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Chapter 1

Introduction

1.1 Introduction

The lipid bilayer membrane is probably the most important structure in living organ-

isms because it separates the protoplasm, i.e., the substance inside the cell where the

nucleus and the cell organelles reside, from the extra cellular environment. Inside the

cell membranes play also an important role as a highly permeation-selective barrier,

which separates the cell organelles and nucleus from the cytoplasm. Moreover, they

are actively involved in a large array of metabolic processes. Until approximately

1895 it was unknown what type of molecules form a membrane.

Charles Ernest Overtone was the first who, more or less accidentally, found that

non-polar substances have the ability to pass surprisingly quickly across membranes

of plant and animal cells [3,4]. From this observation he concluded that the molecules

of a membrane are of a special type, which he called lipoids. He discovered that the

solubility of the substances in lipoids determined to a large extent the penetration

speed of these molecules.

In 1917, Irving Langmuir gained some initial information about the type of

molecules. He performed research on oil films [5] by using an improved version of an

apparatus originally developed by Agnes Pockels, that later became known as the

Langmuir trough. He proved that information could be retrieved on the orientation,

shape and size of these molecules by varying the air/water surface area, and he

proposed that lipid molecules present on the air/water interface are oriented in such

a way that their (hydrophobic) tails were pointing to the air and the (hydrophilic)

headgroups reside in the aqueous phase.

In 1925 Gorter and Grendel used the same technique as Langmuir to determine

the amount of lipids in erythrocytes (red blood cells) of several different animals

[6]. They first isolated the lipids, put them on the air/water interface, and then

compressed them to a certain surface pressure in the Langmuir trough and found

that the ratio between this lipid area and the erythrocytes surface area was always

approximately two. This led them to the conclusion that a membrane consists of

two layers of lipids where the lipid tails are oriented towards each other and the
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Figure 1.1: Shematic representation of a lipid bilayer. The lipid tails are present at

the interior of the lipid bilayer, while the headgroups are oriented to the aqueous

solution.

headgroups are exposed on the outside of this bilayer (figure 1.1). It is interesting

to note that it was discovered later that this experiment contained two severe errors.

The first one was that by far not all lipids were extracted from the erythrocytes,

and the second one was that the erythrocytes area was largely underestimated. In

retrospect it turned out that these two mistakes most fortunately neutralised each

other. The true ratio indeed is of the order of two.

At the time Gorter and Grendell proposed their model, they did not get serious

attention from the scientific community, because most scientist focused on another

membrane model. In this competing model the membrane was regarded as a impen-

etrable barrier with some pores in it with some particular size. This model implied a

size-dependent transport of molecules across the membrane, i.e., smaller molecules

pass faster through the membrane than larger ones. This idea explained some, but

not all data, and it was gradually becoming clear that the membrane is not a sheet

with small holes.

Almost ten years later the lipid membrane model was accepted by the majority

of the researchers, in part because of studies by Danielli and Harvy [7]. These

researchers demonstrated that proteins accumulate at the interface between an oil

droplet and the protoplasm of mackerel eggs, resulting in a measurable decrease

of the interfacial tension. In a following paper [8] Danielli and Davson proposed a

membrane structure comparable to that of Gorter and Grendell [6], but with the

extra feature that the lipid bilayer is coated on both sides by a densely packed

layer of proteins. This sandwich structure was chosen, because at that time it was

believed that only proteins could decrease the surface tension.

The model described by Danielli an Davson [8] was accepted by the majority

of researchers for a long time, in spite of the fact that there were mounting con-

tradictory pieces of information. For instance, when the proteins were present at

the outside on the membrane the hydrophilic headgroups were screened from the

aqueous environment. Why then, one could argue, are these headgroups at that

specified location? One of the main reasons that the model was not challenged

for such a long time was that electron microscope studies confirmed this structure.

More specifically it confirmed the estimated dimensions of the structure of Danielli

and Davson. The electron microscope also revealed that not only the cell was cov-

ered with a membrane, but also the organelles were separated from the cytoplasm

10



by a membrane. These findings brought Robertson [9] to the conclusion that all

membranes in the cell had a similar structure, and that they were all interconnected

with each other. He named it the unit membrane.

Until the beginning of the nineteen seventies this model was generally accepted,

but with the improvement of the electron microscope, it became evident that there

were major differences between the membranes of various organelles. This suggested

that the membrane structure was much more complicated than the rather simple

description of Robertson and that they can not be all connected to each other. At

this stage it was suggested that proteins are more likely anchored into the membrane

rather than sitting as a densely packed layer on the outside of the lipid layer. This

idea eventually led to two opposing hypotheses in the mid sixties, with the unit

membrane of Robertson on one side, and the theory of Green [10], where the lipid

bilayer had almost been completely replaced by proteins, on the other side.

Lenard and Singer [11] already found in 1966, when they studied the mem-

brane with optical rotary dispersion (ORD) and circular dichroism (CD), that ap-

proximately 33% of the proteins in a lipid bilayer have an α-helix conformation.

Understanding that the Danielli-Davson-Robertson model did not maximize the hy-

drophobic interactions, they introduced yet another model where the proteins, or

more specifically the α-helices penetrated the bilayer partly or completely in order

to maximize these hydrophobic interactions.

The development of the electron microscope freeze-fracture technique gave new

impulses to the membrane research. The freeze fracture technique made it possible

to split a membrane into its two leaflets, opening the possibility to study the inside

of a membrane. It was found that the centre of the membrane was not entirely flat

consistent with the Danielli-Davson-Robertson model. Interestingly, a lot of holes

were found which could be attributed to the proteins that were ripped off from the

monolayers. The freeze-fracture technique also revealed that the lipid/protein ratio

varies between various membranes. Eventually, these studies led to the fluid mosaic

model proposed by Singer and Nicolson in 1972 [12], which is shown in figure 1.2. In

this model the proteins are present inside the bilayer and not on the outside of the

lipid bilayer and the membrane can be regarded as a two-dimensional fluid where

lipid and proteins diffuse more or less freely. The driving force stabilising this struc-

ture are the hydrophobic interactions between the lipid tails and the hydrophobic

parts of the proteins.

Nowadays there is a much better and deeper understanding of biological mem-

branes due to the enormous amount of research that has been done on this subject

over the last few decades. In the modern view of the bilayer membrane there still is

consensus that the bilayer provides a matrix in which the proteins reside, as proposed

in the fluid mosaic model. This is why the fluid-mosaic model is still the leading

(first-order) picture. The structural, mechanical and thermodynamical properties

of lipid bilayers have been probed by a very broad range of experimental techniques

and the membrane structure has been confirmed by various theoretical methods.
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Figure 1.2: Schematic representations of the fluid mosaic model, with proteins float-

ing around in a fluid lipid bilayer. Some proteins completely span the bilayer, while

others partly penetrate the lipid bilayer. To the left a 3D picture is shown, to the

right a cross-section is presented.

Also the three dimensional structures and the functioning of many membrane pro-

teins are now known in quite some detail. Nevertheless, many questions remain

unanswered and research on many branches of membrane science is underway.

In this thesis we focus on the effect of interfaces on lipid bilayers. As we will ar-

gue, membranes frequently encounter interfaces. These interfaces can be divided into

two separate classes, namely hydrophilic and hydrophobic interfaces. Hydrophilic

interfaces are typically present outside the bilayer, for instance an oxide (soil, glass),

or in our case a gold surface. Biologically relevant examples are a cell surrounded by

other cells or a cell or lipid vesicle that is attached to a substrate. Lipid bilayers in

the presence of hydrophobic surfaces often disintegrate and form adsorbed monolay-

ers (as it occurs at the air/water interface). Hydrophobic interfaces with a relatively

small area are present in the hydrophobic interior of the lipid bilayer. Examples are

the hydrophobic parts of integral proteins or trans-membrane peptides. To get a

full understanding of the interactions of proteins with the bilayer membrane is one

of the most challeging targets of the years to come.

My thesis can be divided into two parts. In part one a theoretical self-consistent

field study is presented aimed to describe the thermodynamical, structural and me-

chanical consequences of a trans-membrane inclusion in a lipid bilayer. In the second

part the adhesion of lipid vesicles to a solid surface is investigated with self-consistent

field theory and various experimental methods. In the next few paragraphs I will

give a short introduction on a number of membrane issues that are relevant for my

thesis. In the first part physical chemical aspects of the formation of the lipid bilayer

matrix are discussed. Next, I give some background on the integral membrane pro-

teins. This is followed by a brief introduction of theoretical models that can be used

for modelling the lipid bilayer and how the self-consistent field theory is positioned

in this field. With a small overview of lipid-protein interactions and vesicle (closed

12



Figure 1.3: Structures of 1-heptadecanoyl-2-oleoyl-sn-glycero-3-phosphocholine.

The two hydrophobic tails and the hydrophilic head are indicated both in a space

filling (3D) picture (bottom) as well as in the usual chemical language (top).

bilayers) adhesion onto hydrophilic surfaces I will close this introduction.

1.2 The lipid bilayer matrix

It is necessary to explain at this stage what physical chemical aspects are respon-

sible for the lipids to form bilayers. According to the fluid mosaic model the lipids

form a flat two-dimensional sheet consisting of two layers of closely packed lipids of

which the hydrophobic tails are directed to each other, while the hydrophilic head-

groups are oriented towards the aqueous phase. It has to be noted that biological

membranes consist of many different types of lipids. The most abundant ones are

the phospholipids. These phospholipids have two hydrophobic fatty acyl tails and

a hydrophilic headgroup connected to a glycerol backbone (figure 1.3). Lipids are

members of a larger class of molecules that share the common property that they

have two distinct sides, called amphiphiles or surfactants (a name that refers to the

surface activity of these molecules). In an aqueous solution, all amphiphiles and

thus also the lipids spontaneously cluster together into multi-molecular aggregates.

The formation of such self-assembled structures only occurs above a certain

threshold concentration, called generally the critical micelle concentration (CMC).

For most lipids this already occurs at very low concentrations, ranging from ap-

proximately 10−12 to 10−8 M, depending on the tail length, headgroup charge and

13



ionic strength. It is not self-evident that self-assembling amphiphiles form a two-

dimensional sheet. It is well-known that that alternative structures can form such as

spherical micelles, cylindrical micelles, etc. The geometry of such aggregates can be

predicted from a dimensionless number (surfactant packing parameter) P ≡ v/al,

where v is the total volume of the surfactant, l is the effective length of the surfac-

tant tail(s) and a is the effective area of the surfactant headgroup. For example,

the surfactant cethyl trimethylammonium bromide (CTAB), with P < 1/3, has a

larger headgroup area compared to the average tail area. These surfactants prefer to

group themselves in spherical micelles thereby minimising packing frustration. The

many lipids in the bilayer membrane must have an other shape in order to form a

flat bilayers. Effectively, the lipids have a cylindrical shape with a headgroup area

a comparable to the average tail area v/l and in this case P ≈ 1.

Limiting ourselves to self-assembled objects of the bilayer type, there are inter-

esting transitions that can be observed by changing the temperature of the system.

The bilayer phase behaviour is rich and complex and by now well documented. In a

concentrated (pure) lipid solution, the lipid layers can basically be divided into four

distinguishable states. Going from a high temperature T to lower T , we find the

fluid phase denoted as Lα-phase and three liquid crystalline or solid phases, denoted

as Pβ′ , Lβ′ and Lc-phases (figure 1.4). The first two low-T phases are known as

the gel phase and the Pβ′-phase is referred to as the rippled phase, because of its

wavy appearance as schematically illustrated in figure 1.4. The gel-to-liquid phase

transition temperature Tm depends mainly on the chain length and the number of

double (unsaturated) bonds in the acyl chains. It increases with increasing chain

length. For example, for the saturated 1,2-dimyristoyl-sn-glycero-3-phosphocholine

(DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-

sn-glycero-3-phosphocholine (DSPC) bilayers the transition temperatures Tm are

24◦C, 42◦C and 54◦C, respectively. The increase of unsaturated bonds in the acyl

chain results in a strong suppression of Tm, because double bonds induce kinks in the

conformations of the tails and such bended chains organise less easily in a crystalline

way. The effect is very large indeed: a single double bond in 1,2-dioleoyl-sn-glycero-

3-phosphocholine (DOPC) decreases Tm by 20◦ compared to DSPC which has no

double bonds.

In biological systems the majority of bilayers is in this fluid phase, albeit that

usually the lipid composition is selected in such a way that the system is not very

far from the gel-to-liquid transition temperature. In this thesis we will therefore

limit ourselves to the fluid phase.

1.3 Membrane proteins

An important aspect of the fluid-mosaic model and of course in biomembranes is

that there are proteins in the membrane. Proteins are molecules constructed by

a long sequence of amino acids. Amino acids may be divided into hydrophilic and

14



Figure 1.4: The four different bilayer phases of phospholipid bilayer. The three left

structures are in the liquid crystalline phase. The phases of the two central bilayers

(Lβ′ and P−β ′ are also called gel phase. The bilayer on the right Lα is in the liquid

phase.

hydrophobic ones. Through the same driving forces as discussed for the self-assembly

of the lipids into bilayers, in water the hydrophobic amino acids cluster together in

such a way that the proteins are compact entities with little water inside. In this

process the hydrophilic segments remain on the water-side. In a way a protein is

thus a unimolecular micelle. Due to the high density inside the protein, and the

unique sequence of polar and apolar amino acids, it appears that a protein molecule

often assumes a unique three-dimensional structure. Within this structure one can

typically distinguish structural motives such as helices, or parallel sheets, etcetera.

As proteins have the intrinsic polar-apolar duality, they can be seen as huge

surfactants and as such they are often membrane-active species. With this we mean

that they can easily be inserted or they insert themselves spontaneously in the

bilayer membrane. In the bilayer, the apolar regions of the protein can find an

apolar medium as these parts can interact with the acyl tails of the lipids. In a trans-

membrane configuration, the more hydrophilic amino acids can be organised such

that these remain hydrated by placing them at the membrane periphery. The trans-

membrane configuration is therefore a natural consequence of minimising solvation

frustration of such inserted protein molecule. Membrane proteins typically need the

lipid bilayer environment to assume their active three-dimensional configuration.

This means that the conformation of such protein in the aqueous solution is expected

to differ fundamentally from that in the bilayer. It is believed that most membrane

proteins remain compact objects inside the bilayer. This means that the swelling

of these proteins with lipids is limited. Apparently, the packing efficiency of amino

acids with each other does not tolerate the intercalation of many lipids. Effectively

the surface acts as a surface to the lipids.

Not all membraneproteins span the bilayer. There exist a second class, the

so-called peripheral membrane proteins. These are attached to the membrane tem-

porarily, with electrostatic, covalent and other interactions. They reside on the

outside of the membrane. In this thesis we will consider models of proteins in bi-

layer membranes, but we will focus on the trans-membrane configuration only.
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The numbers and types of proteins in the bilayer determine its biological func-

tion. For example, two very important energy conversion processes in biological

systems, i.e., photosynthesis and oxidative phosphorylation, are carried out by mem-

brane proteins. Membrane proteins also play an important role in the transport of

molecules across the membrane. The transport of these molecules by means of

these proteins can be regulated in various ways, for instance by the hydrophobic

mismatch, i.e., the difference between the hydrophobic length of the inclusion and

the hydrophobic bilayer thickness. Examples are the activity of Ca2+-ATPase [13],

(Na+,K+)-ATPase [14, 15] and the channel lifetime of dimeric gramicidin [16]. One

application of our investigation is thus that our results may be used to understand

how these complicated biological processes can be regulated.

1.4 Self-consistent field theory

In the above we have several times hinted in the direction of theoretical modelling.

Indeed, the generic structure of the amphiphiles and their self-assembling behaviour

may lead one to think that it should be feasible to design a theoretical framework

that explains most of what is known about the bilayer membrane, starting from

the fundamental laws of physics. There are however major challenges that present

themselves. First of all one should have a sufficiently powerful method that relates

molecular properties to observable quantities and secondly one should be able to

apply such theory to a sufficiently accurate molecular model of the bilayer membrane

to explain why one amphiphile behaves differently from the other, and to unravel

the phenomena that occur when lipid bilayers are next to hydrophilic surfaces or

experience protein-like inclusions.

The first problem is to find a sufficiently powerful theoretical machinery that

is suitable for us. Very fundamental is that we like to understand not just the

properties of a single molecule in space, but the collective behaviour of a large

set of such molecules. Theories that do this make use of the laws of averages,

i.e., statistics. Here we thus enter the intricate domain of statistical mechanics, or

statistical thermodynamics. Indeed, the route to be followed for a given model to

predict the expected macroscopic properties, is explicitly specified by the statistical

thermoydnamical machinery. A target is to compute the so-called partition function.

The partition function exactly specifies in how many relevant states our system can

be in. Through further manipulations (differentiations etc.) we then can extract

measurable quantities from such partition function, such as the membrane structure,

or details regarding the lipid ordering around a protein inclusion. The problem is,

however, that there is no known route to obtain this partition function for the

complex systems we study here.

With the invention of the digital computer an interesting idea appeared, which

allowed huge progress in this field. The key idea is to take a suitable molecular model

and generate relevant realisations by brute force. Even though the total partition

16



function is not computed, the averaging over these relevant realisations then gives an

idea about the expectation for a given observable. Although this route is generally

applicable, there remain problems. One of these is that one needs to find the relevant

realisations from an immense set of not-so-relevant ones. How can we do this? It

appears possible to solve Newton’s equations of motion for all the movable parts

in the system. This is called molecular dynamics MD simulations. Indeed, all we

want to know about the lipid bilayer membrane on the nanosecond and nanometre

length scale can be computed with this method. To find predictions for systems on

a longer time and larger length scale we need coarse, less detailed models. Other

strategies to generate relevant realisations (such as Monte Carlo simulations) suffer

the same problem that only small systems can be studied.

Even before the invention of the digital computer, people came up with other

solutions to this problem. The idea is that when the exact partition function can

not be evaluated one should try to find the best approximate partition function for

a particular model. These approximate partition functions invariably make use of

approximations of the mean-field type.

One of the special difficulties in the evaluation of the partition function is that

each molecule interacts with many other molecules and that for each particular re-

alisation of the system the number and type of these interactions differs. Through

the many interactions, all molecules are intimately coupled to each other. All these

couplings should be accounted for. In a mean field approximation, a pre-averaging

of these relevant interactions is carried through. The pre-averaging leads to a decou-

pling of the molecules and suddenly the problem becomes significantly less involved.

For a long time only for molecularly very simple models real progress was possible.

From this we know when a mean-field theory is reasonably accurate and under which

conditions the theory will fail.

In short, when a particular molecule has, at each given instance, many interac-

tions of the same type with other molecules, it will be clear that the average of these

many interactions will not deviate much from an actual, continuously fluctuating,

value. As a result the pre-averaging is reasonable and we may expect some good

results. On the other hand, when there are few interactions the actual interactions

will fluctuate wildly and the pre-averaging is poor. An application of mean-field

modelling to the dense packing of lipid molecules in bilayers is an example for which

the mean-field theory is expected to hold in many cases. The reason is that each lipid

molecule continuously interacts with many neighbours, simply because the density

in the bilayer is very high.

Until the introduction of the digital computer it was impossible to implement

mean-field theories for molecularly complex systems. During the last two decades or

so, the theory, which is known as the self-consistent field (SCF) theory, has developed

as a computational technique which can be seen as a method that complements

computer simulations. Even though the method is not exact, there are good reasons

to develop such models. This is not only due to the fact that SCF models are
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computationally extremely inexpensive. One other reason is that the method solves

(unlike in simulations) its partition function. Through this partition function one

can obtain thermodynamic and mechanical properties of bilayers (we will return to

this below).

Due to the dense packing of lipid molecules in the bilayer membrane it is well-

recognized that the accuracy of the predictions heavily depends on the molecular

model used; this model must be molecularly realistic. Implicitly this has already

been discussed in the context of the surfactant packing parameter P introduced

above. In a molecularly realistic model for lipid self-assembly there are two impor-

tant aspects. The first one is that the (excluded) volume, molecular architecture

of a given molecule must be accurately represented. The second one is that both

the strength as well as the range of the interactions between various parts of the

molecule and its surroundings must be accounted for. Both issues are efficiently

implemented in a lattice model.

The molecules that are used in our self-consistent field modelling are coarse-

grained and consist of segments. All segments have the size of a lattice site. These

lattice sites are used to discretise the space. We are not directly interested in the

placing of a segment of a specified molecule in a particular conformation on the

lattice site, but more in the average result of all the possible conformations. Such

average behaviour results in some probability that lattice site are filled, resulting in

an average volume fraction per segments per lattice site. Typically, we introduce

subsequent approximations. By making use of the symmetry in particular systems,

we may design lattices with cylindrical, spherical or flat geometry and consider only

density gradients in a direction in the radial or normal direction. This idea can be

used to study laterally homogeneous bilayers or spherically or cylindrically shaped

vesicles. In other cases our interest is in laterally inhomogeneous systems, e.g., when

inclusions in bilayer membranes of integral membrane proteins is studied. In such

a case the lattice geometry is adapted to the problem and in homogeneities in two

directions is accounted for.

Within a lattice model it is never possible to exactly represent the size and shape

of the lipid molecules. For example, it is difficult to account for the size differences

between a CH2 and a CH3 group. Nevertheless in first order the shape can be

represented rather well. For example, our lipid molecules were taken to have two

apolar tails and a hydrophilic headgroup as a side-group, in between the two apolar

tails.

As already mentioned, another important feature of the SCF theory is that the

pair interactions of a segment with all other segments is replaced by the interaction

of this segment with an external potential field uA(z) (for segment with name A

at position z). This potential field has the meaning of the work needed to bring

a segment from the bulk (where the potential is zero) to the specified coordinate.

Without going into detail we mention that we usually take a number of contributions

to this work into account. First of all, we need a contribution to create space for
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the segment at coordinate z. This work is proportional to the size of the segment,

and this contribution is linked to the compressibility relation used. Next there are

short-range interactions, which are implemented using Flory-Huggins parameters.

These parameters account for the likelihood that two segments of different type are

sitting next to each other. For example, the hydrocarbon tail does not like the water

phase and thus the interactions between tail segments and water molecules are taken

to be repulsive. Finally, there are contributions that account for the electrostatic

interactions in the system.

Once the potentials are known for all the segments, it is possible to evaluate

the probabilities of finding the various segments in the system. For this we need

to evaluate all the statistical weights of all possible and allowed conformations. In

general this is a huge task, but we simplify this procedure by introducing a Markov

approximation. This approximation implies that we focus on so-called freely-joined

chains in a potential field. Once the combined statistical weights of all possible

conformations of all molecules are found, we have the mean-field partition function.

From this we can extract the measurable quantities of the membrane system.

The application of this theory to the lipid bilayer membrane has a relatively

short history. The focus first was on the structure of the lipid bilayers, namely how

exactly the lipid tails are packed, what the conformation is of the headgroup and

how much the chains of oppositely faced bilayers interdigitate [17]. In recent years

the focus is also on the thermodynamic and mechanical properties of the pure lipid

bilayers [18]. We have used this approach to investigate bilayer membranes and

interfaces. As explained we focus on two cases. In one case we consider the lipid

bilayer next to hydrophilic surfaces. In the other case we consider lipid bilayers with

protein-like inclusions. The latter problems are models for lipid-protein interactions.

1.5 Thermodynamics

A central thermodynamic potential relevant for the stability of the lipid bilayer

membrane, that is directly available from the SCF calculations, is the (excess) grand

potential given by Ω and defined by

Ω = U − TS −
∑

i

µini + pV = γA (1.1)

Here U is the total energy of the system, S is the entropic contribution, T the

temperature,
∑

i µini are the chemical work terms of all molecules and pV is the

volume work, with V the volume of the lipid vesicle and p the pressure difference

on both sides of the lipid bilayer. The area of the bilayer is denoted by A. This

bilayer grand potential Ω has contributions from three different bilayer regions, i.e.,

the hydrophobic tail, the interfacial and the headgroup region. The grand potential

of the hydrocarbon tails Ωt is determined by two counteracting contributions, which

are the attractive van der Waals interaction and a repulsive contribution resulting
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from the conformational loss of the aligned and extended chains in the bilayer. The

grand potential of the headgroup region Ωh depends on several factors, but in general

a repulsive contribution dominates. Indeed the headgroup repulsion is regarded as

the stopping mechanism of the self assembly. The stopping force depends on the

charge of the headgroups, the hydrophilicity of headgroups, type of counter ions,

etc. The interfacial contribution to the bilayer grand potential Ωs is the effective

surface tension of the hydrocarbon-water interface. This effective surface tension

differs somewhat from a ’normal’ oil-water surface tension, because in the bilayer

case there are also headgroups and counter ions in the interfacial region present and

the alkanes are far from isotropic. The geometrical dimensions of a lipid bilayer, i.e.,

the area per lipid molecule a0 and the bilayer thickness d0
l , are a result of minimising

the Helmholtz energy. In the case of a tensionless planar bilayer the surface tension

γ = 0 and the grand potential of the bilayer Ω = 0.

1.6 Elasticity theory

From the above it is clear that a molecularly realistic model of the lipid bilayer

should obey the equilibrium constraints specified by the general thermodynamics.

As such the modelling provides a molecular picture behind the thermodynamical

framework. A fruitful route to make progress in the understanding of the bilayer

model extends the thermodynamics and considers the bilayer as an elastic sheet.

Statistical mechanical methods, such as the SCF theory, can provide a molecular

interpretation for the elastic properties of the bilayer.

Helfrich showed [19] that the lipid bilayer can be treated with a continuum-

mechanical description, i.e., the bilayer is seen as a thin elastic sheet that undergoes

three classical modes of deformation, namely stretching, shearing and bending. How-

ever, in the case of the fluid lipid bilayer in rest the shearing contribution must vanish

and the equilibrium mechanical properties are primarily determined by stretching

and bending. The deformation due to stretching of a lipid bilayer is only very lim-

ited, because the bilayer area can only increase a few percent. The surface tension

γ of a compressed or expanded planar bilayer can be described as a function of the

relative change of the bilayer area ∆A/A

γ = γ0 + ka
∆A

A
(1.2)

Here ka is the compression-expansion modulus which describes the surface tension

change ∆γ in terms of the relative bilayer area change, as shown in equation 1.3

ka ≡
(

∂γ

∂ lnA

)

γ=0

(1.3)

There is little experimental information about the value of ka. Sackmann [20] re-

ported ka values of approximately 40kBT nm−2 for a bilayer in the Lα-phase and ka

increases several times when the bilayer is in the Lβ-phase.
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Figure 1.5: The two principal radii of curvature R1 and R2 of a surface.

The bilayer tension is expected to change when the bilayer is curved. The second

order Taylor expansion of the surface tension γ in the mean curvature J and the

Gaussian curvature K reads [18]

γ(J,K) = γ0 +
1

2
kc(J − J0)

2 + k̄K (1.4)

with

J =
1

R1

+
1

R2

(1.5)

and

K =
1

R1R2

(1.6)

where R1 and R2 are the principal radii of curvature as shown in figure 1.5.

As given by equation 1.4 the bilayer’s mechanical parameters are the spontaneous

curvature of the bilayer J0, the mean bending modulus kc and the saddle splay mod-

ulus k̄. The spontaneous curvature J0 is the bilayer’s curvature for which the free

energy (of the cylindrically curved layer) is minimised. Even though the individual

monolayers in general have a spontaneous curvature Jm
0 6= 0, the spontaneous cur-

vature of most bilayers vanish for symmetry reasons. Although in an undisturbed

symmetric bilayer the effect of a spontaneous monolayer curvature is not manifest,

it (most likely) has an effect on how a bilayer deals with a perturbation, for example

when a trans-membrane peptide or protein is inserted into the bilayer [21].

The mean bending modulus kc, which is necessarily positive, determines the

free energy cost of the bending of the bilayer. The kc’s of phospholipid bilayers

have been determined in basically two ways, which can be used individually or in

combination. In the first method one measures the response of a bilayer to an applied
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force and in the second method the amplitudes of the thermally excited membrane

fluctuations are measured. The mean bending modulus was found to be in the

range 10kBT < kc < 30kBT in the case of fluid phospholipid bilayers [22]. Lee et

al. [23] studied the variation of the bending rigidity of a DPPC bilayer of the phase

transition range from a fluid state bilayer to a gel state bilayer and found that kc of an

Lβ-phase bilayer (kc ≈ 200kBT ) was approximately ten times the kc of the Lα-phase

bilayer (kc ≈ 20kBT ). Experiments also indicate that the addition of cholesterol in

the bliayer increases the rigidity [22]. The saddle-splay modulus k̄ determines the

topology rather then the rigidity of the bilayer. When k̄ is negative the bilayer has

a preference for spherically curved deformations and when k̄ is positive the bilayer

has a preference for saddle splay shapes. Although it may seem that this might

be an important issue for vesicle fusion, endocytosis and exocytosis, there is no or

hardly any experimental information about its value let alone whether it is positive

or negative. Recent efforts by Waugh et al. [24] failed to give a consistent picture.

Lipid bilayers in solution will, in most cases, close forming so-called vesicles. The

reason for vesicle formation is easily understood. The central point is to eliminate

the unfavourable edge. The minimum vesicle size where this happens depends on

the interplay between the bending energy and the free energy gain when the edge

around the bilayer patch is removed. Using Eqn 1.5 the bending energy of a bilayer

Ω obeys to

Ω = Aγ(J,K) = 4π(2kc + k̄) (1.7)

It is obvious that this Ω is independent of the vesicle size and is only determined

by kc and k̄. If both parameters are positive this would mean that vesicles should

always be instable and have a tendency to fuse. However when k̄ ≈ −kc the entropic

contributions such as undulations, polydispersity and translational entropy might

be ably to compensate Ω and stabilise the vesicle against fusion, adhesion and the

formation of a multilamellar phase [25].

As freely floating bilayers are free of tension, the physics of lipid layers is de-

termined in large by the mechanical parameters. It is therefore not a surprise that

elasticity theory is fundamentally present in the problem of lipid bilayers and inter-

faces.

1.7 Lipid-protein interaction

The effect of inclusions on the lipid bilayer structure and its thermodynamics has

been investigated in a number of theoretical studies, and in this thesis I try to con-

tribute to this discussion. Many of these studies used the elasticity theory developed

by Helfrich [19] or microscopic models [26–28]. The two most important findings of

these studies were i) the parabolic dependence of the insertion free energy on the

hydrophobic mismatch and ii) the deformation of the lipid bilayer as a result of this

trans-membrane inclusion being an exponential decaying wave. Many extensions of
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this elasticity theory were introduced over the years, for instance the dependence of

monolayer equilibrium curvature [21], the variation of the mean bending modulus

and the saddle splay modulus at different curvatures [29] as well as the effect of the

conformational restrictions of the tails adjacent to the inclusion [30, 31]. However,

the latter led to small adaptations in the energetically favourable hydrophobic mis-

match and the parabolic width. Another important aspect that was investigated

with these theoretical methods was the fact that multiple inclusions could inter-

act with each other, caused by the overlap of the deformed bilayer around these

inclusions [32–36].

Using our SCF model, it is possible to provide the molecular picture behind these

models. In fact, our SCF model is able to test the underlying approximations in the

elastic membrane theory in relation to the incorporation on inclusions. This is one

of the targets elaborated on in this thesis.

1.8 Vesicle adhesion

The adhesion of lipid vesicles to a (hydrophilic) surface is a very complicating, but

interesting process, which is studied in this thesis. Several scenarios exist, because

a large number of parameters influence this process. Basically one would like to

understand whether a lipid vesicle adsorbs and remains intact or whether an ad-

sorbed vesicle ruptures and transforms into a supported lipid bilayer. The type

of substrate determines to a large extend the strength of adsorption. For instance

on oxidised Au, oxidised Pt and TiO2 fluid phospholipid vesicles do adsorb intact,

while on Si3N4, SiO2 and mica the adsorbed vesicles form a flat supported lipid bi-

layer. This difference can be attributed to differences in the adsorption energy and

as a consequence the deformation of the adsorbed vesicles [37]. We may distinguish

various contributions to the interaction energy. Almost always the van der Waals

interaction, the hydration layer, the electrostatic interactions and local short range

chemical interactions, play together to determine the interaction between the lipids

and the surface. To date it is still unknown which contribution makes the decisive

difference between the various substrates. In some studies the electrostatic contri-

bution appears to dominate. The problem in these type of studies is, however, that

besides charge variation also other parameters are varied and this makes it difficult

to certify whether the difference in adhesion can be attributed to electrostatic vari-

ation only. Other methods are known of transforming intact adsorbed vesicles into

supported lipid bilayers. For instance, osmotic pressure between the vesicle content

and the aqueous environment can induce vesicle rupture. There are also reports

wherein Ca2+ ions are used to induce vesicle fusion. Again, the bilayer rigidity and

the temperature (which influences the bilayer rigidity) are important parameters.

Finally, the surface coverage with lipid vesicles appears a relevant parameter whether

vesicles stay intact or form a supported bilayer. The need to have a high coverage

before the supported bilayer is formed is evidence that in some cases vesicle-vesicle
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interaction is needed before the vesicle layer can/will transform.

In this thesis we not only study the adhesion of vesicles using the SCF model,

but we also experimentally investigate lipid vesicle adhesion onto a gold substrate.

1.9 Experimental methods

We used two different methods to follow the adsorption of the lipid vesicles to a

gold surface. These methods are the surface plasmon resonance (SPR) method and

the quartz crystal microbalance (QCM). The former measures the change of the

refractive index near the surface, which is a measure for the adsorbed lipid bilayer

mass, while the latter measures the frequency change of a quartz crystal coated with

gold, which tells something about the adorbed mechanical mass. We have chosen

for these methods because they complement each other to some extent and give us

the possibility to get detailed information about the manner of adsorption of the

lipid vesicles. Secondly, the use of gold as a substrate is ideal for both methods. In

the next two paragraphs I will discuss the methods individually.

1.9.1 Surface plasmon resonance

With surface plasmon resonance the intensity of the reflected light of a p-polarised

monochromatic incident beam is measured at various angles (see figure 1.6). De-

pending on the angle of the incident beam, a small or large part of the light energy

interacts with the delocalised electrons in the metal film (plasmon) which results in

a reduced reflected light intensity at a typical angle, i.e., the critical angle. This

angle, at which most energy is lost, depends on multiple parameters. Important

ones are the thickness of the adsorbed layer and the refractive index of the adsorbed

layer and the bulk solution. When the thickness of the gold layer, the refractive

index of the bulk solution and that of the adsorbed film are known, it is possible to

reveal the thickness and/or the total mass of the adsorbed film.

In our case the interpretation of the data is rather complex, because there is not

a single thin adsorbed film, but instead a layer of lipid vesicles with a diameter of

tens of nanometres is adsorbed to the surface. As a result the decaying sensitivity

at larger distance from the gold has to be taken into account. This means that the

size and deformation of the adsorbed vesicle influence the critical angle shift, i.e.,

the change of the critical angle upon adsorption of the vesicles. Considering these

complications we also used the QCM method.

1.9.2 Quartz crystal microbalance

With the quartz crystal microbalance QCM the adsorbed mechanical mass can be

determined by measuring the change of the frequency of the piezoelectric crystal,

when adsorption occurs (figure 1.7).
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Figure 1.6: Schematic representation of the surface plasmon resonance method.
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Figure 1.7: Schematic representation of the quartz crystal microbalance. The change

of the lateral frequency of the piezo-electric crystal is a measure for the adsorbed

mass.
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An important advantage of this technique is that the frequency shift can be

measured very accurately. As a result the adsorbed mass is also precisely known.

The adsorbed mass Γm shows a linear relation with the frequency change ∆f and

can be revealed with the Sauerbrey relation [38].

Γm = −C0∆f (1.8)

where C0 = 17.7 × 10−6 mg m−2 s. C0 is determined by the density of the quartz,

the shear modulus of the quartz and the fundamental frequency of the quartz plate.

The drawback of the QCM is that the Sauerbrey can only be used for rigid thin

films. Thus, in the case of lipid vesicles, which are relatively large and soft, the

frequency shift is affected. This results in an underestimation of the adsorbed mass.

In the literature there are reports where the dissipation was also measured, which

gives information about this damping. However there is still a lot unknown about

it, because also the vesicle concentration in the bulk solution has an effect on QCM

measurements. By combining QCM and SPR results, we are able to draw conclusions

about the dependence of the lipid vesicle adhesion on vesicles size, pH and ionic

strength.

1.10 Outline of this thesis

This thesis deals with the interactions between lipid bilayer and interfaces and can

be divided in two different main parts. The first part comprises chapters three and

four, which are self-consistent mean-field studies on the insertion of trans-membrane

hydrophobic inclusions, while the second part, which consists of chapters five and

six, are theoretical and experimental studies on the adhesion of unilamellar vesicles

to a solid surface.

In previous studies it has already been shown how the mechanical properties,

such as bending modulus and saddle splay modulus of the modelled lipid bilayer can

be determined using SCF theory. In chapter two we will show that it is also possible

to determine the bending modulus, the saddle splay modulus and the spontaneous

curvature of the individual monolayers in the lipid bilayer.

In chapter three the insertion of a hydrophobic trans-membrane rod into a lipid

bilayer is modelled with self-consistent field theory. An effort is made to compare

elasticity theory with the results obtained with this microscopic model. We have

focussed on the effect of the hydrophobic length mismatch between the inclusion

and the lipid bilayer in relation with thermodynamical, structural and mechanical

properties.

In chapter four we studied the lipid mediated interactions between two inclusions.

In multiple literature studies the lipid-mediated interaction between various trans-

membrane inclusions have been investigated. In these studies it was always assumed

that there were only steric hindrances of the lipid molecules adjacent to the inclusion.

In our study we investigated the consequences of adsorbing/depleting interactions
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between the lipid tails and the inclusion on the lipid-mediated interaction between

the inclusions at various separations

The fifth chapter reports on a combined experimental and theoretical study.

Here the topological and conformational properties of adsorbed lipid vesicles are

investigated. Especially the local conformational adjustments of the bilayer are

studied. Special attention is directed to the effect of the vesicle size, the adhesion

energy and the elastic properties of the lipid bilayers.

In the sixth chapter the importance of electrostatic interactions for the adhesion

of lipid vesicles to a solid interface is investigated both experimentally and theoret-

ically. To attempt to understand/predict whether adsorbed vesicles stay intact or

transform into a flat supported bilayer. We studied the adhesion of vesicles to a gold

surface and tuned the electrostatic interactions by varying the pH, ionic strength of

the solution, or by applying an external potential. We tried to get insight into the

adsorption mechanism by modelling this system with the SCF theory.

Even though progress has been made, it is evident that there remains a lot to

do. One conclusion of my work is that lipid bilayer membranes and surfaces are a

complicated combination of research topics, which will undoubtelly attract attention

to many researchers in the years to come.
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Chapter 2

Bending moduli and spontaneous

curvature of the monolayer in a

surfactant bilayer

Abstract

We developed a method to evaluate the mechanical properties of the monolayers in

symmetric surfactant bilayers using self-consistent field theory. A specific boundary

condition is used to impose the same curvature onto the two opposing monolayers at

the surfactant chemical potential equal to that of the corresponding homogeneously

curved bilayer. Typically the spontaneous monolayer curvature Jm
0 6= 0 and its value

depends on the surfactant architecture. This is of importance for the thermodynam-

ics and topology of lamellar surfactant phases. Furthermore, it may be relevant in

processes involving biological membranes, e.g., the fusion and budding of vesicles

and the incorporation of proteins in lipid bilayers.
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2.1 Introduction

Surfactants of appropriate structure self-assemble spontaneously in aqueous media

to form lamellar structures. The surfactant tails of two opposing monolayers form

the core of the bilayer and the surfactant heads form the coronas such that the core

is shielded from the water phase. The biological bilayer composed of lipids is one of

the most important structural elements in living cells. As a consequence it receives

attention from many areas of science.

Unconstrained flat bilayers remain tensionless [121]. Helfrich [19] realized that

the physics of tensionless bilayers is controlled by their bending moduli. Introducing

the mean J = 1/R1 + 1/R2 and the Gaussian K = 1/R1R2 curvature, where R1

and R2 are two principle radii of curvature, the surface tension for a weakly curved

bilayer is given by:

γ(J,K) = γ(0, 0) +
1

2
kc(J − J0)

2 + k̄K. (2.1)

Symmetry considerations indicate that the flat bilayer is the lowest in free energy

and the spontaneous curvature J0 = 0. As a result Eqn 2.1 may be simplified for

symmetric bilayers. The mean bending modulus kc determines the shape fluctu-

ations, whereas the Gaussian bending modulus k̄ is important for the topological

stability: closed bilayers (vesicles) are stable when −2kc ≤ k̄ ≤ 0. Only the mean

bending modulus is (reasonably straightforwardly) experimentally accessible [122].

Many mesoscopic descriptions of amphiphilic systems take the bending moduli as

input parameters [21]. In addition one is often interested in the mechanical proper-

ties of the individual monolayers. Typically it is assumed that one can apply Eqn

2.1 also to the monolayer. As the monolayer is asymmetric, we should anticipate

that (in general) there is a finite value for the preferred curvature Jm
0 6= 0, where

the super index m refers to the monolayer. One may argue that when Jm
0 deviates

much from zero, one has a frustrated bilayer, with subsequent consequences for, e.g.,

the incorporation of proteins into such bilayers [21]. At present we do not know a

method to directly determine Jm
0 . However, we believe that the value of Jm

0 can be

deduced from experimental results, e.g., by fitting these to a detailed model in which

the spontaneous curvature has an important contribution. Such procedures will al-

ways be delicate and therefore it is of extreme importance that there are reliable

predictions for this quantity.

To relate the molecular structure of the amphiphiles to the mechanical properties

of the resulting monolayer and/or bilayer is the realm of molecular modeling. There

are relatively few routes known in the literature to evaluate the mechanical properties

of symmetric bilayers. There are predictions for the mechanical properties of densely

packed hydrocarbon-like tails end-grafting to a (curved) surface by analysing the

conformational entropy of homogeneously packed cores as a function of imposed

curvature [123,124]. In this approach head groups were not included and the strong

repulsive interactions with the solvent were omitted. These authors discuss both
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monolayer and bilayer systems. However it is clear from the details of their method,

that the monolayer is not the monolayer in the bilayer configuration. Consequently

they do not find that the mechanical properties of the monolayer could be related

to those of the bilayer. This also implies that the spontaneous curvature of the

monolayer (next to some oil) may not necessarily be related to that of the monolayer

in the bilayer configuration.

In a more complete model one not only should account for the entropy of densely

grafted chains, but also for the energetic interactions that drive the self-assembly

(hydrophobic effect) and stops the aggregation of the surfactants (head group re-

pulsion). Using a molecular realistic self-consistent field (SCF) approach one can

realistically model surfactant self-assembly in systems wherein these aspects are in-

corporated and where only the curvature of the bilayer as a whole is imposed [18,25].

Again it is possible to obtain the partition function with high precision. As a result

the bending moduli of symmetric bilayers are evaluated systematically and accu-

rately. One can identify two major problems that prevented the application to

evaluate the mechanical properties of the constituting monolayers. The first prob-

lem is how to embed the apolar side of the monolayer. As argued above it is not

realistic to put the tails next to vacuum. One may suggest to use an appropriate

alkane phase. However the interdigitation of the alkanes into the monolayer strongly

depends on their molecular weight, which renders the mechanical properties of the

monolayer to be an undesired function of this choice (explaining the result of Szleifer

et al [124], where the bending moduli of the monolayers was not half that of the

bilayer). The second problem is to know the appropriate number of surfactants

per unit area corresponding to tensionless layers. This number may depend on

the imposed curvature. Small errors in this quantity will imply some stretching or

compression of the monolayer leading to large errors in the predictions. We will

suggest solutions for both problems. First, we will go into some more detail how the

mechanical properties of the bilayer can be determined using our SCF theory.

2.2 Self-consistent field theory

Oversteegen [18] showed that one can accurately determine the bending moduli

from the fitting of the surface tension γ(J,K) by Eqn 2.1 or, alternatively, from

the curvature dependence of the lateral pressure profile ω(r). It is convenient to

introduce the jth moment over the lateral pressure profile ω0(x) of the flat bilayer:

P0
j =

∫

xjω0(x)dx, where x is the co-ordinate parallel to the membrane normal and

x = 0 is at the symmetry plane in the bilayer. Unconstrained bilayers have no

tension and thus γ = P0
0 = 0. The bending moduli are found from
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−kcJ0 = P0
1 +

(

∂P0

∂J

)0

T,K

(2.2)

kc = 2

(

∂P1

∂J

)0

T,K

+

(

∂2P0

∂J2

)0

T,K

(2.3)

k̄ = P0
2 +

(

∂P0

∂K

)0

T,J

. (2.4)

These equations show that the mechanical properties cannot be derived from the

flat bilayer alone. The fundamental reason for this is that in general the grand

potential density ω(r) cannot be defined uniquely [125]. One has to make a choice

of how to do the bookkeeping for the non-local interactions. For example in the

literature [126] one often finds k̄ = P0
2 . The extra term in Eqn 2.4 corrects for the

ambiguity in how the bookkeeping is implemented. When the binary interactions

are split evenly over the coordinates that are involved, one can write the SCF result

for the grand potential density as:

ω(r) = kBT
∑

i

ϕi(r) − ϕb
i

Ni

−
∑

A

ϕA(r)uA(r)

−kBT

2

∑

A

∑

B

χAB

(

ϕA(r)(〈ϕB(r)〉 − ϕb
B) − ϕb

A(ϕB(r) − ϕb
B)

)

(2.5)

Here kBT is the thermal energy, i the index to the molecule types, A and B are

indices running over all segment types, ϕ is the volume fraction (super index b

refers to the homogeneous bulk in equilibrium with the bilayers) and u the self-

consistent potential, and χAB the Flory-Huggins exchange energy parameter that

quantifies the nearest-neighbor interactions. Finally, the angular brackets give the

geometry-dependent local average of the volume fraction (to be specified below),

which comprises the non-local contributions to the grand potential density (that

depend on the bookkeeping) [125].

In this paper we will use the SCF model with the discretisation Ansatz of Scheut-

jens and Fleer [127]. This implies a lattice with layers composed of lattice sites with

characteristic length l and surfactant chain molecules of the nonionic type with

spherical united atoms and volume that fits on the lattice sites. It is convenient to

introduce chain architecture operators δA
i,s which obtain the value δA

i,s = 1 when seg-

ment s of molecule i is of segment type A and zero otherwise. These operators are

fixed because the segments along the chain in the nonionic molecule have known seg-

ment types given by the input data. The SCF model comprises a segment potential

for each segment type which is a functional of the volume fractions. For uncharged

surfactants, only excluded volume and short-range nearest-neighbor contacts are ac-

counted for and uA(r) = u′(r) +
∑

B χAB

(

〈ϕB(r)〉 − ϕb
B

)

, where u′(r) is a Lagrange

potential coupled to the incompressibility constraint
∑

B ϕB(r) = 1. The volume
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fraction profiles are also a functional of the potentials. Using a Markov approxima-

tion it is possible to formulate an efficient scheme to compute the volume fraction

profiles [127]. In short, it is possible to come up with the statistical weights of all

possible and allowed conformations and collect them in various Green’s functions,

Gi(r, s|1;N) = Gi(r, s|1)Gi(r, s|N)/Gi(r, s). (2.6)

Here Gi(r, s|1;N) is the statistical weight that segment with ranking number s of

molecule i is at coordinate r with the constraint that it is connected by intermediate

segments (via all possible walks) to the two terminal segments s = 1 and s =

Ni. The Green’s function Gi(r, s|1) gives the statistical weight of of all possible

conformations of a chain fragment from s′ = 1, · · · , s, where over all coordinates

of the end-segment s = 1 is integrated over. A comparable definition applies for

the complementary Green’s functions Gi(r, s|N). This set of Green’s functions are

generated by a forward and backward propagator, respectively, which are discrete

versions of a diffusion equation:

Gi(r, s|1) = Gi(r, s) 〈Gi(r
′, s− 1|1)〉 = Gi(r, s)

∑

r′

λ(r, r′)Gi(r
′, s− 1|1) (2.7)

Gi(r, s|N) = Gi(r, s) 〈Gi(r
′′, s+ 1|N〉 = Gi(r, s)

∑

r′′

λ(r, r′′)Gi(r
′′, s+ 1|N) (2.8)

which defines the angular brackets also used in Eqn 2.5. Here the sum over r′

runs over all possible neighboring coordinates of segment s, i.e., the distance r − r ′

is the lattice length l. The same applies to summation over r′′. The weighting

factor λ(r, r′) gives the a priori statistical weight to step from r′ to r and obeys the

constraint that
∑

r′ λ(r, r′) = 1. This weight depends on the local geometry, i.e.,

the curvature of the lattice layers [66] as specified below.

In both equations 2.6 and 2.8 the free segment distribution occurs, i.e., Gi(r, s) =
∑

AGA(r)δA
i,s, where GA(r) = exp(−uA(r)/kBT ) is the Boltzmann weight featuring

the segment potential. After normalisation of Gi(r, s|1;N) one obtains the vol-

ume fraction profiles ϕi(r, s) from which the segment type dependent profiles ϕA(r)

follow, i.e., ϕA(r) =
∑

i

∑

s ϕi(r, s)δ
A
i,s. Below we will discuss the normalisation

in more detail. A computer algorithm is used to find the solution for which the

segment potentials and segment distributions are consistent with each other while

the incompressibility constraint is obeyed [127]. For more details we refer to the

literature [66,127].

A slice normally through an infinitely long tubular vesicle leads to a radial dis-

tribution function of the (excess) surfactant density. The first moment over this

distribution determines the radius of the vesicle R. Other definitions of the radius

can be envisioned, however, for large values of the radius R, all reasonable definitions

give identical results. This means that in the limit of large radii the curvature is

uniquely defined. The same applies for a spherically curved bilayer (vesicle). In the
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inner monolayer the head groups are compressed leading to a relatively high head

group density. The tails of the inner monolayer have relatively much space. We

will choose the curvature for this monolayer to be negative J = −1/R (cylindrical

geometry). The outer monolayer has relatively compressed tails and expanded head

groups and the curvature is positive J = 1/R. For sufficiently large R there is little

ambiguity about the assignment of the curvatures to the two monolayers. In the

SCF model we have a radial coordinate counting from the center in units of lattice

sites: r = 1, · · · , R, · · · ,M . When 1 << R << M the system boundaries r = 1 and

r = M do not influence the curved bilayer and at both boundaries the homogeneous

bulk is present. In general it is expensive (in terms of computer time) to choose

the computational volume to be large; instead we may introduce new coordinates

z = 1, · · · ,Mz where r = z + Rl and typically Mz + Rl < M and still have the

condition that at r = Rl < R and r = Rl +Mz > R bulk conditions apply.

The boundary conditions are chosen such that between layers z = 0 and z = 1

as well as between layers z = Mz and z = Mz + 1 all gradients in u and ϕ vanish.

In more detail, for all segment potentials we set u(0) = u(1) and u(Mz + 1) =

u(Mz). In the propagator procedure the gradients in end-point distribution functions

vanish at the system boundaries, i.e., G(0, s|1) = G(1, s|1), G(0, s|N) = G(1, s|N),

G(Mz +1, s|1) = G(Mz, s|1), G(Mz +1, s|N) = G(Mz, s|N) and also Gi(0, s|1;N) =

Gi(1, s|1;N) and Gi(Mz + 1, s|1;N) = Gi(Mz, s|1;N). As a result also the volume

fractions on either side of the boundaries are identical. This symmetry boundary

condition in the curved lattice geometry is used below to calculate the mechanical

parameters of the monolayers. The boundary condition has minimal consequences

for the conformational entropy of the chains as these can freely cross the boundary.

In the cylindrical coordinate system Lc(z) = π (2(z +Rl) − 1) is the number

of lattice sites (per unit length) in layer z and the total grand potential (per unit

length of the tubular vesicle) is found by εc =
∑

z L
c(z)ωc(z) ≈ 2πRγ(J, 0) (c

= cylindrical geometry and J = 1/R). In spherical geometry we have Ls(z) =

4π ((z +Rl)
2 − (z +Rl) + 1/3) and the grand potential of the spherical vesicle is

given by εs =
∑

z L
s(z)ωs(z) ≈ 4πR2γ(J,K) (s = spherical geometry and J =

2/R and K = 1/R2). The internal balance for the chain statistics dictates that

L(z′)λ(z′, z) = L(z)λ(z, z′). Using this we find that the transition probabilities are

given by λ(z, z − 1) = A(z)/L(z)/3, λ(z, z + 1) = A(z + 1)/L(z)/3 and λ(z, z) =

1 − λ(z, z − 1) − λ(z, z + 1) where A(z) is the dimensionless contact area (i.e., the

area normalised by l2) between layers z and z − 1. For the cylindrical coordinates

we have the area per unit length Ac(z) = 2π(z + R1), whereas for the spherical

coordinate system the area is given by As(z) = 4π(z +R1)
2.

2.3 Parameters

Nonionic surfactants (i = 1) of the type CnEm ≡ Cn(OC2)mO are used where C

stands for CH2 or CH3 and O is for the oxygen in the ethylene oxide moiety and
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Figure 2.1: The thermodynamics of C14E4 bilayers curved in a) cylindrical and b)

spherical geometry. In view graph a the grand potential per unit length of the

tubular vesicle εc is plotted as a function of the radius of curvature J = 1/R. The

points scatter symmetrically around the linear trend line. In view graph b the grand

potential of the spherical vesicle εs is plotted as a function of the radius of the vesicle

R. Again the data points scatter symmetrically around the horizontal trend line.

also for OH as the terminal segment in the head group. Thus all chain architecture

operators for this molecule are fixed, i.e., δC
1,1 = 1, · · · , δO

1,n+3m+1 = 1. Here we

choose to represent the solvent (i = 2) by a (compact) cluster of five W units where

there is a central one surrounded by four neighbors so that the solvent (water) is

somewhat larger than a C atom. There are three FH interaction parameters which

we choose such that the known critical micellisation concentration is reproduced:

χCW = 1.1, χCO = 2 and χOW = −0.6. These parameters are close to those

used in previous studies [128]. Careful comparison of spherical, cylindrical and

lamellar topologies of various members of the CnEm family show that, in line with

experimental data [129], the C12E5 forms stable bilayers only at very high surfactant

concentration. The bilayers of C14E4, however, appear more stable than spherical

or cylindrical micelles. This is remarkable because the two surfactants differ just by

one O atom. Using this information we focus below on the subset CnE4 of bilayer

forming surfactants with 14 ≤ n ≤ 18.

2.4 Results and discussion

2.4.1 Mechanical properties of symmetric bilayers

The determination of the bending moduli of symmetric bilayers starts with the

evaluation of the structural properties of the flat bilayer [18]. The tensionless bilayer

is characterised by an area per surfactant molecule a0. This quantity increases with

increasing tail length (for given head group size). Using a0 one can estimate the

number of surfactant molecules ns per unit length of a tubular vesicle with radius

R, i.e., ns = 4πR/a0. In this case the volume fraction profiles are found from:
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Figure 2.2: The thermodynamics of C14E4 monolayers (in the bilayer configuration)

curved in a) cylindrical and b) spherical geometry. In view graph a the surface

tension γcm of the monolayer in a tubular vesicle is plotted as a function of the

radius of curvature J = 1/R. In view graph b the grand potential of a monolayer in

spherical geometry εsm is plotted as a function of the radius of the vesicle R.

ϕ(z, s) = CG(z, s|1;N) =
ns

∑

z L(z)G(z, s|1;N)
G(z, s|1;N). (2.9)

The normalisation constant C is also related to the volume fraction of surfactant

in the bulk surrounding the bilayer, ϕb. As in the bulk phase all Green’s functions

are unity it follows that C = ϕb/N [127] and thus ϕb = nsN/(
∑

z L(z)G(z, s|1;N)).

From such an analysis one obtains the grand potential of the cylindrically curved

bilayer εc(R) from which γc(R) follows by division by 2πR. As J = 1/R and K = 0

we can use Eqn 2.1 to evaluate kc. It is essential to realize that the bulk volume

fraction of surfactants is a weak function of the radius of the tubular vesicle as well,

i.e. ϕbc(R) is not a constant. We may repeat the procedure for spherical coordinates

and find that the grand potential of the spherically curved vesicle εs = 4π(2kc + k̄)

[19]. Using the kc from the analysis of the tubular vesicle (cylindrical coordinates)

we can thus extract the Gaussian bending modulus k̄ [18].

An example of this procedure for the curved bilayer of C14E4 is given in figure

2.1 where εc is plotted as a function of the curvature. In fig. 2.1a we have imposed

the cylindrical geometry. The data points should ideally fall on the linear trend

line. Instead they scatter around this line where the amplitude of the deviations

increases with decreasing J . The fundamental reason for this scatter is the fact that

the bilayers feel the underlaying lattice somewhat. Because of this the SCF solution

results in bilayers that have not only curvature energy but also a tiny bit of stretching

energy (either negative or positive) caused by the lattice-induced perturbations.

These lattice artifacts average out when a large set of vesicles of different sizes is

generated as is easily seen in fig. 2.1. One can also envisage a numerical procedure

to search automatically for vesicles that feel very little of this lattice pressure. We

do not show this here. The trend line of fig. 2.1a crosses the origin convincingly.
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This shows that the symmetric bilayers do not have a preferential curvature and

that the bilayers are tensionless. From the slope we obtain directly the value of the

mean bending modulus kc. In fig. 2.1b we present similar results for bilayers (εs(R))

onto which a spherical geometry is imposed. Again, ideally for vesicles that have

only curvature energy the points would fall on the horizontal trend line. The spread

of the points increase with increasing radius of the vesicle, showing that the small

positive or negative lattice pressure also affects the energetics of spherically curved

bilayers. The horizontal line corresponds to the grand potential εs = 4π(2kc + k̄)

and the results convincingly show that for symmetric bilayers J0 = 0.

2.4.2 Mechanical properties of a monolayer in the bilayer

configuration

The key ideas to compute the mechanical parameters of the monolayers are: (i) to

shift the boundary z = 1 (i.e., r = Rl +1) to the coordinate r = R+1 and force the

curved bilayer to have its symmetry plane at the lower system boundary and (ii) to

normalise the volume fraction profiles with the known ϕb(R) values. The symmetry

boundary condition (i) forces a curved monolayer to interact with a similarly curved

monolayer (its mirror image). Again, due to the imposed symmetry the numbers

of chains that (partially) exit and enter the system are identical. As a result the

curved monolayer feels in good approximation the same environment as if it was

in the unperturbed bilayer. By imposing the normalisation with the known bulk

volume fraction (ii), we force the surfactants in the curved monolayer to have the

same chemical potential as the surfactant in the homogeneously curved (tubular or

spherical) vesicle. The number of surfactants per unit area can adjust so that the

monolayer remains unstretched. Hence, we do no longer expect to find noise in the

data points due to some residual lattice-induced lateral tension. Indeed, now the

grand potential of the monolayer only contains bending work. (iii) Next, we shift

the symmetry plane of the bilayer to the upper system boundary such that z = Mz

is at the center of the bilayer, i.e., to r = R. Again ϕb(R) is used to normalise the

volume fraction profiles.

For the cylindrical geometry we thus obtain εcm(J) (and related to that γcm(J))

both for negative and positive values of J as is shown for an example in figure

2.2a. In this graph we combined the data of the positively and negatively curved

monolayers. In the limit of J → 0 the two branches meet at the value γcm(0) = 0; the

symmetric uncurved bilayer has no membrane tension. Fitting εcm/(2πR) = γcm(R)

to equation 2.1 gives km
c and J cm

0 straightforwardly. The results obtained following

the same procedure for the spherical coordinate system are shown in fig. 2.2b. In

this graph we show the grand potential of the monolayer εsm(R) both for positive

and negative R. As expected a linear dependence of εsm(R) is found. From the slope

we find the combination km
c and Jm

0 . Using km
c from the cylindrical geometry we can

accurately find Jsm
0 (here the super index s is added to show that this value of the
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Figure 2.3: The bending moduli of the bilayer kc and k̄ (open spheres) and twice that

of the constituent monolayers 2km
c and 2k̄m (closed spheres) in units of kBT (left

ordinate) and the spontaneous curvature Jm
0 (in units 1/l) as found from cylindrically

(open triangles) and spherically (open spheres) curved monolayers (right ordinate),

as a function of the length n of the tail of the CnE4 surfactant. The lines are drawn

to guide the eye.

spontaneous curvature is found from the analysis of spherically curved monolayers).

From εsm(0) = 4π(2km
c + k̄m) we may find k̄m because km

c is known.

In figure 2.3 we show a compilation of the mechanical properties of the bilayer

as well as of the monolayers for a series of alkyl ethylene oxide CnE4. The mean

bending modulus kc is found to increase linearly with the chain length and the Gaus-

sian bending modulus is negative and decreases linearly (becomes more negative)

with increasing length of the tail of the surfactant. The corresponding quantities

for the monolayers are about half of those of the bilayer. This is accurately the

case for the Gaussian bending modulus, but there appears to be a small systematic

deviation between the mean bending modulus of the bilayer and (twice) that of the

monolayer. This difference is close to the numerical noise of our method. The value

of Jm
0 computed from the tubular shaped monolayers are identical to those found

from spherically shaped monolayers. This internal consistency of the data inspires

confidence in the proposed method. We find that Jm
0 is positive for n < 16 indicat-

ing that for small values of n spherical micelles will become a feasible alternative

geometry for self-assembly, whereas for n > 16 the reversed curvature may be con-

sidered by the surfactants (and the reversed hexagonal phase is anticipated). This

is largely in line with expectations based on packing considerations [130].

In the SCF modeling there are no constraints on the surfactant assemblies other

than the curvature of the bilayers or monolayers. The head groups or tail segments

choose positions such that the free energy is optimized; we not only account for

conformational entropy in the molecule, but also for all relevant interactions in the

molecule and with the solvent. As a result the surfactants partition between the

bulk (where the concentration is close to the critical micellisation concentration) and

the densely packed surfactant layers. In the same way the solvent is free to partition
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somewhat into the bilayer, albeit that the tails force most of the solvent (water)

out of the bilayer because of the unfavourable interactions. Our curved bilayer

and monolayers are free of any lateral tension as the area per molecule is always

optimized. Therefore the grand potential of our curved bilayers and monolayer can

safely be assigned to the curvature energy in the system. Moreover the tails can

and will cross the symmetry plane in the bilayer [67] such that the free energy is

minimized.

Physically one expects that the bending modulus for the monolayer km
c and

k̄m are just half the values of the full bilayer. The good correspondence observed

between the bilayer rigidity and twice that of the monolayer (cf. fig. 2.3) is in line

with this expectation. The small deviations observed are attributed to minor details

regarding the interdigitation of tails into the opposite monolayer (just a tiny little bit

different using the symmetry boundary condition than in the real situation). This

directly proves that the correct embedding of the monolayer is of utmost importance.

Our predictions complement corresponding results in the literature [123,124,126].

In the work of Szleifer et al. [123,124] only the tail contribution to the bending mod-

uli is considered. These authors tether short semi-flexible hydrocarbon chains to a

plane at fixed curvature. They enforce some ad hoc (albeit justifiable) assumptions

regarding the homogeneity of the chain packing. It is necessary to mention that these

authors discuss both bilayers and monolayers. In the bilayer case they implement a

constant density throughout the layer, whereas in the monolayer system the pack-

ing density may vary. The argument is that a reduced tail density is supplemented

by (unspecified) oil molecules. From this it is clear that their monolayer is not the

monolayer in the bilayer configuration. Therefore, it is not surprising that the bend-

ing modulus of their bilayers is not twice that of their monolayer at corresponding

area per surfactant molecule. It is difficult to compare our predictions with those by

Szleifer et al [124]. This is because they keep the area per molecule as a variable in

the problem and it is impossible to extract what area per molecule corresponds to a

tensionless bilayer. Such direct comparison would already be complicated because

in the Szleifer papers there are no head groups, there are no positional fluctuation of

the grafting point (representing the fluctuation on the head group position), there is

no solvent penetration, and there are some doubts regarding the way interdigitation

is allowed for in their bilayer calculations.

From a statistical mechanical point of view the method of Szleifer et al. [123,124]

has many aspects in common with our SCF theory. For example, they need a local

pressure π(x) (they use the x coordinate in the normal direction of the bilayer), which

is linked to the compressibility constraint (constant tail density). This pressure can

be compared to our Lagrange field u′(r). This pressure profile π(x) is used to

evaluate the bending moduli using equations similar to our eqns 2.2 - 2.4. In fact

they can simplify these equations because their lateral pressure π(x) is local; there is

no bookkeeping issue because they do not account for non-local interactions. In our

case u′(r) is also part of the grand potential density ω(r) (which may be interpreted
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as a lateral pressure), but we have several additional contributions to this pressure

profile. We put no constraints on the value of u′(r), however Szleifer et al force

π(x) ≥ 0. This has important consequences. As they compute k̄ = −
∫

x2π(x)dx, it

is clear that they will always find k̄ < 0. We know that this can not be generally true,

which seriously questions the Szleifer approach. Our predictions of the mechanical

parameters of the monolayer in a bilayer configuration are therefore expected to be

more accurate that those found in the literature [123,124,126].

In the SCF method there are two operational ways to evaluate the mechanical

properties of surfactant mono- and bilayers. The first one is using Eqns 2.2 - 2.4.

The second one is to evaluate the overall grand potential as a function of J and

K and fit the results to the Helfrich eqn 2.1. Oversteegen [18] showed that these

two ways give identical results. Computationally the evaluation of the bending

moduli from integrals over moments of the grand potential density profiles (and

their derivatives) is tedious and, as it turns out, less accurate. In our case it is far

more easy, and computationally much more efficient, to use the route of fitting the

overall grand potential to Eqn 2.1, as used above. From this fitting procedure we

can also filter out the effects of, e.g., the lattice-induced tension. Our method is

computationally extremely efficient as the mechanical parameters for a particular

surfactant mono- or bilayer can be performed in the order of a few seconds CPU on

a desktop PC. Consequently, our method may be used also for other more complex

systems, e.g. block copolymers, mixtures of surfactant, etc. [131]. The result that it

is possible to accurately evaluate the spontaneous curvature of the monolayer, when

it is embedded in the bilayer, is important for obtaining a deeper understanding of

self-assembling systems.

2.5 Outlook and conclusions

Using a symmetry boundary condition in curved geometry and placing such bound-

ary at the midplane of a surfactant bilayer is a useful way to analyse the mechanical

properties, including the spontaneous curvature, of the monolayers constituting a

symmetric bilayer. This idea is implemented in a molecularly realistic self-consistent

field model. It is possible to choose the surfactant architecture such that the sponta-

neous curvature of the monolayer is close to zero and the bilayer is without frustra-

tion. In general this is not the case and the monolayers have non-zero spontaneous

curvatures. We note that this does not immediately result into loss of thermody-

namic stability of the bilayer. Indeed it may be thermodynamically stable even when

the monolayers have a significant non-zero spontaneous curvature. The method is

not limited to non-ionic systems as discussed in this paper. Corresponding results

for (models of) phospholipids in biological membranes may be found elsewhere [79].

It is also possible to evaluate the spontaneous curvature in surfactant layers swollen

by an apolar compound, i.e., a suitable oil. This offers the possibility to smoothly

go from a Helfrich-type of analysis of swollen surfactant layers to that of micro-
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emulsion systems. The finite Jm
0 values in the surfactant bilayers are expected to

be biologically relevant [132]. More specifically, the spontaneous curvature of the

monolayer is expected to be important in processes such as incorporation of protein

molecules in lipid bilayers [21], fusion and budding of vesicles, nucleation of pores

in bilayers and transport of macromolecules across bilayers.
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Chapter 3

Molecular modelling of lipid

bilayers and the effect of

protein-like inclusions

Abstract

We examined the effect of the insertion of a trans-membrane peptide or protein

on the thermodynamic, structural and mechanical characteristics of a lipid bilayer

using self-consistent field (SCF) theory. The peptide or protein is modeled as a

rigid cylindrical body with a hydrophobic surface and two hydrophilic end caps. We

first characterise the properties of the undisturbed bilayer consisting of lipids with a

hydrophilic phosphatidylcholine-like head group of 9 segments and two identical tails

ranging from 8 to 19 alkyl segments. The structural properties are given in terms

of thickness of the hydrophobic core d0
l and the area a0 per lipid. The mechanical

or elastic properties are characterised by the mean bending modulus kc, the saddle

splay modulus k̄ and the area compression-expansion modulus of the bilayer ka

and its monolayers. Furthermore we calculated the spontaneous curvature Jm
0 of

the individual monolayer, which can be positive or negative depending on the tail

length. Subsequently, we focus on the effect of hydrophobic mismatch between the

bilayer and inclusion. The free energy of insertion is parabolic in the mismatch.

The minimum is at a small negative mismatch, i.e., when the hydrophobic thickness

of the rod is smaller than that of the bilayer. This is attributed to conformational

restrictions of the lipid tails close to the rod. This results in a positive curvature

of the bilayer adjacent to it, even if the hydrophobic thickness of the rod is larger

than that of the bilayer. The bilayer deformation has a wave character which decays

exponentially. We show that the decay length of this perturbation is the same as

the elastic length (kc(d)
2/ka)

1

4 , provided that for the thickness d of the bilayer d0
l is

used.
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3.1 Introduction

The incorporation of peptides and proteins in lipid bilayers or membranes is an

important issue in biological systems. Membrane proteins are involved in many cel-

lular processes, acting as receptors, enzymes, channels and so on. Protein moieties

that interact with membranes can adopt a surface orientation, partially penetrate

the hydrophobic interior or span the hydrophobic core of the lipid bilayer com-

pletely. In this study we model the latter configuration, i.e., the inserted or trans-

membrane orientation. Membrane-bound proteins that have at least one membrane-

spanning domain are called integral membrane proteins. In order to associate with

the membrane there has to be a certain degree of hydrophobic match between the

membrane-spanning parts of these proteins and the hydrophobic region of the mem-

brane. Hydrophobic mismatch plays an important role in the thermodynamics of the

lipid-protein interactions; it perturbs the structure of the surrounding bilayer and

as a consequence there will be a deformation free energy cost. This free energy cost

depends largely on geometrical characteristics of the proteins membrane-spanning

domain, on the structure and mechanical properties of the unperturbed bilayer and

on the interaction between the inclusion and the bilayer. It has to be noted that

besides this membrane perturbation also the protein might adjust its structure or

orientation [39], but we will not go into that in this study.

Hydrophobic (mis)match is an important factor in the functioning and activity of

many integral membrane-bound proteins and peptides. For example, mitochondrial

cytochrome c oxidase [40], Ca2+-ATPase [13,14,41,42] and (Na+, K+)-ATPase [15]

have maximum enzymatic activity in phosphatidylcholine lipid bilayers with mono-

unsaturated C18 tails (di(18:1)PC bilayers). There are also proteins and peptides

for which there is no clear optimum bilayer thickness, but of which the functioning

is (gradually) lost above or below a particular thickness. An example is the dimeric

gramicidin channel [16]. Also the acetylcholine receptor function is correlated with

membrane thickness [43]. Also the effect of mismatch on synthetic peptides has

been investigated and it was shown that the amount of incorporation of the WALP-

peptide in the membrane decreases with increasing negative mismatch [44] and that

the way of aggregation is also influenced by the mismatch [45].

Besides many experimental studies, various theoretical models and theories have

been used to get more insight into bilayer-protein interactions. Especially the effect

of hydrophobic mismatch between the bilayer and the trans-membrane protein parts

has been studied extensively. A number of these studies [46–50] can be categorised

as phenomenological Landau theories. In all of these theories the effect of a trans-

membrane protein is modeled by using a rigid boundary condition for the lipid order

parameter. A disadvantage of these theories is that parameters are used that are dif-

ficult to relate to measurable physical properties. Furthermore, since a homogeneous

dispersion of proteins in the bilayer is assumed, lateral phase separation is excluded.

Another Landau type theory that has been used is the so-called mattress model,
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which is a two-component theory that allows for lateral phase separation [51]. The

two components are the inclusions and the lipids, the basic geometrical variables

are the thickness of the hydrophobic region of the lipid bilayer and the hydropho-

bic length of the inclusion. The model accounts for the elastic properties of the

bilayer and that of the inclusion, the hydrophobic mismatch effect, as well as van

der Waals interactions. A disadvantage is that microscopic details like the decay of

perturbations near individual proteins cannot be described.

Another theory that has been used extensively to describe lipid-protein interac-

tions is the elasticity theory [21,29,31,33,52–58]. It has been developed originally for

smectic liquid crystals and later also for the elastic description of lipid bilayers [19].

In a smectic-A type liquid crystal the molecules are arranged parallel to each other,

with their principle axes perpendicular to the surface layer. This is comparable

to the interior of symmetric lipid bilayers where the arrangement of the tails is on

average parallel. An advantage of this model is the use of experimentally accessible

elastic parameters of the lipid bilayer. Huang was one of the first researchers who

described protein-lipid interactions using a (liquid-crystal) elastic model [52]. He de-

scribed the free energy of deformation of a solventless membrane with a splay term, a

layer-compression term and a surface tension term, although the last one turned out

not to be important for perturbation wavelengths in the order of the bilayer thick-

ness. Later this theory has been extended for solvent containing bilayers [53, 54],

where the contribution of the surface tension term to the undulation energy turned

out to be significant. The effect of the spontaneous curvature J0 of the monolayer

on the insertion energy and the bilayer perturbation profile was first investigated

by Ring [54]. It is also argued that when the monolayer’s curvature is very large

it has to be taken into account that the lipids are capable of tilting away from the

normal of the hydrocarbon - water interface and therefore an additional modulus,

namely the tilt modulus has to be introduced [19, 31]. The decay length and the

periodicity of the perturbation have also been determined with help of elasticity

theory by making use of mechanical and geometrical bilayer characteristics [33, 55]

and later this has been extended to include the tilt modulus [31].

Detailed microscopic statistical mechanical models have also been used to in-

vestigate lipid-protein interaction energies [26, 59–61]. In these models molecular

interaction forces and the hydrocarbon chain conformation are taken into account.

Marc̆elja was the first to use a molecular field theory to describe nonspecific lipid-

protein interactions [59]. In Marc̆elja’s model the protein is introduced as a rigid

cylindrical boundary condition on the lipid orientational order. With this model

he describes lipid-mediated interactions between membrane integral proteins which

could lead to protein aggregation. Fattal and Ben-Shaul used a molecular model to

calculate the free energy and the decay length of membrane perturbations caused

by an insertion [60]. The free energy of the lipid tails is calculated using the rota-

tional isomeric state scheme and the interfacial free energy contribution is calculated

using a phenomenological expression, which accounts for head group repulsion and
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hydrocarbon-water interfacial tension. The main difference with Marc̆elja’s model

is the connection between the segments with gauche vs trans energy, while in Ben

Shaul’s model the chains are entirely flexible. The flexibility turned out to be of

negligible importance. More important for the structural and thermodynamical

properties are the presence of a well-defined interface and a constant density of

chain segments in the hydrophobic interior [62,63].

In the present study a molecularly realistic self-consistent field (SCF) theory

is used to obtain thermodynamical, mechanical and structural characteristics of

bilayers and the effect of protein or peptide insertion into such bilayers. The SCF

model has been described in detail [64] and has been used for the description of

the thermodynamical and structural characteristics of bilayers [65]. It is in spirit

similar to the model of Ben Shaul and coworkers, however it is more complete as

it imposes no a priori positional constraints on the individual lipids. Besides these

characteristics it is also possible to determine mechanical bilayer characteristics like

the bending modulus, the saddle splay modulus [18] and the monolayer spontaneous

curvature [2]. Furthermore, the area-compression modulus can be determined as

will be shown in this paper. The determination of these mechanical characteristics

makes it possible to compare the microscopic model with the liquid-crystal elasticity

theory. This will be done in this study by comparing the perturbation decay length

retrieved from the microscopic SCF segment density profiles with the elastic length

that is calculated from bilayer mechanical and structural characteristics.

3.2 Molecular modelling of laterally inhomoge-

neous lipid bilayers

The basic approximation in mean-field partition functions as in SCF models is that

excluded-volume interactions between pairs of molecules (atoms) are replaced by the

interaction of a single molecule (united atom) with external potential fields. The

latter potential fields are not chosen arbitrarily, but their magnitude reflects the

average behavior of all molecules in space and because of this they are known as

the self-consistent potential fields uA(r), where A is the segment type. Here r is

pointing to a discrete coordinate defined by the system.

The first step of a self-consistent field theory is thus to define a suitable coordinate

system. The basic idea is that in this coordinate system we are going to apply

some symmetry considerations to reduce the 3-dimensional problem into a lower

dimensional one. The various geometries used below are illustrated in fig. 3.1.

In laterally homogeneous bilayers we can in first order assume that parallel to the

membrane surface there are planes in which the local densities of various molecular

entities will fluctuate only marginally. In these planes we assume that the potential

field is homogeneous. This will result in homogeneity of the density in these planes as

well. Perpendicular to these planes the density will vary and thus the potential will
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Figure 3.1: Schematic illustration of the lattice geometries used in this paper. In

a,b and c the three dimensional space is reduced to a system with only one gradient

in density (1d) where the mean field approximation is applied in flat layers (a),

cylindrical planes (b) and spherical shells (c). For inhomogeneous bilayers we need

to reduce the three dimensional space into two gradients in density as in d, e and f.

If the inhomogeneity occurs on one side of the system, we may use a 2d flat system of

coordinates (d). If there is a spherical domain in the bilayer matrix a 2d cylindrical

geometry is appropriate (e,f). The generalised coordinate will be given by r. In

the 1d theory either the z or the r coordinate is used in the flat and cylindrical or

spherical geometry, respectively. In the 2d model we use (x, z) in the flat case and

(z, r) in the cylindrical case. The arrows point in the directions of the gradients in

density and gradients in potential.
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be inhomogeneous as well. As a result we reduce the problem to a 1-gradient theory.

Below we will apply such 1-gradient (1d) theory to characterise the unperturbed

bilayers in terms of their mechanical and structural parameters. In figures 3.1a, b

and c we have flat, cylindrical and spherical geometries, respectively. The non-flat

geometries are needed to obtain the bending moduli of the bilayers. Inhomogeneous

bilayers, i.e. bilayers in which there is a line of perturbation, or one with a local

spherical symmetry, should be modeled in a 2-gradient theory using the 2d flat or

2d cylinder geometry given in fig. 3.1d and figures 3.1e and f, respectively.

The target of the theory is to compute the optimal segment density profiles, i.e.,

for each segment type A the density must be determined at all coordinates r. At this

point it must be realised that segments are the building units of the molecules. Let

us denote the molecules by the index i. Below we refer to water as i = 1, the lipid

as i = 2, and the protein-like inclusion as i = 3. As we will work in a compressible

system, we allow for vacant sites on the lattice. For making the equations a bit more

symmetric we may think of the existence of a fourth species i = 4 which ’occupy’

the vacant sites. At this stage it is sufficient to mention that the primary sequence

of segments and the way they are connected (chain architecture) are key ingredients

of the model. For computational reasons we will apply a coarse grained model for

the lipid molecules roughly on the level of united atoms, i.e. a CH2 or CH3 group

will be represented by one segment (see parameter section below).

As in MD simulations where Newton’s law is the governing equation that deter-

mines how the evolution of the system takes place after a detailed initial ’guess’, the

partition function method has a relatively simple governing equation. The mean-

field simplification mentioned above allows the calculation of the partition function

Q(n, V, T ), where n represents the fact that the total number of molecules of each

type ni is known, the volume V of the system is fixed and the temperature T is given.

From statistical thermodynamics the partition function is linked to the Helmholtz

energy F = −kBT lnQ(n, V, T ) where kBT is the thermal energy. Generically this

Helmholtz energy can be expressed as a functional of all potentials u and volume

fractions ϕ:

F [u, ϕ] = kBT
∑

i

ni ln
Ci

Qi[u]
−

∑

r

∑

A

uA(r)ϕA(r) + F int[ϕ] (3.1)

In this equation the first two terms represent the entropic contribution, with the nor-

malisation constant Ci [66] and the single chain partition function Qi [66], whereas

the third therm is the enthalpic contribution to the Helmholtz energy. In the

latter term we are going to implement the local compressibility condition that

ϕ4(r) = 1−
∑3

i=1 ϕi(r). The first term is a functional of the potentials only, whereas

the interaction part can be computed once all volume fractions are known. The sec-

ond term is the signature of the self-consistent field theory. It shows that the segment

potentials and the segment densities are conjugated quantities. Eqn 3.1 should only

be used for the condition that the free energy is optimised with respect to these two
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Figure 3.2: The segment-density profile of water and free volume across the air-water

interface.

types of distributions, i.e.,

∂F

∂uA(r)
= −

∑

i

nikBT∂ lnQi

∂uA(r)
− ϕA(r) = 0 (3.2)

∂F

∂ϕA(r)
= −uA(r) +

∂F int

∂ϕA(r)
= 0 (3.3)

for all coordinates r and segments types A. This set of equations forms the basis

of any self-consistent field theory. It exactly specifies how to compute the segment

volume fractions from the segment potentials and how the segment potentials follow

from the segment volume fractions. When these two complementary computational

routes are consistent with each other, the free energy of Eqn 3.1 is optimised and

the structural properties can be found from analysing the detailed volume fraction

profiles and the thermodynamic quantities follow directly from differentiation of

the Helmholtz energy [67]. Here we will continue with the precise definition of the

system used and discussing the parameters of the model.

3.3 Parameters

To present realistic equilibrium hydrated lipid bilayers one should realise that lipids

self-assemble due to the fact that the tails want to escape from the water phase. From

this point of view it is natural to pay attention to both the lipid bilayer as well as

the aqueous medium. The simplest model is that the water phase is considered to

be composed of simple monomers and the second component is an amphiphile with

a series of polar segment connected to a string of apolar segments.

Such a primitive model suffers from a series of shortcomings. The major one

is due to the translational entropy of the monomeric water units. Water parti-

tions in the bilayer in very significant amounts if the interaction parameters are
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chosen such that the critical micelle concentration (CMC) has a reasonable value.

Alternatively, by using extreme values for the repulsion between tail segments and

water dehydration of the bilayers core is possible. This however will set the CMC

at a concentration that is orders of magnitude too low compared to experimental

estimates.

We solve this problem in first order by considering water to be present as clusters

consisting of five water segments and allow only translational entropy for the cluster.

The cluster is build from one central and four surrounding units. In this model the

water content in the bilayers core is less than 1 volume percent.

The second major parameter in bulk water is its overall volume fraction, or

alternatively, the amount of free volume in the bulk. The Flory-Huggins interaction

parameter between free volume V and water W units was fixed to χVW = 2.3. This

value has been chosen in such a way that the surface tension of the calculated air-

water interface, which is shown in fig. 3.2, is of the same order of magnitude as

the surface tension of a real air-water interface. In passing we note that χVV =

χWW = 0 by definition and only one parameter sufficies. Here; χVW = Z
2kBT

[2UVW−
UVV−UWW], where Z is the lattice coordination number, and UXY is the interaction

energy between units X and Y. In free volume theories one can realise that all

interactions with vacancies should be identical to zero and thus UVW = UVV = 0.

As a result one finds the one-to-one relation that χVW = − Z
2kBT

UWW. So, without

loosing generality we can use the FH parameters even in a free volume theory.

This parameter is sufficient to generate an interface between a water-rich and a

free-volume-rich phase. In fig. 3.2 we show the profile of the ’air’-water interface.

According to experimental facts, the interface is sharp and extends over just a few

water molecule lengths. From this equilibrated interface we extract the saturated

amount of free volume in the water phase. This value is given by ϕb
V = 0.051396

and was fixed in subsequent calculations.

The lipid molecules have a branched structure. On the branch point two identical

apolar tails with length t are coupled to a hydrophilic head group. The head group is

a mimick of phophatidylcholine, having two hydrophilic fragments, each consisting

of three segments, spaced by a pair of apolar units. See fig. 3.3 for a pictorial

representation of the molecular entities used in the calculations.

Below we will specify the interaction for the various segments in the lipid molecule

both with the water molecules as well as with the free volume. By choosing the tails

of the lipids to have a higher affinity for free volume as for water, we anticipate that

some free volume will accumulate in excess with respect of the water phase in the

bilayer. As soon as these parameters are fixed we have no free variables left to model

the adsorption of lipids on the air-water interface. In this paper we will not go into

these details and only mention that in such calculations it found that the tails are

oriented towards the free volume phase and the head groups remain hydrated.

In table 3.1 we have collected the full set of Flory-Huggins parameters used in

our calculations. The most important one which drives the self-assembly of the
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Figure 3.3: Structure of molecules that are used in the calculations.

C W X V S E

C 0 1.1 2.5 1.5 −1.0 2.0

W 1.1 0 −0.5 2.3 2.0 0

X 2.5 −0.5 0 2.3 2.0 0

V 1.5 2.3 2.3 0 1.5 2.3

S −1.0 2.0 2.0 1.5 0 0

E 2.0 0 0 2.3 0 0

Table 3.1: The Flory-Huggins interaction parameters
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lipids is χWC = 1.1. The value of this parameter is chosen such that the tail length

dependence of the CMC of a surfactant molecule was accurately reproduced. More-

over the CMC values of the lipids are close to the experimental ones. The amount

of mixing of head and tail segments in the bilayer is governed by χXC = 2.5 where

X is a hydrophilic head group unit. The high positive value is necessary to avoid

too much overlap between the profiles of these chain fragments. Finally there are

the hydrophilic water contacts χXW for which a value close to zero is chosen. The

equilibrium membrane thickness results from a balance of forces: the hydrophobic

driving force and the crowding of hydrated head groups on the membrane surface

which gives a stopping force. The conformational stretching-entropy loss of the ap-

olar tails is another stopping mechanism. Thermodynamic analysis of free floating

membranes that can adjust their area shows that their surface tension vanishes.

This quantity follows from the Helmholtz energy by subtracting all the chemical

work terms (including the contribution of the vacancies, which may be interpreted

as the volume work):

γ =
F −

∑

i µini

A
(3.4)

where A is the membrane surface area. As for the Helmholtz energy the surface

tension is found as a functional over the segment volume fractions and the segment

potentials and can be evaluated accurately after the SCF solution is found.

Using the 1d coordinate systems, we can evaluate the structural and mechanical

parameters of the bilayers. In the first part of the results section we will do this as

a function of the tail length of the lipids. These results will serve as the reference

for the study of bilayers containing protein-like inclusions. In this paper we will

focus on the effects of the inclusion of a simple, solid cylinder-like object (see fig.

3.3) and we will explicitly ignore all internal degrees of freedom of the protein-like

inclusion. In future work we will allow for various internal degrees of freedom of the

inclusions. Now the focus is on the lipids rather than on the protein. The central

part of the inclusion is composed of units S with an apolar character. This part

is very well solvated by the lipid tails. The entropy loss of the tail units near the

impenetrable inclusion is compensated by assigning a finite value of χSC, namely

−1. The rod-length is fixed to 7, 8 or 9 lattice units and both sides of the rod have

an hydrophilic end-cap composed of units E. The radius of the rod is fixed to 6

lattice units.

The membrane thickness is varied by considering lipids with different tail length.

In this way the mismatch between the membrane core and the apolar part of the

protein-like inclusion can be varied. The last part of the discussion is completely de-

voted to the membrane perturbations. The effect of the interaction of the tails with

the hydrophobic inclusion, the radius of the membrane inclusion and the interaction

between two membrane inclusions will be topics of a forthcoming paper.
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Figure 3.4: Volume-fraction profiles across a tensionless planar lipid bilayer with t =

18. a) Lipids tail and head segments. b) Lipid, water and the free volume segments.

3.4 Results and discussion

3.4.1 Structural properties of the bilayer

We evaluated several bilayers composed of lipids with tails ranging from 8 to 19

segments. It has to be noticed that all bilayers are tensionless and in the fluid state.

Volume fraction profiles across a planar bilayer consisting of lipids with 18 segment

tails are shown in fig. 3.4. Fig. 3.4a shows the volume fractions of the lipid tail and

head segments and fig. 3.4b gives the overall volume fractions of the other segments

in the system, namely free volume and water. In the hydrophobic interior the volume

fraction of the tails is approximately 0.89, while that of the free volume and water

is approximately 0.11 and less than 0.005, respectively. At the bilayers exterior the

volume fraction of hydrophilic heads does not exceed 0.30. This implies that the

corona interface of the bilayer consists mainly of water that is trapped between the

hydrophilic head groups. The hydrophobic thickness of the bilayer is arbitrarily

taken as the distance between the positions where the volume fraction of the tails

equals 0.5. This hydrophobic bilayer thickness d0
l is for this particular bilayer 10.62

lattice layers l and the area per lipid a0 is 8.38 l2. In the next calculations we assume

that l = 0.2 nm, which is an approximation from the volumes of the various atomic

groups represented by the different segments in our system. This lattice spacing

gives a d0
l of 2.12 nm and an a0 of 2*0.34 = 0.67 nm2. The multiplication of the

lipid area with 2 is to correct for the fact that the lattice sites are not isotropic [64].

Comparison of these calculated geometrical dimensions with those of a fluid 1,2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer shows that they are in good

agreement. The experimentally determined d0
l of a DOPC bilayer is 2.6 nm [68] and

a0 is 0.72 nm2 [69]. The fact that the calculated d0
l is smaller than the experimentally

determined hydrophobic thickness can be largely attributed to the fact that in the

calculations the lipid tails are fully flexible in contrast to the semi-flexible acylchains

of DOPC.
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Figure 3.5: Characteristic dimensions of bilayers with tail length t ranging from 8

to 19 segments. a) Bilayer hydrophobic thickness d0
l in lattice layers l and the area

per lipid a0 in square lattice layers l2. b) The bulk volume fraction ϕb
l of the freely

dispersed lipids coexisting with the tensionless bilayers.

It is important to mention that the membrane characteristics, such as the packing

densities of the chains in the core and the head group region, do in first order not

depend on tail length t. Only the dimensions of the bilayer, such as the hydrophobic

thickness d0
l and the area per lipid a0, vary with the length of the acyl chains. In

fig. 3.5a the hydrophobic thickness and the area per lipid molecule are presented as

a function of t. As expected both parameters increase with increasing t. When we

calculate from this the hydrophobic volume per lipid molecule vl, i.e., by multiplying

dl
0 with a0, it is clear that there is an almost linear relation between the chain length

and the hydrophobic volume per lipid.

The bulk volume fraction of the freely dispersed lipids, ϕb
l , coexisting with the

tensionless bilayer shows a logarithmic dependence on t as is shown in fig. 3.5b.

About every three segments increase of the tail length, ϕb
l decreases by two decades.

This dependence is a result of the fact that when t increases the number of possi-

ble unfavorable interactions between the tail and the water molecule increases and

consequently the lipids have a higher tendency to form aggregates in which the tails

are screened from the water molecules [70]. In the calculations where a protein-like

inclusion perturbs the bilayer we have fixed ϕb
l to the value of the unperturbed bi-

layer. By doing so we make sure that far from the inclusion the membrane tension

vanishes.

3.4.2 The mechanical properties of the lipid bilayer

Helfrich showed that the physics of tensionless bilayers is dictated by the mechanical

parameters [19], i.e., the bending modulus kc and the saddle splay modulus k̄, which

is also called the Gaussian bending modulus. The kc is a measure for the rigidity of

the bilayer and has necessarily a positive value because any deformation with respect

to the equilibrium state increases the free energy of the bilayer. The Gaussian
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bending modulus k̄ on the other hand can be negative or positive and determines

the topology of the bilayer. If k̄ is negative spherical deformations are preferred

and if k̄ is positive the free energy is lowered by saddle splay surface formation.

The mechanical parameters kc and k̄ can be obtained unambiguously from SCF

calculations using the Helfrich equation, when homogeneously curved geometries

are used [18]. The Helfrich equation describes the curvature dependence on the

surface tension of lipid bilayers [19].

γ(J,K) = γ0 +
1

2
kc(J − J0)

2 + k̄K (3.5)

The surface tension γ of the lipid bilayer is zero in the case of a flat symmetric

bilayer. The total curvature, J = 1/R1 + 1/R2 and the Gaussian curvature K =

1/(R1R2) are determined by the local radii of curvature R1 and R2. The spontaneous

curvature J0 corresponds to the minimum in the interfacial free energy and is zero

in the case of symmetric bilayers. Because the geometry of the coordinate system is

an input constraint, the variation in bilayer curvature can be achieved by changing

the number of lipid molecules in non-flat geometries [18, 25]. Both cylindrical and

spherical vesicles can be used to elucidate k̄ and kc. In the case of a cylindrical

geometry K = 0, J = 1/R and the bilayer area A = 2 πRh, where R is the radius

and h the length of the aggregate. Now eqn 3.5 can be reduced to

εc ≡ γ(J)A = πkcJh (3.6)

which defines the grand potential of the cylindrical bilayer. The mean bending

modulus kc can now be determined by plotting εc vs J . A spherical vesicle can

subsequently be used to determine k̄. When the bilayer is placed in a spherical

geometry it is clear that J2 = 4 K = 4 /R2 and A = 4 πR2, and this means that

eqn 3.5 can be written as

εs ≡ γ(J)A = 4π(2kc + k̄) (3.7)

which defines the grand potential of a spherical vesicle. It is obvious that in the

case of a symmetric bilayer εs is not a function of R. Because kc is known from the

cylindrical geometry it is now easy to calculate k̄.

With the methods described above kc and k̄ have been determined for bilayers

consisting of lipids with varying tail length t. The results are shown in fig. 3.6a.

kc values of the bilayers are proportional to t and they are in the order of 10-

20 kBT , which is comparable with experimental bending moduli of phospholipid

bilayers [71–73]. The k̄ values have a very weak dependence on t and are negative

in all cases. The k̄ values are in the same order of magnitude as −kc. From these kc

and k̄ values it can be concluded that all the bilayers are capable of forming stable

lipid vesicles because 2kc + k̄ > 0.

Besides the kc and k̄, which give information about the rigidity and topology of

the lipid bilayer, another parameter, namely the area compression-expansion mod-
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Figure 3.6: a) kc and k̄, both expressed in units of kBT , as a function of lipid tail

length t. b) The area compression-expansion modulus ka given in units kBT/l2 as a

function of t.

ulus ka, has been determined. This ka gives the surface tension change by relative

expansion or compression of the bilayers surface area.

ka ≡
(

∂γ

∂ ln a

)

γ=0

(3.8)

The ka of the bilayer has been determined by calculating the surface tension for

fixed numbers of lipid molecules per unit area in a flat geometry. The ka values

are depicted in fig. 3.6b. The plot shows that ka increases weakly with increasing

t. The values are of the same order as experimentally determined values of fluid

phosphatidylcholine bilayers [74,75]. Occasionally one finds in the literature [76,77]

the suggestion that kc ∝ ka(d
0
l )

2. This relation follows from the assumption that

the two leaflets of the bilayer slide against each other upon bending the bilayer. We

cannot find evidence for this from our SCF analysis proving that curving the bilayer

cannot be simply mimicked by a sliding / expansion-compression process.

3.4.3 The mechanical properties of the lipid monolayer

We also developed a method to determine the elastic properties of an individual

monolayer that makes up half of a bilayer. This method has been described in de-

tail elsewhere [2] and therefore only a short description is given here. The basic idea

is to place the monolayer directly next to a reflecting boundary in a 1-dimensional

cylindrical and spherical geometry. By doing so the curved monolayer feels a simi-

larly curved monolayer (it’s mirror image) just outside the system. Concentrating on

the grand potential of just one of the monolayers, it is possible to derive the bending

modulus km
c , the saddle splay curvature k̄m and also the spontaneous curvature Jm

0

of the monolayer in more or less the same way as shown for bilayers. Referring to

fig. 3.7 we define positive curvatures when the monolayer is expanded in headgroup

and compressed in the tail region. It has to be noticed that Jm
0 is not zero in most
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Figure 3.7: Two monolayers with a positive (left) and negative (right) radius of

curvature.

cases and this means that equation 3.5 can be written as :

γ(J,K) = γm
0 +

1

2
km

c J
2 − km

c JJ
m
0 +

1

2
km

c J
m
0

2 + k̄mK (3.9)

Because the surface tension of the flat bilayer is zero, it is also zero for the two

identical opposing flat monolayers. This means that γm
0 + 1

2
km

c J
m
0

2 is also zero and

that these terms can be excluded from eqn 3.9. If the monolayer is now placed in a

cylindrical lattice eqn 3.9 can be written as:

εcm ≡ γ(J)A = −2πkm
c J

m
0 h+ πkm

c Jh (3.10)

which defines the grand potential of the cylindrical monolayer aggregate εcm. From

eqn 3.10 it is possible to retrieve km
c and Jm

0 by plotting εcm against J . By subse-

quently placing the monolayer in a spherical lattice geometry eqn 3.9 can be changed

to

εsm ≡ γ(J)A = 4π(2km
c + k̄m) − 8πkm

c J
m
0 R (3.11)

which defines the grand potential of the spherical monolayer aggregate εsm. Since

km
c is known it is possible to retrieve k̄m from this equation.

To determine the monolayer’s mechanical parameters it is further necessary that

ϕb
l is the same as in the case of the homogeneously curved bilayer to ensure the

same chemical potential of the lipids. The mechanical parameters of monolayers

consisting of lipids with t = 8, 9, 13, 14, 17, 18 and 19 were determined with this

method and the results are shown in fig. 3.8.

In fig. 3.8a km
c and k̄m are shown. Both parameters were determined for the inner

as well as the outer monolayer, which gave the same result. The calculated km
c and

k̄m values are in good agreement with the bilayer properties, i.e., practically equal

to 1
2
kc and 1

2
k̄, respectively. The very small deviations observed are probably due

to very small details regarding the interdigitation of tails into opposite monolayers.

However, the close agreement shows that the followed procedure gives a very good

57



−10

0

10

8 12 16 20

−10

0

10

t

k
c
m

k m
_

a)

k
c
m

k m
_

−0.05

0

0.05

8 12 16 20
t

J
0

m

b)

Figure 3.8: a) The bending modulus of the lipid monolayer km
c and its saddle splay

modulus k̄m as a function of t. Both moduli are given in units kBT . b) The

dependence of the spontaneous curvature Jm
0 of the monolayer on t.

approximation of the mechanical properties of the monolayer. More importantly,

the spontaneous curvature of the monolayer Jm
0 is shown in fig. 3.8b. According

to intuition Jm
0 decreases with increasing t, because the volume and the area of the

tails increase while the head group packing is more or less constant. Lipids with

very short tails therefore tend to have a high positive spontaneous curvature and

have a tendency to form spherical micelles instead of lamellar bilayers. Lipids with

long tails on the other hand have a negative spontaneous curvature and they have a

tendency to form hexagonal phases. Interestingly, the monolayer consisting of lipids

with t = 14 has a Jm
0 of approximately zero. This means that these lipids are the

most suitable for arrangement in a flat tensionless bilayer.

3.4.4 The insertion of a hydrophobic rigid rod

Now that the bilayers have been fully characterized an inclusion with a hydrophobic

body is incorporated into these bilayers. In the remainder of this paper we will see

how the bilayers adjust to this protein-like inclusion. The rod, with a hydrophobic

length D, is inserted as shown in fig. 3.9. The hydrophobic mismatch ∆d is defined

as 1
2
(D − d0

l ) and is varied by changing the bilayer thickness at three values of D.

In fig. 3.10a the normalized insertion free energy f = F
2πRkBT

is plotted for

several lengths of the rod D. It can be seen that f is parabolic in ∆d and the curves

shift to higher values as D is larger. The minimum ranges from f = 3.1 when D

= 7 to f = 3.4 when D = 9 and occurs at a negative mismatch ∆d ≈ −0.7 in all

cases. It has to be mentioned that the value of ∆d is somewhat arbitrary, because

it depends on the choice of the bilayer’s interface, which is at ϕC = 0.5 in our case.

However, the minimum insertion energy remains at a negative ∆d till ϕC ≈ 0.73.

The normalised insertion free energy f can be regarded as a sum of four contri-

butions, which are not completely separable. These are (i) the bilayers deformation

energy caused by the mismatch, fd, (ii) the entropy loss and bilayer deformation
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Figure 3.9: Schematic representation of the insertion of a hydrophobic rod with

hydrophilic end caps in a bilayer.

energy caused by conformational restrictions of the tails adjacent to the inclusion,

fc, (iii) the direct contact interaction energy of the inclusion and the tails, fi and

(iv) the interaction energy of the inclusion end caps with their environment, fh.

The parabolic dependence of f with ∆d is thought to mainly result from two of

these contributions. The first one is the deformation energy of the bilayer fd, because

the bilayer adjusts its structure to minimize the contact of the hydrophobic regions

with the aqueous solution. If this was the only contribution, the minimum of the

parabolic function would have been at ∆d = 0. However, due to the conformational

restrictions in close proximity of the rigid inclusion the tails tilt away. Since the

bilayer density in the core remains constant, deformation of the bilayer occurs even

in the case that ∆d = 0.

The third contribution to the insertion free energy, fi, is negative because it

results from the attractive interaction between the inclusion and the tails. It has

only a very weak dependence on ∆d, because the density of the tail in the first layer

adjacent to the inclusion is practically the same in all cases. The variation in this

density is less than 5 percent.

Finally, the interaction energy of the inclusion’s end caps with the lipids and

the bulk solution, fh, is rather complex and not only results from direct interac-

tions between the caps and their environment but also from the entropic loss of the

lipids adjacent to this cap. The total contribution is rather large but has marginal

dependence on the mismatch. In our calculations it is approximately 1.74 kBT .

Now let us focus on the deformation of the bilayer caused by the embedded

inclusion. Fig. 3.11 shows the profile of the lipid tails density in the case that D = 8

and t = 8, i.e., ∆d = 0.86. In this figure it is easily seen that the bilayer adjusts

itself to minimize contact of the hydrophobic regions with the aqueous solution. One

can measure several physical membrane properties as a function of the r-coordinate.

For example one can measure the membrane thickness, the area per molecule, the

perturbation of the packing density in the core etc. We choose the area per molecule

for our futher analysis, because it can be determined very accurately. Fig. 3.12a

shows profiles of the area per lipid relative to that in an unperturbed bilayer, a(r)−
a0. For D = 8 and t ranging from 8 to 19 the mismatch varies from ∆d = −1.50 to
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Figure 3.11: Tail volume fraction density profile of a bilayer. In this case a rod with

D = 8 is inserted in a bilayer consisting of lipids with t = 8.
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Figure 3.12: a) The lipid area perturbation profile for different ∆d (see figure) when

D = 8. b) The dependence of the perturbation amplitude A on ∆d.

0.86. The perturbation profile has a wavelike appearence and decay exponentially.

However, the onset of the exponential decay is approximately at R+ 1
2
d0

l . One may

describe this profile by

a(r) − a0 = A exp (−r
ξ
) sin(2π(

r − δ

λ
)) (3.12)

The equation accurately describes the deformation of the bilayer only for r >

R+ 1
2
d0

l , because at shorter distances the orientation and conformation of the tails is

directly affected by the rigid inclusion. In equation 3.12 δ represents the first position

from the centre of the inclusion where a(r) is equal to a0 and where da(r)
dr

> 0.

In fig. 3.12b the dependence of A, which we will call the perturbation amplitude,

on ∆d is plotted. A exhibits a minimum at ∆d ≈ −0.7, in line with the the position

of the minimum in insertion free energy (fig. 3.10). This suggests that the parabolic

dependence of f is related to the bilayer deformation.

The parameters A and δ are determined by D and t. The decay length ξ and the

wavelength λ, which are retrieved from fitting, are determined entirely by bilayer

characteristics, i.e., they are independent of D. The decay length ξ is proportional

to the tail length as is shown in fig. 3.13a and it ranges from 3.5 l to 5.5 l. With

l = 0.2 nm, ξ ranges between 0.99 nm and 1.56 nm. There are a couple of reasons

that could account for the difference with the decay lengths determined by Fattal

and Ben Shaul [60] who reported values ranging from 0.3 to 0.6 nm. An important

difference is that they preassumed an exponential decay starting adjacent to the

inlcusion, while we did not put any constraints on the profile and find that the

decay has an onset at approximately half the hydrophobic thickness of the bilayer

Beside microscopic models also elasticity theory has been used to determine

the decay length of bilayer perturbations. In several studies the decay length was

retrieved by using the Euler-Lagrange equation for the minimization of monolayer

perturbation energy. This is described with the area compression-expansion modulus

of the monolayer, km
a , which is 1

2
ka, the monolayer’s bending modulus, km

c , which is
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Figure 3.13: The decay length and the wavelength (both in units l) vs t.

1
2
kc and the bilayer thickness, d0

l , as shown in [33,55].

F =
1

2

∫ ∞

R

km
a

u2

(1
2
d0

l )
2

+ km
c (
∂2u

∂r2
)2dr (3.13)

The elastic decay length that is retrieved from this equation is also a function of

the bilayer thickness d0
l and the monolayer’s mechanical moduli km

c and km
a :

ξe =
4

√

(d0
l )

2
km

c

km
a

(3.14)

May extended the formula for the determination of the elastic decay length by

introducing the tilt modulus and proposed a decay length [31], which we will call

the elastic tilt decay length, ξt, described by

1

ξt
=

√

km
a

d0
l

√

d0
l

√

km
c k

m
a

+
1

km
t

(3.15)

For the calculation of ξt, tilt moduli, km
t , have been used that were calculated

simply by analysing the orientational fluctuations of the tails in the equilibrium

bilayer (for details see the appendix). The results of this exercise are presented in in

fig. 3.14a. This figure shows that the tilt modulus decreases with tail length, which is

easily explained because longer tails fluctuate more easily away from the membrane

normal. Fig. 3.14b shows our microscopic decay length ξ, which is an average of

results for the three inclusion sizes, D = 7, 8 and 9, the elastic decay length ξe and

the elastic tilt decay length, ξt. From this it is clear that our decay length within

numerical precision, is the same as ξe, while ξt is significantly smaller. Also if the

tilt modulus proposed by May [31] is used, ξt is still significantly smaller. Only for

infinite km
t , i.e., when tilt is ignored, the decay lengths become equal, i.e, ξ = ξe = ξt.

The resemblance between the microscopic and the elastic decay length shows that

the relevant bilayer thickness for the elastic length scale is the hydrophobic core

dimension. Finally we note that in the calculation of ξe the monolayer spontaneous
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Figure 3.15: a) The correlation between the perturbation wavelength λ and the

decay length ξ for different tail lengths. b) The slope S of the bilayers at r = R

curvature was assumed to be zero. Apparantly, this spontaneous curvature is of

negligible importance in determining the elastic length scale. However, in the case

of the wavelength λ, the spontaneous curvature may have a minor contribution,

because there is a small decrease of the ratio λ / ξ with increasing tail length as

shown in fig. 3.15a.

Finally, another interesting property of the perturbation profile, is the contact

slope S of the bilayer surface at r = R. S is defined as ( ∂dl(r)
∂r

)r=R. In our case S

is determined as the slope of the bilayers surface in the first layer adjacent to the

inclusion. Fig. 3.10a shows that S is proportional to ∆d. One can also see that S is

the same for all inclusion lengths. The linear dependence has been discussed within

the framework of bilayer elasticity theory [21] where S minimizes f and where ∂f
∂S

= 0. Although both our model and the bilayer elasticity theory show this linear

dependence, there are some differences. For instance ∂S
∂∆d

in the elasticity model

is −1 nm−1, while in our case this is much lower, namely −0.16 nm−1. Another
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important difference is that our results show that S > 0 when ∆d = 0, while in the

elasticity model S = 0. These difference can be attributed to the conformational

restrictions of the tails caused by the rigid inclusion explicitly accounted for in our

approach, while in the elasticity theory these conformational restrictions are not

included. Another interesting aspect is that the linear dependence of S with ∆d is

approximately the same for all D. From this it can be concluded that S is mainly

determined by the mismatch and the conformational restrictions of the tails. The

spontaneous curvature of the monolayer, which varies with t, seems to be of minor

importance.

3.5 Conclusions

Using a molecularly realistic self-consistent field (SCF) theory we have analysed

the structrural perturbations and corresponding thermodynamic effects of inserting

rod-like inclusions (mimicking trans-membrane proteins or peptides) into tensionless

lipid bilayers. We found that the free energy of insertion is at its minimum at a

small negative mismatch, i.e., when the hydrophobic thickness of the inclusion is

somewhat smaller than that of the bilayer. That the minimum is not precisely

at zero mismatch, is due to conformational restrictions of the lipid tails near the

inclusion. This results into a tendency of the tails to tilt away from the rod, which,

in turn, gives rise to a positive curvature of the bilayer/solution interfaces adjacent

to the inclusion. The spontaneous curvature of the individual monolayer halves of

the bilayer, which we showed to depend on the lipid tail length, seems to be of minor

importance for this phenomenon. As a function of distance from the inclusion the

bilayer perturbation has a damped-wave character. The decay length as derived

from our microscopic SCF model equals the decay length computed using elasticity

theory, provided that in the latter theory for the bilayer thickness the dimension of

the hydrophobic core is used. The ratio between the period and the decay length of

the perturbation is rather constant, showing that the periodicity also largely depends

on the elasticity of the bilayer. This ratio only slightly decreases with increasing lipid

tail length, which is tentitavely attributed to the decreasing spontaneous curvature of

the monolayers. In a forthcoming paper we will look into the effect of the inclusion’s

radius and the lipid-mediated interaction between two or more membrane-spanning

peptides.

3.6 Appendix: Tilt modulus

As explained above the SCF theory features for each segment type two conjugated

profiles. There is the segment potential uA(r) which operates as an external po-

tential to obtain the probability distribution of conformations of molecules. From

the information of the statistical weight of all possible and allowed conformations

one can extract the volume fraction profiles ϕA(r). This means that the volume
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fractions are a functional of the potentials. In short we write ϕ[u(r)], where we

have dropped the indices to the segment types for convenience. The potentials are

known as self-consistent potentials because the potentials are made a functional of

the volume fraction profiles. In short, this may be expressed as u[ϕ(r)]. We solve for

a self-consistent solution of these equations numerically upto high precision (at least

7 significant digits), without the need to put positional constraints on the molecules.

All lipid molecules may either choose to self-assemble in the bilayer structure or to

remain in the aqueous solution. In the bilayer the solvation energy is low, but in

solution the entropy is high. At equilibrium the chemical potentials of each of the

molecules are the same everywhere in the system. Furthermore, the total number of

lipid molecules in the system is adjusted such that the membrane tension vanishes

(for the unperturbed bilayers).

Once a self-consistent field solution is obtained one can analyse various properties

of the lipid molecules. For example it is straightforward to measure the thickness

of the bilayer the orientational order of the tails and the head group, the average

position of each of the segments as well as the fluctuations of it. Moreover one

can evaluate the bond order profile which is experimentally accessible. One of the

properties we have computed is the level of interdigitation of the lipid tails of one

monolayer into the other layer [78]. For symmetric bilayers one has to unravel the

distribution of the tails of lipids belonging to one monolayer from those belonging

to the other monolayer. This is routinely been done by computing density-density

correlation functions. To compute the tilt modulus we need to make again use of

these conditional distribution functions. In short the goal is to find the statistical

distribution function of tail ends away from the normal.

In a two-gradient SCF model we have a coordinate system as given in fig. 3.1d.

The z-coordinate is in the normal direction, the bilayer is in the x-y-plane. In

the unperturbed bilayer the probability to tilt in the x-direction is the same as

in the y-direction. It suffices to analyse the tilt in the x-direction. Lets assume

that the equilibrium membrane exists in the x-y-plane. Of all lipid conformation

we concentrate on the subset of lipids that have the branching unit, given by the

segment s = s∗ (where the two alkyl tails meet with the head group) at any z-

position (referred to by zs∗), but constrained on a given x-coordinate which is far

from the system boundaries, we choose to name this coordinate x = 0. The full set

of conformations of this subset of molecules is characterised by the volume fraction

profile ϕ(z, x, s|zs∗ , 0, s
∗). Our special interest is in the distribution of the tail ends

with ranking numbers s = s1 and s = s2. Because of symmetry reasons in the

molecule these two segments have exactly the same distribution. Let us therefore

focus on one of them, i.e. s1. We are interested in the probability that segment s1

is at a coordinate x. To obtain this probability distribution we have to integrate

over all possible coordinates of the tail end, i.e. z and the coordinates of the branch

point zs∗ :
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p(x) =

∑

z

∑

zs∗
ϕ(z, x, s1|zs∗ , 0, s

∗)
∑

z

∑

zs∗

∑

x ϕ(z, x, s1|zs∗ , 0, s∗)
(3.16)

where the denominator is used to normalise the probability distribution to unity.

This probability distribution has a peak at x = 0, is symmetric, i.e. p(−x) = p(x)

and falls off for larger values of |x| to zero. Near x = 0 it is Gaussian. This means

that ln p(x) is parabolic

− ln p(x) = km
t x

2 + C (3.17)

The steepness of the parabola is given by km
t which may be identified as the tilt

modulus and has dimensions 1/l2. The larger the tilt modulus the harder it gets for

the tails to wonder away from the normal.
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Chapter 4

Molecular modelling of

peptide-like inclusions in lipid

bilayers: Lipid-mediated

peptide-peptide interactions

Abstract

The trans-membrane peptide-lipid bilayer interaction is investigated with a self-

consistent field theory. The peptide is modelled as a rigid cylindrical (with radius

R) or flat inclusion with a hydrophobic surface and two hydrophilic end-caps. The

lipids are modelled as a hydrophilic phosphatidylcholine-like head group linked to

two hydrophobic tails both with length t. Three different aspects are investigated.

We show that the insertion free energy Ω is strongly regulated by the short-range

interaction energy between the hydrophobic surface of the inclusion and the lipid

tails and that this parameter controls the best match of the hydrophobic length of

the inclusion with that of the lipid bilayer. Furthermore, we show that the line-

tension τ = Ω/2πR decreases linearly with the curvature Jp = 1/R of a cylindrical

inclusion. These results are used to analyse how the boundary lipids around the

inclusions influence the colloidal stability of the inclusions. The free energy of inter-

action between two inclusions (with curvature Jp = 0) is strongly non-monotonic as

a function of the distance between the inclusions. There are three different length

scales, namely (i) the long-range elastic interaction, which is an exponentially decay-

ing oscillation. In some situations this elastic interaction can be strong enough to

play a role in the lateral organisation of proteins in the bilayer. (ii) The intermediate

length scale repulsive interaction is a consequence of the conformational restriction

of the tails between two inclusions and is only weakly influenced by the hydrophobic

mismatch and the tail-peptide interaction. (iii) The characteristics of the short-

range interaction, which typically also has a oscillatory and/or a depletion-induced

attractive contribution, is largely determined by the tail-peptide interaction.
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4.1 Introduction

The functioning and organisation of trans-membrane peptides and proteins in a

membrane is determined by many factors. A well studied and important aspect,

which we investigated in an earlier paper [79], is the hydrophobic mismatch between

the inclusion and the lipid bilayer. A hydrophobic mismatch is defined as 1
2
(D −

d0
l ), with D the hydrophobic peptide length and d0

l the unperturbed hydrophobic

bilayer thickness. When there is a difference in these lengths, the bilayer can adapt

itself to avoid contact between hydrophobic parts and water. However, there is a

free energy penalty associated with such adaptation. The mismatch issue is of key

importance for the functioning and activity of various integral membrane-bound

proteins and peptides, as is shown in several experimental studies [13–16, 40–45].

Besides experimental work, a significant theoretical effort is underway to gain insight

into the physical aspects of peptide insertion. Some of these studies extend the

elasticity theory developed by Helfrich [19] to get phenomenological insights into the

energetically and structural consequences of hydrophobic mismatch [21, 52–55, 58].

An important extension of this elasticity theory was the introduction of the chain

directors model by May, which accounts for the conformational restrictions of the

lipid chains in the vicinity of the inclusion that determine local deformations of the

bilayer [31]. Other studies analyse detailed microscopic statistical mechanical models

[60, 79]. In these models molecular interaction forces and the hydrocarbon chain

conformations are taken into account. The models that have been used by Fattal

and Ben-Shaul [60] and by the present authors [79] have much in common. However,

the approach taken by us is somewhat more advanced as we impose no a priori

positional constraints on the individual lipids. Besides a hydrophobic mismatch,

also the structural properties of the inclusion, such as the curvature, and more

general the shape and its size affect peptide insertion. Dan and Safran [56] studied

the effect of various inclusion geometries on the structural spatial perturbations of

the bilayer and found that a given lipid will favour a particular protein conformation

over another one.

In biological membranes a typical trans-membrane peptide conformation is the

α-helix conformation, which has a radius of approximately 0.5 nm. This dimension

is comparable to the cross-section of a lipid molecule. Larger trans-membrane struc-

tures such as magainin-pores, R = 4.5 nm and alamethicin pores, R = 2.0 nm, are

known to have a set of trans-membrane α-helical structures. Another well-known

example is a small pore protein called gramicidin, which consists of two β6.3-helices

that span half the bilayer each and have a radius of approximately 0.9 nm. One can

pose significant questions regarding this size range, whether the range of curvatures

observed of these peptides have some physical underpinning and whether there is

a thermodynamically most favourable size. Lagüe et al. [27, 28] used molecular dy-

namics in combination with statistical mechanical integral equation theory. They

investigated the incorporation of rigid cylindrical inclusions with a radius of 0.25,
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0.5 and 0.9 nm into lipid bilayers of various thickness and consisting of saturated

or unsaturated lipids. They found two different bilayer perturbation oscillations

around the inclusions, each having a different length scale. Besides an exponentially

decaying oscillation with a wavelength of 1 nm, they also found a less pronounced

oscillation with a much longer wavelength. They furthermore showed that this

long-wavelength oscillation becomes more obvious when the radius of the inclusion

increased. These complex results call for complementary approaches directed to

unravel this. Our self-consistent field (SCF) method is suitable to do such job, espe-

cially for the properties on the nanometre length scale and above. We will study the

effect of the inclusions curvature on the bilayer perturbation around the inclusion

and its effect on the free energy of insertion.

Intuitively, one would expect that there might be (free) energy interactions in-

volved when the lipid tails are forced to be near the hydrophobic part of the in-

clusion. There is not much known about the consequences of such interactions. In

most theoretical studies it is assumed that the lipids freely adjust their conforma-

tion to overcome any ’interaction’ mismatch and leave possible nearest-neighbour

interactions tactically out of the analysis. However, it is clear that such interactions

between the inclusion and the bilayer must exist simply because the protein-like

bodies and the lipids have different chemical constituents. For example, the outside

of a α-helix will be rich in CH3 groups especially when only alkyl groups point

outwards. Below we will allow for some various interactions between the inclusion’s

surface and the lipid tails and show that the hydrophobic mismatch is not purely

a geometric quantity, but that a hydrophobic interaction between the inclusion and

the lipid tails should be included in the analysis as well. We will further show that

the overall free energy of inclusion insertion into the bilayer is largely determined by

the interaction energy of lipid-tails with the inclusions and that these interactions

also influence the lipid perturbations. The effect of the curvature of the inclusion

and the non-ideal hydrophobic interaction are in this paper studied with a rather

primitive model for the protein-like inclusion, namely the cylindrical rod with a

hydrophobic surface, covered on both sides by a hydrophilic cap.

The main focus of this paper is however on understanding how the lipids mediate

the interaction between these inclusions. In general this problem is very complex

as in experimental systems the peptide-peptide interactions have, e.g., electrostatic,

van der Waals, hydrogen bonding, etc. contributions. Our simple model for the

limiting case that the protein-like inclusions are flat (curvature of the inclusion is

ignored) reduces this problem significantly, albeit that it still is a very rich system.

In the past a number of studies has been performed concerning lipid-mediated

protein-protein interaction [26–28, 30, 32–36, 50, 80–82]. Most of these studies used

the elasticity theory [32,33,35,36,81], but also a molecular field theory [26,30], the

phenomenological Landau theory [50], some Monte Carlo [34] and Molecular Dynam-

ics simulations [27, 28] have been directed to this problem. From all these studies

three different length scales have been found for bilayer-induced peptide-peptide
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interaction: (i) the oscillating and exponentially decaying (mesoscopic) long-range

interaction caused by the overlap of the inclusion-induced mesoscopic structural bi-

layer perturbations. The wavelength and decay length of this interaction profile is

determined by the structural and elastic properties of the bilayer [32, 33, 79]. (ii)

The intermediate length scale where another interaction contribution becomes im-

portant, namely a repulsive interaction [27, 30, 34]. This is caused by the overlap

of the domains in which the inclusions induce a tilt of the lipids. This results in

conformational restrictions of the lipid tails in the confined space between the in-

clusions. (iii) When the inclusions approximate each other very closely, i.e., on the

(segmental) short-range length scale, a depletion-induced attraction between the in-

clusions starts to play a role as is shown by a couple of studies [27,28,30,34]. In all

of these studies there was no effective adsorption of the lipid tails to the inclusion’s

surface. However, in this paper we also consider non-ideal interactions between tails

and the inclusions and will show that they play an important role in the short-range

interaction between inclusions. If the adsorption of the lipid tails on the inclusions

surface increases, the depletion-induced attraction disappears and is replaced by a

large oscillating and strongly decaying interaction. Our method is computationally

inexpensive and numerically very accurate so we can obtain systematic predictions

for these complex problems.

The remainder of this paper is as follows. First we will outline the SCF model

and discuss the parameters used for the modelling. In our results section we will

discuss basically three types of problems. The first is related to the influence of

non-ideal interactions between tails and the inclusion on the structural properties of

the lipid bilayer. The second aspect is related to the effect of the curvature of the

inclusions and finally we consider the lipid-mediated interactions between inclusions.

In the last sections we will discuss some implications of our result and formulate our

conclusions.

4.2 Theory and methods

4.2.1 Self-consistent field theory

The current SCF theory has been successfully used to study self-assembling struc-

tures, like bilayers, micelles and vesicles [64,83,84]. The theory is formulated using

a discrete lattice. This allows us to accurately and efficiently account for the dif-

ferent conformations of chain-like and branched molecules. The lattice represents a

three-dimensional system, but a mean-field approximation allows us to use two- or

one coordinate lattices, depending on the number of gradients present in the system.

These lattices can have a spherical, cylindrical or flat geometry, depending on the

system that is modelled. The advantage of this reduction in dimensions is that the

calculation time remains very low. A drawback is that the aggregates are forced to

adopt a preset geometry. In our calculations two-dimensional flat and cylindrical
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Figure 4.1: Schematic illustration of the two lattice geometries used in this paper.

Both are systems where two volume fraction gradients are present. If the inho-

mogenity occurs in two perpendicular directions, we may use a 2d flat system of

coordinates (a). If there is a spherical domain in the bilayer matrix a 2d cylindrical

geometry is appropriate (b). We use r = (x, z) in the flat case and r = (z, r) in the

cylindrical case. The arrows point in the directions of the gradients in the densities

and potentials.

systems are used as shown in figure 4.1, which makes it possible to study laterally

inhomogeneous bilayers. The two gradients in the molecular structure are perpen-

dicular to the bilayer’s surface and perpendicular to the inclusion’s surface. For

inclusions with radius R the cylindrical coordinates are used. In the limit R → ∞
this coordinate system is identical to the 2d flat one.

The molecules present in the system are coarse-grained on the united atom level,

i.e., they consist of segments, which are the basic building blocks. All segments are

uniform in size and have the same volume as a lattice site. The basic idea in this

theory is that instead of keeping track of exact positions of the segments the focus

is on average density at a given position, i.e., at a given lattice site.

In mean-field partition functions the excluded-volume interactions between pairs

of molecules are replaced by the interaction of a single molecule with external po-

tential fields. These potential fields reflect the average behaviour of all molecules in

space. The physical meaning of this potential field uA(r) is that it contains all the

potential energy contributions to bring a segment A from bulk to position r, with

r = (z, x) in 2d flat and r = (z, r) in 2d cylindrical geometry. The potential energy

of a segment A at position r can be written as

uA(r) = u′(r) + kBT
∑

B

χAB(< ϕB(r) > −ϕb
B) (4.1)

The u′(r) is the excluded-volume potential which arises from the incompressibil-
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ity constraint
∑

A ϕA(r) = 1. In other words, it is the energy needed to generate

a vacant site at position r to insert segment A. The second term accounts for the

non-ideal interactions of segment A with all other segment types, denoted by B. The

Flory-Huggins nearest-neighbour exchange energy parameter is denoted by χAB. It

describes the interaction energy between segment A and segment B. The param-

eter is negative when the AA and BB interactions are energetically unfavourable

compared to the AB interactions and positive when it is the other way around. The

parameter ϕB is the volume fraction of B and the superscript b refers to the bulk

solution, i.e. the aqueous solution at infinite distance from the bilayer. The angular

brackets represent a local average.

< ϕB(r) >=
∑

r
′

ϕB(r′)λ(r, r′) (4.2)

where λ(r, r′) is the a priori step probability to go from coordinate r to r′ [64]. It

is non-zero when r and r’ are neighbouring sites. These a priori step probabilities

depend on the type of lattice used and implement the difference in lattice geometry.

This site-averaging thus account for the gradients in the distribution which are

geometry-dependent. In the most simple case, i.e., a one-dimensional flat lattice

where r = z, this local average can be written as < ϕ(z) >= λ−1ϕ(z−1)+λ0ϕ(z)+

λ1ϕ(z + 1), with λ−1 + λ0 + λ1 = 1.

From the potential uA(r) it is possible to retrieve the distribution and thus the

volume fraction ϕA(r) of a free segment A on coordinate r.

nA(r) ∝ GA(r) = exp

(−uA(r)

kBT

)

(4.3)

Here kB is the Boltzmann constant and T is the temperature. The number of

segments A at position r is given by nA(r), which is proportional to the Boltzmann

factor GA(r). The computation of the volume fraction ϕi(r, s) of segment s of

molecule i on coordinate r is more complex. Here the ranking number s of the

segments ranges from 1 to Ni, where Ni is the total number of segments in molecule

i. To evaluate this it is necessary to generate all possible configurations of each

molecule i. Here, a possible configuration is defined by the set of coordinates {rc
s}i

for all segments of molecule i. The degeneracy of conformation c, can be enumerated

by

ωc
i = L(rc

1)

Ni−1
∏

s

λ(rc
s, r

c
s+1)Z (4.4)

Here λ(rc
s, r

c
s+1) is the a priori step probability when going from segment s at rc

s

to segment s + 1 at rc
s+1. The other parameter L(rc

1) is the number of lattice sites

at coordinate r where segment s = 1 of molecule i in conformation c is placed.

The parameter Z is the coordination number of the lattice and determines the total

number of neighbour sites. As transition probabilities obey the detailed balance

72



equation λ(rs, rs+1)L(rs) = λ(rs+1, rs)L(rs+1) it is possible to show that ωc does

not depend on direction of the walk along the chain, i.e., the inversion symmetry is

obeyed.

Assuming now that all uA(r) are known (equation 4.1), it is rather easy to

evaluate the overall potential uc
i of a molecule i in conformation c.

uc
i =

Ni
∑

s=1

∑

A

uA(rc
s)δ

A
i,s =

Ni
∑

s=1

ui(r
c
s) (4.5)

where the chain architecture operator δA
i,s is unity when segment s of molecule i is

of type A and zero otherwise. The right-hand side of equation 4.5 shows that if

the potentials of the individual segments are known it is just a matter of adding

up all these segment potentials ui(r
c
s to obtain the overall segment potential uc

i of a

molecule i in conformation c. From this overall potential it is possible to determine

the statistical weight of this conformation by determining the Boltzmann weight:

nc
i = Ciω

c
i exp

(−uc
i

kBT

)

(4.6)

where nc
i is the number of molecules i in conformation c and Ci is the normalisation

constant [66]. After summation over all conformations c the volume fraction profiles

are found.

It is in principle straightforward to generate for a given molecule all possible self-

avoiding conformations on the lattice. However, in practice for systems containing

many molecules this approach becomes exceedingly time consuming. There exist

very efficient schemes to sum-up the statistical weights of a set of conformations if

the chains need not be self-avoiding; these schemes are known as Markov chains.

In this paper we have implemented a first-order Markov approximation which has

the property that for a fixed chain architecture segments along the chain occupy

neighbouring sites, but that excluded volume correlations along the chain are not

exactly obeyed. This means that the chain can fold back on previously occupied

sites. These intra-chain excluded volume problems are very similar to inter-chain

excluded volume problems inherent in a SCF analysis which are treated on the same

footing.

Thus far we have shown that there are potentials uA(r) that are a function of the

volume fractions (eqn 4.1), and that in turn these potentials determine the volume

fractions (eqn 4.6). A numerical algorithm is used to find the corresponding system,

better known as the self-consistent field (SCF) solution. For such SCF solution it

is possible to compute the free energy and various other thermodynamic potentials

such as the grand potential [18], which can be defined with

Ω =
∑

z

∑

r

L(r)ω(z, r) (4.7)
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Figure 4.2: The molecules that are used in the calculations are coarse-grained on a

molecular level. The water molecule is a cluster of five identical W -segments, while

the free volume is a single hydrophobic V -segment. The most complex molecule in

the system is the lipid that consists of two tails of length t. The tail segments are

hydrophobic and each segment represents a CH2- or a CH3-group. The lipid head

comprises two hydrophilic regions consisting of three segments which are spaced by

two hydrophobic segments that are identical to the tail segments.

with L(r) the number of lattice sites at coordinate (z, r) and ω(z, r) is the grand-

potential density at each lattice site [64]. The number of lipid molecules in the bilayer

(area per molecule) is used in a subsequent numerical optimisation step to find the

bilayer that is tensionless (equilibrium for freely-floating unsupported bilayers), i.e.,

γ(r) = 0, with γ(r) the local surface tension, which is given by

γ(r) =
∑

z

ω(z, r) (4.8)

4.2.2 Parameters and summary of previous results

At the basis of our analysis we consider tensionless bilayers. The modelling and

characterisation of these have been discussed in a previous paper in detail [79] and

will be briefly reviewed. The structure of the molecules is presented in figure 4.2 and

the relevant interaction parameters are collected in table 4.1. The branch point in the

lipid couples two hydrophobic tails of length t to a hydrophilic head group. The head

group mimics phosphatidylcholine, containing two hydrophilic fragments of three

segments spaced by two hydrophobic segments. Lipids freely distribute between

being dispersed in the aqueous solution and being densely packed in the bilayer. The

concentration of the freely dispersed lipids, the critical micellisation concentration

(c.m.c.), is determined to a large extent by the Flory-Huggins parameter χWC for

the interaction between the tail segments (C) of the lipids and the water segments

(W). We use χWC = 1.1, which gives the correct tail length dependence for the

c.m.c. for surfactants. This means that C and W repel each other and this drives
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C W X V S E

C 0 1.1 2.5 1.5 −1.0 2.0

W 1.1 0 −0.5 2.3 2.0 0

X 2.5 −0.5 0 2.3 2.0 0

V 1.5 2.3 2.3 0 1.5 2.3

S −1.0 2.0 2.0 1.5 0 0

E 2.0 0 0 2.3 0 0

Table 4.1: The Flory-Huggins interaction parameters between the different seg-

ments. A positive value means that the interaction is repulsive and a negative value

represents an attractive interaction with respect to the interaction between identical

segments.

the self-assembly of the lipids. On the other hand, the lipid head group contains

six hydrophilic (X) segments that contribute to the stopping force for self-assembly.

This suggests that the interaction between these segments and water is attractive.

We choose χXW = −0.5 as in our previous paper [79].

From experiments it is known that water is almost completely absent in the

hydrophobic core. For this reason we have implemented water as a small compact

cluster of 5 segments as shown in figure 4.2. Such clusters of water will not easily

partition in the core, i.e., the water content in the bilayers core is less than 1 volume

percent. Furthermore, like in the previous paper [79], we account for some volume

fraction of vacant sites (V) in the system. The Flory-Huggins parameter χV W = 2.3

has been chosen in such a way that the surface tension of the calculated V-W

interface is of the same order of magnitude as experimentally determined values. The

bulk volume fraction of free volume in the aqueous solution is ϕb
V = 0.051396 which

is fixed throughout all calculations. Previous studies on the membrane formation by

such model lipids in an aqueous solution revealed that the head groups should not

mix well with the lipid tails. Again in line with previous calculations, the demixing

of the lipid tails and heads is established with χXC = 2.5. The hydrophobic segments

(S) and the hydrophilic end-cap segments (E) of the peptide will be discussed in a

later section.

The structural and mechanical properties of the bilayers are a result of the bal-

ance between the hydrophobic driving force and the stopping mechanisms, like the

crowding of the hydrated head groups and the stretching of the lipid tails. In figure

4.3 an example is shown of a segment density profile across a bilayer composed of

lipids with t = 18. In this figure it is seen that water solvates the head group but

not the tails, the free volume partitions more in the bilayer than in the aqueous

solution, the size of the bilayer head group region is comparable to the hydrophobic

region and the segment density in the core of the hydrophobic region is homoge-

neous. Many features in figure 4.3 follow quantitatively corresponding MD results

as was shown a number of years ago [67].

From our previous results [79] we know that in this model the bilayer thickness
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Figure 4.3: Volume fraction profile across a tensionless planar lipid bilayer with tail

length t = 18. Volume fraction of the tail segments and the head segments are

depicted, but also the free volume and the water volume fraction profiles are shown.

d0
l in units of l, the size of a lattice site, and area per lipid molecule a0 (in units l2)

in a tensionless bilayer show a linear dependence on t.

d0
l = 2.86 + 0.437t (4.9)

a0 = 5.99 + 0.133t (4.10)

The bending modulus kc, the area compression-expansion modulus ka and the

elastic length scale ξe show a linear dependence on t. The bending modulus kc ≡
∂γ/∂J2 (in units kBT ) is a measure for the bilayer rigidity. Here γ (kBT l

−2) is the

surface tension of the bilayer and J (l−1) the bilayer curvature, i.e., J = 1/R1+1/R2

with R1 and R2 the local radii of bilayer curvature.

kc = 4.69 + 0.668t (4.11)

The area compression-expansion modulus ka ≡ (∂γ/∂ ln a)γ=0 (in units kBT l
−2),

with a the bilayer area in units l2 is a measure for the energy to stretch a bilayer.

ka = 1.65 + 4.31 × 10−2t (4.12)

The elastic length scale ξe = ((d0
l )

2kc)/ka)
1/4 (in units l) [33, 55], which is a

characteristic bilayer property that gives information about the decay of bilayer

perturbations.

ξe = 2.64 + 0.150t (4.13)

In the remainder of this paper we are going to discuss three different aspects

of peptide incorporation in the bilayer. In all cases the hydrophobic length of the
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Figure 4.4: Schematic representation of the insertion of inclusions (top: side views,

bottom: top views). The cylindrical two-dimensional lattice (left) is used when a

single inclusion is incorporated into the bilayer. When two inclusions are inserted in

the bilayer a two-dimensional flat lattice (right) is needed. The distance H between

the hydrophobic surface of these inclusions can be varied. The hydrophobic mis-

match ∆d is defined as 1
2
(D − d0

l ), with D the hydrophobic length of the inclusion

and d0
l the hydrophobic thickness of the unperturbed bilayer.
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inclusion is D = 8l and the two hydrophilic end caps have a length of 1l. The

interactions between the end-caps and the lipid head group segments χEX = 0 and

with the water χEW = 0 for simplicity. For the interaction of the rigid hydrophobic

surface with hydrophilic segments we choose the interaction to be unfavourable, i.e.,

χSW = χSX = 2. The interaction of the rigid hydrophilic head with the hydrophobic

lipid tails must be unfavourable and again for simplicity reasons the same value as

the latter two, i.e., χEC = 2 was selected. For the interaction with the vacancies

χEV = χV W = χV X = 2.3, which implies that the V segments are strongly repelled

by the polar segments. Recall that the interaction between C and V is also repulsive,

i.e., χCV = 1.5. The interaction of the hydrophobic surface of the inclusion and the

hydrophobic tails is attractive, i.e., χSC = −1, unless stated otherwise. The inter-

actions of the hydrophobic surface with the V units are in between the interactions

with the hydrophilic and the hydrophobic segments, i.e., χSV = 1.5.

In the previous paper [79] we incorporated a cylindrical inclusion with radius

R = 6l and χSC = −1 and varied its hydrophobic length D. The free energy of

insertion may be normalised by the circumference of the cylindrical inclusion to

obtain τ = Ω/2πR, which may be called the line tension as it has the dimension

kBT/l. This line tension has a parabolic dependence on the hydrophobic mismatch

between the inclusion and the bilayer ∆d = 1
2
(D − d0

l ).

τ = W (∆d− ∆dmin)2 + τmin (4.14)

with W the width of the parabola, τmin the minimum line tension and ∆dmin the

optimal hydrophobic mismatch, i.e., the mismatch of the lowest free energy. We

showed that variation of D only influences τmin significantly, which can be attributed

to the increased interaction area between the inclusion’s hydrophobic surface and

the bilayer. However, W ≈ 0.1 and ∆dmin ≈ 0.7 were not significantly affected by

varying D.

For the investigation of the influence of the hydrophobic interaction between the

lipid tails and the inclusion χSC and the inclusion’s curvature Jp = 1/R on the free

energy of insertion and on the bilayer structure we make use of a two-dimensional

cylindrical lattice (fig. 4.4a). The system size is chosen large enough so that in the

r-direction the effect of the inclusion has vanished and in the z-direction the bulk

becomes homogeneous. In the first case the radius of the inclusion is fixed at R = 6l

and χSC is varied between −2 and 1. In the second case R is varied between 1l and

30l and χSC is fixed at −1. In both cases ∆d is varied between −1.50l and 0.86l by

varying the length of the lipid chains t and thus d0
l . The dependency of ∆d on t for

D = 8 is given by

∆d = 2.57 − 0.218t (4.15)

At the end of this paper we investigate the lipid-mediated interaction between

two peptide-like inclusions. These calculations have been done in a two-dimensional

flat lattice (fig. 4.4b). In this case we examine the effect of ∆d and χSC on the
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Figure 4.5: Schematic two-dimensional illustration of the entropy loss of dimers

adjacent to a rigid surface. The white spheres of the dimers in the bulk (left) can

obtain four different positions, whereas the white spheres of the dimer adjacent to

a rigid surface (right) can only sit at three different positions. The bond between

the black and white sphere has lost conformational entropy when the dimer is near

a surface.

interaction energy as a function of the distance between the inclusions H. The

interaction energy F is defined as F (H) = Ω(H) − Ω(∞).

4.3 Results and discussion

4.3.1 Affinity between the inclusion and the lipid tails.

There is little known about the consequences of the contact interaction between

the hydrophobic part of the inclusion and the lipid tails. Typically it is assumed

that the lipids adjacent to the inclusion experience only steric hindrance by the

inclusion’s rigid wall, while interactions between the wall and the lipid tails are

not considered. Because of this steric hindrance the lipids around the inclusion

experience conformational entropy loss compared to the lipids that are present in

an unperturbed bilayer. As a consequence the lipid tails will to some extent avoid

the surface. Calculations show that the tail segments compete with the V units for

the surface sites. This means that if the tail segments deplete from the inclusion

and the V units take their place. We note that the interaction parameter between

these V units and the surface S is kept constant χSV = 1.5 .

In contrast to our cylindrical inclusions, the surface of a real membrane inclu-

sion like a peptide is not smooth and rigid, but molecularly rough with several

groups attached to it that have different affinities to the lipid tails. As a result

we should seek a correction to compensate for the somewhat unrealistic conforma-

tional entropy loss suffered by the tails in our model. This issue is well known

in polymer adsorption theory, where the concept of a critical adsorption energy is

introduced [85, 86]. Referring to figure 4.5, where the different conformations of

dimers are shown (in a two-dimensional system), it can be seen that there are four

white spheres in the bulk (left), whereas there are only three near the surface (right).

The entropy loss for a bond (between black and white) near the surface therefore

amounts, in the general case that one out of Z directions is blocked by the surface,

to ∆S = −kB ln(1 − 1/Z) ≈ 1/Z ≡ λ1. As a segment C next to the inclusion has
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Figure 4.6: a) Volume fraction profiles of the lipid tails when ∆d = −0.12l. The

lipid tails volume fraction increases from white to black. The inclusion is shown

on the left side of each plot. From up to down χSC is −2, −0.5 and 1. b) The

dependence of < ∆ϕC >≡< ϕR+1
C > − < ϕ∞

C > on χSC is shown for various values

of ∆d.

λ1χSC contacts, the exchange with V gives an energy effect, ∆u = λ1(χSC − χSV ).

This means that χSC−χSV ≈ 1, in order to compensate for this entropic loss, result-

ing in a homogeneous distribution of C and V perpendicular to the surface. When

the enthalpic contribution is larger there will be an excess of C near the surface,

and when it is lower C will deplete. However, this analysis does not account for the

fact that the tails are strongly aligned in the z-direction, parallel to the inclusion.

We therefore have no accurate evaluation of the true critical adsorption energy. In

particular we expect this also to depend on the hydrophobic mismatch.

In figure 4.6 three two-dimensional volume fraction profiles of the lipid tails next

to an inclusion are plotted in cylindrical coordinates (z, r). In all three cases t = 12,

i.e., ∆d = −0.12l, but χSC has different values, i.e., χSC = −2,−0.5 and 1. The

inclusion with a radius R = 6l and hydrophobic length D = 8l is present at the left

side of each contour plot. The lipid tail volume fraction ϕC increases from white to

black. The profile on the top where χSC = −2 exhibits an increased ϕC adjacent

to the inclusion, represented by the dark area. Furthermore it can be seen that the

bilayer thickness dl in the first layers next to the inclusion is increased with respect

to the unperturbed bilayer far from the inclusion. These two features implicate that

apparently the enthalpic contribution is larger than the conformational entropic loss.

The profile for χSC = −0.5 shows that it is possible that ϕC and dl are approximately

constant in the r-direction, indicating that in this case the lipid-peptide interaction

energy counterbalances the entropic loss of the lipid tails. The profile at the bottom,

where χSC = 1, is the opposite of the first profile. Now χSC does not compensate for

the entropic loss, resulting in an decreased dl and ϕC nearby the inclusion. Besides

a gradient in dl resulting from the unbalanced contributions, the bilayer can deform

in order to minimize its free energy. As a result it is difficult to determine the
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exact interaction energy that just compensates for the conformational entropic loss.

To quantify this issue, we have evaluated the average volume fraction at a given r

coordinate.

< ϕr
C >=

1

D

1

2
D

∑

z=− 1

2
D

ϕC(r, z) (4.16)

In fig 4.6b we present < ∆ϕC >≡< ϕR+1
C > − < ϕ∞

C > as a function of χSV

for several values of ∆d. The figure shows that, irrespective of ∆d, < ∆ϕC >

decreases when χSC increases, i.e., when the strength of the attractive interaction

decreases. It furthermore shows that χcr
SC , i.e., the χSC where < ∆ϕC >= 0, is a

function of ∆d. A closer look reveals that there is a linear dependence of χcr
SC on ∆d

which can be described by χcr
SC = −0.23 + 1.24∆d. In the case where ∆d = 0 and

χV S = 1.5, the value χcr
CS − χV S ≈ −0.23 − 1.5 = −1.73. This value is significantly

more negative than −1, which was found for polymers adsorbing on a rigid wall.

In the case of a positive ∆d the bilayer thickness adjacent to the inclusion is larger

than d0
l and an increase in bilayer thickness increases the tail density with respect

to the unperturbed bilayer. This increase in tails density caused by the bilayer

deformation opposes the effect of entropic loss of the tails, resulting in a decreased

tail density near the rigid wall and as a consequence χSC has to be less attractive

compared to an isotropic solution in order to keep < ∆ϕC >≈ 0. In the case of a

negative ∆d the situation is just the opposite, i.e., the bilayer thickness adjacent to

the inclusion is decreased, which results in an extra depletion contribution on top

of the conformational entropic loss.

The adsorption energy χSC influences not only the bilayer structure but also the

free energy of insertion of the inclusion into the bilayer. As the partition function is

accurately available, we can compute this free energy of insertion straightforwardly.

There are at least four interconnected contributions. These are (i) the bilayer per-

turbation contribution which is a result of some hydrophobic mismatch, (ii) the

conformational entropy loss of the annular lipid chains caused by the rigid inclu-

sion, (iii) the direct contact interaction energy between the inclusions hydrophobic

surface and the bilayer core, and finally (iv) there are the interactions between the

inclusion end-caps and their environment, but these have been chosen in such a way

that their contribution to Ω is negligible.

It is found that the dependence of τ on ∆d has a parabolic form for all values

of χSC (eqn. 4.14). Again, the width of the parabola W is not affected much by

χSC . This means that energetically comparable structural changes take place in the

bilayer by varying ∆d. In figure 4.7a the strong dependence of the minimal line

tension τmin on χSC is shown. To a good approximation τmin is proportional to

χSC and increases with 2.03kBT when χSC is increased by one unit. This means

that the total insertion energy Ω = 2πRτ increases with 76.5kBT (R = 6l) when

χSC is increased with one unit. From this we can understand that the affinity of the
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Figure 4.7: a) The dependence of the minimal line tension τmin on the Flory Hug-

gins interaction parameter χSC between the surface and the tail segments. b) The

dependence of the hydrophobic mismatch ∆dmin at minimal line tension τmin on

χSC .

amino acid residues in a trans-membrane peptide that interact with the hydrophobic

core in the lipid bilayer have to be selected carefully in order to avoid excessively

large values of the insertion free energy. Indeed most of the residues should have a

hydrophobic character and in line with the experimental data the number of non-

apolar residues largely determines whether the peptide is inserted in the bilayer or

not. Close inspection of figure 4.7a reveals that there is a small deviation from the

linearity between τmin and χSC , that must be attributed to entropic effects, i.e., there

are small changes in the packing or the average tilt of the lipid tails adjacent to the

inclusion. The dependence of ∆dmin, i.e., the mismatch at τmin, on the adsorption

energy is presented in figure 4.7b. It is of interest to mention that ∆dmin increases

more than linear with χSC especially for χSC > 0. This exemplifies the non-trivial

variations of the lipid distributions around the inclusion as discussed previously in

this section. We conclude that both the hydrophobic length of the peptides as well

as the hydrophobic interaction between the peptides and the bilayer play a role in

the organisation of these trans-membrane peptides.

4.3.2 The curvature of the inclusion

In the introduction some examples have been given of trans-membrane proteins and

peptides that illustrated the possible variations of the radius of biological inclu-

sions. Here we will investigate the consequences of the inclusion’s curvature Jp,

with Jp = 1
R
, on the conformational properties of the surrounding lipids as well as

at the free energy effects. When an inclusion is incorporated, far from this inclu-

sion (r → ∞) the bilayer is unperturbed and the local surface tension γ vanishes.

However, near the inclusion this is no longer the case. Below we like to present the

membrane tension as a function of the distance to the inclusion. In principle, how-
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The slope gives information about the curvature modulus.

ever, the local surface tension cannot unambiguously be defined. The reason is that

binary interactions make the surface tension non-local. Here we take the approach

to compute γ(r), such that non-local interactions are evenly distributed over the

segments that are involved in the interaction. It is found that such local surface

tension γ(r) is a function of the distance from the inclusion’s surface ∆r = r − R

which phenomenologically can be fitted by

γ(∆r) = A exp−∆r

ξ
sin

(

2π
∆r − δ

λ

)

. (4.17)

In this equation ξ is the decay length and λ the wavelength. The offset of the

damped waves is denoted by δ and A is the extrapolated maximum amplitude at

the inclusion’s surface. It has to be mentioned that this equation only describes the

dependence of the local surface tension accurately in the elastic region, i.e., the region

where ∆r > d0
l . The coefficients ξ and λ are fully determined by the mechanical

parameters of the bilayer. When ∆r becomes smaller than d0
l the molecular bilayer

properties of the lipids become the dominant factor. In the remainder of this section

we discuss the surface tension profile when ∆d = 0.86, i.e., the tail length t = 8,

because in this case the variation of γ with ∆r is relatively large. The qualitative

tendencies that we will discuss are the same for other ∆d.

As told above, in the limit ∆r → ∞ the bilayer is unperturbed and tensionless,

i.e., the surface tension γ = 0. However, when the bilayer thickness and lipid tail

density are reduced with respect to the unperturbed bilayer the surface tension

γ > 0 and when the bilayer thickness and the lipid tail density are larger than the

unperturbed bilayer γ < 0.

It appears that both the wavelength λ and the decay length ξ do not depend on

Jp. Both quantities are a function of the mechanical parameters of the bilayer and

correlated with the elastic length ξe given in equation 4.13. Moreover the offset of the
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oscillation δ does not depend much on Jp either. The only parameter that shows a

significant dependence on Jp is the extrapolated maximum amplitude A as is shown

in figure 4.8a. When the radius of the inclusion is increased, i.e., the curvature Jp is

decreased, the amplitude A increases to a limiting value of 2.19×10−4kBT/l
2 in the

case of a flat surface, i.e., R = ∞. These results are in agreement with the results

shown by Lagüe et al. [27, 28], who showed that the long-range oscillations become

more pronounced when the inclusion’s radius increased.

The total insertion energy Ω has almost a linear dependence on R which is

mainly due to the increased interaction area between the inclusion and the bilayer.

Again there is a small deviation from this linearity. This suggest a small curvature

dependence of τ , which is a response of the structure of the bilayer around the

inclusion. It is possible to expand τ up to a second order Taylor series in Jp

τ(J) = τ(0) +
∂τ

∂Jp

Jp +
1

2

∂2τ

∂J2
p

J2
p = τ(0) − k2J0Jp +

k2

2
J2

p (4.18)

here τ(0) is the line tension at Jp = 0. Equation 4.18 defines the curvature modulus

k2 as ∂2τ
∂J2

p
at Jp = 0 and J0 is the curvature where the line tension has an extreme

(either maximum or a minimum depending on the sign of k2).

In figure 4.8b we present τ(J)−τ(0)
Jp

as a function of Jp for several values of ∆d.

The slope of the lines corresponds to 1
2
k2 which appears to be small and positive,

i.e., approximately 0.1 < 1
2
k2 < 0.2. The intercept is given by −J0k2 and is negative

showing that J0 is positive and of order unity. From this it can be concluded that

τ(J) does not depend strongly on Jp and that τ(0) is a reasonable measure for the

free energy of insertion also for small values of R. We will use this result below when

we consider the interaction between two inclusions in the bilayer.

4.3.3 Lipid-mediated interaction between peptides

To insert peptides and proteins into the bilayer membrane is one of the prime fun-

damental steps for the functioning of bio membranes. The control over the degree of

organisation of the inclusions in a bilayer is another one. To obtain information on

how inclusions interact with each other in the plane of a bilayer is a hard task. The

analysis of the interaction between inclusions with radius R in the bilayer generally

calls for a 3-gradient SCF analysis. For the time being this exceeds our computing

facilities. In the limit of R → ∞ however, it is possible to reduce the problem to a

2-gradient SCF analysis. Above we showed that there are relatively few effects of

the radius R on the bilayer perturbation. For this reason we believe we can get use-

ful information from such 2-gradient analysis about the bilayer induced interaction

between two inclusions (see figure 4.4). This is also supported by studies where the

interaction between inclusions of different sizes is investigated [28,34].

We will once again consider the effects of the hydrophobic mismatch ∆d and

the hydrophobic interaction between the inclusion and the bilayer (χSC) on this

lipid-mediated interaction.
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Figure 4.9: The total interaction energy F/kBT per unit length l between two hard

flat inclusions as a function of the separation between the wall edges H (thick solid

line). The interaction energy at a certain separation is a result of three contributions,

namely the short-range segmental contribution Fm (dotted line), the intermediate

conformational contribution F c (short dashed line) and the long-range elastic con-

tribution F e (long dashed line).

a) For the case of a small hydrophobic mismatch (∆d = −0.12) and no effective

interaction between lipid tails and inclusion, i.e, χSC = χSV . b) For large mismatch

(∆d = 0.86) and attractive interaction (χSC = −1).

It appears that for the lipid-mediated interaction free energy F , which is defined

as F (H) = Ω(H) − Ω(∞), with H the distance between the two inclusions, it is

possible to identify three different regimes each having its own length scale in the

interaction profile. First, there is the long-range interaction F e, which is dominant

at distances H > d0
l . In this regime the free energy of interaction F (H) mani-

fests itself as an exponentially decaying oscillation. It is a result of the overlap of

the inclusion-induced bilayer perturbations and is retrieved by fitting F (H) with a

equation similar to eqn 4.17. At the intermediate length scale, i.e., 2
√
a0 < H < d0

l ,

a second contribution becomes evident, namely a repulsive interaction F c. In all

cases we found that F c(H) decays approximately exponentially with H as illus-

trated in fig 4.9. This F c(H) dependence is retrieved by subtracting F e from F .

For 2
√
a0 < H < d0

l the intermediate contribution is easily fitted. We believe

that this interaction contribution is a consequence of the confinement of the lipid

tails by the inclusions. At even smaller separations between the inclusions, i.e.,

H < 2
√
a0, the situation becomes more complex. We define the contribution Fm,

Fm(H) = F (H)−F e(H)−F c(H). This contribution is non-universal as it strongly

depends on the interaction of the tails with the inclusions’ surfaces. It can consist of

a depletion-induced [87] attractive interaction F d and/or a strongly oscillating and

exponentially decaying interaction F s. Similar forces are seen for polymer melts

confined between to solid surfaces which are believed to be related to the finite

compressibility in the system.
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Two rather extreme cases of interaction profiles are shown in figure 4.9. Both

figures show F as a function of H and also its contributions, i.e., F e, F c and Fm, are

depicted. Figure 4.9a shows F as a function of H and also its different contributions

when there is almost no hydrophobic mismatch, i.e., ∆d = −0.12, and no effective

lipid tail-inclusion interaction, i.e., χSC = χSV . It shows a repulsive barrier at

intermediate separation and a depletion-induced attraction at short separation. A

similar interaction profile has been shown in several other studies in which inclusion-

induced interaction without mismatch and effective tail-peptide interaction were

studied [27,30,34].

In figure 4.9b the dependence of F , F e, F c and Fm on H are depicted in the

case of strong attractive lipid tail-inclusion interaction, i.e., χSC = −1, and a large

positive mismatch, i.e., ∆d = 0.86. In this case also strong oscillations are present

in the short-range regime. This situation has not been discussed before, but it

exemplifies the importance of the tail-inclusion interaction at short separations.

Below, we discuss the findings for the three different length scales separately.

Long-range interaction

In this region the lipid-mediated interaction is a consequence of the overlap of the

structural bilayer perturbations. These perturbations result in a local variation in,

e.g. the membrane thickness dl(r), or the area per molecule a(r). These pertur-

bations follow the same functional form as the surface tension γ(r) given in eqn.

4.17. The wavelength λ and the decay length ξ of these perturbations are set by the

structural and elastic properties of the bilayers [79]. Figure 4.10 shows the energy

of interaction F (H) for H > d0
l , where F e(H) ≈ F (H). As the force f between the

f = − ∂F
∂H

, the result shows that there are attractive or repulsive forces depending on

the distance H. In figure 4.10a the dependence of F on the hydrophobic mismatch

∆d is shown, whereas the dependence of χSC is shown in figure 4.10b.

When H > d0
l all the profiles that are shown in figure 4.10 can be fitted by

F (H) = AF exp

(

−H

ξF

)

sin

(

2π

(

H − δF

λF

))

(4.19)

Here δF is the offset of the interaction profile and λF is it’s wavelength, which is equal

to the wavelength λ found for the local surface tension variations discussed above.

Also the interaction decay length ξF coincides with the decay length ξ discussed

above. The fact that the wavelengths λ, λF and the decay lengths ξ, ξF are similar

indicates that they have the same origin. The oscillatory free energy curve may be

rationalised using the elastic length scale concept. Whether attraction or repulsion

is found at some distance H depends on the match or mismatch of integer number

of elastic lengths between the surfaces. The extrapolated maximum amplitude AF

at H = 0 of the interaction energy profile shows the same dependence on ∆d and

χSC as A. For example when χSC = −1, both AF and A show a minimum at

∆d ≈ −0.65 [79].
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Figure 4.10: The interaction energy F/kBT per unit length l between two hard flat

inclusions as a function of the separation between their surfaces H. The distance H

is varied between 6 and 30l a) For several ∆d when χSC = −1. b) For various χSC

when t = 12 and ∆d = −0.12l.

Figure 4.10a shows the dependence of F onH for several values ∆d. The distance

H and the amplitude AF of the first maximum and minimum are determined by ∆d.

The amplitude of the maxima and minima decreases exponentially with increasing

H and there is a parabolic dependence on ∆d. In fig 4.10a, the largest maximum is

found for ∆d = 0.86, amounting to approximately 0.12kBT/l. When l = 0.2nm this

energetic barrier is large enough to easily overcome the thermal energy (approxi-

mately 1kBT ), even for inclusions with a biologically relevant size. This means that

in this situation and maybe also for the case of ∆d = 0.42l the energetic barriers

are sufficient to prevent the inclusions from coming closer to each other. The first

elastic minima are relatively small compared to the maxima. However, when a min-

imum appears at relatively small values of H, it may be deep enough compared to

the thermal energy to localise these inclusions at this distance. This is for example

the case for ∆d = −0.49l, where Fmin ≈ −0.04kBT/l. It can be concluded that for

relatively small hydrophobic mismatches the first elastic maximum or minimum can

be large enough to play a role in the organisation of peptides or proteins in a bilayer.

In these cases such molecules will either remain freely dispersed in the bilayer or

become ordered with many lipids between them.

In figure 4.10b the dependence of F on H is depicted for several values of χSC .

In all cases the mismatch between the inclusion and the bilayer is kept small, i.e.,

∆d = −0.12l. The position of the maxima and the minima is clearly affected by

χSC as well as their amplitudes. In the case were χSC = −4 the height of the

first elastic maximum is approximately 0.04kBT/l, which can in some cases be high

enough to prevent inclusions from approaching each other closely. Thus even when

the mismatch is small the elastic interaction can be an effective energetic barrier.

The first elastic minima in the studied cases are probably to small to accommodate

the inclusions at this distance from each other.
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Overall it can be concluded that the elastic minima and maxima can play a

role in the organisation of proteins and peptides even in the case of a relatively

small hydrophobic mismatch and these elastic minima and maxima may prevent

the aggregation of proteins.

Intermediate-range interaction

When the inclusions are separated at intermediate distance from each other, i.e.,

2
√
a0 < H < d0

l , the interaction free energy F cannot be described only by F e. In

this region another contribution must be taken into account, namely an interaction

energy F c that decreases exponentially with increasing H. This exponentially de-

caying F c can be attributed to the conformational restrictions of the lipid tails as a

consequence of the restricted volume between the two inclusions. As already shown

in previous sections the lipid tails do experience conformational entropic loss when

they are close to the inclusion’s surface and as a consequence the lipid tails try to

avoid this surface, resulting in an average lipid tilt with respect to the normal of

the bilayer surface. Strong confinement interferes with this tilt; i.e. it is destroyed

by confinement and this results in a repulsive force. This contribution has also been

discussed by May and Ben-Shaul [30], who used a simple director model as well as

a molecular-level mean-field model. They showed that, in the case of the mean-field

model, the interaction profile was not affected by the constraints on the head group

distribution. This repulsive contribution results in some cases in a barrier at the

intermediate range that is large enough to prevent the inclusions from approaching

each other closely.

As discussed above, to retrieve F c we subtracted F e(H) from F (H) in the inter-

mediate range. As expected F c(H) shows an exponential dependence on H.

Fc(H) = Ac exp

(

−H
ξc

)

(4.20)

Here Ac is the extrapolated value at H = 0 and ξc the decay length. In figure 4.11a

the dependence of the decay length ξc is depicted as a function of χSC in the cases

of a small hydrophobic mismatch, i.e., ∆d = −0.12. The figure shows that in first

order ξc ≈ 2l. A reason that ξc decreases somewhat with χSC might be that in the

case of strong attractive tail-inclusion interaction close to the inclusion the density

of the tails and their average tilt is larger than for weaker tail-inclusion interactions.

In figure 4.11b the relation between ξc and the lipid tail length is shown. It

appears that there is a nonmonotonic dependence. However, we attribute this to

a minor lattice artefact. Apart from this ξc tends to increase with increasing tail

length. This is consistent with the interpretation that this contribution is due to

the confinement of tilt conformations. A longer tail length results in a larger length

scale of the conformational interaction.
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Figure 4.11: a) The dependence of the decay length ξc in units l on χSC for ∆d =

−0.12l. b) ξc as a function of t for χsc = −1.

Short-range interaction

When two inclusions are at very close proximity two different effects can occur.

There can be a depletion-induced attraction as shown first by Asakura and Oo-

sawa [87] in a system of colloidal particles in a polymer solution. Our system is

intrinsically the same regarding the inclusion as a colloid and the lipid tails as a

two dimensional polymer solution. The depletion effect is found for those cases in

which the tails are not strongly interacting with the inclusion. If there is a strong

attraction we observe a pronounced oscillatory force curve which decays rapidly.

The origin of this behaviour is not so clear. However, this type of interactions is

also seen in polymer melts in strong confinement situations. We therefore expect

that they result from the finite compressibility of the lipid core.

In figure 4.12 the short-range interaction energy Fm is plotted as a function of

H for different systems. Fm is defined as Fm(H) = F (H) − F e(H) − F c(H) where

the profiles of F e(H) and F c(H) have been extrapolated to H = 0. Typically we

expect that Fm(H) = F s(H) + F d(H).

In figure 4.12a the dependence of Fm on H is shown for several values of ∆d. In

all these cases χSC = −1. Fm shows a large exponentially decaying oscillation with

a wavelength of 2l. Apparently Fm is not affected by the hydrophobic mismatch. In

this case Fm only consists of F s and no depletion-induced attraction is present in

these cases. This is in contrast with results shown in figure 4.12b where Fm profiles

are depicted for ∆d = −0.12l and various values of χsc. It shows clearly that

Fm(H) is strongly influenced by χSC . In the case of strong attractive interaction,

i.e., χSC = −1, there is a large oscillation and no depletion-induced attraction. In

the case where χSC = χSV = 1.5, the large oscillation has completely vanished and

Fm(H) only consist of the depletion-induced attraction F d(H).

One of the consequences of the strong non-monotonic interactions at strong

confinement is that when the separation between the inclusions becomes small a
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entropic part F s and a depletion contribution F d a) For different values of ∆d (in
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monomeric lipid layer can stay in between them. Whether this will be the case de-

pends entirely on χSC . This means that χSC is not only important for the inclusions

to reside in the bilayer, but this interaction is also important to understand how

proteins can pack densely in a lipid bilayer.

4.4 Conclusions

Lipid membranes can host inclusions like proteins and small peptides. We mod-

elled the lipid bilayer structure around these inclusions using a molecular level self-

consistent field theory. We focussed on three different aspects, namely the interac-

tion between the lipid tails and the inclusion, the curvature of the inclusion and the

lipid-mediated interaction between two inclusions. The tail-inclusion interactions

determine to a large extent the total energy of inserting an inclusion into a bilayer.

Furthermore the packing of the lipid tails adjacent to the inclusion and the per-

turbation of the bilayer are affected by these interactions and as a consequence the

energetically most favourable hydrophobic mismatch is also influenced by this inter-

action. The curvature of the inclusion has only a minor effect on the density of the

lipids adjacent to the inclusion. However, an increase of the inclusion’s radius results

in larger bilayer oscillations. The line tension between the inclusion and the bilayer

decreases with increasing inclusion radius. There are three distinct length scales

for the lipid-mediated interaction between two flat inclusions. When the distance

between the inclusions is larger than approximately the bilayer thickness the interac-

tion is determined by elastic properties of the bilayer and an exponentially decaying

oscillating interaction profile is found. In some situations the interaction on the elas-

tic length scale can be strong enough to play a role in the organisation of proteins

and peptides in bilayers. At intermediate separation the conformational restriction
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of the lipid tails starts to play an important role resulting in an exponentially de-

caying repulsive interaction. This repulsive interaction is only weakly influenced by

the hydrophobic mismatch and the tail-inclusion interactions. When the inclusions

do approach each other closely the interaction between the inclusion and the tails

becomes important. In the absence of a strong attractive tail-inclusion interaction

a depletion-induced attraction is found. In the case of strong tail-inclusion interac-

tion a strong oscillating and decaying interaction is found which is attributed to the

finite compressibility of the apolar core of the lipid bilayer. We conclude that the

tail-inclusion interaction can play an important role in the organisation of proteins

and peptides in the bilayer and this interaction should be considered together with

the hydrophobic mismatch.
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Chapter 5

Effect of size, rigidity and

bilayer-surface interaction on the

adsorption of lipid vesicles:

experimental study and

self-consistent field model

calculations

Abstract

In this study we address the effects of vesicle size, bilayer-surface interaction

energy and bilayer elasticity on the adsorption of lipid vesicles. This is done both

experimentally, by studying the adsorption of dioleoylphosphatidylcholine (DOPC)

vesicles to a gold surface, and theoretically, by using a self-consistent field (SCF)

modelling. The adsorption of vesicles has been studied with a quartz crystal mi-

crobalance (QCM), which gives the adsorbed mechanical mass, and with surface

plasmon resonance (SPR) experiments, in which the adsorbed lipid mass is mea-

sured. By combining these two techniques we show that the deformation of the

adsorbed vesicles increases with increasing vesicle size. Adsorption of DOPC vesi-

cles with a radius R larger than about 40 nm results into a fully covered gold surface,

while below this radius the surface is only partly covered, because the vesicles’ cur-

vature limits the interaction area with the surface and therefore the adsorption is

energetically less favourable. These size-effects are confirmed by the SCF calcula-

tions. The calculations further show that there are three regimes for adsorption,

depending on the balance between bilayer-surface interaction energy and bilayer

elasticity: i) the interaction with the surface is too weak to deform the vesicle and

no adsorption takes place; ii) moderate interaction leading to adsorption of intact

vesicles (surface partly or completely covered); in this regime the interaction energy
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and the penalty for deformation are balanced in such a way that the total adsorption

energy is independent of the bilayer bending modulus kc; iii) a strong interaction

regime in which an adsorbed bilayer patch is more favourable than an adsorbed

vesicle, resulting in the tendency of vesicles to fuse or to rupture at the surface.
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5.1 Introduction

Nowadays, vesicle adsorption is used frequently as a primary step in the formation

of supported lipid bilayers, i.e., lamellar bilayers attached to a solid substrate. As a

consequence the formation of such a supported bilayer has been studied rather ex-

tensively, while only a limited number of studies has been directed specifically to the

adhesion of intact vesicles. Insight into the conditions for intact vesicle adhesion can

be beneficial for various applications, for example, for studying membrane proteins

embedded in adsorbed vesicles using surface techniques (like total internal reflection

fluorescence, electrochemical methods and scanning probe techniques). Another ex-

ample is the use of adhered vesicles in sensor and immunoassay applications [88].

A major advantage of the use of adsorbed vesicles in a sensor device is that the

internal volume of a vesicle can store a large number of (e.g., fluorescent) reporter

molecules, which gives the possibility of strong signal amplification. Our interest in

the adsorption of lipid vesicles is generic, but also motivated by the idea that if one

succeeds to concentrate vesicles at a surface, with minimal interaction between lipids

and surface, it should be possible to study processes like vesicle rupture and fusion

as a response to changes in the aqueous environment using surface techniques. In

addition, the effect of bilayer-surface interactions could be studied by varying these,

e.g., by changing the pH (if the surface has a pH-dependent electric potential) or an

externally applied potential.

As mentioned above the adhesion of intact vesicles to a solid substrate has been

investigated in a limited number of studies. Keller et al. [89] were the first who

showed the intact adhesion of small unilamellar fluid eggPC vesicles onto oxidized

gold without subsequent rupture and fusion and the formation of a supported lipid

bilayer. They used QCM-D, i.e., a quartz crystal microbalance in which not only

the frequency shift upon adsorption is measured but also the dissipation by the

adsorption layer, giving the adsorbed mechanical mass as well as the viscoelastic

properties of the adsorbed layer. Reimhult et al. [37, 90, 91] studied the adsorption

of small unilamellar lipid vesicles on SiO2, TiO2, platinum and gold. They showed

that these surfaces facilitate the adsorption of intact vesicles at varying surface

coverage, over a large temperature range and also over a broad osmotic pressure

range. Furthermore, they found that the degree of deformation of adsorbed eggPC

vesicles on TiO2 increases when the vesicle size (radius) is increased from 12.5 nm to

100 nm. The same vesicles adsorbed to SiO2, before they form a single bilayer, are

much more deformed compared to vesicles on TiO2. Obviously, the strength of the

substrate-bilayer interaction is an important factor determining whether adsorbed

vesicles stay intact, but it is still unclear why fluid lipid vesicles are stable on gold,

platinum or TiO2 and why they rupture and fuse to form supported bilayers on

similar hydrophilic surfaces like SiO2, S3N4, glass and mica.

Besides experimental studies a number of theoretical studies have been performed

to gain insight into the parameters that determine the adsorption of lipid vesicles.
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Seifert and Lipowsky [92,93] elaborated a model in which the lipid bilayer is regarded

as a macroscopic sheet with a certain curvature-dependent free energy [19]. In their

model the structure of the lipid bilayer does not play a role and the Gaussian bending

modulus k̄ = 0. They introduced an effective contact potential that, together with

the interaction area between the vesicle and the substrate, determines the total

adhesion energy. In addition some constraints for the volume and area of the vesicle

were applied. Based on the assumption that when a vesicle adsorbs to a surface the

total adsorption energy W4πR2 has to be equal or larger than the elastic bending

energy 4π2kc, they defined a minimal adhesion radius Ra = (2kc/W )1/2. If the

pressure difference over the bilayer P = 0 and kc and W are taken to be constant,

this means that for R < Ra the vesicle will not adsorb and for R > Ra it is favourable

to be bound to the surface.

Besides this minimal adhesion radius Seifert and Lipowsky introduced a crossover

length Rc. If the radius of the vesicle R > Rc, the adhesion is determined by ther-

mally excited shape fluctuations and thus the entropy. Below this Rc the adhesion is

an energetically driven process and can described by the above-mentioned contribu-

tions. According to Seifert and Lipowsky the value of Rc is approximately 200 nm

for unilamellar phospholipid vesicles. A drawback of their theory is that it excludes

strong bilayer curvature because of the use of extremely large bending energies. In

reality however the lipid molecules in the bilayer can reorganise making a strong

curvature conceivable. Blokhuis and Sager [94,95] avoided this problem by studying

cases where the vesicles are very large which makes it possible to neglect the bending

rigidity of the bilayer. Their model is however not suitable for the adhesion of small

vesicles to a surface.

In the first part of the present study we experimentally address the effect of

vesicle size on the adhesion of vesicles to gold, using the surface plasmon resonance

(SPR) technique and a quartz crystal microbalance (QCM). With SPR the adsorbed

lipid mass is determined whereas the QCM measures the total adsorbed mass, i.e.,

the mass of the lipid bilayers plus the solution present in the interior of adsorbed

intact vesicles. Combination of the results of these two techniques allows draw-

ing conclusions regarding the surface coverage and deformation of the vesicles. We

used unilamellar vesicles made of the zwitterionic phospholipid DOPC (dioleoylphos-

phatidylcholine). At room temperature DOPC bilayers are in the fluid state. We

varied the size of the vesicles from R ≈ 25 nm to R ≈ 125 nm.

In the second part of this study the influence of vesicle size, bilayer bending

elasticity and bilayer-surface interaction on the adhesion of a single vesicle is stud-

ied by self-consistent field (SCF) modelling. The theory allows investigating the

thermodynamics of the adsorption process as well as the structural changes in the

vesicle, i.e., the overall deformation of the vesicle and the structural adjustments in

the bilayer while using a molecularly realistic model.
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5.2 Materials and methods

5.2.1 Vesicle preparation

The lipids used in this study are 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)

and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) purchased from Avanti

Polar Lipids (Alabaster, AL). KNO3 was obtained from Merck (Darmstad, Ger-

many) and water was purified with a Milli-Q water purification system (Millipore,

Sweden) and had a resistance > 17 MΩ/cm.

The lipids were dissolved in chloroform, which was evaporated under nitrogen

or in the roto-evaporator, and subsequently dried for at least 2.5 hours in vacuum.

The lipids were re-dispersed in an aqueous KNO3 solution to a lipid concentration of

approximately 12 mg/ml. The resulting polydisperse multilamellar vesicle dispersion

was freeze-thawed three to five times in order to dissolve all the lipids and to make

unilamellar vesicles. Subsequently the dispersion was pushed 41 times trough a

polycarbonate filter, using a mini-extruder (LiposoFast, Avestin, Ottawa, Canada).

Filters with pore diameters of 50, 80, 100, 200, 400 and 800 nm were used, resulting

in mean vesicle radii of 35, 45, 50, 70, 100, and 125 nm respectively, as determined

by dynamic light scattering (DLS) measurements and using cumulant analysis and

Contin fit to analyse the results. Smaller vesicles (mean radius 20 nm) were made

by sonication in a water bath.

5.2.2 QCM measurements

To monitor the adhesion of the lipids to gold, a quartz crystal microbalance was

used from Maxtek, Inc (Santa Fe Springs, California USA), with plano-plano AT-cut

polished quartz plates (1 inch in diameter) with a fundamental resonance frequency

of 5 MHz, on both sides coated with an inner layer of chrome and an outer layer

of gold (149273-1). The quartz plates were placed in a Teflon crystal holder (CHT-

100), the cell holder was connected to a plating monitor (PM-710). We used a

homebuilt flow cell provided with an inlet and an outlet that allow for the supply

of blank solutions and vesicles dispersions.

Before the measurements the plates were rinsed extensively with chloroform,

ethanol and millipore water, followed by cleaning in a plasma cleaner PDC-32G

from Harrick (Ithaca, New York) for at least 3 minutes. Then the plates were placed

overnight in the same solution (without vesicles) as used during the adsorption

measurements. Prior to each measurement a plate was shortly rinsed with millipore

water and dried under nitrogen. Subsequently, it was placed in the Teflon cell holder

with the flow cell. The flow of solutions was established by using gravity, because

using a pump resulted in an oscillating flow that interfered with the measurements.

The QCM measures the change in frequency of the gold-coated quartz piezo

crystal as a result of adsorbed mass. The frequency shift ∆f is related to the

adsorbed mass Γm according to the Sauerbrey relation [38]
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Γm = −(ρqµq)
1

2

2f 2
0

∆f (5.1)

where the density of the quartz ρq = 2.648×10−9 mg m−3 and the shear modulus of

quartz µq = 2.947×1015 mg m−1 s−2. The fundamental frequency of the quartz plate

f0 ≈ 5×106 s−1. This gives ∆m = 17.7×10−6∆f , with Γm in mg m−2 and ∆f in s−1.

It should be mentioned that the Sauerbrey relation only accounts for the adhesion

of thin rigid films. When the deposit is a relatively thick (visco)elastic layer (so that

it dissipates the vibrational energy), the mass calculated with this equation is an

underestimation of the actual adsorbed mass. This deviation can be corrected for

by applying the viscoelastic model described by Voinova et al. [96] and can only be

determined when the dissipation by the adsorbed layer is measured. Our QCM does

not have this ability. However, we can estimate the effect of dissipation on the basis

of earlier studies [37, 90] where the dissipation has been measured. In these studies

the actual adsorbed mass for several vesicle sizes (on TiO2) was calculated with the

above-mentioned viscoelastic model. The results show that when the vesicle radius

is approximately 20 nm the adsorbed mass calculated with the Sauerbrey relation

and with the viscoelastic model of Voinona are equal. For a radius of around 100 nm

the ”Sauerbrey mass” is approximately 15 percent lower than the ”Voinova mass”.

In this paper we will use the Sauerbrey equation to calculate the adsorbed mass and

keep possible corrections in mind.

5.2.3 Surface plasmon resonance experiments

The adhesion of lipid vesicles to gold was also measured with a surface plasmon

resonance (SPR) instrument (Autolab ESPRIT SPR, Ecochemie BV, Utrecht, The

Netherlands). It uses a laser with a fixed wavelength of 670 nm. Commercially

available gold-coated glass disks (Ecochemie BV, Utrecht, The Netherlands) with a

diameter of 25 mm and a gold layer thickness of 48 nm, were cleaned in the same

way as the QCM crystal plates. The instrument contains two cuvettes that were

used simultaneously to study vesicle adsorption, which was done by injecting 100

µl of the vesicles solution into the cuvettes. During the measurements the solutions

were stirred continuously by aspirating and dispensing 30 µl of the solution with a

flow of 33 µl/s.

The SPR technique is sensitive to changes in the refractive index near the

gold/solution interface, which provides information about interfacial events like

binding of molecules to the gold surface. At a certain angle, the so-called SPR

angle, where the reflection of the incident monochromatic p-polarized light beam on

the gold surface is minimal, the energy of the incident monochromatic light beam

is coupled into a surface-plasmon wave travelling along the gold/solution interface.

This SPR angle is determined by several factors like the wavelength of the incident

light beam, the thickness of the gold layer and the refractive index of the solu-
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tion. This dependency on the refractive index provides the possibility to measure

variations in the solution with the following equation.

∆Θ = κns (5.2)

Here ∆Θ is the change of the SPR angle and ns is the refractive index of the so-

lution. The sensitivity of the measurements is given by κ, which was determined

by measuring the SPR angle for several water/ethanol mixtures with ns ranging

between 1.333 and 1.348 and was found to be 7.2×10−6/m◦. When a single adsorp-

tion layer with a thickness d and a refractive index nl is present at the surface, in

equation (5.2) the refractive index of the solution should be replaced by an effective

refractive index. In the calculation of such an effective refractive index it should

be taken into account that the sensitivity of the SPR exponentially decreases with

increasing distance from the surface. This results into the following equation [97]

neff = 2/ld

∫ ∞

0

nz exp(−2z/ld)dz (5.3)

where ld is the characteristic decay length of the exponentially decaying evanescent

electromagnetic field into the medium. The value of nz equals the refractive index

of the adsorption layer nl for z = 0 to z = d and from z = d it is equal to ns. From

the experimentally obtained value for ∆Θ the effective refractive index is obtained,

and using the refractive index increment of the adsorbing component it is possible

to derive the adsorbed amount per unit area. For this we use a program called

Huygens (Dullware Software, Wageningen, The Netherlands), which is based on the

Abeles’ method [98,99].

For the adsorption of intact vesicles the situation is more complicated, because a

heterogeneous adsorption layer, consisting of a solution fraction and a lipid bilayer

fraction, is attached to the gold surface. The ratio of these fractions depends on

the degree of surface coverage and on the deformation of the adsorbed vesicles. We

assume that when a vesicle deforms in order to gain adsorption energy, the bilayer

area remains the same while the volume is adjusted. As a first approximation we

further assume that the vesicles deform to oblate spheroids with a radius R|| parallel

to the surface and a radius R⊥ perpendicular to the surface, which is half the height

H of the deformed vesicle. Now, the ratio of the lipid mass per surface area for the

deformed vesicles, Γl, and for spherical vesicles of radius R, Γs
l , can be calculated

with

Γl

Γs
l

= 0.45(
H

2R
)2 + 0.035

H

2R
+ 0.5 (5.4)

With equations (5.3) and (5.2) and using the Huygens program it is now possible to

calculate the shift of the SPR angle for a complete monolayer of adsorbed vesicles

as a function of the degree of deformation. It is noted here that lipid bilayers

are optically anisotropic and in the case of DOPC the p-polarized refractive index
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np = 1.450 and the s-polarized refractive index ns = 1.435, as determined with

plasmon-waveguide resonance spectroscopy [100]. However, for the adsorption of

intact vesicles the bilayer adopts all kind of orientations relative to the surface and

therefore we use the average refractive index n = 1.44.

5.2.4 Self-consistent field theory

The self-consistent field (SCF) theory is a powerful tool to study association colloids,

like micelles, bilayers and vesicles [2, 64, 83, 84]. We refer for most of the details to

these papers and references therein. In short, the theory makes use of a mean-field

approximation and uses a discrete lattice consisting of layers wherein the volume

fraction ϕ of the molecules represents the (local) average concentration of compo-

nents. The molecules that are used in the model are coarse-grained and consist of

segments which represent small atom groups, for instance a CH2 or CH3 group in a

lipid tail. All segments have the same size and occupy one lattice site. The lattice

allows for one or two concentration (volume fraction) gradients implying an averag-

ing over two or one direction, respectively. Most of the results discussed below make

use of a two-gradient cylindrical coordinate system next to an impenetrable surface

(c.f. figure 5.1). A drawback of this approach is that the geometry of the self-

assembled structures is constrained and in some way pre-proposed. However, this

geometry perfectly fits our requirements, because adsorbed vesicles are expected to

be deformed in such a way that they can be rotated along an axis that runs through

the center of the vesicle and is perpendicular to the surface.

An important feature of the SCF model is that the pair interactions of, e.g., a

segment with label A with all other segments, is replaced by the interaction of this

segment with an external potential field uA(r) given by

uA(r) = u′(r) + kBT
∑

B

χAB(< ϕB(r) > −ϕb
B) (5.5)

where u′(r) represents the energy that is needed to generate a vacant site at position

r to insert a segment A, with r = (z, r) in the two-dimensional cylindrical case

(figure 5.1). The second term represents the non-ideal interactions between segment

A and all other segments, with ϕB the volume fraction of the other segments and

the superscript b refers to the bulk solution. The angular brackets represent a

local average. The Flory-Huggins nearest-neighbour exchange energy parameter is

denoted by χAB. If this parameter is negative the AB interaction is energetically

favourable over the AA and BB interactions. The volume fraction of a free segment,

that is a monomeric entity) ϕA(r) can directly be retrieved from the potential uA(r):

nA(r) ∝ GA(r) = exp
−uA(r)

kBT
(5.6)

Here GA(r) is the Boltzmann factor, which is proportional to the number nA(r) of

segments A at position r, which in turn is trivially related to the volume fraction

100



ϕA(r). When a segment is not free, but part of a chain-like molecule, the possible

conformations of the chain have to be taken into account. By generating all possible

self-avoiding walk conformations one can retrieve the statistical weight of all these

possible chain conformations. However, this is a very time consuming job, especially

for larger chains. Therefore we make use of a first order Markov approximation

which permits, in principle, the positioning of a chain segment on a site aready

preoccupied by another segment of the same chain. The excluded-volume problems

is in part compensated by enforcing that on average each site is filled exactly once

(as explained already). Within the first-order Markov approximation there exists a

very efficient method to generate the volume fraction distribution for given set of

segment potentials.

In short the SCF formalism thus allows to compute the volume fractions of the

components once the segment potentials are avaiable, which symbollically may be

abbreviated by ϕ[u(r)]. Morover Eqn 5.5 shows that the potentials can be computed

from the segment distributions, or symbolically u[ϕ(r)]. Numerically a fixed point of

this system is found routinely using an iterative procedure. The solution is known as

the SCF solution obeys together with the vacancies an incompressibility constraint,

i.e.
∑

A ϕA(r) = 1 for all coordinates.

As at the basis of the SCF formalism there is an expression for the Helmholtz

energy of the system, it is straightforward to accurately compute thermodynamic

variables from this as soon as the SCF solution is available. These results are used

below to analyse adsorption energies etc. for the interfacial vesicles.

Parameters

Referring to fig. 5.1, our system consists of two type of molecules, i.e., lipids and

water, shown in figure 5.1. The lipid molecule has two tails, each consisting of t = 12

to 18 hydrophobic segments. Its headgroup consists of nine segments, i.e., two frag-

ments of three hydrophilic segments spaced by a fragment of three hydrophobic

segments. Water is present as a cluster of five segments, i.e., one central W sur-

rounded by four others. The motivation for this water-model is that it suppresses

(in line with experimental data) the amount of water in the bilayers as compared of

using monomeric water species. Besides these two molecules there is also a single

unit entity V, which represents free volume and allows for the compressibility of the

system. The choice of the Flory-Huggins interaction parameters between the dif-

ferent segments has been discussed in a previous paper [79] and are shown in table

5.1.

We will briefly review the most important parameters. The repulsive interac-

tion parameter χCW = 1.1 between the hydrophobic tail segments and water drives

the self-assembly of the lipid molecules to supramolecular structures. It has been

chosen in such a way that the critical micelle concentration (c.m.c.) of the lipid is

in the same range as the experimentally determined c.m.c. and shows comparable

dependence on the tail length. The interaction between the hydrophilic head seg-
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free volume

lipid

z

r

Figure 5.1: On the left side a two-dimensional cylindrical lattice. The z direction

runs perpendicular to the surface (z = 1 is the first layer next to the surface -

not indicated). The r coordinate is parallel to the surface. Note that the number

of lattice sites L(r, z) in a coordinate (r, z) is proportional to r. This coordinate

system is used to study isolated adsorbed vesicles. For further explanation see the

text. On the right the molecules that were used in the calculations. The head and

two-tail structure of the lipid, and the water molecule assumes 5 sites as indicated.

We further allow for free volume sites which may be represented by a monomeric

species V . The names of the segment types of the components are indicated.

C W X V S

C 0 1.1 2.5 1.5 0.5

W 1.1 0 −0.5 2.3 0

X 2.5 −0.5 0 2.3 −2.0

V 1.5 2.3 2.3 0 2.3

S 0.5 0 −2.0 2.3 0

Table 5.1: The Flory-Huggins interaction parameters between the various segments.

A positive value means that the interaction is repulsive and a negative value rep-

resents an attractive interaction with respect to the interaction between identical

segments. The parameter set is an extended (for the surface interaction) one from

ref. [2]

102



0

0.5

1

−10 0 10
�

ϕ
����

����

	
����



�
�


���

���

Figure 5.2: Volume fraction profile across a tensionless planar lipid bilayer with

lipid tail length t = 18. Volume fraction profiles of the tail segments and the head

segments are depicted, as well as those of the free volume and the water molecules.

ments and water is attractive (χXW = −0.5), which determines, together with the

repulsive interaction parameter between the head segments and the tail segments

(χXC = 2.5), the typical orientation of the lipids in the bilayer. It furthermore

functions as a stopping mechanism in the self-assembly of the bilayer. In figure 5.2

the volume fraction profile of head, tail, water and free volume segments across a

typical bilayer (t = 18) is depicted. It shows the high density of the lipid tails in

the core of the bilayer and the water-rich headgroup region on the outside of the

bilayer.

In previous studies [79] we have determined several structural and mechanical

properties of these bilayers as a function of the tail length t. It was found for example

that for a tensionless bilayer the thickness d0
l in units l (i.e., the size of a lattice site),

and the area per molecule a0 in units l2 depend on the tail length of the lipids t

according to the following equations:

d0
l = 2.86 + 0.437t (5.7)

a0 = 5.99 + 0.133t (5.8)

For the mechanical bilayer properties, i.e., the bending modulus kc ≡ ∂2γ
∂J2 (in

units kBT ) and the area compression-expansion modulus ka ≡
(

∂γ
∂ ln a

)

γ=0
(in units

kBT/l
2), the dependence on t is given by

kc = 4.69 + 0.668t (5.9)

ka = 1.65 + 4.31 × 10−2t (5.10)
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where γ is the grand potential per unit area of the bilayer which is equivalent to the

membrane tension.

As told, in all calculations presented in this paper a two-dimensional cylindrical

lattice (figure 5.1) is used and the adsorbing surface is placed at z = 0. The vesicles

consist of N = 1000 to N = 2000 lipids, which means that in the free state (not

interacting with a surface) they have a radius ranging from R ≈ 18l to 25l (here l

respresents the size of a lattice site). This radius is defined as the distance from the

centre of the vesicle to the centre of the lipid bilayer leaflet. The modelled vesicles

are rather small (R is in the order of 5 - 10nm) and in this size range the thermal

fluctuations discussed by Seifert and Lipowski [92,93] are not relevant. In this study

we will further look at the effects of bilayer elasticity and the interaction between the

lipid headgroups and the surface on the structure of the adsorbed vesicles and the

thermodynamics of the adhesion. This is achieved by varying the tail length from

t = 12 to t = 18 and the interaction parameter between the hydrophilic headgroup

segments and the surface χXS from −3 to 0, which appears to be the relevant range to

find weakly adsorbed vesicles. Even though not all head group segments experience

the favourable interactions with the surface (only the X-ones have this), below we

refer to this adsorption energy as χHS ≡ χXS for simplicity.

5.3 Results and discussion

5.3.1 Experiments

Figure 5.3a shows the relation between the total adsorbed mass Γm on gold as

measured by the QCM and the radius of the (DOPC) vesicles in solution, R, for

250 mM KNO3 and pH 3. The total DOPC concentration in solution was 1 g l−1.

The black dots represent the average adsorbed mass of at least three measurements

and the error bars show the standard deviation of these measurements. The radius

of the DOPC vesicles was varied from R = 25 nm to R = 120 nm. The total

adsorbed mass consists of the adsorbed vesicles including their aqueous interior and

any water enclosed between the vesicles. As already mentioned the adsorbed mass

is calculated with the Sauerbrey relation [38], which means that in particular for the

larger vesicles the adsorbed amount Γm is an underestimation (see Materials and

methods section / QCM measurements).

The dashed line in figure 5.3a indicates the adsorbed mass Γs
m for the theoretical

case of (hexagonally) close packed rigid spheres with a density of 1 g ml−1. This

density is chosen because the overall density of the vesicles including their content is

approximately the same as the density of the aqueous environment. The mass Γs
m is

an indication of the maximum possible adsorbed mass for intact vesicle adsorption

and is proportional to the vesicle radius. Obviously, this results from the fact that

the mass of each sphere scales with R3, while the occupied area at the surface scales

with R2. Comparison of Γm with Γs
m shows that they diverge with increasing R. For
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Figure 5.3: a) The total adsorbed mass Γm (mg/m2) measured with the QCM as

a function of the vesicle radius R. b) The ratio between Γm and the theoretical

adsorbed mass for the case of a monolayer of hexagonally packed spheres with the

density of water, Γs
m, as a function of R. (250 mM KNO3, pH 3.)

the larger vesicles this may be partly due to the dissipation effect, but this effect is

expected not to be larger than approximately 15 percent (see Materials and methods

section / QCM measurements). Other factors that may lead to a deviation between

Γm and Γs
m are i) rupture of vesicles, ii) deformation of the vesicles, iii) contribution

of aqueous solution that is enclosed between the vesicles, and iv) incomplete surface

coverage. In case of rupture of the vesicles, the maximum adsorbed mass would

correspond to the mass of a single bilayer, which is in the order of only 5 mg

m−2. Since the total adsorbed mass is substantially higher and depends on the

vesicle radius, we can rule this out (also in the adsorption kinetics no indications

of vesicle rupture have been found). Deformation of vesicles, on the other hand,

will undoubtedly play a role. The vesicles will not remain spherical when they are

adsorbed to the gold surface. To increase the interaction energy between the vesicle

and the surface the vesicles will flatten to some degree, which results in a decrease

of the adsorbed mass per unit area. Solution enclosed between the vesicles would

increase Γm, but we do not expect that this is a major effect, especially not in view

of the vesicle deformation. Incomplete coverage would of course lead to lower Γm

values.

Combination of the QCM results with SPR results gives more insight into the

way the vesicles are adsorbed on the gold surface. SPR results are shown in figure

5.4a, which gives the shift in the SPR angle ∆Θ as a function of the free vesicle

size. It shows that ∆Θ increases from approximately 800 m◦ for R = 25 nm to

approximately 1400 m◦ for R = 70 nm. For larger values of R ∆Θ starts to decrease

again to approximately 1200 m◦ when R = 125 nm. The angle shift ∆Θ is a

measure for the adsorbed lipid mass, although the interpretation of the data is not

straightforward as already discussed. Since the sensitivity of the SPR decreases when

the distance between the mass and the surface increases, deformation (flattening) of
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Figure 5.4: a) The shift in the SPR angle ∆Θ in m◦ resulting from the adsorption

of DOPC vesicles as a function of vesicle radius R in nm b) Theoretical shift in

SPR angle versus the degree of deformation of the adsorbed vesicles H/2R for the

various vesicle radii R used in the experiments. Note that H/2R = 1 implies that

the adsorbed vesicles are not deformed at all.

the vesicles contributes to the angle shift in two different manners: the lipid mass

per surface area decreases, which results into a smaller angle shift, but also the

average distance of the bilayer with respect to the surface decreases, which gives an

increase in angle shift. In order to quantify these opposite effects we calculated the

shift in SPR angle for various degrees of deformation with the Huygens program as

described before (see Materials and methods section / SPR measurements). The

parameters in the program were chosen in such a way that the sensitivity was the

same as in the experimental setup, i.e., κ = 7.2 × 10−6/m◦. The effect of flattening

on the lipid mass per unit area has been given by equation 5.4.

In figure 5.4b the calculated values for ∆Θ are plotted for vesicle sizes used in the

experiments as a function of deformation, which is expressed as H/2R. What can

be seen immediately is that ∆Θ depends on the size and deformation of the vesicles.

The decrease of ∆Θ with increasing vesicle size can be attributed to the increased

average distance between the vesicles’ bilayer and the surface. An interesting feature

is that the dependence of ∆Θ on de vesicle deformation becomes stronger with

decreasing vesicle size. For the three smallest vesicles the SPR angle monotonically

decreases with increasing vesicle deformation (i.e., decreasing value of H/2R). Here

the decrease of the lipid mass per unit area is on ∆Θ is dominant over the increased

SPR sensitivity. For the three largest vesicles these counteracting effects result in

a minimum in ∆Θ at a certain H/2R. All curves coincide at H/2R = 0 where the

vesicles are completely flattened.

Comparison of the measured ∆Θ values for the three largest vesicles with the

calculated values shows that they are in the same range, although the measured ∆Θ

values tend to be somewhat larger than what is theoretically expected. This may

be due to the relatively simple model used for the deformation of the vesicles and
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Figure 5.5: The initial adsorption rate, given by the SPR angle shift between in-

jection of the vesicle dispersion and the first measurement, ∆Θi (m◦), versus the

vesicle curvature 1/R.

the calculation of ∆Θ. Anyway, the rather good agreement between the theoretical

shifts in the SPR angle and the measured values shows that in the case of the larger

vesicles a closely packed monolayer of deformed liposomes is formed.

Knowing that these larger vesicles, i.e., R > 50nm, are approximately closely

packed on the gold surface gives us the opportunity to retrieve to some extend the

deformation of the adsorbed vesicles. In figure 5.3b the ratio between the measured

QCM mass Γm and the ideal theoretical QCM mass Γs
m is depicted as a function of

R. In the case of the largest vesicle, i.e., R ≈ 125nm, Γm/Γ
s
m is approximately 0.4.

The underestimation of Γm, caused by the viscoelasticity of the adsorbed layer, is

approximately 15 percent as discussed earlier. This means that the deformation of

the vesicles H/2R ≈ 0.5, depending on the additional water mass. This deformation

becomes smaller with decreasing vesicle size, i.e., when R ≈ 50nm, H/2R ≈ 0.8.

For the smaller vesicles, R < 50nm, the dependence of the theoretical SPR angle

(fig. 5.4b) on H/2R is rather large. However, the measured ∆Θ in the case of

these small vesicles is smaller then all these theoretically possible SPR angles. This

suggests that these small vesicles are not densely packed on the surface, but show

a lower degree of surface coverage. Assuming that H/2R ≈ 0.8 a rough estimate of

the surface coverage can be made. This gives a surface coverage of approximately

0.5, 0.7 and 0.9 for vesicles with R = 25nm, R = 35nm and R = 45nm, respectively.

This smaller degree of surface coverage, i.e., less attractive interaction, in the

case of the smaller vesicles is supported by the initial adsorption rate shown in

figure 5.5 as a function of 1/R. The initial adsorption rate is indicated by ∆Θi (m◦,

i.e., the SPR angle shift between the injection of the vesicle dispersion and the first

measurement approximately 7 seconds later.

The figure shows that in the range from 1/R = 0.008 nm−1, i.e., R = 125nm,
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to 1/R ≈ 0.025 nm−1, i.e., R > 40nm, the initial adsorption rate is inversely pro-

portional to size of the vesicles. This is strong evidence that in this region the

adsorption rate is transport limited. When 1/R becomes larger than 0.025 nm−1

this proportionality is lost, which indicates that attachment to the surface becomes

the limiting factor. This can be attributed the fact that these small vesicles, i.e.,

with large curvature, do have a small initial interaction area with the gold sur-

face and consequently do not have enough adhesion energy to stay attached to the

surface. They have to deform to some extend in order to stay attached and as a

consequence the number of vesicles that sticks to the surface decreases.

5.3.2 Theory

In this section we present the results of SCF calculations that were selected such that

they can be compared to or assist in the interpretation of the experimental result.

Of course from the SCF calculations one get supplementary information, e.g. on

the thermodynamic and structural properties of adsorbed vesicles (as compared to

free vesicles in solution). We focus on the effects of vesicle size, interaction energy

between the lipid headgroup segments and the surface, and the bilayer elasticity.

In addition, we address the stability of the adsorbed vesicles by comparison with

the thermodynamic properties of adsorbed bilayer patches composed of the same

number of lipid molecules.

It is generally believed that the questions whether a vesicle adsorbs or not and

if it stays intact when it adsorbs, is determined by the interplay of several factors,

which have been described by Seifert and Lipowsky [92]. These are the interaction

energy between the hydrophilic lipid headgroup segments H and the surface S, which

is in our model determined by the Flory-Huggins interaction parameter χSX (=χSH),

the elastic properties of the bilayer which are described by the bending modulus kc,

the lateral tension of the bilayer γ and the pressure difference between the vesicle

exterior and interior P = Pe − Pi. The latter contribution is in our calculations

automaticallyset to zero because we consider equiibrium only. In other words we

are considering a bound vesicle that has been adsorbed for a period of time in which

it was capable of reducing the pressure to P = 0 by adjusting its volume and/or

surface area. This implies that the volume and the surface area of the free and the

bound vesicle may differ, but the number of lipids N in the two vesicles is the same

in all cases.

The strength of the interaction between the vesicles and the surface is varied by

varying the Flory-Huggins interaction parameter χSH between the lipid hydrophilic

head segments H and the surface S. However this parameter only gives the (free)

energy for having a head-surface contact. More important is the free energy of inter-

action which also involves conformational degrees of freedom of the lipids. Therefore,

in this section we will not always use χSH , but will sometimes present the results

as a function of the bilayer-surface interaction (free) energy ∆G (in units kBT/l
2),
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Figure 5.6: a) The relation between the lipid-surface interaction energy ∆G (in

kBT/l
2) and the Flory-Huggins interaction parameter χSH .

which is defined as

∆G = ΩBS − ΩS − ΩB (5.11)

Here ΩBS is the grand potential of a flat bilayer adsorbed to a flat surface and ΩS

is the grand potential of a free surface (both in units kBT and per unit area). Both

have been determined at the cmc of the lipids, i.e., at the chemical potential of the

lipids where the free bilayer is tensionless, i.e., the grand potential ΩB = 0. The

grand potential Ω can be described with

Ω = U − TS − ΣiµiNi (5.12)

where U is the contact interaction energy between the segments in the system, TS

is the entropic contribution, with T the temperature and S the entropy and ΣiµiNi

is the total chemical potential of all the segments present in the system, with µi the

chemical potential of a molecue of type i and Ni the number of molecules of type i.

This means that ∆G can also be described with

∆G = ∆U − ∆(TS) − ∆
∑

i

µiNi (5.13)

with ∆U = UBS − US − UB, ∆(TS) = (TS)BS − (TS)S − (TS)B and ∆ΣiµiNi =

(ΣiµiNi)BS − (ΣiµiNi)S − (ΣiµiNi)B. The dependence of ∆G and its contributions

∆U , ∆TS and ∆ΣiµiNi on χSH are shown in figure 5.6.

The figure clearly shows that the dependence of ∆G on χSH is stronger when χSH is

more negative. For χSH ≈ −0.7 the effective adsorption energy ∆G = 0, suggesting

that the bilayer does not adsorb when χSH > −0.7. The decrease of ∆G with

decreasing χSH , can be attributed to a decrease of ∆U , which is mainly caused by

an increased number of favourable interactions between the hydrophilic headgroup
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Figure 5.7: Equal volume fraction contour plots of interfacial vesicles for two different

bilayer-surface interaction energies ∆G. The lines indicate the volume fraction of

lipids of 0.5 (which occurs just beneath the head groups; it thus points to the edge

of the membrane core). Both vesicles consists of 1000 lipids, with a tail length

of t = 18. The dimensions of the r and z axes are in lattice layers l. a) ∆G =

−7.65 × 10−2kBT/l
2 (χSH = −2) b) −2.06 × 10−1kBT/l

2

(χSH = −3)

segments and the surface and the increased energy gain per interaction. There are

also two opposing effects. The entropic contribution ∆(TS) increases because the

water molecules adjacent to the surface are replaced by lipid molecules when χSH

becomes larger, resulting in more conformational restrictions of these lipids. The

chemical potential contribution ∆ΣiµiNi is only small and can be attributed to the

increased number of lipids in the system when χSH is large.

In figure 5.7 two examples of equal volume fraction contour plots for the adsorbed

vesicles are presented. From this figure one can easily retrieve the overall shape of

the adsorbed vesicle. The inner and outer boundaries of the bilayer, arbitrarily

positioned where the lipid volume fraction ϕl = 0.5, are depicted as black lines.

Between these two boundaries ϕl increases to approximately 0.9, and the volume

fraction profile is quite comparable to that of the flat tensionless bilayer, which is

shown in figure 5.2. In both cases the vesicle consist of N = 1000 lipids and each

lipid has two tails of 18 segments, i.e., t = 18. When these vesicles are in the

free state they have a radius R = 18.4l. The bilayer-surface interaction energies

∆G = −7.65 × 10−2kBT/l
2 (a) and −2.06 × 10−1kBT/l

2 (b), respectively.

From figure 5.7 it is obvious that the degree of deformation or flattening of the

adsorbed vesicle becomes larger when the interaction between the vesicle and the

surface increases. However, besides this increased flattening, figure 5.7b shows that

the bilayer topology at the edges of the adsorbed vesicle close to the surface is a

function of the adsorption energy. This means that the bending at the edges is

not caused by simple change in curvature of the bilayer, but involves rather drastic

structural changes.

In figure 5.8a the dependence of vesicle deformation on ∆G is depicted. The

deformation is given by H/2R, with H the distance between the surface and the
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Figure 5.8: a) The relation between the deformation of the adsorbed vesicle, H/2R,

and the bilayer-surface interaction energy ∆G. b) Total adsorption energy as a

function of ∆G for adsorption of an intact vesicle and for adsorption of a vesicle

in the form of a bilayer patch. In both cases the number of lipids in the vesicle

N = 1000 and the tail length of the lipids t = 18.

centre of the (upper) lipid bilayer part at r = 0 that is not in contact with the

surface, minus half the thickness of the flat adsorbed bilayer. R is the radius of

the free vesicle (R = 18.4l). The figure proves that there are two regimes with

different dependencea of H/2R on ∆G. The transition between these two regimes

is approximately at ∆G = −0.1kBT/l
2. In the range −0.1kBT/l

2 < ∆G < 0 the

deformation of the adsorbed vesicle can be regarded to be elastic (i.e., the density

of the bilayer is locally adjusted, but the volume fraction profiles do not change

drastically), while in the range ∆G < 0.1kBT/l
2 structural changes as seen in fig

5.7b of the bilayer play an important role.

The total adsorption energy ∆F , i.e., the free energy difference between the free

and the adsorbed state of a vesicle (intact or as a bilayer patch), is defined as

∆F = (ΩSV +
∑

i

Niµi)bv − (ΩS + ΩV +
∑

i

Niµi)fv (5.14)

with ΩSV , ΩS and ΩV the grand potential (per unit area) of a bound vesicle, a

bare surface and a free vesicle, respectively. The term
∑

iNiµi denotes the total

chemical potential of the system, and N the number of molecules per type and µi

the chemical potential. The subscripts bv and fv denote the bound vesicle state

and the free vesicle state, respectively. It is noted that the number of molecules Ni

is the same in both states, as well as the temperature T and pressure difference P

over the bilayer, i.e., P = 0.

In figure 5.8b the dependence of the adsorption energy ∆F on the bilayer-surface

interaction energy ∆G is depicted for both the adsorption of an intact vesicle and the

adsorption of a bilayer (with the same number of lipids) as a flat bilayer patch. The

bilayer patch has a flat disk-like bilayer next to the surface, similarly as an adsorbed
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bilayer, but on top of this, it has a rim. The rim is the sourse of some excess energy.

It is possible to analyse the disk in large detail and extract the edge-energy as well as

the membrane tension of the bilayer body. However, we will not do his here because

it will distract us from the main line. It thus comes to no surprise that in the case

of the bilayer patch there is a linear relation between ∆F and ∆G. However, in the

case of the adsorbed intact vesicle, there is a deviation from this linearity and the

slope of the curve is always smaller than that of the line for the adsorbed patch.

The non-linearity must be attributed to the increasing deformation of the vesicle

with increasing lipid-surface interaction energy, which diminishes the energy gain

by adsorption. From our calculations we see that in the present model of the lipid

surface interactions the adsorption-transition of the vesicles is a continuous phase

transition; there is no evidence for hysterisis in the adsorption process. This means

that as soon as ∆G is negative the vesicles will adsorb. At ∆G ≈ −0.07kBT/l
2, ∆F

for the vesicle and the bilayer patch are equal. This signals an abrupt transition.

For ∆G < −0.07kBT/l
2 the bilayer patch is energetically more favourable and for

∆G > −0.07kBT/l
2 the vesicles are energetically more favourable. As the two lines

cross each other, we may trap a system in a meta stable state, i.e., that a patch is

found whereas the vesicle is more preferred and the other way around. This effect

is the natural consequence of an abrupt first-order transition.

From the above it follows that the vesicle adsorption can be divided in three

different ∆G regimes. The weak interaction regime is from −0.07kBT l
−2 < ∆G < 0.

In this regime the adsorbed vesicle is stable with respect to the adsorbed bilayer

patch resulting in intact vesicle adsorption. The number of adsorbed vesicles per

unit area decreases with increasing ∆G. The intermediate regime, i.e, −0.1kBT l
−2 <

∆G < −0.07kBT l
−2, is the regime where adsorption of an intact vesicle is slightly less

favourable than formation of a bilayer patch. However, because the vesicles show

only elastic deformation in this regime they may still adsorb intact and not fuse

with other adsorbed vesicles. The third regime is the strong interaction regime, i.e.,

∆G < 0.10kBT l
−2, where the adsorbed vesicles have a strong tendency to rupture

and fuse with other adsorbed vesicles, because staying intact is energetically highly

unfavourable compared to forming a bilayer patch. As shown in figure 5.7b, in

this regime the adsorbed vesicles are strongly deformed, having a highly energetic

ridge, and this can be relaxed by a joint structural reorganisation of neighbouring

vesicles, i.e., fusion. If the lipid-surface interaction is very strong it is even possible

that the vesicles rupture without having interactions with other vesicles. From the

calculations we do not get information about the way the metastable vesicles evolve

to the more stable adsorbed bilayers.

In figure 5.9a, the relation between the vesicle deformation and radius of the

free vesicle R is depicted. The figure shows that there is a linear relation between

H/2R and R. This is in agreement with the experimental results, from which it was

concluded that the deformation of the lipid vesicles increases when the vesicles size

becomes larger. For the QCM results the ratio Γm/Γ
s
m (fig. 5.3b) can be used as a
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Figure 5.9: a) Dependence of the deformation of the adsorbed vesicle, expressed as

H/2R, on R. b) The relation between the adhesion energy per lipid molecule (in

kBT ) and R.

measure for the degree of deformation of the adsorbed vesicles, assuming that the

surface is fully covered by vesicles. The SPR results show that this assumption is

justified for the larger vesicle sizes. Although the ratio Γm/Γ
s
m gives just a qualita-

tive indication, because the exact additional water mass in the adsorption layer is

unknown as well as the dissipation due to the visco-elastic response, it is clear that

it linearly depends on R for R > 25 nm. This is also the case if we correct for the

(estimated) visco-elastic effect and additional mass (not shown).

The slope of the lines in figure 5.9 increases with decreasing vesicle-surface in-

teraction. Thus not only the deformation itself, but also the change of deformation

with the vesicle size gives information about ∆G. Another interesting phenomenon

can be observed at χSH = −1 and R = 21l (corresponding to N ≈ 1250): here

H/2R = 1, i.e., the vesicle is not deformed, which results in a very small vesicle-

surface interaction area and it is likely that at this χSH value a smaller vesicle does

not adsorb. It can thus be concluded that when ∆G = 6.73 × 10−3kBT/l
2 the

minimal radius for vesicles to adsorb is Rmin ≈ 21l. Likewise, for χSH = −1.2 or

∆G = 1.46×10−2kBT/l
2 we found that this minimal radius Rmin ≈ 18l (not shown).

Comparison of Rmin with the minimal adsorption radius Ra calculated according to

the model of Seifert and Lipowski [92], i.e., for P = 0, Ra = (2kc/W )1/2, shows

a rather large difference. Using for W the ∆G values mentioned above and kc as

given by equation 5.9, this gives Ra values of 48l and 70l, respectively. The most

plausible reason for this difference is the fact that Lipowski and Seifert assumed an

infinitely thin sheet with certain elasticity, while in reality the bilayer has a finite

thickness and the headgroup region is a substantial part of it. This means that this

headgroup region can adjust itself in order to increase the interaction area between

the bilayer.

In figure 5.9b the relation between ∆F/N , that is the adsorption energy nor-

malised by the number of lipids in the system and R is shown. Two interesting
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Figure 5.10: a) Adhesion energy ∆F as function of the lipid tail length t. b)

Vesicle deformation H/2R as a function of the lipid tail length t. In both cases

∆G = −0.077kBT/l
2 and N = 1000.

features can be observed, namely that for a certain χSH the value of ∆F/N is con-

stant with vesicle size and that ∆F/N becomes larger when the headgroup-surface

interaction becomes stronger. This size-independency of ∆F/N indicates that the

interaction area between the vesicle and the surface Ai is proportional to the total

bilayer area of the vesicle A.

Figure 5.10a shows that the energy change upon adsorption ∆F for a vesicle

does surprisingly not depend on the elastic properties of the lipid bilayer. The

tensionless bilayer thickness d0
l shows a linear relation on t (equation 5.7) and ranges

from d0
l = 8.17l when t = 12 to d0

l = 10.7l when t = 18. This is also the case for

the bending modulus kc (equation 5.9), which ranges from 12.8kBT when t = 12 to

16.6kBT when t = 18. The independency of ∆F on t shows that there is a balance

between the total lipid-surface interaction energy and the bending and stretching

energy of the bilayer of an adsorbed vesicle, which is determined by the vesicle size

and ∆G.

Even though ∆F does not vary with kc, it is clear that the manner of vesicle

adsorption is influence by kc, because the balance between the elastic and interaction

contribution results in a decreased interaction area with increasing kc which results

in less interaction area and as a consequence less deformation H/2R. In figure 5.10a

this linear dependence of H/2R on the lipid tail length t and thus kc is shown. In

contrast to intact vesicle adsorption, the adsorption as a bilayer patch gives a ∆F

that increases (i.e., becomes less negative) almost linearly with increasing t. This

is attributed to the fact that when t becomes larger the lipids at the edge of the

patch have more problems to organise in such a way that no hydrophobic tails are

exposed to the aqueous environment. For decreasing t it becomes more likely that

the adsorbed vesicle ruptures in order to form a bilayer patch.
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5.3.3 Outlook

Above we have presented the very first SCF predictions for adsorbed lipid vesicles.

In agreement with predictions in the literature we collected evidence that the size of

vesicles matters for the adsorption process. Although the experimental verification

of this effect is far from trivial, we believe that our experimental data also point to

this direction. More work is needed however to come to a complete picture. In ex-

periments one should be able to tune the interactions of the vesicles with the surface

(work of this type is in progress) as well as modify the membrane bending modulus

(e.g. with additives) and from the theoretical point of view it would be worthwhile

to take more realistic lipid surface interactions into account, e.g. electrostatic inter-

actions, etc. A combined effort of experiments and theoretical modelling is in our

opinion necessary because of the huge parameter space that presents itself in this

problem. We showed that it is possible to combine theory and experiments and we

therefore hope that the present paper will inspire other works of this type.

5.4 Conclusions

The combination of QCM and SPR results show that DOPC vesicles adsorb intact to

the gold surface in the range 25 nm < R < 125 nm. In this size range the adsorption

can roughly be divided into two regimes, i.e., for 40 nm < R < 125 nm the DOPC

vesicles completely cover the gold surface, but below R = 40 nm the surface area

covered with adsorbed vesicles decreases to approximately 50 percent when R = 25

nm. We furthermore found that the deformation of the DOPC vesicles becomes more

pronounced with increasing vesicle size. For vesicles of R = 125 nm the adsorbed

mechanical mass (as measured with QCM) was approximately 50 percent of the

mass expected for spherical vesicles, which indicates that the adsorbed vesicles are

flattened to ca half of their original height.

The results of the SCF model calculations on a single DOPC vesicle are in line

with the experimental results. We found a linear relation between the degree of

deformation (expressed as H/2R, with H the height of the adsorbed vesicle) and

the vesicle size. The calculations also demonstrated that at a certain radius, which

depends on the lipid-surface interaction and the bilayer elasticity, the adsorbed

vesicle is not deformed anymore. This radius is assumed to be the minimal radius

for vesicle adsorption. Besides this size-dependent effect we also found that the

lipid-surface interaction can be divided into different regimes. There is a weak

interaction regime where the adhesion of an intact vesicle is energetically favourable

over adsorption as a bilayer patch. In this regime vesicle deformation does not lead

to major changes in the lipid bilayer structure and therefore may be described as an

elastic deformation. Furthermore, there is a strong interaction regime in which it is

likely that adsorbed vesicles fuse and rupture in order to from bilayer patches, caused

by extensive deformation of the vesicles, including drastic local changes in the bilayer
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structure, and by the large energy difference between the adsorbed vesicle and the

bilayer patch. Between these regimes there is an intermediate interaction regime

in which the deformation of adsorbed vesicles still does not include drastic changes

in bilayer structure, but where the adsorbed bilayer patch is already energetically

somewhat favourable with respect to the vesicle.

From the calculations we also found that for the adsorption of intact vesicles the

total adsorption energy per vesicle remarkably does not depend on bilayer elasticity,

although the degree of vesicle deformation decreases with increasing bending mod-

ulus kc. This suggests a balance between the penalty for bilayer deformation and

the energy gain by bilayer-surface interaction.

Overall we can concluded that it is important to implement molecular detail in

a model for vesicle adsorption, in particular for describing cases of strong bilayer-

surface interaction, because local structural changes in the bilayer itself, which are

not described in simple elasticity models, are important.
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Chapter 6

Adhesion of phospholipid vesicles

to gold: Effect of ionic strength,

pH and applied potential

Abstract

The adhesion of lipid vesicles to surfaces is of interest, generically as well as in

view of possible applications. Until now the principles behind it are poorly under-

stood. Why, for instance, is it that on some surfaces vesicles do adsorb intact, while

on other surfaces adsorbed vesicles transform into a supported bilayer? We address

this question experimentally, by studying the adsorption of dioleoyl phosphatidyl-

choline (DOPC) and dioleoyl phosphatidylglycol (DOPG) vesicles to a gold surface,

as well as theoretically, by using a self-consistent field (SCF) model that takes into

account molecular details of the lipid bilayer. Adsorption studies were performed

using a quartz crystal microbalance (QCM), which gives the adsorbed mechanical

mass, and by surface plasmon resonance (SPR) measurements of the adsorbed lipid

mass. We specifically investigated the contribution of the electrostatic interactions

by varying the pH, ionic strength and by applying an external potential to the gold

substrate. In the case of DOPG the pH shows a small but obvious effect on the ad-

sorbed amount, which is attributed to the variation of the charge density on the gold

surface. Variation of the ionic strength has a rather pronounced effect on the ad-

sorbed DOPG amount, while in the case of DOPC this effect is absent. According to

SCF calculations the difference between the adsorbed amounts of DOPG and DOPC

can be attributed to a much stronger dependence of the headgroup density of the

DOPG bilayer on the ionic strength than found for the DOPC bilayer. Somewhat

unexpectedly, variation of the electric potential of the gold surface by an external

circuit does significantly affect neither the adsorption of DOPG nor that of DOPC

vesicles. This can be understood from the limited dependence of the surface and

double layer potential of the gold substrate on the externally applied potential in

the experimentally accesible potential range (i.e., where no redox reactions occur).
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6.1 Introduction

When vesicles come into contact with a surface there are, roughly speaking, three

possibilities, i.e., the vesicles do not adsorb to the surface, they do adsorb to the sur-

face and stay intact thus forming a supported vesicular layer (SVL), or they adsorb

to the surface and transform into a supported lipid bilayer (SLB). In an earlier study

we showed that DOPC vesicles do adsorb intact on a gold surface [101]. Above a

radius of approximately 40 nm the vesicles completely cover the surface, while below

this radius the surface is only partly occupied. In addition, it was found experimen-

tally that the deformation of the adsorbed vesicles increases with increasing vesicle

size, which was confirmed by self-consistent field (SCF) calculations. Apart from

the vesicle size, the interaction energy between bilayer and surface also influences

the deformation of the adsorbed vesicle. The SCF calculations revealed three sep-

arate regimes i) the bilayer-surface interaction is repulsive and no adsorption takes

place; ii) the interaction is weakly attractive and vesicles adsorb intact and partly

or completely cover the surface; iii) the attractive interaction is rather strong and

an adsorbed bilayer patch is energetically favourable over an adsorbed intact vesicle.

The SCF method gives a more complete picture of vesicle adsorption compared to

previously used theoretical methods [92–95, 102, 103], because it reveals structural

adaptations of the bilayer on a molecular scale, which are not accounted for in the

other models.

The variation of the bilayer-surface interaction explains why on some substrates,

for example Au, Pt and TiO2, phospholipid vesicles do adsorb intact while on others,

for example SiO2 and Si3N4, the vesicles transform into a supported lipid bilayer

[37, 89, 90]. Since most surfaces in contact with an aqueous solution are charged, it

is expected that electrostatic interactions between surface and vesicles play a role,

especially in the case of the adsorption of charged lipid vesicles.

Several studies tried to elucidate the importance of electrostatic interactions

between lipid vesicles and various substrates. Richter et al. [104, 105] systemati-

cally studied the relation between the vesicle charge and the adhesion on negatively

charged surfaces. They found that varying the vesicle charge by changing the lipid

composition determined whether the vesicles formed a supported lipid bilayer, stayed

intact upon adsorption or did not adsorb at all. Also other studies investigated the

importance of electrostatic interactions [106–108] by comparing the adsorption of

positively and negatively charged vesicles on both positively and negatively charged

substrates. Interpretation problems remain as in these studies either the lipids are

changed or the substrate is changed in order to vary the charge characteristics of the

systems. This implies that besides electrostatic interactions also other interactions,

such as van der Waals or specific chemical interactions were varied.

In this study we investigate the importance of electrostatic interactions between

the gold surface and lipid vesicles consisting of DOPC, DOPG or a mixture of these

two. By varying the pH, ionic strength and an externally applied potential to the
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gold substrate we try to get insight into the role of electrostatic interactions. Gold

has been chosen because it is known that DOPC lipid vesicles do adsorb intact to its

surface and also because over a relatively large potential range no electrochemical

surface reactions occur in contact with an aqueous solution. The third reason is

its ideal surface for use in the quartz crystal microbalance (QCM) and the surface

plasmon resonance (SPR) apparatus. By varying the pH the degree of protonation

of the oxide groups, which are present at the gold surface [1], is changed resulting in

variation of the surface charge density. Barten et al. [1] showed that the isoelectric

point of gold is at pH ≈ 4.9. It is noted here that variation of the pH and especially

the ionic strength also influences the lipid bilayer properties, like the headgroup

density and bilayer rigidity [25]. Because this might affect the adhesion of the

lipid vesicles we also studied the adhesion as a function of an externally applied

potential, which does not alter the vesicles in solution. In former studies [1, 109]

the relation between the solution pH or an externally applied potential and the

double layer potential of gold has been determined with colloidal probe AFM (atomic

force microscopy). There has been a limited number of studies [110–116] where

the adhesion of various molecules like polymers and proteins have been studied

as a function of an externally applied potential. However, to our best knowledge

until now no studies have been conducted where the adhesion of lipid vesicles is

investigated as a function of an externally applied potential. The experimental

results are complemented by a detailed self-consistent field analysis of lipid bilayers

adsorbed onto a gold-like surface.

6.2 Materials and methods

6.2.1 Vesicle preparation

The lipids that were used in this study are dioleoyl phosphatidylcholine (DOPC)

and dioleoyl phosphatidylglycol (DOPG), which were purchased from Avanti Polar

Lipids (Alabaster, AL, USA). Furthermore we used KNO3 from Merck (Darmstad,

Germany). Water was purified with a Milli-Q water purification system (Millipore,

Sweden) and had a resistance > 17 MΩ/cm. For the confocal fluorescent micro-

scope measurements also the fluorescent probe β-bodipy fl C12-HPC from Molecular

Probes was used. The lipids were dissolved in chloroform and in the case of the

confocal fluorescent microscope measurements the fluorescent probe was added with

a probe/lipid molar ratio of 0.01. The chloroform was evaporated under nitrogen or

in a roto-evaporator and the lipids were placed in vacuum for at least 2.5 hours to

dry them completely. Subsequently, they were resuspended in a KNO3 solution to

a lipid concentration between 10 and 15 mg/ml. The resulting polydisperse multi-

lamellar vesicle dispersion was freeze-thawed three to five times to dissolve all the

lipids and to obtain unilamellar vesicles. The freeze-thawed dispersion was pushed

at least 41 times through a polycarbonate filter with a pore radius Rp of 50 nm
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or 200 nm by using a mini-extruder (LiposoFast, Avestin, Ottawa, Canada). The

number of extrusions is an odd number, since in order to minimise contamination it

is better to have the final vesicle solution in the other chamber than the initial solu-

tion. With dynamic light scattering (DLS) and using cumulant analysis and Contin

fit the mean vesicle size and the size distribution of the vesicles was determined.

The mean radius of the vesicles R extruded through the filter with RP = 50 nm was

found to be 45 nm and for Rp = 200 nm it was 100 nm.

6.2.2 QCM measurements

To monitor the adhesion of the lipids to gold, a quartz crystal microbalance was

used from Maxtek, Inc (Santa Fe Springs, California USA), with plano-plano AT-cut

polished quartz plates (1 inch in diameter) with a fundamental resonance frequency

of 5 MHz, on both sides coated with an inner layer of chrome and an outer layer

of gold (149273-1). The quartz plates were placed in a Teflon crystal holder (CHT-

100), which was connected to a plating monitor (PM-710). The flow cell used was

home-made with an inlet and an outlet that allows for the supply of the vesicles.

Before the measurements the plates were rinsed extensively with chloroform,

ethanol and millipore water, followed by cleaning in a plasma cleaner PDC-32G

from Harrick (Ithaca, New York) for at least 3 minutes. After this the plates were

placed overnight in the same solution (without vesicles) as used in the adsorption

measurements. Prior to each measurement a plate was shortly rinsed with millipore

water and dried under nitrogen. Then it was placed in the Teflon cell holder with

the flow cell. The flow of solution through the cell was created by using gravity,

because the use of a pump resulted in an oscillating flow that interfered with the

measurements.

The QCM measures the change in frequency of a gold-coated quartz piezo crystal.

From this frequency shift the adsorbed mass can be calculated with the Sauerbrey

relation [38]. Detailed information about the QCM technique and the interpretation

of the data can be found in a previous paper [101].

6.2.3 Surface plasmon resonance measurements

The adhesion of lipids to gold was also measured with a surface plasmon resonance

(SPR) instrument (Autolab ESPRIT SPR instrument, Eco Chemie B.V., Utrecht).

It uses a laser with a fixed wavelength of 670 nm. The instrument contains two

cuvettes which both were used to study the adsorption of the lipid vesicles. In

order to do this the substrate was first calibrated at least 10 times for 60 seconds

with solution and a baseline was measured. Then 100µl of the vesicles solution was

injected in each cuvette. During the measurement in both cuvettes the solution was

mixed continuously by aspirating and dispensing 30 µl it with a flow of 33 µl/s.

The adsorbed amount of vesicles was determined by measuring the shift of the angle
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where the reflection of the incident light beam was minimal. The cleaning procedure

of the gold plates before measurements was the same as for the QCM gold plates.

Detailed information about the surface plasmon resonance technique and the

interpretation of the data can be found in a previous paper [101].

6.2.4 Confocal fluorescent microscopy measurements

Images were collected with a Cell Map IC Bio-Rad (MicroScience Division, Hemel

Hampstead, UK) confocal laser-scanning microscope, coupled to a Nikon Eclipse TE

2000−S microscope. Vesicles were imaged with a 63x, 1.4 NA DIC lens. Bodipy

was excited with 488 nm line of the argon laser. Images were collected by Kalman

averaging of 2−3 full scans and acquired with LaserSharp 2000 software. The same

crystal/gold plates were used as in the QCM measurements.

6.2.5 Self-consistent field (SCF) theory

The SCF theory has been discussed in detail in previous papers [79,117], so we will

discuss it only briefly in this section. The self-consistent field approximation uses a

discrete lattice consisting of layers in which the volume fraction of the molecules is

averaged. The molecules that are used in the model are coarse-grained and consist

of segments which represent small atom groups, for instance a CH2 or CH3 group

in a lipid tail. All segments have the same size as a lattice site. The lattice repre-

sents a three dimensional system, but because of the averaging one or two relevant

coordinates remain. This dimensional reduction is achieved by making use of the

symmetry in a system and by applying appropriate lattice geometry, e.g., flat, spher-

ical or cylindrical. The advantage of this approach is a decrease of calculation time,

but a drawback is that the geometry of the self-assembled structures is constrained.

An important feature of the model is that the pair interactions of a segment with

all other segments are replaced by the interaction of this segment with an external

potential field uA(z):

uA(z) = u′(z) + kBT
∑

B

χAB(< ϕB(z) > −ϕb
B) + νAeψ(z) − 1

2
ε0εAE(z)2 (6.1)

where u′(z) represents the energy that is needed to generate a vacant site at position

z to insert a segment A. The second term represents the non-ideal interactions

between segment A and all other segments, with ϕB the volume fraction of the other

segments and the superscript b refers to the bulk solution. The angular brackets

represent a local average. The Flory-Huggins nearest-neighbour exchange energy

parameter is denoted by χAB. If this parameter is negative the AB interaction is

energetically favourable over the AA and BB interactions. The third term, i.e.,

νAeψ(z), represents the electrostatic interactions between the segments, with ψ(z)

the electrostatic potential at z and νA the valency of segment A. The fourth term,
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i.e., 1
2
ε0εAE(z)2, accounts for the polarization of the segments as a consequence of

the electrostatic potential gradient, denoted by the electric field E(z) = −∂ψ/∂z,
and their polarisability represented by the dielectric permittivity εA. In the SCF

approach we compute the electrostatic potential by using a discrete version of the

Poisson equation. The input for this is the charge density and dielectric constant

profiles. Both can be computed from the volume fraction profiles. The volume

fraction of a free segment A at position z, ϕA(z), can be retrieved from the potential

uA(z).

ϕA(z) ∝ GA(z) = exp (
−uA(z)

kBT
) (6.2)

Here GA(z) is the Boltzmann factor, which as indicated is proportional to the num-

ber nA(z) of segments A at position z.

When a segment is not free, but part of a chain-like molecule, the possible

conformations of the chain have to be taken into account. By generating all possible

self-avoiding random walk conformations the statistical weight of all these possible

chain conformations can be retrieved. However, for larger chains this becomes a

very time-consuming job. This is the reason why we make use of a first-order

Markov approximation, which allows positioning of a chain segment on a site which

is occupied by another segment of the same chain. Such Markov model leads to

freely jointed chains. An efficient propagator formalism relates the potentials to the

volume fraction distribution and implements equation 6.2 for the lipid molecules.

The normalisations of the volumefraction profiles depends from case to case. For

exemple for freely-floating bilayer the normalisation involves a given number of lipids

per unit area, which are chosen such that the membrane tension vanishes. For

adsorbed lipids the normalisation is such that a fixed number of molecules exists in

the system. These molecules are either adsorbed in typically an adsorbed bilayer

or remain in solution. Some nonadsorbed lipids give rise to a low but finite bulk

concentration. As a result adsorption isotherms can be computed. Typically we

will be interested in the structure of the adsorbed bilayer at the CMC, i.e., the lipid

concentration where the freely-floating bilayers are free of tension.

In the present work the SCF theory is used to study the thermodynamic and

structural aspects of the adsorption of a flat lipid bilayer to a flat surface (resembling

a gold surface). The adhesion of a flat bilayer to a flat surface implies one significant

gradient, namely perpendicular to the surface. For this reason the lattice can be

reduced to a one-dimensional flat system as shown in figure 6.1.

Various molecules are present in the system, which are shown in figure 6.1.

The most abundant one is the water molecule, which consist of one segment W

that can adopt three different states, corresponding to H2O, OH− and H3O
+. The

dissociation constant of water kϕ
w = 10−17.5. The superscript ϕ means that this

dissociation constant is retrieved from dimensionless volume fractions ϕ instead of

molar concentrations, which means that pHϕ − 1.75 ≈ pH. The salt present in

the system is presented by the cation K and anion A, having a charge of +e and
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Figure 6.1: On the left side an example of the one-dimensional flat lattice is shown,

which is used in the self-consistent field calculations. The size of the lattice sites

is l. On the right side the various molecules are depicted. The lipid consist of

45 segments. In the case of the DOPG-like lipid the P-segments have a charge of

−1/3e and the N-segments are uncharged. In the case of the DOPC-like lipid the

P-segments have a charge of −1/3e and the N-segments have a charge of +1/3e.

The charge of the cation (K) is +e and the charge of the anion (A) is −e. The water

molecule (W) can have a charge of −e, 0 or +e.

−e, respectively, with e the unit charge. The Flory-Huggins interaction parameters

between the various segments are shown in table 6.1.

The lipid molecule representing DOPG or DOPC has two tails, each consisting

of t = 18 hydrophobic segments connected with each other and the headgroup by

one hydrophobic segment. The headgroup consist of three different fragments, i.e.,

two hydrophilic fragments consisting of three segments, which are spaced by a two

segment long hydrophobic fragment. The hydrophilic N-segments are uncharged in

the case of the DOPG lipid and have a charge of 1/3e in the case of the DOPC lipid.

The hydrophilic P-segments have a charge of −1/3e in both the DOPG and DOPC

lipid. The repulsive Flory-Huggins interaction parameter between the hydrophobic

tail segment C and the water segments W, i.e., χCW = 1.6, and this, together with

the repulsive interaction parameter between the head segments and the tail segments

χXC = 2, drives the formation of the typical bilayer structure.

Figure 6.2 shows two examples of volume fraction density profiles of the lipid

segments across a lipid (DOPG) bilayer in aqueous solution. In figure 6.2 the ionic

strength is low, i.e., ϕb
KA = 0.001, while in figure 6.2b the ionic strength is higher,

i.e., ϕb
KA = 0.01. In both situations pHϕ = 5. The figure shows that the bilayer

thickness d0
l decreases with decreasing ionic strength, which can be attributed to

less screening of the negatively headgroup segments by counterions, resulting in

an increased repulsive interaction between the headgroups. The bilayer thickness,
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χ W C N P K A S O

W 0 1.6 0 0 0 0 0 0

C 1.6 0 2 2 2 2 0 0

N 0 2 0 0 0 0 −3 0

P 0 2 0 0 0 0 −3 0

K 0 2 0 0 0 0 0 0

A 0 2 0 0 0 0 0 0

S 0 0 −3 −3 0 0 0 0

O 0 0 0 0 0 0 0 0

Table 6.1: The Flory-Huggins interaction parameters between the various molecular

segments, and the molecular segments and the surface sites (S and O). A positive

value means that the interaction is repulsive and a negative value represents an

attractive interaction with respect to the interaction between identical segments.
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Figure 6.2: Two volume fraction density profiles across tensionless lipid bilayers.

The lipids resemble DOPG. The volume fractions of the hydrophobic tail segments

C and the hydrophilic N and P segments are shown. In both cases pHϕ = 5. a)

ϕb
KA = 0.001. b) ϕb

KA = 0.01.
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arbitrarily chosen as the distance between the positions where ϕC = 0.5, d0
l = 8.1l

when ϕb
KA = 0.01 and d0

l = 7.6l when ϕb
KA = 0.001. The tail density in the core

of the bilayer ϕC ≈ 0.88 in both cases. The critical micelle concentration (CMC),

defined as the lipid bulk volume fraction ϕb
l coexisting with the flat tensionless

bilayer, increases with decreasing ionic strength (data is known accurately - not

presented).

6.2.6 Modelling of the gold surface

Besides the molecules a surface S is present in the system at z = 0. The Flory-

Huggins interaction parameters between the surface and the various segments are

given in table 6.1. The most important one is the attractive interaction between

the hydrophilic lipid headgroup segments and the hydrophilic surface S, i.e., χSN =

χSP = −3. For simplicity, the interaction between S and the other segments have

been set to χ = 0.

In order to study the adhesion of a lipid bilayer to a gold surface we have to model

the surface S in such a way that it exhibits the (electric and electrostatic) properties

of the gold surface. To mimic the pH dependence of the double layer potential of

gold resulting from the presence of oxide surface groups [1, 109], we attach groups

O to the surface. For simplicity we take the Flory-Huggins interaction parameter

between these groups and all other components in the system zero. The surface

groups can adopt three different states, i.e., they can be negatively charged (-O−),

uncharged (-OH) or positively charged (-OH+
2 ) by accepting or donating protons

(H3O
+) as shown below.

−OH+
2 + H2O

kϕ
1


 −OH + H3O
+ (6.3)

−OH + H2O
kϕ
2


 −O− + H3O
+ (6.4)

Using streaming potential measurements and colloidal probe AFM, Giesbers et

al. [109] and Barten et al. [1] have measured the double layer potential ψd of a

gold surface in equilibrium with aqueous solutions as a function of pH. Both studies

showed that at a ionic strength of 1 mM ψd varies between approximately 30 mV

and −30 mV when the pH increases from 3 to 7, with the isoelectric point (i.e.p) at

pH ≈ 5. At pH values above ca 7 ψd is virtually constant. Barten et al. determined

the number of oxide groups present on the gold surface by fitting the pH dependence

of the double layer potential with a model developed by Duval et al. [118]. From this

they found a density of approximately ns ≈ 1 × 10−2 sites nm−2, which means that

the oxide groups cover only a very small fraction of the surface (less than 0.1%). In

order to obtain the same dependency of ψd on pH, in our calculations the equilibrium

constants kϕ
1 and kϕ

2 are both set at 10−7, and the group density ns is in the same

order of magnitude as found by Barten et al., i.e., ns = 1.5 × 10−3 l−2.
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Figure 6.3: The double layer potential ψd (in mV) (a) and charge density σo in e

l−2 (b) of the model surface as a function of the pHϕ at various salt concentrations,

i.e., ϕb
KA = 2×10−3, 2×10−4 and 2×10−5. The density of amphoteric O-groups on

the surface ns = 1.5 × 10−3 l−2 and the equilibrium constants are kϕ
1 = kϕ

2 = 10−7.

The double layer potential of the surface ψd (in mV) is shown in figure 6.3a as a

function of pHϕ, for various values of ϕb
KA. In the model the double layer potential

is chosen as the potential in the second layer from the surface as depicted in figure

6.4.

Figure 6.3 shows that there is a rather strong ψd transition around the i.e.p. and

it furthermore shows that ψd varies between approximately −30 mV and 30 mV

for ϕb
KA = 2 × 10−5, which is comparable to 1 mM. Figure 6.3b shows the pHϕ-

dependence of the surface charge density σo. According to this figure σo shows a

rather strong transition from completely positively charged to completely negatively

charged in the range 5 < pHϕ < 9. Due to the low density of chargeable surface

groups this is only weakly influenced by the ionic strength.

Barten et al. [1] also experimentally determined the relation between the double

layer potential over the gold/solution interface and the applied potential ∆Φ by

means of an external electric circuit. In the studied potential range the variation in

ψd was found to be only a fraction of the variation in ∆Φ; for example, at pH 5 and

1 mM KNO3 it is only about 10%.

In order to mimic this relation we introduced an outer layer at the gold surface

as shown in figure 6.4 with a smaller dielectric constant, resulting in a capacitance

Ce
g ≈ 3.5 µF cm−2. This means that when there is a potential difference between

the bulk gold and the solution a part of this difference is bridged in this outer layer.

From electro-reflectance measurements on gold [119] there is evidence that such an

outer layer with different dielectric constant indeed exists and has a thickness in

the range of 0.05 - 0.2 nm. The introduction of such a layer in our model, together

with the oxidic surface groups, gives results comparable to the experimental ones.

The relation between the applied potential ∆Φ and the double layer potential ψd is

shown in figure 6.5a.
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Figure 6.4: The SCF profile of the potential in the electric double layer at the gold

surface.

−50

0

50

−400 0 400
∆Φ

ψd

pHϕ=5

pHϕ=6

pHϕ=9

pHϕ=8

pHϕ=7

−0.001

0

0.001

−300 0 300
∆Φ

σo

pHϕ=5

pHϕ=9

pHϕ=8

pHϕ=7

pHϕ=6

Figure 6.5: The double layer potential ψd in mV (a) and the charge density of the

surface σo in e l−2 (b) as a function of the applied potential ∆Φ for various pHϕ

values, at ϕb
KA = 2 × 10−5. Chargeable group density ns = 1.5 × 10−3 l−2 and

equilibrium constants the same as in figure 6.3.
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The relation between ψd and ∆Φ closely follows that found by Barten et al. [1].

Only for low pH there is a deviation from the measured data. A possible reason for

this discrepancy is that in our case the number of oxidic groups is constant, while

for the real gold surface the number of oxidic groups is thought to increase when

the pH becomes lower than 5 [1]. Indeed, we find that when we increases the oxidic

group density for pHϕ < 5 (pH < 3.25) by a factor of two, i.e., ns = 3 × 10−3 l−2,

that the calculations fit better with the experimental data. However, since in the

experiments described in this paper we varied the externally applied potential only

at pH 5, for modelling the effect on vesicle adsorption ns = 1.5× 10−3 l−2 is a good

choice. In figure 6.5b the relation between σo and ∆Φ is given for various values

of pHϕ. The figure shows that in this potential range the closer the pH is near the

isoelectric point, the stronger the surface charge is affected by the applied potential.

In our calculations described in this paper we focus on the bilayer-surface inter-

action (free) energy ∆G (in units kBT/l
2), which can be described as

∆G = ΩBS − ΩS − ΩB (6.5)

Here ΩBS is the grand potential of a flat bilayer adsorbed to a flat surface and

ΩS is the grand potential of a free surface (both in units kBT/l
2)). Both have been

determined at the cmc of the lipids, i.e., at the chemical potential of the lipids where

the free bilayer is tensionless, i.e., the grand potential ΩB = 0.

So, here we do not model the adhesion of complete vesicles to the surface as

done in a previous paper [101]. In that paper we investigated relation between the

bilayer-surface interaction (free) energy ∆G and the total adsorption free energy of

the vesicle ∆F . Therefore, by considering here only ∆G sufficient information can

be obtained on the effect of electrostatic interactions between vesicles and surface,

while the calculations are much less time-consuming. From the variation of ∆G, it

is relatively simple to deduce the effect of the electrostatics on the adhesion of a

complete vesicle.

6.3 Results and discussion

The importance of electrostatic interactions for the adhesion of DOPC and DOPG

vesicles on a gold surface is investigated. To achieve this we first studied the effect

of the lipid concentration and thus the vesicle concentration to see if we are at the

maximum of the adsorption isotherm. We varied the pH, because this has an effect

on the charge of the gold surface. In addition, the ionic strength is varied and we

applied an external potential across the gold/solution interface. The effect of these

experimental variables is also investigated by SCF modelling.
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Figure 6.6: a) The total shift in critical angle ∆Θ (in m◦) as measured by SPR upon

adsorption as a function of the lipid concentration C (in units g l−1), for DOPG as

well as DOPC vesicles. b) The initial change in critical angle ∆Θ/∆t (∆t = 6 s).

In all cases the ionic strength of the solution I = 250 mM and the pH = 3. Radius

of the vesicles: 45 nm.

6.3.1 Lipid concentration effect

Figure 6.6a shows the effect of vesicle concentration on the total shift in critical

angle ∆Θ as found by SPR upon adsorption of DOPG as well as DOPC vesicles on

the gold surface from aqueous solutions of pH 3 and 250 mM KNO3. The radius of

the DOPC and the DOPG vesicles R is approximately 45 nm. The shift in critical

angle is a measure for the adsorbed lipid mass. In figure 6.6b the initial critical angle

shift ∆Θ/∆t is given, i.e., the difference between injection of the vesicle solution in

the SPR cell and the first measurement, with ∆t always 6 s. This initial shift in

critical angle is an indication for the initial adsorption rate.

We will first discuss the SPR results. In figure 6.6 the vesicle concentration

Cs is given in g l−1, which means that the molar concentration of the DOPG and

DOPC lipids are approximately the same (MDOPG = 797 g mol−1 and MDOPC = 786

g mol−1). For both lipids ∆Θ is independent of the vesicle concentration, which

means that we are at the plateau level of the adsorption isotherm. In the case of

the DOPC vesicles ∆Θ ≈ 1400 m◦, which corresponds to full surface coverage of

the gold with vesicles as has been shown in our previous paper [101]. In the case of

the DOPG vesicles the shift in critical angle is considerably smaller. It is not likely

that this difference results from a difference in SPR sensitivity for the DOPC and

DOPG lipids, since at a higher KNO3 concentration of 1000 mM, upon adsorption

of DOPG vesicles ∆Θ also increases to approximately ∆Θ ≈ 1400 m◦. (We will

come back later to this salt effect.) Therefore, we conclude that at 250 mM and pH

3 the adsorbed lipid mass of DOPG is significantly lower than that of DOPC.

In addition, from figure 6.6b it follows that the adsorption of DOPG vesicles

under these conditions is much slower than that of DOPC vesicles. As shown by
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Figure 6.7: DOPG vesicles (containing 1% of fluorescent lipids) at a gold surface,

imaged using a confocal fluorescent microscope. The bar in each plot represents 5

µm. The vesicles (R ≈ 100 nm) were adsorbed from a solution of pH 3 and a KNO3

concentration of a) 10 mM, b) 50 mM, c) 100 mM and d) 250 mM.

previous studies [91,101] the adsorption of DOPC vesicles onto gold is mass transport

limited in this concentration range. This means that the initial adsorption rate is

proportional to the vesicle concentration. That this proportionality is not found here

is probably due to a too long time interval between injection and first measuring (6

s), which means that other factors, like the available surface area, start to play a

role. However, it is clear that for the DOPC vesicles ∆Θ/∆t depends much stronger

on vesicle concentration than for the DOPG vesicles. This implies that the initial

adsorption rate of the DOPG vesicles is mainly determined by the rate of attachment

of the vesicles to the surface. Since the ionic strength is rather high (250 mM) it is

not electrostatic repulsion between DOPG vesicles that causes the low adsorption

rate and low adsorbed amounts. This implies that the DOPC vesicle would adsorb

more strongly than the uncharged DOPG vesicle. Because this is in contradiction

with the electrostatic interactions between the vesicles and the surface this difference

in adsorption has to come from variations in van der Waals or specific interactions.

6.3.2 Effect of the ionic strength

In figure 6.7 confocal fluoresence microscopy images are presented of DOPG vesicles

adsorbed onto a gold surface from solutions with different KNO3 concentrations as
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Figure 6.8: Adsorption of DOPG vesicles of radius R ≈ 100 nm onto gold as a

function of the square root of the ionic strength I1/2 (in M1/2), at pH 3. The vesicle

concentration in solution amounts to 0.25 g l−1. a) The total adsorbed mechanical

mass Γm (in mg m2) as measured with QCM and b) the total shift of the critical

angle (in m◦) measured with the SPR.

indicated (pH 3). The figure shows that the number of adsorbed vesicles increases

significantly over this range of ionic strengths. However, these images do not reveal

whether all vesicles do adsorb intact or that part of the adsorbed vesicles break and

fuse to form a supported bilayer. This is because the emitted fluorescence within a

distance of approximately 5 nm from the gold surface is almost completely quenched

due to Förster energy transfer [120]. Therefore, if a supported bilayer, which has

a thickness of approximately 4 nm, would be present at the surface, this would

probably not be visible. An interesting feature is that the adsorbed vesicles are

distributed randomly and more or less homogeneously over the gold surface, but

they seem to have a preference for irregularities (scratches) on the gold surface,

which is especially visible at a ionic strength of 10 mM. This preference may have

two reasons, i.e., the increased contact area between the vesicles and the surface at

these irregularities stimulates the adhesion, and /or the vesicles adsorbed at these

irregularities do not have to deform as much as on the smooth surface in order to

gain enough interaction energy and therefore have less tendency to fuse or rupture.

In order to find out whether the DOPG vesicles do adsorb intact or partly trans-

form into a flat supported bilayer we studied their adsorption with QCM as well as

with SPR. The results as a function of the square root of the ionic strength I 1/2 are

given in figure 6.8. This figure shows that both the adsorbed mechanical mass and

the adsorbed lipid mass are proportional to I1/2, and thus the ratio of these two

quantities is constant. To have an idea of the actual mass ratio, we have to estimate

the DOPG mass from the SPR angle shift. It is not straightforward to calculate the

lipid mass precisely, since the conversion factor depends on the size as well as the

degree of deformation of the vesicles [101]. Assuming that the SPR sensitivity for

DOPG is comparable to that for DOPC and that the degree of deformation of the
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Figure 6.9: Adsorption of DOPG vesicles of radius R ≈ 45 nm onto gold as a

function of the square root of the ionic strength I1/2 in M1/2, at pH= 3. The vesicle

concentration in solution is 1 g l−1. a) The total shift in critical angle (in m◦) from

SPR upon adsorption, and b) the initial change in critical angle ∆Θ/∆t (in m◦ s−1).

DOPG vesicles is comparable to equally sized DOPC vesicles, 100 m◦ corresponds

to approximately 1 mg m−2 [101]. This means that the actual lipid vs. mechanical

mass ratio is approximately 0.15, and therefore it can be concluded that the vesicles

adsorb intact to the gold surface irrespective of the ionic strength. This is further

supported by the fact that the adsorbed mechanical mass, measured with the QCM,

always increases over a certain time period until it reaches a maximum. If the ad-

hered vesicles would have a tendency to break and form a supported bilayer, the

adsorbed mechanical mass would first increase, but then decrease again due to the

loss of the internal vesicle volume. This overshoot has been shown experimentally

by, e.g., Keller and Kasemo [89].

In figure 6.9 ∆Θ and ∆Θ/∆t are shown as a function of I1/2 for adsorption of

smaller DOPG vesicles, i.e. with R ≈ 45 nm, at pH 3. Also for these vesicles there

is a linear relation between ∆Θ and I1/2. The fact that such a relation is found for

both vesicle sizes strongly suggests that the effect of salt is related to screening of

electrostatic interactions since the Debye length κ−1 =
√

c/I, with c a constant that

is determined by various solution parameters. For the uncharged DOPC vesicles we

found that there is no or only a very weak dependence of the adsorbed amount on

the ionic strength (results not shown).

The total SPR angle shift ∆Θ for these small (45 nm) vesicles is in the same

range as for the larger (100 nm) vesicles (figure 6.8b). If the degree of deformation

upon adsorption for each of these vesicle sizes is comparable with the deformation

of equally sized DOPC vesicles as shown in a previous study [101], the surface

coverage is approximately the same for the 45 nm and the 100 nm vesicles. The

initial adsorption rate of the 45 nm DOPG vesicles depends only weakly on I1/2 as

can be seen in figure 6.9b. The initial rates are in all cases well below the adsorption

rates of equally sized DOPC vesicles at the same lipid concentration, i.e., Clipid = 1
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Figure 6.10: Volume fraction density profiles as predicted by SCF modeling across

an adsorbed DOPG bilayer at pHϕ = 5 and two electrolyte concentrations of a)

ϕb
KA = 0.001 and b) ϕb

KA = 0.01 at the CMC. The surface is located at z = 0. The

volume fractions of the hydrophobic tail segment C and the hydrophilic N and P

segments are depicted.

g l−1 (see figure 6.6b), again implying attachment limitations.

In the remainder of this section we will present SCF modeling results to gain

further insight into the effect of the ionic strength on vesicle adsorption. In figure

6.10 the cross-sectional volume fraction profiles of an adsorbed DOPG bilayer for

two different salt concentrations are shown. The bulk concentration of (free) lipids

equals the critical micelle concentration (CMC). The volume fraction profiles of the

adsorbed bilayer are quite similar to those of the tensionless free bilayer as shown

in figure 6.2. However, there are a few important differences. For example, the

headgroup density adjacent to the surface is somewhat higher as a result of the

favourable interaction between the headgroup segments and the surface. This effect

is a bit larger for the higher electrolyte concentration, ϕb
KA = 0.01. As a result

of this also the thickness of the adsorbed bilayer dl (defined before as the distance

between the positions where ϕC = 0.5) is somewhat larger than that of the free

bilayer d0
l .

In figure 6.11a the adsorbed lipid mass θexc for both DOPG and DOPC bilayers

is given as a function of the ionic strength for three different values of the Flory-

Huggins interaction parameter between the lipid headgroups and the surface, χ. For

the DOPG bilayer θexc shows a linear dependence on
√

ϕb
KA. The dependence of θexc

on ionic strength is much stronger for DOPG than for DOPC. This can be attributed

to the fact that in the case of the DOPG bilayers increasing the salt concentration

has a rather large effect on the headgroup density by screening of the negatively

charged headgroup segments (as can be seen in figure 6.10). For the DOPC bilayer,

however, this screening effect is limited because the lipid has both positively and

negatively charged segments in the headgroup, and at low salt concentrations the

headgroups organise in such a way that they counter charge each other [25].
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Figure 6.11: a) The adsorbed amounts of DOPG lipids (closed symbols) and DOPC

lipids (open symbols) denoted by θexc per unit area l2 as a function of the square

root of the electrolyte bulk volume fraction (ϕb
KA)1/2 for various Flory-Huggins in-

teraction parameters between the hydrophilic headgroup segments and the surface

χ. b) The corresponding values for the lipid-surface interaction energy ∆G in kBT

per unit area l2. pHϕ = 5.

Because the DOPG headgroup density increases with increasing ϕb
KA, the number

of favourable Flory-Huggins interactions between the headgroup segments and the

surface increases. As a consequence, ∆G becomes more negative at higher electrolyte

concentration, which is shown in figure 6.11b. The fact that the dependence of ∆G

on
√

ϕb
KA is largely determined by the Flory-Huggins interactions is supported by

the fact that it becomes more pronounced when χ is set to more negative values.

Besides the increase of the Flory-Huggins interaction energy between the bilayer

and the surface with increasing ionic strength, there is a small opposite contribution

to ∆G due to the decrease of the electrostatic interactions between the positively

charged oxide groups and the negatively charged lipid headgroups.

In the experimental study of the ionic strength effect on the adsorption of DOPG

vesicles we found a linear dependence of the adsorbed amount of DOPG vesicles on√
I. It is thus likely that this variation of the adsorbed amount can be attributed

to the variation of the adhesion energy as a function of the headgroup density. It

should be noted, however, that in the case of vesicle adsorption, the rigidity of the

bilayer also has to be taken into account. For DOPG vesicles this rigidity increases

with increasing ionic strength when I > 10 mM [25] and this would counteract

on the increased adsorption of the DOPG vesicles with increasing ionic strength.

Apparently, this effect is rather weak compared to the increased bilayer-surface

interaction.

For the DOPC bilayer there is a weaker dependence of ∆G on ϕb
KA, and it shows

a trend opposite of the one found for the DOPG bilayer. In this case the effect

of the ionic strength on the adsorption is not related to changes in the headgroup

density, but to changes in the headgroup organisation. This results in a small
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Figure 6.12: a) The open circuit potential (OCP, in mV) of the gold substrate with

respect to an Ag/AgCl reference electrode as a function of the pH at 10 mM KNO3.

Measurement of the OCP was performed in the QCM. b) The total adsorbed lipid

mass given as the shift in SPR angle, ∆Θ (in m◦, closed symbols), and the initial

adsorption rate ∆Θ/∆t (in m◦ s−1, open symbols) as a function of the pH, for

DOPG vesicles of R ≈ 45nm and 250 mM KNO3.

decrease of the volume fraction of the negatively charged headgroup segments and

a small increase of the positively charged headgroup segments in the layer adjacent

to the surface when the ionic strength increases. The overall volume fraction of

these two segments in the layer adjacent to the surface decreases slightly when the

ionic strength increases resulting in less short-range Flory-Huggins interactions. The

electrostatic interactions have a negligible influence in this case. This means that

the variation of ∆G is mainly determined by the change of the number of contact

(Flory-Huggins) interactions.

6.3.3 pH effect

As discussed before variation of the pH has an effect on the protonation of the oxide

groups present on the surface and as a consequence on the charge density of the

oxide layer at the gold surface.

In figure 6.12a the open circuit potential (OCP) of the gold substrate with respect

to an Ag/AgCl reference electrode is shown as a function of the pH at 10 mM KNO3.

The dependence of the OCP reflects to some extent the relation between the double

layer potential ψd and pH as given in figure 6.3a, and is in line with the OCP values

measured by Barten et al. [1]. The intersection of the two dashed lines in figure 6.12

represents the i.e.p. of the gold surface. At the i.e.p. the numbers of the positively

and negatively charged groups at the surface are equal and the overall charge of

the oxide layer is zero. Assuming that there is no specific adsorption of ions, this

implies that the OCP (with respect to the bulk solution) = ψd = 0, i.e., the potential

difference between the bulk solution and the reference electrode amounts to 238 mV.
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Figure 6.13: a) The dependence of ∆G (in units kBT/l
2) on pHϕ for zwitterionic

DOPC and anionic DOPG bilayers. b) The charge density of the oxide layer σo (in

e l−2) at the substrate surface as a function of the pHϕ when a DOPC or DOPG

bilayer is adsorbed. In all cases χ = −3 and in both figures the open symbols

represent ϕb
KA = 2 × 10−4 and the closed symbols ϕb

KA = 2 × 10−3.

The adsorbed amount of DOPG vesicles of R ≈ 45 nm (expressed as the SPR

angle shift ∆Θ) as a function of pH at 250 mM KNO3 is shown in figure 6.12b. The

SPR angle shift varies from ∆Θ ≈ 700 m◦ at pH 3 to ∆Θ ≈ 400 m◦ at pH 5, which is

a decrease of roughly 40 percent. This rather strong dependence of the adsorption on

the pH is attributed to variation of the electrostatic interactions between surface and

vesicles. The fact that the vesicles do still adsorb above the i.e.p. of the gold surface

(in the range pH 5− 10), where the surface is negatively charged, implies that there

has to be an attractive interaction apart from the electrostatic repulsion between

the vesicles and the surface. (Such an attractive interaction has been accounted for

in the SCF modelling.) The figure furthermore shows that the initial adsorption

rate is varying in the pH range 3 − 6, which again confirms that the DOPG vesicle

adsorption is not transport limited. In the case of R = 100 nm DOPG vesicles

the adsorbed amount at pH 5 is also somewhat smaller with respect to pH 3 for

various ionic strengths (not shown). For 100 nm DOPC vesicles the adsorption does

not significantly change between pH 3 and pH 5 (only determined at I = 250 mM,

results not shown).

In order to gain more insight into the factors that determine the adsorption as a

function of pH, SCF calculations have been executed and the results will be discussed

in the remaining of this section. In figure 6.13a the bilayer adhesion energy in kBT

per unit area l2, ∆G, is depicted as a function the pHϕ for zwitterionic (DOPC)

lipids as well as anionic (DOPG) lipids.

Figure 6.13a shows that at low ionic strength, i.e., ϕb
KA = 2×10−4 and 2×10−3,

∆G for the DOPG bilayer is influenced by pHϕ, while ∆G of the DOPC bilayer

is independent of pHϕ. It seems obvious that for the DOPG bilayer the variation

of ∆G can be attributed to a change in electrostatic interaction between surface
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Figure 6.14: a) The dependence of ∆G (in units kBT/l
2) on pHϕ when DOPG

bilayers are adsorbed to the surface. The oxide group surface density ns ranges

from 0 to 0.06l−2 and χ = −3. b) The dependence of ∆G on pHϕ for the adhesion

of anionic DOPG bilayers. The oxide group surface density ns = 0.0015 l−2 and χ

ranges between −2.5 and −4. In both figures ϕb
KA = 2 × 10−4.

and bilayer, resulting from the change in the charge density of the surface with pH.

The protonation of the oxide groups on the surface is affected by the adsorption

of the negatively charged DOPG bilayer, which is reflected by a shift of the centre

of the transition range of ∆G to a pHϕ value higher than the i.e.p, depending on

ionic strength: for ϕb
KA = 2×10−4 the transition point has shifted to approximately

pHϕ = 8.2 and for ϕb
KA = 2 × 10−3 it has shifted to pHϕ = 7.7. In figure 6.13b this

is further elaborated. When a DOPG bilayer is adsorbed the pHϕ where the surface

charge density σo = 0 has shifted from pHϕ = 7 to pHϕ ≈ 8.3 for ϕb
KA = 2 × 10−3,

and for ϕb
KA = 2 × 10−4 even to pHϕ ≈ 9.2. When a DOPC bilayer is adsorbed to

the surface, the protonation of the surface groups is only marginally affected. There

is only a small negative shift of pHϕ for σo = 0, which can be attributed to the fact

that the outside of the DOPC headgroup region is slightly positively charged, since

the density of the positively charged headgroup segments is slightly higher in this

region.

The relation between ∆G and pHϕ for several oxide surface group densities

ns is shown in figure 6.14a for DOPG bilayers adsorbed to the surface at ϕb
KA =

2 × 10−4. The dependence of ∆G on ns is rather strong and the density of oxide

groups is mainly determining the variation of the of ∆G with pHϕ. This is clearly

demonstrated by the fact that when ns = 0 there is no effect of the pH on the

adsorption energy ∆G. A closer look at the figure furthermore shows that the lines

for the various values of ns do not all intersect at the same point. This results from

the fact that the affinity between the oxide groups and the lipid headgroups differs

from the affinity between the other surface sites and the headgroups. In figure 6.14b,

we show the effect of the interaction energy between the hydrophilic headgroup

segments N and P and the surface S on ∆G when DOPG bilayers are adsorbed.
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The interaction parameter χ is varied between −2.5 and −4 for ns = 0.0015 l−2 and

ϕb
KA = 2× 10−4. As expected the variation of ∆G with pHϕ is not influenced by χ.

However, χ determines to a large extent whether a vesicle adsorbs over the whole

pH range or whether more DOPG vesicles do adsorb at low pH compared to high

pH. When χ is too small it might be possible that the DOPG vesicles do not adsorb

at all.

It can be concluded that the effect of pH on the adsorption of DOPG vesicles is

rather small, due to the low density of oxide groups at the gold surface. However,

it is clearly present as shown both by our experimental en theoretical studies. In

this respect it has to be mentioned that the experimentally pH dependence may not

only result from variations in the charge of the oxide groups, but possibly also from

the pH-dependence of the density of these groups, as discussed by Barten et al [1].

6.3.4 Applied potential effect

Using the QCM we measured the adsorption of DOPG vesicles of different size and

at various ionic strengths as a function of an externally applied potential ∆Φ at the

gold substrate. In addition, we measured the adsorption of DOPC vesicles containing

1% DOPG. Figure 6.15a shows a compilation of the results. The adsorped amount

Γm of DOPG is very low in all cases and approximately constant over the whole ∆Φ

range. Surprisingly, in the case of the mixed vesicles, there seems to be a transition

between no adsorption and adsorption in the ∆Φ range 100-300mV vs Ag/AgCl,

which is the range where the double layer potential of the gold substrate changes

from a negative to a positive value (see figure 6.12a). It is not clear why vesicles with

only a small fraction of charged lipids would be more sensitive to an applied potential

than vesicles completely consisting of charged lipids. Measurements with pure small

DOPC lipid vesicles at low salt concentrations had approximately the same Γm at

all applied potentials upto 300mV vs Ag/AgCl. This rules out the possibility that

the variation of Γm for the mixed vesicles is caused by the interaction between the

surface and the DOPC lipid.

We did not attempt to model the adsorption of bilayers composed of two lipids

using SCF theory. Instead we theoretically studied the adsorption of a bilayer con-

sisting of one type of lipids with a small negative charge. These lipids had a P-

segment with a charge −0.33e and an N-segment with a charge of 0.30e, i.e., they

have an effective charge of −0.03e. This means that this modeled bilayer has the

same overall charge as the mixed bilayer. This results in the same ∆G for all ∆Φ

and was thus not providing an explanation for our observation. May be the vari-

ation of Γm in the range 100 mV< ∆Φ < 300 mV results from the fact that the

negatively charged DOPG lipids can translate along the leaflets of the mixed bilayer

to accumulate at high energy surface sites, thus giving rise to some extra adsorption.

The adsorption of DOPC and DOPG bilayers as a function of ∆Φ has been

further investigated by performing SCF calculations. In the section Materials and
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Figure 6.15: a) The maximum adsorbed mechanical mass Γm (in mg m−2) as a

function of an applied potential ∆Θ (in mV vs. an Ag/AgCl 3 M KCl reference

electrode) at pH 5, for different types of vesicles and ionic strengths as indicated.

b) The adhesion energy per unit area ∆G as a function of the applied potential ∆Φ

(in mV vs. solution) for both DOPG and DOPC bilayers.

methods we already explained (figure 6.5) how we modelled the gold surface in order

to mimic the relation between ψd and ∆Φ as found by Barten et al. [1].

In figure 6.15b the relation between the adhesion energy per unit area ∆G is

shown as a function of ∆Φ for a DOPC and for a DOPG bilayer. (It should be

noted that in the calculations the reference point for ∆Φ is the bulk solution.) The

ionic strength ϕb
KA = 2 × 10−4, which corresponds to ca 10 mM. For both lipids

∆G hardly varies over the whole ∆Φ range, which seems to be in agreement with

the experimental results. Also at a higher ionic strength (ϕb
KA = 2 × 10−3, (not

shown) no significant dependence of ∆G on ∆Φ was found. In order to gain some

insight into the effect of ∆Φ on the adsorption of vesicles, four different systems

were modelled, which only differ with respect to the capacitance Cg of the outer

gold layer. This results in a different relation between the applied potential and the

double layer potential ψd. The four systems, which we will call A, B, C and D, have

a capacitance Cg that is respectively 1, 3, 33, and 333 times the Cg that was needed

to fit the experimentally determined relation between ψd and ∆Φ. With increasing

Cg the dependence of ψd on ∆Φ becomes stronger, which is shown in figure 6.16a.

A detailed explanation of the dependence of ψd on ∆Φ is given by Duval et al. [118].

By increasing the capacitance Cg in fact the range of ψd is enlarged for a given

range over which the externally applied potential ∆Φ is varied. In figure 6.16b

the consequences of increasing Cg for the bilayer-surface interaction energy ∆G is

shown. In the cases A and B, in which the ψd range is small (figure 6.16a), ∆G is

practically constant over the whole range of applied potentials. In cases C and D

on the other hand, ∆G shows a strong and complicated dependence on ∆Φ. We

will not go into to the full molecular origin, but point out that it is the consequence

of several different processes, like te organisation of the lipid headgroups and the
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Figure 6.16: a) The double layer potential ψd dependence on the applied potential

∆Φ for various values of the capacitance Cg of the outer gold layer. The capacitance

Cg are 1 (A), 3 (B), 33 (C) and 333 times (D) the Cg that has been chosen in order

to fit with the experimental data [1]. The increase of Cg results in the increase of

the surface potential and ψd at a certain ∆Φ. b) The dependence of the adhesion

energy per unit area ∆G of a DOPG bilayer as a function of the applied potential

∆Θ is shown for the four different Cg.

variation of the number of cations and anions in the region between the surface

and the bilayer. Indeed in scenario’s C and D it is possible that the adsorption of

lipids is so strong that vesicle rupture can take place. Clearly the cases C and D

do not apply to the experimental situation (gold), and we refrain from a further

analysis. In the case of gold (case A) the relatively large potential drop across the

outer gold layer leads to a relatively small range over which ψd can be varied, with

corresponding small response in terms of vesicle adsorption.

6.4 Conclusions

In this study we investigated experimentally and theoretically the contribution of

electrostatic interactions to the adsorption of negatively charged and zwitterionic

lipid bilayers (vesicles) on gold. This is done by varying the ionic strength, pH and

by applying an external potential to the gold substrate.

We found that variation of the ionic strength has a rather strong influence on

the adhesion of negatively charged DOPG vesicles, while in the case of zwitterionic

DOPC vesicles it has hardly any effect. SCF model calculations show that for the

DOPG bilayer the variation in the adhesion can be attributed to the headgroup

density dependence on the ionic strength, resulting in a variation of bilayer-surface

interaction energy. In the case of the DOPC bilayer such an effect is negligible.

Variation of the pH also has an effect on the adhesion of DOPG vesicles to the

gold surface. In this case the variation is directly related to electrostatic interactions

between the bilayer and the surface and is a consequence of the pH-dependency of
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the double layer potential of the gold (due to the presence of oxide groups at the

surface). Because the DOPC bilayer is zwitterionic the electrostatic interaction with

the gold surface is negligible and the adsorption is independent of pH.

An externally applied potential did not affect the adsorption of DOPC and

DOPG vesicles. The reason is that the experimentally accessible range of exter-

nally applied potentials is too small to induce changes in the double layer potential

of the gold surface that are large enough to affect the adhesion of the bilayer. In

the case of mixed DOPG/DOPC vesicles we found a dependence on the adsorption

which is not entirely understood.

Overall it can be concluded that the electrostatic interactions do play a role in

the adhesion of DOPG vesicles to the gold surface. The DOPG vesicles are weakly

bound to the gold surface and the electrostatic interactions are strong enough to

influence the adsorption of intact vesicles. However, they are not strong enough to

induce transition of the adsorbed vesicles to a flat supported bilayer. In the case of

the DOPC vesicles the electrostatic interactions have no effect on their adsorption

and in all cases the adsorbed amount of intact vesicles is the same.
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Summary

In biological systems lipid bilayers are subject to many different interactions with

other entities. These can range from proteins that are attached to the hydrophilic

region of the bilayer or transmembrane proteins that interact with the hydropho-

bic region of the lipid bilayer. Interaction between two membranes is also very

common. To gain more insight into the thermodynamic, structural and mechanical

consequences we experimentally and theoretically investigated the interactions of a

lipid bilayer with various types of interfaces. More specifically, we have analysed

the transmembrane protein-lipid interaction by a computational self-consistent field

method and have studied the adhesion of vesicles onto gold experimentally. Some

aspects of the latter problem were also analysed theoretically.

There exists a computationally inexpensive, yet qualitatively accurate and real-

istic method to molecularly model the bilayer membrane in the presence of surfaces,

namely the self-consistent field theory. This approach makes use of a large num-

ber of approximations. Important ones are: the discretisation of space by using

a lattice, the non-self-avoidance of chains implying freely jointed chains and the

replacement of binary interactions by an external potential leading to the (local)

mean field ansatz. When a transmembrane hydrophobic inclusion is present in the

lipid membrane the bilayer around it is disturbed. The structural perturbation of

the lipid bilayer around these inclusions have an exponentially decaying wave-like

appearance. There are many factors that influence this. The most important ones

are the shape of the inclusion, the hydrophobic length of the inclusion, the local

interaction between the inclusion and the bilayer, the hydrophobic bilayer thickness

and the mechanical characteristics of the lipid bilayer. At distances larger than the

bilayer thickness the wavelength and the decaylength of this exponentially decaying

wave are exclusively determined by the mechanical and structural properties of the

bilayer. This means that the wavelength and the decaylength can be described by

the thickness, the bending modulus and the area compression-expansion modulus of

the bilayer. The amplitude and the offset of the perturbation are on the other hand

set by the properties of the inclusion. Indeed, the hydrophobic length mismatch, i.e.,

the difference between the hydrophobic length of the inclusion and the hydrophobic

thickness of the lipid bilayer, and the contact interaction between the inclusion and

the lipid bilayer are the key variables.

The free energy of insertion is mainly determined by the contact interaction
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energy between the inclusion and the lipid bilayer and it shows a parabolic depen-

dence on the hydrophobic length mismatch. The free energy of insertion is minimal

at a hydrophobic length mismatch where the bilayer perturbations are minimal. We

argued that there is a subtle interplay between the entropy loss of the lipid tails

adjacent to the surface and the contact interaction between the inclusion and the

lipid tails.

Important for the biological performance, we found that overlap of the perturbed

regions of the bilayer around two or more inclusions can cause attractive or repulsive

interaction between such inclusions depending on the distance between them. This

non-monotonic interaction force with the distance between inclusions, is directely

linked to the non-monotonic structural perturbations mentioned already. This lipid

mediated free energy of interaction between the inclusions can be divided into three

different regimes each with their own length scale. These are the short-range segmen-

tal, the intermediate-range conformational and the long-range elastic contributions.

The short-range contribution is only present when one or two lipids are in between

the inclusions. This interaction depends strongly on the Flory-Huggins interaction

between the inclusion and the lipid tails. The intermediate-range contribution is

present at separations on the length scale of approximately the bilayer thickness.

This interaction shows an exponentially decaying dependence on the separation be-

tween these inclusions and is a consequence of the confinement of the lipid tails in

between these inclusions. The long-range contribution is determined by the elastic

properties of the bilayer and has an exponentially decaying wave-like appearance,

with a wavelength that is the same as the perturbation wave length of the bilayer.

Our SCF analysis complements available simulations on the one hand and meso-

scopic models on the other. Moreover, they may help to analyse experiments and

explain observations in biomembranes.

In the second part of this thesis we examined the adhesion of negatively charged

DOPG vesicles and zwitterionic DOPC vesicles to a gold surface using quartz crys-

tal microbalance and surface plasmon resonance techniques. Gold has a hydrophilic

surface where lipid vesicles adsorb intact. When the vesicle radius was above approx-

imately 40 nm the DOPC vesicles completely cover the surface, whereas below this

radius the surface coverage decreases with decreasing vesicles size. When spherical

vesicles adsorb onto a surface they deform. The shape deformation of the adsorbed

vesicles increases with increasing vesicles size. The diminished deformation for the

smaller vesicles results in a relatively small interaction area between the vesicles

and the gold surface resulting in less lipid-surface interactions. Self-consistent field

model calculations on a single vesicle are in line with these experimental results.

The calculations showed that the relative deformation of the vesicles has a linear

dependence on the vesicles radius. They furthermore showed that below a certain

minimal vesicle radius the deformation is completely absent resulting in a lipid-

surface interaction energy that vanishes.

Self-consistent field calculations further indicate that the lipid-surface interac-
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tion can be divided into three different regimes. In the weak interaction regime the

adhesion of the vesicles is not accompanied by drastic changes in the bilayer struc-

ture and the vesicle is deformed elastically. In this case the adhesion of the vesicles

is energetically favourable over the adhesion of an equally sized bilayer patch. The

adhesion of lipid vesicles to the gold surface can most likely be categorised in this

regime. In the second intermediate interaction regime the adsorbed vesicles are en-

ergetically unfavourable compared to equally sized bilayer patches. The deformation

of these vesicles remain in the elastic regime and therefore they do not transform

into an adsorbed lipid bilayer patch. In the strong interaction regime the adsorp-

tion of the vesicles is strongly energetically unfavourable compared to equally sized

bilayer patches and this interaction is so strong that local molecular rearrangements

take place to increase the bilayer curvature. This results in adsorbed vesicles that

are very susceptible to fusion and/or rupture. An interesting prediction is that the

adsorption energy of a vesicle does not depend on the bilayer rigidity. This means

that the adsorption energy is a constant, and fixed by the interaction energy between

the lipid molecules and the surface. At the same time the deformations of the vesi-

cles increase with diminishing rigidity, which means that although the interaction is

the same, the vesicles with different rigidity can be present in different interaction

regimes.

As already mentioned, lipid vesicles adsorb intact onto a gold surface. However,

on many other surfaces lipid vesicles transform after adsorption into a supported

lipid bilayer. We studied the importance of electrostatic interactions for the adhesion

strength of DOPC and DOPG vesicles to a gold surface. This was done by varying

the pH, the ionic strength and an externally applied electrostatic potential. Varying

the pH of the solution has an effect on the protonation of the oxide groups present

at the gold surface. As a consequence the surface charge ranges from a positive

charge below pH= 5 to negative charge above pH= 5. In the case of negatively

charged DOPG vesicles, we showed that there is a relation between the adsorbed

amount and the pH. The adsorbed amount was larger at low pH compared to high

pH and remained approximately constant in the pH range 6 − 10. There is still

some adsorption in this pH range, from which it can be concluded that besides the

electrostatic interaction also other interactions, such as the van der Waals or other

chemical interactions, play a role.

The ionic strength has a rather strong influence on the adhesion of DOPG

vesicles, while the adsorbed amount of DOPC vesicles remains approximately con-

stant. Both experiments and self-consistent field modelling showed that the adsorbed

amount decreases with decreasing ionic strength. This relation can be attributed

to the fact that the headgroup density of the DOPG vesicle decreases with decreas-

ing ionic strength, which results in less favourable non-electrostatic lipid-surface

interactions.

The externally applied potential had no effect on the adsorption DOPG vesicles.

This can be attributed to the fact that externally applied potential can only be
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varied over a limited range, because otherwise redox reactions reaction at the gold

surface start to play a role. This means that the surface potential range is too

small to influence the interaction energy of the DOPG and the DOPC bilayer. With

self-consistent field modelling it was shown that if redox reaction did not occur and

the externally applied potential could be varied over a larger range, the interaction

energy between the lipid bilayer and the gold surface could be divided into four

different regimes. These regimes vary from weakly attractive to strongly attractive.

It can be concluded that the adhesion of DOPG vesicles onto gold is parly de-

termined by electrostatic interactions. Because the vesicles are weakly bound to

the gold surface, the electrostatic interaction can influence the adsorption of intact

vesicles. However they are never strong enough to induce transition of the adsorbed

vesicles to a flat supported bilayer. In the case of DOPC vesicles the electrostatic

interactions have a negligible effect

The organisation of proteins in lipid membranes is identified as one of the central

issues in molecular biology. We have tried to unravel the role of the lipid matrix in

the protein insertion problem. Our results may be important, for example in the

case of transmembrane proteins with multiple transmembrane α-helices, because the

short-range lipid-mediated interactions of these transmembrane helices can directly

influence the quaternary structure of these proteins. Besides generic issues discussed

in the present thesis there are numerous molecular specific aspects. These problems

will undoubtelly attract many scientific activities in the years to come. Lipid vesicles

at surfaces attracted a lot of attention in the last ten years. Vesicles adhesion is

used frequently to generate supported lipid bilayers. Such interfacial layers gives

the opportunity to study the properties and interactions of these lipid bilayers and

use these layers in biotechnological applications. We tried to unravel some details

of the interactions of lipid layers with a gold surface. Our results may be used to

understand why in some cases supported bilayers are formed while in other vesicles

stay intact at the surface. Understanding this will give us the opportunity to control

the fusion of lipid vesicles on a surface. Fusion of vesicles in a plane is also an issue

in biological processes such as the formation of the cell plate in plant cell division.
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Samenvatting

Alle organismen op aarde bestaan uit cellen die worden omgeven door een membraan.

Behalve dat dit membraan zorgt voor een gecontroleerd transport van stoffen in en

uit de cel, heeft het nog veel meer functies, zoals het verzorgen van de communicatie

tussen cellen, het hechten aan extracellulaire grensvlakken, participatie in enzymac-

tiviteit enz. Ook veel organellen, die je zou kunnen beschouwen als de organen van

de cel, zijn omsloten door een membraan.

De belangrijkste moleculen waaruit een membraan is opgebouwd zijn fosfolipi-

den. De meeste fosfolipiden bestaan uit een kopgroep die van water houdt (hy-

drofiel), en twee staarten die niet van water houden (hydrofoob). Deze moleculen

zullen, als ze in water aanwezig zijn, zich op een zodanige manier organiseren dat

de hydrofobe staarten zo min mogelijk en de hydrofiele kopgroepen zo veel mogelijk

in contact zijn met het omringende water. Een manier om dit te bereiken is om een

lipide bilaag te maken waar de kopgroepen naar buiten en de staarten naar binnen

zijn gericht. Deze lipide bilagen kunnen beschouwd worden als een tweedimension-

ale vloeistof, waarin de moleculen vrij kunnen bewegen in laterale richting. Als het

oppervlak van de bilaag groot genoeg is zal deze zich kunnen sluiten waardoor een

bolvormig vesikel ontstaat zoals weergegeven in figuur 17. De afmetingen van deze

lipide vesikels kunnen variëren van micrometers (duizendste millimeters) tot enkele

tientallen nanometers (miljoenste millimeters).

In biologische systemen zal een lipide bilaag door vele verschillende externe fac-

toren bëinvloed en verstoord worden. Een voorbeeld hiervan is dat een biologisch

membraan niet volledig uit lipiden bestaat maar dat er vanwege zijn functionaliteit

ook membraaneiwitten in het membraan aanwezig zijn. Deze eiwitten kunnen vast-

geplakt zijn aan de buitenkant van de membraan (periferische membraaneiwitten),

maar ze kunnen een membraan ook volledig doorboren (integrale membraaneiwit-

ten). De interactie van deze eiwitten met de lipiden waar ze mee in contact zijn,

zorgt ervoor dat de bilaag zich aanpast. Een ander voorbeeld is de verstoring van

een celmembraan wanneer de cel zich vastzet aan een bepaald grensvlak, wat bi-

jvoorbeeld gebeurt wanneer cellen zich groeperen in celweefsel. Deze aanhechting

zorgt ervoor dat het membraan zich lokaal moet aanpassen, wat weer effect heeft op

naastliggende gebieden van het membraan. Ook de ophoping van kleine vesikels in

het equatoriale vlak van een delende plantencel, waarbij de vesikels fuseren tot een

vlak membraan dat de scheiding vormt tussen de twee dochtercellen, geeft verstoorde
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Figure 17: Schematische weergave van een fosfolipide molecuul, een lipide bilaag en

een lipide vesikel. De lipide staarten zitten in het binnenste van de bilaag, terwijl

de kopgroep aan de buitenkant aanwezig is.

bilagen in de tussenstadia.

In dit proefschrift hebben we twee gevallen bestudeerd waarbij een lipide bilaag

een interactie heeft met een oppervlak. In het eerste geval hebben we de gevolgen

van de aanwezigheid van integrale membraaneiwitten in een lipide bilaag bestudeerd

door het systeem te modelleren gebruik makend van de zogenaamde zelf-consistente

veld theorie (self-consistent field, SCF). Dit is een techniek waarbij door middel van

computerberekeningen de organisatie van moleculen en de energie in een systeem

berekend kan worden. In deze methode worden de moleculen opgebouwd uit deeltjes

(segmenten) die allemaal even groot zijn. Het watermolecuul bestaat bijvoorbeeld

uit maar een segment, terwijl een lipide molecuul uit zo’n 45 segmenten bestaat,

waarvan er negen in de hydrofiele kop zitten en de hydrofobe staarten elk uit 18

segmenten bestaan. De SCF theorie maakt verder gebruik van een rooster om

de ruimte op te delen in een beperkt aantal plaatsen waar de segmenten kunnen

zitten. Elk segment is precies even groot als een roosterplaats. Door middel van

verschillende algoritmes wordt nu de energie berekend voor een bepaalde organisatie

van de moleculen in het systeem. Hoe hoger nu de energie hoe kleiner de kans dat

een systeem die organisatie aanneemt. Door nu de energie van al die mogelijke

organisaties te vergelijken kun je uitrekenen hoe groot de kans is dat een bepaald

segment op een bepaalde rooster plaats zit. Het grote voordeel van deze methode is

dat het een snelle rekenmethode is met goede resultaten.

In het tweede geval dat in dit proefschrift behandeld wordt, bestuderen we de

aanhechting (adsorptie) van lipide vesikels aan een goud oppervlak. Ook hier maken

we gebruik van de SCF methode, maar daarnaast hebben we ook gebruik gemaakt

van experimentele methoden waarvan de twee belangrijkste de QCM (quartz crystal

microbalance) en de SPR (surface plasmon resonance) techniek waren.

De QCM techniek is een methode waarbij een dun laagje goud is aangebracht
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Figure 18: Een schematische weergave van de QCM (quartz crystal micobalance).

Via de inlaat wordt met constante snelheid een vesikeloplossing langs het goudplaatje

geleid. Over het piezo-elektrische kristal wordt via de elektroden een potentiaal

aangelegd waardoor het met een bepaalde frequentie trilt. Wanneer de vesikels

adsorberen op het goudlaagje verandert de frequentie. Deze frequentieverandering

is een maat voor de geadsorbeerde massa.

op een piezo-elektrisch kristal (figuur 18). Door over dit kristal een wisselspanning

aan te leggen gaat het trillen met een bepaalde frequentie. Als er nu iets adsorbeert

aan het goud zorgt dit voor een verandering van deze frequentie omdat de massa

verandert. Door nu de verandering van deze frequentie te meten is het mogelijk om

de totale massa van de geadsorbeerde stof te berekenen.

De SPR techniek is een optische techniek en werkt op een totaal andere manier

(figuur 19). Hier wordt een dun laagje goud van ongeveer 50 nm op een prisma

aangebracht. Door nu via het prisma een gepolariseerde lichtstraal van een bepaalde

golflengte te laten reflecteren via de onderkant van het goud en de intensiteit van

het gereflecteerde licht te meten kan er een bepaalde hoek gevonden worden waar

de intensiteit van de gereflecteerde lichtstraal minimaal is. Deze hoek wordt de

kritische hoek genoemd. Wanneer er nu vesikels uit een oplossing adsorberen aan

de bovenkant van het goud zal de kritische hoek veranderen omdat de lipiden een

andere brekingsindex hebben dan het water. De verandering van de kritische hoek

geeft dus informatie over de hoeveelheid lipiden die aan het goud oppervlak aanwezig

zijn

Door deze technieken in combinatie met elkaar te gebruiken kun je dus informatie

verkrijgen over de hoeveelheid massa lipiden en de totale geadsorbeerde massa die

aanwezig is aan het goudoppervlak. Door de verhouding tussen deze twee massa’s

te bepalen kun je bijvoorbeeld zien of de geadsorbeerde vesikels intact zijn gebleven

aan het oppervlak of dat ze zijn getransformeerd in een vlakke geadsorbeerde lipide

bilaag.

In de rest van deze samenvatting gaan we dieper in op de twee bestudeerde

gevallen, te beginnen met het invoegen van een integraal membraaneiwit in een lipide

bilaag. Wanneer een cilindervormig hydrofoob object dwars door een lipide bilaag
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Figure 19: Een schematische weergave van de SPR (surface plasmon resonance)

methode. Een gepolariseerde lichtstraal met een bepaalde golflengte wordt via een

prisma aan de onderkant van het goudlaagje gereflecteerd. Met een detector wordt

de intensiteit van het gereflecteerde licht gemeten. Bij een bepaalde kritische hoek

is er een minimale reflectie van het licht, zoals aangegeven in de grafiek. Wanneer

er nu lipide vesikels uit een oplossing adsorberen aan de bovenkant van het goud,

zal de kritische hoek veranderen omdat de lipiden een andere brekingsindex hebben

dan het water. De mate van verandering van deze kritische hoek is een maat voor

de hoeveelheid geadsorbeerde lipiden aan het goudoppervlak.

steekt (figuur 20), zal de bilaag om dit object verstoord worden. Vele verschillende

factoren hebben een effect op deze verstoring, maar de belangrijkste zijn de vorm

van het object, de hydrofobe lengte van het object D, de hydrofobe dikte van de

bilaag d0
l en de lokale interacties tussen het object en de bilaag.

In alle gevallen heeft de verstoring van de bilaagstructuur om de cilinder een

exponentieel afnemende periodieke verschijning. Op grotere afstanden tot de cilinder

wordt de golflengte en de exponentiele afname van de verstoring volledig bepaald

door de dikte en de mechanische eigenschappen van de bilaag, zoals de stijfheid die

wordt beschreven met de buigingsmodulus en de uitrekbaarheid van de bilaag die

wordt beschreven met de oppervlaktemodulus. Dit betekent dat de golflengte en
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Figure 20: Schematische weergave van een transmembrane hydrofobe cilinder met

hydrofiele uiteinden in een lipide bilaag. De cilindervormige staaf heeft een straal

R. De lengte ∆d is een maat voor het verschil tussen de hydrofobe lengte D van de

staaf en de hydrofobe dikte van de bilaag d0
l .
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de afname van de golfamplitude volledig kunnen worden beschreven in termen van

de bilaagdikte, de buigingsmodulus en de oppervlaktemodulus. De amplitude en de

positie van de golven worden daarentegen ook bepaald door de eigenschappen van

het ingesloten object. In het geval van de cilinder zijn de twee belangrijkste factoren

die dit bepalen de lokale interactie tussen de cilinder en de bilaag en het verschil

tussen de hydrofobe lengte van de cilinder en de hydrofobe dikte van de bilaag.

De verandering van de vrije energie als gevolg van het insluiten van de cilinder in

de bilaag wordt voornamelijk bepaald door de contact-interacties tussen de cilinder

en de lipide bilaag. Verder vertoont de vrije energie een minimum als functie van het

verschil in hydrofobe lengte tussen cilinder en bilaag. In dat minimum is de verstor-

ing van de bilaag het kleinste. In dit proefschrift is beschreven dat de verstoring van

de bilaag wordt bepaald door een subtiel samenspel tussen de contact-interacties

tussen de cilinder en de bilaag en het entropieverlies van de lipide staarten grenzend

aan de cilinder. Met entropieverlies wordt bedoeld dat de verschillende mogelijke

conformaties van de lipide staarten wordt beperkt, door de aanwezigheid van de

cilinder, wat ongunstig is.

We hebben dus laten zien dat de verstoring van een lipide bilaag om een inges-

loten object een periodiciteit heeft en exponentieel afneemt met de afstand tot het

object. Als nu twee van zulke objecten bij elkaar in de buurt komen dan zullen de bi-

laag verstoringen elkaar gaan overlappen. Het interessante is dat door de overlap van

deze verstoringen een repulsieve of attractieve interactie tussen de objecten ontstaat,

afhankelijk van de afstand tussen hen. Een dergelijke indirecte lipide veroorzaakte

interactie zou een rol kunnen spelen in de organisatie van eiwitten in een biologisch

membraan.

De indirecte lipide veroorzaakte vrije energie van interactie tussen de ingesloten

objecten kan opgedeeld worden in drie verschillende regimes die elk hun eigen lengte

schaal hebben. In deze regimes overheersen respectievelijk de bijdrage van wis-

selwerking tussen de lipide segmenten en de ingesloten objecten, de bijdrage van

conformationele restricties van de lipiden die aanwezig zijn tussen de ingesloten ob-

jecten en de elastische bijdrage van de lipide bilaag. De segment bijdrage speelt

alleen een rol van betekenis wanneer er 1 of 2 lipiden tussen de ingesloten objecten

aanwezig zijn. Deze bijdrage wordt sterk bepaald door de contact-interacties tussen

ingesloten objecten en de lipide bilaag. De conformatie bijdrage speelt een rol totdat

de afstand tussen de ingesloten objecten ongeveer even groot is als de dikte van de

bilaag. De interactie heeft een exponentieel afnemende afhankelijkheid van de afs-

tand tussen de ingesloten objecten en is het gevolg van de ruimtelijke beperking van

de lipide staarten tussen deze objecten. De elastische contributies die op langere

afstanden nog een rol spelen worden bepaald door de structurele en mechanische

eigenschappen van de lipide bilaag en laten een exponentieel afnemende periodieke

afhankelijkheid zien van de afstand tussen de ingesloten objecten. De golflengte is

dezelfde als de golflengte van de structurele bilaagverstoring.

De resultaten die we verkregen hebben uit de SCF analyse complementeren zowel
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Figure 21: De figuur laat twee even grote geadsorbeerde vesikels zien zoals die zijn

berekend met de SCF methode. In het geval van de linker vesikel is de bilaag-

oppervlak interactie sterk genoeg om een elastische vervorming van het vesikel te

bewerkstelligen waardoor het interactie-oppervlak groot genoeg is om de vesikel te

laten adsorberen, maar het blijft waarschijnlijk intact. Voor het rechter vesikel is de

interactie met het oppervlak sterk waardoor de bilaag op sommige plaatsen zo sterk

wordt verstoord dat het relatief makkelijk zal fuseren met een nabijgelegen vesikel.

eerder gedane moleculaire simulaties als mesoscopische benaderingen. Ze kunnen

verder helpen bij de analyse van experimenten en observaties aan biomembranen

verklaren.

In het tweede deel van dit proefschrift hebben we gekeken naar de adsorptie

van negatief geladen DOPG vesikels en zwitterionische (met een positieve en een

negatieve lading in de kopgroep) DOPC vesikels aan een goudoppervlak. Goud heeft

een hydrofiel oppervlak waar lipide vesikels intact aan adsorberen. De adsorptie van

lipide vesikels wordt bepaald door de bilaag-oppervlak interactie energie en de en-

ergie die nodig is voor vervorming van het vesikel. Wanneer een bolvormig vesikel

adsorbeert aan het oppervlak moet het enigszins deformeren om genoeg interactie-

oppervlak te genereren met het vlakke oppervlak waardoor de adsorptie-energie

tussen het oppervlak en de bilaag groot genoeg is. Uit de metingen is gebleken

dat DOPC vesikels met een straal groter dan 40 nm het goud volledig bedekken,

terwijl beneden deze straal de mate van oppervlaktebedekking met geadsorbeerde

vesikels afneemt. Dit heeft te maken met het feit dat de vesikel-deformatie en dus

het interactie-oppervlak tussen het vesikel en het oppervlak afneemt met afnemende

vesikelgrootte. Hierdoor wordt beneden een straal van 40 nm de interactie-energie

tussen het vesikel en het oppervlak zo klein dat de vesikels minder sterk adsorberen.

SCF-berekeningen aan een enkel vesikel zijn consistent met deze experimentele re-

sultaten. De berekeningen tonen aan dat de relative vervorming van het vesikel

recht evenredig is met zijn straal.

De SCF-berekeningen geven verder aan dat de lipide-oppervlak interactie in drie

verschillende regimes kan worden verdeeld. In het zwakke interactieregime (figuur

21a) wordt de adsorptie van het vesikel niet vergezeld door drastische veranderingen

in de bilaagstructuur en is de vervorming van het vesikel puur elastisch. In dit geval
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is de adsorptie van het vesikel energetisch gunstiger dan de adsorptie van een vlakke

bilaag die uit evenveel lipiden bestaat als het vesikel. Dit houdt dus in dat wanneer

de vesikels adsorberen het energetisch ongunstig is dat ze openbreken en een vlakke

bilaag vormen. De adsorptie van de DOPC en DOPG vesikels aan het goudoppervlak

valt waarschijnlijk in dit regime. In het tweede tussenliggende interactieregime is een

intact geadsorbeerd vesikel energetisch ongunstig vergeleken met de adsorptie van

een even grote vlakke bilaag. De vervorming van dit vesikel blijft in het elastische

regime en daarom is het niet waarschijnlijk dat het snel spontaan overgaat in een

geadsorbeerde vlakke lipide bilaag. In het sterke interactie regime (figuur 21b) is

de adsorptie van een intact vesikel energetisch erg ongunstig vergeleken met de

vlakke bilaag. Tevens is hier de interactie van de vesikels zo sterk dat plaatselijk

drastische moleculaire herschikkingen nodig zijn om de bilaag kromming toe te laten

nemen. Dit resulteert in een geadsorbeerd vesikel dat heel ontvankelijk is voor fusie

en/of breuk. Een interessant resultaat van de SCF-berekeningen is dat de totale

adsorptie-energie van een vesikel niet afhangt van de elasticiteit van de bilaag. Dit

betekent dat de totale adsorptie energie een constante is en bepaald wordt door

de interactie-energie tussen de lipide moleculen en het oppervlak. De mate van

deformatie van het vesikel neemt wel toe met het verminderen van de stijfheid van

de bilaag. Dit betekent dat ondanks een gelijke lipide-oppervlak interactie vesikels

met verschillende rigiditeit in verschillende interactieregimes kunnen zitten.

Zoals reeds vermeld, adsorberen lipide vesikels intact op een goudoppervlak.

Echter op vele andere oppervlakken vormen lipide vesikels een geadsorbeerde lipide

bilaag. In deze studie is het belang van de elektrostatische interacties bij de adsorptie

van DOPC en DOPG vesikels aan een goudoppervlak onderzocht. Dit werd gedaan

door het variëren van de pH, de zoutconcentratie en een op het goud aangelegde

elektrische potentiaal.

De pH van de oplossing bepaald de protonatie van de oxidegroepen die aanwezig

zijn op het goudoppervlak. De oppervlaktelading is positief bij een pH lager dan 5

en wordt negatief wanneer de pH boven de 5 uitkomt. In het geval van de negatief

geladen DOPG vesikels is er een duidelijk meetbaar effect van de pH op de gead-

sorbeerde hoeveelheid. De geadsorbeerde hoeveelheid neemt toe bij een variatie van

pH6 tot pH3, terwijl boven pH6 de geadsorbeerde hoeveelheid gelijk bleef. Ondanks

dat boven pH5 het oppervlak negatief is geladen, vindt daar dus toch enigszins

adsorptie plaats. Dit betekent dat ook andere interacties, zoals de van der Waals

interactie of chemische interacties, een rol spelen.

De ionsterkte heeft een grote invloed op de adsorptie van DOPG vesikels, ter-

wijl de geadsorbeerde hoeveelheid DOPC vesikels niet veranderd bij variatie van de

ionsterkte. Zowel experimenten als de SCF-berekeningen tonen aan dat de geadsor-

beerde hoeveelheid DOPG vesikels afneemt met het afnemen van de zoutconcentratie

in de oplossing. Deze relatie kan worden toegeschreven aan het feit dat de kop-

groepdichtheid van de DOPG bilaag afneemt bij een afnemende zout concentratie,

wat resulteert in een geringer aantal gunstige lipide-oppervlak interacties.
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De extern aangelegde potentiaal heeft geen invloed op de adsorptie van DOPG

vesikels. Dit komt doordat er grenzen zijn waarover de externe potentiaal kan worden

gevarieerd, omdat anders redoxreacties aan het goudoppervlak een rol gaan spelen.

Dit betekent dat het potentiaalbereik aan het goudoppervlak te klein is om een effect

te hebben op de adsorptie van DOPG vesikels. Met de SCF-berekeningen hebben

we laten zien dat wanneer dit potentiaal bereik groter zou zijn er wel degelijk een

variatie van de bilaag-oppervlak interactie zou moeten zijn.

Er kan geconcludeerd worden dat adsorptie van DOPG vesikels op goud gedeel-

telijk wordt bepaald door elektrostatische interacties. Omdat de vesikels zwak

gebonden zijn aan het goud, kan de elektrostatische interactie effect hebben op

de adsorptie van intacte vesikels, maar is nooit sterk genoeg zijn om een overgang

van een intact vesikel naar een geadsorbeerde vlakke bilaag te initiëren. In het geval

van DOPC vesikels hebben de elektrostatische wisselwerkingen een verwaarloosbaar

effect.

De organisatie van eiwitten in lipide bilagen is een belangrijk onderzoeksgebied

in de moleculaire biologie. We hebben geprobeerd inzicht te krijgen in de gevol-

gen van het invoegen van een membraan overspannend object in de lipide bilaag.

Onze resultaten kunnen belangrijk zijn met betrekking tot transmembraaneiwitten

met verscheidene α-helixen, omdat de bilaag structuur op korte afstanden tussen

deze membraanoverspannende helixen rechtstreeks inlvoed heeft op de quaternaire

structuur van deze eiwitten. Natuurlijk moet er wel rekening mee worden gehouden

dat er buiten de in dit proefschrift besproken kwesties talrijke andere moleculaire

specifieke aspecten een rol spelen.

De adsorptie van lipide vesikels aan een oppervlak heeft de laatste decennia

veel aandacht getrokken. Een toepassing is o.a. het maken van een geadsorbeerde

vlakke bilaag op een oppervlak omdat deze gebruikt kan worden om een membraan

te bestuderen of bijv. in een biosensor.

We hebben door systematisch experimenteren en met behulp van modelberekin-

gen meer inzicht gekregen in de wisselwerking tussen vesikels en een oppervlak en

de gevolgen daarvan op de lipide-bilaag structuur. Dit begrip zal bijdragen aan

het ontwikkelen van methoden om vesikeladsorptie op een gecontroleerde manier te

laten plaatsvinden voor allerlei toepassingen en om de wisselwerking en fusie van

vesikels, gecontroleerd in een grensvlak, te bestuderen.
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deze tijd heb ik veel verschillende mensen ontmoet en ik kan zeggen dat het een

inspirerende periode uit mijn leven is geweest.

Om te beginnen wil ik mijn copromotor Mieke Kleijn en promotoren Frans Leer-

makers en Martien Cohen Stuart bedanken voor hun hulp tijdens de afgelopen vier

jaar en het feit dat ze altijd voor me klaar stonden. Mieke heeft mij op vele manieren

bijgestaan, onder andere door de vele gesprekken en discussies die we hebben gehad.

Frans heeft mij in de wereld van het modelleren getrokken. In eerste instantie was

ik nogal huiverig om hier in te stappen, maar op aandringen van Frans heb ik deze

stap toch gezet en daar ben ik hem achteraf dankbaar voor. Ook wil ik mijn andere

promotor Martien bedanken voor zijn bijdrage aan mijn onderzoek. Ondanks dat dit

contact een stuk minder frequent was, kwam Martien toch vaak met een verfrissend

nieuw idee om een probleem te benaderen.

Verder wil ik Anton, Gert, Remco, Willem, Mara, Ben en Ronald bedanken voor

het feit dat ze altijd behulpzaam waren als ik met een vraag of probleem bij ze

kwam. Ook de medewerkers van de werkplaats wil ik bedanken voor de hulp bij het

ontwerpen en maken van verschillende onderdelen die ik nodig had om te meten.

Tevens wil ik enkele mensen van het laboratorium van Plantencelbiologie be-

danken voor de discussies die we regelmatig met elkaar hadden. De gespekken met

Agnieszka, Andre, Henk, en natuurlijk Anne Mie waren altijd iets om naar uit te

kijken.

Zoals eerder gezegd was het altijd erg gezellig op de leerstoelgroep. Het zou een

erg lange lijst worden als ik iedereen zou moeten opnoemen, maar bij deze wil ik

iedereen bedanken voor een periode in mijn leven waar ik met zeer warme gevoelens

op terugkijk. Door de vele tripjes, activiteiten en borrels hing er altijd een zeer

vriendschappelijke sfeer die ik niet snel vergeten zal.

Ook wil ik Jan bedanken voor het feit dat ik in de laatste maanden van mijn

promotie onderzoek lekker kon ontspannen en mijn gedachten verzetten door lekker

samen te gaan stappen of tot diep in de nacht te pokeren. Rutger, jouw positieve

instelling en de vele goede gesprekken die we hebben gehad zijn mij zeer dierbaar.

Ook Nique wil ik noemen omdat we elkaar zo lekker voor de gek kunnen houden

omdat we elkaar zo goed begrijpen. Tenslotte wil ik ook Richard, die ik al zo

165



ongeveer mijn hele leven ken, bedanken voor de vele ervaringen die we samen hebben

gehad. We zien elkaar de laatste tijd niet zo vaak, maar dat komt wel weer.

Anita wil ik speciaal bedanken omdat zij de afgelopen vier jaar een erg belangrijke

rol in mijn leven heeft gespeeld. We hebben een relatie gehad met ups en downs,

maar het was nooit saai. Wat ik wel weet is dat zij een heel bijzonder mens is.

Ongelofelijk positief, heerlijk eigenwijs en een echte levensgenieter die enorm veel

warmte geeft aan de mensen om haar heen. Kortom een diamantje zoals er maar

weinig zijn met ook nog eens twee kleine diamantjes, namelijk Lotte en Anouk.

Natuurlijk wil ik Patrick bedanken omdat hij altijd een belangrijke rol heeft

gespeeld in mijn leven. Ondanks dat we elkaar momenteel niet zo heel vaak zien is

hij een van de weinige zekerheden in mijn leven waar ik altijd van op aan kan en

van wie ik weet dat hij mij echt begrijpt en altijd achter me staat.

Tenslotte wil ik mijn ouders, Leen en Anneke, bedanken voor al hetgeen ze mij

hebben gegeven in het leven. Er zijn maar weinig mensen die zoveel over hebben

voor hun kinderen als jullie en daar ben ik erg dankbaar voor. Ondanks dat ik het

jullie niet altijd even gemakkelijk heb gemaakt, hebben jullie mij altijd gesteund en

zijn jullie er altijd voor mij geweest. Ik had me geen betere ouders kunnen wensen.

Ik hou van jullie.

166



List of publications

Visualization of highly ordered striated domains induced by transmem-

brane peptides in supported phosphatidylcholine bilayers.

H.A. Rinia, R.A. Kik, R.A. Demel, M.M.E. Snel, J.A. Killian, J.P.J.M. van der

Eerden and B. de Kruijff Biochem. 39 (19): 5852-5858 2000

Domain formation in phosphatidylcholine bilayers containing transmem-

brane peptides: Specific effects of flanking residues.

H.A. Rinia, J.W.P. Boots, D.T.S. Rijkers, R.A. Kik, M.M.E. Snel, R.A. Demel, J.A.

Killian, J.P.J.M. van der Eerden and B. de Kruijff Biochem. 41 (8): 2814-2824 2002

Bending moduli and spontaneous curvature of the monolayer in a surfac-

tant bilayer.

R.A. Kik, J.M. Kleijn and F.A.M. Leermakers J. Phys. Chem. B 109 (30): 14251-

14256 2005

Molecular modeling of lipid bilayers and the effect of protein-like inclu-

sions.

R.A. Kik, F.A.M. Leermakers and J.M. Kleijn Phys. Chem. Chem. Phys. 7 (9):

1996-2005 2005

Molecular modelling of peptide-like inclusions in lipid bilayers: Lipid-

mediated peptide-peptide interactions.

R.A. Kik, F.A.M. Leermakers and J.M. Kleijn Submitted

Effect of size, rigidity and bilayer surface interaction on the adsorption

of lipid vesicles: Experimental study and self-consistent field model cal-

culations.

R.A. Kik, F.A.M. Leermakers and J.M. Kleijn Submitted

Adhesion of phospholipid vesicles to gold: Effect of ionic strength, pH

and applied potential.

R.A. Kik, F.A.M. Leermakers, J.M. Kleijn and M.A. Cohen Stuart To be submitted

167



Curriculum vitae

Richard Kik werd geboren op 19 augustus 1971 te Eindhoven. Nadat hij in 1989 aan

het Augustinianum te Eindhoven zijn HAVO diploma in ontvangst nam, begon hij

de studie HLO chemie aan de Hogeschool Eindhoven. Deze werd in 1995 afgerond

en in het jaar daarop ging hij scheikunde studeren aan de Universiteit Utrecht. Zijn

afstudeeronderzoek deed hij bij de sectie biochemie en membranen van de faculteit

Scheikunde, waar hij de insertie van synthetische peptiden in lipiden bestudeerde

met behulp van de atomaire krachten microscoop. Na het afronden van deze studie in

2000 was hij ongeveer twee jaar werkzaam als programmeur bij Spherion Technology.

Hier hield hij zich bezig met het ontwikkelen en onderhouden van mainframes bij

verschillende bedrijven. In 2002 begon hij aan de Wageningen Universiteit met een

promotie onderzoek bij het Laboratorium voor Fysische Chemie en Kollöıdkunde.
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