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Abstract 

Zondervan, J.G. (1978) Modelling urban run-off - a quasilinear approach. Agric. Res. Rep. 
(Versl. landbouwk. Onderz.) 874, ISBN 90 220 0665 4, (vi) + 68 p., 48 figs, 9 tables, 
46 refs, 3 App., Eng. and Dutch summaries. 
Also: Doctoral thesis Wageningen. 

The non-linear behaviour of catchments, as ascertained by various investigators, is discus
sed. Blackbox analysis with Laguerre functions shows non-linear behaviour for a small urban 
catchment area. Some approaches to non-linear systems for rainfall and run-off are con
sidered. Two quasilinear methods are compared with a theoretical model for their applica
tion. Results from an application of the most promising method on an urban catchment area 
confirm the feasibility of this method. Six conceptual models are compared and an appli
cation of the quasilinear method is given with a conceptual model. A satisfactory treatment 
of losses forms a major problem in modelling urban rainfall and run-off. Hence a chapter is 
devoted to transformation of rainfall into sewer inflow and concurrent losses. The use of 
critical sequences of rainfall for modelling is discussed. Evidence suggesting the maximum 
time interval between samples is given. 

Free descriptors: urban hydrology, catchment area, sewer run-off, infiltration losses, 
critical sequences of rainfall. 
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1 Introduction 

In the last decennia, urban growth has been rapid in many parts of the world. The 
concurrent problems of flash floods and deterioration of water quality have increased 
awareness of the need for integrated regional water management in such urban areas. 

The aim of modelling is to provide tools for water management, in which the various 
interests and their interactions are taken into account (e.g. McPherson, 1974). Although 
such water management ultimately requires models for both water quantity and water 
quality, this study is restricted to a number of quantitative aspects of modelling. 

McPherson (1976) points out that 'mathematical model development for sewered 
system applications has seemingly already greatly outpaced the data base for model 
verification'. 

In this study, analysis of existing data indeed showed that their accuracy is often 
inadequate for developing models. Analysis of a number of short-term records of rainfall 
and run-off showed that often one raingauge does not sample the time distribution of 
areal rainfall with sufficient accuracy, especially for heavy local thunder storms which are 
the source of critical loads on the sewer system. For instance, for an airport with a 
catchment area of only 0.3 km2, with all the surface developed, total run-off could be 1.3 
times the recorded rainfall. Another difficulty that sometimes prevents use of data is too 
long a sample interval. A third difficulty in modelling rainfall and sewer run-off from 
urban catchment areas is that even if one has reliable data on rainfall and run-off, data on 
antecedent rainfall are often lacking. That information is however essential for research. 

Because of such difficulties, only the analysed data of one small urban catchment area 
were found that suited detailed research. The size of the catchment area, a residential 
quarter in the United States town of Gray Haven, Maryland, is 94 000 m2 . 

Non-linear behaviour as found for the Gray Haven catchment area could also be 
demonstrated for a much larger urban catchment area in the town of Enschede in the 
Netherlands. The data of this catchment, however, which were used for a blackbox 
analysis (van der Kloet et al., 1977), could not be used for detailed research, because 
there also the size of the catchment area, 1.4 km2, was too large to justify use of rainfall 
data from one raingauge only. Because of the non-linear behaviour encountered in these 
urban catchment areas, this study concentrates on recent approaches to non-linear hydro-
logical systems. 

Losses by ponding and infiltration are so important in modelling, that much effort was 
given to developing equipment for measuring such losses. Experiments with the equip
ment in urban study areas where the rainfall and run-off is measured, can yield valuable 
complementary information. 

Use of models for the transformation of rainfall into sewer run-off requires sequences 
of rainfall with a short time interval. For some sizes of catchment area, evidence on the 
permissible maximum interval between sample is given. 
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2 Rainfall data to compute run-off from small urban catchment areas 

This chapter considers only point rainfall. To allow the computation of run-off hydro-
graphs caused by extreme rainfall from urban catchment areas, both critical sequences of 
rainfall and a model for the transformation of rainfall into run-off are needed. 

For computations of extreme run-off often the simplifying assumption is made that 
rate of rainfall is constant for a certain time T. Rate of rainfall can then be obtained from 
intensity—duration—frequency curves. An example of this procedure is the well known 
'rational method', which Watkins (1963) reports to have been used in Ireland by Mulva-
ney as early as 1851. Ardis et al. (1969) by an investigation into the storm drainage 
practices of thirty-two cities in the United States, found that at that time practically 
every city still used this method for design purposes. McPherson (1969) clearly demon
strated the crudeness and limitations of this method. 

An example for the Netherlands in which the assumption of a constant rate of rainfall 
is involved is the use of the 'dots graphic of Kuipers'. This graphic gives for the period 
1938-1948, for all events with more than 4 mm precipitation at De Bilt, the relation 
between duration of rainfall and amount. The graphic of Kuipers is a frequently used tool 
for estimation of frequencies of spills from sewer systems in the Netherlands (Koninklijk 
Instituut van Ingenieurs, 1972; Schenkeveld, 1976). Here again the assumption of con
stant rainfall during a time T may lead to erroneous results. In its report of 1972 the 
Koninklijk Instituut van Ingenieurs (Royal Institute of Technical Graduates) shows that 
use of the graphic of Kuipers underestimates the frequency of spills from sewer systems. 
The assumption of constant rate of rainfall within T gives rise to bigger errors as the 
response time of the considered system is smaller in comparison with T. 

Urban systems for rainfall and run-off often have such short response times that, if 
hydrographs must be computed from rainfall data, it is necessary to have data with a 
small interval between samples. To illustrate this, in Table 1 the lag times for a number of 
small sewered urban catchment areas and inlet areas in the United States (Shaake jr. et al., 
1967) and the Netherlands are given. The Dutch inlet areas Pomona, Bennekom and De 
Nieuwlanden are described in Chapter 3. The lag times of the Dutch catchment areas 
Lelystad 1, Lelystad 2 and Varviksingel were taken from van der Kloet et al. (1977). 
Lelystad 1 and 2 are a small residential quarter and a parking place, respectively, in the 
town of Lelystad. Varviksingel is a sewer district in the town of Enschede. 

By rule of thumb that the sample interval must not exceed a quarter of the lag time of 
the catchment area, a sample interval of about 15 s would be appropriate for small inlet 
areas like Pomona and Bennekom. For small residential quarters like Gray Haven and 
Lelystad 1, Lelystad 2 and Varviksingel were taken from van der Kloet et al. (1977). 
area like Varviksingel, with an area of 1.4 km2 would a sample interval of 5 minutes be 
sufficiently small. 

In the Netherlands, statistical properties of rainfall are published by the KNMI (Royal 



Table 1. Lag times for a number of urban catchment areas in the U.S.A. and in the Netherlands. 

Catchment area 

United States of America1 

Gray Haven 
Hamilton Hills 2 
Hamilton Hüls 3 
Hamilton Hills 4 
Hamilton Hüls 5 
Midwood 5 
Montebello 2 
Montebello 3 
Montebello 4 
Montebello 5 
Newark 9 
Newark 12 
Northwood 
South Parking Lot 1 
South Parking Lot 2 
Swansea 
Uplands 
Walker Avenue 
Yorkwood 

Netherlands 

Pomona 
Bennekom 
De Nieuwlanden 
Lelystad 1 
Lelystad 2 
Varviksingel 

Area 
(103 m 2 ) 

94.3 
3.9 
7.4 
0.9 
6.9 
5.2 
6.1 
1.8 
2.2 
2.1 
2.6 
3.9 

191.8 
1.6 
1.9 

190.6 
121.8 
620.8 
42.1 

0.15 
0.16 
0.43 

20.0 
7.1 

1400.0 

Imperviousness 

(%) 

52 
20 
36 
96 
32 
56 
9 

57 
65 
66 

100 
100 
68 

100 
100 
44 
52 
33 
41 

100 
100 
100 
44 
97 

estim. 24 

Average lag time 

8 min 30 s 
8 min 42 s 
7 min 24 s 
4 min 54 s 
4 min 48 s 
3 min 6 s 
8 min 
4 min 
3 min 18 s 
3 min 42 s 
3 min 24 s 
4 min 54 s 
6 min 30 s 
4 min 42 s 
6 min 54 s 
4 min 48 s 
7 min 24 s 

11 min 30 s 
4 min 42 s 

1 min 36 s -
1 min 
3 min 3 s -
9 min 
5 min 

32 min 

- 2 min 18 s 
- 2 min 5 s 
- 4 min 
- 11 min 
- 7 min 
- 40 min 

1. From Schaake et al. (1967). 

Netherlands Meteorological Institute). The shortest time interval for which statistical 
information can be obtained is 5 minutes (KNMI, 1968). This information on 5-minutes 
rainfall is based on charts of a self-recording raingauge, covering a period of 12 years. 
Hence rainfall records with an appropriate sample interval are available in the Netherlands 
for urban catchment areas larger than about a square kilometre. Because a record length 
of 12 years is not very long for extreme rainfall events, one could suggest the use of a 
model to simulate rainfall sequences. Such a model could be calibrated with the record of 
5-minutes data of the KNMI. 

Cole & Sherriff (1972) reviewed stochastic models for the simulation of rainfall over 
short time intervals. Only in two studies mentioned there was a time interval less than one 
hour used. Both studies, by Grace & Eagleson (1966) and Raudkivi & Lawgun (1970) 
used intervals of 10 min. The model of Grace & Eagleson was constructed to simulate 
critical sequences of rainfall data for small catchment areas in the northern part of the 



United States and in Canada. Since critical sequences of rainfall for such catchment areas 
would be sudden heavy rain, which occurs typically in summer thunder storms, only 
summer data were analysed. In their analysis, they distinguished three types of storms. 

Raudkivi & Lawgun (1970), who developed their model for the Auckland area in New 
Zealand, constructed a simulation model in which all types of rainfall were lumped. They 
dealt with the seasonality of the rainfall process by calibrating their model parameters for 
each month of the year. 

In the Netherlands, many types of rain occur, for instance showers, cold fronts, warm 
fronts, frontal and non-frontal low pressure centres, and occluded fronts. As lumping of 
different types of rainfall is doubtfully justifiable and because also in the Netherlands 
critical rainfall sequences for small urban areas will be produced by short heavy summer 
showers, the approach of Grace & Eagleson must be preferred if it is decided to use a 
simulation model. 

Yperlaan (1977) found evidence of an increase in precipitation near Rotterdam. To 
investigate the urban influence for different weather types, he selected precipitation days 
from 1958 up to 1970 according to season, wind direction and precipitation type. He 
found that frontal rains and rains in low pressure systems seem to give positive moderate 
differences, whereas for some showers very high increases seemed to result from urban 
influence. 

These considerations lead to the following recommendations: 
— As transformation of rainfall into sewer inflow for common Dutch road drainage is so 
fast that it can be neglected in modelling run-off from urban catchment areas, gathering 
rainfall data with a time interval of 15 s seems—ignoring technical difficulties—not neces
sary for modelling purposes. Whether a sample interval of 15 s is desirable for other 
purposes, as in the planning of number of inlets per area, will not be treated here. 
— For modelling run-off from small urban catchment areas (5 x 103 to 200x 10 m2) a 
sample interval of one or two minutes is required. Because such 'urban drainage units' are 
appropriate for modelling purposes, creation of rainfall records with a one-minute interval 
is recommended. As short heavy summer showers are of special interest, the data must be 
reduced substantially at the site of the raingauge. As heavy summer showers have a local 
character, it is recommended to measure at more than one station with a one-minute 
interval, to obtain more quickly a number of critical rainfall events. 
— Information on antecedent rainfall is important for modelling urban run-off (Chap. 
3). This information, however, can be obtained from rainfall data with a much longer 
sample interval. 
— The evidence of urban influence on precipitation as found by Yperlaan (1977) should 
be investigated especially for heavy summer showers. 
— Since differences in types of rainfall, local influences on showers (urban, coastal) and 
periodicities in occurence of showers (thunder storms mostly occur during the second 
half of the day), the use of simulation models for short-term rainfall seems questionable. 
If it is decided to use such a model, it seems appropriate to confine simulation to summer 
showers. 



- Finally, if one uses intensity-duration—frequency curves to obtain critical storms for 
computations of extreme run-off, one can introduce storm profiles instead of assuming 
constant rainfall. In this manner, Tholin & Kiefer (1960) determined a critical storm for 
sewer design in Chicago. They based their storm profile on the analysis of some measured 
storm profiles. For an extensive treatment on storm profiles, see the British Flood Studies 
Report, Vol. 2 (National Environment Research Council, 1975). 



3 Transformation of rainfall into sewer inflow and concurrent losses 

In the Netherlands (relatively flat regions and moderate rainfall rates) sewer run-off 
usually originates from rainfall on roofs and pavements only. Therefore it is common 
practice in Dutch sewer design to neglect run-off from pervious areas. On the other hand, 
losses that occur on the developed surfaces are also neglected. 

Transformation of rainfall into sewer run-off can be represented by a transformation 
of rainfall into sewer inflow, followed by a transformation to sewer outflow in the sewer 
system itself. Although losses can take place during both transformations, it can be 
assumed that losses occur mainly before water enters the system of sewers, if the sewer 
system is in good condition. 

In the town of Wageningen, two flat roofs of buildings of the University, each with a 
surface of about 1000 m2, are being studied. This study, which is still running, will give 
information about the effect of the roof-covering (very fine pebbles, 3-4 mm diam., and 
coarse pebbles, 1-5 cm diam.) on the rainfall—run-off relation of flat roofs. On a part of 
one of these roofs at 'De Nieuwlanden', experiments were carried out with a rainfall 
simulator (Fig. 1) for a pioneer study. Details about the rainfall simulator and measuring 
equipment, and the detailed results of this study are given in Zondervan & Dommerholt 
(1975). A sketch of the roof and drains is given in Figure 2. The surface of the roof is 
tarred with a layer of 5 mm of the fine pebbles on top. 

In this study the 'lag-and-route model' (a time shift + a linear reservoir) proved to be 
an adequate model for this inlet area (for a further description of this model see the first 
section of Chapter 6 on conceptual models). The lag time of the linear reservoir k was 
derived from recession curves (Fig. 3). These recession curves were obtained by simulating 
rainfall with an intensity of about 70 mm/h till equilibrium was reached, whereafter the 
rainfall was stopped and the run-off measured. If the lag-and-route model is a good one 
for the transformation of rainfall into run-off, the recession curve must yield a straight 
line on semi-log paper. This was approximately true except for very low flows (run-off < 
1.5 1/s & 13 mm/h). From the slope of the recession curve a value of 2.5 min was derived 
for the lag time of the reservoir. The time shift r was, as a first approximation, assumed 
to equal the average time of travel in the drains. 

Another way of estimating the parameters of a model is to optimize them according to 
least sum of squared differences (LS) between measured and calculated run-off for a 
certain rainfall-run-off event. In this way, the parameters of a number of conceptual 
models, among which the lag-and-route model and the three-parameter model: convective 
diffusion, upstream inflow + time shift were optimized for a simulated shower on De 
Nieuwlanden. To eliminate the effect of the observed non-linear behaviour during the 
first minutes of rainfall, the first ten minutes of the shower were excluded from the LS. 

For both models, the measured and optimized run-off hydrographs are given in Fig
ures 4 and 5. For both, a value of 1 min was found for the time shift T, which confirmed 



the assumption in which 7 was equated with the average time of travel in the drains. 
The same shower was used to evaluate the performance of the lag-and-route model 

using the lag time of the reservoir as found with the recession curve (Fig. 6). The run-off 
simulation was satisfactory. The deviations between measured and simulated run-off dur
ing the first minutes of rainfall and in the tail of the run-off hydrograph are due to 
non-linearities, which are rather pronounced at low flows (Chap. 4). 

No results of systematic investigations on the transformation of rainfall into sewer 
inflow and concurrent losses have been published in the Netherlands. Besides investiga
tions on roof inlet areas, experimental equipment was developed to allow the study of 
paved inlet areas. With this mobile equipment, controlled flows were taken from fire 
hydrants and with a rainfall simulator this water was sprinkled on pavements. The result
ing inflow into the sewer system was measured (Zondervan & Dommerholt, 1976; Dom-
merholt & Zondervan, 1977). Two typically constructed roads, a parking place paved 
with concrete stones at 'Pomona' in the town of Wageningen and an asphalt road with a 
tiled footpath on either side in the village of Bennekom were investigated (Fig. 7 and 8). 
Figure 9 is a map of two inlet areas at Pomona. A description of some experiments on the 
inlet area P III + P IV will be given to demonstrate the course of events. The inlet area 
was divided into two equal parts, because the rainfall simulator could not cover the whole 
surface. 

To estimate the initial losses for wetting the surface and filling depressions, a constant 
rainfall rate of 72 mm/h was simulated as first and last experiment. The first experiment 
was started with a completely dry road surface. The shift between the rising limbs of the 
two run-off curves yielded a value for the initial loss (Fig. 10). 

After some minutes of rainfall, run-off rate becomes almost constant. The difference 
between rainfall rate and run-off rate yields the infiltration rate that corresponds with the 
moisture condition at the moment. The figure shows that during the experiments be
tween the first and last experiment, the infiltration rate decreased considerably. 

In the laboratory, the infiltration rate of the concrete paving stones was determined as 
0.5 mm in the first 15 minutes. After 15 minutes, infiltration almost ceased. Thus Fig
ure 10 suggests that the observed infiltration mainly occurred through the joints be
tween the concrete stones. 

The lag-and-route model, which proved to be a succesful model for De Nieuwlanden 
was also tried out for these paved inlet areas. Figure 11 shows how the lag time k of the 
reservoir was estimated from recession curves for P III and P IV. Figure 12 shows simu
lated and measured run-off hydrographs from a composite shower for P III and P IV, 
using the parameters found in Figure 11. In the simulation, lag was not yet introduced. 
Figure 12 shows that by introducing a time shift of 30 s simulation is satisfactory. Fig
ure 13 is a map of the experimental site at Bennekom. After estimating the lag time k 
from recession curves, the lag-and-route model was tried out as at Pomona. Figure 14 
shows simulated and measured run-off hydrographs for the composite shower for B II. 
Here introduction of a time lag would hardly improve the result. 

In the study of the inlet areas at Pomona and Bennekom, the lag-and-route model 
again proved adequate to describe the transformation from net rainfall into sewer inflow. 

For the surface with paving stones at Pomona, the infiltration rate was between 7 and 
27 mm/h. The initial loss varied between 0.5 and 1.8 mm. As the experiments were after 
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Fig. 1. Experiments on the roof of De Nieuwlanden. A. General layout, B. Drain inlet. C. Part of 
water supply and a sprinkler pipe. D. Sprinkler installation in action. E. Detail of D. 

a long dry period, one would expect that on the average lower values for the infiltration 
rate will prevail. The described experiments however demonstrated that losses during the 
transformation of rainfall into sewer inflow can be high. More experiments at different 
sites are needed in order to evaluate the effect of previous rain on initial losses and on 
infiltration rate. Information on losses in urban catchment areas can also be obtained 
from rainfall-run-off studies on small well-gauged catchment areas. But to obtain infor
mation about losses on paved areas, the rainfall simulator method has some advantages: 
- In catchment studies, errors in the rainfall data and leakage from the sewer system 
may disturb the results. 
- With the mobile equipment, little time is needed to estimate losses at many sites and 
with various rainfall rates and initial moisture conditions. 
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Fig. 2. Sketch of roof and drains at De Nieuwlanden. 
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Fig. 4. Run-off simulation with the lag-and route model. The parameters were optimized for this 
storm according the least sum of squared differences (LS). Data from De Nieuwlanden experiments. 
-TLrainfall, — observed run-off, simulated run-off. Parameters: k = 3.1 min. r = 1.0 min. LS: 
8.22 l2 / s a (t= 11-63 min). 
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from De Nieuwlanden experiments. J~L rainfall, — observed run-off, simulated run-off. Parame
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Fig. 6. Run-off simulation with the lag-and-route model. The lag time was obtained from the reces
sion curves in Figure 3, SX. rainfall, — observed run-off, simulated run-off. Parameters: k = 2.5 
min, T = 1.0 min. LS: 12.91 l1 /s2 (t = 11-63 min). 

— In catchment studies, information on integrated losses is obtained and (as demon
strated later) the distribution of losses in time can only be guessed. 

Catchment studies offer the opportunity to study the simultaneous behaviour of 
hydrological variables in the chosen area. One can study losses on the impervious surface, 
transformation of rainfall onto this surface into sewer run-off, conditions under which 
pervious surfaces may contribute to run-off and fluctuations in watertable. 

Lack of information about losses as a function of time is one of the major problems in 
trying to model the transformation of rainfall into sewer run-off. As the processes that 
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Fig. 7. Parking place at Pomona. 
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Fig. 9. Plan of the experimental site at Pomona. 

determine the losses are complicated, the best thing that one can do is to try to describe 
the losses with a simple model. Well-known examples of such models are: 
— A. Initial loss. Previous precipitation, by filling depressions and wetting the surfaces, 
quickens the response of a catchment area. 
- B. The $ index. Here a constant absolute loss rate is assumed during the whole period 
of rainfall excess. 
— C. Proportion assumed lost. 
- D. The combination A+B or A+C. 
For an extensive treatment of the distribution of losses, the reader is referred to the 
British Flood Studies Report, Vol. 2 (Natural Environment Research Council, 1975). 

It is possible to select between the 4> index and the proportional model for a certain 
catchment area, if records of rainfall and run-off are available. This can be achieved on 
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Fig. 13. Plan of the road at Bennekom. 



basis of a best fit between a measured run-off hydrograph and a hydrograph that is 
reconstructed with the corresponding effective rainfall when using a linear time-invariant 
model: 
— Correct the rainfall for some showers according to both loss-models. 
— Identifications of the catchment area for each shower, either with a blackbox model 
or with a conceptual model. 
— Reconstruct run-off hydrographs and select the loss model that provides the best fits. 

In this way van Gastel (1976) found for the Gray Haven catchment area that loss 
model A+C yielded more consistent results than model A+B. A comparison of conceptual 

B n 

Fig. 14. Run-off simulation with the linear reservoir model. The value for the lag time was obtained 
from the recession curve of the Bcnnckom data, k = 1 min.-TLrainfall,0infiltration, — observed run
off, simulated run-off. 
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Fig. 15. Run-off simulations with the Nash cascade for l'.vent A23 from Table 2 (Gray Haven). The 
model parameters were estimated by moment fitting for Storm 7 from Table 3 for the loss models 
initial loss + <t> index and initial loss + proportion assumed lost, — observed run-off, proportion 
assumed lost. <t> index. 
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Run-off rate (mm/min) 

Fig. 16. Run-off simulations with the Nash cascade for Event A23 from Table 2 (Gray Haven). The 
model parameters were estimated by moment fitting for Storm 8 from Table 3 for the loss models 
<J> index and proportion assumed lost. — observed run-off, proportion assumed lost, * in
dex. 
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Fig. 17. Run-off simulations with the model convective diffusion, upstream inflow, for Event A23 
from Table 2 (Gray Haven). The model parameters were estimated by moment fitting for Storm 7 
from Table 3 for the loss models initial loss + * index and initial loss + proportion assumed lost. — 
observed run-off, proportion assumed lost, * index. 
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Run-oft r a te fmm/min) 

I'ig. 18. Run-off simulations with the model convectivc diffusion, upstream inflow, for Event A23 
from Table 2 (Gray Haven). The model parameters were estimated by moment fitting for Storm 8 
from Table 3 for the loss models # index and proportion assumed lost. — observed run-off. -
proportion assumed iost, <J> index. 

models for transformation of net rainfall into sewer run-off in this catchment area (Chap. 
6) indicated that the best models were the Nash cascade and the convective diffusion 
model with upstream inflow. For these two models, van Gastel estimated the parameters 
by moments for two showers (No 7 and 8 of Table 3 (Chap. 5)). For both showers, the 
losses were distributed according to the loss models A+B and A+C, respectively. With the 
parameters obtained, he simulated the outflow of event A23 of Table 2 (Chap. 5), which 
was chosen because of the many sharp peaks and good water balance (Fig. 15-18). With 
both conceptual models abstraction of losses by model A+C yielded hydrographs which 
better corresponded to the measured run-off than modelling of losses with A+B. 



4 Transformation of net rainfall into run-off 

4.1 Linearity and time invariance of catchment areas 

In hydrology, linear time-invariant models are widely used. The reason for this prefer
ence is the wealth of mathematical methods available for analysis of linear systems. The 
final judgment of their applicability, however, must be based on closeness to linearity and 
to time invariance of the systems behaviour. 

Because of the effect of previous rainfall, all catchments, both urban and non-urban, 
will be non-linear and time-variant (Chap. 3). This problem is usually solved by represent
ing rainfall run-off by a series of two subsystems. The first subsystem concerns the 
subtraction of losses and the second subsystem transforms the net or effective rainfall 
into catchment run-off. The effect of previous rainfall is thus expressed in the loss model, 
and for the transformation model the assumption of linearity and time invariance is 
usually maintained. 

The second subsystem can then be characterized by its impulse response, which in 
hydrology is usually called the Instantaneous Unit Hydrograph (IUH)1. A number of case 
studies, however, point out (Chap. 5; also Childs, 1958; Minshall, 1960; Singh, 1964; 
Pilgrim, 1966) that the form of the IUH is not always the same for different events. In 
the case studies, the heavier the analysed storm, the higher was the peak of IUH and the 
smaller the time to peak of IUH. 

4.2 Some approaches to modelling of non-linear catchment areas 

Because of the results in Section 4.1, investigators searched for models to describe the 
second subsystem adequately, taking the observed non-linear behaviour into account. 
Two approaches can be distinguished: 
1. A more general non-linear theory replaces the linear theory, in which the output q(t) 
from a linear system can be expressed by convolution-integration of the kernel function 
h(t) with the system input p(t): 

q(t)= ƒ h(r) p(t-T)dT ; h(r) = 0 for r > r (4.1) 
0 

1. In numerical calculations, one frequently uses the pulse response (unit hydiograph). When the time 
interval used to determine the unit hydrograph is sufficiently small, the unit hydrograph and the IUH 
can be considered identical. 
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where h(r) stands for the instantaneous unit hydrograph. 
This is only the first term of the representation of the non-linear case by the functional 
series (Amorocho & Orlob, 1961) 

oo oo 

q(t)= ƒ A,(r)p(f-r)dT+ ƒ ƒ h2(Ti,T2)p(t-Tl)p(t-T2)dTldT2 + ... + 
0 0 0 

OO oo 

+ ƒ ... ƒ hn(Tl,...,Tn)(P(t-Tl)...p(t-Tn)dTl ...dTn + ... (4.2) 
0 0 

with h(r) = 0 for f>t. 
Mathematical complications, however, make practical applications in which more than 
the first term of Equation 4.2 are used rater complicated. An abbreviated version of this 
approach was introduced by Diskin & Boneh (1972). 
2. In the approach that some authors call 'quasilinear' (e.g. Delleur & Rao, 1973; Diskin, 
1973), it is assumed that linear theory can also be applied to non-linear catchment 
behaviour, if an IUH is chosen according to the size of the event. So linear behaviour 
within an event is assumed. Examples of this approach were given by Singh (1964) and 
Diskin (1973). 

Singh used a conceptual model of which the parameters are a function of the storm 
intensity. Diskin can be cited to illustrate the line of thought in this approach: 'The 
instantaneous unit hydrograph may be viewed also as a distribution curve of the times of 
travel of all particles of water deposited on the watershed at the instant of occurrence of 
the impulsive rainfall input ... the time of travel is influenced by two sets of factors, one 
related to the topographic features of the watershed and the other to the conditions in 
the watershed at the time concerned.' 

Diskin assumes that the first set of factors determines the 'basic shape' of the IUH, 
while the second set determines only the time scale of IUH. Thus the second set of 
factors, which determines the state of the system for one particular storm, proportionally 
influences the times of travel of water particles. 

With this consideration, Diskin proposes a quasilinear approach and tests this approach 
with data from a catchment of about 0.11 km2 in Illinois, published by Minshall (1960). 
Minshall clearly demonstrated the non-linear behaviour of this catchment by deriving 
different unit hydrographs for a number of storms of short duration and different peak 
intensities. 

Diskin reduced the unit hydrographs as derived by Minshall to their basic shapes by 
multiplying the ordinates by the lag time and dividing the abscissa by the lag time. The 
resulting transformed hydrographs were almost identical. To use the basic shape of the 
unit hydrograph for simulation, information is required on the factors determining the lag 
time of IUH for the catchment. Diskin found that for the unit hydrographs, as derived by 
Minshall, the variation in shape could be explained with only one storm parameter the 
average rainfall rate. 

Tracer experiments by Pilgrim (1966, 1976) on travel times and non-linearity of flood 
run-off support the quasilinear concept. Pilgrim found that the travel time of water 
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particles is related to the characteristics of the whole flood wave rather than to the 
particular portion of the flood wave in which most of the tracer occurs. These results 
confirm those of Laurenson (1964) and Askew (1970), who both analysed rainfall and 
run-off data, and found that the lag time of the catchments was strongly correlated with 
the amplitude of the run-off wave. 

Pilgrim suggested a quasilinear method in which the peak of run-off is used to indicate 
which IUH is valid for a particular rainfall event. Pilgrim further found that the time of 
travel decreased rapidly with increasing run-off peaks to a fairly constant value at medium 
to high discharges. This means a tendency towards linearity at higher run-off values. 

From the relation between the lag time and the rainfall rate that Diskin derived for 
MinshalFs data, a similar conclusion can be drawn. For storms with a low average rainfall 
rate, an increase in average rainfall rate corresponds with a great reduction in lag time, 
while for storms with a high average rainfall intensity the lag time approximates to a 
constant value. Besides the two approaches, described above, Dooge (1967a, 1967b) 
proposed a cascade of equal non-linear reservoirs with lateral inflows as a special type of 
non-linear model. This model has the property that once the outflow q(t) for a certain 
input function p(t) is known, the outflow for a class of 'similar' input functions can be 
derived from the known outflow q(t). Dooge calls this property 'uniform non-linearity'. 
The uniform non-linear model will be illustrated in a slightly simplified form by a cascade 
of equal non-linear reservoirs with only inflow into the first reservoir. The differential 
equation for one reservoir is given by 

dS 
- + aS°=p(t) (4.3) 

where S is storage volume, p(t) input, and a,c coefficients. 
Two different inflow functions p{(t) and p}(t) are said to be similar if their successive 
rates vary in the same proportion and if the time units of the two time distributions of 
inflow are related to the respective intensities by 

' j~W')/ 

c-l 

(4.4) 

where tr t^ are time units of the inflow functions. 
This property can be derived (Dooge, 1967a) by converting the set of differential 

equations of the model into dimensionless form, for which the proof is given in Appendix 
2. Because of some properties which will now be described, a uniform non-linear model 
with a cascade of two non-linear reservoirs is used for comparison of some methods of the 
quasilinear approach, which seems simpler and more practical. Numerical experiments 
with this model are described in Appendix 3. 

Blackbox analysis with Laguerre functions of pulse inflows and corresponding outflow 
waves yielded IUH of different shapes. They all were found to have the usual shape of a 
positively skewed wave. For waves caused by pulse inflows of the same duration but of 
increasing amplitude the peaks of the corresponding IUH became higher and earlier. 
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Outflow waves, caused by pulse inflows of the same amplitude but of increasing duration 
were characterized by IUH with higher and earlier peaks. Thus both the rate and duration 
of the inflow tended to increase the peak rates and the positive skewness of the IUH that 
represented the best linear approximations of the corresponding outflow waves. In the 
subsequent test of some quasilinear methods, the magnitude but not the duration of the 
event was selected as indicator for the appropriate IUH. This agrees with the general 
experience cited for quasilinear methods. Two quasilinear methods are compared: 
1. A variant of the method used by Diskin (1973). When applying Diskin's method, the 
problem arises how to divide a record of rainfall and run-off data into separate run-off 
events. The choice of divisions determines the average rainfall rates of the single events. 
The rainfall rates in turn determine the choice of IUH. Therefore in the proposed variant, 
a running average of rainfall rate is used. For every bar of the input histogram, P{, an IUH 
is chosen on the criterion 

j=+n 
T' Pi-j j=-n ' 

r, = - (4.5) 
' 2w+l v ' 

where n is dependent on the catchment. An optimum value for n must be obtained by 
trial and error. 

A time (2« + I)-At, where At represents sampling interval of the data, can be consider
ed as 'extent of influence'. The rainfall in this 'extent of influence' is supposed to 
determine the state of the system for the time that Pt is transformed into run-off. 
2. The quasilinear method with the peak as proposed by Pilgrim (1976). When a hydro-
graph of outflow is constructed on the basis of a hyetograph of net rainfall, the peak of 
run-off is unknown beforehand and an iterative procedure is required. 

The result of the numerical experiments on a cascade of two equal non-linear reser
voirs can be summarized as follows. For durations of inflow T =3 units and T = 16 units, 
the best linear transformation between calculated inflow and outflow was determined for 
various constant levels of inflow p. T = 3 was shorter and 7 = 1 6 longer than the four 
segments of an assumed 'test storm', which lasted from 4 to 7 units (Fig. A3.8). Forp > 
1, the shape of IUH for the best linear transformation approached a limiting shape if T> 
8, because then the outflow peak approaches the inflow p. 

First both quasilinear methods were tried out with IUH for T = 16 units. Their 
simulations of the run-off of a 'test storm' were compared with the 'true' computed 
run-off hydrograph. The proposed variant of the method of Diskin (1973), which uses 
rainfall rate as criterion was not successful, because no clear indications were found 
concerning the length of the 'extent of influence'. Pilgrim's quasilinear method, which 
uses the peak value of a run-off wave to select IUH, better simulated outflow than the 
linear method. 

So only Pilgrim's method yielded promising results. Only for this method was the 
experiment repeated for T = 3 units. This time the quasilinear simulation was only 
slightly better than the linear simulation. For the linear method, however, IUH was 
chosen in accordance with the average peak of outflow, which is normally not known 
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when an outflow hydrograph is constructed; One can expect that for a real catchment the 
shape of IUH will be determined by both the duration and rate of rainfall, as conceived 
by Dooge as a cascade of equal non-linear reservoirs. As the peak of run-off is determined 
by rate and duration of rainfall, the use of the peak of run-off as criterion to select IUH 
seems also theoretically appropriate if one opts for a quasilinear method. 
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5 Case study of a small urban catchment area by a quasilinear method 

5.1 Catchment description 

Data from a small urban catchment area in the town of Gray Haven (Fig. 19), which 
lies about seven miles east of Baltimore, Maryland, United States, are used for a case 
study to test the quasilinear approach based on the peak rates of run-off. 

Tucker (1969) published data on rainfall and sewer run-off for 29 rainfall events on 
this urban catchment area. The sampling interval of the data was one minute. The catch
ment area is 94 300 m2 and consists of a homogeneous residential area with 'group 
houses' on lots of about 250 m2 . Of the catchment area, 52% can be considered impervi
ous. Pervious parts of the catchment area are undergrass, the sod being underlain by 
sandy soil Ground slopes in the catchment area are gentle, averaging about 0.5%. 
Synchronized data on rainfall and run-off were collected from 1962-1967 with a tipping 
bucket raingauge and a Parshall flume, respectively. 

Because the subsoil is sandy, one can expect that the pervious part only seldom 
contributes to the sewer run-off, because of a high infiltration capacity. 

Fig. 19. Plan of the Gray Haven catchment area, 
flume, • • • drainage system. 

catchment boundary, • raingauge, • Parshall 
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5.2 Analysis 

Of Tucker's original series of 29 events, 3 events had to be discarded as duplicate data 
from different sources. Of the remaining 26, the records of 5 events were incomplete. 
This reduced the number to 21 events. A further screening of the records was necessary 
to eliminate those where the recorded run-off as related to the impervious area, exceeded 
the recorded depth of rainfall. This is explained below. 

To make a water balance for each event, records that had been cut off before suffi
ciently low run-off values had to be fitted with an artificial 'recession tail'. Such a 
recession tail could also serve to split composite waves into separate events. Table 2 gives 
water balances for 21 events, assuming that only the impervious surfaces produced sewer 
run-off. It shows that for three events run-off exceeded rainfall, so the events were 
discarded. The excess could be ascribed to either run-off from pervious surfaces or to 
overestimation of the average rainfall depth on the catchment area by the recorded 
rainfall depth. The analysis was confined to the relation between rainfall and run-off for 
the impervious part of the Gray Haven catchment area. Of the remaining 18 events, 8 had 
a run-off peak > 0.28 mm/min. These were considered as major events. Of these 8 events, 
6 were used for identification and two disregarded because of excessive losses Ç> 40%). 
These high 'losses' can be ascribed to either strong wind effects around the raingauge or 
to strong spatial variability of rainfall, both resulting in a poor representation of rainfall 

Table 2. Water balance for 21 rainfall events in Gray Haven, United States, assuming 
that only the impervious surfaces produce sewer run-off. 

Event 

A6 
A7 
A9 
A10 
All 
A12 
A13 
A14 
A17 
A18 = 
A19 = 
A20 
A21 
A22 
A23 = 
A24 
A25 
A26 
A27 
A28 
A29 

Al 
A2 

A4 

Rainfall 

(mm) 

2.03 
7.87 

11.43 
7.87 
4.32 
4.32 
7.62 

11.94 
7.37 

55.88 
37.08 
30.23 
8.13 

15.49 
58.93 
11.43 
34.01 
13.21 
6.10 
7.62 
5.59 

Sewer run-off 

(mm) 

0.94 
3.76 
2.70 
4.47 
1.17 
1.44 
1.99 
6.20 
7.84 

72.05 
28.83 
26.01 
3.83 
9.62 

53.88 
5.83 

22.31 
11.26 
3.39 
9.78 
3.71 

Losses 

(mm) 

1.09 
4.11 
8.73 
3.40 
3.15 
2.88 
5.63 
5.74 

- 0.47 
-16.17 

8.25 
4.22 
4.30 
5.87 
5.05 
5.60 

11.70 
1.95 
2.71 

- 2.16 
1.88 

(%) 

54 
52 
76 
43 
73 
67 
74 
48 

- 6 
-29 

22 
14 
53 
38 
9 

49 
34 
15 
44 

-28 
34 
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by the raingauge. Of the 10 remaining minor events, 3 were selected for identification. 
Before identification, effective rainfall must be determined by a proper distribution of 

the losses as found from the water balance. Some events were preceded by a dry period of 
at least 12 h. It was assumed that these events occured on initially dry pavements. By 
application of hydrograph simulation (Chap. 3), trial and error showed that for the events 
A18, A19, A20 and A23 an initial loss of 3.05 mm (0.12 inch) was appropriate. 

Because correlations between the losses during an event and characteristics of that 
event did not provide any clue for a more detailed loss model, losses in any minute were 
assumed to be proportional to rainfall rate at that time after subtracting any initial loss 
(Chap. 3). 

The method selected to identify the second subsystem (Chap. 4) was expansion of the 
histogram of rainfall minus losses, the run-off hydrograph and IUH in a finite number of 
Laguerre functions. A description of this method is given in Appendix 1. 

Garvey (1972) and Dooge (1974) show that among the linear identification techniques 
the use of Laguerre functions or its discrete analogue the Meixner functions gives the best 
results for real (i.e. error-containing) data. For identification of the 9 events, 20 Laguerre 
functions were used to approximate input histogram and run-off hydrograph. A time-
scale factor was used (Appendix 1) such that two sample intervals coincided with one 
time unit. 

Approximations of functions with a chosen number of Laguerre functions are better 
as these functions have a simpler form. Therefore sometimes only the most significant 
part of an event was used for identification. Table 3 gives some characteristics of the 

Table 3. Identification of nine selected storms (Gray Haven, United States). 

Storm 

1 

2 

3 

4 

5 

6 

i 

8 

9 

Event 

A29 

A13 
0 -24 min 

A6 

A23 
76-133 min 

A 26 
75-110 min 

A22 
25-60 min 

A19 

A25 
191-280 min 

A 20 
0 -40 min 

Rainfall 
(mm) 

5.59 

7.62 

2.03 

17.47 

7.19 

11.46 

37.08 

15.54 

20.32 

Run-off 
(mm) 

3.71 

5.63 

0.94 

17.87 

6.46 

7.68 

28.87 

12.89 

15.83 

Peak run
off rate 
(mm/min) 

0.23 

0.10 

0.05 

0.53 
0.60 

0.43 

0.39 

1.03 
0.78 

0.58 

0.94 

Compi 

initial 

3.05 

1.07 

3.05 

3.05 

ted loss (mm) 

proportional 

1.88 

2.58 

-0.40 

0.73 

3.78 

5.16 

2.65 

1.44 

ƒ h(t)dt 

0 

0.97 

1.01 

0.99 

1.00 

1.00 

1.02 

1.00 

0.98 

1.00 
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identifications; the period of rainfall used for identification is given in the second column. 
The nine resulting IUH differed considerably. Heavy storms resulted in IUH with high 

and early peaks, thus indicating non-linear behaviour of the catchment area. The nine 
IUH were divided into three classes, a low, a medium and a high class (Fig. 20-22). 

Figure 23 illustrates for Storm 8 from Table 3 the approximation of the input histo
gram and the run-off hydrograph with 20 Laguerre functions. Figure 24 compares the 
observed run-off hydrograph with the reconstructed run-off hydrograph after convolu
tion-integrating the net rainfall with the derived IUH from Figure 22. Apparently linear 
identification was highly successful, while Figure 20-22 showed IUH depending on the 

Fig. 20. Instantaneous unit hydrographs, h(t), of low class. — Storm 1, Storm 2, Storm 3. 
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Fig. 21. Instantaneous unit hydrographs, h(t), of medium class. — Storm 4, 
Storm 6. 
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Fig. 22. Instantaneous unit hydrographs, h(t), of high class. — Storm 7, Storm 8, — - Storm 9. 

size of an event. This confirms the suitability of the quasilinear approach as discussed in 
Chapter 4. The method based on peak rates of run-off was chosen to model the Gray 
Haven catchment area. 

This method requires the following tools: 
1. For each of the 9 storms the peak q of the run-off hydrograph was plotted against 
the time to peak t of IUH derived for that storm. The nine points were fitted with the 
regression equation: 

lgtp=a + blgqp+c(lgqp)
2 (5.1) 

where a, b and c are coefficients. This arbitrary equation proved to give a satisfactory fit 
(Fig. 25). Values of the coefficients were a 0.651, b -0.308 and c -0.091. 
2. A relation between the peak of the IUH, U , and the time to peak of the IUH, tp, was 
determined as the hyperbola U • t = 5.57 which corresponds with the average value for 
the 9 events (Fig. 26). 
3. As Storm 6 yielded a point very close to this hyperbola (U • tp = 5.52), that storm 
was chosen to derive a basic shape for IUH (Fig. 27). So the ordinate of IUH of this storm 
was multiplied by the time to peak t and the abscissa time divided by t . To correct for 
undesirable oscillations, the tail was corrected with the IUH for Storms 4 and 5. 

For verification of this quasilinear model, Event A23 (Table 2) was selected. As the 
IUH of Storm 4 can be considered as average IUH for the catchment area, the run-off 
simulation obtained by convolution-integrating the histogram of net rainfall with IUH of 
that storm can be used to compare the linear method with the quasilinear method. For 
application of the quasilinear method, the histogram of net rainfall (Fig. 28) was divided 
into three segments: r = 0-18, t= 18-30 and t = 30-75 min. 
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Net rainfall rate (mm/min) 

1.0 
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Time(min) 

Run-off rate(mm/min) 

Time (min) 

Fig. 23. Description of net 
rainfall rate, p(t), and run-off 
rate, q(t), with 20 Laguerre 
functions.rrLK>bserved net rain
fall, — calculated net rain
fall; x observed run-off, — 
calculated run-off. 

To derive the IUH for each segment, three values for the time to peak, tp were 
required. To obtain these three values, estimates for the three run-off peaks must be 
calculated. The peaks of run-off from the linear solution were chosen. After deriving and 
convolution-integrating each IUH with corresponding segments of the histogram of net 
rainfall, the run-off hydrograph was obtained by superimposing these three partial run-off 
simulations (Fig. 28). Figure 28 shows that iteration of the procedure gave only a small 
difference. Simulation with the quasilinear model was considerably better than linear 
simulation. The real initial loss was probably slightly greater than 3.05 mm (0.12 inch). 
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Run-o f f r a t e ( m m / m i n 

F'ig. 24. Reconstruction of run-off rate 
for Storm 8. x observed run-off, — re
constructed run-off. 
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Fig. 25. Relation between the peak run-off rate, 
q and the time to peak of the IUII, t 
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Fig. 27. Basic shape of IUH. 
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Rainfall rate (mm/min) 
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Time ( m m ) 

Run -o f f rate ( m m / m m ) 
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Time (min) 

Fig. 28. Linear and quasilinear simulations of run-off for Invent A23.flosses, — observed run-off, 
linear simulation, quasilincar simulation (first time), quasilincar simulation (second 

time). Sum of squared differences: linear simulation 0.87 mm2 /min2 , quasilinear simulation 0.46 
mm2 /min2. 

32 



6 Quasilinear approach with conceptual models 

6.1 Linear conceptual models 

An alternative application of the proposed quasilinear approach is a linear conceptual 
model instead of the general linear model with Laguerre functions. For such an applica
tion, a linear conceptual model must be chosen. Viessman (1966) found the linear reser
voir suited to model rainfall and sewer run-off of four small impervious urban catchment 
areas (area 1600-4000 m2). Sarma et al. (1973) found the Nash cascade a good model to 
use on larger urban areas. 

Six conceptual models were compared for the Gray haven catchment area, according 
to LS: 
1. Linear reservoir. For the linear reservoir, run-off rate is proportional to storage volume: 

S = kq (6.1) 

where k is lag time of the reservoir, q is run-off rate and S is storage volume. The IUH of 
this model is given by 

e •'/* 
A ( r )= - (6.2) 

2. Time shift plus a linear reservoir ('lag-and-route'). The IUH of this model is: 

e-(t-T)/k 

if t>T, h(t) =- (6.3) 
K 

ifT>t>0,h(t) = 0 

where T is time shift. 
3. Cascade of a ƒ model and a linear reservoir. The ƒ model is a diffusion model and was 
derived for groundwater flow to parallel ditches (Kraijenhoff van de Leur, 1958). The 
IUH of the cascade model can be obtained by convolution-integrating the IUH of the ƒ 
model with the IUH of the linear reservoir. The IUH of the ƒ model is as follows: 

A(0=-A"=" e""2f// (6.4) 
TT2-/ n=l ,3 , . . . 

where ƒ is reservoir coefficient. 
So for a cascade of a ƒ model and a linear reservoir, one finds 
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Kt)-

1 

j - 25k 

(e-*/' - e-'lk) + (e-9f/> - e'f/fc) + 
j - k j - 9k 

(e-2Sf//'_e- f /A:) + ... (6.5) 

4. Nash cascade (Nash, 1959). The IUH of this model, which consists of a cascade of u 
equal reservoirs with lag time k, is as follows: 

1 

W-W)*"*® 
v-l (6.6) 

where F (p) is gamma function. 
5. Convective diffusion analogy with upstram inflow or (6) partial lateral inflow. These 
models are based on the partial differential equation: 

dt ~ dx2 dx 
(6.7) 

where A is translation coefficient, D diffusion coefficient and q run-off. The diffusion 
Equation 6.7 can be considered as a simplification of the differential equation for non-
steady flow in an open channel (Schönfeld, 1948; Hayami, 1951). 

For a channel infinite in one direction, with inflow at the upstream end, for a point at 
a distance / from this end, 1UH is as follows (Harley, 1970): 

Hy/I 
Ä W=-z=f e 

V27T?3 

- ( -
H JI 

V2 
ty h 

(6.8) 

where / / = ( / • AT)/2D (dimensionless length parameter) and / = 2D/A2. (characteristic 
time parameter). 

Considering a section of lenght / of an infinite channel, van de Nes (1973, Eq. 4.33) 
gave IUH for the downstream end of this section, for lateral inflow over a length m 
(Fig. 29) as (here slightly adapted): 

/2(f) = 
1 

2G-H-I 
erf (—7===) - erf ( ; _ ,T ) vwr 

i i 
2G-H-I s/2-nt/l 

where G - m //. 

\/2T/T 

-(H(l-G)-t/I? -{H-tfTf 

It jl - e 2?// (6.9) 
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In computations, the summation in Equation 6.5 was truncated after the seventh 
term. For computation of Equation 6.9 the following approximation was used for the 
error functions (Abramowitz & Stegun, 1965): 

erfx= 1 -(alw+a2w
2 +a3w

3 + <z4w
4 +asw

s) e +e(x) (6.10) 

Fig. 29. Partial lateral inflow into a sec
tion of an infinite channel, m, length over 
which inflow takes place; /, total length 
considered. 

Rainfall rate(mm/min} 

10 20 30 40 SO 60 70 

~i -Off ratelmm/min) 

Fig. 30. Rainfall and run-off for Storm 7. • subtraction of losses. 
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if x > 0 , where w= 1/(1 + z-x), |e(x)| < 15 x 106,and 

z 
a, 
a2 

a3 

a4 

as 

= 0.3275911 
= 0.254829592 
= -0.284496736 
= 1.421413741 
= -1.453152027 
= 1.061405429 

To obtain a logical comparison of the models, some storms of the same class must be 
used. Because heavy rainfall is most interesting, Events 7 and 8 of Table 3 were selected 
to optimize the parameters of the six models. After correction for losses (Fig. 30 and 31) 
the parameters of the six models were optimized for LS. For this, a computer program of 
a 'direct-search method' was used. For optimization of the parameters of the cascade of a 
ƒ model with a linear reservoir, one must be prepared for the appearance of two extremes. 

Characteristic shapes of the sum of squared differences between measured and simu
lated run-off as function of model parameters were given for some models by Zondervan 
& Dommerholt (1975). Results of the parameter optimizations are given in Table 4, 
which shows that the lag-and-route model, the Nash cascade and the two diffusion models 
best approach the run-off curves. The parameter G of the model with lateral inflow 
approached zero, which means that the limiting case 'tributary inflow' holds. 

Van de Nes (1973, p.79) shows that for H > 1.8 the shapes of IUH for tributary 
inflow and upstream inflow are almost identical. Then, where H = 3 the difference in 
performance between the two models can be neglected. 

Rainfall rate (mm/mm 

Run-off rate (mm/min) 
0.6 -, 

Fig. 31. Rainfall and run-off for Storm 8. • subtraction of losses, separation from previous run
off wave. 
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Table 4. Results of parameter optimization with two storms of the high class (Gray Haven, United 
States). 

Model 

Linear reservoir 

Time shift + 
linear reservoir 

ƒ model + 
linear reservoir 

Nash cascade 

Convective diffusion, 
upstream inflow 

Convective diffusion, 
partial lateral inflow 

Storm 7 

optimized 
parameters 

k 

T 

k 

j 
k 

V 

k 

H 
I 

G 
H 
I 

= 

= 
= 

= 
= 
= 

= 

= 
= 

= 
= 
= 

8.51 min 

3 min 
5.37 min 

3.72 min 
4.82 min 

3.26 
2.40 min 

2.76 
2.95 min 

0.01 
3.00 
2.32 min 

LS 
(mm2 /min2 ) 

0.59 

0.05 

0.27 

0.10 

0.06 

0.07 

Storm 8 

optimized 
parameters 

k 

T 

k 

i 
k 

V 

k 

H 
I 

G 
H 
I 

= 
5= 

= 

= 
= 
= 

= 
s 

= 
s 

= 
= 

9.99 min 

4 min 
4.85 min 

3.85 min 
5.34 min 

4.00 
1.97 min 

3.27 
2.56 min 

0.01 
3.50 
2.08 min 

LS 
(mm2 /min2 ) 

0.34 

0.03 

0.16 

0.04 

0.03 

0.03 

Table 5. Results of run-off simulations for Event A23 with parameter values as found for Storm 7 
and 8 (Gray Haven, United States). 

Model 

Linear reservoir 

Time shift + 
linear reservoir 

j model + 
linear reservoir 

Nash cascade 

Convective diffusion, 
upstream inflow 

Convective diffusion, 
partial lateral inflow 

Parameters Storm 7 

sum of squared 
differences 
(mm2 /min2 ) 

1.23 

0.87 

0.53 

0.45 

0.38 

0.37 

simulated 
peaks 
(mm/min) 

0.95 
+0.26 

1.35 
+0.14 

0.99 
+0.22 

1.24 
+0.03 

1.24 
+0.03 

1.24 
+0.03 

1.04 
-0 .04 

1.31 
+ 0.23 

1.03 
-0 .05 

1.07 
-0 .01 

1.13 
+0.05 

1.12 
+0.04 

Parameters Storm 8 

sum of squared 
differences 
(mm2 /min2 ) 

1.32 

0.22 

0.51 

0.33 

0.22 

0.22 

simulated 
peaks 
(mm/min) 

1.05 
-0 .16 

1.30 
+0.09 

1.04 
-0 .17 

1.19 
-0 .02 

1.23 
+0.02 

1.23 
+0.02 

1.11 
+0.03 

1.27 
+0.19 

1.04 
-0 .04 

1.07 
-0 .01 

1.14 
+0.06 

1.13 
+0.05 

37. 



Next the run-off from the teststorm of Chapter 5 was simulated with the parameter 
values from Table 4. Results are given in Table 5. The three models with the best fit for 
optimization as given in Table 4 also yield the best simulation. The Nash cascade and the 
diffusion models give the smallest error for peak-flows. Convective diffusion with up
stream inflow was selected for use with the quasilinear method. The IUH of this model is 
simpler than the IUH of the Nash cascade, while experience with this model and the Nash 
cascade showed an easier optimization. 

6.2 Application of a quasilinear method on a small urban catchment area, using a 
conceptual model 

For application of the quasilinear approach with use of a conceptual model, first the 
two parameters of the chosen model, the convective diffusion analogy with upstream 
inflow, were optimized by LS for the 9 storms (Table 3). The parameter values are given 
in Table 6. 

Table 6. Optimized parameter values of the model convective diffusion, upstream in
flow. The parameters are optimized by LS. 

Class 

Low 

Medium 

High 

Storm 

1 
2 
3 

4 
5 
6 

7 
8 
9 

H 

2.31 
2.55 
1.65 

2.28 
2.19 
3.43 

2.76 
3.27 
1.76 

/ 
(min) 

6.16 
5.95 
9.79 

4.94 
4.46 
3.03 

2.95 
2.56 
4.35 

HI 
(min) 

14.23 
15.17 
16.15 

11.29 
9.76 

10.42 

8.13 
8.37 
7.67 

Average 
(min) 

15.2 

10.5 

8.01 

lag time (HI) 

Next a relation between the peak run-off rate q and a characteristic time of IUH was 
determined. As characteristic time, the lag time of the IUH tx was chosen, which can 
easily be computed as the product of the two parameters of the model: 

t{= HI (6.11) 

As in Chapter 5, the regression formula lg r, = a + b lg qp + c(lg q )2 with a, b, c : 
coefficients was used to fit the points of the nine storms (Fig. 32). Values of the coeffi
cients were a 0.891, b —0.422 and c —0.133. The relation between the peak of the IUH, 
U , and the lag time of the IUH, tx, was determined from the hyperbola Up • tx as 0.984 
(Fig. 33). 

A basic shape of IUH was derived from the IUH for Storm 7 (Fig. 34), which yielded a 
point very close to the hyperbola of Figure 33 (U -tt = 0.984). To test the model, Event 
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Fig. 32. Relation between peak run-off rate, qp, and lag time of IUH, t\. 
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Fig. 34. Basic shape of IUH 
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Fig. 35. Quasilinear simulation of run-off for Event A23.f losses, — observed run-off, linear 
simulation, quasilinear simulation (first time), quasilinear simulation (second time). Sum of 
squared differences: linear simulation 0.87 mm2 /min2, quasilinear simulation 0.30 mm2 /min2 . 

A23 was again used. The simulated peak values of the linear approach (obtained with the 
IUH of Storm 4) were used as starting values for the iteration procedure. After one 
iteration, the final run-off curve was found (Fig. 35). The predicted run-off hydrograph 
was almost identical with that obtained in Chapter 5 with Laguerre functions. Apparently 
the conceptual'model chosen is highly suited to this quasilinear approach. 
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Summary 

To predict run-off from intense rainfall in urban catchment areas, information is 
needed on critical sequences of rainfall amounts as well as a model for the transformation 
of rainfall into run-off. 

Chapter 2 shows that, if a quarter of the lag time is taken as upper limit for the length 
of a sample interval, a sample interval of 15 s would be appropriate for rainfall and 
run-off modelling of two small paved inlet areas in the Netherlands. Gathering rainfall 
data with a time interval of 15 s seems however — apart from technical difficulties — not 
necessary. Rainfall is transformed into sewer inflow so fast in such paved inlet areas that 
it can be neglected in modelling run-off from parts of towns. 

For urban catchment areas of 5 x 103 - 200 x 103 m2 , a sample interval of 1-2 min is 
needed. As this size seems an appropriate drainage unit for modelling urban run-off, it is 
recommended that rainfall be measured with a sample interval of 1 min. As especially 
short intense summer showers are critical for small urban catchment areas, data could be 
substantially reduced at the measuring site. Previous rainfall is of importance to deter
mine losses. For this information, data with a much longer sample interval could be used. 
The appropriate interval should be determined during modelling and depends on the 
catchment and on the required accuracy. 

Chapter 3 compared two methods of obtaining information about losses during trans
formation of rainfall into sewer inflow. Experiments with sprinklers on inlet areas are 
quicker and more reliable for this purpose than case studies on small urban catchment 
areas. Results are given of a study on transformation of rainfall into sewer inflow on a 
part of a flat roof. In this study, a rainfall simulator was used. The lag-and-route model (a 
time shift + a reservoir) proved suitable for this inlet area. In a study of paved inlet areas 
of a parking place in Wageningen and an asphalt road with a tiled footpath on both sides 
in Bennekom, the lag-and-route model again performed well. For the surface with con
crete paving stones in Wageningen, infiltration rates were 7 - 27 mm/h, indicating high 
losses during transformation of rainfall into sewer inflow. Some simple loss models are 
described. An example is given showing that, in the process of modelling itself, a choice 
can be made between different loss models. 

Chapter 4 discusses linearity and time invariance of catchment areas. Rainfall run-off 
systems are often represented by a series of two subsystems. The first subsystem repre
sents losses in time and the second subsystem transforms net rainfall into run-off. In 
hydrology, it is usual to assume linear and time-invariant behaviour of the second sub
system. As a growing number of case studies point to non-linear behaviour of the second 
subsystem, two non-linear modelling approaches were distinguished. The quasilinear ap
proach, which maintains linearity for each storm event but discriminates according to the 
magnitude of these events, proved the more practical approach. In tracer experiments, 
Pilgrim (1966, 1976) found evidence for quasilinearity. Two quasilinear methods are 
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described. The first one, which was suggested by Pilgrim and is supported by earlier 
investigations (Laurenson, 1964; Askew, 1970), uses the peak of run-off as criterion to 
choose an instantaneous unit hydrograph. In simulation problems, the peak of run-off is 
unknown beforehand, so this method requires iteration in application. The second quasi-
linear method was successfully applied by Diskin (1973) for a catchment where Minshall 
(1960) demonstrated a marked non-linear behaviour. This method uses average rainfall as 
criterion to choose an instantaneous unit hydrograph. Both quasilinear methods were 
compared for a theoretical non-linear system, which consisted of a cascade of two equal 
non-linear reservoirs. This model belongs to a class of non-linear models which Dooge 
(1967b) proposed for catchment areas with non-linear behaviour. The method of Diskin 
(1973) gives problems for composite storms about where a continuous histogram of 
rainfall must be cut off to obtain separate events. The choice of these places greatly 
influences the results. Therefore a variant is proposed in which each bar of the rainfall 
histogram is convolution-integrated with an instantaneous unit hydrograph according to 
the average rainfall in a certain zone around that bar. The optimum length of this 'extent 
of influence' must be determined by trial and error. 

Comparison of the two methods with the theoretical system showed that neither of 
the two methods yielded accurate outflow simulations. The variant of the method, as 
used by Diskin, had to be discarded as no indication was obtained about the length of the 
extent of influence. The method as suggested by Pilgrim (1976) yields better results than 
the linear approach. Therefore this method is selected for the Gray Haven catchment 
area, for which non-linear behaviour was demonstrated in Chapter 5. 

The Gray Haven catchment, which lies about 11 km east of Baltimore, Maryland, 
United States, has a size of 0.094 km2 and consists of a homogeneous residential area 
with 'group houses' on lots of about 250 m2. Ground slopes are gentle (0.5%). As the 
pervious parts of the catchment (48% by area) are undergrass, the sod being underlain by 
sandy soil, these parts only seldom contribute significantly to sewer run-off. In the 
analysis, losses are treated by an initial loss (if necessary), followed by a proportional 
abstraction of the remaining losses. Nine storms were used for blackbox analysis with 
Laguerre functions. The shapes of the resulting instantaneous unit hydrographs indicated 
a marked non-linear behaviour. For the severe storms, high peaks and short times to peak 
were found. 

Use of the quasilinear method as suggested by Pilgrim (1976) for the Gray Haven 
catchment area showed its feasibility. A run-off hydrograph of a composite storm was 
considerably better reconstructed by this method than by the linear approach. An alter
native application of the quasilinear method was obtained if a conceptual model was used 
to identify the system instead of the general model with Laguerre functions. Chapter 6 
compares six conceptual models for severe storms on the Gray Haven catchment area: 
— the linear reservoir 
— lag and route (a time shift + a linear reservoir) 
— a cascade of a 'ƒ model' and a linear reservoir 
— the Nash cascade 
— convective diffusion, upstream inflow 
— convective diffusion, partial lateral inflow. 
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The Nash cascade and the convective diffusion models gave the best results. The test of 
the quasilinear method with the peak was repeated with convective diffusion, upstream 
inflow. Again the reconstructed outflow of a composite storm with the quasilinear 
method was considerably better than the linear reconstruction. 
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Samenvatting 

Het in model brengen van stedelijke afvoer - een quasilineaire benadering 

Om afvoeren ten gevolge van heftige neerslag te kunnen voorspellen is het noodzake
lijk te beschikken zowel over informatie ten aanzien van kritieke opeenvolgingen van 
neerslaghoeveelheden als over een model dat de omzetting van neerslag in afvoer weer
geeft. 

In hoofdstuk 2 blijkt dat, indien de maximaal toelaatbare lengte voor het bemonste-
ringsinterval wordt gesteld op een kwart van de vertragingstijd, een bemonsteringsinterval 
van 15 s nodig zou zijn om twee kleine stroomgebiedjes van een straatkolk en een trot-
toirkolk in Nederland te beschrijven met een neerslag-afvoermodel. Het lijkt evenwel niet 
noodzakelijk om — nog afgezien van de technische problemen — neerslaggegevens te 
verzamelen met een tijdsinterval van 15 s. De omzetting van neerslag tot rioolinvoer 
verloopt bij dergelijke verharde stroomgebiedjes zo snel dat deze kan worden verwaar
loosd bij het vervaardigen van modellen voor de afvoer uit stadsgedeelten. 

Voor stedelijke stroomgebiedjes van 5 x 103 -200 x 103 m2 is een bemonsterings
interval van 1-2 min vereist. Omdat deze oppervlakte geschikt lijkt voor het in model 
brengen van stedelijke afvoer, is het aan te bevelen neerslag te meten met een bemonste
ringsinterval van 1 min. Omdat vooral korte hevige zomerse buien kritiek zijn voor kleine 
stedelijke gebieden zou er op de plaats waar wordt gemeten, reeds een aanzienlijke reduc
tie van gegevens kunnen worden toegepast. Voorafgaande neerslag is van belang voor het 
bepalen van verliezen. Informatie hierover zou evenwel kunnen worden verkregen uit 
gegevens met een veel langer bemonsteringsinterval. De juiste lengte van dit interval zou 
tijdens het werken met modellen moeten worden vastgesteld en zal afhangen van het 
stroomgebied en de vereiste nauwkeurigheid. 

In hoofdstuk 3 worden twee methoden om inzicht te krijgen in de verliezen die 
optreden gedurende de omzetting van neerslag in rioolinvoer, vergeleken. Er wordt vast
gesteld dat voor dit doel sproeiproeven op stroomgebiedjes van kolken sneller en betrouw
baarder zijn dan studies van kleine stedelijke stroomgebiedjes. 

Er worden resultaten gegeven van een studie over de omzetting van neerslag in riool
invoer van een gedeelte van een plat dak. Voor deze studie is gebruik gemaakt van een 
beregeningsinstallatie. Het 'lag-and-route' model (een translatie + een reservoir) bleek een 
geschikt model te zijn voor deze 'inlet area'. Tijdens een studie van bestrate inlet areas op 
een parkeerterrein in Wageningen en een geasfalteerde straat met een betegeld trottoir aan 
weerskanten te Bennekom bleek het lag-and-route model wederom goed te voldoen. Voor 
de bestrating met betonstenen te Wageningen worden infïltratiesnelheden van 7 tot 27 
mm/h gevonden, hetgeen betekent dat de omzetting van neerslag in rioolinvoer met grote 
verliezen gepaard kan gaan. Enkele eenvoudige modellen voor de beschrijving van verlie
zen worden beschreven. Met een voorbeeld wordt aangegeven hoe tijdens het werken met 
modellen een keuze kan worden gemaakt tussen verschillende modellen voor de beschrij
ving van verliezen. 
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In hoofdstuk 4 worden lineariteit en tijdsinvariantie van stroomgebieden besproken. 
Neerslag-afvoersystemen worden dikwijls weergegeven door middel van twee in serie ge
schakelde subsystemen. Het eerste subsysteem geeft het verloop van de verliezen in de tijd 
weer, terwijl het tweede subsysteem de omzetting van netto neerslag in afvoer beschrijft. 
Het is in de hydrologie gebruikelijk lineair en tijdsinvariant gedrag aan te nemen van het 
tweede subsysteem. Daar een groeiend aantal onderzoekingen van stroomgebieden uit
wijst dat het tweede subsysteem niet lineair reageert, is een indeling gemaakt in twee 
benaderingswijzen, waarbij niet-lineaire modellen worden gehanteerd. Er wordt vast
gesteld dat de quasflineaire benadering, waarbij lineariteit wordt verondersteld tijdens een 
neerslaggebeurtenis, maar waarbij onderscheid wordt gemaakt al naar gelang de zwaarte 
van gebeurtenissen, het meest praktisch lijkt. 

Resultaten van proefnemingen met tracers door Pilgrim (1966,1976) ondersteunen de 
opvatting van quasi-lineariteit. Er worden twee quasilineaire methoden beschreven. De 
eerste, welke was voorgesteld door Pilgrim en die wordt geschraagd door eerdere onder
zoekingen (Laurenson, 1964; Askew, 1970), gebruikt de afvoerpiek als criterium voor de 
keuze van een ogenblikkelijke eenheidsafvoergolf (IUH). Omdat bij simulatievraagstukken 
de afvoerpiek vooraf onbekend is, moet bij toepassingen van deze methode iteratief 
worden gewerkt. De tweede quasilineaire methode werd door Diskin (1973) met succes 
toegepast op een stroomgebied waarvan Minshall (1960) een uitgesproken niet-lineair 
gedrag had aangetoond. Deze methode werkt met de gemiddelde neerslagintensiteit als 
criterium voor de keuze van een ogenblikkelijke eenheidsafvoergolf. Beide quasilineaire 
methoden worden vergeleken met behulp van een theoretisch niet-lineair systeem dat 
bestaat uit een serie van twee gelijke niet-lineaire reservoirs. Dit model behoort tot de 
klasse niet-lineaire modellen die Dooge (1967b) voorstelt te gebruiken, indien men te 
maken heeft met stroomgebieden met een niet-lineair gedrag. De methode van Diskin 
(1973) levert moeilijkheden op bij samengestelde neerslaggebeurtenissen voor wat betreft 
de plaatsen waar in een doorlopend neerslaghistogram moet worden geknipt om afzonder
lijke gebeurtenissen te verkrijgen. De keuze van deze plaatsen heeft een belangrijke in
vloed op het resultaat. Daarom wordt een variant voorgesteld waarbij voor ieder staafje 
van het neerslaghistogram de convolutie-integraal wordt berekend met een ogenblikkelijke 
eenheidsafvoergolf (IUH) welke wordt gekozen volgens de gemiddelde neerslagintensiteit 
gedurende een zekere tijd voor en na het beschouwde staafje. De optimale lengte van deze 
'invloedsfeer' moet proberend worden vastgesteld. 

Bij vergelijking van de twee methoden aan de hand van het theoretische systeem 
leverde geen van de methoden accurate afvoersimulaties. De variant van de methode van 
Diskin moest terzijde worden geschoven, daar geen criterium werd gevonden voor de te 
kiezen lengte van de invloedsfeer. De methode die Pilgrim (1976) voorstelde, gaf betere 
resultaten dan de lineaire benadering. Daarom is deze methode gekozen voor een toepas
sing op het stroomgebied Gray Haven, waarover het niet-lineaire gedrag wordt aangetoond 
in hoofdstuk 5. 

Het stroomgebied Gray Haven, dat ongeveer 11 km ten oosten van Baltimore (Mary
land, Verenigde Staten) is gelegen, beslaat een oppervlak van 0.094 km2 en bestaat uit 
een homogeen opgebouwde woonwijk met een perceelsgrootte van 250 m2 . De helling 
van het terrein bedraagt gemiddeld 0.5%. Daar de doorlatende delen van het stroomgebied 
(48% van de totale oppervlakte) begroeid zijn met gras en bestaan uit zandige grond, 
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dragen deze slechts zelden bij tot de rioolafvoer. In de analyse zijn de verliezen in model 
gebracht door een initieel verlies (indien noodzakelijk), gevolgd door een proportionele 
verrekening van het resterende verlies. Voor negen buien is een 'blackbox' analyse met 
Laguerre functies uitgevoerd. De vormen van de aldus verkregen ogenblikkelijke eenheids-
afvoergolven wijzen op een uitgesproken niet-lineair gedrag. Voor de hevige buien werden 
hoge pieken en lage waarden voor de tijd tot het optreden van de piek gevonden. 

Toepassing van de quasilineaire methode, zoals geopperd door Pilgrim (1976), op het 
stroomgebied van Gray Haven toont de toepasbaarheid van deze methode aan. Het afvoer-
verloop ten gevolge van een samengestelde bui werd met deze methode aanzienlijk beter 
gereconstrueerd dan met de lineaire benadering. 

Een alternatieve toepassing van de quasilineaire methode bestaat hieruit dat een zoge
naamd 'conceptual model' wordt toegepast om het systeem te identificeren in plaats van 
het algemene model met Laguerre functies. In hoofdstuk 6 worden zes 'conceptual mo
dels' voor het stroomgebied Gray Haven vergeleken aan de hand van enkele zware buien, 
te weten: 
— het lineaire reservoir 
— 'lag-and-route' (een translatie + een lineair reservoir) 
— een 'ƒ model' en een lineair reservoir in serie 
— de Nash cascade 
— convectieve diffusie, bovenstroomse invoer 
— convectieve diffusie, gedeeltelijke zijdelingse invoer. 
De Nash cascade en de convectieve-diffusiemodellen leverden het beste resultaat. De test 
van de quasilineaire methode die gebruik maakt van de afvoerpiek, is herhaald met toepas
sing van het model, convectieve diffusie, bovenstroomse invoer. Het met de quasilineaire 
methode gereconstrueerde afvoerverloop van een samengestelde bui is wederom aanzien
lijk beter dan dat van de lineaire benadering. 
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reservoir coefficient of the 'j model' 
lag time of a linear reservoir 
length of a channel section 
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bar of input histogram 
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peak of outflow, peak run-off rate 
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storage volume 
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a unit of storage volume 
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time to peak of IUH 
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Appendix 1 

Determination oflUHby means of Laguerre functions 

This appendix deals with the determination of a non-parametric IUH, using ordinary 
Laguerre functions. Application of Laguerre functions in hydrology was introduced by 
Dooge (1965). Garvey (1972) gave some results of this application. 

Ordinary Laguerre functions may be defined by 

<i>„(r) = e-'/2L„(r) , « = 0,1,2,... (Al.1) 

where Ln(t) is the ordinary Laguerre polynomial of degree n: 

The set of Laguerre functions is complete with respect to the range [0,oo], i.e. any 
sectionally continuous function f(t), defined for t > 0, may be expanded into an infinite 
series of Laguerre functions. Moreover these functions are orthonormal: 

oo 

ƒ *«(0*„(/)dr = oM„ (Al.3) 

with m,n = 0,1,2,... 
8m„: kronecker delta. 
In virtue of the orthonormality property (Eq. A1.3), the coefficients an in the expansion 

are given by 

oo 

%= ƒ M*„Wt (Al.5) 

Expanding f(t) into a finite series of Laguerre functions, a best- approximation in the 
sense of least squares is obtained if an is given by Equation Al .5. 

Input, output and IUH are expanded into a series of Laguerre functions, 

p (0= " | ~ a„<D„(f) , (A 1.6a) 
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q(t)= "Jo ßH*H(t) , (Al.6b) 

h{t)= ' T 7„*„(r) . (Al.6c) 

If p(t) and q{f) are certain functions for t > 0, the coefficients an and ßn can be obtained 
from 

oo 

%= ƒ P ( 0 * „ « d f (A1.7a) 
0 

CO 

ft.= ƒ <K')*„(0df (A1.7b) 
o 

In the identification problem, h(t) is unknown, hence the coefficients yn are unknown. 
These can be evaluated by substituting the expansions (Eq. A 1.6a and A 1.6b) in the 
convolution-integral 

<7(f)= ƒ A(M)p(r)dT ( A L 8 ) 

o 

In this way the following relations between an, j3„ and yn are obtained (Dooge, 1965) 

ßk= "lo 7 « a *-»~ ! fo 7«a*-«-i ' (A1-9) 

with Ä: = 0,1,... 

Defining 

ßk*= | 0
f c ft , (ALIO) 

the Equations A 1.9 may be simplified to 

0**= »"lo 7"afc"" ' (ALH) 

with A: = 0,1,... 
The unknown coefficients yn are determined by solving the linear equations Al .11. Then 
h it) is given by Equation A1.6c. 

Practical aspects 

In practical applications of the foregoing, the following problems must be solved: 
— sectionally continuous functions p(t) and q(t) must be constructed from records of 
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effective precipitation and run-off and the integrals in Equation Al.7 must be evaluated; 
— a unit of time (time-scale factor) must be chosen; 
— only a finite series of Laguerre functions can be used; 
— the set of Equations Al .11 must be solved. 

The record of effective precipitation consists of volumes of rainfall in successive time 
intervals Rt, with 

R. = {t,tix < t < r,.} , i = 1,2,..JV (Al.12) 

which usually all have the same value At. Input integrated over the time interval R • is 
denoted by P(. A function p(t) is constructed assuming that p{t) is constant in each 
interval: 

p(t) = ^-,teRi (Al.13) 
Ar ' 

Since the run-off is given at the discrete times r(-, / = 0,1, ..., it is assumed that the run-off 
is linear in each interval R(, 

q(t) = qi.l +(qi-ql.1) (-^-) , teR, (Al.14) 

where qt = q(t() , i = 0,1,... 

The integrals in the right side of Equation Al .7 are evaluated numerically by applying the 
trapezoidal rule to sufficiently small intervals. The functions $„(/) are computed by 
means of the following recurrence relationship: 

(n + l )*„ + 1(r) = (2« + l - / )*„ (0-n*„ . I (0 (Al.15) 

In the preceding section, it is assumed that t is a dimensionless (time) coordinate. 
Hence a unit of time Z (time-scale factor) has to be selected and expressed in the sample 
time Ar. The choice of the factor affects the form of the input and output and con
sequently the coefficients in the expansions (Eq. Al.6). In addition, the accuracy of the 
result depends on the time-scale factor for any fixed number of Laguerre functions N. In 
order to select a suitable value of Z, 

/
m=N 

A(0dr = 2 2 (-l)mrm (Al.16) 

is computed for Z = Ar, 2Ar, 4Ar and 8Ar and that value of Z is selected, that gives a 
satisfactory description of input and output, yields a value for the integral in Equation 
Al.16 that is close to 1.0 and gives an IUH without or with hardly any oscillation. Of 
course also the choice of the number of Laguerre functions used in the expansions (Eq. 
Al.6) is of importance. For less complicated storms, 20 functions appeared to give a 
sufficiently accurate approximation of input and output, provided that a suitable time-
scale factor was used. 
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By halving the integration interval, it was found that for 20 Laguerre functions the 
numerical integration of these functions was sufficiently accurate if one time unit was 
divided into 8 equal intervals. Using this integration interval means that, for Z = At, the 
integration interval coincides with Ar/8 and that for Z = 8Ar the integration interval 
coincides with At. 

Each time the identification process was carried out, the set of linear Equations A 1.11 
had to be computed. This may be achieved by means of successive substitution as follows: 
the first equation yields a value of y0, substituting this value into the second equation a 
value of 7! is obtained, etc. 

However the solution obtained in this way is sensitive to disturbances in an and ßn and 
is therefore less suitable. For that reason more equations are established than the number 
of unknowns yn and the method of least squares is applied in order to compute yn. 
Writing the set of equations in matrix notation, 

AC = B (Al.17) 

where A is a coefficient matrix, C the vector of unknowns and B the vector with com
ponents ßk*, the solution reads 

C = (ATA)'1ArB (MAS) 

In running the computer program, the number of Laguerre functions for description of 
IUH was varied, as the optimum number was unknown beforehand. 
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Appendix 2 

A cascade of non-linear reservoirs 

For a cascade of equal non-linear reservoirs, the outflow q((t) from Reservoir i is 
related to the storage S((t) in that reservoir by the equation 

qi(t) = a-Si
c(t) (A2.1) 

where a,c are coefficients. The equation of continuity for that reservoir reads 

dSAt) 

-~-= Qi.x(t)-qi{t) (A2.2) 

From Equations A2.1 and A2.2, 

^ + a - V W ="?,•-1(0 (A2-3) 

So a cascade of n reservoirs can be represented by the following set of equations: 

dt 

+ a-S2
c(t) = a-S^it) 

dS2(t) 

at 2 

dSj(t) + a-Sl
c(t) = a-S^it) (A2.4) 

dt 

àSn(t) 
dt 

+ a-Sn
c(t) = a-Sn%(t) 

withp(/) as inflow into the first reservoirs. 
3y introducing a unit of time t* and a unit of storage S^, Equation A2.4 can be 

transformed into dimensionless form. 
Set t = t*t&. and S = 5*Se , then t* and S* are dimensionless variables. 
Substitution in Equation A2.4 yields: 

Sf^ + a-Sj-Sli-P(t^) 
'e 
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or 

where aö is a- t^-S^0'1 and z(t*) is (tJS&)p(t^t*), both dimensionless. 

di'2 *(/*) c c 

dS*(t*) c c 

dS„ *(t*) c c 

(A2.5) 

The corresponding dimensionless outflow from Reservoir /' is: 

which combined with Equation A2.1 yields 

(A2.6) 

Question. If for a certain inflow into the cascade Pi(t) the outflow qi(t) is known, 
does there then exist a class of inflows p2(t) for which the corresponding outflows q2(t) 
can directly be derived? 

This will be so as long as the same dimensionless Equations A2.5 can be obtained in 
both cases. This implies that a^ and z(r*) must not change. If inflow rates p 1 (t) and p2 (t) 
are expressed in time units tt and t2, respectively, and the corresponding storage S in unit 
volumes Si and S2, then in Equation A2.5 

a- ti-Si0'1 = a = a- t2-S2 

and 

ti-Pifaf) h-p2(t2t*) 

sV~ = z(t) = —si 
From Equation A2.7, it follows that 

(A2.7) 

(A2.8) 

S2 - — Si c- l 

S2 = St ( - i ) " 1 

h 
(A2.9) 
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Substitution of Equation A2.9 in A2.8 yields: 

t _£_ 
Piih-t*) = (~Y-1 PiOrt*) (A2.10) 

t 2 

Conclusion. The same dimensionless Equations A2.5 are obtained if, for inflow rates 
p2, which differ by a factor r? = (ti/t2)

c^c'1^ from p , , the time scale is adjusted 
according to Equation A2.10. 

Let qtl denote the outflow from Reservoir i for the inflow plt and <?,2 the outflow 
from Reservoir i for the inflow p2, then for the corresponding dimensionless outflows 

*r,*ï ' r<7/,(M*) t2-qh(t2t*) q*(t*) = L = 1 (A2.ll) 
J l "J 2 

^ 1 ' ' 2 

Substitution of Equation A2.9 in A2.12 yields 

c 

t2 

t 

so 

qi2(t2-t*) = n-q^h-t*) (A2.13) 

Conclusion. \ïp2(t) equals a factor T? times PJ (0, the outflow from the cascade qn (?) 
can be obtained as r]-qn (t), after rescaling this curve. 

As 77 = (f ! Itifl^-1), it follows that f2 = r? -(e"1 >/<"•?, 
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Appendix 3 

Comparison of two quasilinear methods with a theoretical model 

To compare the quasilinear methods as described in Chapter 4, a theoretical non-linear 
model was used. To this end, a cascade of two equal non-linear reservoirs was chosen, 
with arbitrary units of time and length. For one reservoir, 

q = a-Sc (A3.1) 

where q is run-off, S is storage volume and a,c coefficients. The continuity equation reads 

p - ? = # (A3-2) 
àt 

where p is inflow. As p-q = dS/df = (dSldqXdq/dt) = (Ha)1fe(lfc)qie-iye(dqlit), one 
obtains 

dq p-q 
— = (A3.3) 

I l/c l (c-D/c 
(-) -q a c 

For the coefficients, a 0.3 and c 1.5 was chosen. For some inflow patterns/?, outflow was 
calculated by solving Equation A3.3 with the method of Runge-Kutta for the first and 
second reservoir, respectively. 

First the effect of the duration of inflow T on the resulting IUH was investigated by 
linear identification as described in Appendix 1. As inflow, p 1.0 was chosen. Identifica
tion was carried out for inflow durations T= 1, 2, 4, 8 and 16, respectively. Some results 
of the identifications are given in Table A3.1. 

Table A3.1. Identification results for block-shaped inflows with intensity 
p 1 and different durations of inflow, T. Time-scale factor Z = At/2; 20 
Laguerre functions are used to approximate the inflow and outflow. 

T 

1 
2 
4 
8 

16 

Peak of 

<?P 

0.076 
0.213 
0.544 
0.930 
0.999 

outflow 
J h(t)-dt 
0 

0.99 
1.01 
1.01 
1.00 
1.01 

Number of Laguerre 
function's for h(t) 

11 
9 
6 
6 
5 
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Calculated outflow rate for an impulse at t>0 

Fig. A3.1. Instantaneous unit hydrographs, h(t), forp 1 and Tvariablc. 

Resulting IUH is given in Figure A3.1, together with the outflow for an impulse at t 0, 
which was obtained by numerical solution of Equation A3.3 with the initial condition q -
a for the first reservoir, q = 0 for the second reservoir. Figure A3.1 shows that the IUH 
for T 1 hardly differs from the calculated outflow for an impulse input at t 0. For T> 1, 
IUH shows higher peaks for greater values of T. For T>8, the form of the IUH changes 
very little. For T> 8, the peak of outflow q approaches the inflow. 

To get some insight into the accuracy of applying linear identification to this non
linear model, the five outflows are reconstructed by convolution-integrating the five 

Outf low rate 
0 08 -, 

Fig. A3.2. 
flow. 

Linear reconstruction of outflow for 7*1. — calculated outflow. ++ reconstructed out-
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10 16 20 Time 

Out f low rate 
1.0 

Fig. A3.3. Linear reconstruction of outflow for T 16. — calculated outflow, ++ reconstructed out
flow. 

inflows with their corresponding IUH. Figure A3.2 and A3.3 compare numerically com
puted outflows with linear reconstructions of outflow waves for T 1 and T 16. For p 1 
and T l , an excellent reconstruction is found, whereas forp 1 and T 16 the reconstructed 
outflow differs considerably from the calculated outflow. For T 16 the falling limb of the 
hydrograph shows a particularly poor agreement. 

Thereupon the effect of the value of block-shaped inflows on the resulting IUH was 
investigated for two durations of inflow, T 16 and T3. According to Appendix 2, inflows 
with the same duration T and different p cannot be considered as similar inflows in the 
sense of uniform non-linearity. The value T 16 was chosen because for this duration of 
inflow, IUH reaches its highest peak, because of approximation to steady state during 
inflow. The value T 3 was chosen to identify the model also for a duration of inflow 
shorter than the length of the four segments of a 'test storm' presented below. 

The resulting IUH for inflow p 1, 4, 8, 12 and 16 for T 16 and p 1, 2,4, 8 and 16 for 
T3 are given in Figure A3.4A and A3.4B. Some results of the identifications are given in 
Table A3.2 Table A3.2 shows that, for both T 16 and T3, the product of the time to 
peak t and the peak U yielded approximately the same value for the five IUH. This 
suggests that the five IUH may have the same basic shape. To investigate this, for both 
T 16 and T3 the IUH for p 1,4 and 16 are reduced to the basic shape (Fig. A3.5A and 
A3.5B). For both T 16 and T3, the three reduced IUH approximately coincide. Figure 
A3.6 shows for T3 the outflows from the block-shaped inflows withp 1,4 and 16 in the 
dimensionless shape. This figure shows that these shapes are different. 
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For different values of T, the product tv • U of the IUH will vary (e.g. Table A3.2). 
For a given value of p, the product tp • Up 0.45, as found for T 16, will be the highest 
value, because the shape of the IUH will not vary any more for greater duration T. 

For the calculated outflow from an impulse at ? 0 (Fig. A3.1) t • U = 0.29, so if the 
identifications of Figure A3.4 be repeated for other values of T, the product t • U 
would vary between 0.29 and 0.45. 

To allow comparison of quasilinear methods, it was decided to use IUH for the value 
T 16, which is the duration of inflow that yields IUH with the highest value of U • t . 

In the following comparison, a basic shape of IUH was not yet used. Instead the IUH 
ïorp 1, 4 and 16 (Fig. A3.4A) were used. 

2 3 4 5 6 7 9 10 II 12 13 M 15 
T ime 
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Experiment with average input as criterion 

Apart from the three IUH for p 1,4 and 16 a relation between average inflow, p, and 
the peak of the IUH, Up, is needed, to select for every bar of the input histogram the 
appropriate IUH. This relation is established with the five IUH from Figure A3.4A and is 
given in Fig. A3.7. 

In the experiment, the average input p over a certain length of time around every bar 

Time 

Fig. A3.4. Instantaneous unit hydrographs, h(t), for constant inflows of variable magnitude. A. Dura
tion T 16. B. Duration T 3. 
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Tabic A3.2. Influence of value of block-shaped inflows, p, on h(t). l o r both 2" 3 and T 16 the time-
scale factor Z = At 12; 20 Laguerre functions arc used to approximate inflow and outflow. 

T 

3 

16 

P 

1 
2 
4 
8 

16 

1 
4 
8 

12 
16 

Nu m ber of Laguerre 
functions for h(t) 

1 
7 

10 
9 

12 

5 
8 
9 
9 
8 

J h(t)dt 
0 

1.01 
1.00 
1.00 
1.01 
1.04 

1.01 
0.99 
1.00 
0.99 
1.02 

'P 

2.6 
1.9 
1.4 
1.1 
0.85 

2.5 
1.7 
1.4 
1.2 
1.2 

^P 

0.132 
0.184 
0.248 
0.318 
0.405 

0.176 
0.269 
0.332 
0.367 
0.380 

tp-Up 

0.34 
0.35 
0.35 
0.35 
0.34 

0.44 
0.46 
0.47 
0.44 
0.46 

® 
MtlMp 

I-'ig. A3.5. Basic shape of IUH. A. Duration T 16. B. Duration r 3 . » « » f r o m p = 1, ooo from p = 4, 
+++ from p = 16. 
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Fig. A3.6. Dimcnsionless outflow for T = 3 and p = 1, 4 and 16. - P = 4, p=16 . 

Fig. A3.7. Determination of boundary values 
for the average inflow p. 
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of the inflow histogram is compared with the boundary values 2.2 and 7.4 as found in 
Figure A3.7. 
For p < 2.2, the IUH forp = 1, 

p is 2.2-7.4 the IUH for p = 4, 
p > 7.4 the IUH forp = 16 was selected. 

For a 'test storm' with an average input intensity p 4.0, the method is applied for six 
different 'extents of influence'. For the six simulations, the sum of squared differences 
between calculated and simulated outflow was determined. The result is given in Table 
A3.3, together with that of the linear simulation as obtained with the IUH for p 4. For 
the sum of squared differences as a function of the extent of influence, no single mini
mum was found. Hence no good criterion for the optimum length could be derived from 
the experiment. However the simulations with a length < 5 all give an improvement in the 
sum of squared differences compared to the linear simulation. 

Figure A3.8 gives the simulation that uses an extent of influence for p of one time 
unit (so only the height of a bar of the histogram itself is used to select an IUH for that 
bar). It also gives the linear simulation. 

Experiment with the outflow peak qp as criterion 

As in the previous experiment, the three IUH for T 16 andp 1, 4 and 16 are used. As 
the five IUH from Figure A3.4A were obtained with outflows of which the peak equalled 
the inflow, the boundary values of the peak of outflow q to select an IUH appropriate 
for a corresponding part of the histogram could be found as follows: 
For qp < 2.5 : select the IUH forp = 1 

q is 2.5-10.0 : select the IUH for p = 4 
qp > 10.0 : select the IUH forp = 16. 

As a first estimate of the four peaks of outflow, the peak values of the linear simula
tion were chosen. Quasilinear simulation showed that the first part of the histogram (time 
0-5) was convolution-integrated with the IUH forp 16, whereas the rest of the histogram 
was convolution-integrated with the IUH forp 4 (Fig. A3.9). 

Table A3.3. Kffect of the length of the extent of in
fluence on the outflow simulation. 

Extent of influence Sum of squared 
differences 

1 14.3 
2 23.7 
3 23.7 
4 23.2 
5 14.5 
6 50.3 

Linear simulation with 
the IUH forp = 4.0 47.7 
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Outflow rate 

Time 

Time 

Fig. A3.8. Quasilinear simulation of outflow with the average inflow p. Extent of influence for cal
culating p. is 1 time unit. — calculated outflow, linear simulation, quasilinear simulation. 
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Outflow rate 
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Time 

Fig. A3.9. Quasilinear simulation of outflow with the peak of outflow, q„, as criterion for choosing 
one IUH out of three (T 16). — calculated outflow, linear simulation quasilinear simula
tion. Sum of squared differences: linear simulation 47.7, quasilinear simulation 22.2. 
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Fig. A3.10. Relation between the peak 
of outflow, q and the time to peak of 
the IUH, r , for T 16. 
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Fig. A3.11. Quasilinear simulation of outflow with the peak of outflow, qp, as criterion, using the 
basic shape of IUH (T 16). — calculated outflow, linear simulation, - - quasilinear simulation. 
Sum of squared differences: linear simulation 47.7, quasilincar simulation 19.1. 
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Comparison of the two quasilinear methods indicates that the method based on peak 
rates of run-off is more promising. For this method, the experiment is therefore repeated 
with the basic shape for T16 from Figure A3.5A. To convert the basic shape in an IUH 
corresponding with a certain peak of outflow qp, a relation was determined between the 
peak of outflow and the time to peak of the IUH fp for the five IUH for T16 (Fig. 
A3.10). 

As initial values for the four peaks of outflow, the values from linear simulation were 
again taken. Next the corresponding fp was obtained with Figure A3.10. For the four 
values of fp, corresponding IUH was obtained from the basic shape of IUH. Next the 
outflow of the 'test storm' was simulated by convolution-integrating the four parts of the 
input histogram with their corresponding IUH and superposing the so obtained outflows 
(Fig. A3.11). One iteration of this procedure indicated no further change, so the outflow 
in Figure A3.11 is the final one. The simulated outflow appears to be slightly better than 
the simulation with three IUH (Fig. A3.9). 

For the second of the two methods, the experiment was repeated with the other 
duration of inflow T3. With the five IUH for T3 (Fig. A3.4B), a relation between the 
peak of outflow qp and the time to peak of the IUH fp was determined (Fig. A3.12). A 
basic shape of IUH for T 3 was already determined (Fig. A3.5B). Again the outflow from 
the 'test storm' was simulated. For linear simulation, the basic shape of IUH was also 
used. To obtain tp for this linear solution, it was decided to use the average of the four 
peaks of outflow of the 'test storm', q^. With Figure A3.12, a value for rp was obtained. 
With tp, the appropriate IUH could be derived from the basic shape of IUH. 

Convolution-integrating the histogram of the 'test storm' with this IUH yielded a 
linear simulation. The quasilinear simulation, together with the linear simulation is given 

6 -

5 

Fig. A3.12. Relation between the peak 
of outflow, qp, and the time to peak of 
the IUH, tp, for T 3. 
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Fig. A3.13. Quasilinear simulation of outflow with the peak of outflow, qp, as criterion, using the 
basic shape of IUH (T 3). — calculated outflow, linear simulation, quasilinear simulation. 
Sum of squared differences: linear simulation 20.8, quasilinear simulation 11.8. 

in Figure A3.13. The difference in performance between the linear and the quasilinear 
solution is here not great. Both linear and quasilinear simulations are better than the 
corresponding simulations in Figure A3.11 for T 16. 

Conclusions and remarks on the results of the experiments are given at the end of 
Chapter 4. 
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