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Abstract 

Zondervan, J.G. (1978) Modelling urban run-off - a quasilinear approach. Agric. Res. Rep. 
(Versl. landbouwk. Onderz.) 874, ISBN 90 220 0665 4, (vi) + 68 p., 48 figs, 9 tables, 
46 refs, 3 App., Eng. and Dutch summaries. 
Also: Doctoral thesis Wageningen. 

The non-linear behaviour of catchments, as ascertained by various investigators, is discus
sed. Blackbox analysis with Laguerre functions shows non-linear behaviour for a small urban 
catchment area. Some approaches to non-linear systems for rainfall and run-off are con
sidered. Two quasilinear methods are compared with a theoretical model for their applica
tion. Results from an application of the most promising method on an urban catchment area 
confirm the feasibility of this method. Six conceptual models are compared and an appli
cation of the quasilinear method is given with a conceptual model. A satisfactory treatment 
of losses forms a major problem in modelling urban rainfall and run-off. Hence a chapter is 
devoted to transformation of rainfall into sewer inflow and concurrent losses. The use of 
critical sequences of rainfall for modelling is discussed. Evidence suggesting the maximum 
time interval between samples is given. 

Free descriptors: urban hydrology, catchment area, sewer run-off, infiltration losses, 
critical sequences of rainfall. 
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1 Introduction 

In the last decennia, urban growth has been rapid in many parts of the world. The 
concurrent problems of flash floods and deterioration of water quality have increased 
awareness of the need for integrated regional water management in such urban areas. 

The aim of modelling is to provide tools for water management, in which the various 
interests and their interactions are taken into account (e.g. McPherson, 1974). Although 
such water management ultimately requires models for both water quantity and water 
quality, this study is restricted to a number of quantitative aspects of modelling. 

McPherson (1976) points out that 'mathematical model development for sewered 
system applications has seemingly already greatly outpaced the data base for model 
verification'. 

In this study, analysis of existing data indeed showed that their accuracy is often 
inadequate for developing models. Analysis of a number of short-term records of rainfall 
and run-off showed that often one raingauge does not sample the time distribution of 
areal rainfall with sufficient accuracy, especially for heavy local thunder storms which are 
the source of critical loads on the sewer system. For instance, for an airport with a 
catchment area of only 0.3 km2, with all the surface developed, total run-off could be 1.3 
times the recorded rainfall. Another difficulty that sometimes prevents use of data is too 
long a sample interval. A third difficulty in modelling rainfall and sewer run-off from 
urban catchment areas is that even if one has reliable data on rainfall and run-off, data on 
antecedent rainfall are often lacking. That information is however essential for research. 

Because of such difficulties, only the analysed data of one small urban catchment area 
were found that suited detailed research. The size of the catchment area, a residential 
quarter in the United States town of Gray Haven, Maryland, is 94 000 m2 . 

Non-linear behaviour as found for the Gray Haven catchment area could also be 
demonstrated for a much larger urban catchment area in the town of Enschede in the 
Netherlands. The data of this catchment, however, which were used for a blackbox 
analysis (van der Kloet et al., 1977), could not be used for detailed research, because 
there also the size of the catchment area, 1.4 km2, was too large to justify use of rainfall 
data from one raingauge only. Because of the non-linear behaviour encountered in these 
urban catchment areas, this study concentrates on recent approaches to non-linear hydro-
logical systems. 

Losses by ponding and infiltration are so important in modelling, that much effort was 
given to developing equipment for measuring such losses. Experiments with the equip
ment in urban study areas where the rainfall and run-off is measured, can yield valuable 
complementary information. 

Use of models for the transformation of rainfall into sewer run-off requires sequences 
of rainfall with a short time interval. For some sizes of catchment area, evidence on the 
permissible maximum interval between sample is given. 
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2 Rainfall data to compute run-off from small urban catchment areas 

This chapter considers only point rainfall. To allow the computation of run-off hydro-
graphs caused by extreme rainfall from urban catchment areas, both critical sequences of 
rainfall and a model for the transformation of rainfall into run-off are needed. 

For computations of extreme run-off often the simplifying assumption is made that 
rate of rainfall is constant for a certain time T. Rate of rainfall can then be obtained from 
intensity—duration—frequency curves. An example of this procedure is the well known 
'rational method', which Watkins (1963) reports to have been used in Ireland by Mulva-
ney as early as 1851. Ardis et al. (1969) by an investigation into the storm drainage 
practices of thirty-two cities in the United States, found that at that time practically 
every city still used this method for design purposes. McPherson (1969) clearly demon
strated the crudeness and limitations of this method. 

An example for the Netherlands in which the assumption of a constant rate of rainfall 
is involved is the use of the 'dots graphic of Kuipers'. This graphic gives for the period 
1938-1948, for all events with more than 4 mm precipitation at De Bilt, the relation 
between duration of rainfall and amount. The graphic of Kuipers is a frequently used tool 
for estimation of frequencies of spills from sewer systems in the Netherlands (Koninklijk 
Instituut van Ingenieurs, 1972; Schenkeveld, 1976). Here again the assumption of con
stant rainfall during a time T may lead to erroneous results. In its report of 1972 the 
Koninklijk Instituut van Ingenieurs (Royal Institute of Technical Graduates) shows that 
use of the graphic of Kuipers underestimates the frequency of spills from sewer systems. 
The assumption of constant rate of rainfall within T gives rise to bigger errors as the 
response time of the considered system is smaller in comparison with T. 

Urban systems for rainfall and run-off often have such short response times that, if 
hydrographs must be computed from rainfall data, it is necessary to have data with a 
small interval between samples. To illustrate this, in Table 1 the lag times for a number of 
small sewered urban catchment areas and inlet areas in the United States (Shaake jr. et al., 
1967) and the Netherlands are given. The Dutch inlet areas Pomona, Bennekom and De 
Nieuwlanden are described in Chapter 3. The lag times of the Dutch catchment areas 
Lelystad 1, Lelystad 2 and Varviksingel were taken from van der Kloet et al. (1977). 
Lelystad 1 and 2 are a small residential quarter and a parking place, respectively, in the 
town of Lelystad. Varviksingel is a sewer district in the town of Enschede. 

By rule of thumb that the sample interval must not exceed a quarter of the lag time of 
the catchment area, a sample interval of about 15 s would be appropriate for small inlet 
areas like Pomona and Bennekom. For small residential quarters like Gray Haven and 
Lelystad 1, Lelystad 2 and Varviksingel were taken from van der Kloet et al. (1977). 
area like Varviksingel, with an area of 1.4 km2 would a sample interval of 5 minutes be 
sufficiently small. 

In the Netherlands, statistical properties of rainfall are published by the KNMI (Royal 



Table 1. Lag times for a number of urban catchment areas in the U.S.A. and in the Netherlands. 

Catchment area 

United States of America1 

Gray Haven 
Hamilton Hills 2 
Hamilton Hüls 3 
Hamilton Hills 4 
Hamilton Hüls 5 
Midwood 5 
Montebello 2 
Montebello 3 
Montebello 4 
Montebello 5 
Newark 9 
Newark 12 
Northwood 
South Parking Lot 1 
South Parking Lot 2 
Swansea 
Uplands 
Walker Avenue 
Yorkwood 

Netherlands 

Pomona 
Bennekom 
De Nieuwlanden 
Lelystad 1 
Lelystad 2 
Varviksingel 

Area 
(103 m 2 ) 

94.3 
3.9 
7.4 
0.9 
6.9 
5.2 
6.1 
1.8 
2.2 
2.1 
2.6 
3.9 

191.8 
1.6 
1.9 

190.6 
121.8 
620.8 
42.1 

0.15 
0.16 
0.43 

20.0 
7.1 

1400.0 

Imperviousness 

(%) 

52 
20 
36 
96 
32 
56 
9 

57 
65 
66 

100 
100 
68 

100 
100 
44 
52 
33 
41 

100 
100 
100 
44 
97 

estim. 24 

Average lag time 

8 min 30 s 
8 min 42 s 
7 min 24 s 
4 min 54 s 
4 min 48 s 
3 min 6 s 
8 min 
4 min 
3 min 18 s 
3 min 42 s 
3 min 24 s 
4 min 54 s 
6 min 30 s 
4 min 42 s 
6 min 54 s 
4 min 48 s 
7 min 24 s 

11 min 30 s 
4 min 42 s 

1 min 36 s -
1 min 
3 min 3 s -
9 min 
5 min 

32 min 

- 2 min 18 s 
- 2 min 5 s 
- 4 min 
- 11 min 
- 7 min 
- 40 min 

1. From Schaake et al. (1967). 

Netherlands Meteorological Institute). The shortest time interval for which statistical 
information can be obtained is 5 minutes (KNMI, 1968). This information on 5-minutes 
rainfall is based on charts of a self-recording raingauge, covering a period of 12 years. 
Hence rainfall records with an appropriate sample interval are available in the Netherlands 
for urban catchment areas larger than about a square kilometre. Because a record length 
of 12 years is not very long for extreme rainfall events, one could suggest the use of a 
model to simulate rainfall sequences. Such a model could be calibrated with the record of 
5-minutes data of the KNMI. 

Cole & Sherriff (1972) reviewed stochastic models for the simulation of rainfall over 
short time intervals. Only in two studies mentioned there was a time interval less than one 
hour used. Both studies, by Grace & Eagleson (1966) and Raudkivi & Lawgun (1970) 
used intervals of 10 min. The model of Grace & Eagleson was constructed to simulate 
critical sequences of rainfall data for small catchment areas in the northern part of the 



United States and in Canada. Since critical sequences of rainfall for such catchment areas 
would be sudden heavy rain, which occurs typically in summer thunder storms, only 
summer data were analysed. In their analysis, they distinguished three types of storms. 

Raudkivi & Lawgun (1970), who developed their model for the Auckland area in New 
Zealand, constructed a simulation model in which all types of rainfall were lumped. They 
dealt with the seasonality of the rainfall process by calibrating their model parameters for 
each month of the year. 

In the Netherlands, many types of rain occur, for instance showers, cold fronts, warm 
fronts, frontal and non-frontal low pressure centres, and occluded fronts. As lumping of 
different types of rainfall is doubtfully justifiable and because also in the Netherlands 
critical rainfall sequences for small urban areas will be produced by short heavy summer 
showers, the approach of Grace & Eagleson must be preferred if it is decided to use a 
simulation model. 

Yperlaan (1977) found evidence of an increase in precipitation near Rotterdam. To 
investigate the urban influence for different weather types, he selected precipitation days 
from 1958 up to 1970 according to season, wind direction and precipitation type. He 
found that frontal rains and rains in low pressure systems seem to give positive moderate 
differences, whereas for some showers very high increases seemed to result from urban 
influence. 

These considerations lead to the following recommendations: 
— As transformation of rainfall into sewer inflow for common Dutch road drainage is so 
fast that it can be neglected in modelling run-off from urban catchment areas, gathering 
rainfall data with a time interval of 15 s seems—ignoring technical difficulties—not neces
sary for modelling purposes. Whether a sample interval of 15 s is desirable for other 
purposes, as in the planning of number of inlets per area, will not be treated here. 
— For modelling run-off from small urban catchment areas (5 x 103 to 200x 10 m2) a 
sample interval of one or two minutes is required. Because such 'urban drainage units' are 
appropriate for modelling purposes, creation of rainfall records with a one-minute interval 
is recommended. As short heavy summer showers are of special interest, the data must be 
reduced substantially at the site of the raingauge. As heavy summer showers have a local 
character, it is recommended to measure at more than one station with a one-minute 
interval, to obtain more quickly a number of critical rainfall events. 
— Information on antecedent rainfall is important for modelling urban run-off (Chap. 
3). This information, however, can be obtained from rainfall data with a much longer 
sample interval. 
— The evidence of urban influence on precipitation as found by Yperlaan (1977) should 
be investigated especially for heavy summer showers. 
— Since differences in types of rainfall, local influences on showers (urban, coastal) and 
periodicities in occurence of showers (thunder storms mostly occur during the second 
half of the day), the use of simulation models for short-term rainfall seems questionable. 
If it is decided to use such a model, it seems appropriate to confine simulation to summer 
showers. 



- Finally, if one uses intensity-duration—frequency curves to obtain critical storms for 
computations of extreme run-off, one can introduce storm profiles instead of assuming 
constant rainfall. In this manner, Tholin & Kiefer (1960) determined a critical storm for 
sewer design in Chicago. They based their storm profile on the analysis of some measured 
storm profiles. For an extensive treatment on storm profiles, see the British Flood Studies 
Report, Vol. 2 (National Environment Research Council, 1975). 



3 Transformation of rainfall into sewer inflow and concurrent losses 

In the Netherlands (relatively flat regions and moderate rainfall rates) sewer run-off 
usually originates from rainfall on roofs and pavements only. Therefore it is common 
practice in Dutch sewer design to neglect run-off from pervious areas. On the other hand, 
losses that occur on the developed surfaces are also neglected. 

Transformation of rainfall into sewer run-off can be represented by a transformation 
of rainfall into sewer inflow, followed by a transformation to sewer outflow in the sewer 
system itself. Although losses can take place during both transformations, it can be 
assumed that losses occur mainly before water enters the system of sewers, if the sewer 
system is in good condition. 

In the town of Wageningen, two flat roofs of buildings of the University, each with a 
surface of about 1000 m2, are being studied. This study, which is still running, will give 
information about the effect of the roof-covering (very fine pebbles, 3-4 mm diam., and 
coarse pebbles, 1-5 cm diam.) on the rainfall—run-off relation of flat roofs. On a part of 
one of these roofs at 'De Nieuwlanden', experiments were carried out with a rainfall 
simulator (Fig. 1) for a pioneer study. Details about the rainfall simulator and measuring 
equipment, and the detailed results of this study are given in Zondervan & Dommerholt 
(1975). A sketch of the roof and drains is given in Figure 2. The surface of the roof is 
tarred with a layer of 5 mm of the fine pebbles on top. 

In this study the 'lag-and-route model' (a time shift + a linear reservoir) proved to be 
an adequate model for this inlet area (for a further description of this model see the first 
section of Chapter 6 on conceptual models). The lag time of the linear reservoir k was 
derived from recession curves (Fig. 3). These recession curves were obtained by simulating 
rainfall with an intensity of about 70 mm/h till equilibrium was reached, whereafter the 
rainfall was stopped and the run-off measured. If the lag-and-route model is a good one 
for the transformation of rainfall into run-off, the recession curve must yield a straight 
line on semi-log paper. This was approximately true except for very low flows (run-off < 
1.5 1/s & 13 mm/h). From the slope of the recession curve a value of 2.5 min was derived 
for the lag time of the reservoir. The time shift r was, as a first approximation, assumed 
to equal the average time of travel in the drains. 

Another way of estimating the parameters of a model is to optimize them according to 
least sum of squared differences (LS) between measured and calculated run-off for a 
certain rainfall-run-off event. In this way, the parameters of a number of conceptual 
models, among which the lag-and-route model and the three-parameter model: convective 
diffusion, upstream inflow + time shift were optimized for a simulated shower on De 
Nieuwlanden. To eliminate the effect of the observed non-linear behaviour during the 
first minutes of rainfall, the first ten minutes of the shower were excluded from the LS. 

For both models, the measured and optimized run-off hydrographs are given in Fig
ures 4 and 5. For both, a value of 1 min was found for the time shift T, which confirmed 



the assumption in which 7 was equated with the average time of travel in the drains. 
The same shower was used to evaluate the performance of the lag-and-route model 

using the lag time of the reservoir as found with the recession curve (Fig. 6). The run-off 
simulation was satisfactory. The deviations between measured and simulated run-off dur
ing the first minutes of rainfall and in the tail of the run-off hydrograph are due to 
non-linearities, which are rather pronounced at low flows (Chap. 4). 

No results of systematic investigations on the transformation of rainfall into sewer 
inflow and concurrent losses have been published in the Netherlands. Besides investiga
tions on roof inlet areas, experimental equipment was developed to allow the study of 
paved inlet areas. With this mobile equipment, controlled flows were taken from fire 
hydrants and with a rainfall simulator this water was sprinkled on pavements. The result
ing inflow into the sewer system was measured (Zondervan & Dommerholt, 1976; Dom-
merholt & Zondervan, 1977). Two typically constructed roads, a parking place paved 
with concrete stones at 'Pomona' in the town of Wageningen and an asphalt road with a 
tiled footpath on either side in the village of Bennekom were investigated (Fig. 7 and 8). 
Figure 9 is a map of two inlet areas at Pomona. A description of some experiments on the 
inlet area P III + P IV will be given to demonstrate the course of events. The inlet area 
was divided into two equal parts, because the rainfall simulator could not cover the whole 
surface. 

To estimate the initial losses for wetting the surface and filling depressions, a constant 
rainfall rate of 72 mm/h was simulated as first and last experiment. The first experiment 
was started with a completely dry road surface. The shift between the rising limbs of the 
two run-off curves yielded a value for the initial loss (Fig. 10). 

After some minutes of rainfall, run-off rate becomes almost constant. The difference 
between rainfall rate and run-off rate yields the infiltration rate that corresponds with the 
moisture condition at the moment. The figure shows that during the experiments be
tween the first and last experiment, the infiltration rate decreased considerably. 

In the laboratory, the infiltration rate of the concrete paving stones was determined as 
0.5 mm in the first 15 minutes. After 15 minutes, infiltration almost ceased. Thus Fig
ure 10 suggests that the observed infiltration mainly occurred through the joints be
tween the concrete stones. 

The lag-and-route model, which proved to be a succesful model for De Nieuwlanden 
was also tried out for these paved inlet areas. Figure 11 shows how the lag time k of the 
reservoir was estimated from recession curves for P III and P IV. Figure 12 shows simu
lated and measured run-off hydrographs from a composite shower for P III and P IV, 
using the parameters found in Figure 11. In the simulation, lag was not yet introduced. 
Figure 12 shows that by introducing a time shift of 30 s simulation is satisfactory. Fig
ure 13 is a map of the experimental site at Bennekom. After estimating the lag time k 
from recession curves, the lag-and-route model was tried out as at Pomona. Figure 14 
shows simulated and measured run-off hydrographs for the composite shower for B II. 
Here introduction of a time lag would hardly improve the result. 

In the study of the inlet areas at Pomona and Bennekom, the lag-and-route model 
again proved adequate to describe the transformation from net rainfall into sewer inflow. 

For the surface with paving stones at Pomona, the infiltration rate was between 7 and 
27 mm/h. The initial loss varied between 0.5 and 1.8 mm. As the experiments were after 



<^*^ï:5.^. jgfj 

"..£••'*••.& 

, t *%Vr^ 



Fig. 1. Experiments on the roof of De Nieuwlanden. A. General layout, B. Drain inlet. C. Part of 
water supply and a sprinkler pipe. D. Sprinkler installation in action. E. Detail of D. 

a long dry period, one would expect that on the average lower values for the infiltration 
rate will prevail. The described experiments however demonstrated that losses during the 
transformation of rainfall into sewer inflow can be high. More experiments at different 
sites are needed in order to evaluate the effect of previous rain on initial losses and on 
infiltration rate. Information on losses in urban catchment areas can also be obtained 
from rainfall-run-off studies on small well-gauged catchment areas. But to obtain infor
mation about losses on paved areas, the rainfall simulator method has some advantages: 
- In catchment studies, errors in the rainfall data and leakage from the sewer system 
may disturb the results. 
- With the mobile equipment, little time is needed to estimate losses at many sites and 
with various rainfall rates and initial moisture conditions. 
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Fig. 2. Sketch of roof and drains at De Nieuwlanden. 
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Fig. 4. Run-off simulation with the lag-and route model. The parameters were optimized for this 
storm according the least sum of squared differences (LS). Data from De Nieuwlanden experiments. 
-TLrainfall, — observed run-off, simulated run-off. Parameters: k = 3.1 min. r = 1.0 min. LS: 
8.22 l2 / s a (t= 11-63 min). 
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from De Nieuwlanden experiments. J~L rainfall, — observed run-off, simulated run-off. Parame
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Fig. 6. Run-off simulation with the lag-and-route model. The lag time was obtained from the reces
sion curves in Figure 3, SX. rainfall, — observed run-off, simulated run-off. Parameters: k = 2.5 
min, T = 1.0 min. LS: 12.91 l1 /s2 (t = 11-63 min). 

— In catchment studies, information on integrated losses is obtained and (as demon
strated later) the distribution of losses in time can only be guessed. 

Catchment studies offer the opportunity to study the simultaneous behaviour of 
hydrological variables in the chosen area. One can study losses on the impervious surface, 
transformation of rainfall onto this surface into sewer run-off, conditions under which 
pervious surfaces may contribute to run-off and fluctuations in watertable. 

Lack of information about losses as a function of time is one of the major problems in 
trying to model the transformation of rainfall into sewer run-off. As the processes that 
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Fig. 7. Parking place at Pomona. 
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Fig. 9. Plan of the experimental site at Pomona. 

determine the losses are complicated, the best thing that one can do is to try to describe 
the losses with a simple model. Well-known examples of such models are: 
— A. Initial loss. Previous precipitation, by filling depressions and wetting the surfaces, 
quickens the response of a catchment area. 
- B. The $ index. Here a constant absolute loss rate is assumed during the whole period 
of rainfall excess. 
— C. Proportion assumed lost. 
- D. The combination A+B or A+C. 
For an extensive treatment of the distribution of losses, the reader is referred to the 
British Flood Studies Report, Vol. 2 (Natural Environment Research Council, 1975). 

It is possible to select between the 4> index and the proportional model for a certain 
catchment area, if records of rainfall and run-off are available. This can be achieved on 
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Fig. 13. Plan of the road at Bennekom. 



basis of a best fit between a measured run-off hydrograph and a hydrograph that is 
reconstructed with the corresponding effective rainfall when using a linear time-invariant 
model: 
— Correct the rainfall for some showers according to both loss-models. 
— Identifications of the catchment area for each shower, either with a blackbox model 
or with a conceptual model. 
— Reconstruct run-off hydrographs and select the loss model that provides the best fits. 

In this way van Gastel (1976) found for the Gray Haven catchment area that loss 
model A+C yielded more consistent results than model A+B. A comparison of conceptual 

B n 

Fig. 14. Run-off simulation with the linear reservoir model. The value for the lag time was obtained 
from the recession curve of the Bcnnckom data, k = 1 min.-TLrainfall,0infiltration, — observed run
off, simulated run-off. 
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Fig. 15. Run-off simulations with the Nash cascade for l'.vent A23 from Table 2 (Gray Haven). The 
model parameters were estimated by moment fitting for Storm 7 from Table 3 for the loss models 
initial loss + <t> index and initial loss + proportion assumed lost, — observed run-off, proportion 
assumed lost. <t> index. 

16 



Run-off rate (mm/min) 

Fig. 16. Run-off simulations with the Nash cascade for Event A23 from Table 2 (Gray Haven). The 
model parameters were estimated by moment fitting for Storm 8 from Table 3 for the loss models 
<J> index and proportion assumed lost. — observed run-off, proportion assumed lost, * in
dex. 
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Fig. 17. Run-off simulations with the model convective diffusion, upstream inflow, for Event A23 
from Table 2 (Gray Haven). The model parameters were estimated by moment fitting for Storm 7 
from Table 3 for the loss models initial loss + * index and initial loss + proportion assumed lost. — 
observed run-off, proportion assumed lost, * index. 
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Run-oft r a te fmm/min) 

I'ig. 18. Run-off simulations with the model convectivc diffusion, upstream inflow, for Event A23 
from Table 2 (Gray Haven). The model parameters were estimated by moment fitting for Storm 8 
from Table 3 for the loss models # index and proportion assumed lost. — observed run-off. -
proportion assumed iost, <J> index. 

models for transformation of net rainfall into sewer run-off in this catchment area (Chap. 
6) indicated that the best models were the Nash cascade and the convective diffusion 
model with upstream inflow. For these two models, van Gastel estimated the parameters 
by moments for two showers (No 7 and 8 of Table 3 (Chap. 5)). For both showers, the 
losses were distributed according to the loss models A+B and A+C, respectively. With the 
parameters obtained, he simulated the outflow of event A23 of Table 2 (Chap. 5), which 
was chosen because of the many sharp peaks and good water balance (Fig. 15-18). With 
both conceptual models abstraction of losses by model A+C yielded hydrographs which 
better corresponded to the measured run-off than modelling of losses with A+B. 



4 Transformation of net rainfall into run-off 

4.1 Linearity and time invariance of catchment areas 

In hydrology, linear time-invariant models are widely used. The reason for this prefer
ence is the wealth of mathematical methods available for analysis of linear systems. The 
final judgment of their applicability, however, must be based on closeness to linearity and 
to time invariance of the systems behaviour. 

Because of the effect of previous rainfall, all catchments, both urban and non-urban, 
will be non-linear and time-variant (Chap. 3). This problem is usually solved by represent
ing rainfall run-off by a series of two subsystems. The first subsystem concerns the 
subtraction of losses and the second subsystem transforms the net or effective rainfall 
into catchment run-off. The effect of previous rainfall is thus expressed in the loss model, 
and for the transformation model the assumption of linearity and time invariance is 
usually maintained. 

The second subsystem can then be characterized by its impulse response, which in 
hydrology is usually called the Instantaneous Unit Hydrograph (IUH)1. A number of case 
studies, however, point out (Chap. 5; also Childs, 1958; Minshall, 1960; Singh, 1964; 
Pilgrim, 1966) that the form of the IUH is not always the same for different events. In 
the case studies, the heavier the analysed storm, the higher was the peak of IUH and the 
smaller the time to peak of IUH. 

4.2 Some approaches to modelling of non-linear catchment areas 

Because of the results in Section 4.1, investigators searched for models to describe the 
second subsystem adequately, taking the observed non-linear behaviour into account. 
Two approaches can be distinguished: 
1. A more general non-linear theory replaces the linear theory, in which the output q(t) 
from a linear system can be expressed by convolution-integration of the kernel function 
h(t) with the system input p(t): 

q(t)= ƒ h(r) p(t-T)dT ; h(r) = 0 for r > r (4.1) 
0 

1. In numerical calculations, one frequently uses the pulse response (unit hydiograph). When the time 
interval used to determine the unit hydrograph is sufficiently small, the unit hydrograph and the IUH 
can be considered identical. 
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where h(r) stands for the instantaneous unit hydrograph. 
This is only the first term of the representation of the non-linear case by the functional 
series (Amorocho & Orlob, 1961) 

oo oo 

q(t)= ƒ A,(r)p(f-r)dT+ ƒ ƒ h2(Ti,T2)p(t-Tl)p(t-T2)dTldT2 + ... + 
0 0 0 

OO oo 

+ ƒ ... ƒ hn(Tl,...,Tn)(P(t-Tl)...p(t-Tn)dTl ...dTn + ... (4.2) 
0 0 

with h(r) = 0 for f>t. 
Mathematical complications, however, make practical applications in which more than 
the first term of Equation 4.2 are used rater complicated. An abbreviated version of this 
approach was introduced by Diskin & Boneh (1972). 
2. In the approach that some authors call 'quasilinear' (e.g. Delleur & Rao, 1973; Diskin, 
1973), it is assumed that linear theory can also be applied to non-linear catchment 
behaviour, if an IUH is chosen according to the size of the event. So linear behaviour 
within an event is assumed. Examples of this approach were given by Singh (1964) and 
Diskin (1973). 

Singh used a conceptual model of which the parameters are a function of the storm 
intensity. Diskin can be cited to illustrate the line of thought in this approach: 'The 
instantaneous unit hydrograph may be viewed also as a distribution curve of the times of 
travel of all particles of water deposited on the watershed at the instant of occurrence of 
the impulsive rainfall input ... the time of travel is influenced by two sets of factors, one 
related to the topographic features of the watershed and the other to the conditions in 
the watershed at the time concerned.' 

Diskin assumes that the first set of factors determines the 'basic shape' of the IUH, 
while the second set determines only the time scale of IUH. Thus the second set of 
factors, which determines the state of the system for one particular storm, proportionally 
influences the times of travel of water particles. 

With this consideration, Diskin proposes a quasilinear approach and tests this approach 
with data from a catchment of about 0.11 km2 in Illinois, published by Minshall (1960). 
Minshall clearly demonstrated the non-linear behaviour of this catchment by deriving 
different unit hydrographs for a number of storms of short duration and different peak 
intensities. 

Diskin reduced the unit hydrographs as derived by Minshall to their basic shapes by 
multiplying the ordinates by the lag time and dividing the abscissa by the lag time. The 
resulting transformed hydrographs were almost identical. To use the basic shape of the 
unit hydrograph for simulation, information is required on the factors determining the lag 
time of IUH for the catchment. Diskin found that for the unit hydrographs, as derived by 
Minshall, the variation in shape could be explained with only one storm parameter the 
average rainfall rate. 

Tracer experiments by Pilgrim (1966, 1976) on travel times and non-linearity of flood 
run-off support the quasilinear concept. Pilgrim found that the travel time of water 
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particles is related to the characteristics of the whole flood wave rather than to the 
particular portion of the flood wave in which most of the tracer occurs. These results 
confirm those of Laurenson (1964) and Askew (1970), who both analysed rainfall and 
run-off data, and found that the lag time of the catchments was strongly correlated with 
the amplitude of the run-off wave. 

Pilgrim suggested a quasilinear method in which the peak of run-off is used to indicate 
which IUH is valid for a particular rainfall event. Pilgrim further found that the time of 
travel decreased rapidly with increasing run-off peaks to a fairly constant value at medium 
to high discharges. This means a tendency towards linearity at higher run-off values. 

From the relation between the lag time and the rainfall rate that Diskin derived for 
MinshalFs data, a similar conclusion can be drawn. For storms with a low average rainfall 
rate, an increase in average rainfall rate corresponds with a great reduction in lag time, 
while for storms with a high average rainfall intensity the lag time approximates to a 
constant value. Besides the two approaches, described above, Dooge (1967a, 1967b) 
proposed a cascade of equal non-linear reservoirs with lateral inflows as a special type of 
non-linear model. This model has the property that once the outflow q(t) for a certain 
input function p(t) is known, the outflow for a class of 'similar' input functions can be 
derived from the known outflow q(t). Dooge calls this property 'uniform non-linearity'. 
The uniform non-linear model will be illustrated in a slightly simplified form by a cascade 
of equal non-linear reservoirs with only inflow into the first reservoir. The differential 
equation for one reservoir is given by 

dS 
- + aS°=p(t) (4.3) 

where S is storage volume, p(t) input, and a,c coefficients. 
Two different inflow functions p{(t) and p}(t) are said to be similar if their successive 
rates vary in the same proportion and if the time units of the two time distributions of 
inflow are related to the respective intensities by 

' j~W')/ 

c-l 

(4.4) 

where tr t^ are time units of the inflow functions. 
This property can be derived (Dooge, 1967a) by converting the set of differential 

equations of the model into dimensionless form, for which the proof is given in Appendix 
2. Because of some properties which will now be described, a uniform non-linear model 
with a cascade of two non-linear reservoirs is used for comparison of some methods of the 
quasilinear approach, which seems simpler and more practical. Numerical experiments 
with this model are described in Appendix 3. 

Blackbox analysis with Laguerre functions of pulse inflows and corresponding outflow 
waves yielded IUH of different shapes. They all were found to have the usual shape of a 
positively skewed wave. For waves caused by pulse inflows of the same duration but of 
increasing amplitude the peaks of the corresponding IUH became higher and earlier. 
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Outflow waves, caused by pulse inflows of the same amplitude but of increasing duration 
were characterized by IUH with higher and earlier peaks. Thus both the rate and duration 
of the inflow tended to increase the peak rates and the positive skewness of the IUH that 
represented the best linear approximations of the corresponding outflow waves. In the 
subsequent test of some quasilinear methods, the magnitude but not the duration of the 
event was selected as indicator for the appropriate IUH. This agrees with the general 
experience cited for quasilinear methods. Two quasilinear methods are compared: 
1. A variant of the method used by Diskin (1973). When applying Diskin's method, the 
problem arises how to divide a record of rainfall and run-off data into separate run-off 
events. The choice of divisions determines the average rainfall rates of the single events. 
The rainfall rates in turn determine the choice of IUH. Therefore in the proposed variant, 
a running average of rainfall rate is used. For every bar of the input histogram, P{, an IUH 
is chosen on the criterion 

j=+n 
T' Pi-j j=-n ' 

r, = - (4.5) 
' 2w+l v ' 

where n is dependent on the catchment. An optimum value for n must be obtained by 
trial and error. 

A time (2« + I)-At, where At represents sampling interval of the data, can be consider
ed as 'extent of influence'. The rainfall in this 'extent of influence' is supposed to 
determine the state of the system for the time that Pt is transformed into run-off. 
2. The quasilinear method with the peak as proposed by Pilgrim (1976). When a hydro-
graph of outflow is constructed on the basis of a hyetograph of net rainfall, the peak of 
run-off is unknown beforehand and an iterative procedure is required. 

The result of the numerical experiments on a cascade of two equal non-linear reser
voirs can be summarized as follows. For durations of inflow T =3 units and T = 16 units, 
the best linear transformation between calculated inflow and outflow was determined for 
various constant levels of inflow p. T = 3 was shorter and 7 = 1 6 longer than the four 
segments of an assumed 'test storm', which lasted from 4 to 7 units (Fig. A3.8). Forp > 
1, the shape of IUH for the best linear transformation approached a limiting shape if T> 
8, because then the outflow peak approaches the inflow p. 

First both quasilinear methods were tried out with IUH for T = 16 units. Their 
simulations of the run-off of a 'test storm' were compared with the 'true' computed 
run-off hydrograph. The proposed variant of the method of Diskin (1973), which uses 
rainfall rate as criterion was not successful, because no clear indications were found 
concerning the length of the 'extent of influence'. Pilgrim's quasilinear method, which 
uses the peak value of a run-off wave to select IUH, better simulated outflow than the 
linear method. 

So only Pilgrim's method yielded promising results. Only for this method was the 
experiment repeated for T = 3 units. This time the quasilinear simulation was only 
slightly better than the linear simulation. For the linear method, however, IUH was 
chosen in accordance with the average peak of outflow, which is normally not known 

22 



when an outflow hydrograph is constructed; One can expect that for a real catchment the 
shape of IUH will be determined by both the duration and rate of rainfall, as conceived 
by Dooge as a cascade of equal non-linear reservoirs. As the peak of run-off is determined 
by rate and duration of rainfall, the use of the peak of run-off as criterion to select IUH 
seems also theoretically appropriate if one opts for a quasilinear method. 
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5 Case study of a small urban catchment area by a quasilinear method 

5.1 Catchment description 

Data from a small urban catchment area in the town of Gray Haven (Fig. 19), which 
lies about seven miles east of Baltimore, Maryland, United States, are used for a case 
study to test the quasilinear approach based on the peak rates of run-off. 

Tucker (1969) published data on rainfall and sewer run-off for 29 rainfall events on 
this urban catchment area. The sampling interval of the data was one minute. The catch
ment area is 94 300 m2 and consists of a homogeneous residential area with 'group 
houses' on lots of about 250 m2 . Of the catchment area, 52% can be considered impervi
ous. Pervious parts of the catchment area are undergrass, the sod being underlain by 
sandy soil Ground slopes in the catchment area are gentle, averaging about 0.5%. 
Synchronized data on rainfall and run-off were collected from 1962-1967 with a tipping 
bucket raingauge and a Parshall flume, respectively. 

Because the subsoil is sandy, one can expect that the pervious part only seldom 
contributes to the sewer run-off, because of a high infiltration capacity. 

Fig. 19. Plan of the Gray Haven catchment area, 
flume, • • • drainage system. 

catchment boundary, • raingauge, • Parshall 
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5.2 Analysis 

Of Tucker's original series of 29 events, 3 events had to be discarded as duplicate data 
from different sources. Of the remaining 26, the records of 5 events were incomplete. 
This reduced the number to 21 events. A further screening of the records was necessary 
to eliminate those where the recorded run-off as related to the impervious area, exceeded 
the recorded depth of rainfall. This is explained below. 

To make a water balance for each event, records that had been cut off before suffi
ciently low run-off values had to be fitted with an artificial 'recession tail'. Such a 
recession tail could also serve to split composite waves into separate events. Table 2 gives 
water balances for 21 events, assuming that only the impervious surfaces produced sewer 
run-off. It shows that for three events run-off exceeded rainfall, so the events were 
discarded. The excess could be ascribed to either run-off from pervious surfaces or to 
overestimation of the average rainfall depth on the catchment area by the recorded 
rainfall depth. The analysis was confined to the relation between rainfall and run-off for 
the impervious part of the Gray Haven catchment area. Of the remaining 18 events, 8 had 
a run-off peak > 0.28 mm/min. These were considered as major events. Of these 8 events, 
6 were used for identification and two disregarded because of excessive losses Ç> 40%). 
These high 'losses' can be ascribed to either strong wind effects around the raingauge or 
to strong spatial variability of rainfall, both resulting in a poor representation of rainfall 

Table 2. Water balance for 21 rainfall events in Gray Haven, United States, assuming 
that only the impervious surfaces produce sewer run-off. 

Event 

A6 
A7 
A9 
A10 
All 
A12 
A13 
A14 
A17 
A18 = 
A19 = 
A20 
A21 
A22 
A23 = 
A24 
A25 
A26 
A27 
A28 
A29 

Al 
A2 

A4 

Rainfall 

(mm) 

2.03 
7.87 

11.43 
7.87 
4.32 
4.32 
7.62 

11.94 
7.37 

55.88 
37.08 
30.23 
8.13 

15.49 
58.93 
11.43 
34.01 
13.21 
6.10 
7.62 
5.59 

Sewer run-off 

(mm) 

0.94 
3.76 
2.70 
4.47 
1.17 
1.44 
1.99 
6.20 
7.84 

72.05 
28.83 
26.01 
3.83 
9.62 

53.88 
5.83 

22.31 
11.26 
3.39 
9.78 
3.71 

Losses 

(mm) 

1.09 
4.11 
8.73 
3.40 
3.15 
2.88 
5.63 
5.74 

- 0.47 
-16.17 

8.25 
4.22 
4.30 
5.87 
5.05 
5.60 

11.70 
1.95 
2.71 

- 2.16 
1.88 

(%) 

54 
52 
76 
43 
73 
67 
74 
48 

- 6 
-29 

22 
14 
53 
38 
9 

49 
34 
15 
44 

-28 
34 
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by the raingauge. Of the 10 remaining minor events, 3 were selected for identification. 
Before identification, effective rainfall must be determined by a proper distribution of 

the losses as found from the water balance. Some events were preceded by a dry period of 
at least 12 h. It was assumed that these events occured on initially dry pavements. By 
application of hydrograph simulation (Chap. 3), trial and error showed that for the events 
A18, A19, A20 and A23 an initial loss of 3.05 mm (0.12 inch) was appropriate. 

Because correlations between the losses during an event and characteristics of that 
event did not provide any clue for a more detailed loss model, losses in any minute were 
assumed to be proportional to rainfall rate at that time after subtracting any initial loss 
(Chap. 3). 

The method selected to identify the second subsystem (Chap. 4) was expansion of the 
histogram of rainfall minus losses, the run-off hydrograph and IUH in a finite number of 
Laguerre functions. A description of this method is given in Appendix 1. 

Garvey (1972) and Dooge (1974) show that among the linear identification techniques 
the use of Laguerre functions or its discrete analogue the Meixner functions gives the best 
results for real (i.e. error-containing) data. For identification of the 9 events, 20 Laguerre 
functions were used to approximate input histogram and run-off hydrograph. A time-
scale factor was used (Appendix 1) such that two sample intervals coincided with one 
time unit. 

Approximations of functions with a chosen number of Laguerre functions are better 
as these functions have a simpler form. Therefore sometimes only the most significant 
part of an event was used for identification. Table 3 gives some characteristics of the 

Table 3. Identification of nine selected storms (Gray Haven, United States). 

Storm 

1 

2 

3 

4 

5 

6 

i 

8 

9 

Event 

A29 

A13 
0 -24 min 

A6 

A23 
76-133 min 

A 26 
75-110 min 

A22 
25-60 min 

A19 

A25 
191-280 min 

A 20 
0 -40 min 

Rainfall 
(mm) 

5.59 

7.62 

2.03 

17.47 

7.19 

11.46 

37.08 

15.54 

20.32 

Run-off 
(mm) 

3.71 

5.63 

0.94 

17.87 

6.46 

7.68 

28.87 

12.89 

15.83 

Peak run
off rate 
(mm/min) 

0.23 

0.10 

0.05 

0.53 
0.60 

0.43 

0.39 

1.03 
0.78 

0.58 

0.94 

Compi 

initial 

3.05 

1.07 

3.05 

3.05 

ted loss (mm) 

proportional 

1.88 

2.58 

-0.40 

0.73 

3.78 

5.16 

2.65 

1.44 

ƒ h(t)dt 

0 

0.97 

1.01 

0.99 

1.00 

1.00 

1.02 

1.00 

0.98 

1.00 
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identifications; the period of rainfall used for identification is given in the second column. 
The nine resulting IUH differed considerably. Heavy storms resulted in IUH with high 

and early peaks, thus indicating non-linear behaviour of the catchment area. The nine 
IUH were divided into three classes, a low, a medium and a high class (Fig. 20-22). 

Figure 23 illustrates for Storm 8 from Table 3 the approximation of the input histo
gram and the run-off hydrograph with 20 Laguerre functions. Figure 24 compares the 
observed run-off hydrograph with the reconstructed run-off hydrograph after convolu
tion-integrating the net rainfall with the derived IUH from Figure 22. Apparently linear 
identification was highly successful, while Figure 20-22 showed IUH depending on the 

Fig. 20. Instantaneous unit hydrographs, h(t), of low class. — Storm 1, Storm 2, Storm 3. 
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Fig. 21. Instantaneous unit hydrographs, h(t), of medium class. — Storm 4, 
Storm 6. 
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Fig. 22. Instantaneous unit hydrographs, h(t), of high class. — Storm 7, Storm 8, — - Storm 9. 

size of an event. This confirms the suitability of the quasilinear approach as discussed in 
Chapter 4. The method based on peak rates of run-off was chosen to model the Gray 
Haven catchment area. 

This method requires the following tools: 
1. For each of the 9 storms the peak q of the run-off hydrograph was plotted against 
the time to peak t of IUH derived for that storm. The nine points were fitted with the 
regression equation: 

lgtp=a + blgqp+c(lgqp)
2 (5.1) 

where a, b and c are coefficients. This arbitrary equation proved to give a satisfactory fit 
(Fig. 25). Values of the coefficients were a 0.651, b -0.308 and c -0.091. 
2. A relation between the peak of the IUH, U , and the time to peak of the IUH, tp, was 
determined as the hyperbola U • t = 5.57 which corresponds with the average value for 
the 9 events (Fig. 26). 
3. As Storm 6 yielded a point very close to this hyperbola (U • tp = 5.52), that storm 
was chosen to derive a basic shape for IUH (Fig. 27). So the ordinate of IUH of this storm 
was multiplied by the time to peak t and the abscissa time divided by t . To correct for 
undesirable oscillations, the tail was corrected with the IUH for Storms 4 and 5. 

For verification of this quasilinear model, Event A23 (Table 2) was selected. As the 
IUH of Storm 4 can be considered as average IUH for the catchment area, the run-off 
simulation obtained by convolution-integrating the histogram of net rainfall with IUH of 
that storm can be used to compare the linear method with the quasilinear method. For 
application of the quasilinear method, the histogram of net rainfall (Fig. 28) was divided 
into three segments: r = 0-18, t= 18-30 and t = 30-75 min. 
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Net rainfall rate (mm/min) 

1.0 
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Time(min) 

Run-off rate(mm/min) 

Time (min) 

Fig. 23. Description of net 
rainfall rate, p(t), and run-off 
rate, q(t), with 20 Laguerre 
functions.rrLK>bserved net rain
fall, — calculated net rain
fall; x observed run-off, — 
calculated run-off. 

To derive the IUH for each segment, three values for the time to peak, tp were 
required. To obtain these three values, estimates for the three run-off peaks must be 
calculated. The peaks of run-off from the linear solution were chosen. After deriving and 
convolution-integrating each IUH with corresponding segments of the histogram of net 
rainfall, the run-off hydrograph was obtained by superimposing these three partial run-off 
simulations (Fig. 28). Figure 28 shows that iteration of the procedure gave only a small 
difference. Simulation with the quasilinear model was considerably better than linear 
simulation. The real initial loss was probably slightly greater than 3.05 mm (0.12 inch). 
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Run-o f f r a t e ( m m / m i n 

F'ig. 24. Reconstruction of run-off rate 
for Storm 8. x observed run-off, — re
constructed run-off. 

0.5 

at. -

03 

0.2-J 

0.1 

Fig. 25. Relation between the peak run-off rate, 
q and the time to peak of the IUII, t 
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Fig. 27. Basic shape of IUH. 
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Rainfall rate (mm/min) 
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Time ( m m ) 

Run -o f f rate ( m m / m m ) 
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Time (min) 

Fig. 28. Linear and quasilinear simulations of run-off for Invent A23.flosses, — observed run-off, 
linear simulation, quasilincar simulation (first time), quasilincar simulation (second 

time). Sum of squared differences: linear simulation 0.87 mm2 /min2 , quasilinear simulation 0.46 
mm2 /min2. 
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6 Quasilinear approach with conceptual models 

6.1 Linear conceptual models 

An alternative application of the proposed quasilinear approach is a linear conceptual 
model instead of the general linear model with Laguerre functions. For such an applica
tion, a linear conceptual model must be chosen. Viessman (1966) found the linear reser
voir suited to model rainfall and sewer run-off of four small impervious urban catchment 
areas (area 1600-4000 m2). Sarma et al. (1973) found the Nash cascade a good model to 
use on larger urban areas. 

Six conceptual models were compared for the Gray haven catchment area, according 
to LS: 
1. Linear reservoir. For the linear reservoir, run-off rate is proportional to storage volume: 

S = kq (6.1) 

where k is lag time of the reservoir, q is run-off rate and S is storage volume. The IUH of 
this model is given by 

e •'/* 
A ( r )= - (6.2) 

2. Time shift plus a linear reservoir ('lag-and-route'). The IUH of this model is: 

e-(t-T)/k 

if t>T, h(t) =- (6.3) 
K 

ifT>t>0,h(t) = 0 

where T is time shift. 
3. Cascade of a ƒ model and a linear reservoir. The ƒ model is a diffusion model and was 
derived for groundwater flow to parallel ditches (Kraijenhoff van de Leur, 1958). The 
IUH of the cascade model can be obtained by convolution-integrating the IUH of the ƒ 
model with the IUH of the linear reservoir. The IUH of the ƒ model is as follows: 

A(0=-A"=" e""2f// (6.4) 
TT2-/ n=l ,3 , . . . 

where ƒ is reservoir coefficient. 
So for a cascade of a ƒ model and a linear reservoir, one finds 
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Kt)-

1 

j - 25k 

(e-*/' - e-'lk) + (e-9f/> - e'f/fc) + 
j - k j - 9k 

(e-2Sf//'_e- f /A:) + ... (6.5) 

4. Nash cascade (Nash, 1959). The IUH of this model, which consists of a cascade of u 
equal reservoirs with lag time k, is as follows: 

1 

W-W)*"*® 
v-l (6.6) 

where F (p) is gamma function. 
5. Convective diffusion analogy with upstram inflow or (6) partial lateral inflow. These 
models are based on the partial differential equation: 

dt ~ dx2 dx 
(6.7) 

where A is translation coefficient, D diffusion coefficient and q run-off. The diffusion 
Equation 6.7 can be considered as a simplification of the differential equation for non-
steady flow in an open channel (Schönfeld, 1948; Hayami, 1951). 

For a channel infinite in one direction, with inflow at the upstream end, for a point at 
a distance / from this end, 1UH is as follows (Harley, 1970): 

Hy/I 
Ä W=-z=f e 

V27T?3 

- ( -
H JI 

V2 
ty h 

(6.8) 

where / / = ( / • AT)/2D (dimensionless length parameter) and / = 2D/A2. (characteristic 
time parameter). 

Considering a section of lenght / of an infinite channel, van de Nes (1973, Eq. 4.33) 
gave IUH for the downstream end of this section, for lateral inflow over a length m 
(Fig. 29) as (here slightly adapted): 

/2(f) = 
1 

2G-H-I 
erf (—7===) - erf ( ; _ ,T ) vwr 

i i 
2G-H-I s/2-nt/l 

where G - m //. 

\/2T/T 

-(H(l-G)-t/I? -{H-tfTf 

It jl - e 2?// (6.9) 
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