.18)
E - _
Here f stands for the exact or observed data, f] the approximate or computed
data and T the mean of the exact or observed data. The numerator expresses the
residual variance and the denominator the initial variance. So if the model and
the real world fully agree then RE = 1. If the data of the model equal the
nedn value of the data in the real world then RE = ¢, For optimization
procedures of the parameters in a conceptual model the efficiency coefficient
is useful as an objective criterion for the goodness of fit.
In this presentation the efficiency coefficient has been used as an objective
criterion for the goodness of fit between the linear solution of the
approximate linear equation and the solution of the complete non-linear

equation for the surface run-off problem. Further it was used to compare the

theoretical results with the experiments.

13



3.MODELLING OF THE SU'RFACE RUNQF-
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The downstream movement of the wave is studied, forming a classic problem

in fleod forecasting.
It is assumed that the catchment can be modelled by a suitzble combination of
these 5 elements. Se¢ the complex distributed surface run—off model consists of
an appropriate number of elements chosen in accordance with the geometry of the
surface run-off system. It is further assumed that one element cascades into
the other so that interaction between these elements is excluded. Practically
the number of elements, determining the complexity of the system, should be as
small as possible. The systems approach seems to be very helpful for this basic

problem of integrated system modelling,
3.2. HYDRODYNAMIC CONSIDERATIONS

The hydrodynamic aspects of open channel-flow and overland flow can be found in
many handbooks (Ven te Chow, 1959, 1964; Henderson, 1966; Eagleson, 1970},
therefore only some points concerning flood routing problems will be given
here.

The equations of motion of one dimensional flow in an uniform open channel with

lateral inflow can after some simplification be written as follows:

Momentum equation 8 =5 - Sy yiv_1lawv_ D (3.1)

Continuity equation i %% + E% = i(s,t) (3.2)

where s and t are distance in flow direction and time respectively, So is the
bottom slope, v the water depth, v the mean velocity in a cross section of the

channel, g the acceleration of gravity, 4 the cross sectional area of flow, Q

the discharge rate (= vA), i the lateral inflow per unit length of channel, Sf

the friction slope and the term D_ represents the energy dissipation when the

L
lateral flow mixes with the water already in the channel (Eenderson, 1966}.

The term DL can be expressed as follows: (Strelkoff, [970)

vUu.

b, = gAL is,t) (3.3)

where u is the g-component of the inflow velocity veector.

Clearly D. = 0, if the lateral inflow i{s,t)=0 or if the lateral inflow is in

L

direction of flow and v=u, .

Here it is assumed that the lateral inflow is perpendicular to the direction of
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flow, which yields uL=0, so that after introduction of Eq. (3.2) in Eq. (3.3)

for DL’ expressed in Q, can be written:

-2 .3 LY
D a2 (32 * 5t (3.4)

L

Substitution of Eq. (3.4) in the equation of motion (3.1), expressed in Q

yields:
=5 - (1 -F2ydy_2Q 39 _1 39
Sg= S, - (1 -F) 55 73s  gA 3t 3.5)
gh

where F is the local Froude number for which the following relation is valid.

2 2B
¥ - L3 (3.6)

gA

where B = %% the surface width of the channel.

¥or lateral inflow i(o,t) = 0 (so D, = 0) combining eqs (3.1} and (3.2),

expressed in Q, yvields the same Eq.L(3.5), wvhich means that this equation is
valid for the flow with and without lateral inflow. (assuming u = 0)

For the overland flow problem eqs (3.2) and (3.5) are used, assuming a wide
rectangular channel, where discharge q is expressed per unit width of channel,
The equations of motion for the one dimensional overland flow therefore can be

expressed as follows:

&

=S - (1 -p2y 2y _29 3 1
Sf So ( ) as Byz s y

4+ - iGsand/n (3.8)

(3.7)

oI

t

0

where q is discharge per unit width of chammel, while for the local Froude

number the following relation is wvalid.
2 2
F- = ﬂ_i (3.9)
8y
Both in the channel-flow and in the overland flow problems the friction slope
S¢ ig difficult to determine.

In this veport it is assumed that the flow in both cases is turbulent, where

rhe empirical relation of Chezy or Manning may be used.
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The formulas for channel-flow and overland flow are respectively:

Chezy + 5 = EUilL_ (channel-flow)
£ 2.2
A"C'R
o] (3.10)
_qlg
Sf 73 . (overland flow)
Cy
where C is the Chezy coefficient and R is hydraulic radius.
Manning (channel-flow)
(3.11)

.5 =29

T Uf ) 443
AKT R

m
8¢ = —:flb%g7§ (overland flow)

Km ¥

where Km is the Manning cocefficient.

In the linear systems approach the complex geometry of the channel reach is

simplified by assuming a uniform trapezoidal channel (Fig. 3.2), from which the

special cases of a rectangular channet (m=0) or infinite wide rectangular

channel (=0, B+e} can be derived.

—. . .

Ax wetted area
Q= wetted parimater

L 4

o
. K ny——+

——

Macotg Cx

fig 3.2 Cross section of a channel reach

The complex physies can be simplified by the reasonable assumption that the
quasi-steady state approach (the kinematic wave), where Sf = SO, is a good
first approximation of Eq. (3.5). Introducing this in the third and the fourth

term at the right hand side of Eq. (3.5) (the acceleration terms) which also
can be expressed as:

-2 3@ _ 13 _ -y Be &y
2 38 Ag ot (2 v=c) gh Bs (3.12)
gA
. . g
where ¢ is the celerity (= A Seddon law)

gives after substitution of Eq. ¢3.12) in Eq. (3.5) the equation of motiom,

assuming Chezy friction formula:
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2
—u-E a2 Aaphh
Sp =8, -1 - -z 1+ E (3.13)

while assuming Manning's friction formula this gives:

=g -] -%g2 . 2R/ 242, 3y
Sf = So {i 5 T (1 3 I +m7)7} P (3.14)

The continuity equation, assuming no lateral inflow, can be written as:

QA
=+ ==0 (3.15)

As will be shown in Section (3.4), the different types of inflow form one of
the boundary conditions necessary for solving the differential egs (3.13) or
(3.14) and (3.15),

One way of tackling the problem of the complex geometry of a distributed
network and the problem of a cowplex spatial and secular variation of the

input, is the linearisation of the Eq. (3.13) or (3.14).

3.3. LINEARIZED DIFFUSION TYPE EQUATIONS

As proposed already by Schonfeld (1948) linearisation of the Eq. (3.13) or
(3.14) can be achieved by considering the flow as a small perturbation on an
initial permanent uniform flow. The discharge Q or q can be expanded in a
Taylor series, where terms of higher then the first order will be neglected,
which is correct only if the perturbation is small. .
Starting from Eq. (3.13), based on the Chezy friction formula, the discharge Q

can be expressed as follows:

1 1
Q= CR’A(S0 - cls)’ , Q>0 (3.16)
where C, = {1 -ﬁ (1 -2 1 +m2)2}
1 4 B
2 :
and § = s the gradient of the water depth.

as
In general y and %% are independent functions. (Vén de Nes and Hendriks, 1971)

50 one can consider Q as a function of the variables y and § (= %%-, ¢ = Q(y,s).
In order to linearize Eq. (3.16) the following notations for the discharge,

water depth and slope of the water level are introduced.
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Q=Qp+Q » Y=y +y, and S = 5.+ S

where the subscript I means initial and p the perturbation, for uniform flow

SI=0. The Taylor series for Q can be expressed as follows:

- 3Q _ 2Q -
Q=0+ (ay . vy -—yp) + (BS)I (8 =8+ .vnnns
- (9@ 3Q
or Q, = (3 IR + (as)Isp e . (3.17)

The initial values QI’ Y1 and SI correspond with the initial values of C and
C].

so that the following relations can be derived:

When writing the Taylor series these values have been considered constant,

30, _ 3 _ 2R 2
(—) == VIBI{I E(E}I 1 +m"}

oy 1 2
Q {3.18)
and (%%) = - _é_
I I Q
Substituting eq. (3.18) into (3.17) it is found that:
Q 8y
P = -
BI ATyP D oy (31.19)
where AT = %’VI {1 - %(%) ¥l + mz} the translation coefficient
: (3.20)
O F’ R 7,2
and D = ——=— {1 - =— {1 = 2(=) 1 +m”} the diffusion coefficient
25 B 4 B
o1 I
For a wide rectangular channel eq. (3.20) gives: (Harley, 1967)
=32
Ar=35 Vg
2
1 Py
D-E'g';'(l ‘T) (3.21)

while for a rectangular channel with width B the following relations can be

derived.
4
A 23y (BI "3 1,
T 21 B+ 2yI
2
q F B
L I I 2
and D ?S: {1 - - (W) } (3.22)
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From the continuity Bq. (3.15) follows:

3(Q + Q) Y Ay +v)

s 3T =0 {3.23)
8, I
and =—— = 0 and —— = 0 {steady uniform flow)
EE) at
therefore Eq. (3.23) gives:
3Q 3y
_P _P.
5a * B 5T 0 (3.24)

Combination of the eqs (3.24) and (3.19) produces the two well known linear

partial differential equations of parabolie form:

2

3Q 37Q 3Q

5T D 2 A (3.25)
8

and

3y azy 3y

LR .p—P.4s 2 {3.26)

3t as2 T 38

Obviously Eq. (3.25) is also valid for qp(discharge per unit width of channel).
These diffusion type equations, which were already given by Schonfeld (1948),
Hayami (1951), Daubert (1964) and Harley (1967), form the basic equations of the
different type of flood routing problems, as mentioned before.

Linearisation of Eq. (3.14) which is based on the Manning friction formula,
leads to the same differential equation. Here the translation coefficient Ar

and the diffusion coefficient D take the following form:

=2 - &R 2
A =3V (1 5(B)I 1+m7) (3.27)
Q
D=z | 1~ 22 1 - 2&) /1 + n?)?
28 B 9" 1 B
o1l I
For a wide rectangular chanmel this leads to:
3
A'l:-ivl
and q
1 42
D= ES—; (1 - gF I) (3.28)

while for a rectangular chamnel with width B it gives:
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6

A = ;'-',- v (M)
T 31 BI + ZYI
q
and (3.29)
q B
1 4.2 1 2
D= {1l -F" (z—7—=—)"1
280 g I BI + ZyI

So the choice of the friction formula and geometry of the channel determine,
which formulae for AT and D apply.

As mentioned before the differential equations are accurate if the perturbation
is relatively small compared to initial uniform flow. With the linear systems
approach the equations will alsc be used for large perturbations, sc that now

a constant "reference" discharge Qo (or qo) or a constant reference water depth
Y, has to be chosen, fixing the parameters AT and D.

It should be noted that contrary to the above initial discharge and water depth
the reference discharge and water depth are some mean values within the actual

range of variation. These only apply to the parameters of the flow equations.

3.4. BOUNDARY CONDITIONS

The solution of the differential eqs (3.25) and (3.26) requires boundary
conditions.

For Eq. (3.25) one needs conditions, expressed in discharge, while for (3.26)
the conditions must be expressed in water depth. So the boundary conditions
determine which of the two equations should be used. Because the flow is
considered as a perturbation on an initial uniform flow the initial conditions

are:

i
[

qp(sso) =
(3.30)

1
o

¥,{8:0) =

while the boundary conditioms depend on the type of inflow, which may vary in
time and space.

As shown before the parameters A,E and D depend on the physical characteris—
tics of the chamnel and on a constant reference discharge or water depth. The
latter dependson the initial counditions of the system and the range of

variation of flow,
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The choice of a constant reference discharge or water depth, may be criticized
because it entails a crude approximation, especially in the case of the lateral
inflow, where the discharge increases with channel distance. A logical choice

of reference discharge would be
_ s .
q,(8) = q (s} + " i(E) d¢

where i(£) would be the average inflow over the period under consideration.

" A reference discharge which varies with distance can be approximated and
brought into the linear systems approach by cutting the channel reach in
sections. By this process a histogram of reference discharges along the

channel reach can be obtained.

Despite the discontinuities in the reference discharge, the results are mot
affected, as is shown in Section 4.2.8.

Because of the attenuation of the flood wave for the upstream and tributary
inflow problem it is possible to take a decreasing reference discharge with
distance. Also here a histogram of reference discharges can be taken, dependent
on the behaviour of the flood wave. Construction of a very fime network does
not in general increase the accuracy of the solution. In that case it would

be better to solve the original non-linear differential equations with the aid
of differences schemes, losing however the advantages of linear system analysis.
It is interesting to note that chosing a reference discharge dependent on the
initial conditions and the inflow, is an essential feature of this quasi-linear
system. .

The influence of the choice of the reference discharge on the results has
therefore been specially investigated. This study shows the influence of the
boundary conditions and physical parameters, which are complex and in general
not well known, on the results of the rainfall and run—off relation of a
catchment. L

The result of this hydrodynamic approach is a mathematical model for a quasi-
linear time invariant system. The indicial respoense of this system can be
obtained by solving the differential equation with the delta input as a
boundary condition.

This means that a unit of volume is added to the channel reach at a point or

_ over a certain distance, depending on the type of inflow problem. In this way
synthetic TUH's for the different types of problems will be derived and
subsequently the powerful system engineering techniques will be used to

analyse the systems behaviour.
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Integration of the IUH in time yields the S—curve, from which TUH's can be
derived (Eg. 2.4). If the input is given as a histogram or "distribution
graph”, the output can be calculated, by making use of the convolution integral
in discrete form (Eq. 2.2). Because every input can be approximated by a
histogram Eq. 2.2 is a very convenient form of the convolution integral, which
can be easily programmed for a digital computer, while the computer time is

relatively small,

In this paper the theoretical aspects of surface run-off will be studied by
applying four types of inmput to each conceptual element:
a. A long "Thomas wave", (Fig. 3.3) as used by Dooge & Harley (1967), which is

expressed as follows:
q,(t) = 75 = 75 cos (%) for 0 < t < 96 hours

which is superimposed on a baseflow a; = 50. Both are expressed in cusecs per

foot width. Transforming this in metric units yields:
Tt 3 '
qp(t) = 6,975 - 6,975 cos (ZgJ m /sec, m

In order to compare the results of this study with those of Dooge & Harley the
British unit system will be used.
This input is approximated by a histogram with an interval of one hour.

b. An intermediate "Thomas wave" (Fig. 3.4) of the following shape:
qp(t) = 75 - 75 cos (%E) for 0 < t < 12 hours

approximated by a histogram with an interval of 15 minutes, which is super-
imposed on a base flow q; = 50 cusecs per foot width.

Comparison of the results of a. and b. shows the effect of input duration on
wave attenuation.

In both cases attention is only given to the discharge. Water depth is not
studied. The three aspects, which are studied are: the influence of the
reference discharge, the length of the channel and the spatial distribution
of the input intc the system.

¢. A block input (Fig.3.5) expressed as 1 mm/interval, with an interval of 3
hours. In this case the TUH was derived for various types of problem, where

water depth was studied. Special attention was also given to the relation
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VARIOUS TYPES OF INFLOWS
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between water depth and discharge.

d. A short wave with a special shape (Fig. 3.6}, where the flat top of the
input occurs within |5 minutes and is expressed in m3/sec. This wave is super-—
posed on an initlial water depth of 0,50 m.

In this case only the water depth is studied. As complete non—linear solutioms,
based on an implicit difference scheme of Amein (1968), have been derived by
Grijsen {1971}, it was possible to compare the linear and non-linear

solutions.
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4.LINEAR CONCEPTUAL ELEMENTS

Complex surface run-off consists roughly of 5 linear elements (Section 3.1}.
In this chapter these elements are mathematically formulated jn terms of the
linear system theory. Some results on the input-output relation are given for
a channel reach which shows the effects of the spatial and secular variation
in input, of the reference discharge and of the physical characteristics of the

channel.

4.1, INFINITE CHANNEL-LUMPED INPUT

Tuis element, which is studied as the tributary inflow problem can be

considered in two different ways (Fig. 4.1).

main channel

tributary inflow Qp (t}
from the overfand fiow phase

main channel

tribulary inflow Qplt)
from secundary channel with hase fiow

figi1 Cencept of the tributary inflow problem

a, First as an infinite channel, in which a constant initial flow occurs over
the whole channel reach. In one point (s=0) this channel is fed by an known
inflow, which is cascaded into the channel.

b. Second as an infinite channel with an initial flow, but now this main
channel is fed at one point by a second channel, which has also an initial
fiow. This causes a discontinuity of the initial flow in the main channel at
the point, vwhere the second channel enters the main channel,

From Fig. 4.1 it can be seen that QI = QI + QI . If now one is interested
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in the discharge at point A, caused by the tributary inflow Qp(t), then the
solution must be superposed on Q]:3 and if one is interested at point B the
solution must be superposed on QI . The only problem is to find the reference
discharge, determining the parame%ers of the main channel. It will be shown
later that a fair estimation of the reference discharge, which depends on the
initial flow and the range of variation of flow, can be obtained by applying

the following relation.

Q_(o) +Q (s) (4.1
G, - Q = p__peak m ppeak , where ¥ = & for the tributary

and upstream inflow and N = 2 for the fully lateral inflow; where Qp(s)peak

is the peak value at point s.

This agrees with the results given by Bravo et al (1970) and Harley et al (1970).
+ A

Qp( )
A

Sp(o)peak

peak

So for point A: Q =0 *
3

Qp(o)peak M Qp(B}peak

and for point B: Q, = Q *

The same relations are also valid for the reference water depth,
It follows that the peak values in the appropriate points must be kmown. Such
values may be obtained from an empirical relation between the attenuation

coefficient and the specific attenuation of a flood. (Section 5.4)

4.1.1. Impulse Response

The impulse response can be found by solving the linear differential equation
for the water depth. (Eq. 3.26)

ay 22y iy
Tpay 0 P
st D " Al 5g (4.2)

for the following initial- and boundary conditions:
a. yp(s,o) = §(s) (Dirac function)

b, lim yp(s,t) =0

g8 &> ®
8 > — m

(4.3)

o
e _ o Yp {s,t) ds = 1, which follows from the continuity equationm.
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The physical meaning of &(s) is, that a unit volume per unit width of channel
is added to the system at time t=o at one point (s=o0). There are no restric-

tions for the flow in upstream and downstream directions {infinite chanmel).

The solution can be found after the transformation:

8, = 8 - AT.t {(4.4)

1

which reduces eqs (4.2) and (4.3) to respectively:
2

Yy 3y
a—tE =D ——J;_‘- (4.5)
28
1
and
yp(sl.O) = 8(s) (4.6)

oIwyp(sl,t) ds1 = }, because the solution is symmetrical; so only the
case s, > 0 has to be considered.
1lim yp(sl,t) = ()

sl+m

The following solution is found with the aid of the Laplace transform method.

{Van de Nes and Hendriks, 1971)
)

2
1

1 TS
y {8,:t) # (0,0) (4.7)
2‘/1?589 S1 Q0,0

Yp(sl,t) -
where yP(sl,o) = §(s))

The same is true for §, < o. Introducing Eq. (4.4) in (&4.7)

- 2
) (s Ar't)
yields: 1y (s,t) =——e P (5,t) # (0,0) and t > O (4.8)
P 2v/7D¢
The discharge can be calculated by introducing Eq. (4.8) in Eq. (3.19), which
yields: 2
'(s-AT.t)
Q (s+h_.t) =~ ———
P (4.9)

I 4/me3

29




G

For a rectangular channel gE-*an be expressed as
I
Q
q.(s,t) = =2 (41
ju] B
1
For a trapezoidal channel this expression is approwimately true if B, is

[N

chosen as a mean value over the range of the varying surface width of the
channel, caused by tha infi~w,
Because of the parti-ular ~sundsry conditions the »ge (&%) and

the IUH of waterdspul hy{%yp‘ ard of discharya I}zﬁg:
channel, respectiveiy. .
In the framework of the systems approuch, it Ls covuvenlent Lo express doth
IUH's in a dimensionless form, introducing twc dimensionless syster parameters:
SA
T

P = o dimensionless length parameter

and T = , a dimensionless time (4.11)

£
q
2D ., . .. .
where Q= —5 1is the parameter expressing the characteristic time
A
T
of the system,

Introducing of Eq. (4.11) into Eq. (4.9) and (4.8) gives:

r-1)2
- _B® b i, oo
=31 =1¢ ) e (4,12)
1 ¥ Y2773 VE%T
and
2
T
h .s - iV}
Bt U TR
y o ¥ T

where Eﬁ and E} are the dimensionlecrs IUH's of discharge and watcr depth

and ¥ is the unit volume pey uni width of chanael.

4.1.2. Claseificatior

For the complete linear soiution Harles (167 ¢ idled channe® reacher s

shiort, Intermediate and long. The classificaticn was bused on the dwach.oo;

For the diffusion tvpe solulon a sivilar classficeiion, car be ade o

3G




follows: (Fig. 4.2)

R=0

P% 1.8 short channel reach

1.8<Ps 5 intermediate channel reach
P> 5 tong channel reach

o5}
o4f
03}
ozt
o1t

1 T T
0 ] ] 3 4 5 3 7 [ 9 0 i 12 13

fig. 42 Dimensionless impulse responses for the tributary inflow problem Dimensioniess  time T

a. A short chamnel reach, if in the dimensionless IUH the time to peak Tp <1

or (§TS)T=1 <0

From this condition it follows, using Eq. (4.12) that P £ 1,8

b. An intermediate chamnel reach, if TP > 1 and (ﬁﬁ) » E, where £ is a
T=1

smzll mumber (% 5 x 10—4) from which follows 1,8 < P ¢ 5

¢. A long chamnel reach, if (ﬁ&) < E
T=1
For practical purposes this means that the rising limb of the dimensionless

IUH starts at T > 1.
This is walid if P > 5,

In combination with the statistical moments and spectra, this classification

seems to be useful in analysing the behaviour of the system.
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4.1.3. Momente

The moments of the IUH are derived from Eq. (2.9) (Van de Nes and Hendriks,1971).

They can be expressed as follows:

M) = @+

My(h) = (P + %9@2 (4.14)
L1

MB(hq) = (3P + 5_)Q

from which for the shiape factors {Section 2.2) follow:

S, (P + S/4)/(P + 1/2)%  and S,= (3P + 11/2)/(P + 172y° (&.15)

For the first three moments of the IUH for the water depth was found:

M) = B+ 1)Q

My(h) = (P + g (4.16)
~ 3

M3(hy) = (32 + 8)Q

Comparison of the moments of discharge and water depth shows that water depth
fluctuation is more damped then discharge fluctuation. This is in agreement
with the hysteresis in the discharge—water depth relation for a flood wave.
For large values of P however the moments become equal. Then the relation
between water depth and discharge becomes unique. This condition is also

characteristic for the kinematic wave, which does not attenuate.
4. 1. 4. Attenuation coefficient

As defined in Section 2.3. the attenuation coefficient for the discharge

w (Er3lhy @ 2
¢ = EFHED (4.17)

A

2 . . s . . i
Bt is the second moment Mz(x) of the incoming wave and t, is the duration of

F F

the input.
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2 . .
For the 'Thomas wave': B8 = 1/12 - 1/2r” % 0,033, while for a block input
B = 1/12 ¥ 0,083. ¢
So for a small ratio —E-(short wave), a large value of P and or a small value

e

of B the attenuation is more promounced.
4.1.5. Spectra

The amplitude density spectrur and the phase density spectrum of the IUH of
the discharge are derived by Van de Nes and Hendriks, [97!, using the eqs (2.13)
and {2.14) given in Section (2.4.).

The amplitude density spectrum can be expressed as follows:

- 2 3
A (0 =} eP{]-a(m)}{Zu (m% + Zu(w)} (4.18)
qa 20 (w)-1
for w > 0
and the phase density spectrum of the IUH of the discharge is:

1 B(w)

n (w) = -P&(w) - tan for w > 0 (4.19)
a9 o2 (w)+8% (w)+a (w)
where aw) = V{:ﬁ; V1 o+ &szz)IZ
(4,20)

So—
and  8(w) /{—1 s 1+ 4% D2

In the spectra of figs 4.3 and 4.4, the amplitudes and phases are given as
function of w@ for a number of wvalues of P.

The damping effect of the system for an increasing value of P is shown in the
spectra, while here § seems to be only a seale factor.

Also in the frequency domain one can subdivide the area in three parts, which
agrees with the channel classification of a short, intermediate and long

channel reach, as is shown in the figures,

4,1.8. Summation Curves

Integration of the IUH for the discharge and for the water depth gives the
sumnpation curves (S-curves}, from which TUH's for any period At can be
derived, Then the numerical convolution of the input with the TUH is a simple

procedure,
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The responses given in figs 4.5 and 4.6 have been caleculated by a digital
computer (C,D. 3200) within one minute.

The S—curves for the discharge and the water depth are derived (Van de Nes and
Hendriks, 1971):

s =4 erfe 5 (4.21)
1 VT

and
5§ = gg { erfe (2225 - e2P erfc (Eﬁﬂh} {(4.22)
y s V2T V2T

where the complementary error function is defined as:

2
erfe(z) = 1 - erf(z) = 1 %75 a (4.23)

-
?/7?0

and is tabulated. (Abramowitz & Stegun, 1965).

In fact the S-curves are the outputs, due to an input, which has the shape of
a step function. This means that a constant unit intensity input starts at
time t=oj For t -+ = the steady state will be reached.

From the eqs (4.21) and (4.22) it follows for t + = that:

Pg
§ =1 d S =— 2
q an e (4.24)

For the relation of qp and yp then it follows:

q =AYy (4.25)

which means by comparing Eq. (4.25) with Eq. (3.19) that for t + = the term

3y

_E—>0

3s

Because q = q; + qp, as stated in Section 3.3., it follows for the steady state
in a wide rectangular channel with AT = g-vI:

- 3w = 3
TRV v, v Ot F YY)

or (4.26)
q= vy + vy

In this linear systems approach to the problem the imcrease of velocity, due to
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the increase of water depth is introduced in Eq. (4.26) by the second term on

the right hand side.
4.1.7. Respemse to given waves of inflow

For the long 'Thomas wave', with a duration of 96 hours and the intermediate
'Thomas wave' with a duration of 12 hours, as givem in Section 3.4. the
response is given for different distances from the point of inflow.

For the long wave distances of 5, 5C, 200 and 500 miles are chosen, while for
the intermediate wave only 5 and 50 miles are considered,

For comparison with the complete linear solution, as given by Harley {(1967)
for the upstream inflow problem, the same values have been taken, for the
physical characteristics of the channel (4.4.7.).

An original base flow of 50 cfs, in a wide rectangular channel with a bottoem—
slope S0 = ] feet/mile and a Chezy friction coefficient C = 50 feet%/sec is
assunmed.

The responses given by figs 4.5 and 4.6 show the attenuation of the waves at
various distances for a number of reference discharges. For all the
calculations the TUH of Eq. 2.4 was used as derived from the summation curves
of Eq. 4.21.

4.1.8. Effect of the reference discharge

In the linearized diffusicn type equations, as explained in Sectlom 3.3., the
estimation of the reference discharge or water depth is important, In figs

4.5 and 4.6 the effect of the reference discharge is shown for various
distances of the channel.

In the calculations three values of the reference discharge respectively 100,
150 and 200 cfs were chosen. In some cases the 3 curves were so close together,
that only one or two curves could be shown in the same figures.

The system parameter P and &, as defined by Eq. 4.[1, can be calculated from
the parameters AT and D, as defined for a wide rectangular channel by Eq. 3.21.
It fellows that P and @ depend on the physical characteristics of the channel
and the reference discharge.

Table 1 shows the effect of the reference discharge on the moments of the IUH
for the discharge for various distances to the point of inflow; the first
moment (time lag) M{(h), expressed in hours and the second moment.Mz(h),

. 2 .
expressed in (hours)”. These moments are functicns of the parameters P and &.

36




Channel flow
Tributary mnflow problem {R=0)
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flow S0 e i
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fig 45 Effect of the reference discharge for different values of the distance s
for the "Long Thomas"” wave
Chanrel flow
Dischage cfs Tributary inflow problem (R=0)
Input Thomas Wave, duration 12h
! | C=50 feet Y2/sac
150 distance S=5 miles A
" dg= 100200 cty S+ | feet/mile
ot
base flow 50 8 ] T %8

time (hours)

fig46 Effect of the reference discharge
for different values of the distance s
for the “intermediate Thomas " wave
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Table 1 — Efifect of the reference discharge

5 = 5 miles 50 miles 200 miles 500 miles
] T T [EYE T ‘
T T T, G, G TG ?Mﬁh)iMzG‘)
]

{cfs)|/(hours ) | | i | X
100 | 4.9 [0.273/3.79 13592 (2.73)15.85 96.6|10.92 55.96:245.5 27.3136.2
|
i
1
[

i 693.0
|
150 | 5.6 |0.208!3.96 46.62 2.08 14.45)106.5 | 8.32/49.39,306.0]20.8 119.3,705.2
|
200 | 6.2 [0.172,4.17154.68 1.72]13.76 114,41 6.88:45.75,313.3]17.21109.7; 711.1

Table | shows that an increasing reference discharge causes an increasing @ and

a decreasing P. For the short reach (s = 5 miles) the first and second moment
are increasing, while for the larger distances the first moment is decreasing
and the second moment is increasing. The increasing rirst mement f2o che short
reach is due to the incresasing storage in the channel section upstream of the
inflow point, causing a slower recession in the tail of the IUH. This is also
why the second moments for all values of P are increasing with an increasing
reference discharge. For the short reach the relative variation of the second
moment is large, while for the long reach the relative variation of the first
moment is large. It is clear from Fig. 4.5 that feor the 'long' Thomas wave the
attenuation effect is negligible for zll values of P and the lag effect
becomes important only for large values of P.

For the intermediate 'Thomas' wave (Fig. 4.6) in a short reach (5 miles) both
effects are small, despite the relative large value and variation of the second
moment, whereas the intermediate reach (50 miles) shows some translation and
attenuation. Obvicusly the actual translation and attenuation also strongly
depend on the shape of the inflow wave.

Summarising these observations it can be stated that for both inflows into the
short channel reach (P < 1.8) the reference discharge has hardly any effect.
This will be further clarified ir Section 5.5. In the intermediate channel
reach 1,8 < P € 5 for the long wave, there is only a little translatiom, while
for the intermediate wave there is some translation and attenuation but it is
not very pronounced. In the long channel reach (F > 5) an important translation
only occurs with the long 'Thomas' wave.

From this example it follows that the reference discharge 1s not an important
factor for a short channel reach., In a long reach however it does effect

the translaticn.

4.1.8. Comparison with a somplete non—linear selution

In the department of RBydraulics and Catchment Hydrology research is im progress
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on the non-linear theory of channel-flow and overland flow. (Grijsem, 1971)
As some results for a special case are available, the linear solution may be
compared with the non-linear. Conclusions can then be made about the accuracy
of the linear solution and the optimum value of the reference discharge.

The non—-linear sclution is based on the complete non-linear differential eqs
(3.1) and (3.2), using an implicit difference scheme {(Amein, 1968). This
special case, which was solved can be described as follows:

An infinite wide channel ér a rectangular channel with width B = .75 m, has

|/3/sec.

a bottomslope So = (0.000], and 2 Manning friction coefficient Km =3lm
This channel is fed in one point (s = 0} by an 'short wave', expressed in
malsec, per 1.75 m width of channel (Fig. 4.6), which is superposed on an
initial uniform water depth of 0,50 m.

The responses, expressed in the water depth, have been calculated for different
values of distance. In Fig. 4.7 the results are only given for s = 0 and

g = 1000 m, which lie within the most interesting range, because this 'short

wave' attenuated very rapidly.

Channel Fflow
Tributary inflow problem {R=0)

Inout Shori wave {fig. 3.6)
Base water depth <060m

Km=3!m Vy/sec

So=00001
Waterdepth m linear solution, referance watef depthz070m infinite wide channel
0.70 {{,wmpuu non linear solution .

afficiency=87 %
080 Distance =00 m
L L L 1 1 n L L L |
base w050 s 1.'n |I5 4 4 %

[+1:11] .

inear solution, reference water depth=070m
<complete non linear solution

fficiencys83 %

Distance 520

1 L Il i L i L A i i 1 )

30
time (hours:
fig. 4.7 Comparison of linear with complete non linear solution

For a number of reference water depths the linear solution was calculated by
using the S-curve for the water depth (Eq. 4.22) and the comvelution integral
in discrete form (Eq. 2.2). A reference water depth of 0.70 m seemed to provide

the best fit, This solution has been presented in Fig. 4.7.
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For this 'short wave', especially for s = 0, the effect of the reference water
depth on the response is important.

The figures show a fair agreement of the linear solution and the complete
non-linear solution. Since this simplification and linearisation of the dynamic
equation apparently do not lead to great errors they seem acceptable for
practical purposes.

The results also seem to justify the design rule for the reference water depth

vy, as suggested in Section 4.1.:

) yp(o) + yp(s)peak .

peak
7 ¥i (&4.27}

Yo

The goodness of fit between the linear and non—linear solution can be

expressed by the efficiency coefficient R, defined as (Sectiom 2.5):
E(£-£)°

RE= {1 - M—-:—E"'} 1007% (4£.28)
L(f-£)

E

Here f stands for the data of the non-linear solution, f1 for the data of the
linear solution and f for the mean of the data for the non-linear solution.

In the above examples of the linear diffusion type models for distances of

s = 0 and s = 1000 m respectively as compared to the non-linear model, showed
efficiency coefficients of 83% and 87% respectively.

For optimization procedures of the reference discharge and the system
parameters P and 4 by a digital computer, the efficiency coefficient is useful
as objective criteria for the goodness of fit.

A specific study on the errors due to simplification of the dynamic equation
and due to the linearisation of this simplified dynamic equation is in

progress.

4.2, TNFINITE CHANNEL - DISTRIBUTED INPUT

This element, also called the partial lateral inflow problem, is illustrated
in Fig. 4.8. In this case an infinite uniform channel is fed by an inflow,
which is uniformly distributed over a distance &, from upstream point s = 0 to
downstream point 5 =4, while the responses can be calculated for 7 g . No
attention 1s paid to responses, for s < 0, which are relevant for the study of
the backwater effect. The inflow may be the result of the overland flow phase

or the result of the groundwater flow phase. From the description of the
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problem it is clear that the tributary inflow problem is a special case,

where £ = 0.

=\

Lateral infleow over disiance L,
from the overlandflow phase
or groundwaterflow phase

fig 48 Concept of the partiol lgtenal inflow problem
4.2.1. Impulse Response

As compared to the tributary inflow problem, using the same differential

equation, only the first condition differs as follows:

1
Yp(s,o) T for 0 € 5 < &
and (4.29)
yp(s,o) o] for s >4 and s <0

which means an instantaneous addition at time t = O per unit width of channel
of a unit volume uniformly distributed over a distance % of the channel reach.
The solution can be derived from the solution of the tributary inflow problem,

by integrating over the distance:

|
e
[
EanY
Q
fad
S’
[+ 8
Q

1 s
vpleat)y =g Ly (4.30)
where LA (o,t)} is the solution for the water depth of the tributary inflow
problem,!given by Eq. (4.8).
Substitution of Eq. (4.8) gives for the water depth of the partial lateral
inflow (Van de Nes and Hendriks, 1971):

1 { s-ATt s-ldATt X
y (s,t) = 55 {erf ( )} = erf (————-) (4.31)
P 4 2/ Dt 2/ D¢

The discharge can be found after introducing Eq. (4.30) into Eq. (3.19) thus:
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A s—A t s—3-A t
q (s,t) = 57 { erf(— ) - erf(——)}
13 - 24/Dt’ 2voc
2 2
) (s—z—ATt) } (s-ATt)
& Dt 4 Dt
1 /D _
AT { e e 1 (4.32)

In the terminology of the systems approach and introducing a new dimensionless
inflow length parameter A = é—the eqs (4.31) and (4.32) expressing the IUE's
can be written in dimensionless form in the same way as has been done for the

tributary inflow problem:

b Q
U .2 N e
hq v SER {erf(gaf) erf{ = Yy}
(4.33)
_eu-n-n’ | @ent
1 1 ‘ 27 2T )
+ === e -~ e
2PR QEEF
and h s
B, o= s b Cers(ED - erp(EALTEIZTy, (4.35)
y 2 Y37 o

where the meaning of the symbols is the same as for the tributary inflow
problem. It can be proved that for the case R -+ 0}, the solutions for the

tributary inflow follows from egs (4.33) and (4.34).
4,8.8, Classification

Using the same criteria for classification, as has been done for the tributary
inflow problem, it follows that the classification also depends on the third
system parameter R;

a. For discharges the classificatiom of the channel reach as a short reach is

glven in Table 2 for a number of R values:

Table 2 ; Condition for the short channel reach.

B 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9 1.0
P <1.8 1.9 2.0 2,1 2,3 2.4 2.6 2,9 3.2 3.6 4.5 »
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From Table 2 it folliows that for R = 0.01, the same condition is found as
for the tributary inflow problem, while for R = 1 the channel reach is short
for every value of P, because then the peak occurs at time t = 0, It is
interesting to note that for F = 0.99 the value of P is relatively small

(2 < 4.5).

b. For an intermediate channel reach, the following conditions are valid:

-3
For 0 < R € 0.2 Pshcrt <« Pg5 (£ < 3xIn ™)
-3
and 0.2 < R € 0.5 Pshort <P g 1O (£ < 4x10 7)
-3
and 0.5 < K £ 0.9 Pshort < P g 25 (£ < 6x10 )
where P are the values given in Table 2 for the appropriate values of

short
K. It can be seen that for increasing values of E the value of P has to be

increased considerably, before the channel can be classified as an

intermediate reach.

c. For a long channel reach the following conditions apply:

For 0 < A £ 0.2 P >5
0.2 <R < 0.5 P > 10
3.5 <R < 0.9 P > 25

For larger values of R the value of P becomes very large, with
P+w, if  + 1. In Fig. 4.9a for A = 1 and A = 0.5 the dimensionless TUH

for the discharge are shown for various values of P.

4.2.3. Moments

The moments of the IUR of the discharge are derived from Eq. 2.9 (Van de Nes

and Hendriks, 1971) and can be expressed as follows:

i) = (L~ 4RPG + } @
My(h) = (1 - mPg’ + 1 WP+ 2 & (4.35)
M) = (1= 12)1Pg>s | BPP%° « _:‘2_’ &

from which the shape factors as defined in 2.2 follow:
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2,2
and 53 . a IR) 24P + 2B°P" + 44 (4.36)

{1+ (2-m)py3

_ (4-2B)P + 1/3 B*PE 4 5

s 7.3
(2-R)%P% + (4~2R)P + 1

2

In Fig., 4.9b S3 is given as a function of 82 for a number of values of R. For
R = 0 the shape factors of the tributary inflow problem is found., It is
remarkable that for 0 < F < 0.5 the shape factor diagrams are very near to each
other. This means that the shape of the IUH for these values of R is about the

same, although a time lag, dependent on the value of P may occur.,

Shape factor diagram for Chonnal flow
5].’ the lateral inflow problem

fig 4.9b Shape foctor diogram for the lateral inflow problem — s

The first three moments of the IUH for the water depth are:

MI(h) = (1 - } RYPQ +-Q
My(h) = (1 -} R)PG + -:3 %% 4 28° (4.37)
My(hy) = (1 - 4 R3pg° + | B2 + 8g°

Here again it follows that for large P-values the mcments and therefore the
IUH for the discharge becomes equal to the corresponding moments and the IUH
for the water depth.
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4.2.4. Attenuation coefficient

As defined in Section 2,3, the attenuation coefficient for the discharge is:

¢ - (P*s/4+ { RP (1/6 EP -

1) g .2
A A } (E;) (4.38)

where B 1s dependent on the shape of the input and t_ is the duration of input.

F
Comparing Eq. 4.38 with Eq. 4.17 shows that

for 1/6 RF -1 >0 or 1 >8R > 6/FP (4.39)

the attenuation for this lateral inflow is greater than the attenuation for the
tributary inflow.

For R < 6/P ¢« 1 the attenuation of the system is smaller than the attenuation
of the tributary inflow.

The results of calculations in Section 5. illustrate this effect.
4.2.5, Spectra

The amplitude density spectrum and phase density spectrum of the IUH of the

discharge are derived by Van de Nes and Hendriks, 1971.

The amplitude density spectrum can be expressed as follows: (4.47)
b
=1 - 3
P e - e PO Q0lud) o i () cosh PRUI-e(w)) - cos PRE(w))
1 2 (e(w)=1) (207 () -1)

and the phase density spectrum:

R 2
o - tan ! 88w * B (@)
bael@ | = PO-IRI6() - tan i

(4.41)
+ tan ' {tan LPRB(w) coth 3PR(a(w) —1)}
for w > 0 and PRE(WEX = [0,7)
and hqe(w)|X is the restriction of hqe to X
In the case that PRR(b)E€ X = [(2k-1)7, (2t 1T, ko= 1, 2, o.....
it follows:
hqe(m)lxk = hqe(w)lx +RET L, k=1, 2, ciuia. (4.42)

46


file:///-a/nl

Pqa amplitude deasity
1

T
| .
- N | .
os AN = —
\\ ™ N N kY SN iy — Ll e T
\ \ ALY \\\Y NI . I —
\ N N B =%
W AT DN NSNS S S {
N\ \ Ay
N NN \ [N
! ™
NIRRT RAENAN NSNS
1 8 1 LY LY 5 LY Y
| 1 5y NS S S S > iy
06 ] 1 LY AV NT A h
T AL | A AT hY AN N \‘
| RERTUAY NN \
\N Lohd 3 Ynter igt \ohar ty \ \
e \ o 2 \ 5 e | hgelYas \o« 2 12 0
- po VAR el % o
oo ws  q a5 1 0 0 50 100 500 000 000 10000
o O lradians]
fig.6.10a  Amplitude density spectrum of the |UMN, expressed in the discharge, for the laternl intlaw probham (R=03]
~ Ars 20 1
hgn Phass density P= Qs Rs 5203
Ly T I 0 = A (’u ns =
T T 1 ] IBE NN 1 ., H
] = 11 1 D
M - el - .
0 v — vl = = 4
B V.40 L] [ ol T 4 ot
11 IR "
S e e
/ //’,4' / | / //.”a" T LA
e, A1 LT -~ TN
-,-.- ,/ yd 1 A LA 1 —; 541: o /.‘-% AT
o - Ll
V. i ] ] L P
=7 s -
Z ,.-ﬁ' -1
5 4 ¥ A = |l ——.r/” [ [ L+ o
A e L~ | LA ” Py | A ] L1
/ / / // ( / /” / ‘PJ/ ”—/ //:”J / -’"/ //
4 4 I 7 " / L1 r/%/ | [ -
/1 i L1 L1 Lot Lt L1
¥ i
, / // A //J/ f/"/ﬁffﬁl”i- AT | ,—"/
1L 7 4 ‘;, ,; 3 =
d 7 7 I
s A0 7 A =
Y A LA v H [H
pd 7 ZATAT = —
7 A L 1+
47 R
o V.AV.PiV.440 " 7
7
i 717
/1/ I/ L2
ws| 77 /:/('
/ ¥,
09 g1 wE [T R % 1w 00 000 S0 igon
w O {radians)

fig.tfla Phase density spactrum of the IUH, sxpressed in the discharge, for the lataral Inflow problem [Re03)



h qa amplitude density
{ o - s

T : 1 o f—

0533‘— _ ! N NEAN i~ -——j‘.___ gk
. SN AN Y A Sy 1
AN . il
it \ \\ SRS ngy
Y n]
N \ N \ 1
\ \ ,X, i
iy X — \\ . i
LWL LWL REPAN
ALY LY .
LU ALY 1
}‘\ h N, . T*«
\ \ ‘
\ \ N
ntefmed \Short] N
A EMAE i
007 g1 oS 5 o 10000
w-Q lrakons]
fig (10 b  Amplituds density specirum of the [UH , expressed in the dischorge, for the loteral inflow problem {RzDS)
. _ArS 2 \
hqa shuse density F—W Q=E1%- R=?=0A5
100 — I T mmns T it
- i 1 ] L
'
@ — T mma I ~ i pal
1 i » g ,—’ o ;/,
" | b ’ Pl ol L] el ol /Xﬂ/
o allld P AT AL ,.4/ o
I T [ g
r Y e
o ; o ’:% T T Lt 4//{ J
+ p— e e i o 5
T — - A el I ]
s ! 7 i H = R ; 1
. rd yd T4 bt LT 1 [ [T | =il
i 1 A A BaE: LTl - LT ]
L //(/V A AT L1 /ﬁ’::—’ = | L
1A 3 y/;/:/:///’,: /;’:”“ = PP = ™
7 AL Pt T Lt LT ) / i
1= i 4
v —
# -
(¥ s 2 ~5 = 1 E=
v A % ] =
SN £ AT L1+ +
7 e ‘
| 4/ // /“%;/ﬁ—— et 1 i
g g [
7 i L . |
ol A = ¢ | I oS! -
|va s T B
7 } :
o5 =
W7 A :
Y, )
¥ 7 :
A
o
(7] ws o us 1 5 0 50 W E 5000 10000
w O {radions)

ligéMb Phose density apaclrum of the TUH | aupressad in the discharge, for the lateral inflow prabiem (R=D5)
I

48



hqo amplitvde densily

M.u
I 1«\ T TF
eass H M_
; =83
{
/ p
rd
\
! A 3
;! —=~§
F | 7
_“ ____- \\ m
7 rd .
] \ \\ _\\\ ]
L~
A /] v 3/
1
\\ 4 \‘n
177 ==
773 -
[ Fi Z A
M // o "
1 ieg s
A e
H L.:_% \\\ o ]
u Jrr 7
u \N -l 5
[] 2T 711 - -
] [ |+ >
/L [ EL2
\-r\.\\\\\“\
195 i SR
ol
95 L s
% e 1 nM
A .
P -3 1\M|
\ fre? n P i‘w..m
1 o~ i — - m
7T -
T R
(T T
3 ¥ 8 g

tig.&30c Amplitude density spectrum of the 1UH , sxpretsad in the discharge, Tor the lateel iflow preblem [RW0T)

20 Rats07

Qa
arr

P=

hgg phass  density

-

hY f... /.M”/o.. aﬂt a .
LAWY W
WA} X
NN VAN A\NAY
LAV TEVAVAY
WA Y .
N P ;
AR LY \ kY LY m
LW ) R )Y
/ \ hY TA
/, N WAV \
%, \ // // \ / 8
RTREHES ; .
ALY ALY h <
RRNATA EAAYARTANY
/ // \ /// , /
O/ A
R
LY AR i -
AN NELLRYAN
AN AN IEAVA A ALY
/M, \ ,// \
N N
WL IR VAN .
m'/ﬂ.’ FNIA/’F/N/’ ¥ i
NN AVANAN, 1A )
Aol NN
WANRNERN AN
q /, /1/
AN .
f// = /fM/ w
S o -3
N AN
N /7//// /r
NN SN
/,. / ”N// 5
H w -5 5 g g

Phase dansily spactrum of the IUH, sxpiessed in the dischorge, for the laierol inflow problem (R=0.7)

fig.ale

49




hqa amplitude  density

05
0}
005- -
- —y ¥ triwrmivedi N
P-500 ! h
i ' - 5] - L

1 P U h N i IR
o 001 o0s o1 05 1 5 o 50 100 500 1000 5060 10000

w O (fradians)
t9.410d Amplitude density spactrum of the TUH, sxpressed in the discharge, for the lateral inflow problem (R=0)

ﬁqa phase density F=iDs Q=-:—3- R:—;—:ﬂ_g
S T T T I 14
1 L| 171 = H
] L. 1l 1 'l
i i ! B e
| 4
SG._ y ) = o e
L i i e ! L T
\ ] I i
| l i i |A L1 //ju-', L~ !
f 1 [~ e
| |4 L1 et gfity |1 ‘f,
v IIna 1 Ed e
T ] L
IR I P i H
| I Hi AT = e b =FTTH
SL——~ : T T - 2 L
’ AR AL e egity REC e i
Tttt = » 3 H
’ J/ 1 ;j.i——"ﬁ'—‘:""—‘__/ LT LTl /_I,/f"/‘u--r/ T L1
VT i) M BRES e e e 5 Lo
Vi ity |~ A e = Jt 1
. J/ // il G e —d,—-’:’::t"__ﬁ",_—-:::lﬁ_':—*” T
-
Z " v
~ VAP G LUNE: 2
APEeL; =TT »
oS ] st = LH L1 il fl
/S Y s [~ s
F e Y / /] ;é? et LT
VY47 THE sz
A e
o)LL 74 - 1]
Ml
Z Y.
aos / A
v
} }
%50 s o as 1 B 0 s0 o S0 1000 5000 10000
w G lradians]

Fig4lld Phase density spectrum of the JUH, expfesaed in the cischarpe, for the ldteral inflow problem (R=08)

50




hqa emplitude density

1

: HT
1 I ! In
o5~ SNSS R 5
NN, e H B s
A NS N --.:-.:E§U = i aul
1 - = I
AN S T T N
N RO
\) \\ R \\'\\\QQ‘\ \\
01, L 0, N - b \‘\:\\\ ™.,
o - ! - Y K, \\\ .
. s, . T
. s
o =< NI
SN
. Py
N \.\\7\‘\ % ii e
, ; LT N
' I \\
am co RN lj‘ Y K \\H\AL | Ty l\xi = Lo
oot s w a5 1 S0 100 5000 10000
w @ tradians)
tig. &Ke Amplitude dansity spectrum of the 1UH, expressed in the discharge, far Ihe latwal inflow probem (R=1}
qp phase denaity © pa2 g, 20 gl
0 0 ¥
s
I~ b
= ) —
-. / S ol
,r, i rY = -
rd Z <l el 7Y ji 1
o5 P77 7 =
4 V' 77 A = L L
// ’ /;)/ 3/)5') i - —— H
y LA A /7/ - ] __,_.-—"‘ LT
g 7 =]
Ri%7 oy LH
///////:/ ,.-«f”p
0 —
o
Qﬂﬁ//
7
17 7,
R we o a1 % W W - 006 X000
w O (rodiang}

fig. &1 ¢ Phasa density spectrum of the LUH sexpreased in the dischorge, far the latemal inflow problem |Rs=l)

31




For a number of combined R and P values, both spectra are presented in the
Figs 4.10 and 4.11.,

In the amplitude density spectra oscillations for large value of P occur. The

value of P, where the oscillatioms start, depends on the value of R. For an
increasing value of R the oscillations start at a lower value of P. The reason
for these oscillations is that in the IUH, a nearly horizontal part cccurs.
This is shown by the results of the ceorresponsing calculations (see Section
4.2,7.). The same phencmenon can be observed in the phase density spectra.
Referring to the criterion F [ 6/P for the relative attenuation (Section
4,2.4,) comparing the spectra shows the same criterion for the filtering effect
on the lateral inflow as compared with the tributary inflow.

The phase density spectra show that the translation for a certain value of P
becomes more important for decreasing values of F.

In Section 5.2., where the different types of problems are compared this

comparison of spectra is more detailed.
4.2.6. Summation curves

The S-curves for the discharge and the water depth are derived by integration
of the eqs 4.32 and 4.31 for two different conditions of R. (Van de Nes and
Hendriks, 1971).

a. For 0 < R 1 or s » &:

2 -n 2
S = Y 2 Unerfn-gme™ werfon v dme Y )} (4.43)
S=Q-—/£{-nerfn-] e_”2+ (erfcn-ezperfCE)}+
y  Hs 2 v 2 /7T
n 2
T ——
—%S—V’E{—ngerfnl—%?ef' + (erfcn£+
2/2T
- eZP(IWR) erfe ﬁi)} + gg (4.44)
where n = —:I-, £ = BT
2T V2T
(4.45)
and 1, - PU-DT | PR
v2T v2T
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b. For R>1 or 0 <€ s < k:

2
§ = L/ 2T'{ -n erf n - ! e_n2 + n,erf n, + ] e " 1o+
q 2°P I i L Y
1 _

tp- 4 (4.46)
: g /T 1 -nz 2P
8§ = w3 { -nerf n- Tre + (erfe n = e erfe L)} +
¥ 22T

-n;
—%S—.sz:-{—ngerfng-—};:.e + (erfcnz*'
m 2/2T"

_ 2P(-R) 9 - JPUR,

erfe £} + o5 (g - 1) + 5

(4.47)
where n, &, g and gg are defined as given before.

The solutions for the S—curves were derived for the condition that the system
is fed by a constant intensity of inflow, expressed in a unit of volume per
time, per unit width of channel over a distance £.

If the intensity of inflow to the channel reach is expressed in units of water
depth per time over the drainage area Da , it follows that: unit water depth
per time = | x Da unit volumes per time. This volume of water is uniformly
distributed over the surface area of the channel Ca(= B.%).

Introducing the storage capacity of the channel as:

Uln
m

(4.48)

]

it follows that in the expressions for the S—curves of the water depth the term
Rs(=¢) may be replaced by M- Expressing the intensity of inflow in units of
depth per time over the drainage area does not effect the S-curves for the
discharge.

For t + = it follows from the eqs (4.43) and (4.44) for the condition R < I:

=

= A < .
qP Typ 7 (steady state) {4.49)

Under condition A > 1 or D € s < § the discharge and water depth over the
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distance ¢ of the chamnel reach vary as:

. 1
lim § = = {4.50)
T & H
and lim s, - 224 & () o J2PUR), 4.51)
e 7 Mg <M
From the egqs 4.57 and 4.51 it follows for R > @ (s = 0), exptessed in
parameters A, and D.
Sq =10
4.57
and _ fl.g (4.52)
D D
§ = (1 - e )
y okl
cr

This means, according Eq. 3.19 that then (y)s=0 = %— <%§)s=0
T

It can be concluded from eqs 4.50 and 4.51 that t > » the first term on the
right hand side of the equation shows the linear increase of the discharge and
water depth with distance, while the second term in the equation of the water
depth shows the relative non-linear increase, which decreases with the distance.
For R = 1 this term vanishes completely. It should be noted that the shape of
the water depth profiles depends on the chcice of the constant reference

discharge or water depth.
4.2.1. Respomae to given waves of inflow

The four types of input, described in Secticn 3.4. have been used for
demonstrating the various aspects of this type of problem (figs 3.3, 3.4, 3.5
and 3.6):

Fig. 4,12 gives the discharge and water depth profiles for a blockinput of 3
hours and for a number of values of the time t.

In this example the following data were used:

A reference water depth Y, - 1 m, Km = 25 ml/S/sec, So = .0001, b, = 0,02 and
¢ = 25 000 m,

For the fully lateral inflow problem (# = !) Fig. 4.13 illustrates the effect
of the dimensionless length parameter P on the discharge and the water depth.
Here the above data were used. Tt shows that the peak discharge, expressed in
water depth, decreases with channellength. Naturally if the peak discharge

were expressed in unit volumes per unit of time, it would increase.
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fig. £.12 Discharge and watardepth profiles for a block input Gistance [ m

The peak of discharge occurs at the end of the block input. The peak of the
water depth increases and is delayed by an increase of channellength. Further
the water depth is plotted against the discharge, showing the decrease of the
gradient of the water depth (%%23 with increasing length of the chamnel reach.
In Fig. 4.14 for three values of P the effect of R is demonstrated for a
constant value of @

For comparison some results of the upstream inflow problem have been given.
This problem will be fully dealt with in Section 4.4.

It shows that for a small value of P (= 0.74), the solution of the fully lateral
inflow (R = 1) problem is very close to the upstream inflow problem, while the
tributary inflow problem differs considerably. For a larger value of P (= 3.7,
tributary, upstream and partial lateral (® =0.2) inflow preoblems are close to
each other, but differ considerably with the fully lateral inflow problem. The

same is true for the case P = 7.4.
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The effect of the reference water depth and the bottom slope is shown in Fig.
4.15, for the fully lateral inflow problem (R = 1).

TUH Discharge
mm/int.
05+ 06
os Influerice of the reference 05 Influence of the So
’ waterdepth on the TUH ' on the TUH
D4 04
= 25000 m S=25000m
R | R= |
Km= 25m%hec 5,7 0001 Ko = 25 m%/sec.
$o7 0.0001 Y= tm
0.3
02
—t int,
0.1
I [ § & ©n 2 K ® ® 0 2 H § & M 12 W % 18 Linterw
fig. 415 Effect of the reference water depth and the bottom slope
For a long and intermediate 'Thomas' wave and using the same physical data as
for the tributary problem, the responses are given for F = 1 in the figs 4.16
and 4,17,
For all the calculations the TUH of Eq. 2.4 was used as derived from the

summation curves of eqs 4.43, 4.44, 4.46 and 4.47.

4. 2.

8. Effect of reference discharge

Table 3 shows the effect of the reference discharge on the system parameters F

and @ and on the first and the second moments of the IUH, for the examples with

the 'Thomas' wave, given in the figs 4.16 and 4.17 for the fully lateral inflow

problem (R = 1). Irn this case the Thomas' wave inflow is uniformly distributed

over the whole reach of the wide rectangular chanmel,
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Table 3 : Effect of reference discharge for R = 1.

5 miles 50 miles 200 miles 500 miles
v Y T T T v
Qo(fs) @ P M | My P !Ml | M, P MM, P | M3 M,

100 [ 4.9 0.273i3.l2[33.ﬁ2 2.7319.14177.64]10.92129.201399.4 27.3\69.3i!848.0

150 | 5.6 0.20853.38!42.57 2.08|8.62}83.12 8.32‘26.09§350.6 20.8'61.0|1495.9

200 16.2]0.172(3.63(51.45(1.7218.43|90.53| 6.8824.43(331.9[17.2|56.411326.2

The system parameters P and @ are the same as in the case of the tributary
inflow problem (R = 0), however the moments are not the same, which is shown

in the equation for the moments and in the giyen responses. From Table 3 it can
be seen that for the 5 mile reach, the first moment increases about 15% to an
increase of reference discharge of 100%7, while for the longer chanmel reaches
the value of Mi decreases. This phenomenon has been discussed in Sectiom 4.1.8.
In comparison with the tributary inflow prohlem (Table 1,p45) the values and
variation of the first moment are smaller. However the values and variation of
the second moment are larger for the longer reaches. Fig. 4.5 shows the
dominant translation of a tributary inflow, whereas Fig. 4.16 illustrates the
dominant attenuation of a fully lateral inflow, The figs 4. 6and 4,17 show a
less pronounced difference for an inflow of short durationm.

For these inputs it is found that the variation of the reference discharge does
not greatly influence the response.

As wmentioned in Section 3.4 for the lateral inflow problem, where the discharge
is increasing with distance, the asgumption of a constant reference discharge
over the whole channel reach may be critisized. Therefore in Fig. 4.18 the
response, due to thé long Thomas wave, in the 200 miles reach, using a constant
reference discharge (100 cfs) is compared with the response that would occur
with 2 uniform increase of reference discharge towards the end of the reach.
This uniform increase is approximated by a stepwise increase of the reference
discharge from 0 to 150 cfs.

The results show that the introduction of a varying reference discharge has a

. small effect.

4.2,9. Compartson with a complete non-linear solution

The comparison of the linear with the complete non-linear solution is based on
the same inflow and the same channel as used for the tributary inflow (Section
4.1.9), with the only difference that the inflow (short wave) is now uniformly

distributed over 1000 m. The responses, expressed in the water depth, are
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calculated for the distances s = 0 and s = 500 m,
Fig. 4.19 shows that a reference water depth of 0.70 m provides & fair agreement

between linear and non-linear solutions with an efficiency coefficient of 90Z%.

4.3, OVERLAND FLOW PROBLEM

As mentioned in Section 3.1. the overland flow problem is considered as
turbulent flow in an infinite, wide rectangular channel, although this
turbulency is not essential for the diffusion approach.

The assumption of turbulent flow in particular, is arbitary because it is
possible that laminar flow may also occur, in some places.

Bravo, et al (1970) found that the solution of 0'Meara (1968), based on the
linearisation of the complete dynamic equation was not stable for large values
of t. Therefore an approximate linear solutien for the overland flow problem
was derived by integration of the sclution of the upstream inflow preblem with
respect to distance. This approximation 1s not physically correct because it
implies that the flow at any point of the reach of lateral inflow would not be
influenced by the inflow of precipitation downstream from that point.
Therefore an alternative solution of the overland flow problem, is suggested
which is based on the linear diffusion type differential equation, as derived
in Section 3.3., with nc restrictions for the upstream effect of inflow.

The solution for this problem i1s a special case of the partial lateral inflow
problem (Section 4.2) by taking R = | and assuming an infinite wide rectangular
channel. Therefore only the mathematical expressions for the IUH's, their
moments and spectra and the S-curves will be given here,

Some results of labeoratory experiments of overland flow are given im Section 7.3.

4.2.1. Impulse response

The IUH for the discharge and the water depth can be derived in dimensionless
form from the eqs (4.33) and (4.34) by taking R = 1:

hQ —
T -4 _1 P-T. T
g T v 2P{erf(ﬁ)+erf(/§)}+
1 (e-m? (4.53)
] ! {e z T 1




h s
B o=d ey {erf &N +erf (V5
y ¥ /2T 2

4.3.2, Classification

From Table 2 in Section 4.2.2., it follows that for all values of P this

overland flow should be classified as flow through a short channel reach

(4.54)

because the time to peak of the IUH for the discharge is zero and therefore

smaller than &.

4,3.3. Moments

The moments of the IUH for the discharge follow from Eq. 4.35):

MiCh) = 1§ (1)
Mz(hq) =} Qz(ue PPap+ 5/2)
My(h) = 3 @ e 3 e 1)

80 that for the shape factors (Fig. 4.9b):

_y3 P®+ 2P+ 5 _ 2P% + 12P + 44
iy S R R A
(P+1) {P+1)

The moments of the IUH for the water depth follow from Eq. (4.37):

Mith) =} Q (P2

M (h) =} §5(1/6 B> + P + &)
2%y

Mymy) = § @ PP+ 3P # 16)

4. 3.4. Attenuation coefficient

The attenuation coefficient can be derived from Eq. (4.38):

Ca

_12 P e 4P e s/ g 02
B tp

(4.55)

(4.56)

(4.57)

(4£.58)
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where B depends on the shape of the input and t_ is the duration of the input.

F

4.3.6. Spectra

The amplitude-density and the phase-density spectra of the IUH for the
discharge can be derived from the eqs 4.40, 4.41 and 4.42, For the cverland

flow problem (R = !, figs 4.10 and 4.11) this results in:

Zl1-atw)) 14
h ) = o2 [2(]+u(w)}{cosh P(Iza()) = cosPA(s)] J t 4.59)
q 2P (afw)=1)(2a"(u)-1)
1: () = -iPa{w) - tan-l M "
a8 X : B(w) (a(w)-1)
+ tan '{ tan 1PB(w)coth 1P(alw) - 1)} (4.60)
This expression is valid for w > 0 and PBR{w) €X = [@,ﬂ)
whereas for w > 0 and PB(w) €X, = [(2k-1) 7, (2k+1)7Y, k = [,2....
the phase density spectrum of the IUH for the discharge is:
hqe(w) . = hqe(m)}X + km (4.61)
k

o(w) and B{(w) were defined by Eq. 4.20.

4.3.6. Summation curves

The S-curves for the discharge and the water depth for s = £ or # = ! can he
derived from the eqs (4.43) and (4.44):

_2 _r.
Sq = %? ¥ 2T {-neri n - %;.e LI % erf ¥ %-+ %?‘e 2+
(4.62)
2
8§ = g V % { -nerfn- %;ﬁe o (erfc n - ezperfc P o+
¥ s ‘ 2/27
_ 3 _ .
- g /(21{ - f—g erf J/%j— %?,e 2, (]+erff%) - erfcﬁ%g P
- 22T | i
+ PQ/2s (&4.63)
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n and & were defined Bq. (4.45).

4,4, SEMI-INFINITE CHANNEL - LUMPED INPUT

This system element, which is studied as the upstream inflow problem, was
considered by Harley (1967). For the completeness of this report some of his
work, concerning the diffusion type solution will alsc be included.

In this case a semi-infinite uniform channel is fed by an inflow at the
upstream end (s = 0), where no flow can occur in an upstream direction.
Comparison of the upstream and tributary inflow problems for the latter shows
the effect of storage in the channel reach, upstream of the point of inflow.

-

4.4.1. Impulse response

The impulse response is found by solving the linear differential equation, *
expressed in the discharge per unit width of channel.
2

Mol
Y D as2 - AT as (4.64)

for the following boundary conditions:

a, qp(O,t) = §(t) Dirac function

(4£.65)
b. qp(s,O) =0 for s > 0

The physical meaning of &(t)} is, that a unit volume per unit width of channel
is instantanecusly added to the system at the upstream end (s = 0) of the
channel. )
Laplace transforms are usad to find the following solution (Van de Nes and Hen~—
driks, 1971): (S'Att)2

5 4Dt

(S,t) = e (4-66) :
qp 2;TDt

The TUH for the water depth is derived by introducing Eq. 4.66 in. the continuity

Eq. 3.24: _ 2
- (s Art) A s
iDt A, —— s+A_t
v {s,t) = —- 5% e D erfe ( Ly (4.67)
3 vaDt 24Dt
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In dimensionless form the IUH's for the discharge and the water depth can be

written as follows:

h 0 _@-n?
Bt e 7 (4.68)
! 2n'T
h s - (PwT)z
fo=L=p{2—e ' -eare L, (4.69)
¥ VT /2T

P, @ and T were defined by Eq. 4.11.

4.4. 2. Classification

Using the criteria introduced in Section 4.1.2. classification based on the

discharge, can be derived from Eq. 4.68.
a. short channel reach (Tp < 1), if P g 2

b. intermediate channel reach (Tp > |} and (E&)T=] » £, where £ is a
small number (% 8x10_4) 1f 2 < P < 5.

c. long channel reach, where (EA)T=1 < g if P > 5.

The results are simular to these found for the tributary inflow problem, with

the exception of the short reach (P < 1,8).
4.4.3. Moments

The moments of the LUH for the discharge and water depth are derived by Harley,
1967:

Mith) = PQ
2

M, (h ) = P (4.70)
3

M3(hq) = 3pg

from which for the shape factors follow :

and 8, = %2 er §, = 352 (4,71}
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For the first three moments of the IUH for the water depth was found
(Van de Nes and Hendriks, 1971):

M;(hy) = (P + })q
i 2

Mz(hy) = (P + 3/4)@ (4.72)
_ 3

M3(hy) = (3P +5/2)Q

Comparison of the moments for the discharge with the moments of the water

depth leads to the same conclusions, as drawn for the tributary inflow problem.
(Section 4.1.3.). Further for large values of P(a long channel reach), the
moments of the tributary inflow problem approximate the moments of the upstream
inflow problem. This means that the upstream boundary for a long channel has no

significant effect on the responses.

4. 4.4, Attenuation coeffictent

As defined in Section 2.3. the attenuation coefficient for the discharge is:
(4.73)

where B depends on the shape of the input ty is the duration of the input,
For the short reach the attenuation coefficient differs considerably from the
C, for the tributary inflow problem, whereas for the long reach they are nearly

A
the same.

4.4.5, Speatra

The amplitude density spectrum and the phase density spectrum of the IUH for the

discharge are derived by V.d. Nes and Hendriks 1971, using the egs (2.13}and (2.14).
The amplitude density spectrum of the IUH can be expressed as follows:

figg() = JFUD) e ws o Y (4.T4)
and the phase density spectrum:
ﬁqe(w) = -~ Pg{u) for w >0 (4.75)
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In the spectra of figs 4.20 and 4.21 the amplitudes and phases are given as
functions of w@ for a number of values of P.

The sbectra show the damping effect of the system for increasing values of P.
. @ seems to be only a scale factor. Also in the frequency domain one can sub-
divide the area in three parts, which agree with the channel classification of

a short, intermediate and long channel reach, as is shown in the figures.

4.4.8., Summation curves

The S~curves for the discharge and the water depth can be derived from the
eqs 4.66 and 4.67 by integration with respect to time. (Van de Nes and Hendriks,
1971):

s =1 { erfe EL) + 2P arfe &y (4.76)
q /3T /2T

and

5 =§£{-(P+T+%) e erc (E:I)+£erfc (ﬂ)+
¥ V2T /2T

L2
' J-g§ e 2Ty (4.77)

Similar to the tributary inflow problem the following relations are valid for

the steady state (t =+ «):

= A 4.78
qp Typ (4.78)

and q vy o+ 3 vy (4.79)

P

In this linear systems approach, the increase of velocity, due to the increase
of water depth is introduced in Eq. 4.79 by the second term at the right hand
side.

¢.4.7. Response to given waves of inflow

For the long and intermediate 'Thomas wave' with a duration of 96 and 12 hours
respectively, the response is given for various distances from the point of
inflow. For the long wave, distances of 5,50, 200 and 500 miles are chosen,

while for the intermediate wave only reaches of 5 and 50 miles are considered.
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For the physical characteristics of the channel the same values have been
chogsen as for the other inflow problems: an original baseflow of 50 cfs,
bottom slope So = 1 ft/mile, a Chezy coefficient C = 50 ft%/sec in a wide
rectangular channel, In figs 4.22 and 4.23 the responses are given for the
discharge per unit width of channel, based on the eqs 4.76, 2.4 and 2.2.

Both figures show the attenuation and translation of the floodwave. The
attenuation for the intermediate wave is much greater than for the long wave.
Harley (1967} has also presented the responses for the same data, based on the
complete linearized dynamic equation.

By comparison of the linear diffusion type solution with the complete linear
solution only a small difference is found, which cannot be shown in figs 4.22
and 4.23, In the given examples the Froude number F x 0.1. This agrees with
the statement of Dooge and Harley (1967), that for the upstream inflow problem
the diffusion type of solution is accurate in comparison with the complete

linear solution if F ~ 0.5.

4.4.8. Effect of reference discharge

In the linearized theory, as explained in Section 3.3., the estimation of the
reference discharge or water depth is important. In figs 4.22 and 4,23 the
effect of the reference discharge is shown for varicus distances. The same
values of the reference discharge were chosen as for the other inflow problems
(1060, 150 and 200 cfs). In some cases the three curves were so close together,
that only one or two curves could be shown in the same figure.

Table 4 shows the effect of the reference discharge cn the system parameters P
and @ (hours) and on the first moment of the IUH for the discharge, expressed

. . 2
in hours and the secend moment, expressed in (hours)”.

Table 4 : Effect of reference discharge.

5 miles 50 miles 200 miles 500 miles

q, 2] P ;M;(h)}Mz(h)P i‘Mi(h)]Mz(h) P JM'l(h)\Mz(h) P‘M](h)‘\Mz(h)

{cfs)| (hours) ! [ | i i \ \
|

* \
100 | 4.9 0.273 1.33" 6.63 2.73\13.38166.29 10.52153.311265.2(27.3 133.8 6629

150 5.6 0.20% 1.16{ 6.65 2.08|11.64‘66.5O 8.32|46.59r266.0 20.8\116.5|665J

200 6.2 {0.172 1.063 6.63 1.72}10.66\66.27 6.88142.661265.2[17.21106.6|662.7

Comparison of Table 4 with Table | for the tributary inflow problem shows a
large difference for the short channel reach. For such short reaches the values

of the moments are much smaller for upstream inflow, while the variation of the
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first moment with the reference discharge is larger and the variation of the
second moment swmaller. For the long channel reaches both the first and the
second moments converge, showing the diminishing effect of the upstream
boundary. Table 4 shows that an increase of the reference discharge increases
the translation, This effect dominates the attenuation for all wvalues of P,
From Fig. 4.22 it is clear that for the long Thomas wave the reference dis-
charge does notsignificantly effect the attenuation for zll values of P,

while the translation becomes important for large values of P, In the case of
the intermediate Thomas' wave, where the moments of the IUH have a more
pronounced effect on the shape of the responses, Fig. 4.23 shows both
translation and attenuation in a 50 miles reach.

Summarising the results it can be stated that in short channel reaches (P < 2)
the reference discharge has hardly any effect for both types of inflow. In the
intermediate channel reach (2 < P < 5) there is some translation of the long
Thomas' wave, whereas the intermediate wave shows beth some transiation and
attenuation. In the long channel reach (P > 5) only the long 'Thomas' wave
shows translation. For the intermediate wave it may be assumed (there are no
results available) that the attenuation becomes less important and the tramsla-
tion becomes more important. From this example it follows that the reference
discharge is not an important factor for a short channel reach. In a long

reach however it does effect the translation.
4.4.8. Comparison with a complete non-linear sclution

The comparison of the linear with the complete non-linear solution is based on
the same Inflow and the same channel as used for the tributary inflow {Section
4.1,9.), with the only difference that the inflow at point S = o has no effect
in the upstream direction. The responses, expressed in the water depth, are
calculated for the distances s = o and s = 1000 m for an infinite wide channel
and for a rectangular channel! with a width of 1.75 m. Figs 4.24 and 4.25 show
that a reference water depth of 0,75 m provides a fair agreement between

linear and mon-linear solution, with an efficiency coefficient of 90%7. For a
wide rectangular chanmel the coefficients AT and D are calculated from Egq. 3.282.

For a channel of limited width Eq, 3.29 must be used.
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5.COMPARISON OF THE DIFFERENT CONCEPTUAL ELEMENTS

Introductory mote: In the following the word 'distance' indicates the lemgth of
channel downstream from the local (upstream or tributary) inflow or the length
of channel downstream from the upstream end of a distributed (fully or partial
lateral) inflow.

In Section 4 the effect of the channel length and the reference discharge as
expressed in the system parameters P and g, and of the type of inflow has been
studied for the different types of elementary inflow problems. It was found that
the linear solutions agreed reasonably well with the complete non-linear
solutions.

In this Section however, the effect of the spatial distribution of inflow of
both an intermediate and a long 'Thomas' wave is studied separately, This
implies that the model parameters P and § are considered as constants. The
independence of P and § from the spatial inflow distribution will be shown to
be a reasonable assumption,

This effect which results from computational experiments will then be inferred
from the characteristics of the impulse respomnses for the tributary, lateral

and upstream inflow problem.

5.1, RESPONSE TO GIVEN WAVES OF INFLOW

Fig. 5.1. shows the respomse at a distance of 50 miles and a reference
discharge of 100 cfs (P = 2.73 and @ = 4.9 hours) to the long 'Thomas’ wave
input.,

Comparison of the responses for the tributary inflew (R = 0), the fully

lateral inflow (® = 1) and the upstream inflow shows only a small time lag of
about 10 hours.

For a distance of 5 miles (P = 0,273), no results are given, as the curves are
very close together, which means that for the short reach and a long 'Thomas'
wave input the spatial distribution of the inflew does not influence the
response significantly.

In Fig. 5.2 the responses are given for a distance of 200 miles (P = 10,92),
besides the response is given for the partial lateral inflow problem (¥ = i).
For the tributary, upstream and partial lateral inflow it is found that this
channel is to be classified as a long reach, whereas for the fully lateral

inflow the channel is to be classified as a short reach.
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The results for the upstream and tributary inflow problem appear to be close
together, As compared with the tributary inflow the result of the partial
lateral inflow (F = 1) only shows a translation (12.5 hours). The result for the
fully lateral inflow however shows both some attenuation and a translation

of about 30 hours. Tt is interestimg to note that for R = | the attemuation of
the partial lateral inflow (RP = 5.46) is smaller, while the attenuation of the
fully lateral inflow (RP = 10.92) is larger than the attenuation of the
tributary inflow. This is in agreement with the Hq. 4.39, which states that

for R > % the attenuation of the lateral inflow is larger than the attenuation
of the tributary inflow.

In Fig. 5.3 the responses are given for the distance of 500 miles (P = 27.4).

Channel flow
Refersnce discharge «100 cfs
Distance $=500 miles

Discharge cfs
150

Base flow =50 cis
C=50 feet ¥i/kec
5o+ 1 feat/mile

Inpyt Thomas wave

ij::;;;iiii|||||"n
T T A

120

base
fiow S0

14é
time (hours)
fig.5.3 Effect of the spatial distribution of the “Long Thomas " wave
input for {he 500 miles channel reach

The responses of the tributary and upstream inflow are close to each other, but
the pértial lateral inflow (& = 0.5) shows a translation of about 48 hours and
some attenuation, The results of the fully lateral inflow and the tributary
inflow differ considerably.

For the long channel reach therefore the conclusion can be drawn that the
responses of the partial lateral inflow for 0 < R < 0.5 have nearly the same
shape as the respomnses of the tributary and upstream inflow, only the transla-
tions differ. For 1 > R > 0.5 also an important attenuation occurs,

For the intermediate channel reach it may be concluded that for all types of
inflow the shapes of the response are nearly identical. For 1 > B > 0.5 the
translation of the partial lateral inflow decreases with R.

For the intermediate 'Thomas' wave the results for a distance of 5 miles

(P = 0.274) are given in Fig. 5.4.
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It shows a difference in attenuation for the tributary and upstream inflows.
The responses of the fully lateral (R = 1) and the tributary inflow are close
together. For the distance of 50 miles (P = 2.74) Fig. 5.5 shows that the
responses of the tributary and upstream inflows are close together, whereas a
translation of the fully lateral inflow occurs. Compared with the 5 miles

reach the difference between the responses to the fully lateral and tributary
inflow has increased.

For the long chamnel reach no results are given. However a persisting tendency
is found for the responses of the tributary and upstream inflows to become
identical for increasing values of P. Also an increasing difference between the
responses of the fully lateral and tributary inflow is apparent.

Therefore the conclusion can be drawn that for the short channel reach the
spatial variation of the inflow, has little effect on attenuation. For the
intermediate reach this varia%ion also effects the translation., For the long
reach the responses to the partial lateral inflow for 0 < R < 0,5 have the same
shape as the responses for the tributary and upstreams inflow, only the
translations differ. For | > & > 0.5 also an important attenuation occurs.
Summarising the results, for large values of P (the long reach) the difference
between the responses to the tributary and upstream inflow becomes negligible,

the responses of the tributary and the partial lateral inflow differ
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considerably for ! > # > 0.5 and for R < 0.5 only a translation effect remains.
For small values of P(the short channel reach) the responses of the tributary
and lateral inflow are close together, while the difference between the
responses of upstream and tributary inflow increases for waves of shorter
duration.

For intermediate values of P (intermediate channel reach) comparison of the
responses of the different types of inflow shows only a little difference in

attenuation and translation.

5.2, MOMENTS

Understanding difference in responses of the different types of inflow, as
shown in the figures, can be derived from the shape factor diagrams of the
TUH's for the different inflow problems. In Fig. 4.9bof Section 4.2.3. the
shape factor diagrams are given for the lateral inflow problem for different
values of K, while in Fig. 5.6 the shape factor diagrams are given for the
upstream, tributary and fully lateral inflow problem (R = 1).

The diagram shows that in the lateral inflow problem (Fig. 4.9) for 0 < R < 0.5
the shape factors are close together, This means that the shapes of the IUH are
nearly the same, only a translation may occur. For 0.5 < R < 1 the differences
are increasing. In general it can be concluded that for 0 < R < | the band of
shape factors is narrow, showing a not very pronounced effect of the lateral
inflow distribution on the shape of the IUH. Fig. 5.6 alsc shows that for the
short reach the lines for the tributary and the fully lateral inflows

converge, while there 1s an increasing difference between the tributary and
upstream inflow problems. For the long reach (large values of ) however the
lines representing the upstream and tributary inflow problems converge.

The conclusions drawn from the shape factor diagrams and from the responses to
the different types of inflow {(Section 5.1) appear to be identical.

It should be noted that the shape factors do mot provide any informatiom on the

translation.
5.3, SPECTRA

In the figs 5.7 and 5.8 the amplitude density spectra and the phase density
spectra of the IUH's are given for the tributary, lateral {(with varying value
of R) end the upstream inflow problem for values of P = 0.1; 1,0; 10 and 100

respectively.
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After Eagleson et al (1966) it is assumed that significant variations in the
shape of the IUH are only expressed in relative amplitudes greater than 0.1.
Fig. 5.7 shows for P = 0.1 (the short channel reach) relatively small
variations of the spectra for different values of K. For this gmall P value
however there is a large difference between the tributary and upstream inflow
problems, For increasing values of P these amplitude spectra converge. In the
range of | < P < 10 (about the intermedizte channel reach} all spectra converge.
In the range of 10 < P < 100 (long channel reach) the spectra for the IUH of the
lateral inflow diverge from the spectra for the tributary and upstream inflow
with increasing values of R.

This means that in the intermediate channel reach the shape of the IUH's is not
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very sensitive to the spatial distribution of inflow, while for the long

reach the spatial distribution of inflow has a dominant effect on the shape of
the TUH's. In the short channel reach however the spectrum for the fully
lateral inflow (A = i) lies above the spectrum for the tributary inflow (R = 0),
whereas in the long channel reach the reverse applies.

Apparently in the intermediate channel reach the spectra cross each other. This
is demonstrated for P = 10, where the spectrum for F = 0.5 lies just above the
tributary spectrum and the spectrum of R = | is just below the spectrum for the
tributary. Eq. 4.40 shows that for E = %-the attenuation of the tributary and
lateral inflow are equal, This is an agreement with the corresponding spectra.
The phase density spectra in Fig. 5.8 show for P = 0,1 (the short channel
reach) a large difference between tributary and upstream inflow. For the
lateral inflow the value of R has a small effect, which effect is increasing
with larger values of P. However for larger values of P the phase density
spectra for the tributary and upstream inflow converge. Because of similar
amplitude and phase spectra for the tributary and upstream inflow into a

long channel reach, both the shape and the time lag of the IUH are the same.

It has already been shown that in the intermediate reach the shape of the IUH's
was not very sensitivefor the type of inflow, which was demonstrated Fig. 5.2
for the example of a long 'Thomas' wave input into an intermediate channel
reach (P = 10)

The difference of translation of the tributary and the partial inflow (for R = {)
can be derived from the phase density spectra, (Fig. 5.8). This difference of
translation can be calculated using Eq. 2.17.

For P = 10 and wg = 1:
tO
Aﬁe(w) =8 - 54 = 5—

For @ = 4.9 hours the difference of lag t, = 12.5 hours,

The difference for fully lateral and tributary inflow is found to be:

+

8-~ 1.5==2 and t_= 32 hours
[#] o

These results are in agreement with the translations, measured from the

responses given in Fig. 5.2.
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5.4, SPECIFIC ATTENUATION

As mentioned in Section 2.3. 1t 1s assumed that there is a relation between the
specific attenuation of the inflow (Eq., 2.12) and the attenuation coefficient
(Eq. 2.11). In Fig. 5.9 the specific attenuation is plotted as a function of
the attenuation coefficient CA for the different types of inflow problems.
Although these results do not definitely prove the assumed relation they
indicate however that further research could produce a practical rule for
determining the attenuation of an inflow wave from the characteristics of =2

channel.
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5.5. SAMPLING INTERVAL
Section 2.4. explains how the interval duration At, for the measurement of

the input can be derived from the amplitude density spectrum of the IUH's for

the different types of conceptual elements by the following relation:
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At % L forw > w {5.1)
“, P c

If the channel is considered as a filter the upper limit of its passband is
chosen where the relative amplitude equals 0.1, This subjective criterion should
be verified in later work,

From the amplitude density spectrum for the lateral inflow problem can be

concluded that:

Wy Q= fl(R,P) radians (5.2)
for the upstream inflow problem:

w, Q= fz(P) radians (5.3)
The values for W, @ can be read from the amplitude density spectra.

A dimensionless sampling interval can be derived by introduction of Eq. 5.2 or

5.3 into Eq. 5.1. For the laterzl inflow problem follows:

At 1
AT g- £ f—lTE,-,-f_,T (5.4)

and for the upstream inflow problem

(5.5)

For the case mp < w, however the entire band width of the input signal is of
interest; then the filtering effect of the system is small and the following

relation for the sampling interval is valid:

A T

t < w— (5-6)
P

For the 'Thomas' wave the relative amplitude density spectrum (Fig. 5.10) can

be expressed as follows:

2

;a(w)/" B 8; 2 2
x (0)  utp(4n® - o e )]

. |sin ith| (5.7)
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where tF is the duration of this cosinus wave.

Using the criterion xa(mp) = 0,05 xa(wo) vields w_ = llltF.

S0 with the condition mp < w it follows from Eq 5.2 or 5.3:

11 f](P’B) 11 fZ(P)
R
F F
and
E t
F Il F 11
TRED T T L® (3.82)
For w_ > w _:
P a4
t. t.
13 11 F 11
T RED T T CHD 3-80)

For the example of the upstream inflow problem for the 500 miles reach
(Section 4.4) where P 3y 20, & & 5 hours Fig. 4.20 shows that %ﬁP) = 0.55. The
duration of the long 'Thomas' wave is tp = 96 hours. With &€ = 5 hours and
f2(P) = 0.55 it follows tF/Q < l]/fz(P). Therefore @, < wp and the sampling

interval is to be derived from Eq. 5.5.
AT € ~ 2

The same applies to the intermediate 'Thomas wave'.
For the 50 mile reach (P & 2, @ ® 5 hours) fz(P) = 4. Then for the intermediate

' Thomas wave' also w, < o and
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AT 5

For the long 'Thomas wave' however w, > w, and since 0y = lI/tF it follows
from Eq. 5.6

‘!\'tF
At € —— = 27.3 hours

11
For the 5 mile reach (P % 0.2, @ = 5 hours) fz(P) = 150, sc that for both
waves w < W .
For the intermediate wave the sampling interval is:

TrtF
At € —— = 3.42 hours

11
The chosen values of At for the 'Thomas waves' input, with which the responses
were calculated, are in agreement with this criterion. In this way the chosen
time interval At have been checked for all types of inflow problems, so that it
can be concluded that the sampling of the input did not effect the shape of the
calculated responses.
The above calculations were based on the criteriom wy = Il/tF for a 'Thomas
wave',
Eagleson et al (1966) gave for a block input the cut off frequency wp = 39/tF

and for a triangular input mp = 10/t_.

£1(P,R) 1 L .
If w, < w5 or T < the system filters all frequencies > w,+ Eq. (5.81)

shows that this filtering e¥fect of the system depends both on the ratio of the
duration tp of inflow and the characteristic time @ of the system and also on
the ratio of a coefficient (1l radians), determined by the shape of the inflow
and another shape coefficient, dependent on the dimensionless system parameters
P and R corresponding with the shape of the IUH.‘

The classification of the channels in short, intermediate and long channel
reaches is based on these parameters P and R.

The requirement forta short reach to act as a filter (mp > wc) is stated in

Eq. 58b, Therefore EE should be small. Fig. 5.7 shows that the sampling interval
depends on R, In the calculated examples (Fig. 5.4) however wp < w, 80 that the
effect or R on the sampling interval was suppressed.

In Section 5.3 it has already been explained for the intermediate reach that R
which represents the spatial distribution of the inflow, hardly affects the

responses. This is in agreement with Fig., 5.7 which shows that in the inter-
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mediate reach R hardly affects @, (0.75 <« wCQ < 1.0) and therefore At is
practically independent of R.

The amplitude spectrum for the long reach in Fig. 5.7 shows that fl(P,H) and
fZ(P) are smaller than 0.5. Therefore it follows from Eq. 5.8b that thQ must
be smaller than 20 for the reach to act as a filter (mp > wc).

Unlike the response of the intermediate reach, the response of the long reach
is also determined by values of A between 0.5 and 1, so that these values also

affect the sampling interval.
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6.A LINEAR DISTRIBUTED MODEL OF SURFACE RUNOFF

A complex distributed surface run-off system can be composed of the linear
elements as discussed and compared in Section 4 and 5.

Schematically this is represented in Fig. 3.1. In each series the output from
one element is the input for the next element. To each element the convolution
integral can be applied. The first three moments of the IUH for a series of
elements can be obtained by adding the appropriate moments of the elements,
while the amplitude density spectrum can be obtained by multiplication and the
rhase density spectrum can be obtained by summation. These moments and spectra
are the characteristics of a series of linear elements.

By studying the change of these charécteristics through the series of components
it can be decided which component does not significantly affect the response
and can therefore be neglected. Also a decision can be made with respect to the
required sampling interval,

Because the whole complex system is linear and time-invariant the principle

of superposition applies and the responses of all series can be added.

In this approach interactions between the elements canmot be studied, because
no internal boundary conditions are built into the distributed model. A next
step in the presented development of linear distributed models could be the

intreduction of such internal boundary conditions between linear elements.
6.1. COMPLEXITY OF THE SYSTEM

Bravo et al (1970) defined the problem of dealing with complex distributed
systems as follows: 'Criteria for choosing the general arrangement of elements,
size of elements and spatial distribution of rainfall inputs have not as yet
been formally established. At present, judgement based on past experience and a
feeling for the physical processes which are involved, tempered by the practical
need to keep the mumber of elements reasonably small, has been used as a guide'.
In our linear systems approach to the surface run—off problem the size of the
elements is expressed by the model parameter P, while the spatial distribution
of rainfall inputs over these elements is expressed by the model parameter R.
The filtering effect of each element determinmes its right to exist in the model.
In this way the complexity of the model is determined. The actual filtering of
each element follows from the spectra of the input and the impulse response.

In Section 5 it was shown that the filtering effect of each system element

depends on one hand on the ratio of the duration of inflow to the characteristic
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time of the system and onm the other hand on the ratio of a coefficient, deter~
mining the shape of inflow to a ceefficlent, determined by the dimensionless
model parameters P and R. In the short channel reach the spatial distribution
of the inflow can only influence the filtering effect of the madel if tF/Q is
very small, so that w, > oW

In the intermediate channel reach the spatial distribution of the inflow has
little influence on the filtering effect of the system.

It is interesting to note that if the points for a number of Brivish catcnments
(Nash, 1960) are plotted in the shape factor diagram for the upstream inflow
problem (Fig. 5.6) these points fall within the range 2 < £ < 3. ™Nash ovorecsed
the system's response o: thesz catchments in gamms distrinei . as ¢ oined
dimensionless parameter n and a characteristic time k. The spectra »f these
gamma—distributions and of the impulse responses of the upstream infiow problem
are very similar for P = n and @ = k.

This illustrates the feasibility of Nash's lumped model to cope witch the
intermediate channel reach where the spatial discribution (#) of infiow has
little effect on the response,

In a long channel reach (high values of P) the spatial distribution of the
inflow (BR) strongly effects the system's response. Therefore it cannot be
considered as a lumped system. It can either be divided intoc a number of
intermediate reaches or the spatial distribution of the inflow must be taken
into account.

When composing a conceptual model for the surface run—off it is advisable to
start with estimates of P for the channel system beginning at the cutlet of

the catchment.

In this way every channel section of the catchment can be analysed, sc that
conclusions can be drawn about the required complexity of the system. Therefore
it is necessary to estimate the values of the model parameters and because these
depend on the physical characteristics of the system, physical information about

the system must he available.
6.2, COMPUTER PROGRAM

A computer program, written in Fortran IV, consisting of a master coptvl

~rogram and a number of subrout.nes, Las bion developrd. 1n this computer
rcgram not only the surface ruvo—ofi compomert has beer taken 1lmto ~¢count,
,ut also the base flow, which consists of flc.s through the umsaturzted zcaz

followed by flow througn Lne saturaced zoue, &5 snown ol iiwm. 2.°
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The separatiom of precipitation into precipitation excess and infiltrationm

has as yet not been achieved.

This report is however restricted to surface run-off.

The complex surface run-off system is composed of the spatially distributed
sub-systems of the catchment. These sub~systems are connected by chanmnel
reaches (Fig. 3.1). The rainfall excess of each sub-system is routed separately
through the channel system to the outlet of the catchment. In this way the
conceptual model of the surface run-off system consists of a2 number of parallel
series of linear elements. The sequence of calculations for these parallel
series is carried out by a master control program according to the chosen
conceptual model.

Each subroutine calculates the ordinate of the TUH at the end of the intervals.
The histogram ordinates of the corresponding distribution graph are obtained
as the areas between adjacent ordinates of the TUH, using a straight iine
approximation between these ordinate values. This distribution graph may
subsequently be convolved with the TUH of the following linear element. In
this way each conceptual element can be either studied separately or in a
series with other elements. The output of each series is stored in the memory
of the computer, so that the results of the whole complex surface run—off
system can be obtained by summation of the outputs of all series.

These results show how the TUH has been changed by the various conceptual
elements in a series, and by comparing the TUH for the various series it can
be clearly seen how the TUH of the whole complex system is composed of the
spatially distributed sub-systems of the catchment.

With the control Data 3200 computer of the Department of Mathematics at the
Agriculutral University, the calculations of TUH for a complex system,
consisting of 25 elements takes about 4 min. Also the convolution of the TUH
with an input in the form of a histogram takes a relatively short time, which

depending on the length of the input is of the order of seconds or minutes,

89



7. APPLICATIONS

This chapter will discuss some applications of the proposed linear distributed
model. To verify this model the following pleces of experimental work were used:
Takahashi (1971) on the Kizu River in Japan, Kellerhals (1969) on steep channel
networks in Canada and finally a laboratory experiment of the Department of

Hydraulics and Catchment Hydrology.
7.1. KIZU RIVER (JAPAN)
Takahashi studied unsteady flow in irrigular open channels. He considered both

the effect of storage in regions abutting on the main channel and the effect of

large scale horizontal mixing. Figure 7.1 shows the concepts of main channel

and dead zone (storage region).

Fig. 71 Concept of main chanpel and dead zone.

Figure 7.2 is a plan of the Kizu River downstream of Kamo.

Fig. 7.2 Plan of the Kizu River downstream of Kano

The discharge has been measured in Kamo, Iloka (+ 14 km downstream of Kamo). The
channel width in the reach from Kamo to Yawata ranges from 260 m to 860 m. In
this reach no significant local inflow occurs. Takahashi assumed 2 Manning's

roughness coefficient value Km = 25 m1/35_1 and SO = 0,0008.
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From the recorded river hydrograph he further assumed a reference waterdepth
of 5 m. In his calculations Takabashi accounted for the above inequality of

channel width Bm and storage width B, + Bm' In his study however, the channel

profile is assumed to be wide and regtangular with a 5 m reference depth over
the whole width. Notwithstanding this simplificationm, the calculated results
compared favourably with those given by Takahashi. Figure 7.3 gives the
recorded hydrographs of discharge at Kamo, Ilcka and Yawata together with the

calculated results for Iloka and Yawata.

Discharge m3s A

60001
5000]
Distance | P [ thourdMithour) | Ma thours® | aq. misec |D nis
40001 14km la74| 030 | m3 034 244 | G448
o 28Kkm [748] 030 | 228 c68 144 | 6448

30001 @ ® measured discharge at lioka (14 km)

Q0 measured discharge at Yawata (2BKm)
/T calculated discharge

2000
Efficienc ys 97%
10004
5 10 15 20 25
Fig 73  Experimental results of Kizu River (Takahaski 1971) Time (hours)

The hydrograph of Kamo was used as the input for a semi-infinite channel
(Section 4,4.). The goodness of fit, expressed by the efficiency coefficient,
was 97% for both downstream points.

For this upstream inflow problem the incoming wave can be considered as a

"Thomas" cosine wave with a wave length t_ = 25 h and B = 0.033 in 4.17 where

F
2, . .

BtF is the second moment about the mean of the incoming wave. The second
moment of the IUH reads PQZ and for the Kamo-Yawata reach P = 7.48 and § =
0.3 h. It follows that the attenuation coefficient (Eq 4.i7} is CA = 0.03.
Introducing this value in Fig. 5.10 we indeed find a negligible attenuatiom.
The same conclusion can be drawn from the spectral analysis as follows:

In Fig 5.10 we find the cut—off frequency w_ in w_t, = 11 so0 that w_ = 11/25 =

-1 P P P
0.44 rad hour .

In the considered reach the cut-off frequency of the IUH in Fig 4.20 is found

F
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for P = 7.48 and w § = 1.5 rad to be w_= 1.5/0.3 = 5 rad hour .

We find mp is much smaller than w and this means (section 2.4.) that there
should indeed be very little attenuation.

The translation expressed in the lag of the model is P§ = 7.48 x 0.3 = 2.24 hours.

This is alsc in agreement with Takahashi's experiwental results.
7.2, PHYLLIS CREEK (ROCKY MOUNTAINS, CANADA)

Kellerhals (1969) combined a "flow equation' A = a b with a continuity equation
for a tumbling stream consisting of pools and riffles, For his parameters a and
b he found correlations with characteristics which cculd be derived directly
from the topography of the stream channel and the corresponding catchment area.
He tested his method in a number of mountainous stream—channels where he could
effect inputs of certain shapes and he could measure the resulting outputs.

His data of the Phyllis Creek, located below Marion Lake, have been used here to
find cut if the present "diffusion type" model can also be used in this case

of 2 "tumbling stream". Obviously the normal wave equation 3.5 does not apply
and therefore the physical meaning of an "equivalent”™ feormula like Manning's is
not real anymore. Nevertheless an equivalent Manning coefficient in a wide
rectangular channel derived from Kellerhals' flow equation with the values for
the coefficients a and b and the channel slope S, as given in his thesis.
Subsequently the reference discharge q, was used as a free parameter to determine
A and D in the diffusion type equation such that a good agreement between
calculated and observed outflow hydrographs was obtazined (Fig 7.4).

Table 5 gives the Kellerhals' data and the derived K-Manning values for the

various channel reaches.

Table 5 : Physically characteristics.

1/3 -1
m 8

Length (m) Width (m) Slope Km ( )
Gauge 1-2 770 11.48 0.0307 3.30
2-3 716 12.57 0.0488 2.40
3-4 617 12.64 0.0641 Z.40
4-6 305 12.88 0.09¢5 1.90

Kellerhals ascribes the decreasing quality of his calculated results to a non-
linearity which should increase with the number of channel reaches. However the

linear diffusion type model feor this upstream inflow problem appeared to be
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successful both for short and long channels. The values obtained for the
efficiency coefficient were 0.94 and 0.92, respectively against Kellerhals'
values of 0.82 and 0.72.

The parameter values P = 65 and € = 0.3 min in reach 1=2 yield M; = PR =

18.5 min and M, = PQ2 = 5.3 min2 for the TUH. These values indicate the major

2
effect of translation. The same applies for reach 1-6.

7.3. LABORATORY EXPERIMENT

At the Laboratory of Hydraulics and Catchment Hydrology a series of surface
run-off experiments were done in a 15 m long tilting flume with rectangular
cross—section of 1.02 m width. Over the flume a rainfall simulator, consisting
of 184 elements, was constructed. In this way the inflow to the surface run-off
gystem can be distributed in time and space with reasonable accuracy. The
outflow was measured at the end of the flume. The hydrograph of cutflow
presented in Fig 7.5 shows a satisfactory sensitivity of the measurement
equipment.

At the upstream end of the channel it was possible to introduce a constant
initial flow, upon which the rainfall was superimposed.

An artificial uniform roughness was brought into the chamnel., From steady state

/3 -1
5

experiments & mean Manning ccefficient Km = 30.5m was chosen.

In the experiment the bottom slope of the flume was 0.0025 and the initial
base flow was set up at 0.7 x 1072 mss—], Tn Fig 7.5 the rainfall histogram

has been given.

Theoretically this experiment must be represented by the model for fully lateral
inflow into a wide rectangular channel (Section 4.3.). Both the results of the
complete non—linear sclution and of the linear solution with a reference
discharge of 1.35 x ]O-.3 m—ss_] show an efficiency coefficient of about 967.

The computer took about 20 minutes to calculate the non—linear solution and

half a minute for the linear solution.

The value of P, 5.2, and §, 0.34, minute, follow from the physical parameters

and it follows from Eq. 4.55 that M; = 1.1 minute and M2 = .69 min2 for the

TUH, indicating both significant translations and attenuation.

For a block input in Section 5.5. the cut-off frequency was given as w, = %2,
F

s¢ that in this experiment where Lo varies between 2 and 3 minutes
w, varies between 13 and [9 rad min_l.
From Fig 4.10e it follows that ch = 2 rad, so that for § = 0.34 min w, =

5.9 rad min_]. In this case wp > W, 80 the model acts as a filter, which is
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in agreement with the experiment that shows the attenuation of the rainfall
histogram, Eq. 4.58 for the attenuation coefficient yields a value Cy 1 a2,
however from Fig 5.9 it is not yet possible to find the specific attenuatiom,
because the empirical curves are not complete. More research has to be done

to refine these curves.

In contrast to thilis experiment,a histogram describing a natural input, such as
effective precipitatiom, will only approximate the true sequence of inflow
rates. So the maximum duration of the histogram intervals to give an adequate
description of events, should be determined. In this experiment the cut-off
frequency w_was found to be 5.9 rad min_l. Egq. 5.1 yields the orresponding

sampling interval &t = — = {.17 min.
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8. SUMMARY AND CONCLUSIONS

8.1. SUMMARY

A linear distributed model of surface run-off, consisting of a number of linear
conceptual elements, has been developed to caleculate the discharge or stage
hydrograph of a complex catchment area from the rainfall excess data distributed
in time and space.
The run—off system is simulated by a network of overland flow and channel flow
elements similar to that proposed by Bravo, et al (1970). The present approach
however differs from the latter because 5 types of linear conceptual elements
have been introduced., Their behaviour is based on a linearized version of the
simplified one-dimensional equation of motion for flow in prismatic channels.
This approach leads to linear diffusion type equations, for the discharge and
water depth, The impulse response of each conceptual element is derived for
the appropriate boundary conditions.
In this way a link is made between the hydrodynamic approach and the linear
systems theory. The following conceptual elements are considered:
a. The overland flow component. This element is considered as an infinitely
wide rectangular channel subjected to uniformly distributed lateral inflow.
b. The channel flow component, subdivided in the tributary, the partial lateral,
the fully lateral and the upstream inflow problem.
In the systems approach to the surface run—off compoment where the model
parameters are expressed in physical characteristics two types of mathematical
models are used. First a two—parameter model for the upstream inflow problem,
where the model parameter P is a dimensionless length parameter and @ represents
the characteristic time of the model. Second a three parameter model for the
lateral inflow problem with the model parameters P, § and R, where R is a
dimensionless inflow length parameter. For the tributary inflow problem R = 0
and for the fully lateral inflow problem and the overland flow problem R = 1.
For these apecial cases the thre¢ parameter model is reduced to a two parameter
model -
The various conceptual elements, characterized by their impulse response
functions, are classified, analysed and compared according to their shape
factors and spectra.
With these techniques the effect of variations of the inflow in space and time
on the system's response are studied. These effects provide criteria for the

required complexity of the conceptual model and they also provide criteria for
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the sampling interval of the input.

Because the hydrodynamic apprcach is linked to the linear systems thecry the
model parameters are expressed in the physical characteristies of the surface
runoff system (channel length and cross section, bottom slope and friection
coefficient) and a chosen reference discharge or water depth. The effect of the
reference discharge or water depth on the response of 'Thomas wave' inputs of
various durations has been studied. Some linear results were compared with the
corresponding complete non—linear solution. An empirical relation between the
attenuation ccefficient Cy and the specific attenuation of the peak value of
the input is suggested for the optimization procedure.

However if for a sub-system the input and output data are known the linear
system analysis can be used to derive the model parameters without any
knowledge of the physical characteristics, using the simple relation between

the moments of input, output and impulse response.

The above thecretical aspects were demonstrated in some simple examples,

8.2. CONCLUSIONS

1. The complexity of a distributed model of surface run-off can be determined
by techniques of linear system analysis. Physical information about the

surface run-off system should be available.

2. The techniques of linear system analysis show the effect of the model para-
meters P (the dimensionless length parameter) @ (the characteristic time of
the system) and R (the dimensionless inflow length parameter, expressing the
spatial distribution of inflow) on the behavicur of each conceptual element
in relation to a given input. The following channel classification is
introduced:

a. In the short channel reach the variation of both P and R have a dominant
effect on the attenuation of the inmput.

b. In the intermediate reach the variation of both P and R have relatively
small attenuation and translation effects.

¢, In the long reach the variation of both P and R have dominant translation
effects for 0 < B < 0.5, For 0.5 < B < | an impertant attenuation effect

als¢c occurs.

The filtering effect of the model for a given input depends on the ratio

of the duration of input to the characteristic time &.
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3. The sampling interval of the input depends on the filtering effect of the
model and can be derived from the amplitude density spectrum of the impulse

response.

4. For one input wave the linear diffusion type solutions were compared with
the complete non-linear solutions for the various conceptual elements of the
surface run—off medel. The results showed good agreement for the presented
examples with a proper choice of reference discharge or water depth. The
goodness of fit, expressed by the efficiency coefficient R, is 90% for most

E
examples.

5, The variation of the reference discharge has a dominant attenuation effect

on the model's behaviour for the short reach, a relatively small attenuation

and translation effect for the intermediate reach, and a dominant translation

effect for the long reach for 0 < R < 0.5, while for 0.5 < B < 1 an important

attendation effect also occurs. The magnitude of these effects depends on
the ratio of the duration of input to the characteristic time & of the

model.

6. The linear diffusion type solutions for the various conceptual elements,
breaks down if the Froude number F > A 2, assuming Chezy friction and
F > ~ 1}, assuming Manning friction, because then the parameter D < 0.
Henderson (1966) has however shown that for the steady state for these
values of the Froude number rolling waves cccur, for which the hydrodynamic
considerations, as presented in this report, are not valid. Moresover

normally this situation will not occur.

7. The application of the linear theory on the results of experiments in
a river in Japan, in & mountainous stream channel in Canada and in a
tilting flume in the laboratory shows a good agreement between observed

and computed hydrographs.
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cross-sectional area of the channel

translation coefficient

surface width of the channel

Chezy coefficient

attenuation cecefficient

celerity

'‘diffusion' coefficient

term for the energy dissipation as the lateral inflow
mixes with the water already in the channel

local Froude number

Laplace transform of the functiom f(t)

Fourier transform of the function f(&)

amplitude density spectrum of the function £(t)
phase density spectrum of the function f£(t)
acceleration of gravity

impulse response for the discharge

impulse response for the water depth

dimensionless impulse response for the discharge
dimensionless impulse response for the water depth

subscript for initial uniform flow

= lateral inflow per unit length of channel

bottom width of the chanmel
Manning coefficient
distance over which the lateral inflow takes place

th . . ..
n  mementof the function £(t) relative to the origin

nth moment of the function f(t) relative to the mean
tangent of the side slope of a trapezoidal channel
subscript for reference value

dimensionless length parameter of the system
subscript for perturbation

discharge rate

discharge rate per unit width of charnmel
characteristic time of the system

dimensionless inflow parameter of the system

specific attenuation
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hydraulic radius

coefficient of determination or efficiency coefficient
slope of the water level

bottom slope
friction slope
dimensionless shape factors
summation curve for the discharge
summation curve for the water depth

distance in flow direction

dimensionless time to peak

dimensionless time parameter

duration of inflow

sampling interval

dimensionless sampling interval

translation time

time

component of the inflow velocity vector in flow directiom
velocity

input

output or waterdepth

coefficient determining the shape of the inflow graph

Dirac function

storage capacity

frequency (radian per time interval)
upper limit of the filter characteristic
cut—of f frequency of the input signal

unit volume per unit width of channel
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