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ABSTRACT 
 

In this paper, we present an integrated near real-time 
forest disturbance monitoring system which utilizes 
temporally dense Landsat time series in combination with a 
continuous local expert based system in a tropical forest 
ecosystem in southern Ethiopia. Landsat time series were 
analyzed using the Break detection For Additive Season and 
Trend Monitor (BFAST Monitor) method and in situ local 
expert data was in turn facilitated by the use of mobile 
devices programmed to be able to classify land use changes. 
BFAST Monitor was found to be able to describe forest 
change dynamics using irregular Landsat time series data 
with frequent cloud and SLC-off gaps. Disturbance data 
collected by local experts enhanced the BFAST Monitor 
results by providing contextual information such as the 
specific area and local drivers of disturbance events. 
 

Index Terms— REDD+, near real-time monitoring, 
time series, Landsat, tropical deforestation 
 

1. INTRODUCTION 
 
With deforestation in the tropics accounting for nearly 

20% of global carbon emissions [1], tropical forests are 
known to play a key role in the mitigation against global 
climate change. For this reason, efforts as the Reduction of 
Emissions from Deforestation and Degradation in 
developing countries (REDD+) require the establishment of 
robust forest monitoring systems, for which remote sensing 
data are an important component.  

As remote sensing data such as imagery from the 
Landsat satellite missions become increasingly available 
under open data policies, methods are needed to utilize these 
data to their maximum potential. Time series based methods 
such as BFAST Monitor [2] represent an improvement in 
the ability to describe land cover changes compared to 
commonly used bi-temporal change detection methods. 
With the recent launch of Landsat 8 and the OLI sensor [3], 
these time series based methods are poised to play an 
important role in ongoing remote sensing based monitoring 
methods. Importantly, ongoing image acquisition allows for 
near real-time detection of changes [2], an ability which will 
play a key role in monitoring and alert systems, such as 
those required by REDD+. 

A key component of a local monitoring system is the 
incorporation of ground-based data to ensure accuracy of the 
results and sustainability of the system. To this end, 
community-based or local expert based monitoring data can 
greatly enhance the efficiency of data collection. In this 
paper, we present an integrated forest disturbance 
monitoring system in the Kafa Biosphere Reserve of 
Southwest Ethiopia, where remote sensing time series data 
is integrated with local expert based monitoring data 
towards continuous near real-time forest disturbance 
detection. 

 
2. DATA AND METHODS 

 
2.1. Study Area 

 
This study was carried out in the UNESCO Kafa 

Biosphere Reserve (http://www.kafa-biosphere.org), located 
in the afro-montane forests in Southern Nations 
Nationalities and People’s Region (SNNPR) state of 
southern Ethiopia. Approximately half of the Biosphere 
Reserve is covered with moist evergreen forests with 
relatively high disturbance rates, and the rest of the area is 
characterized by patchy cropland-forest matrix landscapes. 
Smallholder agriculture is the major driver of forest loss 
with coffee being a major crop for both smallholder farmers 
and investors alike [4]. 
 
2.2. Remote Sensing Data Pre-Processing 

 
All Landsat ETM+ data from p170r55 with cloud cover 

below 70% were downloaded from the USGS GloVis server 
(http://glovis.usgs.gov). Atmospheric and coarse 
topographical correction was carried out using the LEDAPS 
method [5]. Clouds and cloud shadows were detected using 
the FMASK algorithm [6] and subsequently masked from 
the Landsat images. The Normalized Difference Vegetation 
Index (NDVI) was calculated for all images and resulting 
NDVI images were assembled into a time series stack. A 
forest mask based on a supervised classification of a 2005 
Landsat image was used to determine which pixels to 
include in the disturbance monitoring algorithm. 

 
 
 



2.3. Forest Disturbance Detection 
 
The Bfast Monitor (BFM) method [2] was applied to 

each pixel of the Landsat time series stacks to determine 
locations of possible forest disturbances. Briefly, BFM 
detects breakpoints in time series by applying a statistical 
test to observations in a defined monitoring period to 
determine if these observations deviate from a time series 
modeled after a determined stable history period. By 
detecting breaks at the tail of a time series, BFM can be 
used to detect changes in near real-time [2]. In addition to 
the presence of a breakpoint in the pixel time series, another 
important output of BFM is the change magnitude per pixel, 
which is defined as the median difference between expected 
and observed values during the monitoring period. 

 
2.4. Dynamic Forest Mask for Sequential Monitoring 

 
To exploit the change magnitude parameter in mapping 

forest disturbances, 1-year sequential monitoring periods 
were defined from 2005 to 2011 and BFM was run in 
succession using these monitoring periods. The change 
magnitude could thus be used to assess disturbance 
‘intensity’ within a consistent monitoring time-frame (one 
year in this case of this study). To avoid redundant change 
pixels, a dynamic forest mask approach was adopted (Figure 
1), whereby pixels where change magnitude values less than 
a predetermined threshold value were encountered were 
assumed to represent forest clearings and were accordingly 
masked from subsequent monitoring periods. For this study, 
a change magnitude threshold of -0.03 was adopted based 
on comparisons with high resolution images and field 
observations. After applying the sequential monitoring 
method, near real-time forest disturbance monitoring was 

carried out using BFM on a monthly basis, using the 
updated forest mask to ensure that changes detected by 
BFM were indeed new changes. 

 
2.5. In Situ Disturbance Monitoring Using Smart Phones 

 
Local expert based disturbance data related to 

deforestation and forest degradation were collected by local 
experts, together with forest communities, using mobile 
devices. It has been previously shown that mobile devices 
with integrated GPS and camera functionality can enhance 
the capacity of communities in collecting, entering and 
managing data [7]. Methods and techniques were developed 
such that the data collected by local experts can be sent and 
stored in a database system in an efficient and cost-effective 
way for further usage in monitoring.  

These methods and techniques were realized by several 
component-based software architecture principles. First, 
data collection forms were designed based on existing 
monitoring activities and requirements of national REDD+ 
programmes. These forms were based on a decision-tree 
based design, optional input constraints, flow depending on 
previous answers and icon based user-friendly graphics. 
Second, the forms were deployed on android-based smart 
phones. These phones stored the data asynchronously and 
transferred to servers over GPRS, Wi-Fi or USB depending 
on connectivity. Finally, these local data were processed and 
analysed in an integrated environment with the results of the 
BFM analysis described above. These local data included 
several parameters of the change event, including location, 
type, timing, scale and drivers of the reported change. The 
local expert data allowed the user to classify Land Use, 
Land Cover and Land Cover Change. Near real-time 
disturbance data received from local experts was used to 
evaluate the change results obtained from the BFM analysis. 

 
3. RESULTS AND DISCUSSION 

 
3.1 Forest Disturbance Detection Using Irregular Time 

Series Data 
 
BFM has previously been shown to be effective in 

detecting time series breaks in regular MODIS time series 
data [2]. In this study, we show that BFM is also applicable 
to Landsat time series data, which are characterized by 
cloud and cloud shadow gaps especially over tropical forest 
ecosystems. In the case of Kafa, Ethiopia, 129 ETM+ scenes 
were available for analysis, with many of the scenes subject 
to data loss due to clouds, cloud shadows and SLC-off gaps. 
However, despite frequent data loss, BFM was still shown 
to be able to detect changes without having to rely on gap-
filling methods.  

 
 

Figure 1 – Simulation of a dynamic forest mask. Forest pixels 
(green) are monitored using BFM in sequential monitoring 
periods. High-magnitude changes (dark red) result in the 
exclusion of that pixel in subsequent monitoring periods, whereas 
low-magnitude changes (orange) are continually monitored. 



3.2 Monitoring of Change Dynamics 
 
Change magnitude, defined as the median NDVI change 

during the monitoring period between expected values 
(based on the stable history period) and observed values, 
was hypothesized to be related to the intensity of 
disturbance event (for example, degradation versus 
deforestation). The length of the monitoring period was 
found to have an impact on the change magnitude, since 
spectral dynamics before and after the change (due to crop 
phenology after forest conversion, for example) can 
effectively dampen the magnitude signal. This phenomenon 
is demonstrated in Figure 2, where changes in 2011 were 
assessed using three monitoring periods: 2009-2011, 2010-
2011, and only 2011. When only 2011 was considered as a 
monitoring period, it was possible to discriminate types of 
forest disturbances based on the magnitude values. 

Given the effect of the monitoring period length, a 
sequential monitoring approach using monitoring periods of 
consistent length was adopted to enable interpretation of the 
change magnitude parameter. As such, pixels with high 
magnitude changes were found to be representative of clear-
cutting events, whereas low magnitude changes were often 
associated with gradual canopy clearing due to ongoing 
forest degradation. Adopting a sequential monitoring 
approach (shown in figure 1) allowed for the 
characterization of incremental changes leading to 
deforestation, which was found to be characteristic of the 
small-holder agriculture related changes taking place in the 
Kafa Biosphere Reserve. 

 
3.3 Near Real-Time Monitoring Using BFM and Local 

Expert Monitoring Data 
 
From January to April 2013, 134 forest disturbance 

reports were collected on smart phones and transmitted by 
local forest rangers in the Kafa Biosphere Reserve. These 

reports were facilitated by the use of smart phones with GPS 
and photography capabilities. These local data not only 
provided the estimated area of change (including GPS 
coordinates of the boundary of the changed area) but also 
provided a complete history of the change process via local 
interviews with farmers. Including these data with 
systematic photographic evidence (taken in all directions as 
shown in figure 3) enhanced the understanding of the forest 
change process. 

An important observation reported by local experts was 
the local driver for change events, which can be very 
difficult to assess using remote sensing data alone. The 
majority of reports during this time pointed to fuel wood 
consumption as a major driver of forest degradation. Since 
this driver is known to drive low-level degradation which 
usually does not affect the forest canopy [8], these 
observations can thus be considered complementary to an 
optical remote sensing based data stream where understory 
changes are not detected. 

These data are part of an ongoing effort to systematically 
capture forest disturbance events from the ground on a near 
real-time basis. By combining these observations with 
continually updated BFM results, including change 
magnitude as a descriptor of change type, an integrated 
monitoring system is envisioned, where a variety of change 
processes are documented. Independent validations are still 
needed to ascertain the full potential and roles of these data 
streams in a local monitoring system. 

 
4. CONCLUSIONS 

 
In this study we have shown that Bfast Monitor (BFM) 

can be applied to irregular Landsat time series data to detect 
forest disturbance in a tropical forest ecosystem. By 
measuring the change magnitude over sequential monitoring 
periods, complex change dynamics could be captured by 
BFM. Integration of this change information with in situ 

Figure 2 – Change magnitude in 2011 for an area experiencing extensive forest disturbance. Changes 
detected using a simple 2011 monitoring period (C) allow for discrimination of change types based on 
magnitude compared to a 2009-2011 monitoring period (A) or a 2010-2011 monitoring period (B). 



disturbance data collected by local experts and communities 
was shown to enhance the monitoring capability of this 
method. Follow-up research will address the need for 
validation of both the change magnitude parameter returned 
by BFM, as well as the quality of the in situ data collected 
by local experts. 

To support such initiatives as local Measuring, 
Reporting and Verification (MRV) for REDD+, an 
integrated and interactive monitoring system composed of 
both remote sensing time series based methods and ground-
based monitoring methods described in this paper is 
proposed. Such an integrated approach will enhance the near 
real-time disturbance monitoring capability of these 
monitoring and MRV systems. 
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Figure 3 – Forest disturbance data captured by local experts compared with a change polygon detected by 
BFM in 2013. The change area demarcated by the local expert is indicated as a solid line while the BFM 
change polygon is indicated as a dotted line. Photos taken in all directions are shown around the polygon, 
and the attribute table attached to the geo-data are shown on the right. 
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