Innovations in postharvest technology to support global trade of fresh produce

Ernst Woltering (ernst.woltering@wur.nl)

Wageningen University

Food & Biobased Research & Chairgroup Horticulture

"Aangespoelde bananen naar Dierenpark Emmen"

European trade in fresh F&V (2011)

Value added in postharvest: search for high value markets

< 0.5 euro/kg Brazil

Egypt

14 euro/kg In UK

United kingdom

Exports Vegetables out of Europe

Graph 4: Exports of selected fresh vegetables by top destinations (average 2009-2011 in thousand tonnes)

Exports Fruit out of Europe

Graph 5: Exports of selected fruit to top destinations (average 2009-2010 in thousand tonnes)

Imports Vegetables into Europe

Graph 6: Imports of selected fresh vegetables by origin (average 2009-2011 in thousand tonnes)

Imports Fruit into Europe

Fresh F&V is Global trade

- Extensive transportation (energy cost)
- Long storage times at low temperatures (up to many weeks)
- Food losses in distribution
- Quality issues (deterioration)
- Many different products
- We need protocols, methods, technologies to enable global trade!

Transport modality shift (tropical fruit)

- Standard transport modality: air freight
 - Short transport times
 - Relatively expensive; fuel surcharges

- Alternative marine (Reefer) transport
 - Long transport times
 - Less expensive

Reefer= refrigerated container

Transportation energy costs

Product km per energy quotum

Private car

Air 43

■ Truck 740

Railroad 2400

Container Ship 3800

Airplane versus Reefer:

50 - 100 x less energy and CO2 emission/kg product One ship may contain up to 15.000 20-foot cntnrs

Attractiveness of container transport

Pro's

- Relatively cheap
- Lots of capacity

- also in the case of delays!
- From farm to customer!
- Transport mode of choice for e.g. Melon, Avocado, Mango, Pineapple, Banana, some vegetables

Con's

- Takes long time (2 4 weeks)
- Quality of end product often disappointing!

Global trade to please the consumer

To enable global trade, research is focussed on development of new sustainable technologies to pack, store, transport and to guarantee quality of fresh F&V

- "It's life, Jim, but not as we know it."
- What he really said: "No life as we know it."

"Beam Me Up Scotty" was Never Said in the Original Star Trek

Physiology & Quality of Fresh Produce

- It is important to be aware of the pivotal role of storage and distribution conditions on the quality of the products
- It is important to realize that we are dealing with a living product that ages along the way
- The product is alive! It breathes and produces ethylene
 - Very different from other "fresh" products such as fresh fish or fresh meat, chicken.
 - These products are dead!

• All biological processes have an intimate relation with the environmental conditions

To preserve quality, conditions should be optimal for the

products

Products can be "put to sleep"

Pre harvest & Post harvest

Pre-harvest physiology

Growth/developmental processes

Biomass production

Pest management

Flowering/fruiting

Photosynthesis

Harvest

Post-harvest physiology

Deteriorative processes (Senescence)

Water loss (Transpiration)

Accelerated development (Ethylene)

Respiration

- Transpiration (product loses water)
 - VPD
 - Peel resistance to water flux
- Respiration (carbohydrate reserves are turned into heat)
 - Temperature
 - 02, CO2
- Ethylene biosynthesis (ripening and rotting hormone)
 - Temperature
 - 02, CO2
- Ripening & senescence (product becomes unusable)
 - Temperature
 - Ethylene

Water loss postharvest is not replenished

What determines transpiration (water loss)?

Calculate water flux

- Ohms law: V=I x R
 - Potential difference= flux x Resistance
- Flux = potential difference/resistance
- Water flux = VPdifference/ resistance to water movement

Transpiration pathways Resistancies

- Stomata (leaves)
- Other "openings"
 - Lenticells
 - Stem scar
 - injuries/lesions
- Directly through cuticula/wax layer
- Air movement will lower resistance

Loss of weight is loss of profit

- Modern storage operations
- Store 7-10 million KG of fruit
- Worth 5-7 million Euros
- 1-2 % weight loss
- Around 100.000 Euros loss

Loss of weight = Loss of quality = loss of profit

Loss of appearance Loss of firmness

Shrivelled necks

Transpiration

- To control transpiration, knowledge is required about physical and physiological processes, relations between product and air temperature and VP-differences
- Design of strategies to limit water loss without having excessively high relative humidities (fungal infections)
 - Smart ways to remove field heath
 - Smart ways to avoid condensation
- Sometimes "misting" is applied to bring water in the product

- Transpiration (product loses water)
 - VPD
 - Peel resistance to water flux
- Respiration (carbohydrate reserves are turned into heat)
 - Temperature
 - 02, CO2
- Ethylene biosynthesis (ripening and rotting hormone)
 - Temperature
 - 02, CO2
- Ripening & senescence (product becomes unusable)
 - Temperature
 - Ethylene

Respiration

Photosynthesis

The respiratory machinery also produces Reactive Oxygen Species (ROS)

Respiration

- There is a good correlation between respiratory activity and the length of the life of an animal!
- This also is true for horticultural produce
- Storage strategies should suppress respiratory activity as much as possible (low T, low O2, elevated CO2)

Respiration is temperature dependent

Trucks do not have sufficient cooling capacity to lower product temperature!! Products should be pre-cooled!!

Temperature and heat production

Controlled atmosphere to lower respiration

- Decreased O2
- Increased CO2
- On top of the low temperature
- Effects of CA: Lower respiration

Effect oxygen and carbon dioxide on respiration pear

Positive effect of CA storage

Fermentation

- Too low oxygen and too high CO2 lead to fermentation
- The switch-points are not fixed and dependent on type of product and product history

Low 02

A schematic representation of the effects of O2 concentration on aerobic and anaerobic respiration rates of fresh vegetables.

High CO₂

Schematic representation of the effects of CO_2 concentration on aerobic respiration (O_2 consumption) and anaerobic respiration (acetaldehyde and ethanol production) rates of fresh vegetables.

Dynamic control of CA conditions: Optimise setpoints through monitoring product response

- Transpiration (product loses water)
 - VPD
 - Peel resistance to water flux
- Respiration (carbohydrate reserves are turned into heat)
 - Temperature
 - 02, CO2
- Ethylene biosynthesis (ripening and rotting hormone)
 - Temperature
 - 02, CO2
- Ripening & senescence (product becomes unusable)
 - Temperature
 - Ethylene

Ethylene

- Ethylene is a plant hormone
- All plants produce ethylene
- Ethylene is a gas

- Ethylene affects developmental processes
- Ethylene affects growth
- Ethylene causes ripening and deterioration
- Ethylene act as a signalling molecule between plants

Ethylene and ripening/deterioration

Ethylene is involved in ripening (softening, coloration and taste/flavor production) in:

- apple
- pear
- mango
- tomato
- banana
- melon
- Avocado

Ethylene causes ripening but also deterioration

Ethylene and ripening/deterioration

Ethylene is involved in degreening/pigment synthesis/softening but not so much in taste and flavor in:

- strawberry (and other berries)
- broccoli
- grapes
- bell pepper
- artichoke
- lemon
- star fruit
- Oranges
- cucumber

Ethylene is mostly negative for quality

Avocado ripening

How to avoid ethylene problems?

- Lower the temperature, it lowers both ethylene production and the ethyelne sensitivity
- Use 1-MCP > It blocks the ethylene receptor
- Controlled Atmosphere Storage
 - Lower the oxygen concentration
 - Increase the CO2 concentration

Temperature

Brussels sprouts stored at 0 and 5C

Damage because of ethylene produced by the sprouts themselves; storage for 3 weeks at 2 temperatures.

Oxygen and carbon dioxide dependent ethylene production pears

SmartFresh

SmartFresh quality Crop Overview

■ The SmartFreshSM Quality System ensures that packers and shippers of fresh produce and their retail customers can offer consistently high-quality produce to consumers with total confidence. Consumers enjoy the benefits of these best-quality fruits and vegetables for longer.

Ethylene and 1-MCP

$$H \subset C = C \setminus H$$

1-Methylcyclopropene (1-MCP)

Ethylene

1-MCP prevents ethylene from occupying the receptor

1-MCP

Ethylene

Ethylene & storage technology

- Ethylene causes ripening and senescence
- Keeping the temperature low prevents ethylene problems
- CA conditions block ethylene sensitivity & production
- 1-MCP blocks ethylene sensitivity
- Ethylene can be removed from the atmosphere by
 - Ventilation
 - Absorbents
 - Catalytic breakdown
 - Breakdown reaction with Ozone

Ripening-in-transit concepts

- Transpiration (product loses water)
 - VPD
 - Peel resistance to water flux
- Respiration (carbohydrate reserves are turned into heat)
 - Temperature
 - 02, CO2
- Ethylene biosynthesis (ripening and rotting hormone)
 - Temperature
 - O2, CO2, "stress"
- Ripening & senescence (product becomes unusable)
 - Temperature
 - Ethylene

Senescence (ageing)

- High respiration rate and ethylene stimulate ripening processes and over-ripening (senescence)
- Senescence or ageing is a process that leads to internal breakdown and death of the plant cells, often reflected as loss of tissue structure, glassiness, browning
- The integrity (quality, functioning) of biological membranes is important

Senescence is an "active" process which is slowed down at lower temperature

Senescence

- In the respiratory processes there are Reactive Oxygen Species produced (ROS)
- Ethylene stimulates ROS production
- "stress" stimulates ROS production
- ROS damage the membranes >>> Cells die!
- Balance between:
 - ROS activity
 - Scavenger activity

Over-ripening, senescence

Over-ripening, Senescence

- To slow down ripening and ageing (senescence) processes it is important to:
 - Lower respiration
 - Prevent ethylene action
 - Prevent stress (such as too low or too high temperature, too low O2 or too high CO2)

Mango transport & ripening

mango ripening models

- Models were developed to support delivery of Ready to Eat (R2E) and Ready to Enjoy (R2N) fruit
 - Better ripening protocols
 - Greater % fruit R2E or R2N
 - Less waste!
 - Guaranteed quality!
 - Allows product segmentation
 - More sales?
- Models are based on firmness decay (R2E) and sugar levels (R2N)

