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Genomic selection 

Genomic selection is rapidly being adopted in animal breeding (Hayes et al., 2009b; Calus, 

2010; de los Campos et al., 2013). Genomic selection is an attractive alternative to traditional 

selection strategies, because it allows to increase genetic gain by increasing the intensity of 

selection, shortening the generation interval, and it may even increase the accuracy of 

selection, depending on the traits considered. All these characteristics jointly lead to an 

increase of genetic gain per generation (Meuwissen et al., 2013). Genomic selection relies on 

genomic breeding values, that can be predicted with relatively high accuracy at a very early 

age of the selection candidates. Genomic breeding values are estimated from a reference 

population (RP) with individuals with known phenotypes and SNP genotypes (Meuwissen et 

al., 2001).  Effects of SNP genotypes are calibrated, by associating SNP genotypes to 

observed phenotypes or breeding values.  

Genomic selection was initially presented to rely on linkage disequilibrium (LD) between 

SNPs and QTL. Early additional research on genomic selection, however, indicated that 

within-breed genomic selection is largely driven by genetic relationships that are captured by 

the SNPs (i.e. genomic relationships) between the RP and the selection candidates (Habier et 

al., 2007). In fact, it has been shown that breeding values of individuals with a high 

relationship to the RP, can be predicted with higher accuracy than breeding values of 

individuals with poor relationships to the RP (Habier et al., 2007; Habier et al., 2010; Clark et 

al., 2012; Pszczola et al., 2012a). This leads to another straightforward interpretation of the 

principle behind genomic selection, which is that the SNP information predominantly helps to 

explain the Mendelian sampling term of an animal (Daetwyler et al., 2007). SNP based 

relationships are much better in capturing the variance in true relationships than pedigree 

based relationships (Figure 1), because they capture the Mendelian sampling term. 

2 
 



 

Genomic prediction models 

Many different models have been proposed to estimate genomic breeding values (for a review 

see: de los Campos et al. (2013)). A well-known categorization of genomic prediction models 

is by dividing them into a category that involves explicit estimation of SNP-effects, while 

another category involves using genomic relationships. Although those categories coincide 

with the alternative explanations of the principle of genomic selection, i.e. relying on SNP-

QTL LD versus use of genomic relationships, it has been shown that some models from either 

category are in fact equivalent (Goddard, 2009). This stresses that the accuracy of genomic 

prediction cannot easily be separated into a component due to SNP-QTL LD and a component 

due to prediction of relationships between selection candidates and the RP. In fact, close 

relationships cause LD across long distance on the genome, and break down as a function of 

the relationships. 

All of the proposed genomic prediction models have features that enable simultaneous 

estimation of a large number of SNP effects (p) based on a relatively small number of animals 

(n). Clear relationships exist between different genomic prediction models in their strategy to 

tackle this n<<p problem (de los Campos et al., 2013). One important strategy is using a 

shrinkage estimation procedure. The random regression-BLUP (RR-BLUP) model (e.g. 

Habier et al., 2007), which uses the same variance for each SNP, is expected to show more 

shrinkage than variable selection methods, which are able to adapt the variance for each SNP, 

conditional on its estimated effect. This is illustrated in Figure 2, where estimated SNP-effects 

from RR-BLUP are plotted against estimated SNP-effects of BayesC, which is a variable 

selection method. This figure shows that the SNP that receive the largest effect in BayesC, 

also receive the largest effect in RR-BLUP. At the same time, the largest SNP effects 
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estimated with BayesC are substantially larger than those estimated with RR-BLUP, due to its 

flexibility by performing variable selection. In other words, SNP-effects estimated with RR-

BLUP are more strongly affected by shrinkage than SNP-effects estimated with BayesC. 

 

Multi-trait genomic prediction 

Most research around genomic prediction focusses on single trait models. In traditional 

breeding programs, use of predictor traits in multi-trait breeding value estimation proved to be 

very successful in increasing the accuracy of selection. This suggests that the accuracy of 

genomic selection may also benefit from using predictor traits in multi-trait genomic 

prediction. So far, a few simulation studies have investigated this combined model, and those 

studies indeed support that multi-trait genomic prediction can lead to a considerable increase 

in genomic prediction accuracy (Calus and Veerkamp, 2011; Jia and Jannink, 2012; Hayashi 

and Iwata, 2013).  

The benefit of using multi-trait genomic prediction for US Holsteins was investigated in two 

studies. Using multi-trait genomic prediction for conception rate in the first three parities 

resulted in a doubling of the reliability (prediction accuracy squared) of genomic predictions 

compared to pedigree based predictions (Aguilar et al., 2011). Similarly, it was shown that the 

reliability of genomic breeding values for the conformation trait “strength” increased from 

0.40 to 0.45 when a multi-trait genomic prediction model with 18 conformation traits was 

used instead of a single-trait model (Tsuruta et al., 2011). Both studies used the so-called 

“single-step approach” that combines genotype and pedigree information of genotyped and 

ungenotyped animals in a single relationship matrix, and considered scenarios where 

genotyped animals generally had phenotypes for all traits included in the model. Another 

study investigated the additional benefit of exploiting a multi-trait GBLUP-type model to 
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predict genomic breeding values for dry matter intake, using measurements for milk yield and 

live weight as predictor traits (Pszczola et al., 2012b). This study showed that indeed the 

predictor traits improved the accuracy of prediction for dry matter intake, but also indicated 

that the accuracy was similar to a multi-trait pedigree based model. This was most likely the 

result of moderate to strong genetic correlations between the predicted trait and the predictor 

traits, as it has been shown previously that the added benefit of genomic information in multi-

trait models is decreased when predictor traits with strong genetic correlations are used (Calus 

and Veerkamp, 2011). 

An important question is whether the increase in accuracy of multi-trait compared to single 

trait genomic prediction arises simply because SNP-effects are estimated with higher 

accuracy, or because the multi-trait genomic prediction model is better able to detect QTL 

compared to its single-trait counterpart. We have developed a bivariate Bayesian Stochastic 

Search Variable Selection (BSSVS) model that can use data from two traits that are each 

measured on a separate group of animals (Calus et al., 2013). This model was applied to a 

scenario where the one group of animals was a cow RP and the other group of animals was a 

bull RP. Results showed that accuracies of genomic prediction for the trait measured on the 

cows benefitted from exploiting the additional information on the bull trait and helped to 

reduce potential bias in predicted breeding values. Additionally, using the cow and bull data 

combined, resulted in increased power to detect QTL. Although some of the additional QTL 

may have been false positives, several of the additional QTL appear to be ‘true’ because they 

could be validated based on existing literature. In another study, evidence for two QTL related 

to progesterone levels, detected using the single-trait BSSVS model, considerably improved 

when the bivariate BSSVS model was applied using information on correlated fertility traits 

(Berry et al., 2012). These examples indicate that, at least to some extent, the increase in 
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accuracy of multi-trait compared to single trait genomic prediction is the result of increased 

power to detect QTL  

 

Size of the reference population (RP) 

The n<<p problem encountered in genomic prediction models may be alleviated somewhat in 

the near future, because the number of animals in the RP are increasing rapidly due to several 

reasons. Firstly, the costs of genotyping are continuously decreasing. Secondly, depending on 

the species and the structure of the breeding program, large numbers of selection candidates 

are genotyped to increase the intensity of selection. Eventually, part of those selection 

candidates are promoted to become breeding animals. If those animals, their offspring or other 

close relatives, are phenotyped later on, then those reference candidates can be added to the 

RP. Thirdly, especially in dairy cattle, international exchange of genotypes is becoming 

common practice (e.g. Lund et al., 2011), because of the recognized mutual benefits. Also, 

now most dairy bulls have been genotyped, more and more cows are being genotyped, as 

well. 

An interesting observation is that with an increase in the size of the RP, the differences in 

observed accuracies between models appear to decrease. This is illustrated in Figure 3, where 

accuracies of genomic prediction for fat and protein percentage in dairy cattle obtained from 

GBLUP and two Bayesian models are presented. The Bayesian models involved one model 

with marker specific shrinkage (BayesA), and a variable selection model (Bayes SSVS). The 

difference between GBLUP and the Bayesian models are manifested in the prior settings of 

the models. The explanation for the decrease in accuracy between models, when the number 

of animals in the RP increases, is that in Bayesian learning, with an increase in data size, the 

dependency on the priors of the model decreases. 
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50k SNP chips 

The number of animals used in genomic prediction models of reported studies ranges from a 

few hundred, up to over 20,000 (e.g. Lund et al., 2011; Tsuruta et al., 2013). The number of 

SNPs used is typically ~40k. This results from the fact that chips with 50-60k are available for 

all major livestock species (Van Tassell et al., 2008; Matukumalli et al., 2009; Ramos et al., 

2009; Groenen et al., 2011), of which generally 10-15k are removed during the editing 

process. Those 50k SNP chips are currently used as a standard genotyping platform for 

genomic selection. At the time when those 50k SNP chips were introduced, front-runners in 

dairy cattle breeding had already started to use genomic selection with panels of a few 

thousand SNPs (De Roos et al., 2009b). Using those few thousand SNPs, genomic prediction 

models simultaneously used LD and linkage information. At the time, an important question 

was whether linkage information still needed to be included in genomic prediction models 

when using the 50k SNP chip instead of only a few thousand SNPs. It was shown in a 

simulation study that LD alone captured with 50k SNP chips, capturing an average r2 value 

between SNP > 0.2, indeed was sufficient to explain variation at the QTL, such that linkage 

analysis information did not need to be included in genomic prediction models anymore  

(Calus et al., 2008). Recently, it has been proposed that modelling linkage information may, 

however, be useful when genomic predictions are used across multiple generations (Habier et 

al., 2013). 

 

Higher SNP density & whole genome sequence data 

Although a rapid increase in the size of RPs is currently observed, the number of SNPs used is 

expected to increase rapidly as well. The main advantage of using a higher SNP density, is 
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that the SNPs used are physically closer to the QTL, which is expected to result in higher 

QTL-SNP LD and therefore in a higher persistency of accuracy of prediction across 

generations. For cattle, two higher density SNP chips have been developed, the Affymetrix 

Axiom Genome-Wide BOS1 Array (648,874 SNP) and the Illumina High-Density Bovine 

Bead Chip Array (777,962 SNP) (Rincon et al., 2011). For chicken, recently a higher density 

chip with 580,954 SNPs is developed (Kranis et al., 2013). For other species, thus far no 

higher density SNP chips are available.  

Currently, early investigations are undertaken to use whole genome sequence data in genomic 

prediction (Meuwissen and Goddard, 2010; Hayes et al., 2012). In such applications, where 

perhaps >10,000,000 SNP are included, it has been suggested that variable selection methods 

such as BayesB are required to make optimal use of whole genome sequence data in genomic 

prediction (Meuwissen and Goddard, 2010). 

 

Genomic prediction models for across-breed genomic prediction 

As discussed previously, the accuracy of the genomic breeding value of a selection candidate 

heavily depends on its relationship with the RP. Following up on this idea, Wientjes et al. 

(2013) investigated the accuracy of genomic breeding values for selection candidates that 

were increasingly more related to the RP. This was achieved by simulating selection 

candidates that had genotypes sharing the following properties with the genotypes of the RP: 

1) allele frequency, 2) LD structure, 3) haplotypes (837 across the genome), 4) haploid 

chromosomes, or 5) family structure. Those scenarios reflect increasing relationships with the 

RP, where the 5th scenario represents that RP and selection candidates originate from the same 

breed. Predicted accuracies showed that, especially for small RPs, family relationships 

between RP and selection candidates are very important (Figure 4). Predictions across 
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different sizes of RP indicated that for the scenario where selection candidates were related 

through short haplotypes to the RP, the RP had to be ~15 times as large  to reach a reliability 

(squared correlation) of 0.6 compared to a scenario with family relationships between RP and 

selection candidates. 

These results are in agreement with results in the literature on across-breed genomic 

prediction using 50k genotypes, that show limited or no increase in accuracy due to use of 

multi-breed RPs compared to single-breed RPs (Hayes et al., 2009a; Pryce et al., 2011). 

Previously, it has been predicted that in order to successfully combine RP of Holstein-Friesian 

and Jersey, at least 300,000 SNPs should be used (De Roos et al., 2008; de Roos et al., 

2009a). Using > 600,000 SNPs on the Illumina High-Density Bovine Bead Chip Array, 

however, thus far only very slight increases in accuracy have been reported (Erbe et al., 

2012). 

 

Genomic prediction models – ungenotyped animals 

The category of genomic prediction models that are based on genomic relationships, rather 

than explicit estimation of SNP-effects, are straightforward to implement, since it only 

involves replacing a pedigree based by a genomic relationship matrix. Several software 

packages are able to read in an external relationship matrix (e.g. Gilmour et al., 2009; Mulder 

et al., 2010). In addition, it has been shown that a genomic relationship matrix from a subset 

of genotyped animals, can conveniently be blended with a pedigree based relationship matrix 

of all animals in the population, and used in a so-called single-step approach (Aguilar et al., 

2010; Christensen and Lund, 2010). This approach is termed “single-step”, because it 

computes breeding values in one step, simultaneously using information of animals with and 

without phenotypes. This provides an attractive alternative, to a two-step approach where two 
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sets of breeding values are computed separately using only genotyped animals or all animals 

simultaneously, and combined afterwards. Important challenges for the single-step approach, 

involve proper scaling of the pedigree-based and genomic relationship matrices, to make them 

compatible (Forni et al., 2011; Vitezica et al., 2011).  

 

CONCLUSION 

Genomic selection is revolutionizing breeding programs worldwide. Reference populations 

are growing rapidly, and are mainly genotyped using the common 50k SNP chips. To enable 

genomic selection, genomic breeding values are computed using various genomic prediction 

models. A large research effort is currently geared towards developing and testing such 

genomic prediction models. Genomic prediction models can be divided in models that 

explicitly estimate SNP effects and models that compute and use genomic relationships. 

Those two categories appear to coincide with two alternative explanations of the principle 

behind genomic selection. The first explanation is that genomic selection relies on SNP-QTL 

LD, and the second explanation is that genomic selection is driven by (genomic) relationships 

that are captured using the SNP. Nevertheless, both explanations largely explain the same  

mechanism at a different level, e.g. LD within a group of closely related animals is higher 

than in a group of less related animals. Future challenges include dealing with increasing 

numbers of animals with genotypes, as well as increasing numbers of genotypes per animal, 

up to >10,000,000 when using whole genome sequence data. An important unanswered 

question is whether this high SNP density will enable accurate use of information across 

breeds. 
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Figure 1. Empirical (bars) and expected distributions (smoothed lines) of half-sib (A & B) and 

fullsib relationships (C & D). Empirical distributions are based on pedigree (A & C) or 

genomic information (B & D). Source: Calus et al. (2011). 
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Figure 2. Estimated SNP (allele substitution) effects using BayesC versus RR-BLUP 

(unpublished results). The SNP-effects were estimated from one replicate of the simulated 

data described by Hickey and Gorjanc (2012). 
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Figure 3. Accuracies of predictions from G-BLUP, BayesA and Bayes SSVS models for fat 

and protein percentage, estimated using Holstein-Friesian reference populations with different 

sizes. Source: de los Campos et al. (2013), based on results published elsewhere (Hayes et al., 

2009b; Verbyla et al., 2009; de Roos et al., 2011). 
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Figure 4. Predicted reliability of genomic prediction, at a heritability of 0.6 and different sizes 

of the reference population, obtained with the deterministic formula of Daetwyler et al. (2008) 

for the five different scenarios using different information sources from the reference 

population (from bottom to top). Selection candidates were simulated based on the following 

information of the reference population: allele frequency (FREQ), 837 haplotypes of equal 

length (HAP), LD pattern (LD), haploid chromosomes (CHR), and individuals from the 

reference population (FAM). Source: Wientjes et al. (2013). 
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