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Abstract 

Leaf Area Index (LAI) is a key canopy descriptor that is used to determine foliage cover, and 
predict photosynthesis and evapotranspiration and is an input to many ecological models. Its 
estimation from remote sensing data has been the focus of many investigations in recent years. In 
this context, we have used a three dimensional Discrate Anisotropic Radiative Transfer (DART) 
model to invert LAI of a mature Norway spruce forest stand from Airborne Imagining 
Spectroradiometer (AISA) image data. The AISA image was acquired on September 18th 2004 
while the Ground truth LAI measurements and DART input parameters were collected in 
September 2004 and 2005 in a study area at Bily Kriz near Beskydy Mountains in Czech Republic. 
The DART model has been run to simulate the BRF of the forest stand under different canopy 
closures, which was used to build Look-up table. An Artificial Neural Network (ANN) was trained 
with the look-up table and employed to retrieve the LAI of the forest stand from the hyperspectral 
image. The retrieved LAI was validated against the ground truth LAI estimated by combination of 
the Hemispherical photography (HP) and TRAC (Tracing Radiation and Architecture Canopies) 
optical instruments.  
 
 
The inversion of the model showed that the mean LAI of the stand is 5.62 with RMSE of 1.84. 
Overestimation in lower LAI values and underestimation at high LAI values were generally 
observed most probably due to the influence of scene size, crown shape, Understory, saturation, 
limited sample size and error in ground truth LAI measurements. This indicates a need for 
improvements in the parameterization of the model and selection of model out puts to be used for 
inversion. The addition of noise to the look up table as prior information improved the RMSE of 
the estimate. Evaluation of predictions revealed certain level of agreement with ground based LAI 
estimation (r2 = 0.44 and 0.54 for ANN trained with and with out noise respectively): The ground 
based LAI estimation by combination of hemispherical photography and TRAC optical 
instruments reduced the gap fraction saturation problem and enabled better estimation.  
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1. Introduction and research objective 
1.1.  Background  

Surface area of foliage is a useful measure which can be expressed as a quantity (e.g., m2 or ft2) or 
as a ratio of leaf area to crown projection area or stand area, commonly referred to as Leaf Area 
Index (LAI). LAI is defined as half the total leaves surface area per unit of horizontal ground area 
(Chen and Black 1991). For conifer needles with four sides, this definition includes two sides 
(Chen et al. 2002). For most applications the LAI refers to the green photosynthetic parts of plants 
(Weiss et al. 2004). 
 
LAI is a critical variable in monitoring and modeling forest condition and growth and is therefore 
important for foresters and environmental scientists to measure routinely and accurately, 
principally because of the importance of LAI to a number of ecological processes such as 
photosynthesis, transpiration, evapotranspiration and net primary production (Pierce et al. 1990). 
Measurements of LAI have been used to predict future growth and can be indicative of canopy 
structure responses to competition, disease, climate change and factors present on a site, including 
soil water status, nutrition and temperature (Battaglia et al. 1998). Leaf area index has also become 
a critical input or predicted variable in many ecosystem models that simulate carbon and 
hydrological cycles (Gower et al. 1999). Under certain assumptions, knowledge of canopy 
structure variables (LAI and leaf Inclination Distribution Function (LIDF)) allows the evaluation 
of the fraction of Absorbed Photosynthetically Active Radiation (fAPAR), which is required to 
model the canopy’s photosynthetic activity in a straightforward way (Coops et al. 2004).  LAI is 
therefore a valuable tool in forest management which is a variable that can be readily measured, 
often with widely varying levels of accuracy, using a variety of methods. 
 
Methods of LAI estimation ranges from direct to more complex indirect methods. Direct 
techniques for estimating LAI include the point quadrate method, the stratified-clip method, the 
dispersed individual plant method and the litter fall collection method. All direct methods are 
similar in that they are difficult, extremely labor intensive, require many replicates to account for 
spatial variability in the canopy and are therefore costly in terms of time and money (Chason et al. 
1991).   
 
Accordingly, many indirect optical methods of measuring LAI that relate total leaf area to the 
radiation environment below the canopy have been developed. These techniques based on gap-
fraction analysis assume that leaf area can be calculated from the canopy transmittance (Chason et 
al. 1991). In this approach Estimation of LAI is through the ground-based measurements of total, 
direct or diffuse radiation transmitted to the forest floor. A study by Chen (1996) publicized that 
optical methods can provide even more reliable LAI estimates than destructive sampling 
techniques if foliage elements are randomly distributed.  
 
Remote sensing is the other powerful technique for describing and understanding Earth ecosystem 
functioning. The diverse information from Remote sensing  allows for detailed and frequent 
observations of the vegetation to monitor the spatial and temporal variations of canopy 
characteristics (Koetz et al. 2005). Various new satellite data are becoming available, which bring 
a new era of LAI mapping. It provides a unique way to obtain LAI over large areas (Chen and 



1. Introduction and research objective  

 2

Cihlar 1996). However, the results from these procedures vary by scale of observation, type of 
vegetation, spectral bands used, and the sophistication of the models, image calibration and 
atmospheric correction (walthall et al. 2004). 
 
Numerous studies have been done to estimate LAI from satellite and air born sensor measurements 
through: 1) statistical methods 2) physical model inversion or 3) hybrid algorithm (Weiss and 
Baret 1999; Liang 2004). The major constraints of the statistical methods are they require ground 
measurements and limited validity inversion procedures designed with only single acquisition 
configuration (Gascon et al. 2004). They are suffering from severe limitations due to the lack of 
physics introduce in the retrieval technique and the small amount of radiometric information they 
can exploit (Weiss 2000). The physical model inversion methods and hybrid algorithms are 
potentially a more effective and accurate methods than the use of empirical relationships. Because, 
they can use complex reflectance models, do not need to decrease the number of input parameters 
used to characterize earth surfaces, and do not require initial guesses to model parameters 
(Gastellu-Etchegorry et al. 2003). These approaches are more suitable to exploit richer data 
provided by the new generation of sensors such as Airborne Imagining Spectroradiometer (AISA) 
eagle, Polarization and Directionality of the Earth's Reflectances (POLDER), Medium Resolution 
Imaging Spectrometer (MERIS) and Moderate Resolution Imaging Spectroradiometer (MODIS) 
(Weiss 2000). The retrieval of LAI by these methods is based on information taken using various 
types of Radiative Transfer (RT) models. The models relate the fundamental surface parameters 
(e.g., LAI and leaf optical properties) to scene reflectance for a given sun-surface sensor geometry 
and an appropriate LUT is Created for the use of inversion algorithms to retrieve surface 
biophysical parameters.  
 
LAI estimations in coniferous forests like Norway spruce (Picea abies (L.) Karst.), which is one of 
the most important tree species in Europe and the focus of this study, needs a robust retrieval 
method. This is because needles are clumped together and violate the rule of leaf random 
distribution assumption in in-situ LAI estimation methods (Chen 1996). Also retrieval from 
remotely sensed data for such forests needs a thorough investigation of the relationship between 
reflectance and LAI as the clumped structure of conifers causes the relationships between LAI 
with absorbed, transmitted, and reflected solar radiation to behave differently in coniferous forests 
than in broadleaved forests (Smolander 2001).  
 
Since RT models are mostly oriented towards their use with relatively high-resolution satellite 
images (Nilson et al. 2003), they are more appropriate to create quantitative relations between 
remotely sensed data and various forest variables. Particularly, the Discrete Anisotropic Radiative 
Transfer (DART) model is designed to simulate radiative transfer in heterogeneous 3D landscape 
scenes to address the entire Radiative transfer problem and could be the most suitable model for 
retrieval of LAI from the AISA hyspectral image data of the mature Norway spruce forest stand. 
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1.2. Research objective 

General objective is to: 
to retrieve LAI from high spatial resolution AISA Eagle airborne hyperspectral 
image of mature Norway spruce forest by inverting complex canopy radiative 
transfer simulation of the DART model using Artificial Neural Network (ANN). 
And evaluate the result with Ground truth LAI estimated by combination of 
Hemispherical Photography (HP) and Tracing Radiation and Architecture Canopies 
(TRAC) optical instruments. 

 
Specific objective is to: 

♠ Analyze and compare the ground truth  LAI of the mature Norway spruce 
stand from HP and  TRAC measurements 

♠ Combine ground-based LAI determination methods for more accurate 
estimation of LAI 

♠ Simulating the AISA Eagle image data of the stand by DART model 
♠ Design ANN architecture for retrieving LAI of the mature Norway spruce 

stand from the DART model bidirectional reflectance and AISA Eagle 
hyperspectral image data. 

Hypothesis: 
♠ The LAI of the mature Norway spruce stand can be accurately estimated by 

inverting radiative transfer model simulating the AISA Eagle airborne 
hyperspectral image data. 

♠ Combination of the HP and TRAC optical instruments measurement 
improves the ground based LAI estimation 

 
Research questions: 
1/ How reliable are values of LAI retrieved from the AISA Eagle airborne hyperspectral images 

using radiative transfer modeling? 
2/ How significant is the difference of the leaf area index values from ground based 

measurements and AISA Eagle airborne hyperspectral image? 
3/ What is the suitable ANN structure and training algorithm for LAI retrieval of the study area? 

1.3. Thesis overview 

We began the report by introducing the definition of the topic, the importance of leaf area index as 
a key biophysical parameter and problem statement in the first chapter. The objectives of this study 
and research questions are also covered in this chapter. This is followed in chapter two by review 
of the relevant studies conducted in the field of biophysical variables estimation. The third chapter 
describes the methodologies implemented in order to achieve the research objectives. The results 
of this study are presented and discussed in chapter four. Finally, in the fifth chapter we quickly 
look at conclusion and recommendations made about the study. 
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2. Literature review 
2.1.  Conifers canopy and LAI retrieval     

The LAI of vegetation depends on species composition, developmental stage, prevailing site 
conditions, seasonality, and the management practices. LAI is a dynamic parameter: it changes 
from day to day (mostly in spring and autumn), and, driven by forest dynamics, from year to year 
(Welles and Norman 1991). 
                                    
Studies in coniferous forest plantations showed the ranges in LAI are usually lower and 
relationships between LAI and vegetation indices (VI) may be disturbed as other biophysical stand 
characteristics (such as stem density, canopy closure, tree height, etc.) influence the reflectance 
signal (Treitz and Howarth 1999). Since conifer canopies are highly clumped, they do not cover as 
much ground surface as agricultural crops and grasses with the same LAI (Chen and Cihlar 1996). 
Hence, unlike broad leave forests for calculating LAI in conifer stands (Chen et al. 2002), needles 
should be grouped first in to shoots, which are often dense and allow little penetration by light. 
Shoots of conifer needles are therefore treated as foliage elements and a correction for this leaf 
grouping effect is made using the needle-to-shoot area ratio. For broad leaf stands, individual 
leaves are considered as the element, and no such correction is necessary. 
 
Conifer needles often do not conform to a uniform and flat projection, as do some type of 
deciduous leaves (Mesarch et al. 1999). Conifer needles exhibit a species-specific cross-sectional 
shape, with thickness varying across the needle’s width, as well as a characteristic three-
dimensional shape (Brand 1987). Additionally, the widths and lengths of needles of many species 
and other canopy elements (such as twigs and some grass species) are relatively small, requiring 
the inclusion of multiple samples to provide adequate material for measurements. In the course of 
compositing a single layer of needles or other slender canopy elements, inter-needle gaps are 
unavoidable, producing a variable gap fraction per sample (Mesarch et al. 1999). 
 
When LAI is retrieved from remote sensing data, consideration must be given also to the canopy 
shape. The three-dimensional structure of a coniferous shoot gives rise to multiple scattering of 
light between the needles of the shoot, causing the shoot spectral reflectance to differ from that of 
a flat leaf (Smolandera and Stenbergb 2003), At higher values of LAI, stands with conical crowns 
have much smaller reflectance than ellipsoidal crowns where larger crown volume is seen to result 
in higher single scattering from crowns (Rautiainena et al. 2004). For estimating canopy-related 
variables, this means that understanding the role of crown shape in forming the components of the 
stand Hemispherical Directional Reflectance Function (HDRF) is crucial. The openness of the 
overstory and spatial and temporal variations of the Understory vegetation pose special challenges 
to the extraction of LAI and other biophysical parameters of the overstory canopies from remotely 
sensed data (Hu et al. 2000). 
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2.2. Methods of LAI estimation  
2.2.1. Ground based LAI estimation methods 

Direct methods 
LAI can be assessed directly by using harvesting methods such as destructive sampling and the 
model tree method or by non-harvesting litter traps during autumn leaf-fall period in deciduous 
forests. In these methods after leaf collection, leaf area can be calculated by means of either by 
correlating the individual leaf area and the number of area units covered by that leaf in a horizontal 
plane or by correlating dry weight of leaves and leaf area using predetermined green-leaf area to-
dry-weight ratios (Jonckheere 2004).These direct Leaf sampling methods are extremely labor 
intensive and require many replicates to reduce sampling errors (Chason et al. 1991).  
 
Jonckheere (2004) reviewed that since the leaf area is determined through repeated area 
measurements on single leaves and area accumulation, these methods are hence considered the 
most accurate, but they have the disadvantage of being extremely time-consuming and as a 
consequence making large-scale implementation only marginally feasible. However, the need for 
validation of indirect methods remains, so the direct techniques can be considered important as 
calibration methods. 
 

Ground based indirect methods of LAI estimation 
Indirect methods, in which leaf area is inferred from observations of another variable, are generally 
faster, amendable to automation, and thereby allow for a larger spatial sample to be obtained 
(Jonckheere et al. 2005). For reasons of convenience when compared to the direct methods, they 
are becoming more and more important. Indirect methods of estimating LAI in situ can be divided 
in two categories: (1) indirect contact LAI measurements; and (2) indirect non-contact 
measurements. 
 
1). Indirect contact LAI measurement 
This method includes: 

• inclined point quadrate: consists of piercing a vegetation canopy with a long thin needle 
(point quadrate) under known elevation (i.e. the angle between the needle and the 
horizontal plane when vertically projected) and azimuth angles (i.e. the bearing of the 
needle from north when horizontally projected) and counting the number of hits or 
contacts of the point quadrate with “green” canopy elements. LAI is then determined using 
equations based on radiation penetration model. This method is impractical in forest stands 
because of the tall structure of trees and the high density of conifer leaves (Chen et al. 
1997). 

• Allometric techniques for forests: rely on relationships between leaf areas as such and 
any dimension(s) of the woody plant element carrying the green leaf biomass, i.e. stem 
diameter, tree height, crown base height etc. Allometric relationships between a dependent 
variable such as size, shape or area and an independent variable, is commonly used as a 
tool to directly estimate the area of tree parts. The leaf area determined via destructive 
sampling and the basal area of the physiologically active sapwood area have been 
proposed. Such sapwood-to-leaf-area conversions are based on the pipe model theory that 
stems and branches are considered an assemblage of pipes supporting a given amount of 
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foliage (for detail see the review by Jonckheere (2004). It has the advantage to quantify 
stem, branch and foliage areas separately. However, if generalized algorithm is used the 
method can lead to large errors and it is also affected by abiotic and biotic factors (Chen et 
al. 1997).  

 
2). Indirect non-contact LAI measurement methods 
The use of light to probe the canopy from different angles provides useful information on the 
structure of the canopy, given an adequate model to interpret the data (Chason et al. 1991). Optical 
methods are indirect non-contact methods based on the measurement of light transmission through 
canopies. They have great potential to obtain quick and low cost measurements over large areas 
and are more commonly implemented because of their convenience compared with direct methods, 
especially for forest stands (Chen and Black 1992a). 
 
The general principle behind these optical instruments is in canopies where foliage is randomly 
distributed, LAI can be derived based on the probability that a beam of direct radiation will pass 
through a canopy unobstructed (Coops et al. 2004). Measurements of the below-canopy radiation 
interception then provide data to estimate LAI. The methods can become very complicated when 
the spatial distribution of foliage elements is not random (Chen and Black 1992b). The success, 
therefore, of any indirect method to estimate L is related to how accurately the simple model 
mimics the true canopy architecture (Welles and Cohen 1996).  
 
There are a number of approaches for estimating LAI from gap fraction measurements. They can 
be divided into two main categories: a first group contains instruments that are based on gap size 
distribution analysis (TRAC and hemispherical photography) while a second group contains 
instruments based on gap fraction analysis (Accupar, Demon and Licor LAI-2000 Plant Canopy 
Analyzer). 
 
 A characteristic of the gap fraction-based approach is that it does not distinguish 
photosynthetically active leaf tissue from other plant elements such as stem, branches or flowers. 
Alternative terms for leaf area index have therefore been proposed, among them “Vegetation Area 
Index (VAI)” (Fassnacht et al. 1994), “Plant Area Index (PAI)” (Neumann et al. 1989), and 
“Foliage Area Index (FAI)” (Welles and Norman 1991) are the most common. Chen and Black 
(1992b) used the term “effective LAI (LAIe)” to describe LAI estimates derived optically and we 
also used this term in this study. 
 
Tracing Radiation and Architecture of Canopies (TRAC) 
The TRAC instrument accounts not only for canopy gap fraction but also canopy gap size 
distribution (the physical dimensions of a gap) (Leblanc 2002). The canopy gap size distribution or 
clumping index quantifies the effects of non-random spatial distribution of foliage that often 
occurs in mixed-stands with broad-leaved and conifer species. Using the solar beam as a probe, it 
records by means of three photosensitive sensors the transmitted direct light at high frequency 
(Leblanc 2002). The TRAC technology has been used in several LAI estimation studies (Fassnacht 
et al. 1994; Chen and Cihlar 1995; Chen 1996; Chen et al. 1997; Kucharik et al. 1998; Chen et al. 
2005).  
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In this approach LAI is estimated as: 
LAI = (1- α ) LAIeΩ                                 Eqn. 1 
Where α  is the ratio of woody area index to plant area index to avoid the effect of non leaf 
materials. Chen (1996) evaluated α  from intensive destructive measurements. Barclay et al. 
(2000) also proposed correcting LAI effective using a “bole area index” directly measured using a 
map of the stand (position of the stems, diameter, height, etc.). Both of these methods are quite 
tedious, and one solution could be a classification method applied on digital imagery (Chen et al. 
1997). 
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∏
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                      Eqn. 2 

Where P )(θ is the gap fraction at the view zenith angle and expressed as: 
[ ])cos(/)(exp()( θθθ PAIeGP Ω−=                  Eqn. 3    

 
Where G ( )θ  is the projection coefficient characterizing the foliage angle distribution, It 
represents the mean projection of a unit leaf area in the direction of the beam and onto a plane 
normal to the beam. G is a function of both θ  and the leaf inclination distribution, but at θ  = 57 °, 
G ≈ 0.5 for any distribution of leaf (Fassnecht et al. 1994).   
 
A simple method to correct for the clumping of needles in shoots is derived from the assumption 
that individual shoots (instead of needles) are randomly distributed in the canopy (Leblanc et al. 
2002). 

Ω = ΩE/ҮE         Eqn. 4                   
where ҮE is defined as the needle-to-shoot hemisurface area ratio, which approximates the amount 
of clumping that occurs within a typical shoot, and has been measured in many other studies for a 
variety of species (Gower and Norman 1991; Deblonde et al. 1994; Fassnacht et al. 1994; Chen et 
al. 1997a). ΩE is measured with the TRAC and includes clumping at scales larger than the average 
element size; in deciduous forests this is a leaf, and in conifers, shoots are the primary foliage 
elements. 
 
The TRAC quantifies the clumping effect by measuring the canopy gap size distribution. For 
deciduous stands the clumping index measured from TRAC includes the clumping effect at all 
scales, but in conifer stands it only resolves the clumping effect at scales larger than the shoot 
(Leblanc 2002). The instrument is unable to account for within shoot clumping in conifers because 
small gaps (less than a few mill meters in some cases) between needles disappear in shadows 
within the sun fleck gap-size distribution projected onto the ground. Chen et al. (1997) have 
recommended integrating the effective LAI measurement at several zenith angles of LAI-2000 or 
hemispherical canopy photography with the clumping index (gap size) of the TRAC, to produce a 
more accurate estimate of LAI that accounts for both gap fraction and gap size distribution. 
 
Hemispherical canopy photography 
Hemispherical canopy photography is a technique for studying plant canopies via photographs 
acquired through a hemispherical (fisheye) lens from beneath the canopy oriented towards zenith 
or placed above the canopy looking downward. A hemispherical photograph provides a permanent 
record and is therefore a valuable information source for position, size, density, and distribution of 
canopy gaps. It is able to capture the species-, site- and age-related differences in canopy 
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architecture, based on light attenuation and contrast between features within the photo (sky versus 
canopy). Hemispherical photographs generally provide an extreme angle of view, generally with 
an 1800 field of view.  
 
Digital cameras are available now with a very large number of pixels that provides a spatial 
resolution close to that of classical photographic films (Hale and Edwards 2002). In comparison to 
analogue cameras, these digital sensors have better radiometric image quality (linear response, 
greater dynamic range, wider spectral sensitivity range (King et al. 1994). One of the main 
problems of hemispherical photography for determination of LAI is the selection of the optimal 
brightness threshold in order to distinguish leaf area from sky area thus producing a binary image. 
A series of software packages for hemispherical images processing have been developed (e.g. 
Hemiview (Delta-T Device), SCANOPY, GLA, CAN-EYE (Weiss et al. 2002) and DHP (Leblanc 
et al. 2005). Previous researches demonstrated that with a high resolution digital camera, the 
choice of the threshold level would be less critical, because the frequency of mixed pixels is 
reduced in comparison to the aggregation of pixels in cameras with lower resolution. 
 
Hemispherical photographs provide simple means to correct for clumping at the tree/canopy level 
for improved LAI estimates (Soudani et al. 2002). Gower et al. (1999) indicates woody material 
can comprise from 5% to 35% of the total Plant area in hemispherical photography. However, if 
leaves or shoots preferentially musk branches, Kucharik et al. (1998) suggest that branches may be 
neglected during the processing of the photographs. 

 
LAI-2000 canopy analyzer 
The LAI-2000 captures the light-dark contrast of a canopy against diffusely lit sky to give an 
estimate of VAI. The  fisheye lens and internal optics direct diffuse sky light < 490 nm from a 
conical region approximately three-and-one-half tree heights in radius to a detector of five 
concentric silicon rings where data are recorded from regions centered on 7, 23, 38, 53, and 68 
degrees zenith (LI-COR 1992). The instrument's microprocessor combines above and below 
canopy measurements to calculate VAI using the equation  

VAI = ∫
∏

−
2/

0

sincos))(ln(2 θθθθ dT              eqn.5 

For the best results, measurements should be made under a uniformly overcast sky (LI-COR 
1992); otherwise, the scattered light beneath the canopy is assumed to be additional diffuse light 
resulting in an underestimate of VAI. Measurements under non-overcast skies have resulted in 
estimates of VAI as much as 50% lower than the estimates obtained for the same stands but under 
overcast skies (Welles and Norman 1991).  
 
It has been used with success to estimate LAI in continuous and homogeneous canopies, such as 
millet and grasslands, validated by direct estimates of LAI based on harvesting (Levy and Jarvis 
1999). In discontinuous and heterogeneous canopies, the potential of this instrument is restricted 
by a general tendency towards underestimating LAI (Chason et al. 1991). 

2.2.2. LAI estimation methods from remote sensing data 

Various new remote sensing data are becoming available, which bring a new era of LAI mapping 
(Fang et al. 2003). It provides a unique way to obtain LAI over large areas (Chen and Cihlar 
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1996). Although LAI can be directly or indirectly measured by several methods its spatial and 
temporal distribution is usually investigated using remotely sensed data and the results from these 
procedures vary by scale of observation, type of vegetation, spectral bands used, and the 
sophistication of the models. Image calibration and atmospheric correction can also affect results 
(Colombo et al. 2003). Remote sensing data involved in the inversion are critical to the accuracy 
of LAI estimates. There are a variety of cases that can affect the collection of target spectral 
reflectance data, such as the reflectance characteristics of background and adjacent materials, as 
well as variations associated with changing solar zenith and azimuth angles, sensor look angle, and 
atmospheric conditions (Williams 1991). A selection of bands to be used in the inversion process 
is recommended since highly correlated bands would get artificially more weight and bias the 
retrieval (Meroni et al. 2004). 
 
The spatial resolution of an image also greatly influences the accuracy of the biophysical variable 
that can be retrieved. For example the relative error between retrieved and ground measured LAI 
could be reduced on average by 17%, if the image resolution is changed from 20m to 1m (Gascon 
et al. 2004).  
 
Sensors of remote sensing data are divided in to two broad categories (CSC_NOAA 1999):  
Active sensors: provide their own source of energy to illuminate the objects they observe. An 

active sensor emits radiation in the direction of the target to be investigated. The sensor then 
detects and measures the radiation that is reflected or backscattered from the target. RADAR 
and lidar are the most common sensor types of this kind. 

Passive sensors: detect natural energy (radiation) that is emitted or reflected by the object or scene 
being observed. Reflected sunlight is the most common source of radiation measured by 
passive sensors. It includes radiometric instruments like:  

• single channel (Active Cavity Radiometer Irradiance Monitor (ACRIM) and Total Sky 
Imager (TIS)) 

• multispectral (Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER), Advanced Very High Resolution Radiometer (AVHRR), Imaging Infrared 
Radiometer (IIR), MODIS), 

• hyperspectral (AISA, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)) 
• Polarimetric instruments (POLDER, Polarimetric Scanning Radiometer (PSR)). The focus 

of this study is on passive remote sensing data. Therefore, the major LAI retrieval methods 
from passive remote sensing data are briefly discussed as follows. 

 
1. Statistical methods 
Among the various Vegetation Indices the ratio-based Normalized Difference Vegetation Index 
(NDVI) and the simple ratio vegetation index (SR) are the most frequently used to correlate with 
LAI and other canopy structure parameters from airborne and Spaceborne remote sensing data 
(Gong et al. 2003). These and other ratio-based indices, although important, utilize only a fraction 
of the spectral information available in many image datasets(Cohen and Justice 1999) and thus 
may limit the power of predictive relationships. The  ordinary least squares regression with the 
NDVI, the Weighted Difference  vegetation Index (WDVI), the Gitelson green index (GI) spectral 
vegetation indices (SVI) and geostatistical approach that uses ground-based LAI measurements 
and image-derived kriging parameters to predict LAI are also grouped under this  approach. The 
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VI-based models have various mathematical forms such as linear, power, exponential, etc. 
(Walthall et al. 2004).  
 
Even though Retrieval of LAI using empirical approaches, is  simple and easy, they tends to be 
site-specific, relationships are valid only under conditions similar to those at the time the 
correlation was established and the relationship may breakdown if the solar and viewing 
geometries, soil background, chlorophyll concentrations, or moisture conditions are different 
(Jacquemoud et al. 1995). Additionally, in situ calibration measurements of LAI over regional or 
global scales are impractical (Walthall et al, 2004). The other limitation of these approaches is 
there is no universal LAI–SVI equation re-applicable to diverse vegetation types; it is difficult to 
use this approach with large-scale remote-sensing images (Qi et al. 2000).The study by Baret and 
Guyot (1991) showed that identification of the specific crop (or dominant crop) and a priori 
knowledge of the corresponding set of  parameters of the semi empirical models, will significantly 
improve the accuracy of determination of vegetation characteristics. 
 
2. Physical model inversion methods 
An alternative to empirical relationships is a modeling approach based on a set of radiative transfer 
equations or models. It involves inverting a model. Model inversion is a process in which the 
model is run in a reverse mode, that is, the inputs to the inversion procedure are the reflectance (r) 
and the output is a set of the parameters. The technique commonly used to invert a model is to 
adjust the model parameters in such a way that the model-predicted values closely match the 
measured values. Most commonly used models are bidirectional reflectance (Qi et al. 2000). These 
methods use a model M (a functional relation between variables and Bidirectional Reflectance 
factor (BRF)) to compute some cost function C which is expressed as: 
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Optimization inversion method 
This approach finds the value of a variable that maximizes or minimizes the objective function 
while satisfying constraints. Many types of optimization methods are available. The simplex 
method requires a geometric figure consisting of N + 1 vertex in N dimensions. The method starts 
with an initial simplex of N + 1 points, which expands and contracts to adapt to the functional 
surface and attempts to surround the optimum point. This is achieved through a series of geometric 
transformations where the current worst point is discarded and replaced by a better one. Once one 
simplex has terminated, the procedure is repeated with a new simplex. The process is repeated 
until the simplex collapses onto the same solution, which increases the likelihood of finding the 
global optimum (Kimes et al. 2002).  
 
The conjugate direction set method begins from a single initial position and conducts single line 
minimizations, accurate to within a user defined tolerance, in each of the current N conjugate 
directions in order to arrive at the minimum for a given iteration (Liang 2004). 
 
This optimization approach has been used in many studies for bidirectional Reflectance 
Distribution Function (BRDF) inversion and the result showed that LAI is retrieved with fair 
degree of accuracy (Liang 2004). Kimes et al. (2002) had made a comparison between the simplex 
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method and neural network method for retrieving LAI from DART model and found that at 
moderate noise levels, the simplex method was equal to the ANN method in RMSE values where 
as at high noise levels, the simplex method had significantly lower RMSE values than the ANN 
method.  
 
In the minimization of nonlinear functions, one of the common problems is that the merit function 
F does not change, even though there is another set of values of the parameters for which F takes 
on a lower value. In other words, the minimization process gets trapped in a local minimum. For 
such cases, the calculated values of the parameters will depend upon the initial guess and may be 
quite erroneous if one does not reach a global minimum (Goel and Strebel 1983). Therefore, they 
may not be appropriate for many operational applications on a per-pixel basis for regional and 
global data (Kimes et al. 2002) 
 
Genetic Algorithm (GA) 
The fundamental concept of GA is based on the concept of natural selection in the evolutionary 
process, which is accomplished by genetic recombination and mutation (Fang et al. 2003) . 
Genetic algorithms have been developed for retrieval of land surface roughness and soil moisture 
(Jin and Wang 2001). Lin and Sarabandi (1999) used GA as a global search routine to characterize 
the input parameters (such as tree density, tree height, and trunk diameter and soil moisture) of a 
forest stand with measured single-polarized data.  
 
The GA optimization method provides an alternative to invert the RT models in remote sensing. 
The advantage of GA is twofold (Fang et al, 2003). First, it scans all the initial conditions and 
provides several possible solutions for the detailed examination of the global optimum solution, 
thus it avoids the inaccuracies introduced by traditional minimization algorithms. Second, it only 
runs the forward RT model with constrained parameter space and is straightforward in the 
optimization process. However, in their study of retrieving LAI with a canopy radiative transfer 
model using all six bands of thematic mapper,  GA is likely to overestimate when field LAI>4. 
 
Lookup Table Method (LUT) 
The LUT method like other physical approaches solves the inverse problem by searching canopy 
variables values leading to the closest match between model simulations and radiance 
measurements. LUT algorithms offer an advantage over other physical models because it is a 
global search and thus is not sensitive to a local minimum. Further, it is performed on pre-
computed data, and the search can easily be parallelized. Similarly to iterative minimization 
algorithms, the LUT algorithm is based on a cost function that can incorporate prior information. 
The principle of a LUT consists of generating a table of canopy variables by sampling the space of 
canopy realization. Then a radiative transfer model is used to generate the corresponding table of 
reflectance values. 
 
To select the solution of the inverse problem, the LUT is sorted according to a cost function, which 
is a simple Root Mean Square Error (RMSE):  

RMSE = 
2
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Where iR  is the BRF measured for the wavelength i and LUTiR ,  is the BRF simulated. The 
solution is considered as being the distribution of the set of variables providing the smallest RMSE 
and can be simply represented by its median value to prevent widely spread solutions (Combal et 
al. 2002). 
 
Gastellu-Etchegorry et al (2003) generalize a look-up table to any view-sun direction   with the 
inversion of a series of SPOT images for determining the LAI and tree cover of a temperate forest. 
This led to LAI maps that are as accurate as LAI maps that are derived from classical relationships 
which are calibrated with LAI in situ measurements. If prior information is known as a function of 
species, LUT would be both a fast and an economic approach to estimate vegetation properties 
(Combal et al. 2003).  
 
3. Hybrid inversion methods 
A hybrid inversion algorithm is a combination of extensive simulation using a canopy radiative 
transfer model (physical) and a non parametric statistical inversion model (Liang 2004). As a result 
it takes the advantage of both the physical and statistical approaches. They require little a priori 
information as opposed to LUT method. There are various hybrid inversion algorithms. The most 
commonly used in the remote sensing field are the neural network and Projection pursuit 
regression and discussed as follows.  
 
Neural network 
In the field of remote sensing, neural networks have been used for classification (and other 
spatiotemporal relationships), predicting vegetation and soil parameters, and for fast and stable 
inversions of relatively complex physical models (Kimes et al. 1997; Kimes et al. 1998). Neural 
networks are composed of single neurons connected to each other and characterized by a transfer 
function, and associated weight and bias. Neural networks have the ability to learn patterns or 
relationships given training data, and to generalize or extract results from the data. They enable to 
relate a given set of input variables to a set of output variables, irrespective to any known 
functional relationship between input and output, provided an implicit relationship exists between 
these sets (Kavzoglu and Mather 2003). Detail review of ANN attributes for extracting vegetation 
variables from remote sensing data can be found in review article of Kimes et al. (1998).  
 
The accuracy of the method depends on the number of layers and nodes, initial parameter values 
(weight, bias, momentum, etc.), number of training samples, input out put encoding and type of 
training algorithm as well the measurement and model uncertainties  (Kimes et al. 1998; Kavzoglu 
and Mather 2002; Kavzoglu and Mather 2003). From the design perspective, the specification of 
the number and size of the hidden layer(s) is critical for the networks capability to learn and 
generalize (Kavzoglu and Mather 2003). The input and output nodes are usually equal to the 
number of input and out put variables. Consequently, it is the hidden layer nodes that are subject to 
adjustments in number. There is no universally accepted optimal number of hidden layer nodes for 
a particular problem. A trial-and-error strategy is frequently employed to determine appropriate 
values for Significant parameters like the range of the initial weights, the learning rate, the value of 
the momentum term, and the number of training  iterations, all of which relate to the question of 
when and how to stop the training process (Kavzoglu and Mather 1999). 
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An appropriate number of training samples is required in order to define the nature of the inversion 
problem. This number is mainly dependent on the network structure and the level of complexity of 
the problem. In general, it is not known exactly how ANNs learn particular problems and apply the 
extracted rules to unseen cases, or how conclusions can be drawn from the trained networks. As a 
consequence, artificial neural networks are generally called ‘black-box’ methods (Kavzoglu and 
Mather 2002).  
 
Combel et al. (2002) used a backpropagation neural network together with LUT and Quasi-
Newton algorithm for retrieval of biophysical variables from a range of Radiative transfer models. 
In the case of 3D RT model inversion they found that ANN overpasses the other two methods in 
accuracy when model uncertainties are taken in to account. Weiss and Baret (1999) used a two 
layer backpropagation network with a learning rule based on the Levenberg–Marquardt algorithm 
for Evaluation of canopy biophysical variable retrieval performances from the accumulation of 
large swath satellite data. They suggested that ANN can accurately estimate biophysical variables 
if the optimum amount of radiometric information is used.  
 
Gong (1999) employed a semi-linear feed-forward neural network program to invert LAI and leaf 
area density from a canopy reflectance model. The test results showed that a relative error between 
1% and 5% or better was achievable for retrieving one parameter at a time or two parameters 
simultaneously. Fang et al. (2003) retrieve leaf area index using neural network. His result 
revealed that LAI can be best retrieved by neural network method from Landsat thematic mapper 
band 3 and 4.  A study by Weiss et al. (2001) depicted  ANN performance is much better than 
NDVI  to estimate LAI from satellite data . The error is two times lower in ANN when compared 
to NDVI. 
 
Projection Pursuit Regression (PPR) 
PPR model approximates high dimensional functions by simpler functions that operate in low 
dimensional spaces-typically one-dimensional (Fang and Liang 2005). As its name indicates it 
pursue interesting projections in space and smooth them using simple regression techniques. It has 
the form: 
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                   Eqn. 8  

Where X and Y are the independent and dependent variables respectively andα  is the 
transformation vector. The dimension (or term) M is to be chosen by the user, which depends on 
the number of variables and the training data. Wj is the weights for different terms. Eqn.8 uses an 
additive model on predictor variables, which are formed by projecting X in M carefully chosen 
directions. The results of PPR are not sensitive when the dimension ‘M’ is set between 15 and 25 
(Liang 2004). 
 
Fang and Liang (2005) used the PPR and ANN to estimate LAI from MODIS data and the result 
showed that both methods produce similar LAI results. This is because of their similar statistical 
mechanism. Li et al. (2005) compared PPR model with traditional multivariate linear statistical 
methods and found PPR much more accurate in estimating grassland yields.  
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2.3. Radiative transfer models  

Reflectance modeling is a necessary component of scientific investigation that establishes 
diagnostic links between investigative conjecture and spectral data collected in the laboratory and 
field or through remote sensing (Ganapol et al. 1999). RT models serve as a basis for extracting 
vegetation variables using directional/spectral data from modern-borne sensors. The retrieval of 
LAI through inversion methods is based on information taken from remotely sensed data using RT 
models. Physically based models range in complexity from simple nonlinear models to complex 
numerical RT models in realistic three-dimensional (3D) vegetation canopies (Kimes et al. 2002) 
 
Simple homogeneous targets may require only one-dimensional models for an accurate description 
of their radiation field, while more complex heterogeneous targets require complex three 
dimensional models (Meroni et al. 2004). The PROSPECT (Jacquemoud and Baret 1990) model 
simulating the leaf optical properties, KUUSK (Kuusk 1995) , IAPI (Iaquinta et al. 1997), and 
NADI (Gobron et al. 1997) canopy reflectance models are some of the 1D models. Whereas the 
DART (Gastellu-Etchegorry et al., 1996) and the K-K (Kimes and Kirchner 1982) models are 
among 3D radiative transfer models which, offers advanced functions to adjust structural 
parameters of heterogeneous forest stands.  
 
To estimate the canopy reflectance using RT models, three important variables must be carefully 
formulated: the architecture of the canopy, the optical properties of foliage elements, and the 
background surface reflectance properties (Tian et al. 2002). A major limitation of one 
dimensional models is that they do not account for some canopy architecture variables such as tree 
crown closure, tree density, tree height, shape and dimension of crowns, which may imply wrong 
estimation of forest fAPAR and BRF (Gastellu-Etchegorry et al. 1999). The K-K model provide an 
interesting means for taking into account the architecture of covers with some series drawbacks 
due to simplifying assumptions (Myneni 1991).  
 
In RT models the fundamental quantity that characterizes the reflectance property of a surface is 
BRDF, defined as the ratio of the radiance scattered by a surface into a specified direction to the 
unidirectional irradiance incident on a surface (Di Girolamo 2003).  
 
Each RT model has its own advantage and disadvantage. Parameters used greatly vary depending 
on the dimension of the model. Details about the capability, performance and agreement of the 
latest generation of RT models which could lead to model enhancements and further developments 
can be found in (RAMI 2005). Here we briefly reviewed the main findings about the RT model 
used in this study only.  
 
The Discrete Anisotropic Radiative Transfer (DART) model 
The DART model offers advanced functions to adjust structural parameters of the forest stands 
such as horizontal and vertical distribution of the leaves density, zones of total defoliation, and 
distribution of woody parts. The model was designed to simulate radiative transfer in 
heterogeneous 3D landscape scenes containing trees, shrubs, grass, soil, etc.  The scene is divided 
into rectangular cells of variable dimension containing materials (e.g., leaf, wood, soil, water, etc.) 
(Figure1). Radiative scattering and propagation are simulated with the exact kernel and discrete 
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ordinate approaches. Topography, hotspot, leaf specular, and polarization mechanisms are also 
modeled. The model output predicts any specified directional sensor response. The volume and 
scattering properties of the materials in the cells are specified. This model represents one of the 
more complex 3D radiative transfer models (Kimes et al. 2002).  
 
The simulation of bidirectional reflectance by the model encompasses two major steps (Bruniquel-
Pinel and Gastellu-Etchegorry 1998): 1) illumination of the elementary cells by direct sun radiation 
and diffuse atmospheric radiation, possibly anisotropic; 2) interception and scattering of previously 
scattered radiation. In a first iteration all direct solar source vectors, and in a second step 
atmospheric source vectors, give rise to secondary source vectors in all illuminated cells with non 
nill scattering phase functions. In a second iteration all source vectors induced by secondary 
sources are processed. These give rise to tertiary source vectors that are further processed in a third 
iteration. Iterations are for all sources and for all directions. Radiation that escapes from the upper 
cells of the scene is stored at each iteration. Processing goes on until source vectors escape from 
the canopy or reach a zero threshold level of flux. 
 
The model has been verified for its robustness of simulating  biophysical variables in many studies 
(Esteve et al. 1998; Gastellu-Etchegorry et al. 1999; Pinty et al. 2000; Kimes et al. 2002; Martin et 
al. 2003; Gascon et al. 2004; Gastellu-Etchegorry et al. 2004). However, solving a 3D radiative 
transfer model is very time consuming. Moreover, the inversion of 3D reflectance models leads to 
high levels of complexity, a significant increase in required computer resources, a higher potential 
of ill-posed problems, and many method-specific problems such as sensitivity to noise and initial 
guesses at the solution (Gastellu-Etchegorry et al. 2003). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure1. Diagrammatic representation of the system landscape-atmosphere-sensor (Anonymous 2004) 
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3. Methodology 

The LAI of the mature Norway spruce stand was retrieved as follows. First the field data were 
processed to determine the ground truth LAI and the DART inputs. Secondly the heterogeneous 
3D scene radiative transfer of the mature Norway spruce stand was simulated using the DART 
model. Thirdly the selected method (ANN) to retrieve LAI from radiative transfer models was 
applied to estimate LAI at the stand level from the pre-processed AISA hyperspectral image. 
Finally, comparison with ground truth LAI had been performed to validate the LAI inverted by 
ANN (Figure2).  

Figure 2. Conceptual model of canopy reflectance model (DART) inversion using ANN and 
validation with ground truth LAI computed from combination of HP and TRAC optical 
instruments. 

3.1. Study area 

The study area “Bily Kriz” (49°30´N, 18°32´E) is centered at the Beskydy Mts. in the eastern part 
of the Czech Republic at the borders with the Slovak Republic (Figure3). The mean elevation of 
the study area is 936 m above sea level. The soil type is humic podzol soil combined with loamy 
sand soil. The depth of the humic horizon is 60-80 cm with the gravel fraction of 30-40% and clay 

ANN 
Estimated 

LAI

TRAC LAI 
data 

Generation 
of Lookup 

Table

HP 
processing

by  CANEYE 

Effective and 
true LAI

Effective and 
true LAI, 

clumping index

Needle to 
shoot ratio

HP LAI data 

Needle and 
shoot area 

calc.

sample shoots 
and needles AISA Image

Preprocessing 
(corrections 
geor.&proj.)

Measured 
reflectance

Image 
Classification 

Ground 
Truth LAI 

TRAC 
processing
by   TRACWin

Inputs

Results

Preprocess

Int.results

DART Inputs  
(tree dim., leaf optical 

pro. etc)

 Model 
variables

Define range & distr.

Simulated 
reflectance 

 ANN 
Training

Validation



3. Methodology 

 17

fraction of 15-38%. The average annual air temperature is about 5.5 ºC, the average annual 
precipitation amount is between 1000 and 1400 mm. The mean number of days with snow cover is 
160 days per year. The average slope gradient of the study site is 13% with the slope oriented 
towards south-west.  
 
A mature Norway spruce (Picea abies (L.) Karsten) forest stand with heterogeneous canopy 
structure was selected for this study. The stand has an average tree height of 37.96m and 0.51m 
Diameter at Breast Height (DBH). It is the oldest stand in the area (> 100 years).  
 
Norway spruce is a fast growing evergreen needle leaf tree widely found in Europe. It is a conical 
shape very useful timber tree grows from 41 to 65 meters in height and as much as 60 centimeters 
in diameter on older ones (RFS 2001). Leaves (needles) are 4-sided (rectangular in section) and 
sharp or somewhat blunt at the tip (NCTA 1996).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3.  Location of the study area  

3.2.  Ground based data and pre-processing 

Both the ground based LAI measurement and DART input data were collected by Lucie Homolová 
and Zbyněk Malenovský. Much of the data were collected during the field campaign in August-
September 2004 and some in September 2005.  

3.2.1. Ground based LAI data collection and pre-processing 

A 60m by 60m plot was established in the middle of the study area (Figure 6) to take in-situ leaf 
area index estimates for validation of the method implemented to retrieve LAI from the AISA 
image. The validation data were collected by means of two indirect optically-based methods: 
TRAC and hemispherical digital camera. The hemispherical photos were taken during the field 
campaign in September 2004 while the TRAC measurements were made in September 2005. 
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3.2.1.1. TRAC measurement  

The TRAC measures the transmitted direct photosynthetically active radiation along transects 
beneath a plant canopy using a high-frequency (32 Hz) sampling technique. Both the canopy gap 
fraction and gap size distribution were obtained along transects and element clumping index, true 
and effective LAI were driven using the appropriate equations. 
 
TRAC measurements were made in three directions: west to East (A), Northeast to Southwest (B) 
and Southeast to Northwest (C) as shown in Figure 4 on the sample plot keeping the 
perpendicularity of each transect to the sun. The measurements were made in seven transects in 
‘A’ during noon time and in nine transects in each of the ‘B’ and ‘C’ directions during morning 
and afternoon times respectively. The measurements were made two times in ‘A’ and ‘B’ and once 
in ‘C’ on 31stAugest and 1st September 2005. The distance between markers was 10m for ‘A’ and 
14.14 for ‘B’ and ‘C’. All the TRAC measurements were made under clear sky conditions or in 
large gaps between clouds.  
 
The needle to shoot area ratio and element width (W) were calculated from previously collected 
data of Norway spruce stand near the study area (Kykulka site). A total of 107 shoots and their 
corresponding needles were used to determine the ratio. The projected area of each shoot and the 
needles were measured through scanning, then the needle to shoot ratio was averaged for the 107 
samples.  
 
The element width was determined by Eqn.9  (Leblanc et al. 2002). It is one of the inputs in the 
estimation of LAI using this method. 

W = AG )(θ                                                        Eqn. 9 
Where: W is element width 
 G (θ)  is projection coefficient ≈0.5 

‘A’ is average projected shoot area  
 
The woody to total area ratio ( )α  of black spruce by  Chen et al (1996) was taken for this study 
assuming the two species have much similarity and  determining α  is a time consuming activity 
that requires destructive sampling.  
 
The Foliage clumping larger than the shoots (ΩE), effective and true LAI   were calculated in the 
program TRACWin 3.7.1 for each transect. See appendix 1 for general procedures in calculating 
LAI using TRACWin. The average ΩE is considered to be the clumping index of the stand and 
used as input parameter in other LAI calculation methods.       
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Figure 4.  Lay out of the sample plot and its position in the AISA hyperspectral image of the study area 

3.2.1.2. Hemispherical photography method 

The developments of high-resolution digital cameras and advances in image processing software 
have made hemispherical photographs suitable for canopy parameter calculation. As shown on 
Figure 4 the hemispherical photographs were acquired at 10m interval in the sample plot. The 
photos have been taken using a digital camera Nikon Coolpix 8700 with fish-eye lens placed on it 
to offer 180º's field of view (FOV). All photos were taken at 1.5 m height from the ground surface. 
 
For each sample point a set of 4 photos were taken one upward and one downward looking and 
two photos of oblique views (one upward and one downward at zenith angle 57.5°) (Figure 5). A 
total of 196 hemispherical photographs were taken during the field campaign in September 2004. 
However, only the 49 upward photos were used in this study. The photographs have been first pre-
processed in adobe Photoshop for noise reduction and better contrast.  

TRAC transect A 

TRAC transect B 

TRAC transect C 

HP only 

HP & TRAC 

TRAC only 
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Figure 5. A Set of Hemispherical photographs taken at a sample point: downward (a), upward (b), oblique 
downward (c), and oblique upward (d). 
 
The pre-processed hemispherical photographs have been organized in two fashions. On one hand 
the sample photos were organized into a subplot using a 3 by3 moving window going one step at a 
time. As a result 25 subplots with 9 photos (Figure 6) in each were created. On the other hand to 
make comparison between the two optical methods (TRAC and HP), the photos were organized 
using a window size equals to each TRAC transect foot print.   
 
Then the CAN-EYE software was used to obtain effective LAI, true LAI and other canopy indices 
value. To keep the foot print of the photos within the chosen subplot the CAN-EYE software was 
parameterized at circle of interest 15.50 so that each photo has a foot print of 10m radius (eqn.10) 
(Baret and Weiss 2004). The analysis was made at 2.50 and 50 zenith and azimuth angular 
resolution respectively. 
Ft = [ ]2tan(θπ ×× H                                Eqn. 10   
 
Where: Ft is foot print of hemispherical photograph 
  H is the average tree height (37.96m) in the stand and  

θ  is circle of interest  
Each group of photo was classified in to leaves and none leave parts (sky) and, LAI and other 
indices were automatically computed and stored by the software. Trunks and big branches were 
carefully selected and assigned to sky to avoid their effect on LAI computation (Figure 6).  
 
 
 
 
 
 

Before classification After classification 
 
 
 
 
 
 
Figure 6. The set up of the hemispherical photos and classification into leaf and non leaf (sky) in CAN-EYE 
software 

d a cb 
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3.2.2. DART inputs  

In order to describe the structure of the Norway spruce crown and the whole forest stand in the 
DART model, the structural data were collected during the August and September 2004 field 
campaign. A total of 24 trees which were considered representative of the stand were selected from 
Suppressed, average, co-dominant and dominant canopy parts.  The basic parameters such as 
position of the trees (X, Y coordinate), total tree height, DBH, height of live and dead crown and 
crown projection area were measured for each mature tree of interest. Out of the 24 sample trees 
only three trees (one suppressed, one co-dominant and one dominant) were used for a simple forest 
representation in the DART model to minimize the computation time.  
 
The three functional (Saturation, production and juvenile) parts of crown, the ratio of needle age 
classes, horizontal distribution of leaf density from a branch base towards crown periphery, and 
foliage clumping index were determined based on the destructive sampling made on 8  trees in the 
near by Kykulka site mature Norway spruce stand. The starting points of each functional part of 
the 8 trees were defined relative to the total tree height. Proportions of height where the functional 
parts start were averaged for the 8 trees. Then the averaged proportion values were applied to 
determine the saturation, productive and juvenile zone of our sample trees.   
 
The results of laboratory analysis through distractive sampling of three branches, each from the 
three functional parts of crown taken from the near by stand, were used to specify the percentage 
ratio of needle age classes (current year (c), one year old (c+1), two years old (c+2), three years 
old (c+3) and the rest age classes (r). Details of the laboratory analysis procedures can be found in 
Homolova (2005) and Ufer (2004). 
 
The hemispherical reflectance and transmittance of spruce needles and background elements 
(spruce bark, species of under story, etc.) were measured by FieldSpec spectrometer in 
combination with integrating sphere 1800-12. A weighted average of all spectral signatures of 
functional growing parts and needle age classes has been calculated to obtain a representative 
sample.  

3.3.  Image acquisition and post processing  

A set of nadir hyperspectral images of very high spatial resolution (0.4m) was acquired over the 
study area on September 18th, 2004. The images were taken by the AISA Eagle (Airborne 
Imagining Spectroradiometer) sensor. AISA Eagle is one of the AISA hyperspectral systems which 
are complete, pushbroom imaging systems, consisting of a hyperspectral sensor head, a miniature 
GPS/INS sensor, and a data acquisition unit in a rugged PC easily installable/ removable on/from 
any aircraft. The AISA Eagle is operating within the visible and near infrared spectra (400 – 970 
nm). The sensor is capable to acquire any spectral band combination up to datasets of 244 bands 
and boasts a 1000 pixel swath width (SPECIM 2004). The description of the airborne 
hyperspectral images acquisition flight campaign over the study area is shown in Table 1 below.   
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Table 1.  Specifications of the September 18
th 

2004 airborne flight campaign over the study area  
Parameters  
Spatial resolution /Ground pixel size [m] 0.4  
Band widths [nm]  8.6-10,0
Number of bands  60  
Flight speed [m/s]  50  
FPS (Frames per second)  125  
Swath width [m]  204.8  
Altitude [m]  384  
Focal length of lens [mm]  23  
FOV (Field of view) [º]  29.9  
Binning of pixels (spectral x spatial)  8x2  

3.3.2. Image post processing 

The post processing has been already done prior to the start of this study by Zbyněk Malenovský. 
The images were radiometrically calibrated (i.e. the sensor recorded digital numbers (DN) have 
been converted in to radiance value). Then the radiance values were changed in to reflectance 
values through atmospheric correction. The images were also geo-referenced and projected for 
Universal Transverse Mercator (UTM zone 34N). 

3.3.3. Image classification  

Two sets of images which differ only in their flight directions were cut out and exploited for their 
potential for classification of the study area. The very high resolution images were classified into 
Illuminated tree Crown (IC), Shadowed tree Crown (SC), Illuminated Understory (IU) and 
Shadowed Understory (SU) to use the reflectance of the IC and SC as reflectance of tree crown 
and the IU and SU as lambertian in the inversion procedure according to Gascon et al (2004). Two 
methods of classification, Spectral Angle Mapper (SAM) and Maximum likelihood (MLH) were 
applied and evaluated for their performance on both images. Eventually, the best performing image 
was used for the LAI retrieval. 
 
The first step in the classification process was collecting endmembers for the four classes from 
region of interest (ROI). To improve the spectral separation, an Hourglass procedure consisting of 
MNF transforms was applied. The selected endmembers were displayed using N-Dimensional 
visualization technique and edited for better separation. Separability of ROI were also computed 
and checked for Jeffries-Matusita and Transformed Divergence separability measures. Then the 
selected classification methods were applied and evaluated by means of confusion matrix.  

3.4. Simulation of forest canopy by DART model  

All available information was used as DART input parameters. This information consisted of (1) 
structural characteristics such as tree dimensions (height, crown diameter, etc.), and (2) optical 
characteristics such as the leaf reflectance, the leaf transmittance, etc. Simulations were made for 
selected spectral bands suitable for the LAI retrieval. Other input variables were solar zenith angle, 
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tree cover, Crown architecture, leaf density, and Understory vegetation property and soil 
reflectance. Each of these input parameters are described in the following sub sections: 

3.4.1. Directional parameters 

The first step in DART parameterization is approximating the number of propagation directions 
(Ndir) that sample the 4ð space of directions and defining the sun Zenital and Azimutal angles. Ndir 
is approximated by the formula (Gastellu-Etchegorry et al. 1996):  

 Ndir = ∑∑
= =

u

u

uv

v1

)(

1

.              Eqn. 11  

where u is the discretizing level of coordinate µ that is the cosine of zenith angle θ, and v is the 
discretizing level of coordinate φ, which is the azimuth angle. 
 
A total of 95 propagation directions were used based on eqn.11. These directions are the only 
possible directions of incident and scattered radiant fluxes.  
 
 In the DART model the angles has to be set from 900 t0 1800 for zenith and from 00 to 3600 for 
azimuth. Therefore, the zenithal and azimutal position of the sun over the research area was 
calculated for the particular location and exact time of the flight and transformed to fit the DART 
definition. Consequently, DART sun zenith angle of 137.8°, and azimuth angle of 183.5° were 
applied. 

3.4.2. Selection of spectral bands and RT parameters 

The forest canopy BRF was studied with simulations conducted in the visible (VIS) and near 
infrared (NIR) spectral regions. Different wavelength regions are sensitive to different vegetation 
variables. The spectral information captured by the AISA sensor for the wavelength higher than 
900 nm is noisy. On the other hand many of the bands within VIS and NIR region are closely 
related. Therefore, only those bands that have the largest information content were selected. The 
commonly used bands are green, red, and NIR. The four spectral bands selected for the RT 
simulations and building the look-up-table (LUT) database in this study were band No 13, 27, 35 
and 48. Their position in the AISA hyperspectral image is shown in Table 2.  
 
The multispectral mode of DART was used for RT simulations. A threshold value of 0.000010 for 
albido change and 10 for Number of iterations were set to stop the iteration when either of the 
threshold values first reached. Output images were requested for each of the iterations. The Gauss-
Seidel approach (Gastellu-Etchegorry et al., 1996) was used to extrapolate the multiple scattered 
radiations in the last iteration.  
 

Table 2. Description of the spectral bands selected for DART simulation. 
Band No. Band center (nm) FWHM

13 540.8 9 
27 670.74 9 
35 745.45 9.35 
48 868.99 9.49 
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3.4.3. DART 3D scene 

As noted by Gastellu-Etchegorry et al. (2003), the accuracy of inversion procedures strongly 
depends on the scene simulations (i.e., computer representations) of the earth landscapes that are 
used by the reflectance model. Scene simulations imply many compromises. The simulation 
should be done at wide land range as possible and it has to be small enough to reduce the 
computation time. Here forest is simulated as the repetition of a basic pattern made of three 
representative trees each from suppressed, co-dominant and dominant canopy part of the stand 
over a square surface (Figure 7).  
 
 
 
 
 
 
 
 

Figure 7. A 3D computer Scene of the three trees selected for DART 
simulation at 50% canopy closure. 

 
 

3.4.4. Canopy closure 

Numerical experiments by means of the reflectance model and sensitivity analyses have shown 
that the most important variables that determine the reflectance of a forest stand are canopy closure 
(CC), leaf area index, tree species composition, Understory type and abundance (Nilson et al. 
2003b). To control the effect of canopy closure on LAI retrieval, eight canopy closures (50%, 
60%, 70%, 75%, 80%, 85%, 90% and 95%) which are abundant in the stand were considered. 
These canopy closures were represented in the scene by three trees over a square surface area. The 
area of the scene has been varied to achieve the required canopy closure. One tree is always kept at 
a corner and the other two trees were located in such a way that the canopy closure is as specified 
and canopy reflectance is very close to BRF simulated with money trees (Figure 8). 
 
 
 
 
 
 
 

Figure 8. Schematic presentation 
of canopy closure starting from 
the more open upper left to more 
closed lower right. 

 
  Scale: 1:84 
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3.4.5. Tree structural and optical properties  

There are three options for simulation of trees in DART: i) random location and dimension, ii) 
exact location and random dimension and iii) exact location and dimension. For this study the third 
option (i.e. exact location and dimension) has been selected so that each tree was defined exactly 
by its X and Y coordinate and tree characteristics were assigned accordingly based on field 
measurements. The three trees were considered as separate species and tree characteristics such as 
location, trunk height, trunk diameter, crown radius, crown height, crown shape and optical 
properties where applied for each species. 

3.4.6. Crown architecture 

a) Crown shape: Once the option for simulating trees in DART has been decided the next step is 
to select the appropriate crown shape. There are several tree crown shapes in the DART model. 
However none of them exactly fit to the Norway spruce tree. Among the available shapes the 
truncated cone with zero upper radius more resembles our trees and used in this study.  
 
b) Crown vertical levels: Parameters such as trunk diameter, vertical and horizontal distribution 
of leaves and optical properties vary within a tree. The possibility of creating as many levels as one 
wish in DART enables to attribute those parameters per level separately so that the heterogeneity 
within crown can be maintained. The number of tree levels was defined according to the length of 
live crown and normalized in such a way that the total sum of relative heights’ of all levels is equal 
to one. In our case the suppressed tree has the longest live crown part. Therefore, the suppressed 
tree crown was divided into 11 levels and the co-dominant and dominant trees in to 9 and 7 levels 
respectively.  
 
c) Trunk definition: Trunk height and diameters of each “DART tree species” are defined 
separately inside and outside of crown. The trunk height within a crown was reduced by 6% in 
order to avoid unrealistic influence of a trunk at the crown top. The diameter of trunk for each 
crown level has been calculated using eqn. 12. For the trunk below crown the average diameter 
was employed. 
Di = TAN (θ)*(H-L)) 2                                          Eqn. 12 
 
Where: Di   is diameter at a given crown level 
 θ is the apex angle1 
 H is total tree height and 
 L is cumulative tree height up to the given crown level 
 
d) Vertical distribution of leaf within a crown: Leaves are not equally distributed vertically 
along the tree crown. They have a positively skewed distribution. The Maximum weight for leaves 
is at 71% of each tree height. It gradually increased from the base of the crown and drops 
drastically after this maximum point (Figure 9). The vertical weights of leaf distribution for each 
crown level were introduced as weight of leaf volume density (Uf [m

2
/m

3
]). The weights for Uf 

were derived from the graph of vertical distribution of needles for each of the trees (Figure 9). The 
leaf volume density of a cell at any location can be described by the following equation:  
                                            
1 Apex is the pointed tip of a cone.  The apex angle is the angle between the lines that define the apex. 
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u
f
[j,x,y,z] = u

f
[j].w[j,l].w[j,x(l),y(l)]                     Eqn. 13  

Where u
f
 [j, x, y, z] is leaf volume density of tree species j in particular location (x, y, z) and u

f
[j] 

is unit leaf volume density of tree species j. The vertical weight of u
f 
at tree level l of tree species j 

is denoted as w [j, l] and w [j, x (l), y (l)] is horizontal weight of uf 
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Figure 9. Vertical distribution of the suppressed, co-dominant and dominant tree foliage depicted in terms 
of weight for the leaf volume density. 
 
e) Horizontal distribution of leaf area and empty cells:  The horizontal distribution of crown 
structural features is defined in the model by varying leaf volume density in the horizontal 
direction. Parameters α, β, γ and κ  were used to specify the horizontal distribution of full leaf and  
parameters a and b  to determine empty (air) cells within each tree level l. Function of the 
horizontal distribution of leaf volume density is indicated  in Figure 10 . The position of each leaf 
cell can be expressed as the relative ratio r(x,y,z)/Max r(x,y,z), where r(x,y,z) is current position of 
a leaf cell and Max r(x,y,z) is the position at the crown periphery. Depending on the position of the 
level in the crown the horizontal parameters  α, β, γ and κ were specified for each crown level, so 
that  the leaf volume density of each leaf cell is defined in the  following manner as described in 
the manual of the Model: 
 • If ratio ∈ 〈0, α) then uf [j, x, y, z] = 0  
• If ratio ∈ 〈α,β) then uf[j].w[j,l].w[j,x(l),y(l)], where w[j,x(l),y(l)] = (ratio–α)/(β-α)  
• If ratio ∈ 〈β, γ) then uf [j, x, y, z] = uf[j].w [j, l] 
 • If ratio ∈ 〈γ,κ) then uf[j].w[j,l].w[j,x(l),y(l)], where w[j,x(l),y(l)] = (κ-ratio)/(κ- γ)  
• If ratio ∈ 〈κ, 1) then uf [j, x, y, z] = 0  

 
Figure 10.  Horizontal distribution w[j,l,x,y] of Uf  in crown 
(Anonymous 2004) 
 
 
 

The horizontal parameters a and b determine zones of total (100%) inner and peripheral crown 
defoliation. if ratio ∈ 〈0, a) or 〈b, 1) then 100% of empty cells is defined automatically.  
Percentage of full leaf cells were specified to define the amount of hole if ratio ∈ 〈a, b).  

Dominant 

Co-dominant  

Suppressed 
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Parameters κ and b were assumed to be equal to 1 and α was taken to be equal to zero. The 
horizontal parameters determined from destructive sampling were β, γ and a (Table 3). The 
derivation of the parameters is based on the reconstruction of sample branches collected from 
Sumava 2003 and Bily Kriz 2004 field campaigns. The branch analyses were done by Pavel 
Rejnek from 16 trees (eight trees from each site). Representative branches were taken from the 
juvenile, productive and saturation part of the crown functional parts and the parameters were 
computed as follows.  
 

i. Horizontal structural parameters β and γ of leaf volume density: First of all 
percentage of total branch segment area per each sector ring was calculated. The result of 
the total needle area per segment was used to compute the total needle area [m2] within 
each sector ring and in final step recomputed into the percentage of the half of total 
needle area per sector ring. The average values of these percentages for juvenile and first 
productive branches were plotted in cumulative way. The cumulative curve was fitted by 
a sigmoid function: The first and second derivative of the sigmoid function was 
calculated. Finally, the parameter β was estimated as the maximum and the parameter γ 
as the minimum of the second derivative function.  

 
ii. Horizontal parameter ‘a’ of inner zone of defoliation: Only first productive branches 

were taken into account for calculation of the parameter ‘a’. The length of non-leaf part 
for each examined branch was determined, averaged and converted into the percentage of 
total branch length.  

  
iii. Percentage of full leaf cells: Percentage of full leaf cells per functional crown part is 

another main input parameter for the DART model which determines the distribution of 
holes in the DART scene canopy. Unfortunately, there were no data that can be used to 
calculate this parameter in our study area. The percentages calculated by (Ufer 2004) on 
matured Norway spruce stand in Sumava Mountains National park were used. He 
calculated the percentage of full leaf cells based on the assumption that percentage of full 
leaf cells is equal to the total clumping index (Ω) of the crown. He analyzed clumping 
index for stressed and non stressed trees separately and take average Ω values for each 
functional part. The clumping index (Ω) was made at one level in the saturation and 
juvenile and at two levels in the productive crown functional parts. Thus, the values for 
the remaining levels were computed by means of simple linear interpolation.   

 
Table 3. Parameters of leaf and foliage gaps horizontal distribution used for representative trees of DART 
simulations. 

Parameter Crown 
functional 

part β γ a Full leaf cells  
Saturation 0.299 0.594 0.28 0.2 
Productive 0.033 0.494 0.22 0.6 
Juvenile 0.016 0.425 0.1 0.85 

* The estimates presented in this table correspond with first level of each functional crown part. The 
estimates for others levels were linearly interpolated and are not shown in this report. 
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3.4.7. Simulation of the first order branches  

As branch has significant influence on the optical property of the crown the first order branches 
has been incorporated in the DART parameterization process. The construction was done by Lucie 
Homolová. Each branch has to be defined by a relative height of its branch base on a trunk. The 
orientation of a branch is defined by its zenith and azimuth angle. In average two branch whorls 
per a crown level were created along the trunk each assembled from four to six branches. The 
branch zenith angle linearly decreased from 90° to 60° with growing tree height. 

3.4.8. Tree optical properties  

As one goes from the lower part of the crown up wards to the juvenile the needles optical property 
is changing because of age difference among needles. To incorporate this variability to DART, 
first the directional hemispherical reflectance and transmittance of needles of juvenile, primary and 
secondary shoots of different age classes were computed. Directional hemispherical reflectance 
and transmittance of needles of age class c and c+1 were simulated in PROSPECT model by 
Zbyněk Malenovský while for the rest age classes the field measured directional hemispherical 
reflectance and transmittance were used. Then the directional hemispherical reflectance and 
transmittance of the juvenile shoot was used to determine the hemispherical reflectance and 
transmittance of the juvenile crown functional part while primary and secondary shoots reflectance 
and transmittance were mixed proportionately to determine the optical property of the productive 
and saturation crown functional parts. Leaf optical properties for each crown functional part were 
calculated as a weighted average of hemispherical optical characteristics of four needle age classes 
(c, c+1, c+2 and r).  Because of the absence of enough information about the vertical distribution 
of needle age classes of the study area forest stand, the needle age distribution obtained from 
destructive sampling of Kykulka site were used. To avoid complexity only three leaf optical 
properties one for each functional part were applied weighted by the average needle age class in 
each functional crown part. The optical properties of Norway spruce bark of trunks and branches 
measured during the field campaign at Sumava Mts. in 2003 were used. 

3.4.9. Leaf area index in DART  

LAI is a free input variable which can be expressed directly as LAI or indirectly in terms of leaf 
volume density in DART. The maximum and minimum LAI expected in the stand were estimated 
from the ground LAI measurements and simulations were made at 0.5 LAI value intervals. This 
interval is chosen because of time constraint as well the sensitivity of the model is low when the 
difference in LAI value is minimal. In this study LAI was expressed as Uf using eqn. 14.  

cellsleafofnumbertotal
volumecell

sceneLAI
U f

.dim*
=                     eqn. 14 

Where Uf is leaf volume density expressed as m2/m3 
           LAI is intended Leaf Area Index to be simulated 
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3.4.10. Background structural and optical properties 

One of the interesting features of DART is that it allows creation of plots which enable simulation 
of varied landscape. The most common understories of the stand were represented by plots. There 
are different grass species in the Understory. However, due to absence of information the 
Understory is considered as homogeneous vegetation layer and represented by the most frequently 
observed grass in mature Norway spruce forest stands (i.e. Calamagrostis villosa) (Ufer 2004)  A 
constant mean height (0.3m), standard deviation (0.1m), LAI (2.5 for canopy closure > 80% and 3 
for others), optical and structural properties were assigned. 2m by 2m square Plots were also 
established around each tree to represent litter fall and the optical property of senescent needles 
was used (Figure 11). The average soil optical property of the stand was applied as background of 
the scene. 
 
 
 
 

Figure 11. Schematic representation of the 
Understory vegetation in a 50% canopy closure 
DART scene 

 
 
 
 
 
 
 

3.4.11. Building the spectral look-up table  

LAI was simulated under eight canopy closures (see section 3.4.4) starting from LAI of 3.0 up to 
15.0 at 0.5 intervals. Accordingly, 25 simulations were made for each canopy closure. In total 200 
simulations were carried out under the eight canopy closures to build the Look-Up Table (LUT) 
database. 
 
The nadir view output images from DART have been aggregated from 0.2m resolution to 0.4m to 
fit the resolution of the AISA hyperspectral image. Masks were prepared to separate shaded and 
sunlit crown part from Understory. Then, the average spectral signatures of shaded and sunlit 
pixels were extracted separately from each image and used to build the spectral LUT together with 
LAI value and canopy closure. All the information has been stored in one LUT. 

3.5. Method of LAI retrieval 

To propose appropriate methods of LAI retrieval using inversion of the DART model, several 
biophysical variables estimation methods of remote sensing were reviewed. In many literatures the 
physical and hybrid inversion methods are recommended because of their efficiency and 
applicability on a per pixel basis. Although, the merit function, neural network and projection 
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pursuit regression were first selected to retrieve LAI from the hyperspectral image of the matured 
Norway spruce stand because of time limitation we have decided to use only neural network 
method. As discussed in previous sections the images were classified into IC, SC, IU and SU. 
Based on the average reflectance of IC and SC of the AISA hyperspectral image and that of the 
LUT of DART simulated reflectance of the same class, LAI was retrieved. All computations were 
performed in neural network tool box 4.0.3 in Matlab (ver.7.1). 
 
 Artificial Neural Network (ANN) 
A feed forward back-propagation neural network with three layers (input, hidden, and output 
layers) was used for the purpose of this study (Figure 12). The general process of a ANN inversion 
is: 1) given a set of empirical environmental, leaf, canopy, and soil parameters, determine the set 
of canopy reflectance with a forward RT model; 2) initiate the ANN training (or learning) process 
with part of the lookup table obtained in the first step, and establish the relationship between the 
input data and the output LAI; 3) check the ANN training with the other part of the LUT data or 
ground measurements; and 4) apply the trained and checked ANN model to a new scenario to 
predict output parameters.  
 
Combal et al. (2003) showed that the inversion of RT models is by nature an ill-posed problem and 
needs regularization techniques to obtain stable and reliable solution of the ill-posed inverse 
problem. Their study revealed introduction of prior information on uncertainties in the system 
provides more robustness to the neural network training rather than solving the ill-posed problem. 
 
Therefore, for the purpose of introducing prior information to the data set we had calculated the 
variance of the noise level of each band from the AISA hyperspectral image and added to the 
DART simulated crown reflectance values through a random noise addition function. As a result 
the retrieval was made on two LUTs one with noise and the other without noise added to it. 
Although, it is better to train the ANN using different band combinations to identify the best band 
combination for LAI retrieval because of time limitation we did not exhaust all possible band 
combinations, but did evaluate the most commonly used bands. 
 
Each LUT data set was divided in to three parts with the proportion of 2:1:1 for training, validation 
and testing respectively. To eliminate the possibility of reaching the saturation regions of the 
sigmoid transfer function during training both the input and the out put values were linearly scaled 
to ensure they lie within the range [-1 1]. 
 
Since the network has to be first trained in order to retrieve LAI the training set of reflectance and 
the corresponding LAI were used for this purpose under the selected CCs. After a series of 
preliminary tests the architecture of the neural network has been defined to be a single hidden layer 
with 11 nodes and tan-sigmoid transfer function along with one out put layer with linear (purelin) 
transfer function. The initial values of the weights and biases were set to a random value between -
1 and +1. 
 
One of the problems that occur during neural network training is overtraining. The error on the 
training set is driven to a very small value, but when new data is presented to the network the error 
is large. The network has memorized the training examples, but it has not learned to generalize to 
new situations(Demuth and Beale 2005). To improve the generalization of the network we used 
earlystopping with the Scaled Conjugate Gradient (trainscg) optimization algorithm, which 
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combine the model-trust region approach (used in the Levenberg-Marquardt algorithm), with the 
conjugate gradient approach for fast computation. To protect the convergence of the learning 
algorithm before it reaches the global minimum error, the learning rate was set to 0.1, ‘momentum’ 
term to 0.9, momentum decrease and momentum increase to 0.8 and 1.5 respectively. Besides, the 
network has been initialized many times to start from different error surfaces and to take the best 
one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Model of multilayer neural network showing the structure and detail of processing nodes. The 
network consists of multiple inputs, a single layer of hidden nodes, and output nodes. The inputs are fully 
connected to the nodes in the hidden layer(s) which in turn are fully connected to output nodes. All 
processing of signals flows from the input nodes through the hidden layer(s) to the output nodes (feed-
forward).  Each hidden node (denoted as circles) is a nonlinear processor of its input signals [adapted from 
Danson et al. (2003)]. 

3.6. Validation of the retrieved LAI 

To keep the foot print of the validation data and the estimated LAI same, the inversion was done 
approximately at the same window size as that of the field LAI measurements processing (i.e. 
39.6m by 39.6m).Then the estimated values for those validation points were extracted from the 
LAI map by considering four neighboring pixels and compared to the ground truth data. The root 
mean square error in LAI estimation was determined against ground truth measurements in order 
to evaluate the performance of the inversion method on the LAI retrieval accuracy. A simple linear 
regression was also applied to establish relationships between the result of the inversion method 
and field LAI measurements. 
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4. Results and discussion 

4.1. Ground based leaf area index measurements 
4.1.1. TRAC measurement 

The estimation of LAI using TRAC needs the determination of clumping index (Ω) and proportion 
of woody materials (α ) in the TRAC measurement. Needle to shoot area ratio (ΥE) and clumping 
index of the leaves at the scale larger than shoot (ΩE) are the two parameters required to compute 
Ω. Therefore, the needle to shoot area ratio was calculated for 107 sample shoots and their needles 
giving an average ratio of 1.466 with 0.069 RMSE. The maximum and minimum needle to shoot 
ratio was 2.46 and 1.11, respectively. The slope of the regression line for the ratio across sample 
shoots (Figure 13) was not significantly different from zero (-0.0011), which indicates that the 
ratio is close to a constant value. The needle to shoot area ratio of several plant species was 
presented by Gower et al. (1999). This ratio was varying from 1.3 to 1.4 for black spruce trees. 
Our calculation of the ratio revealed a slightly higher value. This can be attributed to the clumping 
difference due to age of sampled trees and difference in species. 
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Figure 13. The needle to shoot area ratio for the 107 sampled Norway spruce shoots.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Spatial distributions of clumping index of the leaves at the scale larger than shoot (ΩE) , effective 
Leaf area index (LAIe) and true leaf area index (LAI) estimated values from TRAC device (a) and 
relationship between solar zenith angle (SZA) and Clumping index at the scale larger than shoot (ΩE) (b). 
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The estimation of ΩE in the TRACWin software is stored for different foliage element sizes. In 
order to obtain the corresponding ΩE value, the average element width (W) has to be known. 
Hence, we calculated the leaf element (shoot) width of the investigated trees using eq.9 and its 
average value was found to be 8.11mm. 
 
Table 4 is summarizing the result of ΩE, LAIe and LAI estimated using the TRACWin 3.7.1 
software from the TRAC measurements of 25 transects acquired within the sample plot. Figure 14a 
illustrates the spatial distribution of the variables per transect. The average ΩE, LAIe and LAI were 
equal to 0.6918, 2.82 and 5.88, respectively. More detail result about each transect can be found in 
appendix 2. 
 
Assuming the α  equal to 0.14, the LAI values obtained from eq.1 were ranging between 1.35 and 
9.17. The lowest LAI was recorded on transect which has the shortest segment length. This could 
be an erroneous result indicating the need to make longer transects in order to characterize the 
architecture of a canopy properly as noted by Leblanc (2002). ΩE varied between 0.5697 and 
0.8197.  
 
Table 4.  Summary statistics of clumping index of the leaves at the scale larger than shoot (ΩE) , effective 
Leaf area index (LAIe) and true leaf area index (LAI) from TRAC measurement.  

 SZA ΩE LAIe LAI 
Transects 25 25 25 25 

Mean 46.72 0.691 2 5.9 
Minimum 41.47 0.5697 0.9 1.4 
Maximum 57.15 0.8197 4 9.2 

Std 4.7701 0.0664 0.729 1.745 
 
Leblanc (2002) pointed out that LAI measurements using TRAC can suffer from considerable 
errors if the solar zenith angle is not kept within range of 30 to 60 degree. Although the SZA was 
kept within the suggested range, the clumping factor (ΩE) was large for higher SZA and reduced 
for decreasing SZA (Figure 14b). Hence, our results approve that the TRAC measurement method 
tends to produce outcomes of high variability and a larger number of erroneous estimates if the 
SZA is not kept constant. As suggested by Chen et al. (1997) another possible source of error for 
this technique is the large proportion of foliage concentrated at the top conical part of the tree 
crown making, the core of the cone impermeable to the solar beam. The TRAC device is capable 
to quantify the effect of foliage clumping on LAI measurements only under the condition that all 
foliage clumps larger than the shoot are penetrable by light. This assumption is necessary for 
calculation of the clumping index, because it is impossible to estimate the foliage area inside a 
clump without foliage gaps. The dense top of Norway spruce crowns may limit the light 
penetration and hence violates this assumption, so that the TRAC underestimates the shoot 
clumping effect and consequently LAI values.  

4.1.2. Hemispherical photography 

The effective and true LAI values estimated from hemispherical photographs are overviewed in 
Table 5 and fully presented in appendix 3. The true leaf area index has been calculated in two 
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ways. First, the LAIcombined was computed from eq.12., using values of LAIe as estimated from 
CAN-EYE and ΩE estimated from TRAC. This method yielded the highest and presumably better 
accurate LAI estimates, with an average of 7.6.  
 
In the second approach, using only inputs generated by CAN-EYE (Weiss et al. 2002), the average 
LAIe was estimated to be 3.6 and the true LAI was equal to 6.4. Figure 15b illustrates that 
comparing to the former approach this method generally underestimates the average true leaf area 
index by means of 16%. The mean LAI estimate of 6.4 is statistically lower than the LAIcomb 
estimate (P = 0.05).This can be attributed to higher real clumping of shoots than assumed in the 
method. LAI of both cases varies among the subplots more than LAIe (figure 15a).  
 
Table 5. True and effective leaf area indices estimated from hemispherical photography. (LAIe and LAI are 
computed by the CAN-EYE software, while LAIcombined is the true leaf area index calculated from LAIe of 
CAN-EYE and average ΩE of TRAC using eq.1). 
 

  LAIe LAI LAIcombined

Mean 3.6 6.4 7.6 
Minimum 1.7 3.7 3.6 
Maximum 5.3 8.3 11.23 
Std 0.83 1.13 1.75 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. The distribution of CAN-EYE effective leaf area index (LAIe), CAN-EYE true leaf area index 
(LAI) and true LAI computed using eq.1 (LAIcomb) from hemispherical photographs across the 23 examined 
subplots3 (a) and comparison of the two LAI computation methods (b). 
 
The CAN-EYE method has both advantages and disadvantages. On one hand, it provides a 
permanent image of the forest canopy that can be reanalyzed later if required, which is beneficial. 
On the other hand, the CAN-EYE image analysis software had to be used interactively to classify 
the hemispherical photographs to sky/ green vegetation. The manual selection of sky and green 
vegetation colors, and manual removal of woody materials (trunks and branches) introduces an 
element of subjectivity, which rises potential of operator error in the estimates of canopy variables.   

                                            
2 Woody materials have been removed during the hemispherical photograph processing, therefore ‘α’ is considered to 
be 0 in this case. 
3 Two of the subplots result were found outlier and discarded from the sample 
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4.1.3. Comparison between the two optical methods of LAI estimation 

Both the hemispherical photography and TRAC methods provide plant canopy structure 
information based on the measurements of gap fraction within canopy. The hemispherical 
photography method provides canopy structure measurements with Leaf Angle Distribution (LAD) 
and clear sky fraction automatically predicted for a series of azimuth and zenith increments over 
the 360o field of view. Whereas, the TRAC relies on software to predict the LAI and foliage 
clumping index from two sets of observations: 1) gap fraction and 2) gap size distribution. 
 
Because of the difference in foot print of both devices, it is not possible to conclude on the best 
method based on the results described so far. The hemispherical photographs need to be adjusted 
and organized in such a way that the foot prints of both instruments cover the same area. Only 
seven common subplots were found which allow comparing the LAI measurements of the two 
optical instruments. 
 
Mean LAI values are shown in Table 6. Hemispherical photograph LAI estimates are higher, 
estimated as 6.6 using CAN-EYE and 8.2 using combined approach (eq.1), respectively. LAI from 
TRAC measurement (5.9) was by 28% lower compared to LAI estimated using eq.1. 
 
Table 6.  Statistical summary of leaf area index computed from hemispherical photographs and TRAC 
records within seven subplots of the experimental Norway spruce stand. 

  LAICAN-EYE LAITRAC LAIcomb 
Mean 6.6 5.9 8.2 
No. of 
Samples 7 7 7 
Std 0.4192 0.7231 0.6170 
*CV (%) 6.38 12.17 7.49 
Min 6.0 5.1 7.6 
Max 7.1 6.9 9.1 

* CV stands for coefficient of variation 
 
Variability in LAI produced by the two instruments within the subplots is illustrated in figure 16a. 
LAI values range from 5 through 6.9 for TRAC measurements and from 6 through 9.1 for the 
hemispherical photographs. CV is much higher for TRAC measurement (12.17%) than the 
hemispherical photos (6.38% and 7.49 %.). Still the average values of LAI obtained from TRAC 
measurement and hemispherical photography technique were well correlated with r2 = 0.73 (figure 
16b). Figure 16c and 16d shows the comparison between combined LAI computation using eq.1 
with TRAC and hemispherical photography measurements. The correlation is relatively lower 
between TRAC measurement and combined approach, r2 = 0.57. Results of the hemispherical 
photograph’s analysis and the combined approach are still in good agreement (r2 = 0.76). The 
relationships between the LAI values of all approaches are essentially linear. However, t-test 
analysis showed the significant difference among the average LAI value of all three methods at P = 
0.01. 
 
In general, comparison of the methods (i.e. CAN-EYE, eq.1, and TRACWin) used to derive the 
ground truth LAI from hemispherical photographs and TRAC measurements produced results with 
a good correlation. However, the average values showed statistically significant differences and 
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further examination of the results showed that the LAI calculated by TRACWin from TRAC 
measurement was lower for most of the sample plots. This suggests that TRACWin analysis most 
probably results in underestimation of LAI as described in section 4.1.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. Variability of LAI estimates among methods (a), comparison between LAI computed from 
hemispherical photographs using CAN-EYE and TRAC measurement (b), and comparison of LAI 
computed using both optical instruments against the combined result (c) and (d). 
 
Many studies have demonstrated that optical methods tend to underestimate true LAI (Chen et al. 
1997; Kucharik et al. 1998; Gower et al. 1999; Soudani et al. 2002). Gower et al. (1999) noted that 
indirect estimates of LAI saturate around 5–6, while direct estimates reach 9. The likely cause is 
no change in gap fraction (i.e. gap saturation) as LAI approaches values of 5–6. The combined use 
of the optical instruments can reduce this problem. For this reason we considered the estimation of 
true LAI using the combined approach (eq.1) to be the most reliable out of the three used 
techniques. The uncertainty associated with this alternative approach is rising from two 
assumptions: 1) the clumping factor is expected to be constant between individual sampling 
locations within an experimental area, and 2) clumping is assumed to be uniform within a layer or 
area of the canopy. However, these assumptions may not be valid for more complex heterogeneous 
canopies (Gardingen et al. 1999). 
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4.2. Image classification 

The AISA hyperspectral image subset of the study area (Figure 17) was cut out of the flight line 
and classified into four classes (IC, SC, IU and SU, see section 3.3.3) in order to separate the 
canopy pixels of interest from Understory. The classification was made over two subsets of AISA 
images which differed only in their flight direction (flight line 1 and line 5). Comparison of two 
classification methods (SAM and MLH) showed the results of MLH method more accurate. The 
confusion matrix of randomly selected pixels showed the overall accuracy of the SAM 
classification to be 78% and 82%, while MLH accuracy was 94% and 96.32% for flight line 1 and 
5, respectively. Because of the highest accuracy, the image of flight line 5 classified by MLH was 
used for the LAI retrieval.  
 
The accuracy assessment results for flight line 5 are presented in Table 7. The Kappa coefficient is 
close to one (0.95) indicating the good performance of the MLH classification method. The 
comparison showed a relatively higher confusion of pixels between illuminated crown and shaded 
crown classes than the others. As a result the illuminated crown class showed the highest error of 
commission (8.47%) while shaded Understory showed the lowest one (1.12%). This means that 
many pixels of other classes had been assigned into illuminated crown class, particularly shaded 
crown pixels. In contrast, almost all (98.80%) of illuminated crown pixels has been assigned 
correctly so that the error of omission of this class is the lowest (1.20%). 
 
Table 7. Summary of accuracy assessment of AISA image classification using MLH.  The values are in 
percent. The assessment was made using 2525 pixels taken randomly from the four classes. 

Class 
Illuminated 

crown 
Shaded 
crown 

Illuminated 
understory 

Shaded 
understory Total Commission Omission

Illuminated 
crown 98.8 6.25 1.45 2.33 28.51 8.47 1.2 

Shaded 
crown 0.3 93.09 0.87 0 22.73 1.39 6.91 

Illuminated 
understory 0 0.66 97.68 2.5 27.45 2.6 2.32 

Shaded 
understory 0.9 0 0 95.17 21.31 1.12 4.83 

Total 100 100 100 100 100     
    Overall accuracy 96.32 
        Kappa coefficient 0.9507 

 
The SAM algorithm should be the best choice for a hyperspectral image classification as it was 
designed for this data type. However, in this study MLH, a multispectral classifier, was found to 
perform better over the hyperspectral data. The low accuracy of SAM method could be caused by 
its insensitivity for illumination changes. The illuminated and shaded parts of one vegetation type 
can have a similar spectral angle. The difference may only be in reflectance magnitude driven by 
intensity of illumination. Design of the SAM is relatively insensitive to changes in pixel 
illumination, because increasing or decreasing illumination does not change direction of the vector, 
but its magnitude (i.e. a darker pixel will be plotted along the same vector, but closer to the origin) 
(Yuhas et al. 1992). For this reason, high confusion between shaded and illuminated parts 
decreased accuracy of the SAM classification.  
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Figure 17. AISA image of the study area (experimental Norway spruce stand and its surrounding) (upper) 
and the best classified image (lower).  
 
The best classification results obtained from flight line 5 can be attributed to the low shading effect 
in this direction. This flight was most probably done closer to noon time of the day when shading 
effect is minimal. Also the very high spatial resolution of 0.4m, minimizing number of mixed 
pixels, substantially strengthened the overall accuracy of the classification.  
 
However, the error matrix could be insufficient to conclude about the accuracy of the classification 
due to bias in the selection of the reference pixels per class. Although enough number of sample 
pixels (2525) was randomly selected for the accuracy assessment, they were mainly taken from 
relatively homogenous areas to address properly the ground truth classes. This may lead to an 
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optimistic accuracy of classification since heterogeneous areas, which are more difficult to classify 
correctly, are excluded from reference data selection.   

4.3. Canopy closure of the study area 

Canopy closure, as it has an effect on reflectance of forest, was one of the inputs used for inversion 
of LAI by means of neural network. Therefore, the DART simulations were prepared according to 
representative canopy closures. The canopy closure of the stand has been calculated by dividing 
the sum of sunlit and shaded crown pixels to the total pixels of the sliding window throughout the 
AISA Eagle image using the classified image as a mask. The result is illustrated in Figure 18. The 
canopy closure of the stand varied from 20% up to 95.3%. Most of the stand area had a canopy 
closure of 60% and higher, with the highest frequency at 88% (Figure 19). The mean canopy 
closure of the forest was found to be 78.3% with standard deviation of 13.2%.  

 
Figure 18. Map of the canopy closure of the mature experimental Norway spruce forest stand.  
 

 
Figure 19. Canopy closure frequency distribution of the mature Norway spruce stand computed at a sliding 
window size of 99 by 99 pixels (pixel resolution = 0.4 m). 
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Almost all pixels of lower canopy closure value (Figure 18) were located around the periphery of 
the stand. This may be due to the edge effect of the processing using a zero-padding at the edges to 
move the sliding window through the image. This zero-padding, adding more zero values into the 
sliding window of the edge pixels, lowered proportion of crown pixels within the window and 
consequently introduced uncertainty into the inversion process for these edge pixels. The problem 
was exacerbated by the large size of the moving window. Reducing the window size can scale 
down the edge effect significantly.  

4.4. DART parameterization and simulation 
4.4.1. DART parameterization 

Tree structural parameters 
The DART parameterization needs compromise between the scene dimensions and computational 
time requirements. Our experimental area was represented by heterogeneous forest of many trees, 
however, due to limitation of computer capacity we were forced to build up a DART scene 
containing only three trees. To keep heterogeneity high as much as possible, the representatives 
were selected carefully to reproduce trees of three social positions. The basic information about the 
trees is illustrated in Table 8. Still, it is worth mentioning that representing such a heterogeneous 
forest stand with very small number of trees could strongly affect the inversion procedure by 
decreasing the accuracy of the simulated canopy reflectance (Gastellu-Etchegorry et al. 2003).  
 
Table 8.  Basic structural parameters of the three representative trees used for DART simulation (all units 
are in meter). 

Tree type 
(social 

position) 
Tree 
DBH  

Total 
tree 

height 

Stem 
length 
below 
crown 

Stem 
length 
within 
crown 

 
Diameter 

below 
crown 

Diameter 
within 
crown 

Live 
crown 
height 

Live 
crown 
bottom 
radius 

Suppressed 0.51 33.60 11.6 20.1 0.42 0.33 22.0 2.7 
Co-dominant 0.45 36.80 20.0 14.6 0.36 0.26 16.8 2.7 
Dominant 0.52 39.20 26.8 10.0 0.42 0.31 12.4 2.4 

 
Certain modifications were made on stem length and crown top diameter, since no crown shape 
that would appropriately represent the mature Norway spruce crown was available in the DART 
model. As noted in section 3.4.5 the top crown diameter was set to zero and the stem length was 
reduced by 6 % to avoid the trunk from being too thick at the top. In spite of these adjustments the 
trunks were visible on DART simulated images. This can be explained by the truncated cone 
crown shape with thin elongated crown top created by few leaf turbid cells, which were not able to 
hide the top part of trunk. Therefore, the stem length was further shortened until its effect on the 
simulated image disappeared. The crown shape alteration obviously influenced the reflectance 
value of the simulated canopy. A study by Rautiainen et al. (2004) also pointed out the effect of 
crown shape on simulated reflectance. Their study confirmed that crown shape has influence on 
retrieval of LAI since it determines the portion of sunlit ground vegetation, and also the spatial 
distribution of foliage within the canopy. The change in crown shape may affect the most 
important geometric structural characteristics like the size, shape, 3D-distribution and orientation 
of foliage elements, which have equal importance to optical property of the canopy (Nilson et al. 
2003). 
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Only live crown parts were simulated within DART simulation of this study. However the spruce 
trees have considerable parts of dead crown covered by lichens, dry twigs and branches that might 
affect the optical property of the canopy. For higher reliability of simulated canopy reflectance, the 
dead branches and twigs should be considered too. 
 
Leaf optical properties 
The optical properties of the needles in the DART scene were partially simulated by the 
PROSPECT model (c, and c+1) and partially measured (c+2 and c+3 age classes). The weighted 
average hemispherical reflectance and transmittance for each functional crown part was computed 
using the age class distribution, listed in Table 9 as weight.  
 
Table 9.  Age class distribution (%) of the needles used in DART simulation computed from destructive 
sampling of the branches from representative trees at Kykulka site (Beskydy Mts., Czech Republic). 
 
 
 
 
 
 
 
Figure 20 illustrates the resulting hemispherical directional reflectance and transmittance of each 
functional crown part. The optical property of the saturation and the productive parts were quite 
similar, because the needle age difference in these crown parts was not significantly different. The 
highest difference between these two functional crown parts was found in the last age classes 
(Table 9). However, the output from the PROSPECT model adjusted to simulate age class c+3 was 
used to simulate the age class r, which narrowed the difference in optical property among the 
functional crown parts. The juvenile needles have slightly higher reflectance and transmittance 
than the others across the whole wavelength. 
 
It should be noted that merging of the last two age classes could reduce the heterogeneity among 
the crown functional parts and lead to a potential error in the LAI inversion process. Besides, the 
age class distributions were collected at another nearby Norway spruce forest stand. From figure 
21 one can observe how optical properties varied among different age class from two mature 
Norway spruce tree shoot types. The difference is more pronounced in the first two age classes.  
 
The optical properties of the Understory, represented by plots of grass Calamagrostis villosa over 
the bare soil as described in section 3.4.10, are illustrated in Figure 22. The leaf area of the 
Understory vegetation was made to vary between open and closed canopies. An Understory LAI of 
3 was used for 50%, 60%, 70% and 80% canopy closures and LAI of 2.5 for the remaining since 
the density of Understory vegetation decreases when the canopy is more closed. The Understory 
should be carefully represented particularly in the scene with open canopy, since its effect is more 
enhanced there.  A study by Erikssona et al. (2005) in Sweden, indicated that the influence of the 
ground cover on LAI retrieval of dense oak stands (LAI around 5) was minor (within 0.3 units) 
while it was major (within 2 units) in case of sparse stands (LAI around 2). However, due to time 
limitations and data constrains we used only one vegetation type for the Understorey, which could 

Age classes Crown 
functional 

part c c + 1 c+2 c+3 r 
Saturation 20.7 26.7 17.9 10.8 24.0 
Productive 22.7 31.8 19.9 11.0 14.6 
Juvenile 46.3 31.4 12.3 5.9 4.1 
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be another uncertainty source in the process. To achieve a reasonable accuracy at least major 
Understory vegetation functional types should be represented in the scene.  

Figure 20. Hemispherical directional reflectance (left) and transmittance (right) of the saturation, 
productive and juvenile functional crown parts of mature Norway spruce trees as measured and 
computed by the PROSPECT model and used in DART simulations.  
 

Figure 21. Hemispherical directional reflectance of needle of four age classes from juvenile and secondary 
shoots of mature Norway spruce trees as measured and simulated in PROSPECT model. 
 
Due to the occurrence of senescent needles covering the stand floor, the reflectance values of this 
type of background was considered in the scene by constructing rectangular plots around each tree 
trunk. Although, the senescent needles were found in circular pattern, the current DART version 
allows only rectangular and/or triangular plot shapes. Trunk and branch bark optical properties 
were taken from measurements of these surfaces at the Sumava Mts. (2003), assuming no 
significant difference between the two sites. Their reflectance signatures are shown in Figure 23.  
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Figure 22. Optical properties of soil, senescent needles and Understory vegetation of the mature Norway 
spruce stand used as DART input. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23. Optical properties of trunk and branch bark for mature Norway spruce trees used as input in 
DART.  

4.4.2. DART simulations 

Figure 24 illustrates two examples of the DART top of canopy reflectance images. The images 
resolution of 0.2m allows clear distinction of the spruce crowns from the Understory. The model 
provided a set of 11 nadir and different oblique images for each band of the given scenario. 
However, in this study we used for the LAI inversion only the nadir images. The nadir view 
images of four spectral bands for each defined LAI and eight canopy closures were used to build 
the spectral LUT.  
 
This phase is the most time consuming part of the whole process. The images have to be 
thoroughly investigated to make sure that they have precisely fit the AISA image. It is also the 
crucial step that determines the accuracy of the inversion. It was proved that construction of the 
main branches improved the correlation between the DART simulated and AISA hyperspectral 
images to a large degree. Their presence increased the absorption within the canopy and reduced 
the proportion of the reflectance. Therefore, one can expect better results if the branches of lower 
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order and small twigs would be also included. To compensate the absorbance effect of these 
missing woody materials we applied the spherical LAD which lowered canopy reflectance 
compare to other LAD types. This way the canopy reflectance of the DART simulated images 
became comparable within the reflectance range of the AISA image data.  
 

    
 Figure 24. One of the 200 DART output image sets. Nadir view (left) and oblique view (right) of a 50% 
canopy closure with LAI = 5. Both images are RGB color composite of band 48, band 27 and band 13. The 
Glacier blue in the nadir view image represents the Norway spruce crowns, the Pearl white represent the 
sunlit ground cover and the dark color represents shaded area of the scene.  
 
The simulated images were further aggregated from 0.2 m to 0.4 m pixel size in order to reproduce 
the spatial resolution of the AISA hyperspectral image. Unfortunately, this operation caused lost of 
information since certain pixels had to be dropped to bring the resampled images of odd matrix 
size to even numbers of rows and columns.  
 
The extracted average reflectance signatures of shaded and sunlit crown pixels related to LAI per 
canopy closure are presented for the spectral band 13 (540.8nm) and band 35 (745.45nm) in figure 
25. See appendix 4 for the signatures of two remaining bands. From these figures one can see that 
reflectance of crown parts decreases with increasing LAI in both the VIS and NIR region of the 
spectra. However, the rate of LAI decrease was smaller, especially for higher LAI values. In some 
cases of the shaded crown parts the difference in reflectance due to both canopy cover and LAI 
change became insignificant. This can be attributed to saturation. It is important to note that the 
extraction of the sunlit and shaded crown reflectance was made based on the masks created by 
visual classification over the false color RGB combination of three spectral bands. Therefore, the 
accuracy of this separation was greatly dependent on interpreter judgment. To some extent the 
deviations and overlaps between reflectance signatures for different canopy closures in figure 25 
could be explained by the subjective errors of the operator. It would be more objective to use an 
automatic separating mechanism to avoid such biases.  
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Figure 25. Sunlit and shaded DART simulated crown’s reflectance. Graph (a) and (b) represent the sunlit 
and shaded crown spectral signature in the NIR region (band 35 (745.45nm)) and, (c) and (d) represent the 
sunlit and shaded crown spectra in the VIS part (band 13 (540.8nm)) of the AISA hyperspectral image). 
 

(c) 
(d) 

(a) (b) 
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All the extracted reflectance values of the shaded and sunlit crown parts were used to establish the 
spectral LUT. Also the canopy closure was considered as a variable and stored in the LUT. We 
have considered the sunlit and shaded crown reflectance as separate entities, because size of our 
sample set required for the next methodological step (training of the ANN) was limited. This 
increases the complexity of the input data so the ANN could get more time to generalize the input 
output relationships before it would be stopped forcefully to prevent the network overfitting. 
However, due to the time constrains we did not validate robustness of this method against the 
others (e.g. using ratio of the crown part’s reflectance) which could help to choose better approach.  
According to Figure 25b and 25d the reflectance of shaded crown part did not show a clear trend 
for change in LAI across the different canopy closures. Therefore, it may be interesting to test the 
LAI inversion based on the reflectance value of the sunlit crown only, if sufficiently large dataset 
for the ANN training would be available. 

4.5. LAI inversion using Artificial Neural Network (ANN) 

Appropriately trained ANN enables mapping of the output variable if the apparent relationship 
exists between a set of inputs and corresponding outputs. Parallel to this the spectral LUT build in 
section 4.4 were organized in such a way it fits the data format of neural network. A feed forward 
backpropagation neural network method was applied on the two LUTs (one with noise and the 
other without noise) to create the relation between stand crown’s reflectance and LAI. The results 
are presented and discussed in the following sections. 

4.5.1. Training 

Training of an ANN is the toughest step of the inversion process. If ANN is not trained correctly it 
could affect the accuracy strongly and may lead to wrong results. As described in section 3.5 we 
divided our LUT data into training, validation and testing datasets, which is very important to 
prevent overfitting of the ANN. The training error estimated per the dataset in the LUT with out 
noisy is depicted in Figure 26.The errors of the testing dataset are between the training and the 
validation errors. This indicates suitable division of the input data among the three sets. The major 
task of the training phase was to determine the number of hidden layers, the number of nodes in 
those layers and the optimum range for weights and bias.  
 
A number of neural network training tests were done by alternating several possible parameter 
combinations. Several set-ups combining a number of hidden layers with number of their nodes, 
training algorithms, weight initialization combinations, as well as input and output 
encoding/normalization mechanisms and overfitting control methods were tested and validated for 
their performance. The mean square error (MSE) and linear regression correlation coefficients 
were used to compare performance of the different network architectures. In all cases the 
parameters were very close to the expected value, the correlation coefficient (R) and the linear line 
slope (m) were near to 1 and the MSE was close to zero. Figure 28b and 28c shows the scatter plot 
of the predicted LAI against the trained target LAI with/without regularization on noise added 
LUT, respectively. The ANN trained without regularization had the highest correlation coefficient 
with the regression line close to one (0.999) and bias term (b) near zero (0.0168). But the 
validation of estimations made by such networks showed a very poor correlation to the ground 
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truth data. This proved the presence of the ANN overtraining. Consequently, we applied the early 
stopping regularization method to reduce this overtraining problem. 
 
After series of preliminary tests the architecture of the neural network was defined to be a single 
hidden layer with 11 nodes for both LUTs. Previous studies have also showed that a single hidden 
layer is enough for inversion of canopy biophysical variables (Combal et al. 2003; Danson et al. 
2003; Fang and Liang 2003). The training was very fast and stopped before 100 iterations. Use of 
more hidden nodes is advisable to reduce the danger of the learning process stopping at the local 
minimum of the error function. That is why we used more hidden nodes. Besides, we set the 
learning rate and the momentum terms to relatively higher values, so that the training converges as 
slowly as possible.  
  
 
 
 
 
  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
Figure 26. The error level of the training, validation and testing datasets during the training phase of a LUT 
with out noise (a), the scatter plot of the network estimation trained without early stopping (b) and scatter 
plot of estimates made on a network trained with early stopping method on data set with noise (c) and 
without noise (d) compared to the target LAI values. 
 

(a) 
(b) 

(c) (d) 
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Determination of the optimum numbers of hidden layer nodes, weight ranges, learning rate, and 
momentum terms was not an easy one. In our case the training problem was a matter of reducing 
the risk of overfitting. Even use of the early stopping method to reduce the risk of overfitting 
resulted finally in very poor results in some cases. We have observed variations in the results for 
each network initialization due to the randomness of the weights and biases. In each initialization 
the network starts from different error surfaces which can lead to different predictive accuracy 
(Kavzoglu and Mather 2003) 
 
Unfortunately, there is no a straight forward way how to define the desirable range of weight and 
bias terms. It is always based on a trial/error approach. We initialized the ANN with different 
ranges for weight and bias starting from the wider [-3  3] up to  the narrower [-0.01 to 0.01]. We 
have even tried weights of all positive [0 1] and all negative [-1 0] values. Finally, we found the 
range [-1 1] the most appropriate one for our case. This range was also used by Combal et al. 
(2003) for LAI , Chlorophyll content and fAPAR retrieval.  
 
We also tested performance of many of the training algorithms available (e.g. Levenberg-
Marquardit (trainlm), Scaled Conjugate Gradient (trainscg) and Resilient Backpropagation 
(trainrp) optimization algorithms and Automated Regularization (trainbr)). The previous studies 
(Combal et al. 2003; Danson et al. 2003) recommended trainlm as the best performing algorithm 
for LAI estimation. However it was not the case in our study, even if we increased the learning 
rate, the momentum, momentum increase and decrease terms to higher values as suggested by 
Demuth and Beale (2005). The ANN training stopped always after few iterations (< 50 epochs). 
This may not give the ANN enough time to create a proper relationship between the input and the 
target dataset. The reason of poor performance of this algorithm was most probably the early 
stopping. Therefore, we rather implemented the optimization algorithm trainscg, which converges 
slowly compared to others. It increases the number of the iteration and the error is relatively low.  
 
In general, the training with noisy data showed better performance than training with out noise 
LUT (figure 26c and 26d). It converged slowly and runs for more iterations. The MSE (0.22306) is 
lower than the training without noise data (0.33019).The coefficient of correlation and bias are also 
better in this case. However, it is not possible to conclude about its accuracy before validation with 
ground truth data is made. 

4.5.2. LAI retrieval using trained ANN 

Once the training is completed the inversion by ANN is very fast and simple. The reflectance of 
sunlit and shaded canopies in four spectral bands (simulated also by DART) was extracted from 
the AISA hyperspectral image using the masks derived from the classification (see section 4.2). To 
facilitate the LAI inversion validation, the sunlit and shaded crown reflectance of the hyperspectral 
image was averaged within a sliding window of 39.6 by 39.6 m in size, which was approximately 
equal to the window of the hemispherical photography processing in CAN-EYE. The average 
canopy reflectance of selected bands and the canopy closure of the stand were organized in the 
same style as the training dataset. Afterwards they were feed into the ANN of the two cases: i) 
ANN trained without noise (case 1) and ii) ANN trained with noisy input dataset (case 2). The 
maps of the LAI inverted by both ANNs are presented in figure 27. Table 10 shows the summary  
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Table 10. Summary statistics of the mature Norway spruce stand LAI retrieved by the two ANN trainings. 
Case Min Max Mean Std 

1 3.34 7.3 5.52 0.602 
2 3.44 8 5.62 0.77 

 

 
 

 

Figure 27. The LAI maps of the experimental Norway spruce stand retrieved by ANN trained without 
addition of the noise (upper) and by ANN trained using a noisy dataset (lower). The maps have the same 
resolution (0.4m) and the map projection as the AISA hyperspectral image. Each pixel represents LAI of 
the window 39.6 x 39.6 m around the pixel. 
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statistics of both cases. The mean leaf area index of the stand was inverted to be 5.52 and 5.62 with 
standard deviation of 0.6 and 0.77 in case 1 and case 2, respectively. The difference of the mean 
LAI of the two cases is minimal, but LAI spatial distributions were different, most probably due to 
the noise added to the training dataset in case 2. It should be noted that the aim of adding noise to 
the training dataset was to introduce real signal-to-noise ratio into the DART simulated spectral 
reflectance, which should eliminate radiometric difference between the simulated and real 
hyperspectral images.   

4.6. Validation 

The LAI computed from the effective LAI of hemispherical photography and clumping index (ΩE) 
of the TRAC field measurements was used to validate the retrieved LAI. Since the LAI retrieval 
was made at the same resolution as the hemispherical photography processing, the LAI values 
could be compared per individual pixel of both LAI maps. However, many of the validation points 
lied on the pixel’s border. Thus the average of four neighboring pixels was considered as the 
representative LAI to avoid the errors due to geo-referencing.  
 
The ground truth and estimated LAI were compared by means of the Pearson correlation 
coefficient (Table 11) and the RMSE. The results of both cases showed a significant correlation 
with the ground truth LAI. Case 1 had better correlation (R = 0.73) than case 2 (R = 0.66). 
However, case 2 showed lower RMSE of 1.84 compared to case 1 (RMSE = 2.33). From the 
scatter plots in figure 28 one can observe that in both inversion cases the minimum LAI was about 
5 while the ground truth LAI reached 3.6. Clearly, this one low LAI value was overestimated, 
while higher ground truth LAI values were underestimated. The maximum estimated LAI was 
below 8 while the ground truth LAI reached up to 11.2. The coefficient of determination indicated 
that LAI was slightly better determined in case 1 (r2 = 0. 54) than in case 2 (r2 = 0.44).  
 
Table 11. Pearson correlation coefficient (R) computed between the LAI retrieved within the two cases and 
measured ground truth LAI. 
 
 
 
 
 
 
 
 
Many studies revealed that the physical models represent the most appropriate way for biophysical 
variable estimation and can estimate LAI to a RMSE ≤ 1  (Gong et al. 1999; Kimes et al. 2002; 
Combal et al. 2003; Gascon et al. 2004). Although, we found a certain level of correlation between 
the estimated and the ground truth LAI measurements, it was not strong enough as we expected. 
This lower accuracy may be attributed to the number of following factors.  
 
The accuracy of the estimation greatly depends on the computer representation of the forest stand 
(3D scene) in a radiative transfer model and on the inversion process itself. In order to obtain 
accurate inversion products, the canopy reflectance must be simulated within a wide range of the 
key model input parameters. Since our forest stand was very heterogeneous it should be simulated 

Case Samples 
mean 

R Sig. 

1 5.7 0.734 0.000 
2 6.5 0.664 0.000 

Ground 
truth 

7.6 NA NA 
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with more than three representative trees, but due to the time and computer capacity constraints we 
simulated only very limited number of trees. Gastellu-Etchegorry et al. (2003) investigated the 
effect of the number of trees in a scene on simulated reflectance. He created two scenes, one with 
only one tree and the other one with four trees, keeping all other parameters same. 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28. Comparison of the LAI estimated within two cases: i) without noise (upper) and ii) with noisy 
data (lower), compared against the ground truth LAI computed from the hemispherical photography and 
TRAC clumping measurements. 
 
The results showed that the reflectance of the scene with only one tree fluctuated across different 
view angles, which was not the case in four tree scene, so he recommended using more trees. 
Variability in canopy structure has dominant influence on the canopy reflectance(Asner 1998). The 
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larger and more heterogeneous the vegetation element or stand, the more complicated 
measurement of scattering properties of it becomes. The reasons are the geometrical factors 
playing a major role in modifying forest stand reflectance and transmittance (Rautiainen 2004). 
Therefore, the forest stand should be simulated by more trees located according to their real 
distribution, so the simulated BRF would be more accurate.   
 
The next source of uncertainty in our modeling approach was representation of crown shape. The 
shape of the crown determines the volume and spatial distribution of the needles within the crown. 
Rautiainen et al. (2004) studied the effect of crown shape on the reflectance of Norway spruce 
stand. For higher values of LAI, stands with conical crowns had much smaller reflectance than 
ellipsoid crowns. Gascon et al. (2004) indicated the importance of crown shape particularly when 
dealing with a very high spatial resolution images. In our case the adult trees had relatively wide 
surface at the top of crown and so the cone did not reproduce the crown shape credibly. Due to 
conical crown shape the needles were more clumped together increasing within shoot light 
scattering and influencing the canopy transmittance and reflectance. Better approximation of the 
crown shape of Norway spruce trees should be a combination of cone at the top with cylinder at 
the bottom. 
 
The possible reason for overestimation of lower LAI values can also be the Understory vegetation. 
The model retrieval could mix spectral response of the Understory leaves with the Norway spruce 
needles. The contribution of Understory reflectance to coniferous stand reflectance was reported to 
be higher than for broadleaved forests, ranging from 0 to 95% for LAI values below 5 (Rautiainen 
and Stenberg 2005). In this study we observed that the reflectance of the crown decreases as the 
value of LAI increases. Therefore it is possible that the Understory represented by homogenous 
vegetation (one grass type) could undervalue the forest canopy reflectance, which would shift the 
estimated LAI to higher values. The effect of the Understory is highly important for open canopy. 
Hu et al. (2000) investigated the effect of Understory reflectance on the retrieval of canopy LAI 
from CASI hyperspectral image data in Canada using the FLIM model. Their results revealed that 
the correlation coefficient between the field-measured and retrieved LAI under the assumption of a 
uniform Understory reflectance was about 0.27, but it increased to 0.78 when the Understory 
reflectance was allowed to vary within the range of the mean value plus or minus its standard 
deviation obtained from field measurement.  
 
As described in previous literature, the underestimation of higher LAI values could be related to 
saturation when reflectance remained constant or changed insignificantly for LAI value above 6 or 
7 (Gastellu-Etchegorry et al. 1999). We have observed this problem particularly in the shaded 
crown parts. Excluding the information of the shaded crown parts or making the average or ratio of 
the sunlit and shaded crown may help to reduce the saturation problem.  
 
Because of absence of information about the experimental Norway spruce stand we had to use 
some parameters collected from other spruce stand of similar age and status. The distribution of 
needle optical properties and determination of the holes within the crowns was based on data 
collected from a near by forest. Although, the stands were of the same age and species they could 
differ in site conditions. The DART simulations were also made without second order branches 
and twigs. As well there were other tree species in the forest stand which were not included in the 
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DART scene. As a result, the simulated forest stand reflectance may not reproduce the AISA 
image reflectance accurately and lead to a systematic error in the inversion process.  
 
Another uncertainty source is represented by training of the ANN. Because our training data set 
was limited to 200 samples, in order to prevent the overfitting problem we used the early stopping 
mechanism. This could stop the training phase too early, before it generalizes the overall relation 
between the input and output data. Further more, the division of the input data into the training, 
validation and testing sets could cause failure of the training dataset to represent all the variability 
within the stand. Increase in the number of input samples and training without regularization 
algorithm could reduce this potential error.  
 
Also the ground truth LAI data were not free of error. They might suffer from gap fraction 
saturation for LAI above 5 or 6 (Gower et al. 1999) . We used the combination of two optical 
instruments to reduce this problem and improve the accuracy. However, these measurements were 
taken in different time, so change of LAI throughout time, due to a disease and other 
environmental factor, may initiate the loss of needles and introduce certain error to the ground 
measurements.  
 
The AISA image reflectance to certain extent is inaccurate due to the noise presence and errors in 
pre-processing (i.e. radiometric and atmospheric corrections, etc). We introduced a random 
artificial sensor noise into the DART simulated images as prior information, however, the 
uncertainty of the absolute sensor calibration and the correction procedures over the image could 
create systematic quantitative differences between the simulated and AISA acquired image 
reflectance.  
 
Finally, the spectral bands used for retrieval also play important role. The number of spectral bands 
selected for the inversion may affect the output accuracy as shown by Weiss et al. (2000)  Their 
results suggested 6 spectral bands as the optimum number for LAI retrieval (see figure 29). Too 
low and too high number of bands reduced the prediction accuracy. It is not only the number of 
bands but also their wavelength position that affects the variable prediction. Therefore, next time 
sensitivity analysis should be carried out to determine most appropriate combination of bands 
towards accurate LAI estimation.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 29.  Effect of number of selected spectral bands on LAI retrieval accuracy according to Weiss et al. 
(2000): the solid line corresponds to the best band combination and the doted line to the worst combination.
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5. Conclusion and recommendations 
This study carried out LAI estimation of a mature Norway spruce stand from airborne 
hyperspectral image by inverting the 3D (DART) radiative transfer model using the Artificial 
Neural Network method. The overall performance of the retrieval method was validated using 
combined ground measurements of two optical instruments.  
 
We demonstrated that the combination of the TRAC and hemispherical photography can be used 
for better ground based LAI estimation. The comparison of the two optical instruments suggested 
LAI underestimation by the TRAC instrument. However, the TRAC measurements were done over 
limited number of sampling transects, so this method needs further validation in the future. One of 
the main advantages of the combined LAI measurement method is reduction of the canopy gap 
fraction misestimating which is particularly important in dense canopy. The hemispherical 
photography was proven to be an appropriate method to measure effective LAI, while the TRAC 
device is more reliable in determining the clumping index of elements larger than foliage as also 
proved in previous studies (Chen and Chiller 1995; Chen et al. 1997).  
 
An Artificial Neural Network of single hidden layer with 11 nodes and tan-sigmoid transfer 
function along with one out put layer with linear transfer function was found to be the best set-up 
for retrieval of the mature Norway spruce stand LAI. The LAI computed for the whole stand from 
the AISA hyperspectral image showed a good Pearson correlation with the ground measurements. 
However, spatial distribution of LAI values was not appropriately estimated which indicates 
necessity to improve the retrieval method. The results indicate that shaded crown parts carry less 
information for the retrieval than sunlit crown parts. Their reflectance was saturating for higher 
LAI values. Hence, avoiding the shaded crowns information or using their reflectance derivates 
could improve the accuracy of the method.  
 
Choosing the appropriate artificial neural network architecture and optimization algorithms were 
time consuming and challenging tasks of this retrieval method. The study demonstrated the 
potential risk of a poorly trained network. The neural network approach needs to be further 
validated for its sensitivity to errors in remotely sensed optical data before its full potential can be 
exploited.  
 
Finally, there were several problems concerning the parameterization and simulation with the 
Discrete Anisotropic Radiative Transfer model. The model requires a large set of input parameters, 
and it is quite difficult to measure reliably all the model inputs at the same time. The large amount 
of input parameters indicates how complex the relation between forest stand parameters and 
reflectance is. The inversion of the radiative transfer model to estimate forest parameters can 
effectively work only, if the simulated and measured reflectance does not have strong systematic 
differences. The effect of each input parameter should be investigated. Consequently, some inputs 
of less importance could be simplified and others with high influence (e.g. crown shape) should be 
incorporated in better of more detailed way.   
 
 
 
 



6. References 
 

 55

6.  References 
Anonymous. (2004, October 2004). "MANUEL DART." 
Asner, G. P. (1998). "Biophysical and Biochemical Sources of Variability in Canopy Reflectance." 

Remote Sensing of Environment 64(3): 234-253. 
Barclay, H. J., J. A. Trofymow and R. I. Leach (2000). "Assessing bias from boles in calculating 

leaf area index in immature Douglas-fir with the LI-COR canopy analyzer." Agricultural 
and Forest Meteorology 100(2-3): 255. 

Baret, F. and G. Guyot (1991). "Potentials and limits of vegetation indices for LAI and APAR 
assessment." Remote Sensing of Environment 35(2-3): 161-173. 

Baret, F. and M. Weiss (2004). CAN_EYE: Processing digital photographs for canopy structure 
characterization, INRA, Avignon, France. 

Battaglia, M., M. L. Cherry, C. L. Beadle, P. J. Sands and A. Hingston (1998). "Prediction of leaf 
area index in eucalypt plantations: Effects of water stress and temperature." Tree 
Physiology 18(8-9): 521. 

Brand, D., G (1987). "Estimating the surface area of spruce and pine foliage from displaced 
volume and length." Can. J. For.Res 17: 1305–1308. 

Bruniquel-Pinel, V. and J. P. Gastellu-Etchegorry (1998). "Sensitivity of texture of high resolution 
images of forest to biophysical and acquisition parameters." Remote Sensing of 
Environment 65(1): 61-85. 

Chason, J. W., D. D. Baldocchi and M. A. Huston (1991). "A comparison of direct and indirect 
methods for estimating forest canopy leaf area." Agricultural and Forest Meteorology 57(1-
3): 107-128. 

Chen, J. M. (1996). "Optically-based methods for measuring seasonal variation of leaf area index 
in boreal conifer stands." Agricultural and Forest Meteorology 80(2-4): 135-163. 

Chen, J. M. and T. A. Black (1991). "Measuring leaf area index of plant canopies with branch 
architecture." Agricultural and Forest Meteorology 57(1-3): 1-12. 

Chen, J. M. and T. A. Black (1992a). "Defining leaf area index for non-flat leaves." Plant, Cell & 
Environment 15(4): 421-429. 

Chen, J. M. and T. A. Black (1992b). "Foliage area and architecture of plant canopies from 
sunfleck size distributions." Agricultural and Forest Meteorology 60(3-4): 249-266. 

Chen, J. M. and J. Cihlar (1995). "Quantifying the effect of canopy architecture on optical 
measurements of leaf area index using two gap size analysis methods." IEEE Transactions 
on Geoscience and Remote Sensing 33(3): 777. 

Chen, J. M. and J. Cihlar (1996). "Retrieving leaf area index of boreal conifer forests using 
Landsat TM images." Remote Sensing of Environment 55(2): 153-162. 

Chen, J. M., C. H. Menges and S. G. Leblanc (2005). "Global mapping of foliage clumping index 
using multi-angular satellite data." Remote Sensing of Environment 97(4): 447. 

Chen, J. M., G. Pavlic, L. Brown, J. Cihlar, S. G. Leblanc, H. P. White, R. J. Hall, D. R. Peddle, D. 
J. King and J. A. Trofymow (2002). "Derivation and validation of Canada-wide coarse-
resolution leaf area index maps using high-resolution satellite imagery and ground 
measurements." Remote Sensing of Environment 80(1): 165. 

Chen, J. M., P. M. Rich, S. T. Gower, J. M. Norman and S. E. Plummer (1997). "Leaf area index 
of boreal forests: Theory, techniques and measurements." Journal of Geophysical Research 
102(D24): 29,429-29,443. 



6. References 
 

 56

Cohen, W. B. and C. O. Justice (1999). "Validating MODIS terrestrial ecology products: Linking 
in situ and satellite measurements." Remote Sensing of Environment 70(1): 1-3. 

Colombo, R., D. Bellingeri, C. M. Marino and D. Fasolini (2003). "Retrieval of leaf area index in 
different vegetation types using high resolution satellite data." Remote Sensing of 
Environment 86(1): 120. 

Combal, B., F. Baret and M. Weiss (2002). "Improving canopy variables estimation from remote 
sensing data by exploiting ancillary information. Case study on sugar beet canopies." 
Agronomie 22(2): 205. 

Combal, B., F. Baret, M. Weiss, A. Trubuil, D. Mace, A. Pragnere, R. Myneni, Y. Knyazikhin and 
L. Wang (2003). "Retrieval of canopy biophysical variables from bidirectional reflectance:  
Using prior information to solve the ill-posed inverse problem." Remote Sensing of 
Environment 84(1): 1-15. 

Coops, N. C., K. L. Jacobsen, M. L. Smith, M. Martin and S. Ollinger (2004). "Estimation of plant 
and leaf area index using three techniques in a mature native eucalypt canopy." Austral 
Ecology 29(3): 332. 

CSC_NOAA. (1999, April 30, 2001). "Remote Sensing: An Overview."   Retrieved April 10, 
2006. 

Danson, F. M., C. S. Rowland and F. Baret (2003). "Training a neural network with a canopy 
reflectance model to estimate crop leaf area index." International Journal of Remote 
Sensing 24(23): 4891. 

Deblonde, G., M. Penner and A. Royer (1994). "Measuring leaf area index with the LI-COR LAI-
2000 in pine stands." Ecology 75(5): 1507. 

Demarez, V. and J. P. Gastellu-Etchegorry (2000). "A Modeling Approach for Studying Forest 
Chlorophyll Content." Remote Sensing of Environment 71(2): 226-238. 

Demuth, H. and M. Beale (2005). Neural Network Toolbox.User’s Guide. Version 4. 
Di Girolamo, L. (2003). "Generalizing the definition of the bi-directional reflectance distribution 

function." Remote Sensing of Environment 88(4): 479. 
Erikssona, H., L. Eklundha, P. Perssona and E. and  Perssona (2005). "Variation of satellite 

estimated LAI due to the impact of the ground vegetation cover." 
Esteve, P., J. Fontes and J. P. Gastellu-Etchegorry (1998). "Tropical dry ecosystems modelling and 

monitoring from space." Ecological Modelling 108(1-3): 175-188. 
Fang, H. and S. Liang (2003). "Retrieving leaf area index with a neural network method: 

Simulation and validation." IEEE Transactions on Geoscience and Remote Sensing 41(9 
PART I): 2052. 

Fang, H. and S. Liang (2005). "A hybrid inversion method for mapping leaf area index from 
MODIS data: experiments and application to broadleaf and needleleaf canopies." Remote 
Sensing of Environment 94(3): 405-424. 

Fang, H., S. Liang and A. Kuusk (2003). "Retrieving leaf area index using a genetic algorithm with 
a canopy radiative transfer model." Remote Sensing of Environment 85(3): 257-270. 

Fassnacht, K. S., S. T. Gower, J. M. Norman and R. E. McMurtric (1994). "A comparison of 
optical and direct methods for estimating foliage surface area index in forests." Agricultural 
and Forest Meteorology 71(1-2): 183-207. 

Ganapol, B. D., L. F. Johnson, C. A. Hlavka, D. L. Peterson and B. Bond (1999). "LCM2:  A 
coupled leaf/canopy radiative transfer model." Remote Sensing of Environment 70(2): 153-
166. 



6. References 
 

 57

Gardingen, P. R., G. E. Jackson, S. Hernandez-Daumas, G. Russell and L. Sharp (1999). "Leaf 
area index estimates obtained for clumped canopies using hemispherical photography." 
Agricultural and Forest Meteorology 94(3-4): 243-257. 

Gascon, F., J.-P. Gastellu-Etchegorry, M.-J. Lefevre-Fonollosa and E. Dufrene (2004). "Retrieval 
of forest biophysical variables by inverting a 3-D radiative transfer model and using high 
and very high resolution imagery." International Journal of Remote Sensing 25(24): 5601-
5616. 

Gastellu-Etchegorry, J. P. and V. Bruniquel-Pinel (2001). "A modeling approach to assess the 
robustness of spectrometric predictive equations for canopy chemistry." Remote Sensing of 
Environment 76(1): 1-15. 

Gastellu-Etchegorry, J. P., V. Demarez, V. Pinel and F. Zagolski (1996). "Modeling radiative 
transfer in heterogeneous 3-D vegetation canopies." Remote Sensing of Environment 
58(2): 131-156. 

Gastellu-Etchegorry, J. P., F. Gascon and P. Esteve (2003). "An interpolation procedure for 
generalizing a look-up table inversion method." Remote Sensing of Environment 87(1): 55-
71. 

Gastellu-Etchegorry, J. P., P. Guillevic, F. Zagolski, V. Demarez, V. Trichon, D. Deering and M. 
Leroy (1999). "Modeling BRF and radiation regime of boreal and tropical forests:  I. BRF." 
Remote Sensing of Environment 68(3): 281-316. 

Gastellu-Etchegorry, J. P., E. Martin and F. Gascon (2004). "DART: a 3D model for sumulating 
satellite images and studying surface radiation budget." Internation Journal of Remote 
Sensing 25: 73-96. 

Gobron, N., B. Pinty, M. M. Verstraete, Y. Govaerts and N. Gobron (1997). "A semidiscrete 
model for the scattering of light by vegetation." Journal of Geophysical Research D: 
Atmospheres 102(8): 9431-9446. 

Goel, N. S. and D. E. Strebel (1983). "Inversion of vegetation canopy reflectance models for 
estimating agronomic variables. 1. Problem definition and initial results using the Suits 
model." Remote Sensing of Environment 13(6): 487. 

Gong, P., R. Pu, G. S. Biging and M. R. Larrieu (2003). "Estimation of forest leaf area index using 
vegetation indices derived from Hyperion hyperspectral data." IEEE Transactions on 
Geoscience and Remote Sensing 41(6 PART I): 1355. 

Gong, P., D. X. Wang and S. Liang (1999). "Inverting a canopy reflectance model using a neural 
network." International Journal of Remote Sensing 20(1): 111-122. 

Gower, S. T., C. J. Kucharik and J. M. Norman (1999). "Direct and indirect estimation of leaf area 
index, fAPAR, and net primary production of terrestrial ecosystems." Remote Sensing of 
Environment 70(1): 29-51. 

Gower, S. T. and J. M. Norman (1991). "Rapid estimation of leaf area index in conifer and broad-
leaved plantations." Ecology 72: 1896-1900. 

Hale, S. E. and C. Edwards (2002). "Comparison of film and digital hemispherical photography 
across a wide range of canopy densities." Agricultural and Forest Meteorology 112(1): 51. 

Homolová, L. (2005). Leaf area index estimation for Norway spruce forest stand by means of 
radiative transfer modeling and imaging spectroscopy. Laboratory of Geo-Information 
Science and Remote Sensing. Wageningen, Wageningen University and Research Centre: 
62. 



6. References 
 

 58

Hu, B., K. Inannen and J. R. Miller (2000). "Retrieval of leaf area index and canopy closure from 
CASI data over the BOREAS flux tower sites." Remote Sensing of Environment 74(2): 
255-274. 

Iaquinta, J., B. Pinty and J. L. Privette (1997). "Inversion of a physically based bidirectional 
reflectance model of vegetation." IEEE Transactions on Geoscience and Remote Sensing 
35(3): 687. 

Jacquemoud, S. and F. Baret (1990). "PROSPECT: A model of leaf optical properties spectra." 
Remote Sensing of Environment 34(2): 75-91. 

Jacquemoud, S., F. Baret, B. Andrieu, F. M. Danson and K. Jaggard (1995). "Extraction of 
vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar 
beet canopy reflectance data. Application to TM and AVIRIS sensors." Remote Sensing of 
Environment 52(3): 163-172. 

Jin, Y. Q. and Y. Wang (2001). "A genetic algorithm to simultaneously retrieve land surface 
roughness and soil wetness." International Journal of Remote Sensing 22(16): 3093. 

Jonckheere, I. (2004). "Review of mehtods for in situ leaf area index determination Part I. 
Theories, sensors and hemispherical pgotography." Agricultural and Forest Meteorology 
121(1-2): 19-35. 

Jonckheere, I., K. Nackaerts, B. Muys and P. Coppin (2005). "Assessment of automatic gap 
fraction estimation of forests from digital hemispherical photography." Agricultural and 
Forest Meteorology 132(1-2): 96. 

Kavzoglu, T. and P. M. Mather (1999). "Pruning artificial neural networks: An example using land 
cover classification of multi-sensor images." International Journal of Remote Sensing 
20(14): 2787. 

Kavzoglu, T. and P. M. Mather (2002). "The role of feature selection in artificial neural network 
applications." International Journal of Remote Sensing 23(15): 2919. 

Kavzoglu, T. and P. M. Mather (2003). "The use of backpropagating artificial neural networks in 
land cover classification." International Journal of Remote Sensing 24(23): 4907. 

Kimes, D., J. Gastellu-Etchegorry and P. Esteve (2002). "Recovery of forest canopy characteristics 
through inversion of a complex 3D model." Remote Sensing of Environment 79(2-3): 320-
328. 

Kimes, D. S. and J. A. Kirchner (1982). "Radiative transfer model for heterogeneous 3-D scenes." 
Applied Optics 21(22): 4119-4129. 

Kimes, D. S., R. F. Nelson, M. T. Manry and A. K. Fung (1998). "Review article: Attributes of 
neural networks for extracting continuous vegetation variables from optical and radar 
measurements." International Journal of Remote Sensing 19(14): 2639 - 2663. 

Kimes, D. S., K. J. Ranson and G. Sun (1997). "Inversion of a forest backscatter model using 
neural networks." International Journal of Remote Sensing 18(10): 2181-2199. 

King, D., P. Walsh and F. Ciuffreda (1994). "Airborne digital frame camera imaging for elevation 
determination." Photogrammetric Engineering & Remote Sensing 60(11): 1321. 

Koetz, B., F. Baret, H. Poilve and J. Hill (2005). "Use of coupled canopy structure dynamic and 
radiative transfer models to estimate biophysical canopy characteristics." Remote Sensing 
of Environment 95(1): 115-124. 

Kucharik, C. J., J. M. Norman and S. T. Gower (1998). "Measurements of leaf orientation, light 
distribution and sunlit leaf area in a boreal aspen forest." Agricultural and Forest 
Meteorology 91(1-2): 127-148. 



6. References 
 

 59

Kuusk, A. (1995). "A Fast, Invertible Canopy Reflectance Model." Remote Sensing of 
Environment 51(3): 342-350. 

Leblanc, S. G. (2002). "Correction to the plant canopy gap-size analysis theory used by the 
Tracing Radiation and Architecture of Canopies instrument." Applied Optics 41(36): 7667-
7670. 

Leblanc, S. G., J. M. Chen, R. Fernandes, D. W. Deering and A. Conley (2005). "Methodology 
comparison for canopy structure parameters extraction from digital hemispherical 
photography in boreal forests." Agricultural and Forest Meteorology 129(3-4): 187-207. 

Leblanc, S. G., R. Fernandes and J. M. Chen (2002). Recent advancements in optical field leaf area 
index, foliage heterogeneity, and foliage angular distribution measurements. International 
Geoscience and Remote Sensing Symposium (IGARSS). 

Levy, P. E. and P. G. Jarvis (1999). "Direct and indirect measurements of LAI in millet and fallow 
vegetation in HAPEX-Sahel." Agricultural and Forest Meteorology 97(3): 199. 

LI-COR (1992). LAI-200 Plant Canopy Analyzer; Operating Manual. 
Li, S. G., C. T. Lai, G. Lee, S. Shimoda, T. Yokoyama, A. Higuchi and T. Oikawa (2005). 

"Evapotranspiration from a wet temperate grassland and its sensitivity to 
microenvironmental variables." Hydrological Processes 19(2): 517. 

Liang, S. (2004). Quantitative remote sensing of land surfaces. Hoboken, New Jersey, John Wiley 
& Sons, Inc. 

Lin, Y. and K. Sarabandi (1999). " Retrieval of forest parameters using a fractal-based coherent 
scattering model and a genetic algorithm." IEEE Transactions on Geoscience and Remote 
Sensing 37(3): 1415–1424. 

Martin, E., J.-P. Gastellu-Etchegorry, R. Dhalluin and F. Gascon (2003). "Model Intercomparison 
for validating the 2003 DART Model." International Geoscience and Remote Sensing 
Symposium (IGARSS) 5: 3272-3274. 

Meroni, M., R. Colombo and C. Panigada (2004). "Inversion of a radiative transfer model with 
hyperspectral observations for LAI mapping in poplar plantations." Remote Sensing of 
Environment 92(2): 195-206. 

Mesarch, M. A., E. A. Walter-Shea, G. P. Asner, E. M. Middleton and S. S. Chan (1999). "A 
Revised Measurement Methodology for Conifer Needles Spectral Optical Properties:  
Evaluating the Influence of Gaps between Elements." Remote Sensing of Environment 
68(2): 177-192. 

Myneni, R. B. (1991). "Modeling Radiative-Transfer and Photosynthesis in 3-Dimensional 
Vegetation Canopies." Agricultural and Forest Meteorology 55(3-4): 323-344. 

NCTA. (1996). "Norway Spruce."   Retrieved August 10, 2005, from 
http://www.realchristmastrees.org/treetype/nrwy_spr.html. 

Neumann, H. H., G. Den Hartog and R. H. Shaw (1989). "Leaf area measurements based on 
hemispheric photographs and leaf- litter collection in a deciduous forest during autumn 
leaf-fall." Agricultural & Forest Meteorology 45(3-4): 325. 

Nilson, T., A. Kuusk, M. Lang and T. Lukk (2003a). "Forest Reflectance Modeling: Theoretical 
Aspects and Applications." AMBIO: A Journal of the Human Environment 32(8): 535-541. 

Pierce, L. L., S. W. Running and G. A. Riggs (1990). "Remote Detection of Canopy Water-Stress 
in Coniferous Forests Using the Ns001 Thematic Mapper Simulator and the Thermal 
Infrared Multispectral Scanner." Photogrammetric Engineering and Remote Sensing 56(5): 
579-586. 



6. References 
 

 60

Pinty, B., N. Gobron, J.-L. Widlowski, S. A. W. Gerstl, M. M. Verstraete, M. Antunes, C. Bacour, 
F. Gascon, J.-P. Gastellu-Etchegorry, N. Goel, S. Jacquemoud, P. North, W. Qin and R. 
Thomson (2000). "The Radiation transfer Model Intercomparision (RAMI) Exercise." 
Journal of Geophysical Research 106(IWMMM - 2 Special issue): 11937-11956. 

Qi, J., Y. H. Kerr, M. S. Moran, M. Weltz, A. R. Huete, S. Sorooshian and R. Bryant (2000). "Leaf 
Area Index Estimates Using Remotely Sensed Data and BRDF Models in a Semiarid 
Region." Remote Sensing of Environment 73(1): 18. 

RAMI. (2005, February 22, 2006).    Retrieved April 20, 2006, from http://rami-
benchmark.jrc.it/HTML/Home.php. 

Rautiainen, M. and P. Stenberg (2005). "Application of photon recollision probability in 
coniferous canopy reflectance simulations." Remote Sensing of Environment 96(1): 98. 

Rautiainena, M., Stenberga.P., T. Nilsonb and A. and  Kuuskb (2004). " The Effect of Crown 
Shape on the Reflectance of Coniferous Stands." Remote Sensing of Environment 89: 41–
52. 

RFS. (2001). "The Norway Spruce - Christmas tree."   Retrieved August 10, 2005, from 
http://www.rfs.org.uk/thirdlevel.asp?ThirdLevel=64&SecondLevel=34. 

Smolander, S. (2001). "Scattering properties of coniferous shoots in radiative transfer modeling."   
Retrieved April 23, 2006, from 
http://www.cs.helsinki.fi/combi/seminars/suitia_abs/smolander.html. 

Smolandera, S. and P. Stenbergb (2003). "A method to account for shoot scale clumping in 
coniferous canopy reflectance models." Remote Sensing of Environment 88: 363–373. 

Soudani, K., J. Trautmann and J. M. N. Walter (2002). "Leaf area index and canopy stratification 
in Scots pine (Pinus sylvestris L.) stands." International Journal of Remote Sensing 23(18): 
3605-3618. 

SPECIM. (2004). 2004, from http://www.specim.fi/products-aisa-eagle.html. 
Tian, Y. H., C. E. Woodcock, Y. J. Wang, J. L. Privette, N. V. Shabanova, L. M. Zhou, Y. Zhang, 

W. Buermann, J. R. Dong, B. Veikkanen, T. Hame, K. Andersson, M. Ozdogan, Y. 
Knyazikhin and R. B. Myneni (2002). "Multiscale analysis and validation of the MODIS 
LAI product - II. Sampling strategy." Remote Sensing of Environment 83(3): 431-441. 

Treitz, P. and P. Howarth (1999). "Hyperspectral remote sensing for estimating biophysical 
parameters of forest ecosystems." Progress in Physical Geography 23(3): 359-390. 

Ufer, G., C. M. (2004). Comparison of scaling-up methods to retrive chlorophyll content in 
Norway spruce crowns from hyperspectral images simulated by the DART model. 
Laboratory of Geo-Information Science and Remote Sensing. Wageningen, Wageningen 
University and Research Centre: 73. 

Walthall, C., W. Dulaney, M. Anderson, J. Norman, H. Fang and S. Liang (2004). "A comparison 
of empirical and neural network approaches for estimating corn and soybean leaf area 
index from Landsat ETM+ imagery." Remote Sensing of Environment 92(4): 465. 

Weiss, M. and F. Baret (1999). "Evaluation of canopy biophysical variable retrieval performances 
from the accumulation of large swath satellite data." Remote Sensing of Environment 
70(3): 293-306. 

Weiss, M., F. Baret, M. Leroy, O. Hautec?ur, C. Bacour, L. Prévot and N. Bruguier (2002). 
"Validation of neural net techniques to estimate canopy biophysical variables from remote 
sensing data." Agronomie 22(6): 547. 



6. References 
 

 61

Weiss, M., F. Baret, R. B. Myneni, A. Pragne?re and Y. Knyazikhin (2000). "Investigation of a 
model inversion technique to estimate canopy biophysical variables from spectral and 
directional reflectance data." Agronomie 20(1): 3. 

Weiss, M., F. Baret, G. J. Smith, I. Jonckheere and P. Coppin (2004). "Review of methods for in 
situ leaf area index (LAI) determination Part II. Estimation of LAI, errors and sampling." 
Agricultural and Forest Meteorology 121(1-2): 37-53. 

Weiss, M., D. Troufleau, F. Baret, H. Chauki, L. Prévot, A. Olioso, N. Bruguier and N. Brisson 
(2001). "Coupling canopy functioning and radiative transfer models for remote sensing 
data assimilation." Agricultural and Forest Meteorology 108(2): 113. 

Weiss, S. B. (2000). "Vertical and temporal distribution of insolation in gaps in an old-growth 
coniferous forest." Canadian Journal of Forest Research 30(12): 1953. 

Welles, J., M and J. Norman, M (1991). "Instrument for indirect measurement of canopy 
architecture." Agric. J 83: 818–825. 

Welles, J. M. and S. Cohen (1996). "Canopy structure measurement by gap fraction analysis using 
commercial instrumentation." Journal of Experimental Botany 47(302): 1335. 

Williams, D. L. (1991). "A Comparison of Spectral Reflectance Properties at the Needle, Branch, 
and Canopy Level for Selected Conifer Species." Remote Sensing of Environment 35(2-3): 
79-93. 

Yuhas, R. H., A. F. H. Goetz and J. W. Boardman (1992). "Discrimination among semiarid 
landscape endmembers using the spectral angle mapper (SAM) algorithm. In Summaries of 
the Third Annual JPL Airborne Geoscience Workshop."  1: 147-149. 

 
 



7. Appendices 
 

 62

7. Appendices 

Appendix 1.  Conceptual model for LAI calculation from TRAC records in TRACWin 3.7.1 software 
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Appendix 2. Summary statistics of Vegetation indices as calculated from TRAC measurement  

Transect SZA ΩE LAIe LAI 
A1 41.5 0.6094 2.89 6.01 
A2 41.7 0.6583 3.89 7.53 
A3 41.8 0.6321 2.50 5.06 
A4 42.0 0.6474 2.70 5.24 
A5 42.7 0.5697 3.01 6.56 
A6 42.9 0.5891 3.18 6.79 
A7 43.3 0.6686 2.84 5.32 
B2 43.6 0.6754 1.55 2.99 
B3 43.8 0.6909 1.93 3.525 
B4 44.1 0.7048 2.29 4.14 
B5 45.4 0.7082 2.58 4.65 
B6 45.9 0.6571 3.40 6.59 
B7 46.3 0.7417 3.20 5.485 
B8 46.7 0.7786 3.84 6.14 
B9 47.1 0.7253 3.96 6.91 
C1 57.2 0.6624 3.59 9.17 
C2 56.7 0.8174 3.44 7.27 
C3 56.1 0.7584 2.72 6.4 
C4 55.5 0.7288 3.2 7.97 
C5 49.8 0.7630 2.32 4.88 
C6 48.7 0.7378 1.97 4.36 
C7 48.0 0.5834 2.89 6.85 
C8 47.4 0.6841 3.32 7.96 
C9 46.9 0.6829 2.6 7.87 

Mean  46.9 0.6918 2.8 5.9 
Std 4.92 0.06 0.63 1.54 
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Appendix 3. Summary statistics of vegetation indices of the mature Norway spruce forest stand as 
calculated from hemispherical photography 

ALA(0) Clumping factor 
Subplot  LAIe LAI LAI 

combined
Effective TRUE 00 57.50 

fcover 

1 3 6.9 6.4 76 80 0.58 0.37 0.538 
2 2.7 6.3 5.7 76 80 0.6 0.37 0.515 
3 1.7 3.7 3.6 58 56 0.49 0.38 0.566 
4 2.8 4.9 5.9 80 80 0.52 0.35 0.406 
5 3.3 5.6 7 80 80 0.55 0.39 0.467 
6 2.8 5.2 5.9 80 80 0.51 0.39 0.406 
7 3.2 5.5 6.8 80 80 0.56 0.39 0.466 
8 3.2 5.8 6.8 80 80 0.49 0.39 0.442 

11 3.5 6 7.4 80 80 0.54 0.39 0.468 
12 3.7 6.2 7.8 80 80 0.55 0.42 0.513 
13 3.5 6.2 7.4 80 80 0.5 0.39 0.479 
14 4.4 7.3 9.3 80 80 0.55 0.39 0.568 
15 3.2 7.1 6.8 74 78 0.58 0.35 0.578 
16 3.8 7.6 8.1 78 80 0.55 0.38 0.512 
17 4.2 6.9 8.9 80 80 0.55 0.4 0.522 
18 2.8 4.8 5.9 80 80 0.52 0.39 0.484 
19 3.4 5.6 7.2 80 80 0.54 0.42 0.525 
20 4 7.9 8.5 78 80 0.6 0.35 0.55 
21 4.2 7.2 8.9 80 80 0.52 0.37 0.515 
22 5.3 8.3 11.2 80 80 0.58 0.42 0.615 
23 5 7.8 10.6 80 80 0.56 0.45 0.612 
24 4.6 7 9.7 80 80 0.6 0.48 0.587 
25 4.1 6.6 8.7 80 80 0.6 0.4 0.545 

Mean 3.6 6.4 7.6 78.26 78.87 0.55 0.39 0.52 
Minimum 1.7 3.7 3.6 58 56 0.49 0.35 0.406 
Maximum 5.3 8.3 11.2 80 80 0.6 0.48 0.615 

Std 0.83 1.13 1.75 4.72 5.0 0.04 0.03 0.06 
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Sunlit crown Band 27 (670.74 nm)

0.008

0.01

0.012

0.014

0.016

0.018

0.02

3 5 7 9 11 13 15

LAI

R
ef

le
ct

an
ce

 (r
el

at
iv

e)

CC50% CC60% CC70% CC75%
CC80% CC85% CC90% CC95%

Shaded crown Band 27 (670.74 nm)

0

0.001

0.002

0.003

0.004

0.005

0.006

3 5 7 9 11 13 15

LAI

Re
fle

ct
an

ce
 (r

el
at

iv
e)

CC50% CC60% CC70% CC75%
CC80% CC85% CC90% CC95%

Appendix 4. Sunlit and shaded crown reflectance in band 27 (670.74nm) and band 48 (868.99nm) 
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Sunlit crown Band 48 (868.99nm)
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