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1.1 Background 

 

Developing countries are more vulnerable to climate change because a large 

proportion of their population directly depend on agricultural and natural 

ecosystems for their livelihoods. Agricultural systems should overcome three 

simultaneous challenges of: ensuring adequate food for a growing population, 

increasing small holder farmer’s resilience to changing climate and reduction of 

greenhouse gas emissions. Globally, agro-ecosystems can compensate C 

emissions by one third through the adoption of mitigation strategies such as 

addition of biomass to soils, minimal soil disturbance and soil conservation (Cole 

et al., 1997). Increasing soil C storage has therefore rendered soils a major focal 

point because of their ability to accumulate significant quantities of organic C 

(Banger et al., 2009; Food and Agriculture Organisation (FAO), 2010a). Soil 

management strategies therefore become an important C mitigation approach 

through mitigation measures involving both CO2 emissions reduction and 

increasing C sinks. Global climate change has been linked to increased 

concentrations of greenhouse gasses (GHGs); carbon dioxide (CO2), methane 

(CH4) and nitrous oxide (N2O) (IPCC, 2007), the most important GHG being CO2. 

The concentrations of the Earth’s atmospheric CO2 is controlled by interaction, the 

structure and dynamics of terrestrial ecosystems, climate, oceans and 

anthropogenic CO2 emissions (Foley et al., 2003). The amount of CO2 in the 

atmosphere depends on its interactions with the Earth’s surface as CO2 diffuses 

into oceans or is absorbed by plant photosynthesis. Some of the C absorbed by 

plants returns to the atmosphere through autotrophic respiration, while the rest 

is converted to biomass, which eventually becomes litter and converts into soil 

organic carbon (SOC).  

SOC is a heterogeneous mixture of simple and complex organic C 

compounds derived from biomass and is also linked to soil quality and 

productivity (Lal, 1986). SOC sequestration is a major sink for atmospheric CO2 

(IPCC., 2000) with the global soil C pool (1550 Pg) being three times greater than 

the biotic pools (560 Pg) and twice the atmospheric C pool (760 Pg) (Johnson & 

Curtis, 2001; Lal, 2008). SOC is also slowly returned to the atmosphere through 
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heterotrophic (microbial) respiration. Photosynthesis and respiration processes 

thus enable terrestrial ecosystems to influence the amount of CO2 in the 

atmosphere. During these processes, soils play a key role in global C and nitrogen 

(N)1 cycling (Food and Agriculture Organisation (FAO), 2010a) resulting in storage 

of approximately 75% and 95% of terrestrial C and N  respectively (Eswaran et al., 

1993; Schlesinger, 1997). CO2 emissions can thus partly be compensated by 

creating or promoting carbon (C) sinks, such as increasing biosphere sinks (IPCC, 

2007).  

Agricultural soils can contribute approximately 89% of GHG mitigation 

potential through C sequestration with an additional 2% and 9% mitigation 

potential for N2O and CH4 respectively (Smith et al., 2007). This results in 

estimated emissions reduction of 5-14% over 5 -10 decades (Chan et al., 2008) 

with the agricultural systems potentially storing about 1400-2900 Mt CO2eq 

annually. However, mitigating GHG emissions from agriculture without 

compromising food security remains a major societal and scientific challenge.  

Maximisation of the mitigation potential requires adequate knowledge of 

land use and management practices associated with improved crop production 

and reducing degradation (Lal, 1997; Lal et al., 1998; Singh & Lal, 2005). There is 

need to complement this with increasing knowledge and understanding of how 

soils respond to changing environmental conditions (Powlson et al., 2010) and 

land management practices.  

The role of planting trees is also interesting, as tree growth sequesters C 

from the atmosphere into biomass and soil (Harmon et al., 1990). There is, 

unfortunately insufficient information on changes in soil C storage after 

establishing plantation forests (Scott et al., 1999) yet the Kyoto Protocol of the 

United Nations framework Convention on Climate Change (UNFCCC) allows 

mitigation of GHG emissions through reducing deforestation and stimulating 

afforestation and reforestation. Afforestation is planting of new forests on land 

that has not supported forests in the last fifty years whereas reforestation is 

planting trees on land that supported forests in the past fifty years but that has 

                                                           
1
 Nitrogen is an important nutrient that is essential for plant growth and soil 

microorganisms affecting photosynthesis, decomposition, C and nutrient cycling . 
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been converted to non-forested land (Brown et al., 1986). Soil C changes 

occurring during afforestation, reforestation or deforestation are considered 

under Article 3.3 of the Kyoto Protocol, while soil C sequestration in croplands, 

grazing lands, managed forests and land subjected to revegetation are considered 

under Kyoto Article 3.4. As C is stored under those circumstances, C sequestration 

processes occur and these processes can be considered as a climate change 

mitigation strategy. The potential of REDD+ in woodlands and savannahs can be 

achieved by the recovery of the woodlands after clearing since most of the 

woodland species have extensive rooting systems that facilitate recovery after 

cutting (Mistry, 2000). For example, data on primary production and soil carbon 

storage indicate that miombo woodlands can sequester 900-1600 g m-2 yr-1 (Frost, 

1996). In addition, re-growth stands are highly productive ecosystems with higher 

growth rate (4.4 - 5.6 mm) than uncut stands (2.3 - 4.8 mm) having high rates of 

photosynthetic processes and therefore high uptake of carbon dioxide. C 

emissions as well as offsets through C sequestration in all systems have to be 

reported to the UNFCCC as part of national greenhouse gas inventories (IPCC, 

2006). Furthermore, the contribution of forests to climate change has been 

recognized as a cornerstone of the post- 2012 climate change agenda with the 

decision on the reduction of emissions from REDD+ in COP-16 in Cancun. REDD+ 

includes policy approaches and positive incentives on issues relating to reducing 

emissions from deforestation and forest degradation in developing countries and 

recognises the contribution of conservation, sustainable management of forests 

and enhancement of forest carbon stocks in achieving REDD+ objectives. 

The important role of soil as a C source or sink and the role in offsetting 

atmospheric CO2 concentrations creates a need for accurate evaluation of the 

effects of agricultural management practices on soil C and N storage. 

Furthermore, understanding the soil carbon dynamics under forest plantations 

(mainly pine) and evaluating the C and N storage potential over an age sequence 

is important. There is a clear need for research into the consequences of any land-

management activities in order to determine and understand their role in global 

nutrient cycles. This chapter outlines: the importance of C and N in agro 

ecosystems and the effects of land management practices on C and N storage 
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(section 1.2), soil C and N fractionation and stabilisation (section 1.3), importance 

of modelling SOC in agro ecosystems (section 1.4), Zimbabwean land use 

information (section 1.5) and the scope, objectives and outline of the thesis 

(sections 1.6 and 1.7).  

 

1.2 Carbon and Nitrogen Cycling in Agricultural Systems 

 

Soil organic matter (SOM) comprise all dead organic material within the soil or its 

surface (Baldock & Skjemstad, 2000) and plays a fundamental role in soil 

processes. Soil organic matter dynamically determines soil productivity and 

affects essential nutrient fluxes of C, N, phosphorous (P), sulphur (S) and other 

nutrients facilitated by microbial decomposition. The quality and quantity of SOM 

and its position in the soil determines its resistance to microbial decomposition. 

Next to being beneficial to soil biological, chemical and physical properties, SOM is 

sensitive and responsive to (changes in) land management activities. Above and 

belowground plant residues (i.e. dead or decaying biomass and root exudates) 

constitute the major source of SOM. Soil organic C and N are major components 

of SOM that affect soil quality very much linked to soil physical structure, water 

and nutrient holding capacity (Russell, 1973; Lal, 1986; Hu et al., 1997; Jimenez et 

al., 2002b) and provision of energy for soil organisms (Jimenez et al., 2002b).  SOC 

is the C content of SOM, which is approximately 50% and is largest in litter and 

organic layers.  

Generally, soils have a SOC rich topsoil followed by decreasing SOC 

content with increasing soil depth. SOC is either reported as concentration (i.e. 

mass of C per unit mass of soil; g kg-1) or as stock or density expressed on area 

basis (Kg m-2 or Mg ha-1). Estimation of C density requires data on soil bulk 

density, stone content and depth of sampling. 

Batjes and Sombroek, (1997) showed that 23% of the plant residues 

convert into SOC for a native pristine prairie while de Moraes Sà and Séguy (2008) 

found rates of 15-26% conversion in agricultural systems. In semi-arid areas, the 

conversion rate of plant residues into SOC is 29% under continuously cropped 

systems but only 9% for systems that are regularly left under fallow (Campbell et 

al., 2000). The conversion rate is thus affected by factors such as moisture, 
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temperature, crop species and/type and the amount of residues. Removal of crop 

residues generally decreases SOC levels in cropping systems (Unger et al., 1990).  

In agro-ecosystems, the cycles of C and N are linked through pools in crops, crop 

residues and in SOM (Figure 1.1). The accumulation of plant biomass is in turn 

  

 
Figure 1.1 Greenhouse gas emission sources/removals and processes in agro 

ecosystems (IPCC, 2006).  

 

related to the amount of soil available N (Vlek et al., 1981). The dynamics of soil N 

reserves is continuously maintained by processes of mineralisation and 

immobilisation. Atmospheric N is found in the form of N2 that cannot be utilised 

by most organisms and only enters the soil through processes of dry/wet N 

deposition, N fixation or through the addition of fertilisers and/or manures. 

Nitrogen fixation is done by N-fixing bacteria, which either live as free bacteria 

surviving on their own in the soil carrying out chemical reactions that change N2 to 

ammonium (NH4+) (Nitrogen Fixation), or as symbiotic root nodule bacteria that 

supply N to legumes/pod-producing plants in the family Fabaceae/Leguminosae. 
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Ammonium and nitrate are forms of N that can be used by most plants and are 

found in amino acids. However, organically bound N can be converted 

microbiologically into inorganic mineral forms (mineralization), leading first to 

formation of ammonium (NH+
4) and possibly ending up as nitrates (nitrification) 

(Fowler et al., 2013). Nitrification and denitrification processes in agricultural 

systems contribute about 0.53 Pg C equivalents of annual nitrous oxide fluxes 

which accounts for more than 50% of the global anthropogenic N2O flux 

(Robertson, 2004). Processes such as ammonia (NH3) volatilisation and the uptake 

of N by plants causes depletion of soil N whereas the return of crop residues 

increases the soil organic N pool (Vlek et al., 1981). In addition, animals also 

facilitate C and N cycles after they die as their biomass is transformed into 

ammonium and other constituents, thus continuing the cycle.  

The process of SOM transformation occurs after colonisation of dead 

organic matter by a range of soil organisms, as they obtain nourishment for 

growth. During decomposition, about half of the C in SOM is mineralised and 

released as CO2 (White, 2006) while the other is either stabilised through 

humification or is complexed with soil minerals (Gregorich & Janzen, 1996). The C 

and N sequestration capacity of a soil is therefore determined by its ability to 

protect the SOC and N from degradation (i.e. stability) (Six et al., 2002). The 

amounts of C stabilised in each soil under specific management conditions is 

important in determining the extent to which a soil can operate as a C sink. 

However, the ability of a soil to stabilise the sequestered C varies with physical 

(e.g. bulk density and clay%) and chemical properties (e.g. pH) (Borken et al., 

2002) of the mineral soil matrix and the structure of the SOC (Singh & Lal, 2005; 

Murillo et al., 2006). Soils can become saturated with C resulting in no further 

stabilisation even with additional inputs (Six et al., 2002).The efflux of soil CO2 also 

differs between fine-textured soils and coarse textured soils (Zak et al., 1994). In 

order for C sequestration to be considered important for climate change 

mitigation, the net transfer of CO2 from the atmosphere into the soil or biomass 

should be in a form that is not immediately reemitted (Powlson et al., 2011). 

Soil organic C levels respond linearly to C inputs (Yin et al., 2005; Yin & 

Cai, 2006; Campbell et al., 2007) with the slopes differing with quality of inputs 

and soil type. Theoretically, the C equilibrium level can be restored in a soil when 
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management systems remain  unaltered and is affected by factors such as soil 

texture, climate, vegetation type and time. These factors have a bearing on the 

ability of a soil to reach equilibrium level. Difference between equilibrium SOC 

levels and the current C stocks indicates the SOC sequestration potential of a 

system. In some cases, SOC sequestration in excess of the equilibrium level, can 

occur because of increased productivity owing to the removal of inherent soil 

constraints limiting plant growth (Russel & Williams, 1982). This demonstrates 

that changes in SOC storage over time can be manipulated by management 

practices through regulation of inputs and outputs. Smith et al. (2008) reviewed 

studies on potential of SOC sequestration and estimated average annual 

mitigation potential of all GHGs, in agricultural systems for warm-dry climates (-

0.25 to 0.88 Mg C ha-1 yr-1) and warm-moist climates (0.26 to 1.30 Mg C ha-1 yr-1) 

with differences in each zone attributed to initial SOC levels, time periods and site 

productivity factors.  

 

1.2.1 Effects of land management practices on C and N storage 

 

Some management practices have been identified as suitable for organic C and N 

sequestration (Dalal & Mayer, 1987; Janzen, 1987; Smith et al., 2007) including 

plant residue management, tillage, manure and fertiliser application and tree 

planting (FAO, 2004). Several studies have shown that crop rotation and diversity, 

fertilisation, residue management, conservation tillage, agroforestry and the 

maintenance or restoration of degraded lands can increase soil C sequestration 

(Lal, 2004; Smith et al., 2007; Purakayastha et al., 2008; Gong et al., 2009). The 

extent of the influence of each practice on soil C sequestration however, depends 

on land-use type, crop species, social and ecological dynamics and intensity of the 

management practices. Biophysical components also affect agricultural systems 

and their potential for C sequestration (Lal et al., 1999; Whalen & Chang, 2002).  

Socio-economic and demographic factors similarly affect decisions on 

choice of agricultural management practice (Seabrook et al., 2008). In some cases, 

soil C storage in a particular farmer’s field is affected by socio-economic factors 

such as the farmer’s wealth category and/or sources of income (Zingore et al., 
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2007). In small holder agro ecosystems, CO2 emissions are not only from 

decomposition and plant respiration but also indirect emissions come from the 

production of some agricultural inputs such as fertilisers, pesticides and 

herbicides. Furthermore, agricultural systems also emit CH4, through ruminant 

fermentation (52%), biomass burning (19%) and animal waste treatments (8%) 

(Robertson, 2004). 

Conventional tillage, which is an ancient practice is beneficial in 

controlling weeds, reducing soil compaction and preparing favourable crop 

seedbed (Aziz, 2010). On the other hand, although impacts vary with site 

characteristics, conventional tillage is seen as the major cause of SOM 

degradation (Buschiazzo et al., 2001). Decreasing soil C stocks in agricultural lands 

by exposing SOM to microbial decomposition and thus enhancing its 

decomposition and loss into the atmosphere (Lal et al., 1998); (Six et al., 2000; 

Zotarelli et al., 2005). Tillage also modifies soil physical conditions, such as 

aeration, porosity, temperature and moisture and this favours decomposition of 

plant residues and SOC (Drees et al., 1994; Verhulst et al., 2010). In addition, 

tillage accelerates soil erosion, which promotes transfer of soil nutrients. 

Furthermore, tillage alters the quality and quantities of soil organic inputs through 

its effects on crop growth (Doran, 1987).  

Conservation tillage (i.e. no, reduced or/ minimum tillage), on the other 

hand, can enhance soil C sequestration and can reduce C loss and is now 

considered an important agricultural management practice (Six et al., 2000b; Food 

and Agriculture Organisation (FAO), 2010a). In comparison with conventional 

tillage, reduced or no tillage practices in which crop residues are left on the soil 

surface reduce soil loss due to decreased erosion (Lee et al., 1993), increase 

surface soil C concentration (Blanco et al., 2009) and improved water use 

efficiency.  

 

1.2.2 Fertilisation and SOC storage in agro ecosystems 

 

Fertilisers have been successfully used to enhance C sequestration (Lal, 1999) 

although, the application of N fertilisers can result in nitrous oxide (N2O) 

emissions (Robertson et al., 2000) and alters the soil C and N dynamics. The main 
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purpose of fertiliser application is to increase crop production. This is 

accompanied by subsequent increase in biomass and thus indirectly elevates soil 

C sequestration. Better results can be obtained using a combination of inorganic 

fertilisers and organic manure which can maintain and even improve SOC storage 

(Su et al., 2006). In small holder farming communities, the amount and frequency 

of inorganic fertiliser application depends on farmer’s possibilities. For example, 

wealthy farmers apply more inorganic fertilisers than the poor farmers who 

sometimes do not apply any fertilisers (Ncube et al., 2009). Moreover, the 

education level plays a decisive role in the amount of fertiliser used.  

In smallholder farmlands, livestock are an important asset and their dung 

is mixed with litter and used as the main source of soil amendment (Farmyard 

Manure (FYM) – referred as manure in this study). Manure is therefore readily 

available nutrient source although the quantities are often not enough. 

Application of manure can sequester more C than other fertility treatments over a 

range of soils and climatic conditions, although factors such as crop species and 

soil texture are also important (World Bank, 2012). Manure application shows 

greater C gains in clayey soils than nitrogen fertiliser alone and has the advantage 

of having both nutritive value being a source of organic C for improving soil tilth. 

In addition, manure is more resistant to microbial decomposition when compared 

with plant residues, resulting in greater C storage given the same quantity of C 

input (Jenkinson et al., 1990). Furthermore, manure application increases 

development of particulate organic matter (Kapkiyai et al., 1999) and the 

formation and stabilisation of soil macro-aggregates (Whalen & Chang, 2002).  

 

1.2.3 Chronosequence approach for studying changes in soil C stock 

 

Understanding C and N dynamics in plantation forest soils is needed in order to 

determine the role of trees in climate change mitigation and the long-term 

impacts of management activities. Studies of soil C dynamics in plantation forests 

often involve spatial–temporal substitution methods, such as the chronosequence 

approach (Covington, 1981). The chronosequence approach facilitates long-term 

studies of vegetation succession and soil dynamics. The length of time required to 
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make direct investigation of forest succession makes the chronosequence 

approach more favourable for determination of long-term changes in soil C and N 

stocks due to afforestation (Covington, 1981; Wallace & Freedman, 1986; 

Klopatek, 2002). The chronosequence approach assumes that the expected 

pattern of temporal development that would be exhibited by a particular stand is 

reflected by the pattern observed among stands of different ages (Wallace & 

Freedman, 1986). Chronosequence approaches to study soils therefore facilitate 

the analysis of C and N variation over stand-age using space-for-time substitution 

and allows investigation of temporal shifts of the C and N amount over stand age. 

Forest plantations are either exotic or indigenous forest stands artificially 

established covering a minimum area of 0.5 ha, with a tree crown cover of at least 

10% and total height of mature trees above five metres (FAO, 2001). Conifer and 

broadleaf tree plantation species have different strategies for belowground 

allocation of assimilated C (Guo & Gifford, 2002). The storage of C in forest soils is 

also affected by site quality and land use practice (Lal, 1997). Furthermore, native 

and exotic trees are able to sequester and stabilise C from the atmosphere and 

potentially contribute to counteracting the greenhouse effect. Preferably, fast 

growing trees are recommended as excellent options for mitigating CO2 emissions 

through soil and biomass C sequestration (Montagnini & Porras, 1998). Planting 

the fast growing exotic tree species substitutes requirements for various 

indigenous wood requirements and can facilitate the regeneration of native 

species. In addition, trees protect soil by means of the litter layer and leaf canopy, 

thereby decreasing runoff and erosion and increasing water infiltration rates. 

There is also a reduction of soil temperatures and improved water holding 

capacity under the tree canopy (Sanchez et al., 1997). Root activities and organic 

matter inputs improve soil structure (Gardner et al., 1999).  

In forested systems, SOM pools include all the components that can be 

partitioned in pools of forest floor, above ground biomass, belowground biomass 

constituents, water soluble organics, light fraction material and stable humus 

(Stevenson & Cole, 1999). In each forest, the accumulation of C and N varies 

within different soil depths, having, litter-fall as the main input of C and nutrients 

to the forest floor, and is important for both the forest-soil system and nutrient 

cycling (Starr et al., 2005). Forest floor consists of three layers: 1) Litter layer (L), 
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which consists of fresh and recently fallen, non-decomposed material. This 

material is identifiable by the naked eye as plant residues. The litter layer usually 

contains less than 10% fine organic matter; 2) Fragmented layer (F), where 

organic material is fragmented and partly decomposed with plant residues being 

macroscopically recognizable; and 3) Humus layer (H), which consists of 

decomposed organic matter, originating from litter fall from decades ago and root 

turnover of variable age.  The H layer materials have more than 70% is fine 

organic matter decomposed beyond recognition of their origin. The build-up of a 

H layer is dependent on the inflow of plant litter and the activity of the 

decomposer community. In addition the H layer is composed of a the formation 

and accumulation of recalcitrant or very slowly decomposing litter and microbial 

residues (Yanai et al., 2003; Keith et al., 2010). 

 

1.3 Soil carbon and nitrogen fractions and their stabilisation  

 

The transformation of SOM gives rise to pools ranging from very active (labile) to 

stable/inert/passive (non - labile) that are differentiated from each other by their 

degree of decomposition, recalcitrance, and turnover rate (Gregorich et al., 1994). 

The constituents of each pool have different functional roles in the dynamics of 

SOM and nutrient cycling. The labile C pool consists mainly of soil organisms, 

polysaccharides, celluloses and hemi-celluloses with a turnover time varying from 

weeks to months, while the recalcitrant pool consists of lignin, lipid polymers, 

resins, suberins, waxes and fats with turnover time varying from years to decades. 

The inert pool consists of charcoal and pyrolysed C with turnover time of 

centuries to millennia. The amount of organic C in each fraction/pool depends on 

the quality and quantity of the organic matter added to the soil and types of 

decomposition products from biological activities.  

Stability of C in each pool is related to the aggregation of soil particles 

facilitated by different types of binding agents. Tisdall and Oades (1980) classified 

binding agents into (a) Transient binding agents - comprised of microbial and 

plant derived polysaccharides and may be rapidly decomposed by microbes; (b) 

temporary binding agents - includes roots and fungal hyphae (especially 
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mycorrhizal hyphae) and (c) persistent binding agents - consists of aromatic humic 

material associated with amorphous Fe and Al compounds, and polyvalent metal 

cations. Oades (1984) and Six et al., (2000) showed that organic materials within 

soil aggregates had lower decomposition rates than those outside of aggregates.  

The SOM pools can be separated by chemical or physical extraction 

methods. Chemical methods have, however, proved difficult by affecting the 

extraction process (Duxbury et al., 1989) whereas, physical separation of SOM 

reduces chemical alteration of the organic materials (Golchin et al., 1994a; 

Gregorich & Janzen, 1996; Swanston et al., 2005; Liu et al., 2013). The advantage 

of physical fractionation techniques is the isolation and detection of SOC storage 

and sensitivity of soil to land management and climate of a particular site. 

Fractionation of SOM by density can be achieved using heavy liquids such as 

Sodium Polytungstate whose density ranges between 1.6 and 2.0 g cm-3. Density 

fractionation separates SOM relative to turnover rate, structure and function 

(Christensen, 2001; Echeverría et al., 2004; Crow et al., 2007). SOM is separated 

into three basic functional pools of: free light fraction (fLF), occluded light fraction 

(oLF), and mineral associated fractions (MaHF) (Golchin et al., 1994b; Six et al., 

2002; Norris et al., 2011; Sequeira et al., 2011) which vary in C and N 

concentration, C:N ratios and ᵟ13C over the soil profile (Figure 1.2). Crow (2011) 

analysed the mean residence time of the three soil C pools and found them with 

turnover rates of 3.5 years (fLF), 10 years (oLF), and 714 -2090 years (MaHF). 

The light fraction is usually made up of two distinct fractions of fLF and 

the oLF, with differences between the two largely explained by the positions they 

occupy in soil aggregates. Though these fractions are different, most studies do 

not separate them and usually classify them together as the Light fraction (Six et 

al., 2002) especially when comparability is limited by a diversity of methods used 

to separate the two (Cerli et al., 2012). Compared with the organic C stock of a 

whole soil sample, the fLF the oLF have higher C and N concentrations and wider 

C:N ratios (Golchin et al., 1994a; Schrumpf et al., 2013).  

The light fraction organic C, particulate organic C and microbial biomass C 

form the basis of the fLF or inter-aggregate organic matter (Yang et al., 2009; 

Sequeira et al., 2011). The fLF consists of partially decomposed plant remains, 

root fragments, spores, seeds, faecal pellets, fungal hyphae, faunal carcasses, 
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microbes and microbial remains at various stages of decomposition (Poirier et al., 

2005; Gregorich et al., 2006). The light fraction serves as an easily decomposable 

    

 
Figure 1.2 Schematic presentation of soil organic matter fractions (Adopted with 

permission from Schrumpf et al. (2013). 

 

substrate for soil micro-organisms and a short-term reservoir of plant nutrients 

(Gregorich et al., 1994), the structure is determined by the quality of organic input 

and soil type (Hu et al., 1997). The fLF therefore, plays a major role in controlling 

short term ecosystem productivity having a turnover rate of a few days to a few 

years (Yang et al., 2009; Sequeira et al., 2011). Other attributes of the fLF apart 

from the high decomposability include the high sensitivity to management 

practises and high C/N ratios (Echeverría et al., 2004). The fLF is more susceptible 

to changes in temperature and moisture. In ecosystems that are usually burnt, 
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charcoal can account for a considerable proportion of the fLF (Skjemstad et al., 

1990; Cadisch et al., 1996). 

Accumulation of light fraction is much higher and faster in upper soil 

layers and also higher in forests than agricultural systems. The fLF has a significant 

contribution to total active organic C in the upper soil depths of most soils (Yang 

et al., 2009; Matos et al., 2011) except soils containing black C (von Lützow et al., 

2002). In the tropics the light fraction is largely confined to the top 22 cm 

(Trumbore & Zheng, 1996; Echeverría et al., 2004) and the mass, quality and 

contribution of light fraction to total organic C decreasing with soil depth (Tan et 

al., 2007). Additions to the light fraction come from plant biomass, excretion of 

root exudates, root residues and other organic matter accumulating on the soil 

surface and subsequent mixing through bioturbation (Gale et al., 2000).  

In cropping systems, tillage mixes and breaks down soil aggregates 

exposing previously occluded SOC to decomposers resulting in loss of C and some 

complexed SOC from intra aggregate light fraction (Post & Kwon, 2000). Turnover 

of light fraction is sometimes linked to macro-aggregate formation and therefore 

affected by any form of soil disturbance (Beare et al., 1994; Bremer et al., 1994). 

Although total SOC declines with tillage, the decline in the amount of labile C 

fractions indicates instability of a soil’s structure (Parton et al., 1987). This fraction 

is usually ignored in terms of C stabilisation yet it is the most sensitive to 

disturbance.  

The oLF is obtained from soil complexes after application of ultrasonic 

energy which disrupts the stable soil-aggregates (Golchin et al., 1994a; Sequeira 

et al., 2011) to release materials that are more decomposed, trapped and 

physically protected within soil aggregates (Six et al., 2000). This fraction is more 

biologically resistant and often associated with soil mineral colloids thus 

distinguishing it from fLF although it is usually found mixed with the fLF. The oLF 

can be released from large aggregates by microorganisms when the available 

substrate in the labile pool is depleted (Six et al., 2001). The fraction comprises 

humified C compounds at various stages of decomposition (Marín-Spiotta et al., 

2008) including aromatic structures such as polyphenols which have slow 

decomposition rates limited by low levels of N, P and S (Lal, 2008). The oLF is 

therefore less decomposable than the fLF and also has a higher humification index 
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(i.e. higher alkyl and lower O-alkyl C) (Golchin et al., 1994a; Gregorich et al., 2006; 

Marín-Spiotta et al., 2008). The turnover rate of oLF ranges from a few decades to 

hundreds of years (Six et al., 2000b). Total organic C in the oLF fraction is usually 

higher in soils that have more clay because of increased aggregate formation. The 

C:N ratio of oLF is lower than fLF due to both loss of C and incorporation of soil N. 

In ecosystems, where organic inputs are of comparatively similar quality, the oLF 

can indicate differences in magnitude, rate and nature of decomposition (Golchin 

et al., 1994b). 

The MaHF contains the oldest, most stable and biologically resistant C 

pool (Kögel-Knabner et al., 2008) consisting of recalcitrant C which is adsorbed 

onto silt and clay mineral surfaces having turnover time of decades to centuries 

(Six et al., 2002; Gregorich et al., 2006; von Lützow et al., 2006; Schrumpf et al., 

2013). Total organic C in the MaHF is usually higher in soils that have more clay 

because fine texture induces high adsorption onto charged surfaces of aggregates 

and makes the C less susceptible to microbial attack (Kölbl & Kögel -Knabner, 

2004). The C in this fraction is made of a finer mixture of materials more 

heterogeneous in nature, whose origin cannot be easily distinguished and has 

organic C loading of minerals decreasing with soil depth (Schrumpf et al., 2013). 

An understanding of the dynamics of this fraction is important in climate change 

mitigation due to storage of more decomposed and more recalcitrant C (Alvarez & 

Alvarez, 2000). Concentration of C in MaHF and its contribution to total SOC 

increases with soil depth (Tan et al., 2007). 

 

1.4 Modelling Soil organic carbon in agro ecosystems 

 

Land management practices, and especially practices that increase SOC, 

contribute to climate change mitigation. The long-term impacts of such activities 

can be studied with simulation models validated using local data. Models can be 

used as a decision support tool for simulating different climate and management 

scenarios to assess long term impacts of each practice. For example the Climate 

Rapid Overview And Decision Support simulator (C–ROADS), which provides visual 

and numerical projections, helps to understand the gap between planned policies 
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and further actions needed for stabilisation of atmospheric GHG concentrations. 

C–ROADS scenarios show the risks of climate change impacts (Findeling et al., 

2003).  

Modelling has further quantified different factors controlling SOM 

dynamics and helped to project the long-term effects of different management 

activities under changing climate. Models are also useful in predicting loss or 

storage of SOC under different land-use systems (Lal, 2009). However, most of the 

information used to understand the impacts of land management on the 

dynamics of soil organic carbon is obtained from long-term experiments and 

short-term laboratory experiments. In addition, modelling SOC stabilisation 

provides a means of assessing land-use and management impacts relative to the 

effects of climate change (Parton et al., 1994). Models, such as CENTURY and 

RothC, evaluate SOC dynamics based on environmental and climatic data 

(Jenkinson et al., 1992; Woomer, 1993; Coleman & Jenkinson, 1996; Falloon & 

Smith, 2002; Cerri et al., 2007) and help to improve understanding the 

consequences of soil management. However, only a few of the model-based 

projections apply to tropical dry lands (FAO, 2004). RothC, for example, has been 

successfully used in Zambia’s woodland and improved fallow systems (Jenkinson 

et al., 1999; Kaonga & Coleman, 2008a) and testing the model for agricultural and 

plantation-forest soils is important. Thus, models are important for the 

determination partitioning of total system C in different land management 

practices. Other models such as FARMSIM has been used in Zimbabwe to quantify 

the effects of interactions between different farm activities (Tittonell et al., 2007; 

Rufino et al., 2011).  

 

1.5 The profile for Zimbabwean ecosystems 

 

Zimbabwe is a landlocked country located in tropical Southern Africa. It falls 

between latitudes 15˚ 35´ and 22˚ 30´S. The altitude ranges between 162 m and 

1,592 m above sea level in the southern and eastern parts respectively. In the east 

is a series of mountain ranges with peaks up to 1, 592 m above sea level (World 

Factbook, 2013). The total land area is  about 39.0 Mha, of which 17.55 Mha are 

under fragmented indigenous forests (mainly miombo woodlands and savannahs 
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and about 5.85 Mha being protected forest under national parks, wildlife reserves 

and forest reserves) and 0.12 Mha is under commercial forest plantations. A 

further 5.07 Mha is covered by bush lands. About 15.60 M ha is agricultural land 

while about 0.65 Mha are water bodies and urban settlements (World  Bank, 

2009). Figure 1.3 shows land tenure distribution in Zimbabwe. 

The land area is divided into five natural regions based mainly on rainfall, 

temperature and soil type (Figure 1.4). Regions I, II, and III have annual rainfall 

between 650 and 1050 mm and are suitable for intensive animal and crop 

production whereas regions IV and V are mostly suitable for extensive livestock 

production because of annual rainfall below 650 mm. Agriculture contributes 

about 15% to annual GDP.  

Zimbabwean soils are inherently infertile (Nyamapfene, 1991). This, when 

coupled with a long period of cultivation and erosion, contributes to low SOC 

stocks. Despite the low fertility, the majority of small holder farming activities are 

dependent on rain fed agriculture which is dominated by conventional tillage and 

continuous maize cropping. Appropriate soil management is thus key to 

maintaining agriculture productivity and reducing degradation (Lal et al., 1998; 

Singh & Lal, 2005). Therefore, adoption of conservation farming may play an 

important role of soil C sequestration in Zimbabwe to boost the low OC levels 

(<1%) and the generally deficient plant nutrients (Nyamapfene, 1991; Mugwira et 

al., 1992).  

Zimbabwe, like many of the southern African countries, has been 

experiencing rapid forest decline. Woodlands and forests in communal and 

resettlement areas are heavily fragmented and degraded due to the clearing for 

agriculture and harvesting for various wood and non-wood forest products. The 

major woodland type is the miombo whose crown cover can vary between 20 and 

60 % (Walker & Desanker, 2004). Miombo is the vernacular term for the 

seasonally dry, deciduous woodlands, semi deciduous, semi evergreen or drought 

deciduous  woodlands having some species with pre-rain leaf flush (Frost, 1996).  

The woodlands are dominated by Brachystegia, Julbernardia and/or 

Isoberlinia, spp. extending across 2.7 million km2 of some of the world’s poorest 

countries (Campbell et al., 2007). The diverse woodland uses include firewood, 
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timber, poles, watershed protection, provision of soil fertility (leaf-litter), grazing 

and browsing, edible fruits, mushrooms and caterpillars. The land use change to 

cultivation has an effect on C stocks (1069 Mt C). The extensive woodland cover 

makes Zimbabwean forest cover a potential C sink though threatened by 

deforestation and degradation. The forests/woodlands have potential to act as C 

sinks provided forest management regimes are properly designed to reduce 

vulnerability to conversion for agricultural crop production and severe wild fires. 

 

 
Figure 1.3 Land tenure distribution in Zimbabwe. SSCF = small scale commercial 

farms, LSCF= large scale commercial farms, Forest land = gazetted 

forests/woodlands and commercial plantations (Moyo, 2000; Zimbabwe’s Fourth 

National Report to the Convention on Biological Diversity, 2010).  

 

The Zimbabwean land reform programme has shifted >31% of the 

country’s woodlands from private tenure to state control, with usufruct rights for 

communities and individuals (Matose, 2006). This activity caused forest and 

woodlands clearance to become the major driver of land use change resulting in 

an annual loss of about 1.5% (about 300 000 ha) (UNDP, 1997; FAO, 2005). 

National woodland cover declined from 53% in 1992 to 42.34% in 2008 whereas 
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crop land increased from 27.48% in 1992 to 41.24% in 2008 (Zimbabwe’s Fourth 

National Report to the Convention on Biological Diversity, 2010). 

Increased droughts and floods have been cited as the main climate-

change effects in Sub-Sahara Africa (FAO 2010). Despite Zimbabwe’s relatively tiny 

contribution to global GHG emissions, droughts and cyclones are being 

experienced. The 1980s and early 1990s witnessed Zimbabwe’s driest periods for 

the twentieth century. National average rainfall declined by about 5% between 

1900 and 2000, notwithstanding the episodes of wetter than average conditions 

in the 1920s, 1950s, and 1970s (MDG report, 2010). Agricultural seasons have 

shifted as well, as evidenced by late onset and sometimes late cessation of rainy  

.season’s. Longer-term rainfall predictions for Zimbabwe remain uncertain as 

climate change causes more climatic extremes. The highest monthly daily 

maximum temperatures for most parts of the country, for example, are increasing 

 

 

                                                        
Figure 1.4: Map showing agro ecological regions I-V of Zimbabwe. (Vincent & 
Thomas, 1961; FAO, 2006). 
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by approximately 2ºC per century and the percentage of days with low 

temperatures decreasing at a rate of 15 days per century. Assuming that GHG 

emissions continue along the projected trajectories, temperatures will rise by 

between 0.5°C and 2.0°C by 2030, and 1.0°C and 3.5°C by 2070. Various climate 

models project that rainfall patterns will change and that frequency of drought 

and flood events will increase as well and projected that an additional 10 to 20% 

rainfall decline will be experienced in Zimbabwe by 2050 (MDG report, 2010). 

In addition to climate change, land degradation has become an important 

environmental issue in Zimbabwe. There are synergies in simultaneously 

addressing climate change and this land degradation. Thus, land degradation and 

climate change will both be mitigated when effective ways to sequester C in soils 

are implemented. This not only promotes soil restoration but also achieves a win-

win scenario (FAO, 2004). There is therefore need for information on appropriate 

local soil management practices that can be used to achieve this win –win goal in 

Zimbabwean agro ecosystems. 

 

1.6 Scope and Objectives of this thesis 

 

Considering the high rate of deforestation in African countries, there is potential 

for management of forests and woodlands for C sequestration through coppice or 

regeneration management (Chidumayo, 1991; Chidumayo, 1993) while increasing 

productivity of land through SOC sequestration. However, in most countries 

(including Zimbabwe) the current policy framework is not sufficient to ensure the 

reflection of international environmental and social safeguards and standards for 

sustainable forest resource utilisation e.g. REDD+. 

 The potential for climate change mitigation through SOC sequestration 

under agricultural activities in tropical soils is poorly understood. Most agricultural 

based studies focused on soil fertility and crop yields aiming at ensuring crop 

productivity but without consideration of the implications of the activities on 

climate change mitigation. Assessment of SOC dynamics under different land 

management practices can therefore help to draw meaningful conclusions about 

SOC’s contribution to global C stocks (i.e. as sources or sinks) thus, enabling the 
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assessment of potential roles of agriculture and forestry to mitigate climate 

change. The study of C storage potential provides important information for 

shaping policies and incentives for better management of both agricultural and 

forest systems. Information can be useful when designing projects that provide 

opportunities for communities to improve their livelihoods in accessing carbon 

markets. Data will be useful when responding to C demand in future voluntary 

and regulatory greenhouse gas emissions markets. SOC can become a tradable 

market commodity under the Kyoto protocol (c.f. Article 3.4) where C credits can 

be assigned for agricultural C sequestration. The involvement of small holder 

farmers in soil C sequestration, simultaneously advances food security, mitigate 

climate change and improve the environment thereby, transforming people from 

a state of production to that of land resource stewardship.  

The participation in C markets requires information on the potential of 

land-use systems and this study, in turn, facilitates identification of possible C 

sequestration options. My research will help to clarify some of these issues by 

analysing SOC and TON and their distribution in density fractions at different 

depths under selected agricultural practices. Results provide important baseline 

information for agriculture and forestry operations and enables comparisons 

between current and projected future soil C sequestration and emission 

reductions levels. 

This research estimates C and N sequestration potential of selected 

Zimbabwean forests and agro-ecosystems. The focus is C because carbon dioxide 

is the most abundant greenhouse gas that can be sequestered in agro-

ecosystems. The study examines effects of tillage practices and fertilisation on 

SOC and TON pools in different small holder farming systems relative to native 

forests. Additionally, the C sequestration potential under tree farming and its 

impacts on SOM partitioning was studied using a chronosequence approach. The 

impacts of different tillage and fertility treatments on stabilisation of C and N and 

the partitioning of SOM fractions as described for cropping and forested systems 

remains unclear. 

 The C and N stocks were analysed in bulk soil and in three density 

separated fractions at different soil depths. Land management practices selected 
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for the study included conservation tillage (i.e. reduced tillage (RP) and no tillage 

(DS)), conventional tillage (CT), fertility amendments (fertiliser and manure) and 

plantation forestry practices. The main research hypotheses are:  

 Long term fertiliser and manure application will increase SOC in whole soil 

and eventually in  stabilised C fractions;  

 Accumulation of different SOC fractions is influenced by the long-term 

application of N fertiliser alone and the combined application of N 

fertiliser and manure under continuous maize cropping and conventional 

tillage; 

 The light fraction would be a responsive indicator of short and long term 

changes in SOC;  

 Tillage effects on C and N dynamics vary with soil type;  

 Land management and soil properties (texture) affect SOM fraction 

contents; 

 The land use legacy affects partitioning of SOC and N in homefields and 

outfields; and  

 The planting of trees significantly affects soil C storage at different depths 

over a rotation with higher C sequestration rates in younger stands than 

older stands. 

These hypotheses result in the following specific research objectives: 

 To assess the effects of tillage and fertilisation on SOC and TON 

stabilisation in selected agriculture and forest systems on soils of 

contrasting texture; 

 To assess vertical distribution of SOC and TON and their fractions as 

affected by different tillage practices (CT, RP and DS) relative natural 

forests; 

 To assess vertical distribution of SOC and TON and their fractions as 

affected by N fertiliser and a combination of N fertiliser and manure 

application;  

 To quantify C storage in the total soil organic matter and SOM fractions in 

sandy and clayey soils under different tillage and fertility management; 
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 To determine organic C and N dynamics in a Pinus patula chronosequence 

through assessment of partitioning of C and N stocks in mineral soils and 

forest floor relative to native forests; and 

 To simulate the changing SOC pool through time and to predict the future 

pools and impacts under land use change and changing climate scenarios. 

 

1.7 Outline of the thesis 

 

In order to satisfy the hypotheses and objectives outlined in 1.6, this thesis has 

been structured into five chapters: 

Chapter 2 gives an account of the impacts of tillage practices on C and N 

stocks in bulk soil and in three density separated SOM fractions at 0-10 and 10-30 

cm depths. The chapter compares C and N storage in three tillage systems on 

farmer managed experiments and adjacent natural forests in sandy Haplic 

Arenosols and clayey Rhodic Ferralsols of Zimbabwe. The C and N storage in 

tillage systems is compared to baseline measurements taken in 2005 (only at 0-10 

cm) for whole soil.  

Chapter 3 investigates the effects of long term fertilisation on 1) SOC and 

TON and 2) density fractions for soil up to 50 cm on Luvisols and Arenosol in 

Murewa district of Zimbabwe. Soils collected from two farms on fields with 

contrasting soil types were analysed. The chapter explores the potential of C 

sequestration under continuous conventionally tilled fields with inorganic 

fertiliser and cattle manure application relative to distance from homestead. C 

and N in whole soil and density fractions was determined by dry combustion. 

Chapter 4 examines C and N storage in pine plantations located in the 

eastern highlands of Zimbabwe along an age series. Plantations of exotic pine 

trees were established after clearing natural forests. These natural forests can 

either be patches of moist forests or patches of Miombo woodlands depending on 

soil type and depth. Forests play a major role in regulating the rate of increase of 

global atmospheric carbon dioxide (CO2) concentrations creating a need to 

investigate the ability of exotic plantations to sequester CO2 from the 

atmosphere. C and N storage was assessed from randomly selected replicated 
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plots in Pinus patula stand ages of 1, 10, 20, 25, and 30 years plus two natural 

forests. Annual litter fall and C and N in forest floor were assessed. Furthermore, 

comparisons were made between C and N storage in older pine age classes (25 

and 30 years) with the two natural forests (moist forest and Miombo woodland).  

Chapter 5 shows the impacts of land management practices on future C 

stocks using the dynamic RothC model. This model is used to assess the impact of 

land management on SOC storage and helps to investigate scenarios and 

hypotheses that are beyond the realm of current assessments. The running of the 

model requires information on soil type, plant cover and monthly climate input 

data. In this chapter, experimental data from Chapters 2 and 3 are used to assess 

performance and ability of RothC to simulate long-term SOM changes in 

Zimbabwean soils. The results confirm the ability of RothC to simulate short and 

long-term soil C dynamics. The relationship between conceptual model pools and 

density separated fractions was determined. Furthermore the equilibrium levels 

estimated by the RothC model were compared with equilibrium levels by the 

Langmuir equation. 

Chapter 6 summarises the main conclusions derived from the integration 

of the entire work. It also highlights proposals for management and research to 

ensure sustainable utilisation of forest and agricultural land resources.  
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Land use and management effects on soil 0rganic matter fractions in 

Rhodic Ferralsols and Haplic Arenosols in Bindura and Shamva districts of 

Zimbabwe 

 

Abstract 

Soil organic carbon (SOC) is a major attribute of soil quality that responds to land 

management activities and is also important in the regulation of  global carbon (C) 

cycling. This study evaluated bulk soil C and nitrogen (N) contents and C and N 

dynamics in three density separated soil organic matter (SOM) fractions. The 

study was based on three tillage systems on farmer managed experiments; 

(conventional tillage (CT), ripping (RP), direct seeding (DS)) and adjacent natural 

forest (NF) in Haplic Arenosols (sandy) and Rhodic Ferralsols (clayey) of 

Zimbabwe. Carbon stocks were significantly larger in forests than tillage systems, 

being significantly lower in sandy soils (15 and 14 Mg C ha-1) than clayey soils (23 

and 21 Mg C ha-1) at 0-10 and 10-30 cm respectively. Nitrogen content followed 

the same trend. At the 0-10 cm depth SOC stocks increased under CT, RP and DS 

by 0.10, 0.24, 0.36 Mg ha-1 yr-1 and 0.76, 0.54, 0.10 Mg ha-1 yr-1 on sandy and 

clayey soils respectively over a four year period while N stocks decreased by 0.55, 

0.40, 0.56 Mg ha-1 and 0.63, 0.65, 0.55 Mg ha-1 respectively. SOM fractions were 

dominated by mineral associated heavy fraction (MaHF) which accounted for 86-

93% and 94-98% on sandy and clayey soils respectively. Tillage systems on sandy 

soils had smallest average free light fraction (fLF) and occluded light fraction (oLF) 

C stocks (25.3± 1.3 g m-2 and 7.3 ± 1.2 g m-2) at 0–30 cm when compared with 

corresponding NF (58.4± 4 g m2 and 18.5 ±1.0 g m-2). Clayey soils, had the 

opposite, having all fLF C and N in tillage systems being higher (80.9±12 g C m-2 

and 2.7±0.4 g N m-2) than NF (57.4± 2.0 g C m-2 and 2.4 ± 0.3 g N m-2). Results 

suggest that oLF and MaHF C and N are better protected under DS and RP where 

they are less vulnerable to mineralisation while fLF contributes more in CT. Thus, 

DS and RP can be important in maintaining and improving soil quality although 

their practicability can be hampered by unsupportive institutional frameworks. 

Under prevailing climatic and management conditions, improvement of residue 

retention could be a major factor that can distinguish potential of different 
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management practices for C sequestration. The exploitation of the benefits of RP 

or DS and corresponding sustainability of systems need support for surface cover 

retention which should also be extended to conventional tillage. 

 
Key words: Soil density fractionation; soil management; soil organic matter; soil 
carbon sequestration; soil nitrogen; tillage. 

 

 

2.1 Introduction 

 

Soil organic matter (SOM) represents a large, dynamic and complex terrestrial 

reservoir of carbon (C) in the form of organic compounds derived from plant, 

animal or microbial biomass (Baldock, 2009). Land use practices in agro 

ecosystems affect the storage of soil organic carbon (SOC) and nitrogen (N). The 

rates of C release from the soil varies with land use type, climate and the soil 

matrix. Several studies have shown that significant amounts of C were lost from 

soil as carbon dioxide (CO2) when forests were converted to agriculture (IPCC., 

2000; Food and Agriculture Organisation (FAO), 2010a), through the release of 

physically protected soil C (Six et al., 1999; McConkey et al., 2003; Denef et al., 

2007). Despite this loss, agriculture is inevitably required to enhance food security 

in the developing countries which are threatened by food shortages (FAO, 1996).  

In this regard, conservation agriculture (CA) has been recommended as a 

means of C accumulation and soil quality enhancement (Ken & Johnson, 1993; 

Chivenge et al., 2007b; Álvaro-Fuentes et al., 2008; Dercon et al., 2010) and has 

been proposed as a means of sustainable land use management (Food and 

Agriculture Organisation (FAO), 2010a). In southern Africa, the reasons for the 

success of conservation farming have been clearly outlined (Marongwe et al., 

2011; Andersson & Giller, 2012). However, the success of some conservation 

farming practices such as no-tillage in C storage depends on quality and quantity 

of organic residue inputs and the degree of soil disturbance (de Moraes Sá et al., 

2011).  
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No tillage or minimal tillage practices might affect SOC stocks, although 

some studies have shown that no-tillage increases SOC concentrations only in the 

upper layers of some soils having no significant differences with conventional 

tillage over the whole profile (Blanco-Canqui & Lal, 2008; Poirier et al., 2009). Soil 

organic C may be present in the soil as either 1) relatively fresh (labile) SOM not 

protected by the soil matrix, as 2) SOM physically protected in aggregates 

(occluded), or as 3) SOM adsorbed onto mineral surfaces (chemically stabilised) 

(Dalal & Mayer, 1986a). Although land management systems such as tillage may 

not have an effect on bulk SOC and N, they may have an effect on individual SOM 

fractions (Von Lützow & Kӧgel-Knabner, 2009). Moreover, changes in SOM 

fractions may provide insight into the effects of tillage practices on SOC 

stabilisation (von Lützow et al., 2007 ; Marín-Spiotta et al., 2008).  

Isolation of these functional pools can be done by density or size 

separation. Density fractionation is often coupled with ultrasonic dispersion to 

give three mutually exclusive fractions: free light fraction (fLF) extracted before 

the breakdown of aggregates; occluded light fraction (oLF) isolated after 

ultrasonic disruption and mineral associated fraction (MaHF) recovered in the 

remaining heavy precipitate which is considered as stable (Poirier et al., 2005; 

Gregorich et al., 2006). Evidence of differences in residence time of fLF and oLF 

has been shown (Golchin et al., 1994b; Gregorich et al., 2006) and confirmed by 

radio C dating (Baisden et al., 2002; Swanston et al., 2005). The mineral-

associated heavy fraction contains more processed material with a slower 

turnover rate and a higher degree of chemical protection (Hassink, 1995) than 

oLF.  

Soil organic C and N in density fractions are important attributes of the 

quality of a soil and associated impacts of land management systems. The 

applicability and feasibility of density fractionation has not been fully exploited in 

Zimbabwean soils. Some studies in Zimbabwe focused on crop production and soil 

organic matter fractions in aggregate sizes and have revealed that physically 

separated SOM fractions change with aggregate size (Chivenge et al., 2007b; 

Nyamadzawo et al., 2009). Despite the importance of SOC storage in the light 

fraction, there is little information about size, composition and stability of free 
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and occluded light fractions in sandy and clayey soils of Zimbabwe. In addition, 

research on experimental stations has not provided the required information on C 

sequestration potential since it does not represent farmer’s conditions (Giller et 

al., 2011).  

In this study, active collaboration with farmers in the research plots 

provided a true picture of small holder farmers’ condition which can result in the 

transfer of technologies to their own fields. The native forests in the area are 

mainly miombo woodlands which are subjected to annual wild fires and are 

utilised by local communities for timber and non -timber forest products. We 

therefore aim to evaluate the effects of land management systems on: 1) bulk soil 

C and N contents and 2) the C and N dynamics of three fractions, (i.e. the free 

light fraction (fLF), occluded light fraction (oLF) and mineral associated heavy 

fraction (MaHF)) on farmer managed tillage experiments on sandy and clayey 

soils. In order to assess the effect of agricultural land use, irrespective of 

treatment, on SOC and N contents, samples were also collected from adjacent 

natural forests to show the C benefits of not clearing more land for agriculture. 

Agricultural land is mostly a product of deforestation of these native forests. 

 

2.2  Material and methods 

 

2.2.1 Study site  

 

This research was carried out at two experimental locations; Hereford in Bindura 

district (17˚42΄ S; 31˚44΄ E) and Nyarukunda in Shamva district (17˚00΄S; 31˚ 43΄E) 

(Figure 2.1) which were established in farmers’ fields in 2005. The two areas 

transcend a zone with altitudinal ranges between 1000 and 1800 m.a.s.l. and 

annual unimodal rainfall of 750-1000 mm. Sandy soils, mostly derived from coarse 

granite cover nearly 70% of Zimbabwe (Thompson & Purves, 1981) mostly of the 

Kaolinitic order, Fersiallitic group under the Zimbabwean soil classification, 

corresponding to Alfisols in soil Taxonomy (Nyamapfene, 1991).  
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The dominant soils in the Nyarukunda area can be classified as coarse 

grained sandy to sandy loam soils, corresponding to Ferric Luvisols (Thompson & 

Purves, 1981; Scoones, 2001; FAO, 2006) but the IPCC default classes derived from 

the harmonised world soils database (Batjes, 2010) classified them as Arenosols, 

(>70% sand and <8% clay) and are broadly referred as sandy soils. Hereford soils 

are red clays varying from silty clay loam to clay, with characteristics 

corresponding to Rhodic Ferralsols (Nyamapfene, 1991; 

FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) and falling into the category of low activity 

clays (Batjes, 2010). 

The two areas have the same climate (Region II) and vegetation type of 

miombo woodland dominated by Brachystegia spiciformis and Julbernardia 

globiflora to mixed woodland (dominated by Acacia polyacantha) and bush land. 

They, however, differ in land use history and soil characteristics. The forest on 

clayey soils was part of a commercial farming area and was not as intensively 

utilised as the one on sandy soils and most of the agricultural land was created 

after deforestation of natural forest areas. Shamva’s Nyarukunda ward, is a 

communal area where farmers have been practicing conservation farming on 

small pieces of land for environmental and socio-economic gains (Belder et al., 

2007; Thompson, 2010). Major crops grown in the area are: maize (Zea mays L.), 

cow-peas (Vigna unguiculata L. Walp), sugar beans (Phaseolus vulgaris L.), 

groundnuts (Arachis hypogaea L.), sorghum (Sorghum bicolor, L.) and sunflower 

(Helianthus annuus, L.). Additionally, farmers in Hereford grow commercial crops 

such as soybeans (Glycine max. L. Merr) and tobacco (Nicotiana tabacum L.). In 

Hereford mechanised tillage with disc and harrow was used before the farm was 

designated as a new resettlement area in 2000.  

Within each area, four farmer’s field were chosen, each being 0.3 ha, 

subdivided into three equal portions (0.1 ha) where the three main treatments 

were established: 1) conventional farming (CT) – consists of an ox drawn plough 

to a depth of 15-20 cm once before planting. Residues were removed and the 

remaining biomass incorporated into the soil during ploughing in the next season; 

2) minimum tillage with an ox drawn ripper (RP) 15-20 cm followed by manual 

planting and fertiliser application. Maize stover was supplemented by thatching 
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grass in the first season. In subsequent years, crop residues were to be retained in 

the field after harvesting. Ground cover of 2.5-3.0 Mg ha-1 was required in each RP 

plot; and 3) no tillage using an ox drawn direct seeder (DS) – synchronised seeding 

and fertiliser application. Residues were also retained or supplemented to achieve 

the 2.5-3.0 Mg ha-1 ground cover. 

       

    
Figure 2.1: Map of Zimbabwe showing location of Shamva and Bindura districts. 

 

Each tillage system was divided in half, where during the first two years, 

maize (Z. maize. L) was grown on one side of the field and cowpeas (V. 

unguiculata L. Walp) at Nyarukunda or soy bean (G. max L. Merr) at Hereford 

grown on the other. During the next two years the sides were switched. Each 

treatment received annual basal fertiliser of 165 kg ha-1 compound D (i.e. 11 kg 

ha-1 N, 10 kg ha-1 P, 10 kg ha-1 K), which was followed by 69 kg ha-1 N applied as 

ammonium nitrate in splits at 4 and 7 weeks after germination. The soy bean 
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received no top dressing but was inoculated with a commercial rhizobium before 

sowing. Weed control was by herbicide in RP and DS while in CT it was done 

conventionally by cultivator or plough. All fields in each soil type were planted 

with similar maize and legume varieties each year. In addition to the agricultural 

sites in each area, an indigenous forest site in close proximity and on the same soil 

type was included as they are a target for agricultural expansion and can be a 

useful reference for C storage capacity.  

Initial C and N stocks as recorded during the 2005/2006 season 

(International Maize and Wheat Improvement Centre (CIMMYT), unpublished 

results -2005/2006) had an average C concentration ranging between 3 and 5 g kg-

1 on sandy soils compared to 13 and 15 g kg-1 for the clayey soils. Mean C stocks at 

0-10 cm under CT, RP and DS were 4.79, 6.38, 5.45 Mg ha-1 and 6.08, 16.08, 17.64 

Mg ha-1 on sandy and clayey soils respectively (Table 2.1). Nitrogen stocks were 

0.93, 0.93, 1.06 and 1.92, 2.04, 1.92 Mg ha-1 on sandy and clayey soils 

respectively. The pH was higher in clayey soils than in sandy soils. All values of soil 

characteristics were higher on clayey soils than sandy soils except the amount of 

course and medium sand which were obviously larger in sandy soils.  

 

2.2.2 Surface litter and soil sampling 

 

At each sample point, surface litter was collected by inserting a 30 cm diameter 

ring into the litter on top of the mineral soil and the litter was collected from 

inside the ring (g litter per surface area). Three composited soil samples (each 

based on 4 sub-samples) were collected from each field, (i.e. per treatment, for 

two depth intervals of 0-10 and 10-30 cm). A total of 144 soil samples were taken 

from the agricultural plots, (i.e. 2 areas × 4 sites × 3 treatments × 2 depths × 3 

replicates). The four sites in each soil type were treated as replicates relative to 

tillage systems. Forest soil samples totalled 24 soil samples (2 areas × 6 sample 

points × 2 depths) plus six litter samples. An additional soil sample was collected, 

at each depth by inserting a metal ring of 100 cm3 into the soil for bulk density 

measurements. The soils were air-dried and sieved (< 2 mm) before C and N 

analysis and physical fractionation.  
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Table 2.1: Bulk soil chemical and physical soil properties at 0–10 cm depth before 

establishment of three tillage systems at sites selected for the study at 

Nyarukunda and Hereford study areas.  

Characteristic      Shamva – Nyarukunda 

               (Sandy soils)  

       Bindura- Hereford  

         (Clayey soils)  

  Tillage        CT RP DS    CT RP  DS 

 pH (Ca Cl2)   5.2 4.9 5.0  5.4 5.5 5.6 

BD (g cm-3)   1.33 1.33 1.33       1.2       1.2       1.2 

SOC (Mg ha-1)   4.8 5.4 5.5  16.1 16.1 17.6 

TON (Mg ha-1)   0.9 0.9 1.1  1.9 2.0 1.9 

C:N ratio   5.3 7.0 5.0  8.4 8.0 9.3 

P (mg kg-1)   16.3 15.8 13.5  26.7 30.5 31.0 

ex  K (cmol/kg)  0.2 0.3 0.2  0.5 0.6 0.6 

ex Ca (cmol/kg  1.3 1.0 1.0  8.5 8.9 8.6 

ex Mg (cmol/kg  0.7 0.3 0.2  4.6 3.7 5.0 

TEB   (cmol/kg  2.5 1.7 1.6  14.0 13.6 14.7 

BASE SAT  %  70 60 35  64 63 75 

Clay %   4 5 4  22 23 26 

 Silt %   7 7 8  20 20 20 

sand %  89 87 89  58 57 54 

CT = conventional tillage, RP= ripping, DS= direct seeding.                                        

Source: International Maize and Wheat Improvement Centre (2005/2006).                                                    

                      
CT = conventional tillage, RP= ripping, DS= direct seeding.                                                                                      

Source: (International Maize and Wheat Improvement Centre (CIMMYT), 

unpublished results -2005/2006).            

 

2.2.3 Soil density fractionation 

 

Soil samples were subjected to physical fractionation to obtain three organic 

matter fractions (free light fraction (fLF), occluded light fraction (oLF) and mineral 

associated heavy fraction (MaHF)) using the method described by Roscoe et al. 

(2000). The fractions were recovered by density separation using sodium 

polytungstate (3Na2WO4.9WO3.xH2O; SPT). Briefly, 10g air dried soil <2 mm was 
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shaken in a centrifuge tube with 50 ml SPT solution of density 1.6 g cm-3 and 

gently mixed by inverting 5 times and allowed to stand for at least 1 hour to fully 

wet the sample. Next, the samples were centrifuged for 23 minutes at 4500 rpm. 

The supernatant was poured over a Büchner funnel with a 0.45 µm Whatman 

GF/F glass filter using a Millipore vacuum filtration unit (Millipore, Bedford, MA). 

The light fraction (LF) also referred to as the “free light” (fLF) or “labile” fraction 

was rinsed off the filter into a glass beaker and oven dried at 40 ºC.  

SPT solution with density 1.6 g cm-3 was added to the residual soil 

material and shaken by hand to bring the precipitate into solution. An ultrasonic 

probe was used for 5 minutes to disperse the occluded light fraction after which 

the suspension was left to stand for 30 minutes. The suspension was centrifuged 

for 23 minutes at 4500 rpm. The centrifuged tubes were decanted over a Büchner 

funnel with a 0.45 µm Whatman GF/F glass filter. The “occluded light” (oLF) or 

“physically protected light” fraction was rinsed off the filter into a glass beaker 

and oven dried at 40 ºC. 

The remaining precipitate, the mineral-associated (MaHF) fraction, 

needed to be rinsed thoroughly,(i.e. at least 5 times for clayey soils and three 

times for sandy soils, or until conductivity of the filtrate was <50µS cm-1) in order 

to remove all STP. Total C and N contents of fLF, oLF and MaHF and whole soil 

were determined by dry combustion using a CN analyser. Bulk soil C and N were 

estimated using equation [1] and the amount of SOC in fractions was expressed as 

concentration (g C kg−1 of soil) and multiplied by depth and bulk density to obtain 

stocks of each fraction.  

       Organic C (Mg ha-1) = Depth (cm)×Bulk density (g/cm3 )×Carbon 

content (%)                                                                                                        [1]           

Data were tested for homoscedasticity using Levenes’s test and it showed 

that error variances of dependent variables were not equal across groups except 

C:N ratios. Statistical comparisons of C and N among land management systems 

were therefore done using multivariate analysis of variance (MANOVA) which is a 

generalisation of analysis of variance that permits testing for mean differences on 

several dependent measures simultaneously. Wilk’s Lambda was used as the 

multivariate measure. Carbon and N were the dependent variables whilst soil 
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type, management system and depth were the fixed factors. Tukey’s HSD test was 

used for post-hoc analysis of C and N in bulk soil and the three fractions in each 

soil type, management system and soil depth. Statistical analyses were performed 

with software package SPSS 19.0 for windows. Differences were considered 

significant at p < 0.05. 

 

2.3 Results 

 

2.3.1 Surface litter in land management systems 

 

Mean C of litter for tillage systems was 0.31 and 0.22 Mg ha-1 on sandy and clayey 

soils respectively compared to 0.64 and 0.60 Mg ha-1 in respective forests (Figure 

2.2).  
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Figure 2.2: Amount of litter persisting in fields before the cropping season. CT = 

conventional tillage; RP = ripping; DS = direct seeding and NF = natural forest. 

Different letters show significant differences at p = 0.05. Error bars ± 1 SE. 

 

There was no significant difference in surface litter accumulation among 

tillage systems on sandy soils. The amount of surface residue among tillage 
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systems in each soil type was 34% and 46% lower than respective NF on sandy 

and clayey soils. On Clayey soils RP had highest surface litter accumulation which 

was half of the litter on forest floor. In all fields, termites seemed to play an 

important role as they were present and active in all plots and they may have a 

significant effect on the degradation of organic inputs and promotion of the 

release of nutrients to crops. 

                              

2.3.2 Soil bulk density, pH, C and N in land management systems 

 

Despite some human influence at the forested sites, (e.g. fire wood collection and 

fire) the soils at the Nyarukunda and Hereford woodlands were considered to 

represent natural soil conditions for each location. There was a stronger 

relationship between bulk density and total organic C on clayey (R2=0.987) than 

sandy soils (R2= 0.016). Tillage neither affected bulk density, soil pH (p>0.1) nor 

C:N ratios although higher bulk densities were more associated with CT and least 

with RP being higher on sandy soils (1.32 g cm-3) than clayey soils (1.20 g cm-3) 

(Table 2.2).  

Soil organic C stocks varied significantly (p<0.01) between tillage systems 

and natural forests being significantly higher on clayey soils (F = 187.69; p< 0.01) 

than on sandy soils in all land management systems and at all depth levels (Figure 

2.3). Mean C stocks in the land use systems up to 30 cm depth ranged from 7.97 

to 29.25 Mg ha-1 and 30.6 to 43.9 Mg ha-1 on sandy and clayey soils respectively. 

CT, RP and DS had 36%, 32%, 32% and 14%, 15% 14% lower C than their 

respective forests on sandy and clayey soils respectively. On Sandy soils C was 

higher under DS (10.9 Mg ha-1) than RP (10.7 Mg ha-1) and CT (8.0 Mg ha-1) at 0-30 

cm whereas on clayey soils, C was higher under RP (32.3 Mg ha-1) than CT (31.2 

Mg ha-1) and DS (30.6 Mg ha-1) though not significantly. Depth distribution showed 

significantly higher (F= 22.98; p<0.01) C stocks at 0-10 cm than at 10-30 cm in all 

cropping systems (Table 2.2).  

On sandy soils, at 0-10 cm depth C was higher under DS (6.9 Mg ha-1) than 

RP (6.4 Mg ha-1) and CT (5.2 Mg ha-1) whilst on clayey soils there was more C 
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under CT (19.1 Mg ha-1) than RP and DS although the differences were not 

significant.  

 
Table 2.2: Soil characteristics, C and N stocks in three tillage systems and natural 
forests on sandy  and clayey soils (n=12).  

 

Table 2. Soil characteristics, C and N stocks in three tillage systems and natural forests on 

sandy and clayey soils (n=12). 

 

Soil 

 

Management 

   Total organic C                                                              

(Mg ha-1) 

Total organic N                     

(Mg ha-1) 

 

pH     BD(g cm3) 0-10 cm 10-30 cm    0-30cm 0-10 10-30 C:N 

Sandy CT 4.7(0.1) 1.37(0.02) 5.16(0.77)a 2.81 (0.76)a 7.97     
0.38(0.07)a 0.22(0.07)a 

14 

 RP 
5.2(0.1) 1.32(0.03) 6.38(.76)a 3.90(0.76)b 10.28 0.53(0.07)b 0.34(0.07)b 13 

 DS 
4.7(0.1) 1.33(0.03) 6.91(1.76)a 4.46(0.77)b 11.37 0.50(0.05)b 0.37(0.06)b 13 

 NF 
5.1(0.1) 1.27(0.3) 14.96(1.09)b 14.29(1.09)c 29.25 1.20(0.10)c 1.09(0.10)c 13 

Clayey CT 5.8(0.3) 1.22(0.06) 19.13(0.76)a 12.04(0.77)a 31.17 
1.29(0.07)a 0.96(0.07)a 14 

 RP 
5.8(0.3) 1.21(0.05) 18.22(0.78)a 14.05(0.76)b 32.27 

1.39(0.07)b 1.20(0.07)b 13 

 DS 
6.0(0.3) 1.16(0.04) 18.03(0.76)a 12.59(0.76)a 30.62 1.37(0.06)b 0.99(0.07)a 13 

 NF 
5.7(0.3) 1.21(0.2) 22.77(1.09)b 21.11(1.08)c 43.88 2.47(0.11)c 1.46(0.10)c 14 

       
  CT =conventional tillage, RP = minimum tillage with a ripper, DS= no tillage using 

direct seeder, BD = bulk density.  Standard error of  the mean shown in 
parenthesis. Means followed by different letters are significantly different at 
p=0.05. Tukey’s HSD test.  

 

A comparison with the baseline C stocks (Table 2.1) showed that CF, RP 

and DS increased C stocks at 0-10 cm depth by 4%, 4%, 8% and 8%, 6%, 2% on 

sandy and clayey soils respectively (Table 2.1 and 2.2). The SOC stocks increased 

under CT, RP and DS by 0.10, 0.24, 0.36 Mg ha-1 yr-1 and 0.76, 0.54, 0.10 Mg ha-1 

yr-1 on sandy and clayey soils respectively. 

Over the four year period N stocks were reduced by 0.55, 0.40, 0.56 Mg 

ha-1 and 0.63, 0.65, 0.55 Mg ha-1 on sandy and clayey soils respectively. There 

were significant differences in N content (p=0.015) between sandy (0.5±0.3 Mg 
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ha-1) and clayey soils (1.2±0.3 Mg ha-1) which did not have a corresponding effect 

on the C:N ratio. The mean C:N ratios ranged from 9-20 and 10-24 on sandy and 

clayey soils respectively. The C:N ratio and total organic N were not significantly 

different by depth (p=0.012).  

 

    
Figure 2.3: Soil organic carbon (SOC) and total organic nitrogen (TON) stocks in 
three tillage treatments (CT = conventional tillage, RP = ripping and DS = direct 
seeding) and natural forest (NF) in sandy and clayey soils at 0–30 cm depth. 
 

2.3.3 Carbon and N in density fractions 

The light fraction only accounted for ±1% of the soil mass. However, the organic C 

and N concentration of the density fractions were inversely related to their 

masses. On sandy soils mean C and N concentration of fLF was 33±8% and 

1.5±0.5% respectively while the oLF C and N were 26±8% and 1.2±0.3%. The mean 

MaHF C and N were 0.7±0.3% and 0.05±0.02% respectively. On clayey soils, mean 

C and N concentration of fLF was 40±6% and 1.5±0.3% respectively while in the 

oLF C and N were at 41±4% and 1.8±0.2%. The MaHF C and N were 2.8±1% and 

0.19±0.07% respectively.  Despite the small proportion of the two light fractions 
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to the soil mass, they contributed to 6±2% of the bulk SOC and 1.7±1.3% of the 

total N stocks (Table 2.3).  

 

Table 2.3. Distribution of soil organic matter fractions and their relationship to 
SOC and TON as affected by different land management system at 0–30 cm depth. 
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  (g C m
-2

)         %    fLF  oLF MaHF 

Sandy  CT 24.1(5.3)
a 

4.7
 

2.5
 

1.5
 

1.0 93.8
 

96.6
 

25.5
 

21.4
 

13.1
 

Soil RP 37.8(5.3)
ab 

5.9
 

3.0
 

1.5
 

0.9 92.6
 

96.1
 

24.8
 

20.8
 

12.1
 

 DS 35.7(5.3)
a 

5.0
 

2.7
 

1.5
 

0.9 93.4 96.4 24.9
 

21.8
 

12.8
 

 NF 76.9(7.6)
b 

4.1
 

2.5
 

1.3
 

0.7 94.6
 

96.8
 

23.0 22.6
 

13.1
 

 HSD 8.4 6.8
 

2.3 0.5 0.2 7.4 2.5 15.6 2.9 7.2 

Clayey  CT 97.3(5.6)
 

5.4
a 

3.0
a 

1.2
 

0.74 93.4
a 

96.2
a 

25.8
ab 

21.4 14.1 

Soil RP 109.9(5.3)
 

5.9
a 

2.7
ab 

1.2
 

0.69 92.9
a 

96.6
ab 

26.9
ab 

20.8 12.5 

 DS 89.9(5.3)
 

4.9
a 

2.3
b 

1.3
 

0.70 93.8
a 

96.9
ab 

27.8
b
 21.8 13.0 

 NF 85.7(7.5)
 

2.7
b 

1.5
c 

1.5
 

0.79 95.8
b 

97.7
b 

24.5
a 

22.6 13.6 

 HSD 19.2 4.8 1.4 0.4 0.1 5.5 1.8 11.4 1.9 11.2 

 
 

CT =conventional tillage, RP = minimum tillage with a ripper, DS= no tillage using 

direct seeder, NF= natural forest, BD = bulk density. fLF = free light fraction, oLF = 

occluded light fraction, MaHF = mineral associated heavy fraction. Standard error 

of  the mean shown in parenthesis. Means followed by different letters are 

significantly different in each soil type at p=0.05. HSD = Honest Significant 

Difference.  

The amount of organic C stored in density fractions and their depth 

distribution differed between land use types (Figure 2.4). The fLF C and N were 

significantly larger in clayey soils than in sandy soils and significantly larger in the 

top layer than the lower layer (P<0.01). Tillage systems on sandy soils had smallest 

average fLF and oLF C stocks (25.3 ± 1.3 g m-2 and 7.3 ± 1.2 g m-2) at 0–30 cm when 
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compared with corresponding NF (58.4 ± 4 g m2 and 18.5 ±1.0 g m-2). The two light 

fractions were not significantly different between RP and DS on sandy soils. Clayey 

soils, had the opposite, having all fLF C and N in tillage systems being higher (80. ± 

12 g C m-2 and 2.7 ± 0.4 g N m-2) than NF (57.4 ± 2.0 g C m-2 and 2.4 ± 0.3 g N m-2). 

The fLF N was significantly lower under CT than DS and RP on sandy soils whereas 

on clayey soils fLF N was lowest in NF.  

 

  

  
Figure 2.4: Distribution of carbon and nitrogen in free light fraction (fLF) and occluded light fraction 

(oLF) in three tillage systems (CT –conventional tillage, RP- Ripping and DS – Direct seeding) and 

natural forest(NF) in sandy and clayey soils up to a depth of 30 cm. Different letters show significant 

differences of the mean at p=0.05. 

a c 

 b ab a a 

c 

a 
 b a a 

b 

a a 

 b 

b 

a 

a 

c 

b b 

a 

c 

   a  b 
 c 

b 
b 

a 

a 

a 

   b 

Figure 2.4: Distribution of carbon and nitrogen in free light fraction (fLF) and 

occluded light fraction (oLF) in three tillage systems (CT –conventional tillage, RP- 

Ripping and DS – Direct seeding) and natural forest(NF) in sandy and clayey soils 

up to a depth of 30 cm. Different letters show significant differences of the mean 

at p=0.05. 
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The amount of organic C stored in density fractions and their depth 

distribution differed between land use types (Figure 2.5  and 2.6). The fLF C and N 

were significantly larger in clayey soils than in sandy soils and significantly larger in 

the top layer than the lower layer (P<0.01). Tillage systems on sandy soils had 

smallest average fLF and oLF C stocks (25.3 ± 1.3 g m-2 and 7.3 ± 1.2 g m-2) at 0–30 

cm when compared with corresponding NF (58.4 ± 4 g m2 and 18.5 ±1.0 g m-2).  

The two light fractions were not significantly different between RP and DS 

on sandy soils. Clayey soils, had the opposite, having all fLF C and N in tillage 

systems being higher (80.9 ± 12 g C m-2 and 2.7 ± 0.4 g N m-2) than NF (57.4 ± 2.0 g 

C m-2 and 2.4 ± 0.3 g N m-2). The fLF N was significantly lower under CT than DS 

and RP on sandy soils whereas on clayey soils fLF N was lowest in NF.  

 

  
Figure 2.5: Distribution of carbon and nitrogen in mineral associated heavy 

fraction (MaHF) in three tillage systems (CT –conventional tillage, RP- Ripping and 

DS – Direct seeding) and natural forest(NF) in sandy and clayey soils up to a depth 

of 30 cm. Different letters show significant differences of the mean at p=0.05. 
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compared with DS and CT. At 10-30 cm DS had more C and N than RP and CT 

although they were all lower than NF. The largest proportion of soil C and N was 

found in the MaHF (C: 93±6%; N: 96±2%) and (C: 94±4%; N: 97±1%) on sandy and 

clayey soils respectively (Table 2.3). Thus, MaHF represented a consistent trend 

relative to land management system (Figure 2.6) and was significantly correlated 

with total SOC (R2 = 0.998; p <0.01; n=168; SE =0.29) although the range was 87- 

98% of total SOC and TON. The MaHF C and N were higher in top than lower soil 

depth in all management systems. Interaction of depth and texture significantly 

affected MaHF and oLF C and N contents. 

 The C:N ratios for MaHF were smaller than fLF and oLF ranging from 9-21 

compared to 20-30 for fLF and 19-25 for oLF. The mean C:N ratios decreased in 

the order fLF (23±6) > oLF (20±3) > HF (13±3) across sites on sandy soils with 

similar trends on clayey soils of fLF (26±4) > oLF (23±2) > HF (13±3). The C:N ratios 

of oLF decreased with soil depth for most sites while C:N ratios of fLF remained 

constant.  

 

2.4 Discussion 

 

2.4.1 Surface litter retention in agricultural and forest systems  

 

Forests had more C and N in litter than agriculture systems (Figure 2.2) although 

their potential is retarded by the removal of forest litter often used as soil 

amendments in agricultural fields (Kowero, 2003; Giller et al., 2006) affecting soil 

organic matter input. Regeneration of forest ecosystems can be seriously affected 

by factors such as seed fall, seed bank, nutrient availability and microclimate (Holl, 

1999). In addition to soil texture, size and composition of above ground biomass, 

history of utilisation also affects the accumulation of organic matter (Sleutel et al., 

2011). Thus, in areas from which a large part of the surface layer of the soil is 

removed or disturbed, as in this study and most severely in the Nyarukunda 

(sandy) area, restoration of the SOC and N levels can be slow. Despite this, the 

forests remain important in C storage. Inputs through litter accumulation in 

miombo woodlands is also be affected by frequent fires. 
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Figure 2.6: Distribution of organic C and N in density fractions (fLF = free light 

fraction, oLF = occluded light fraction and MaHF = mineral associated fraction) 

in three tillage systems (CT—conventional tillage, RP—ripping and DS—direct 

seeding) and natural forest (NF) at two depth intervals. 
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Conservation tillage systems (RP and DS) should receive annual organic 

matter inputs of 2.5 – 3.0 Mg ha-1 which is normally supplemented by thatch grass  

material which is easily degraded and only persists till end of the growing season 

after which the crop residues take over. The effects of residue retention may even 

be larger than other factors such as soil texture or rainfall as the residue retention 

was more applicable in the initial years when the plots were protected from free 

ranging livestock resulting in DS plots having more C than CT and RP (Thierfelder & 

Wall, 2012). At the time of the study all fields were no longer protected. Crop 

residues are sometimes collected to feed livestock in the dry season or the 

livestock feed in situ resulting in very low organic inputs into the soil. This has an 

effect on the amount of C a system can store and may result in low C 

accumulation under conservation agriculture (CA) systems. The attainment of 

complete cover in CA systems may not be practical in Zimbabwean rural systems 

under existing local institutional arrangements. In addition, the thatch grass used 

to supplement residues is sometimes threatened by annual wildfires 

strengthening the need for community fire management and fire prevention 

policies. 

However, climatic condition, including the long dry spell from April to 

November, is a major limiting factor to the preservation of organic matter in all 

tillage systems as reflected by the low amounts of surface litter. During this period 

the sites are equally disturbed by being subjected to trampling by animals, 

excessive dryness, termite degradation of organic residues and sometimes wind 

erosion (mostly in August and September).  

 

2.4.2 Soil bulk density, C and N in different land management systems 

 

Bulk densities found in the study at 0-10 cm (Table 2.2) are comparable to those 

found by King and Campbell (1994) and Walker and Desanker (2004) who 

compared miombo woodlands and arable lands in the southern African region. 

Sandy soils tend to have higher bulk densities by virtue of their higher sand 
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content which makes them more vulnerable to trampling by grazing animals and 

humans especially during the dry season.  

Soil organic C stocks differed greatly between agriculture and forested 

land with the two forests having higher C and N contents as compared to 

agriculture lands (Table 2.2; Figure 2.3). Our results (46.11 Mg ha-1 and 53.9 Mg 

ha-1) are comparable to C stocks found in other woodlands of southern Africa 

ranging from 32 -133 Mg ha-1 (Woomer, 1993 ; Walker & Desanker, 2004; Zingore 

et al., 2005; Ryan et al., 2011). In this study, soil texture was important in 

determining the amounts of C and N storage in soils since the two sites receive 

equivalent amounts of rainfall. Clayey soils have greater protection allowing slow 

decomposition and depletion of organic matter while on sandy soils organic 

matter is more exposed and vulnerable to rapid decomposition in the presence of 

favourable environmental conditions. The clay and silt size particles have larger 

surface areas which allow better stabilisation of organic matter than sandy soils 

(Powlson et al., 2013). 

Although the current stocks were not significantly different among tillage 

practices. A comparison of C stocks at 0-10 cm (Tables 2.2 and 2.3) on sandy soils 

shows an increase of 0.38, 0.93 and 1.46 Mg ha-1 over the four year period for CT, 

RP and DS respectively. Increase of C stocks in top layers has been observed 

elsewhere (Gulde et al., 2008; Anikwe, 2010; Dercon et al., 2010; Blanco-Moure et 

al., 2011). Brahim et al. (2009) also found DS having greater C stocks in 0-10 cm 

and the 10-20 cm layers with higher C stocks under CT at 20-30 cm. Contrary to 

this study, Anikwe (2010) and other scholars (Tan et al., 2007; Jagadamma & Lal, 

2010 ) found significant differences between C and N stocks of CT and no tillage 

(DS). 

Crop rotation using leguminous crops has been done in all tillage systems 

and this practice is known to enhance microbial activity (Dinesh et al., 2004) and 

may have an impact on the insignificance of C stored in the three tillage system 

although usually little residue was left in the field to last until the next cropping 

season. The C stocks under CT in this study are higher than reported by 

Thierfelder et al. (2012) who worked in the same study area and reported a stock 
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of 3.2 Mg C ha-1 at 0-10 cm while at 10-30 cm their stocks were 7.8 Mg ha-1 

compared to 7.97 Mg ha-1 in this study. Their study was however, based on fields 

initiated in 2004 whereas in this study the results are the mean of four farmers’ 

fields established in 2005/2006 season. In their DS fields, C stocks at 0-10 cm were 

less than half of those reported in this study while at 10-30 they found 10 Mg C 

ha-1 compared to 4.46 Mg C ha-1 in this study.  

C stocks in clayey soils under CT, RP and DS increased at by 3.05, 2.14 and 

0.38 Mg ha-1 respectively 0-10 cm when compared with the baseline data (Table 

2.1 & 2.2). The CT management system had the lowest C stocks at 10-30 cm 

where RP was highest resulting in the RP having highest stocks at 0-30 cm 

although the difference between CT and DS was not significant. All tillage systems 

had significantly lower C and N when compared to NF. In Zambia, Stroosnijder and 

Hoogmoed (2004) found C sequestration rates of 0.3 – 3.0 Mg ha-1 yr-1 under 

conservation tillage systems over a nine year period. Increases of total organic C 

in the short term have been reported after three years (McCarty et al., 1998) 

although the increases can be insignificant (Franzluebbers & Arshad, 1996; Liang 

et al., 2007). 

Similarly, Thierfelder and Wall (2012) also analysed C stock changes at 

some of the fields in Hereford and found increases of 19%, 21% and 38% under 

CF, RP and DS from 2004 to 2008 at a depth of 0-20 cm. They showed increases of 

6.9, 7.6 and 10.2 Mg ha-1 respectively (i.e. 1.7, 1.9, 2.6 Mg ha-1 yr-1 respectively). 

They found highest increases under DS while CT and RP were not significantly 

different. Differences with our results mainly under DS systems, could be 

attributed to the lack of continuous cover in the designated fields by the year 

2010 as the fences were broken. This shows the importance of residue retention 

to gain greater positive impacts under RP and DS in both sandy and clayey soils. 

Despite spatial heterogeneity and the differences in amounts of C and N, CT and 

RP systems may have benefited from homogenisation of soil profile with the 

plough (CT) or ripper (RP) and organic matter accumulation which however, 

resulted in a decrease in the concentration gradient of C with soil depth when 

compared with NF on sandy soils. Clayey soils tend to benefit more from 

minimum tillage while sandy soils could be more sensitive to this disturbance. 
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These results suggest that RP could be an effective soil management technique for 

increasing soil C storage on clayey soils. 

Studies which have shown major differences between CT and DS had 

continuous cover under the no till system (Brahim et al., 2009), which was not the 

case in this study. Our results agree with Poirier et al. (2009) who found no 

significant differences between tillage systems although they considered the 

profile up to 60 cm. They found significant differences in the top 20 cm which is 

similar to this study at 10-30 cm. Studies on similar soils show a decline of C and N 

through CT (Chivenge et al., 2007a) which is not evident in this study. In this study 

the ox-drawn plough may not be going as deep as 30 cm leaving the soil below 30 

cm depth relatively unaffected.  

Contrary to most tillage studies, de Rouw et al. (2010) found significant 

differences between DS and CT with highest C (+590g C m-2) in CT and a loss of (-

133 g C m-2) under DS over a five year period. The loss of C was mainly attributed 

to the slow process of biomass decomposition in no till systems (DS). They 

concluded that tillage helps to incorporate residues that may never be captured 

for decomposition under no till. In addition, the mouldboard plough helps to 

prepare a weed-free seedbed and facilitates percolation of water into the soil 

profile (Riches et al., 1997). This could be the same case in our study area were 

variable amounts of residue are not preserved in place in CA systems after 

harvesting and equal amounts of fertiliser are added to all treatments annually. 

Other studies on sandy soils have shown that the incorporation of organic matter 

into the mineral soil by cultivation facilitates interactions between organic 

residues and inorganic colloids thus physically stabilising the residues and 

reducing decomposition rates resulting in preservation of soil C (VandenBygaart et 

al., 2002).  

The high C:N ratios, reflect less microbial activity and also shows the 

inherent N deficiency in these soils (Nyamangara et al., 2000) supporting the need 

for supplementing with fertiliser and/or manure to increase crop production 

(Giller, 2002; Zingore et al., 2007) and C sequestration. The observed increase in C 

stocks in all tillage systems could be a result of better nutrition and improved 
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management of the fields compared to the time prior to the start of the 

experiments and the addition of fertiliser has been shown to increase soil C stocks 

in continuously tilled fields after nine years (Mujuru et al., Submitted).  

 

2.4.3 Soil C and N dynamics in density fractions 

 

We observed contrasting effects of tillage on the fLF C and N concentrations in the 

sandy and clayey soils (0-10 cm), (i.e. in the sandy soils increasing fLF C present 

under respectively CF, DS, RP and NF systems, while for the clayey soils we 

observed decreasing fLF C under respectively RP, CT, DS and NF (Figure 2.4). The 

significant difference between fLF C and N on sandy and clayey soils shows the 

fraction’s vulnerability to management activities on soils of different texture when 

compared with the amount of light fraction in natural forests (Figure 2.4). This 

shows the sensitivity of this fraction to changes in soil management (Sharifi et al., 

2008; Yoo & Wander, 2008; Sequeira et al., 2011; Xu et al., 2011) proving that the 

light fraction maybe most affected by land management practices (Tan et al., 

2007) on both sandy and clayey soils. For sandy soils, the less favourable microbial 

living conditions may induce larger turnover time of C in the unprotected fLF 

when compared to clayey soils. Conventional tillage may have enhanced the 

incorporation of above ground litter into the mineral soil and therefore 

contributed to the initial phase of soil C stabilisation. This mixing effect turned out 

to be more effective in the well-structured clayey soils than in the less-structured 

sandy soils. 

Tan et al. (2007) found significantly higher fLF C under DS than CT which is 

consistent with our results on sandy soils. The fLF C was also reduced with depth 

in all land use systems. Studies by Balesdent et al. (2000) suggested that tillage 

affected fLF through increasing the rate of aggregate destruction which causes a 

decrease in organo- mineral complexes within aggregates associated with the fLF. 

The fLF C is considered to be more labile than oLF C (Hassink, 1995). The 

significantly higher fLF C and N in tillage systems than NF on clayey soils could be a 

result of persistent annual fires that retard addition of fLF to forest soils.  
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The oLF was higher in NF than tillage systems. Among tillage systems the 

oLF C was higher in DS and RP than CT. However, the oLF C and N fractions were 

marginally small in the sandy soil, showing that SOM stabilisation by physical 

protections is nearly absent in cropping systems whereas on clayey soils, the 

physically protected oLF C and N was considerable compared to fLF. Favourable 

moisture and temperatures during the cropping season promotes greater 

mineralisation of light fraction organic matter under RP and DS resulting in less 

accumulation of fLF C and N.  

Differences in C:N ratios between fLF and oLF were probably due to a 

slightly advanced form of decomposition in oLF (Hassink, 1995). The fLF C:N ratios 

were similar to those reported by Gregorich et al. (2006) which were between 17 

and 22. The N contents which were close to the detection limit mainly in the light 

fractions may contribute to greater variability of C:N ratios at the two depths in all 

land management systems. In addition, a larger C utilisation in the clayey top soil 

might be a result of (micro-) biological activity mainly during the cropping season. 

The utilisation of fresh litter (substrate) in a soil involves processes where, 

microbes respire C as CO2 and assimilate C and N resulting in a decrease of the 

average C:N ratio of the fLF.  

In contrast to amounts of C and N in light fractions, the MaHF contributed 

most of the C an N with values of 86-97% and 90-98% on sandy and clayey soils 

respectively. Thus MaHF represented a consistent trend relative to land use 

system (Figure 2.5) increasing under RP and DS on clayey and sandy soils 

respectively. In each soil type this fraction was not affected by tillage as shown by 

no significant differences. The total SOM retention capacity of the clayey soils 

based on physical protection (oLF) and adsorption onto mineral surfaces (MaHF) 

was twice as much as on sandy soils. 

The MaHF accounted for the largest proportion of C and N in all tillage 

and forest systems suggesting that C loss after conversion from forest to cropland 

caused a reduction in both light and heavy fraction of organic matter (Figure 2.4 

and Figure 2.5) mainly in the top 10 cm of the clayey soils and the 10-30 cm layer 



Chapter 2 

 

                                                      52 

 

of the sandy soil. Thus the higher the clay content, the larger the difference 

between LF and MaHF.  

 

2.5 Conclusion 

 

The present C and N stocks were lower in tillage systems than NF in the two soil 

types. More C and N were stored at 0-10 cm than 10-30 cm depth. Although the 

total C and N stocks were not significantly different, the amount of C addition to 

the soil differed significantly between CT and DS on sandy soils and was highest 

under CT and lowest under DS on clayey soils. Over a four year period, the three 

tillage systems under CT, RP and DS had positive impacts on SOC stocks at 0-10 cm 

with magnitudes of 0.38, 0.93, 1.46 Mg ha-1 and 3.05, 2.14, 0.38 Mg ha-1 on sandy 

and clayey soils respectively. Our results do not support the hypothesis that losses 

of C and N from the soil are associated with conventional farming and less with 

no-till practices, thus conflicting with other studies, which found decreases of 

both C and N stocks in conventionally cultivated lands.  

The SOM fractions were dominated by MaHF C and N which accounted 

for 86-93% and 94-98% on sandy and clayey soils respectively. In these semi-arid 

areas, the protection of organic C and N in MaHF seems to be a main cause for soil 

enrichment by organic matter. Results also show that clayey soils can store more 

C and N after mild disruptions (RP) although difference with CT were not 

significant. The MaHF in the sandy soils indicates that SOM adsorption onto 

mineral surfaces is by far the most effective stabilisation mechanism although, 

when compared to the clayey soils, this total SOM stabilisation capacity is rather 

limited. The C:N ratios for MaHF were smaller than fLF and oLF ranging from 11-

17 compared to 20-30 for fLF and 17-22 for oLF. The separation of SOM into fLF, 

oLF and MaHF allowed us to assess the capacity of tillage systems to enhance the 

physical protection of organic C and N within sandy and clayey soils. 

Results from this study may also suggest that crop residues are important 

for successful RP and DS in both sandy and clayey soils and the effects of residue 

may even be larger than other factors. Therefore in these soils, under the 

prevailing climatic and management conditions, the issue of tillage alone cannot 
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help in C sequestration unless institutional arrangements for residue retention are 

improved. The exploitation of the benefits of CA and corresponding sustainability 

of systems need support for surface cover retention (de Moraes Sá, et al. 2011) 

which can also be extended to conventional tillage. 
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Effects of nitrogen fertiliser and manure application on soil organic 

carbon and nitrogen storage  

 

Abstract 
The maintenance of soil organic carbon (SOC) pool in agricultural soils is 
important for long term crop productivity and represents a potential sink for 
atmospheric carbon dioxide. Data from a nine year continuous maize experiment 
were analysed to assess the effects of fertilisation on SOC and total organic 
nitrogen (TON) in clayey (Luvisols) and sandy (Arenosol) soils of Murewa district, 
Zimbabwe. Density fractionation was used to assess the distribution of SOC and 
TON in three soil organic matter (SOM) fractions and their sensitivity to 
fertilisation on two fertility gradients. The relationship between light and heavy 
fraction organic C were analysed to determine equilibrium levels. Treatments 
included: unfertilised control (control), nitrogen fertiliser (N Fert ) and nitrogen 
fertiliser plus cattle manure (N Fert + manure). Results showed significantly higher 
SOC and TON stocks under N Fert and N Fert + manure than control at all depths. 
In clayey soil, C and N stocks in N Fert were significantly higher than control and 
significantly less than N Fert + manure. On sandy outfields, N Fert had highest C 
and N than control and N Fert + manure at all depths. On clayey soil, mean total 
organic C at 0-50 cm depth was: control (17.98±1.46 Mg ha-1)<N Fert (26.73±1.58 
Mg ha-1)< N Fert + manure (31.99±1.42 Mg ha-1) while on sandy soil it was: control 
(5.98±1.42 Mg ha-1)< N Fert + manure (10.71±1.41 Mg ha-1)<N Fert (11.76±1.34 
Mg ha-1). Nitrogen followed similar trends. Compared with control, N Fert and N 
Fert + manure enhanced fLF C on homefields and outfields by 19%, 24% and 9%, 
22% on clayey soil and 17%, 26% and 26%, 26% respectively on sandy soil. 
Homefields on clayey soil, under N Fert and N Fert + manure had similar 
equilibrium levels, being 2.5 times more than control. The equilibrium levels for 
MaHF C under N Fert and N Fert + manure treatments were higher than current 
stocks in both homefields and outfields. Carbon stocks under control in outfields 
were similar to theoretical equilibrium levels of 16.1 Mg ha-1 whereas in 
homefields equilibrium levels were only 3 units higher than current stocks. Results 
suggest that the application of manure can be a low cost alternative for enhancing 
soil quality and promoting soil C sequestration under conventionally tilled 
continuous maize cropping in Zimbabwe.  

 



Effects of fertilisation on organic C and N storage 

 

 

57 

 

Key words: manure, fertiliser, sequestration, light fraction, heavy fraction, 
equilibrium level. 

 
 

 
3.1 Introduction 

 

The importance of agricultural soil for climate change mitigation through soil C 

sequestration has dominated current global climate change debates (Food and 

Agriculture Organisation (FAO), 2010a) and important for sustainable soil 

productivity (Lal 2004). Soil organic carbon (SOC modifies soil physical, chemical 

and biological properties, eventually affecting nutrient provision, water retention 

and microbial nourishment (Jimenez et al., 2002a). The amount and stability of 

SOC in agricultural soils determines their productivity and contribution to 

sustaining environmental quality (Lal, 2004). Agriculture practices therefore, 

influence the amounts of C stocks in small holder farming systems including a 

potential role in sequestering C to diminish GHG concentrations and global 

warming. 

Practices that have been identified for enhancing SOC sequestration in 

agricultural soils include i) application of manure and inorganic fertiliser (Liu, 

2004; Gulde et al., 2008; Gong et al., 2009), ii) conservation tillage (Six et al., 

2000; Chivenge et al., 2007b; Marongwe et al., 2011), iii) crop rotation (Havlin et 

al., 1990; Paustian et al., 1998), iv) improved fallowing, v) mulching (Mafongoya & 

Dzwowela, 1999) and vi) intercropping. A combination of manure and inorganic 

fertiliser was superior for improving SOM contents and its fractions eventually 

enhancing C sequestration (Manna et al., 2005; Rudrappa et al., 2006; 

Purakayastha et al., 2008; Li et al., 2010) mainly from increased dry matter 

production. Contrary to these positive results, Wu et al (2004) found decreasing 

SOC after application of fertility amendments while others found no effect of 

fertility amendments on SOC storage (Šimon, 2008).  

Most arable fields in smallholder farming areas of eastern and southern 

Africa are characterised by gradients of decreasing soil fertility with increasing 

distance from homesteads and the fertility gradients are a result of preferential 
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application of manure, household waste, and inorganic fertilisers on fields closest 

to homesteads (Tittonell et al., 2005; Zingore et al., 2007b). These resource 

allocation strategies cause significant increases in the quantity of SOC after 

addition of more farmyard manure and inorganic fertilisers to fields close to 

homesteads than fields away from homestead on both clayey and sandy soils 

(Zingore et al., 2008; Dunjana et al., 2012). Increased SOC and TON were closely 

related to increases in crop yields. Progressive studies were done in Murewa 

district, Zimbabwe at 3 years (Zingore et al., 2008) and at 7 years (Dunjana et al., 

2012) and confirmed decreasing C and N with distance from homesteads. Similar 

results have also been reported elsewhere (Mapfumo & Giller, 2001; Tittonell et 

al., 2005; Zingore et al., 2008; Masvaya et al., 2010). However, Haileslassie (2007) 

found contradictory results with greater soil fertility in fields away from 

homesteads while working in the east African highlands of Ethiopia.  

The losses or gains of SOC and TON over short and medium term are 

difficult to detect due to spatial and temporal variability in bulk soil and may not 

be a sensitive indicator of short and medium term changes in soil quality (Hassink, 

1997). Labile organic C fractions such as free light fraction (fLF) and dissolved 

organic carbon can be used as early and sensitive indicators of changes in SOC 

(Haynes, 2000). Light fraction organic C is important in reflecting short term 

turnover of nutrients (Hassink, 1997) with greater concentrations of N than the 

mineral associated heavy fraction (Compton & Boone, 2000). Methods such as 

density fractionation, size separates or a combination of the two divide SOM into 

three basic levels of functional, structural complexity and different turnover rates 

(von Lützow et al., 2006). The light fraction is easily decomposed, has a greater 

turnover rate and is smaller than the mineral associated fraction (MaHF) and  can 

be used to characterise impacts of different soil amendments.  

The importance of the free light fraction (fLF), occluded light fraction (oLF) 

and mineral associated fraction (MaHF) is widely recognised in studies outside 

Southern Africa (e.g. (Dalal & Mayer, 1986b; Janzen et al., 1992; Liu et al., 2005; 

Swanston et al., 2005) but the relationship between the three fractions is poorly 

understood in African soils. Yin et al. (2005) and Yin and Cai (2006) studied this 

relationship by using a linearized form of the Langmuir equation and found a 
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positive correlation between light fraction organic matter (LFOM) and the ratio of 

LFOM and heavy fraction organic matter (HFOM) (i.e. LFOM/HFOM ratio) under 

organic and inorganic fertiliser treatments in China. They calculated the potential 

increase and the maximum equilibrium value of HFOM of soils from three long-

term experimental fields in China. Their LFOM/HFOM ratios ranged between 0.01 

and 0.50 with higher values under organic fertiliser amendments. Knowledge of 

the equilibrium levels allows evaluation of the potential of different soil types and 

agricultural practices for more soil C sequestration (Yin & Cai, 2006). Maintaining 

soil and crop productivity is a major challenge especially in rain fed arid and semi -

arid areas characterised by long annual dry spells. The objectives of this study 

were to determine how nitrogen fertiliser and cattle manure application in 

continuously tilled maize cropping systems affect: 1) total SOC and total soil 

organic nitrogen (SON) relative to distance from homestead and soil depth; 2) C 

and N storage in three density separated SOM fractions and their sensitivity to 

fertilisation and 3) the relationship between light and heavy fraction organic C. 

We hypothesised that long term fertiliser and manure application will increase 

SOC in whole soil and eventually in stabilised C fractions; accumulation of SOC and 

TON in SOC fractions is influenced by the long-term application of N fertiliser and 

manure in conventionally tilled continuous maize cropping systems; the light 

fraction would be a responsive indicator of short and long term changes in SOC. 

We also hypothesised that there is a stronger relationship between LF and MaHF 

in clayey soils than in sandy soils, because of the larger adsorption capacity of clay 

particles for organic molecules.  

 

3.2 Materials and methods 

 

3.2.1 The study site 

 

The soils were collected from Murewa district of Zimbabwe which is located ~80 

km east of Harare, latitude 17° 39' 13" S and longitude 31° 48' 30" E. The area 

receives unimodal rainfall of between 750-1000 mm annually, with a mean 

maximum temperature of 26°C and mean minimum temperature of 14°C. The 

soils in the area are predominantly granitic sandy soils (Haplic Arenosols) 
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(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) strongly weathered having, low levels of 

available nutrients and low nutrient reserves. The sandy soils are interspaced with 

pockets of dolerite intrusions that give rise to small patches of more fertile clay 

soils (Chromic Luvisols) (Nyamapfene, 1991; FAO, 2006).  

Farming practices are based on integrated crop/livestock systems with 

maize (Zea mays L.) as the dominant staple crop. In addition, other crops such as 

sun flower (Helianthus annuus L.), groundnut (Arachis hypogaea L.), sweet 

potatoes (Ipomoea batatas L.) and assorted vegetables are also grown. Cattle are 

the main livestock, communally grazed in open access areas and in arable fields 

during the dry season. They are corralled close to homesteads at night. In most 

cases crop residues are used to feed cattle over the dry period and organic 

fertiliser is used to fertilise crops, with a small proportion of farmers using 

residues as mulch in fields where conservation agriculture (CA) is practised. 

Zingore et al. (2007b) showed that available P and SOC decreased significantly 

with distance from homesteads, particularly where farmers have cattle due to 

preferential application of manure and mineral fertilisers on fields closest to the 

homesteads. Cattle provide draught power for conventional tillage and for 

ferrying fertility inputs to the fields.  

 

3.2.2 Characterisation of experimental sites 

 

Soils were collected from experimental positions after nine years of continuous 

sole maize (Z. mays L.) cultivation, based on soil fertility gradients and treatments 

described by Rusinamhodzi et al. (2013). Two farms in the medium wealth 

category were selected on fields with contrasting soil types: one on Arenosol 

(sandy soil) and another on red clay soil which is a Luvisol (clayey soil). Each field 

represented typical homefields (<50 m from homestead) and outfields (100–500 

m from homestead) as described by Zingore et al. (2007). Mean SOC 

concentrations given by Zingore et al. (2007) for homefields and outfields on 

sandy soil were 5 and 3 g C kg-1 whereas homefields and outfields on clayey soils 

had 14 and 7 g C kg-1 respectively. The TON concentrations in homefields and 

outfields were 0.4, 0.3 g kg-1 and 0.9, 0.5 g kg-1 on Arenosols (sandy soil) and 
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Luvisols (clayey soil) respectively. The C:N ratios were 13, 10 and 16, 14 

respectively. Biomass yields generally increased with time in treatments under N 

fertiliser and Manure (Table 3.1). Residue retention was minimal and less than 0.5 

Mg ha-1 due to competing uses and the free range grazing in the off season 

period.  

Experimental design in each soil type was a split plot design within 

randomised complete block. This paper reports the results of three treatments in 

each soil type and field position selected on basis of applicability to smallholder 

farmers: 1) unfertilised control (control), 2) Nitrogen Fertiliser (N Fert ) = 100 kg N 

ha-1 split applied as ammonium nitrate in equal amounts at about 3 and 6 weeks 

after plant emergence and 3) Cattle manure ( 0.9% N) + ammonium nitrate (100 

kg N ha-1) (N Fert + manure) where cattle manure was applied at 5 Mg ha-1 

(equivalent of 10 kg P ha-1), prior to each cropping season.  

 

Table 3.1: Mean maize grain yields for the period 2003-2011  

Soil type position Treatment % change in 

grain yield 

Increase/decrease in 

grain yield (Mg ha-1) 

Clayey Homefield Control -60 -1.5 

Clayey Homefield N Fert -12 -0.6 

Clayey Homefield N Fert+ manure 12 0.7 

Clayey Outfield Control -12 -0.1 

Clayey Outfield N Fert 56 1.5 

Clayey Outfield N Fert+ manure 2 0.1 

Sandy Homefield Control -34 -0.5 

Sandy Homefield N Fert -20 -0.5 

Sandy Homefield N Fert+ manure 4 0.3 

Sandy Outfield Control -34 -0.1 

Sandy Outfield N Fert 24 0.2 

Sandy Outfield N Fert+ manure 66 1.1 

Source: Rusinamhodzi et al 2011. 
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3.2.3 Soil sampling and analysis 

 

Four representative soil samples were collected from each soil type and field 

position (i.e. homefields and outfields) at four incremental depths up to 50 cm. 

Samples were composited for each depth and replication, air dried and passed 

through a 2-mm sieve before analysis of C and total N concentrations by dry 

combustion in a EA1108 CHN Elemental analyser (Fisons Instruments). Additional 

samples were taken from all four depths using a metal ring (volume 100 g m3) for 

bulk density measurement and results were expressed on oven-dry-basis. Bulk 

density was expressed as the ratio of dry weight of soil core and volume of metal 

core. Total SOC stock for each of the four depths (0–10, 10– 20, 20–30 and 30-50 

cm) was computed separately for each treatment, field position and depth using 

equation [1]. 

 SOC stock (Mg ha-1) = SOC concentration (%) * BD * Depth (cm)            [1] 

Where BD is bulk density (g/cm3). 

The SOC and TON in amended treatments was used to estimate the sequestration 

rate for each treatment relative to the unfertilised control. 

 

3.2.4 Soil density fractionation 

 

Sodium polytungstate (SPT) (3Na2WO4.9WO3.xH2O) was used to separate soil 

organic matter by density into three fractions, (fLF, oLF and MaHF) following the 

method described by Roscoe et al.(2000). A brief description of the method is 

given in Mujuru et al., (2013) . Briefly, ten (10g) of air dried soil <2 mm were 

dispersed in sodium polytungstate solution (1.60 g cm-3), centrifuged at 4500 

rpm, filtered and dried at 40 °C and weighed. Material left in the supernatant was 

considered to be fLF (mostly partially decomposed plant residues), whereas that 

in the sediment was a mixture of oLF and MaHF (more fully-decomposed residues 

and mineral material). SPT solution with density 1.6 g cm-3 was added to the 

residual soil material and an ultrasonic probe was used to disperse the occluded 

light fraction and centrifuged for 23 minutes, decanted over a Büchner funnel, 

oven dried at 40ºC. The remaining precipitate, the MaHF, needed to be rinsed 
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thoroughly, (i.e. at least 5 times for clayey soils and three times for sandy soils, or 

until conductivity of the filtrate was <50µS cm-1) in order to remove all SPT. Total 

C and N contents of fLF, oLF and MaHF were determined after grinding by dry 

combustion using a CN analyser.  

 

3.2.5 Soil C sequestration potential 

 

The Langmuir equation was used to evaluate the adsorption of fLF onto mineral 

surfaces, where the adsorbed organic matter, i.e. MaHF, is regarded as 

sequestered OM (Yin et al. (2005). We assumed that light fraction (LF) C is 

decomposed and adsorbed onto mineral soil particles as MaHF C over time and 

that soil minerals can randomly adsorb LF C until the MaHF has reached C 

saturation. Therefore, interaction between LFC and soil minerals was regarded as 

adsorption and desorption process which can be described using the Langmuir 

equation. The following linearisation was used to fit the data (Yin & Cai, 2006; 

Bolster & Hornberger, 2007).   

LFC / MaHFC = LFC / MaHFCmax + 1 / (k MaHFC)                                        [2] 

Where MaHFCmax is the maximum adsorption capacity for organic C 

(equilibrium value for soil organic C in the MaHF) and k is the equilibrium 

constant.  

LFC/MaHFC versus LFC yields a linear relationship with slope 1 / (MaHFCmax) and 

intercept 1 / (k MaHFC). Equation [2] was used to determine the relationship 

between light fraction (fLF +oLF) C and its adsorption onto mineral surfaces. The 

goodness of fit was checked through the coefficient of   determination R2 and the 

p value. 

 

3.2.6 Statistical analysis 

 

Data on C and N contents were tested for normality and homogeneity of variance 

using Kolmogorov-Smirnoff and Levene’s test respectively. Effects of N fertiliser 

and cattle manure application on SOC and TON and density separated fractions 

within each depth were analysed using one way ANOVA. Differences were 

considered significant at p≤0.05. Tukey’s HSD test was used to compare the mean 
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differences between fertility treatments and depth for bulk soil and the three 

fractions (fLF, oLF and MaHF) in the two soil types. Linear regression was used to 

evaluate the relationship between light fraction and mineral associated heavy 

fraction carbon. All statistical analysis was performed with SPSS for windows 

version 19 and GENSTAT 15.  

 

3.3 Results 

 

3.3.1 Soil carbon and nitrogen contents 

 

For each soil type, bulk density in homefields was not significantly different from 

bulk density in outfields ranging from 1.1 to 1.4 g cm-3. In addition, bulk densities 

were not statistically different by depth in each field position. SOC and TON stocks 

of the 0-50 cm depth increment were significantly (p=0.000) higher (26.3 Mg C ha-

1 and 1.6 Mg N ha-1 respectively) on clayey soil than sandy soils (12 Mg C ha-1 and 

0.6 Mg N ha-1) and also higher in homefields than outfields (Figure 3.1). 

   
 

 

                                
Figure 3.1: Soil C and N contents (0 – 50 cm) of homefields and outfields of clayey 

and sandy soils. 
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The storage of C and N was significantly affected by fertility amendment 

(Figure 3.2) when compared to the unfertilised control. Mean SOC on clayey 

homefields was significantly higher (p < 0.015) than outfields and followed the 

order: control (19.8±1.46 Mg ha-1) < N Fert (28.8±1.58 Mg ha-1) < N Fert + manure 

(31.9±1.42 Mg ha-1), while on sandy soil it was control (8.2±1.42 Mg ha-1)< N Fert + 

manure (14.1±1.41 Mg ha-1) ≈ N Fert (13.8±1.34 Mg ha-1). Outfields followed 

similar trends for control, N Fert and N Fert + manure having 16.1, 24.6, 32.1 Mg C 

ha-1 and 3.4, 9.5, 7.7 Mg C ha-1 on clayey and sandy soils respectively. Therefore, 

application of N Fert and N Fert + manure increased C stocks on clayey soils by 

1.0, 1.3 Mg C ha-1yr-1 and 0.9, 1.8 Mg C ha-1yr-1 in homefields and outfields 

respectively when compared to the control. On sandy soils, C stocks increased by 

0.65, 0.62 Mg ha-1yr-1 and 0.68, 0.48 Mg ha-1yr-1 in homefields and outfields 

respectively relative to control.  
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Figure 3.2: Effects of nitrogen fertiliser (N Fert) and nitrogen fertiliser plus cattle 
manure (N Fert + manure) application on SOC and TON stocks in homefields and 
outfields of clayey and sandy soils. Different letters show significant differences in 
each soil type and field position at p = 0.05. Error bars show ±1 standard error of 
the mean.   
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TON followed similar trends to those of SOC in all treatments except N 

Fert + manure in homefields. The nitrogen stocks on clay soils were also higher in 

homefields (1.7 Mg N ha-1) than outfields (1.5 Mg N ha-1) being significantly higher 

(p=0.000) under N Fert + manure (2.1 Mg ha-1) than control (1.1 Mg ha-1) whilst on 

sandy soil, nitrogen stocks were also greater in homefields (0.73 Mg N ha-1) than 

outfields (0.37 Mg N ha-1) and significantly higher (p= 0.000) in fertility treatments 

than control.           

At all sampling depths, fertility amendments enhanced SOC and TON 

stocks better than the unfertilised control irrespective of field position (Figures 

3.3 and 3.4). Application of N fertiliser plus cattle manure significantly increased 

the SOC stocks in soil compared to application of N Fert alone at all depths on 

clayey soils. On sandy soil, application of N Fert resulted in greater SOC than N 

Fert + manure and control at all depths except the 10−20 cm depth on homefields 

and 20−30 cm depth on outfields (Figure 3.3). 

            

Clayey Homefield Clayey Outfield 

Sandy Homefield Sandy Outfield 

                    
Figure 3.3. Depth distribution of SOC stocks under different fertility treatments on 
clayey and sandy soils. N Fert = nitrogen fertiliser, N Fert + manure = nitrogen 
fertiliser plus cattle manure. 
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Application of N Fert and N Fert + manure resulted in significantly higher 

(p=0.012) accumulation of SOC (33.3 and 36.4 Mg ha-1 respectively) than the 

control (17.1 Mg C ha-1) at 0-10 cm  and TON followed similar trends being higher 

under N Fert (2.1 Mg ha-1) and N Fert + manure (2.3 Mg ha-1) than control (1.1 Mg 

N ha-1) (Figure 3.4). At 0-10 cm, application of N Fert + manure increased SOC by 

15% while N Fert increased SOC by 11% relative to control treatment. Although 

the C and N decreased with increasing depth in all except N Fert in sandy 

homefields, there were no significant differences between the 30−50 cm depths 

of N Fert and control in homefields.  

              

Clayey Homefield 

Sandy Homefield 

Clayey Outfields 

Sandy Outfields 

                                                       
Figure 3.4 Depth distribution of TON stocks under different fertility treatments on 
clayey and sandy soils. N Fert = nitrogen fertiliser, N Fert + manure = nitrogen 
fertiliser plus cattle manure. 
 

In clayey soils, TON was significantly higher under N Fert + manure than 

control in both homefields and outfields except 10-20 cm depth in outfields where 

N Fert and N Fert + manure were similar. On sandy soils, significant differences 

between three treatments were only at 20-30 cm in homefields and 10-20 cm in 

outfields.  
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The C:N ratios were higher in clayey (1:17) than sandy soils (1:15) 

although within each soil type there were no significant differences. The C:N 

ratios of homefields under control, N Fert and N Fert + manure were 17, 17, 15 

and 14, 18, 17 on clayey and sandy soils respectively whereas in outfields the C: N 

ratios were 15,16,18 and 11,16,15 for clayey and sandy soils respectively.  

 
3.3.2 Carbon and nitrogen in density fractions 

 

Similar to total SOC and TON stocks, density fractions also showed significant 

difference between soil types p<0.001), field position (p= 0.007), fertility 

treatments (p<0.001) soil depth (p<0.01), soil type x treatment (p<0.001) and soil 

type x field position x treatment (p<0.001). The C and N stocks in the three density 

fractions were generally in the order oLF< fLF< MaHF (Table 3.2).  

The addition of nitrogen fertiliser and cattle manure had variable 

influence on the three fractions resulting in significant increases of fLF C and 

MaHF C compared to control treatments. On clayey soils, the proportions of SOC 

in fLF, oLF and MaHF were similar under control and N Fert + manure (3%, 2%, 

95%) while the proportions under N Fert were 3%, 1% and 96% respectively. On 

sandy soils, the proportions of fLF, oLF and MaHF were different between control 

(4%, 8%, 88%), N Fert (4%,1%, 95%) and N Fert + manure (5%, 4%, 91%) 

respectively.  

The fLF C and N were 0.78 Mg C ha-1 and 0.04 Mg N ha-1 on clayey soils 
whereas on sandy soils they were 0.41 Mg C ha-1 and 0.02 Mg N ha-1. The oLF 
followed similar trends being 0.32 Mg C ha-1; 0.02 Mg N ha-1 and 0.12 Mg C ha-1; 
0.01 Mg N ha-1 on clayey and sandy soils respectively (Figure 3.5).  

The oLF N was statistically similar in the two soil types. Field position 

showed greater fLF C in homefields than outfields but with no significant effect on 

oLF N. N Fert and N Fert + manure treatments enhanced fLF C in homefields and 

outfields by 19%, 24% and 9%, 22% respectively, when compared with the 

control. In sandy soils, N Fert and N Fert + manure treatments increased C storage 

by 17%, 26% and 26%, 26%, when compared with control on homefields and 

outfields respectively. Thus, on sandy outfields, N Fert and N Fert + manure had 

similar impacts on fLF C storage. N Fert had more oLF C on clayey homefields. On 
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sandy soils, N Fert and N Fert + manure had less oLF C than control in homefields 

whereas in outfields, N Fert enhanced oLF C stocks by 15% and N Fert + manure 

was 8% lower than control.  

 
Table 3.2: Total SOC, TON (Mg ha-1) and C:N ratios for density fractions as affected 
by fertiliser and manure applications on clayey and sandy soil under continuous 
maize cropping.    

  

 

Soils Position                        SOC                                               TON                                              C:N Ratio 

          Treatment fLF  oLF    MaHF  fLF   oLF  MaHF fLF          oLF     MaHF 

Clayey Home Control 0.55 0.14 19.8 0.02 0.007 1.19 28(1) 20(2) 16(2) 
    Field Fertiliser  0.83 0.56 28.8 0.04 0.034 1.66 21(1) 16(2) 17(2) 
  Manure 1.10 0.22 32.0 0.05 0.007 2.00 22(1) 19(2) 15(2) 
 Outfield Control 0.39 0.37 16.1 0.02 0.019 1.02 20(1) 19(2) 15(1) 
  Fertiliser 0.76 0.15 24.6 0.04 0.008 1.46 19(1) 19(2) 16(2) 
  Manure 0.92 0.22 32.1 0.05 0.011 1.73 18(1) 20(2) 18(2) 
  Mean 0.78 0.32 25.6 0.04 0.014 1.51 22 19 17 
            
Sandy Home Control 0.30 0.19 8.2 0.01 0.010 0.57 30(1) 19(2) 13(2) 
 Field Fertiliser  0.55 0.11 14.0 0.02 0.006 0.80 28(1) 18(2) 17(2) 
  Manure 0.69 0.18 12.9 0.04 0.009 0.78 17(1) 20(2) 16(2) 
 Outfield Control 0.14 0.08 3.6 0.01 0.004 0.27 14(1) 20(2) 14(2) 
  Fertiliser 0.38 0.12 9.0 0.02 0.007 0.57 19(1) 17(2) 16(2) 
  Manure 0.39 0.06 7.7 0.04 0.003 0.49 20(1) 20(2) 15(2) 
  Mean 0.41 0.12 9.2 0.02 0.007 0.58 23 20 15 
  MSE 0.17 0.03 4.3 <0.01 <0.01 0.13 16 11      10 

 
 

Different letters show significant difference per soil type and field position at α = 
0.05. fLF = free light fraction, oLF = occluded light fraction, MaHF = mineral 
associated heavy fraction. Fertiliser = N Fert 100 kg ha-1,Manure = 100 kg N ha-1 + 
5 Mg ha-1 cattle manure    0.9  N.  

 
The MaHF dominated the SOM accounting for greater than 98% of the 

total soil mass and 95-97% and 84-95% of SOC on clayey and sandy soils 
respectively. The MaHF N accounted for 95-96% of TON in the two soil types. 
Mineral associated heavy fraction C concentration ranged from 12 to 27 g kg-1 on 
clayey soils and from 4 to 12 g kg-1 on sandy soils. The resulting C stocks in MaHF 
were also significantly different between clayey homefields and outfields (25.7 
and 22.7 Mg ha-1) and sandy homefields and outfields (11.3 and 6.6 Mg C ha-1) 
(Figure 3.6). There were significant differences in MaHF C stocks were significantly 
different between treatments; control, N Fert and N Fert + manure having 17.3, 
25.6, 30.8 Mg C ha-1 and 5.6, 11.2, 10.1 Mg C ha-1 on clayey and sandy soils 
respectively. On clayey soils, the N Fert + manure and N Fert application increased 
MaHF C by 21%, 16% and 6%, 16% in homefields and outfields respectively 
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whereas on sandy soils increases under N Fert + manure and N Fert treatments 
were 16%, 18%, and 19%, 27%, in homefields and outfields respectively. MaHF N 
was 1.11, 1,56, 1.86 Mg N ha-1 and 0.42, 0.69, 0.64 Mg N ha-1 for control, N Fert 
and N Fert + manure treatments on clayey and sandy soils respectively.  
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Figure 3.5: Soil C and N stocks in free light fraction (fLF) and occluded light fraction 
(oLF) under different fertility treatments at four depths layers on clayey and sandy 
soils separated into homefields and outfields. N Fert = nitrogen fertiliser, N Fert + 
manure = nitrogen fertiliser plus cattle manure. Different letters show significant 
differences in each soil type and field position at p = 0.05. 
 

Vertical distribution of C and N in density fractions showed that control 
treatments on clayey soils had the lowest fLF C and N at all depth levels  with the 
oLF N being significantly higher in control (p=0.013) than N Fert + manure at all 
depths except 20-30 cm depth on sandy soil. 
The MaHF C and N decreased with increasing soil depth having higher magnitudes 
on clayey than sandy soils and was strongly related to bulk soil organic C (R2= 
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0.996, p<0.01 and R2= 0.998, p<0.01) for sandy and clayey soils respectively. MaHF 
N had similar relationships (Figure 3.6).  
 

                               
Figure 3.6: Depth distribution of mineral associated heavy fraction (MaHF) C and 

N in homefields and outfields of clayey and sandy soils as affected by fertility 

treatments. N Fert = nitrogen fertiliser, N Fert + manure = nitrogen fertiliser + 

cattle manure. 

The C:N ratios for MaHF were smaller than fLF and oLF ranging from 13-18 

compared to 16-20 for oLF and 14-30 for fLF (Table 3.2). The MaHF C:N ratios 

were significantly higher in clayey than sandy soils (p=0.007). The fLF (p=0.001) 

and oLF (p=0.024) C:N ratios were significant higher in control than N Fert + 

manure treatments. 

 

3.3.3 Soil C sequestration potential 

 

There was a linear relationship between light fraction C and the ratio of LF 

C/MaHF C with all fertility treatments on clayey soils being highly significant 

(p<0.01) i.e. control (R2 = 0.863 and 0.903), N Fert (R2= 0.725 and 0.780) and N 

Fert + manure (R2 = 0.731 and 0.615) in homefields and outfields respectively) 

(Table 3.3).  
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Table 3.3: Regression equations for fertility treatments in homefields and 
outfields on clayey soils and associated theoretical maximum adsorption capacity 
of mineral associated heavy fraction (MaHF).  

 

Field Position Treatment Regression equation df R2 SE Theoratical maximum 
adsorption capacity (Mg ha

-1
) 

Homefield Control LFC/MaHFC = 0.0583LFC + 0.005 9 0.863* 0.005 17.15 

 N Fert LFC/MaHFC = 0.0227LFC + 0.01934 6 0.725* 0.002 44.05 

 N Fert + manure LFC/MaHFC = 0.0237LFC + 0.0115 11 0.731* 0.01 42.19 

Outfield Control LFC/MaHFC = 0.0622LFC - 0.0046 10 0.903* 0.004 16.08 

 N Fert LFC/MaHFC = 0.0502LFC - 0.0038 10 0.780* 0.004 19.92 

 N Fert + manure LFC/MaHFC = 0.0221LFC + 0.0138 11 0.615* 0.01 45.25 

 
 

LFC = light fraction carbon, N Fert = nitrogen fertiliser, N Fert + manure = nitrogen 
fertiliser +, N Fert = nitrogen fertiliser, N Fert + manure = nitrogen fertiliser + 
cattle manure. *Significant at p= 0.05, SE = Mean Standard Error. 

 
On sandy soils, the three treatments had weak R2 values (R2 < 0.30) and 

were excluded from further analysis using regression. Thus, LFC data failed to fit 

an appropriate linear or non-linear regression model as was shown by the low R2 

values despite sandy soils having significant gains in C and N under N Fert and N 

Fert + manure treatment when compared with the control. 

The regression equations were used to estimate the equilibrium level and 

results showed that the control treatments had lowest equilibrium values (Table 

3.3; Figure 3.7). The slopes of the regression equations were steepest under 

control (5.8% and 6.2%) on homefields and outfields respectively. The equilibrium 

levels for MaHF C in homefields under control (17.15 Mg ha-1), N Fert (44.05 Mg 

ha-1) and N Fert + manure (42.19 Mg ha-1) treatments were higher than current 

stocks in Figure 3.1. In outfields only the control treatment had current stocks 

lower than the equilibrium value of 16.08 Mg ha-1. 

 



Effects of fertilisation on organic C and N storage 

 

 

73 

 

 

                                
 (a) 

(b) 

Control 

 

N Fert 

N Fert + manure 

 

Contro

l 

 

N Fert 

N Fert + manure 

 

 
Figure 3.7: The relationship between light fraction C and mineral associated heavy 
fraction (MaHF) C in (a) homefields and (b) outfields under control, nitrogen 
fertiliser (N Fert) and nitrogen fertiliser plus manure (N Fert + manure) treatments 
on clayey soils. Unfertilised control =▲, nitrogen fertiliser (NF)= ●, nitrogen 
fertiliser plus cattle manure (N Fert + manure) = ♦ 

 

3.4 Discussion 

 

3.4.1  Carbon and nitrogen in bulk soil 

 

The higher C and N stocks in clayey soils (Figure 3.1) confirm the importance of 

texture in SOC dynamics. Clay soils have greater capacity to protect organic 

matter from decomposition as the finer texture may result in presence of  

occluded and adsorbed stable humus. Management activities however, could also 

be an important factor influencing the capacity of a soil to store SOC. In this study, 

C stocks in N Fert + manure were not significantly affected by distance from 

homestead on clayey homefields (Figure 3.2).  

Homefields had higher organic C and N than outfields supporting the 

findings of Zingore et al. (2007) and shows that the fertility gradients have been 

maintained over the nine year period. Nitrogen followed similar trends except for 

N Fert treatment on homefields. Benefits of inorganic and organic fertiliser 

amendments are supported by Matsumoto et al. (2008) and Gregorich and Janzen 
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(1996). Nitrogen fertiliser is known to enhance growth of crop roots and shoots 

and promotes C inputs into the soil although it can also negatively affect local 

micro-environment thus controlling decomposition thereby causing no effect on C 

accumulation (Campbell et al., 1997). Bremer et al. (1994) and Eghball and Ginting 

(2003) found the application of manure and compost to have significant C 

sequestration effects while chemical fertilisers had no effect.  

Application of N fertiliser alone had less effect on SOC and TON storage 

than a combination of N fertiliser and cattle manure on clayey soil whereas on 

sandy soils a similar observation was made only at 0−10 cm depth (Figures 3.3 and 

3.4). Thus, increase of SOC contents under N Fert and the N Fert + manure in both 

clayey and sandy soils relative to the control treatments could be attributed to 9 

years of continuous addition of C via manure, root biomass and residues 

associated with higher crop yields (Liu et al., 2005; Banger et al., 2009; de Rouw et 

al.; Ding et al., 2012) in both homefields and outfields. Return of crop residues to 

fields is threatened by competing uses as some farmers collect and store the crop 

residues for livestock feed over the dry season. If left in the field, existing policies 

allow free range livestock grazing over the dry period, threatening the persistence 

of residues in the fields. Therefore, if the crop residues are grazed in-situ, input of 

organic matter is most likely a result of varying amounts of root biomass, 

remnants of crop residues and the organic manure. These directly add C substrate 

and nutrients to the soil (since manure contains significant amounts of C as a 

major constituent). Therefore, variations in C and N stocks are likely a result of 

different C inputs from biomass leftovers (Purakayastha et al., 2007). 

Rusinamhodzi et al., (2011) reported increased crop yields under fertility 

treatments and decreased crop yields in the control treatments over the nine year 

period. The 0.9% difference in N content between N Fert and N Fert + manure 

treatments resulted in no significant gain in maize grain yields in homefields.  

The lack of significant differences between N Fert and N Fert + Manure on 

sandy soil could be a result of enhanced decomposition under N Fert + manure 

and low C inputs under N Fert. The organic component of manure can easily be 

mineralised on sandy soils unlike on clayey soils where it can be complexed with 

clay mineral surfaces. On clayey soils, N Fert + manure treatment had more SOC 
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and TON than N Fert alone thus agreeing with Wu et al. (2004) who worked on 

Chinese soils and found organic additions more effective in C accumulation than 

inorganic fertiliser alone. Stroosnijder and Hoogmoed (2004), while working in 

Burkina Faso, found an increase of 1.8 g C kg-1 soil after 10 years of annual 

application of 10 Mg ha-1 of manure and they concluded that a combination of 

either hand hoeing or conventional tillage with manure can increase SOC and crop 

yields.  

Differences in C and N accumulation under each treatment could also be 

influenced by initial C and N stocks. The magnitude of differences among 

treatments was greater at 0-10 cm and 10−20 cm than lower depths (Figures 3.3 

and 3.4). Similarly, Brar et al. (2013) reported a greater build-up of SOC and TON 

with fertilisation. In support of the results on clayey soils, their studies also found 

a combination of manure and inorganic fertiliser having significant cumulative 

benefits of both increased C stocks and crop yield (Berzsenyi et al., 2000; Hao et 

al., 2002) than inorganic fertiliser alone at 0−15 cm (Liu et al., 2005). In this study, 

beneficial effects of organic and inorganic amendments were possibly not fully 

maximised in surface layers on sandy soil as a result of a possibility of leaching of 

nutrients to lower layers resulting in significantly higher accumulation of C and N 

at 30-50 cm depths under the N Fert treatment (Figures 3.3 and 3.4). This is 

because sandy soils are low in clay and silt and have reduced capacity to protect 

SOC. Sandy soils are also prone to leaching losses of both C and N resulting in 

accumulation at lower depths facilitated by faster infiltration rates. In clayey soils, 

macro and micro aggregation protects SOC from degradation through binding 

with clay and silt size particles (Six et al 2002).   

Addition of manure and other organic fertilisers improves nutrient 

efficiency and enhances biomass yields (Nyamangara et al., 2003). Inorganic 

fertilisers may also cause accelerated decomposition of SOM on clayey soils when 

compared with organic inputs resulting in less C accumulation. Soil conditions in 

the study area are prejudiced by reduced cover and continuous surface 

disturbance during the dry period. In most cases, the unfenced smallholder farms 

are subjected to depletion of above ground crop residues consumed by free 

ranging livestock during the dry season. Some farmers, however, store the crop 
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residues for personal livestock feed over the dry period or they use the residues 

as bedding material in livestock pens. 

 In most parts of southern Africa, smallholder farmers use conventional 

tillage with small patches of land dedicated to conservation tillage practices 

despite the poor soil fertility (Nyamapfene, 1991). In most cases, large amounts of 

chemical and/or organic fertiliser are required to improve crop productivity. Given 

these conditions, N Fert and N Fert + manure treatments had limited impact on 

C:N ratios within each soil types as shown by the small variations in C:N ratios. 

 

3.4.2 Carbon and nitrogen in density fractions 

 

The largest amounts of light fraction were found under N Fert + manure 

treatment reflecting the presence of inherent labile materials. The proportion of 

fLF and oLF in the soils was 1−2% of initial soil mass which is similar to the 

proportions obtained by Swanston et al. (2005) although it was less than that 

obtained from elsewhere. For example, Yin et al. (2005) worked on three soil 

types in China and found the light fraction accounting for 1−27% of bulk soil 

organic matter and Tan et al. (2007) found a range between 5% and 12% while 

working on tillage experiments in the USA.  

The addition of manure plus nitrogen fertiliser and addition of nitrogen 

fertiliser alone showed greater partitioning of fLF C in homefields than outfields. 

Fertility treatments had less effect on oLF C and N (Table 3.2). This could be an 

indication of the importance of land use history with fLF reflecting changes caused 

by land management e.g. effect of fertility gradients which decrease with 

increasing distance from homestead (Zingore et al., 2007). In this case, the 

analysis of SOC fractions were used to show the influence of land use activities on 

organic matter quality because the fractions have different stabilities and 

turnover rates and are extracted from different positions in the soil matrix 

(Golchin et al., 1994b). The fLF is the most dynamic and sensitive to fraction 

known to be easily influenced by management practices (Janzen et al., 1992) and 

can be affected by quality and quantity of materials added to the soil (i.e. 

inorganic or organic inputs). The amount of fLF in each treatment might also be 
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attributed to the quantities of crop root biomass which is proportional quantity of 

better yields (Banger et al., 2010). Similar to this study, Bremer et al.(1994) found 

more light fraction under inorganic fertiliser plots than the other treatments, 

while Mirsky et al. (2008) found the fLF unaffected by fertility treatments. The 

oLF, which consists of processed organic material and partially degraded plant 

materials associated with mineral particles and aggregates (Golchin et al., 1994b) 

was however, less in manure than control. N Fert + manure had greater beneficial 

effects on SOC in fLF and to a greater extent MaHF whereas it did not enhance the 

oLF indicating that aggregation was not affected. 

Across the four sampling depths, significant differences were observed 

mostly between N Fert + manure and control treatments showing the importance 

of the organic component of manure in contributing to labile fraction. The 

addition of manure and inorganic fertiliser was observed to affect distribution of 

fLF in surface layers decreasing with increasing soil depth, depending on tillage 

practice (Rudrappa et al., 2006; Brar et al., 2013). The N Fert and N Fert + manure 

treatments significantly increased C and N in fLF in the top 20 cm as compared to 

the lower 20-30 and 30-50 cm depths. This could be attributed to the fact that 

organic amendments induce rapid and conspicuous alterations to the function 

and structure of soil microbial communities thus affecting soil organic matter 

fractions. The form and application rate of manure and associated C content have 

been reported to influence the comparative reaction of soil microorganisms (Paul 

& Beauchamp, 1996). In support of these results, Banger et al. (2010) found 

higher LFC in surface than the lower layers under inorganic fertiliser and organic 

fertiliser application. Smallholder farms assessed in this study had less or no 

residue input strategies leaving root biomass as the main source of LF organic 

matter. The remnant residue left after grazing by livestock and root biomass had 

different impacts fLF deposition on clayey and sandy soils with the sandy soils 

accumulating more fLF than clayey soils.  

The fLF C may be used as an indicator of change in C accumulation 

following application of manure and inorganic fertiliser on both clayey and sandy 

soils. This more available labile C pool (i.e. fLF) increases microbial activity, 

subsequently increasing aggregation, and SOC stabilisation through occlusion 

mainly in clayey soils. In addition, increased microbial turnover also enhances 
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production of dissolved organic carbon (DOC) which in turn increases stabilisation 

of SOC by adsorption. Furthermore, the quality of the incoming above and below 

ground plant residues and organic amendments determine the quality and 

degradability of organic matter by soil microorganisms  (Gregorich & Ellert, 1993). 

Although the LF was considerably smaller than the heavy fraction (Figures 3.5 and 

3.6), it plays an important role in soil biological processes as an energy source for  

the soil microorganisms (Gong et al., 2009). 

The MaHF was the most abundant density fraction on both clayey and 

sandy soils and is considered a more stable C pool with a long turnover time (>100 

years) (von Lützow et al., 2008)  and high amounts of protected C. The proportion 

of MaHF C to total SOC was 96% and 92% for clayey and sandy soils while N was 

96−97%. The results suggest that on clayey soils, addition of N Fert + manure was 

possibly more effective in stabilising C and N in the MaHF (Figure 3.6), when 

compared to N Fert alone. The interaction between SOC and mineral surfaces can 

result in increased protection of SOC from microbial degradation, and clay 

particles can encapsulate particles or patches of the SOM. Furthermore, the 

presence of clay particles in soil provides greater surface area onto which organic 

material can be adsorbed (Baldock & Skjemstad, 2000).The results suggest that 

some of the manure added annually to the soil becomes stabilised in the soil to 

form the MaHF C and N. On the other hand, N Fert can stimulate microbial activity 

and enhance C turnover resulting in increased adsorption of decomposition 

products onto mineral surfaces mainly on clayey soil. 

The increase in recalcitrant C after addition of a combination of N Fert + 

manure is normally attributed to higher lignin content of the manure when 

compared with nitrogen fertiliser alone and some of the lignin is assumed to enter 

directly into the slow pool (Parton et al., 1987). However, a study by Hofmann et 

al. (2009) showed that lignin may not be an important factor in SOM 

decomposition. Therefore, the significant increase of C and N in MaHF and 

associated fractions after manure addition suggests the importance of manure in 

stabilisation of SOC and N agricultural soils. The potential may not have been fully 

exploited since the soils studied are subjected to conventional tillage known to 

cause increased mineralisation of labile LFC without significant effect on MaHF.  
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Larger C:N ratios of the light fraction (Table 3.2) can be attributed to 

decreased net N mineralisation and N immobilisation to meet metabolic demands 

for microbial decomposers (Swanston et al., 2004). In another study Mujuru et al. 

(2013) analysed C:N ratios in density fractions from similar soils under different 

tillage systems and found higher C:N ratios in fLF (17−32) than those in this study.  

 

3.4.3 Soil C sequestration potential 

 

Sandy soils showed no statistically significant linear dependence of the 

LFC/MaHFC  ratio and LFC although there were positive linear relationships 

between SOC or TON and associated MaHF. Yin et al. (2005) also found that 

Chinese fluvo-aquic and reddish paddy soils had no linear relationship between LF 

and the LF/MaHF ratio. The relationship of LFC and LFC/MaHF C ratio on clayey 

soils (Table 3.3) showed that application of both N Fert + manure and N Fert alone 

on homefields enabled greater LFC and MaHFC over time and can be maximised 

when the management practices remain unaltered.  

Potential for more C storage can be realised when C stocks are below 

equilibrium. In outfields, only the control had reached equilibrium whereas the 

rest had potential to store more C. The differences in slopes caused corresponding 

effects on the equilibrium levels in each field position and treatment. The slope 

was greatest under control showing a greater amplitude in the loss of LF over the 

nine year period and the intercept was also highest under control showing that 

the amount of C mineralisation may be greater than the other treatments and 

field positions. The lowest intercept was in inorganic fertiliser of outfields. Similar 

regression was used to determine equilibrium levels of organic matter in heavy 

fraction (Yin et al., 2005; Yin & Cai, 2006) under organic and inorganic fertiliser 

application in Chinese soils. Their results showed that C stocks under organic 

fertilisers were below equilibrium levels while inorganic fertilisers were above 

equilibrium levels.  

Results showed that in homefields, the equilibrium values under N Fert + 

manure and N Fert were similar but 2.5 times more than in the control. This could 

be attributed to better management in homefields than outfields and control 

treatments. In outfields however, the equilibrium value of control treatments was 
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lowest whilst in current stocks in homefields under control treatments were 3 Mg 

ha-1 lower than equilibrium levels. Outfields have inherent infertility (Zingore et 

al., 2007) and the nitrogen fertiliser inputs could be utilised by crops leaving the 

soil with insufficient organic inputs. Yin and Cai (2006) found matching equilibrium 

levels under organic and inorganic fertilisers while working on soils from a long 

term experiment in paddy soils of China whereas in fluvo-aquic soils, organic 

fertilisers had twice as much heavy fraction as in inorganic fertilisers.  

The long term balance between addition and loss of organic matter under 

control could result in a balance between the crop uptake and inputs from 

residues and crop roots. In this case, land use history and management become 

important in attainment of equilibrium levels of a soil. The adsorption of organic 

matter onto mineral surfaces mostly depends on the amount of organic matter 

input and its quality (Rasmussen et al., 1980). Control treatments and outfields 

reflect a long term balance between C inputs and outputs and show that the soils 

have approached a new lower steady state. When MaHF reaches equilibrium 

levels, it can no longer increase whereas the LF can increase with more inputs 

striving to attain a new equilibrium level (Yin & Cai, 2006). The mineral associated 

heavy fraction C can increase over time in soils that are below equilibrium level 

provided the same land use management practice is maintained or improved. 

Results suggest a potential C and N sink on clayey soils as indicated by the 

differences between actual and estimated equilibrium levels.  

Although cattle manure has greater potential to enhance soil fertility and 

soil C storage, smallholder farmers do not have large herd of livestock to supply 

adequate manure to their fields. Only a few can afford to apply manure annually 

to some of their fields while the majority use inorganic fertilisers (which are also 

beyond the reach of many) (Rusinamhodzi et al., 2013). This suggest a need for 

promotion of cheaper alternatives and assistance for inorganic fertiliser inputs for 

small holder farmers to enhance soil C sequestration. Alternatives such as use of 

compost, legume crops, reduced tillage and improved fallows should be some of 

the extension options for promoting soil C sequestration. Currently, residue 

retention is a challenge for small holder farmers to maintain residues in situ 

because of unfavourable policies which allow free range grazing during the dry 
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season (6-8 months). There is therefore need for strategic management of crop 

residues so that farmers can make decisions of whether to keep their residues or 

to use them for other alternative uses. The use of abundant grass biomass to 

improve quantity of SOM in agro ecosystems  can be more beneficial and reduces 

emissions from wildfires.  

 

3.5 Conclusions 

 

The results have shown that C and N stocks can be enhanced in home fields and 

outfields on clayey and sandy soils using N Fert and a combination of cattle 

manure + nitrogen fertiliser respectively. The higher amounts of C and N in N Fert 

and N Fert + manure treatments than control shows the importance of application 

of soil fertility amendments for the maintenance or improvement of C and N 

stocks in agricultural systems. Carbon and nitrogen in 0-10 cm depth increased 

considerably under N Fert and N Fert + manure treatments compared to the 

control and supported the hypothesis that SOC and TON decreased with 

increasing soil depth. Despite being under conventional tillage, fertility 

amendments mitigated the decrease of total SOC and TON in both homefields and 

outfields but at different magnitudes. 

Nitrogen fertiliser alone or in combination with cattle manure 

consequently increased the accumulation of C and N in fLF, oLF, MaHF after nine 

years of continuous cropping except that manure treatment had limited capacity 

to increase oLF C and N. The distribution of C and N in the three fractions was 

greater in homefields than outfields with greater stabilisation of SOC under N Fert 

+ manure treatment on clayey soils whereas N Fert had greatest impacts on sandy 

soils.  

On clayey soil, estimation of the equilibrium level enabled us to assess the 

relationship between SOC fractions and determine the potential of fertilisation to 

sequester additional C in clayey soils. Assessment of the maximum SOC protective 

capacity suggested a potential for additional SOC storage in the clayey homefields 

and outfields under N Fert and N Fert + manure treatments. In outfields, the 

combination of manure and nitrogen fertiliser showed highest potential to 

sequester more C in MaHF. Sustaining SOC levels in these soils can be challenged 
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by the low crop yields which give rise to low biomass residues coupled with a long 

annual dry and fallow season.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Soil organic carbon and nitrogen storage in a 

Pinus patula chronosequence 

 

 

83 

 

CHAPTER 4 

 
Soil carbon and nitrogen sequestration over an 

age sequence of Pinus patula plantations in 

Zimbabwean Eastern Highlands  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Published as : L. Mujuru, T. Gotora, E.J. Velthorst , J. Nyamangara and M.R. 

Hoosbeek . 2014. Forest Ecology and Management. 313: 254-265.  

http://dx.doi.org/10.1016/j.foreco.2013.11.024 



Chapter 4 

 

                                                      84 

 

 

Soil carbon and nitrogen sequestration over an age 

sequence of Pinus patula plantations in Zimbabwean 

eastern highlands  

 
 

ABSTRACT 

Forests play a major role in regulating the rate of increase of global atmospheric 

carbon dioxide (CO2) concentrations creating a need to investigate the ability of 

exotic plantations to sequester atmospheric CO2. This study examined pine 

plantations located in the eastern highlands of Zimbabwe relative to carbon (C) 

and nitrogen (N) storage along an age series. Samples of stand characteristics, 

forest floor (L, F and H layers) and 0 −10, 10−30 and 30−60 cm soil depths were 

randomly taken from replicated stands in Pinus patula Schiede & Deppe stand 

ages of 1, 10, 20, 25, and 30 years plus two natural forests. Sodium polytungstate 

(density 1.6 g cm-3) was used to isolate organic matter into free light fraction (fLF), 

occluded light fraction (oLF) and mineral associated heavy fraction (MaHF). In 

both natural and planted forests, above ground tree biomass was the major 

ecosystem C pool followed by forest floor’s humus (H) layer. In addition, the 

mineral soil pool had 45%, 31% and 24% of SOC stored at the 0–10, 10–30 and 

30–60 cm soil depths respectively. Stand age caused significant differences in 

total organic C and N stocks. Carbon and N declined initially soon after 

establishment but recovered rapidly at 10 years, after which it declined following 

silvicultural operations (thinning and pruning) and recovered again by 25 years. 

Soil C and N stocks were highest in moist forest (18.3 kg of C m-2 and 0.66 kg of N 

m-2) and lowest in the miombo (8.5 kg of C m-2 and 0.22 kg of N m-2). Average soil 

C among the Pinus stands was 11.4 kg m-2 of C m-2, being highest at 10 years (13.7 

kg of C m-2) and lowest at 1 year (9.9 kg of C m-2). Some inputs of charcoal through 

bioturbation over the 25 year period contributed to stabilisation of soil organic 

carbon (SOC) and its depth distribution compared to the one year old stands. 

Nitrogen was highest at 10 years (0.85 kg of N m-2) and least at 30 years (0.22 kg 
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of N m-2 ). Carbon and N in density fractions showed the 20 year old stand having 

similar proportions of fLF and oLF while the rest had significantly higher fLF than 

oLF. The contribution of fLF C, oLF C and MaHF C to SOC was 8–13%, 1–7% and 

90–91% respectively. Carbon and N in all fractions decreased with depth. The 

mineral associated C was significantly affected by stand age whilst the fLF and oLF 

were not. Conversion of depleted miombo woodlands to pine plantations yield 

better C gains in the short and long run whilst moist forests (MF) provide both 

carbon and biodiversity. Our results highlight the importance of considering 

forestry age based C pools in estimating C sink potential over a rotation and the 

possibility of considering conservation of existing natural forests as part of future 

REDD + projects.  

 

Key words: carbon, Soil organic matter fractions, Forest floor, C:N ratios, Pinus 

spp., Plantation forestry. 

 

 

4.1 Introduction 

 

Changes in soil organic matter (SOM) can result in significant contributions to 

emissions or uptake of greenhouse gases from forests and other land use systems. 

Forests govern C transfers directly through photosynthesis and respiration and 

indirectly by influencing the structure and size of plant-leaf development 

(Eliasson, 2007; Van Minnen, 2008). They represent an important C pool (Brown, 

2002) that favour sequestration of C due to their increased woody biomass, 

extensive roots, and abundant litter (Sharrow & Ismail, 2004). The extensive 

rooting system of forest species influence soil microbial biomass thus control the 

cycle of C between the atmosphere and the soil (Brown, 2002). In general, tropical 

forests contain less C in soils than their biomass C, storing about 60% C 

aboveground and 40% belowground (Dixon et al., 1994). However, especially in 

these forests, roots go deeper and thus, root turnover may add to C sequestration 

in deeper horizons due to slow C turnover (Jobbagy & Jackson, 2000).  
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The accumulation of soil C and N varies within different soil horizons and 

depths. Some forest sub-soils hold about 45% of total SOC bound to the clay 

particles to form microaggregates. This complexion of SOC in the forest sub soils is 

essential for long-term stabilisation (von Lützow et al., 2006). The extent of this 

stabilisation is determined by organo-mineral interactions, micropores, type and 

nature of clay surfaces, and C location within the microaggregates.  

Next to climate and soil type, the sequestration of C depends on forest 

species and management (Lal, 2003; Lamlom & Savidge, 2003) having a 

compromise between ecosystem C storage capacity and timber extraction. Long-

term differences in SOC storage among three tree species have been studied by 

Seely et al. (2002) who concluded that all tree species are important C pools 

although they have different C storage capacities. Vesterdal et al. (2002) 

compared soils under Norway spruce (Picea abies L) and oak (Quercus robur L.) 

and showed them to sequester 0.9 kg m−2 of C and 0.2 kg m−2 of C respectively 

after 29 years and the SOC being mostly concentrated in the upper soil horizons. 

In Hawaii, Kaye et al. (2000) reported storage of C by 17-year old Eucalyptus and 

Albizia lebbeck trees and reported that Albizia had 2 kg m-2 more soil C and 0.23 

kg m-2 more soil N. The greatest potential for above ground biomass C storage in 

coniferous plantations (e.g. pines) is found in tree biomass (Peichl & Arain, 2006) 

with additional amounts from forest floor and mineral soil C (Taylor et al., 2007; 

Noh et al., 2010). Net rate of C uptake is greatest when forests are young, and 

slows with time. Old forests continue to sequester C at a decreased rate with 

decreased rate of respiration (Marris, 2008). When forests are cut, C is returned 

quickly to the atmosphere if the woody tissue is burned or converted to products 

that are short-lived (Ecological Society of America, 2000). Depending on 

harvesting practices, most of soil C remains in the soil and become part of the C 

stock of growing forest or a subsequent cycle in a plantation system. In addition to 

type of tree species, stand age is also critical in determining the amount of C in an 

ecosystem influencing the quality and quantity of C inputs released into an 

ecosystem (Matos et al., 2010; Penne et al., 2010). Some studies have shown that 

conversion of native forests to conifers can cause up to 15% losses of SOC 

depending on period following conversion while others estimated up to 20% SOC 

reductions over periods below 40 years (Guo & Gifford, 2002).  
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The general impacts of plantation forests have been outlined by region 

(Nilsson & Schopfhauser, 1995) and the IPCC (2003) suggested that the real C 

stock estimates might be much lower than indicated as some of the C has not 

been accounted for. Some studies have indicated relative increases in surface soil 

C stocks in plantations (Schwertmann et al., 1986) while other studies found 

limited capacity for soil C accumulation (Richter et al., 1999; Liao et al., 2012). In 

this study we will not only look at quantities of C but also at its stability. Next to 

quantity, type and degree of stabilization is also important for the assessment of C 

sequestration.  

Most studies on soil C and N dynamics over stand age are mainly from other 

regions either from experimental stations reflecting site specific conditions e.g. 

(Covington, 1981; Rita et al., 2011) or model estimations on a local or regional 

scale e.g. (Peltoniemi et al., 2004). Forest systems of Zimbabwe include rainforest, 

indigenous woodlands, plantations and bushland/grasslands covering 0.1, 65.9, 

0.4% and 1.5% of the land area respectively. Plantation forests consist of Pinus 

spp.(68%), Eucalyptus (20%) Acacia mearnsii (11%) and Poplar spp.(1%) (Forestry 

Commission Zimbabwe 1996). The relatively extensive woodland cover makes 

Zimbabwean forests a potential C sink, but the sink is threatened by agricultural 

expansion and demand for wood.  

The characterisation of C in the above ground biomass of forests is well 

advanced, but the below ground C dynamics is poorly understood causing a need 

for correlating the below ground biomass to the above ground biomass to predict 

C storage in forest soils (Brown, 2002). Determination of the flux of global C cycle 

needs substantial research which can link patterns and long term effects of C and 

N accumulation in the soil relative to forest age. The role of forests in the global C 

cycle has therefore initiated great interest in exploring the capacity of forest 

ecosystems to increase C uptake by means of afforestation and sustainable forest 

management through initiatives such as reduced emissions form forest 

degradation and deforestation (REDD+). There are few studies quantifying the 

potential for soil C accumulation and stabilisation under natural and exotic 

plantations in Zimbabwe and this creates a need for studies on the soil C sink 

potential of forest plantations. Reliable knowledge of the C and N dynamics in 



Chapter 4 

 

                                                      88 

 

forest soils is therefore fundamental to understanding sustainable forest 

management practices and their role in climate change mitigation 

In this study we measured forest floor and soil C and N pools induced by 

plantation forestry at different stages during a rotation cycle. Our aim was to 

describe the distribution, accumulation and stability of forest floor and soil C and 

N pools and their temporal shifts over time. We hypothesise that 1) forest floor 

and soil C and N pools under plantation forestry are lower than natural forest, 2) 

more C and N is stored in the forest floor and soil pools with increasing stand age 

within a cycle and 3) soil C stabilisation increases with stand age.  

 

4.2 Study site and methodology 

 

The study was carried out within the Nyanga Pine Division of Wattle Company P/L 

in Eastern Zimbabwe at Mutarazi Estate situated at S19 01.032 E32 35.810, lying 

at the extreme South of the Nyanga District (Figure 4.1). The altitude ranges 

between 1 020 m and 1 920 m above sea level. The terrain is characterised by 

relatively moderate slopes, and forms part of the Eastern escarpment of the 

Nyanga mountain range. It is drained mainly by the perennial Mutarazi river. The 

total plantation area is 3,806, 990 ha of which 2,548 ha was re-planted as at 

September 2010 (WATCO., 2010).  

Mutarazi Estate falls into Natural Region (NR) I of the Zimbabwe agro 

ecological classification system (WATCO., 2010) with annual rainfall estimated at 

around 1500 mm and the seasonality follows the same general pattern as the rest 

of the country (bulk of rainfall being confined to the months of November to 

March). Small amounts of winter precipitation in the form of mist, fog and rainfall 

do occur on areas of high elevation. Average maximum temperature is 28˚C with a 

minimum of 0˚C. Lowest temperatures occur between May and August while the 

highest are from October to February. Relative humidity varies between mean 

58% in September to a mean of 86% in January/ February. The prevailing wind is 

easterly blowing dominantly during the months of November to May. 

The soils are orthoferrallitic within the Kaolinitic order (Zimbabwean 

classification) which corresponds to Rhodic ferralsols in FAO classification (FAO, 

2006). The soils are characterised by good depth, permeability and structural 
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stability exhibiting a high degree of resistance to erosion. They have extremely 

poor chemical characteristics, with particularly high levels of acidity and low 

weathering rates (WATCO., 2010).  

A wide variety of broadleaf, large tree species occur in natural forests 

including Macaranga mellifera, Ilex mitis, Schrebera alata, Rapanea 

melanophloeos, Olea capensis and Schefflera umbellifera. The understorey of 

these forests is usually dominated by extensive banks of ferns comprising mainly 

of Asplenium and Cyathea spp. Widespread stands of Psychotria zombamontana 

also occur. Forest fringes are dense dominated by species including Hypericum 

 

 
Figure 4.1: Map of Zimbabwe showing the location of Nyanga pine’s Mutarazi 

forest. 

 

revolutum, Pteridium, Rubus and Smilax anceps. These forests are usually 

protected from invasions by commercial pine species and from fires by wide fire 

guards (20−50 m) and inside fire traces. Individual compartment records showed 
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that natural forests were cleared for establishment of pine plantations in all 

stands considered for the study (WATCO., 2010). 

Mutarazi estate is made up of 14 blocks with a total of 206 compartments 

of pine trees at different stand ages in rotation. Total land under Pinus species is 2 

548 ha covering about 70% of total land area. The average age of the whole estate 

as at September 2010 was 10.9 years. The Pinus species planted in the estate 

include P. elliottii (Slash Pine), P. taeda (Loblolly Pine), P. patula (Patula Pine), and 

P. tecunumanii (Tecun Uman Pine). P. patula, Schiede & Deppe is the most 

dominant comprising more than 95% of the planted area. The compartments are 

established with 1 100 stems per ha (s.p.h.a), thinning twice at 4 years to 650 

s.p.h.a and at 12 years to 400 s.p.h.a before clear felling at 25 years. Cleaning or 

weeding is carried out twice in the first year, and one slash weeding in the second 

year (WATCO., 2010). Before the establishment of pines, native forests were 

cleared and burnt before marking and pitting for initial planting.  

 

4.2.1 Experimental design and data collection 

 

Plots were selected to represent pine age classes of 1, 10, 20, 25, and 30 years. 

Also, a moist broad leaf forest and a miombo woodland were included in the 

study to represent soils prior to clearing for pine plantation. The miombo 

woodland is frequently accessed by neighbouring communities whereas the moist 

forest is less accessible. Among the pine stands, two stands were selected from 

different management blocks and in each stand, three sampling plots (0.04 ha 

each) were randomly selected. All pine stands were in their first rotation except 

the 1 year old which is now entering a second rotation. At each sampling plot, 

geo-location and altitude were recorded using a Garmin GPS device. Slope was 

recorded using a clinometer. Aspect, undergrowth species and ground cover were 

observed and noted. At each sampling point tree measurements, forest floor and 

soil samples were collected as described below.  

At each plot centre, forest floor was sampled from inside a metal ring of 

30 cm diameter. The forest floor was stratified into three layers: (1) litter layer (L) 

− consisting of fresh and recently fallen, non-decomposed material. The material 

is identifiable by the naked eye as plant residues. This layer usually contains less 
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than 10% fine organic matter, (2) fragmented layer (F) − organic material is 

fragmented and partly decomposed with plant residues being macroscopically 

recognizable and (3) the humus layer (H) − consists of decomposed organic 

matter, originating from litter fall from decades ago and root turnover. The 

materials are decomposed and their origins are no longer distinct from each other 

with more than 70% being fine organic matter (Currie, 1999; Schulp et al., 2008; 

Keith et al., 2010).  

Next, pits were dug to a depth of 60 cm. At each depth increment, i.e. 0 – 

10, 10 – 30 and 30 – 60 cm, a composited 300 – 400 g bulk sample was taken by 

sampling the four sides of the pit. In addition, bulk density (BD) samples were 

taken using a 100 cm3 metal ring sampler at each depth increment centre. All soil 

samples were put into labelled air tight plastic bags and stored in a cool dry place. 

A total of 108 bulk soil samples and 108 bulk density samples were collected (5 

pine stand ages × 2 stands each × 3 pits × 3 depths plus 2 natural forests x 3 pits 

each x 3 depths). At each sampling point, a 1 m2 × 1 m2 area was cleared to trap 

litter to assess annual litter fall in each age class. 

Diameter at breast height (DBH, at 1.3 m) and tree height were recorded 

for every tree within a radius of 11.28 m. Tree height was measured for every 

third tree using a Suunto hypsometer. Stand stem volume (V) for pine stands was 

calculated from stand basal area (BA=π D2/4) and mean tree height (H) using the 

standard biometric equation: 

V= BA x H x f               [1] 

The equation includes a standard stem form factor ( f) of 0.4 (Cannell, 

1984). Basic wood density was obtained from Muneri and Balodis (1998) and a 

biomass expansion factor of 1.3 (FAO, 1997) were used to convert stem wood 

volume to biomass.  

For the natural forests, generalised allometric equations intended for all 

species types in broad forest types and ecological zones were used to determine 

the forest C stocks using equations 2 (Brown et al., 1989) and equation 3 

(Malimbwi et al., 1994) and an average of the two was used.  

34.47 - 8.067DBH + 0.659DBH2                    [2] 

Exp 2.516 ln (DBH) – 2.642              [3] 
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The equations use DBH to explain variation in aboveground forest C 

stocks. Based on this we assumed that we will be able to generate reliable 

estimates of C stocks based on trees with DBH ≥5 cm in the natural forests 

without using species-specific allometric equations. The mean of two equations 

was taken as the biomass of each forest. Carbon stocks were calculated using a 

factor of 0.5 to obtain C stocks (as 50% of biomass is C).  

 

4.2.2 Laboratory analysis 

 

The field moisture content was determined gravimetrically by drying each bulk 

density sample in an oven at 105˚C for 48 hours. Samples were weighed before 

and after drying and percentage field moisture and the BD grams (g) of dry 

soil/100 cm3 (volume of ring) were calculated. Soil pH was measured with a pH 

meter (Orion 701A) in a 1 M KCl solution suspension for each stand age and soil 

depth. 

The bulk soil samples (BS) were passed through a 2.00 mm Retsch sieve 

after which > 2.00 mm particles were discarded. These particles included roots, 

large charcoal and rock material in most cases. A sample of 10 g of the dry soil 

sieved to 2.00 mm (BS) was put into a moisture free hard graphite container with 

a metal ball inside. The container was put on a Retsch mill and span at 85 rpm for 

5 minutes. The resultant ground soil was sealed in a glass container. A 15−20 mg 

subsample of the ground soil was weighed into a tarred 5 x 5 mm Aluminium foil, 

sealed and analysed for total C and N by dry combustion in a EA1108 CHN 

Elemental analyser (Fisons Instruments). The total C in forest floor and SOM were 

used to obtain total organic carbon (TOC, kg m−2 of C) for each age class thus 

quantifying the relative contribution of each forest or plantation age. Forest floor 

C stocks were calculated by multiplying C concentration with sample mass and 

dividing this by the area of the sample. Soil organic C stocks were calculated by 

multiplying C concentration with bulk density and thickness of the soil layer with a 

correction for stone content following equations 4 and 5: 

 

Carbon stock = d × BD × SOC × CFst             [4] 
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         where : Carbon stock (kg/m2), d = depth of horizon (m), BD = bulk 

density (kg/m3) of the soil layer. SOC = SOC concentration expressed as weight 

based percentage and CFst = correction factor for stone and gravel content:                                                                                                              

CFst = 1 – (%stone +%gravel) /100              [5] 

 

4.2.3 Soil organic matter fractions and characterisation 

 

Soil Organic Matter fractions were obtained from bulk soil following the method 

by Golchin et al, (1994b) but as described by Roscoe et al. (2000) with three states 

of physical protection for soil organic C: free light (fLF) (non-protected and 

extractable without sonication), occluded (oLF) (extractable by sonication) and 

protected (MaHF) (remained in the residue after sonication). Sodium 

Polytungstate (SPT) solution with a density of 1.6 g cm-3 was used to separate the 

fractions at 4 500 rpm in a Mistral 6000 centrifuge. Ultrasonic energy at 90%, 30 

W output for 5 minutes from a Vibracell (Sonic Materials) was applied to the 

sample after removing the first fraction, to separate the occluded fraction from 

the mineralised fraction. The free and occluded fractions were extracted by 

vacuum filtration, filtering through a Whatman 0.5µm glass fibre filter, using a 

vacuum filtering unit, decanted into a tarred beaker, washed with distilled water 

to remove excess SPT and dried at 40˚C. The mineralised fraction was obtained by 

totalling the dry weights of the first two fractions and subtracting from 10.0 g 

which was the original weight of the soil sample. The obtained fractions were 

prepared and analysed for total C and N by dry combustion. 

 

 4.2.4 Statistical and Data Analysis 

 

Data was analysed after testing for normality (Kolmogorov−Smirnov test) and 

homogeneity of variance (Levene’s test). One way analyses of variance (ANOVA) 

in SPSS v.18 (SPSS Inc., Chicago, Illinois, USA) was used to assess the effects of age 

and depth on the forest floor (C and N) soil pH, bulk density, whole soil C and N 

contents, soil organic C and N storage in density fractions and the associated C:N 

ratios. A separate analysis was done to assess differences between older pine age 
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classes (25 and 30 years) and natural forests. Tukey’s HSD tests were used to test 

significant effects at p ≤ 0.05.  

 

4.3 Results 

 

4.3.1 Forest floor C and N distribution 

 

The L, F and H layers of the forest floor were distinct in all natural and plantation 

forests except the 1 year old plantation stands which had no L layer but had 

abundant ground cover dominated by pioneer species. Mean thickness of the 

three forest floor layers (L, F, H) for 1, 10, 20, 25 and 30 years were 0.0, 3.0, 3.5 

cm; 1.3, 2.5, 3.7cm; 1.3, 1.9, 2.9 cm; 2.2,3.0,1.8 cm and 1.7, 5.2, 3, 2 cm 

respectively. In the MW each layer was 0.5 cm whereas in the MF thickness of L, F 

and H layers was 0.5, 1.0 and 1.0 cm respectively (Figure 4.2).  

Among the pine stands, total forest floor C was lowest in the 1 year old and 

highest in the 30 year old. All pine stands had significantly higher total forest floor 

C and N than natural forests except the 1 year old which had total N stocks 

statistically similar to MF (Figure 4.3). The amount of C and N in the forest floor 

was highest at 30 years (5.4 kg of C m-2 and 0.22 kg of N m-2). Miombo woodlands 

had significantly low (p < 0.01) C and N stocks in all three forest floor layers with 

1.1 kg m-2 of C and 0.05 kg m-2 of N while the moist forest had 2.2 kg of C m-2 and 

0.12 kg N m-2. Despite the absence of the L layer in the one year old stand, there 

were no significant differences in cumulative forest floor C and N with the 10 and 

20 year old stands.  

Among the Pinus stands the C in the L layer of forest floor increased under 

respectively the 10, 20 and 25 year old stands and at 30 years it was lower than at 

25 years. Nitrogen followed similar trends with a decrease after 25 years. The 

increase between 10 and 25 years old stands was supported by increasing mean 

annual litter fall of 0.304, 0.741 and 0.932 kg m-2 dry mass for 10, 20 and 25 years 

respectively (Table 4.1). The mean annual litter fall of the 30 year stands was 

slightly higher with 0.989 kg m-2. The annual C additions to the L layer were 

therefore , 0.15, 0.37, 0.47 and 0.49 g C m-2 yr-1 for the 10, 20 25 and 30 year old 
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stands with significant differences (p < 0.001) between successive years before 

age 25. 

 

 
Figure 4.2: Depth of forest floor litter (cm) as a function of stand age and  

forest type. 

 

Carbon and N content of the F layer decreased significantly (p=0.024) from 

1 year to 10 years and the increased significantly in subsequent years from 10 to 

20 years (p= 0.008) and from 20 to 30 years (p = 0.022) of stand age. The L and F 

layer C and N were significantly higher (p < 0.01) in pine stand ages of 20, 25 and 

30 years than natural forest. The 25 and 30 year old stands had significantly 

higher (p<0.01) C in the F layer than the natural forests.  

The H layer, C and N contents were significantly higher (p = 0.010) under 

the 10 year old stands (2.4 kg m-2 of C and 0.11 kg m-2 of N) than the 1, 20 and 25 

year old stands pine stands. The C in H layer of the 10 year old and MF was 

significantly higher (p<0.01) than in the F layer. The C:N ratios of the plantation 
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stands and the MF showed similar trends with C:N ratio decreasing from L to F to 

H whereas, in MW the H layer C:N ratio was higher than the F layer (Table 4.2).  
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Figure 4.3: The partitioning of a) organic carbon and b) organic nitrogen in 

forest floor of    plantations (1, 10, 25, 30 years), miombo woodlands (MW) 

and moist forests (MF). Different letters show significant differences in each 

stand and forest floor layers at p ≤ 0.05. 
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Table 4.1: Mean stand characteristics of Pinus patula stands of different ages and 
natural forests.  

Stand Characteristics 1 year 10 years 20 years 25 years 30 years Miombo 

woodland 

Moist 

forest 

Elevation (m) 1864 1895 1808 1875 1897 1512 1871 

Site Index 20 26 26 24 26 na na 

Stocking (SPH) 1100 (0) 650 (0) 395 (2) 397(2) 398(1) 308 (15) 712 (21) 

Mean dbh (cm) nd 23.1(0.2) 32.1(0.6) 36.7(0.5) 38.1(0.1) 9.2(2.5) 29.6(5.1) 

Mean Ht (m) 0.74(0.1) 18.3(0.2) 22.6(1.0) 29.4(0.5) 29.9(0.9) 6.3 (2.2) 14.9(4.2) 

BA (m
2 

ha
-1

) 0.45(0.30) 27.2(0.5) 32.4(1.2) 42.1(1.1) 45.4(0.4) 8.2(3.3) 70.93(5.1) 

Volume (m
3
 ha

-1
) 0.13(0.07) 199.3(4.9) 292.8(18.3) 494.1(19.2) 543.3(19.1) nd nd 

 litter fall (kg m
-2

yr
-1

) nd 0.304 0.741 0.932 0.989 nd nd 

Biomass C (Mgha
-1

) 0.02(0.01) 23.0(0.6)
ab 

33.8(2.1)
b 

57.1(2.2)
c 

62.8(2.2)
c 

10.7(3.0)
a 

103.1(11.6)
d 

 
 

nd = not determined, SPH =Stems per hectare, BA = basal area, Ht = height, dbh = diameter at 

breast height (1.3 m above ground) 

 

 
nd = not determined, SPH =Stems per hectare, BA = basal area, Ht = height,  

dbh = diameter at breast height (1.3 m above ground) 

 

Table 4.2: C:N ratios of three forest floor litter layers in pine stand ages and 
natural forests (MW and MF) (stand mean ± S.D).    

        Stand 
Litter layer 

1 10 20 25 30 MW MF 

L - 26(2)
ab 

29(4)
bc 

26(1)
ab 

31(2)
c 

23(2)
a 

26(1)
ab 

F 31(3)
a 

23(1)
bc 

25(2)
c 

26(2)
c 

24(2)
c 

21(4)
b 

20(1)
b 

H 26(4)
a 

22(3)
b 

20(3)
b 

21(1)
b 

23(3)
ab 

23(1)
ab 

16(1)
c 

Overall mean 28(4)
a 

26(4)
ab 

24(5)
b 

24(3)
b 

26(4)
ab 

20(4)
c 

20(3)
c 

 
 

    Means followed by different superscripts in a row represent significant 
difference at p< 0.05. Tukey’s HSD.  

 

4.3.2 Forest stand and soil characteristics  

 

Generally moist forests had significantly higher moisture content than the rest 

followed by the 1 year old pine stand (Table 4.1). Bulk density in MF was 

significantly higher than the 25 year old stand but significantly lower than all 

stands except the 10 year old. Among the pines, the 25 year old stand had 

significantly lower bulk density than all. Depth had no significant effect on soil pH 

(Table 4.3) and therefore only mean pH is recorded (Table 4.1) and it ranged from 
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4.2 to 5.1 with the MF having significantly higher (p < 0.01) pH than all stands. The 

25 year old stands had significantly lower pH than MW, 1, 10, 20 and 30 year old 

stands and MF. 

 

Table 4. 3: Results of the ANOVA on effects of forest stand age and soil depth on 
soil pH, soil organic carbon and nitrogen in bulk soil and density fraction.   

Characteristic            Age       Depth   Age * Depth R2 

F value P value   F value P value F value P value 

Soil pH 25.70 <0.001 0.393 <0.676 0.627 0.814 0.654 
SOC (kg m-2) 22.22 <0.001 271.57 <0.001 22.98 <0.001 0.945 
TON (kg m-2) 7.22 <0.001 34.16 <0.001 7.17 <0.001 0.862 
fLF C (Mg ha-1) 7.37 <0.001 17.63 <0.001 0.71 0.680 0.484 
fLF N (Mg ha-1) 9.39 <0.001 15.93 <0.001 1.02 0.429 0.508 
oLF C (Mg ha-1) 6.04 <0.001 6.55 0.002 1.35 0.232 0.391 
oLF N (Mg ha-1) 5.42 0.001 6.60 0.002 1.27 0.270 0.375 
MaHF C (Mg ha-1) 18.15 <0.001 191.47 <0.001 21.33 <0.001 0.942 
MaHF N (Mg ha-1) 5.32 0.008 24.32 <0.001 6.92 <0.001 0.855 
C:N whole soil 5.14 0.001 19.76 <0.001 4.36 <0.001 0.559 
C:N fLF 5.64 0.001 0.625 0.538 0.92 0.504 0.294 
C:N oLF 5.59 0.001 0.557 0.575 0.32 0.957 0.258 
C:N MaHF 4.56 0.002 20.19 0.001 4.45 <0.001 0.658 

SOC= soil organic carbon, TON =total organic nitrogen,  fLF= free light fraction, oLF=occluded light 
fraction, MaHF=mineral associated heavy fraction 

 
SOC= soil organic carbon, TON =total organic nitrogen,  fLF= free light fraction, 
oLF=occluded light fraction, MaHF=mineral associated heavy fraction 
 

Mean diameter at breast height (dbh), height, basal area and stand volume 

increased with increased stand age having a higher rate of increase from 1 to 10 

and 20 years but increased at a decreasing rate from 25 years to 30 years (Table 

4.1). Biomass C was 0.02, 23.0, 33.8, 57.1 and 62.6 Mg C ha-1 for the 1, 10, 20, 25 

and 30 year old stands respectively. In MW and MF the biomass C stocks were 11 

and 103 Mg ha-1 respectively. 

The cumulative total C and N stocks of 0 – 60 cm depth were largest under 

moist forest (18.3 kg C m-2) and lowest in MW (8.5 kg C m-2) (Table 4.4). Among 

the plantation stands, highest stocks were found under 10-year old stands (13.7 

kg C m-2) and lowest in the one year old stands (9.9 kg C m-2). Among the pines 

there was an increase in C and N from 1 to 10 years followed by a decrease at 20 

years after which there was an increase at a decreasing rate (see Table 4.4).  The 

concentration of C and N was significantly different (p < 0.01) (Table 4.3) between 

the three soil layers with highest C percentages in the 0−10 cm depth except for 
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the MW. At the 0 – 10 cm depth increment, soil C and N concentration were 

lowest under MW and highest under MF (Figure 4.4). Soil C concentration 

decreased for each stand age and natural forest with increasing soil depth from a 

mean of 36.9 (± 0.5) g C kg-1 at 0−10 cm to about 19.4 g kg-1 (± 0.5) at 30−60 cm 

depth although there were deviations in the one year old stands. Nitrogen 

followed similar trends from 2.1 g C kg-1 (± 0.1) at 0−10 cm to 1.3 g C kg-1 (±0.1) at 

30−60 cm.  

 
Table 4.4: depth distribution of  bulk SOC  and TON in Pinus patula stands of 
different ages and natural forests.       

Soils  
Characteristics 

1 year 10 years 20 years 25 years 30 years Miombo 
woodland 

Moist forest 

Moisture (%) 12.5(0.3)a 9.1(0.1)b 9.7(0.1)b 11.1(0.1)ab 9.2(0.0)b 9.2(0.4)b 18.0(0.1)c 

BD (g cm-3) 1.68 (0.02) a 1.54 (0.01)ab 1.69 (0.01)a 1.43 (0.02)b 1.64(0.01)a 1.93 (0.04) c 1.45 (0.01) b 

Mean pH 4.5(0.6)a 4.7(0.1)b 4.6(0.0)ab 4.2(0.1)ab 4.5(0.1)a 4.6 (0.1)b 5.1(0.1)c 

Bulk soil C (kg m-2)        

0-10 cm 4.0(1.9) 7.2(1.9) 4.3(1.8) 6.6(1.9) 4.6(1.9) 2.2(0.3) 8.4(0.3) 

10-30 cm 3.5(1.9) 4.0(1.6) 3.2(0.18) 2.5(1.9) 3.8(1.9) 3.4(0.2) 5.8(0.2) 

30-60 cm 2.4(1.9) 2.5(0.19) 2.6(0.19) 3.0(1.9) 2.8(1.9) 2.9(0.3) 4.1(0.3) 

Total ( 0-60 cm) 9.9(2.0)a 13.7(1.2)b 10.1(0.1)ab 12.1(1.1)b 11.2(2.1)ab 8.5(0.2)a 18.3(1.2) c 

Bulk soil N (kg  m-2)        

0-10 cm  0.20(0.02) 0.36(0.02 0.28(0.02 0.35(0.02 0.31(0.02 0.13 (0.03) 0.53(0.02) 

10-30 cm 0.30(0.02 0.32(0.02 0.21(0.02 0.14(0.02 0.23(0.02 0.20 (0.03) 0.33(0.03) 

30-60 cm 0.18(0.02 0.21(0.02 0.17(0.02 0.18(0.02 0.21(0.02 0.17 (0.03) 0.20(0.03) 

Total (0-60 cm) 0.66(0.01)b 0.85(0.01)b 0.66(0.01)a 0.67(0.01)a 0.22(0.01)ab 0.22(0.02) a 0.25(0.02)) ab 

C:N Ratio 15(2)
 

16(1)
 

15(2)
 

19(3)
 

17(2)
 

13(3)
b 

24(4)
c
 

Different superscripts show significant difference at p < 0.05. Tukey’s HSD test.  Figures in 
parenthesis show standard error of the mean  

 

 
 Different superscripts show significant difference at p < 0.05. Tukey’s HSD test.  
Figures in parenthesis show standard error of the mean. 
 

The C:N ratios for whole soil increased with stand age from 10 years to 25 

years and decreased again at 30 years. Depth distribution of mineral soil C:N 

ratios decreased with increasing depth in all pine stands with increasing age to a 

maximum at 25 years after which it decreased at 30 years as a result of decreased 

C and increased N content (data not shown). Natural forests (MW and MF) 

showed no trend with depth having highest C:N ratios in MF at 10−30 cm.  
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4.4: Soil organic  (a) Carbon and (b) Nitrogen concentration up to a depth of 60 cm 
in pine stands (1, 10, 20, 25 and 30 years) and natural forests (MW and MF). 
Different letters show significant differences for each depth at p ≤ 0.05. Error bars 
show standard error of the mean. 
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4.3.3 Carbon and nitrogen in density fractions 

 

The distribution of fLF C and N was significantly higher than oLF in all stands. 

Among the pines the fLF and oLF were highest at 10 years and 20 years 

respectively (Figure 4.5 a and b). Carbon and N contents of soil fractions were in 

the order MaHF > fLF > oLF in all forest types and ages at the three depths levels. 

The fLF C contributed between 8% and 13% to total organic C whilst the oLF C 

contributed the least (1 − 7%) and MaHF C the most (90 −91%) to total SOC. The 

amount of fLF and oLF C and N decreased with increasing soil depth. Nitrogen 

followed similar trends. 

The C:N ratios of SOM fractions showed a difference between the light 

fractions and the mineral associated fraction. There was a general decrease in C:N 

ratios in each age class and natural forest in the order; fLF>oLF>MaHF (Figure 4.6). 

The 25 year old stands had highest C:N ratios while the 30 year old showed; MaHF 

<fLF< oLF. Significant differences in oLF and MaHF C:N ratios were mostly 

between natural forests and older pine stands. 

The amount of fLF and oLF C and N decreased with increasing soil depth. 

The 10 year old fLF C was significantly higher than the 20 and 25 year old and the 

MW. Free light fraction N was significantly lower in the 20 year old stand than all 

except MW. Vertically there was no significant difference in fLF C although there 

was a decrease with increasing depth in all stands. The fLF N at 0─10 cm was 

significantly higher than the lower layers (P<0.01) (Figure 4.7).  

The oLF C in the 25 year old stands was significantly lower than all stands. 

Natural forests (MW and MF) had significantly higher C than the 25 year old. 

Vertically, the oLF C at 30−60 cm was significantly lower than the 0─10 cm and 

10─30 cm depths. The oLF N at 10─30 was significantly lower than the 0─10 cm 

depth (p = 0.042).  

Among the pine stands MaHF C was significantly different between 

successive years being significantly lower than MF (p< 0.02) except the 10 year old 

stands. The 25 year old stand was not significantly different from the 20 and the 

30 year old stands. The MaHF C content of MW and MF was significantly different  
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Figure 4.5:Distribution of soil organic (a) Carbon and (b) nitrogen in free light 

fraction (fLF) and occluded light fraction( oLF) in pine stands and natural forests.  

 

 

           
Figure 4.6: C:N ratios of three density fractions (free light fraction (fLF), occluded 

light fraction (oLF) and mineral associated heavy fraction (MaHF)) in pine stands 

and natural forests. 
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from the pine stands being significantly lower in MW and higher in MF. Significant 

differences by depth were shown between all depths with the 0−10 cm layer 

being significantly higher than the 10−30 cm and 30−60 cm depths (p < 0.02). The 

C and N in MaHF decreased with increasing depth except MW. 
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Figure 4.7: Depth distribution of carbon and nitrogen in density fractions in pine 

stands of 1, 10, 20, 25 and 30 years and natural forests (MW and MF). fLF = free 

light fraction; oLF = occluded light fraction and MaHF = mineral associated heavy 

fraction.  

 

Correlations between forest floor C and C in density fractions showed a 

stronger relationship (67%) between forest floor and MaHF followed by fLF (60%). 

There was also a positive correlation between fLF and MaHF C (64%). The oLF had 

weak relationships with the other two fractions and with forest floor fractions. 
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4.4 Discussion 

 

4.4.1 Forest floor C and N 

 

The thickness of forest floor layers in the 30 year old stand was significantly higher 

than all stands (Figure 4.2). The thickness of the forest floor layers did not have 

corresponding effects on the amounts of C in pines. The MW had lowest forest 

floor thickness and soil C and N stocks. The importance of forest type and 

management in determining C and N stocks in forest ecosystems was 

demonstrated by the differences in C and N in L, F and H forest floor layers in pine 

stands and natural forests. These differences in C and N stocks may in turn have 

an impact on mechanisms of nutrient cycling (Kim et al., 2010). In this ecosystem, 

fire was used as part of management tool to prepare the 1-year old sites and this 

had an effect on the amounts of litter thus impacting forest floor pools as 

demonstrated by the lack of the L layer in the 1- year old stands (Figure 4. 3). 

Czimczik et.al. (2003) also attributed low forest floor litter dry masses to effects of 

fire while working in Scots pine forests. At year one, there was no L layer but the F 

and H layers were similar and higher than the 10 and 20 –year olds. By the age of 

10, there was an increase in H layer and a decrease in F with additions onto the L 

layer. There is possibility that some of the F material was transformed into H 

while some of the H material might have been incorporated into mineral soil by 

the age of 10 years and beyond.  

The period shortly after establishing a new rotation by planting seedlings, 

shows higher decomposition than accumulation of organic material on forest 

floor. As the young trees grow older, a higher amount of biomass is accumulated 

leading to higher litter-fall. By the age of 10, there was more H layer C and N from 

the decomposition of accumulated organic matter that survived the fires during 

land preparation coupled with the accumulation from decaying pioneer species. 

The net C input in the initial years is not only from litter fall, but also from residue 

decomposition after conversion and also decay of pioneer species including grass 

species which dominate the forest floor before canopy closure. The relationship 

between age and C conforms to the Covington’s curve only for the L layer where 

the layer starts to develop with time up to a maximum level. Covington (1981) 
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also found a general decrease in forest floor organic matter in the first 15 years 

after harvesting of Northern hardwoods. In a rotation, litter-fall becomes 

important for nutrient cycling in the forest-soil, being the largest inflow of C and 

nutrients to the forest floor (Starr et al., 2005). After year 10 there was a 

reduction in H with increases in F and L layers. 

At 20 years L, F and H were not significantly different while at 25 more L 

had accumulated on the forest floor and part of F and H incorporated into the soil. 

There was a reduction of H layer and an increase in F and L layers. More 

mineralisation and increased breakdown of L to F constituents continued up to 

the age of 30 years with reduced quantities of fresh litter. This cycle substantiates 

the importance of the current 25 year rotation age of pines where thickness of 

the forest floor layers and subsequently the C they contain are associated with an 

increase in stand age in pine tree forests (Dames et al., 1998; Bens et al., 2006; 

Matos et al., 2010; Penne et al., 2010; Shrestha & Chen, 2010). Pinus plantations 

are known to culminate in volume and biomass production at the age of 25 years 

which is much earlier than natural forests (Augustin et al., 2007). Although total C 

in forest floor increased between the 10 and 30 year old stands, our results 

suggests that forest floor C increased at a decreasing rate beyond the age of 25 

years. The results agree with the findings of Li et al. (2011) who found no further 

increase beyond the age of 35 years while working in Korean pine stands.  

There was a decrease in C:N ratios in all except MW from the L to F to H 

layers (Table 4.2), suggesting an increase in humification with depth. Although C:N 

ratios in forest floor and soil generally remain stable (Yang & Luo, 2011), there 

were significant differences between overall C:N ratios of the one year old stand 

and the 20 and 25 year old stands (Table 4.2). The C:N ratios of forest floor F and 

H layers were lower under MF than the other stands indicating a better quality of 

F and H materials. 

Fine root decomposition can also add C to these layers (Hoosbeek et al., 

2011). The influence of fine roots and charcoal on C:N ratios is also reported by 

Golchin et al.(1994b). Burning causes short term increases in soil available N 

which results in a stimulation of growth of pioneer species in the one year old 
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stands. In addition, fire reduces quality of the substrate resulting in larger C:N 

ratio in one year old stands.  

 

4.4.2 Forest stand and soil characteristics 

 

Among the pines, the 1 year old stands had more moisture despite having less 

shade. The thick accumulation of F and H forest floor material after the process of 

burning for land preparation provides ground cover thus reducing soil and water 

loss (van Bodegom et al., 2008). In addition, one year old trees take up less water 

than trees of 10 or more years of age. Higher soil moisture content and 

temperature during the early years of the rotation accelerated litter 

decomposition and increased the transformation of F into H litter which was 

manifested in the 10 year old stands. This may also have caused an increase of 

dissolved organic carbon (DOC) production and leaching of the DOC into mineral 

soil, thus subsequently adding more C into the soil.  

There were significant differences in pH among pine ages which followed 

no trend and between MF and all the other stands (Table 4.1). The pH was 

significantly lower in pine stands than MF thus supporting the idea of pines 

acidifying soils (Parfitt & Ross, 2011; Kundhlande et al., 2012). Liao et al. (2012) 

however, found no significant differences in pH of natural and planted forests 

while working on other coniferous species.  

The bulk density in plantation stands was lower than MW but significantly 

higher than MF being significantly different between the one year old and the 25 

year old stand (Table 4.1). There was no trend in bulk density with age although 

Liao et al. (2012) found significant bulk density increases in plantation stands with 

age. In this study, storage of C remained high in MF despite the low bulk density 

and was also lowest in MW despite having the highest bulk density. We therefore 

attribute C storage in the different stands with differences in C concentration 

(Figure 4.4).  

Total aboveground tree C increased from 1 to 25 years after which it 

increased at a decreasing rate, demonstrating a rapid increase from the 1 year to 

the 10 year old stand, and from the 10 to the 25year old stand (Table 4.1). Carbon 

storage estimated for the MW in this study (10.7 Mg ha-1) is higher than biomass C 



Soil organic carbon and nitrogen storage in a 

Pinus patula chronosequence 

 

 

107 

 

stocks of coastal miombos in Tanzania (Malimbwi et al., 1994) but lower than 

miombo woodlands in Mozambique (21.2 Mg ha-1) and Tanzania (23.3 Mg ha-1) 

(Shirima et al., 2011). The estimated storage of C in MF (103 Mg ha-1) is lower than 

estimates from tropical rainforests of Africa (202 Mg C ha -1) (Lewis et al., 2009).  

The species diverse, natural moist forest which is assumed to be an old and 

more stable ecosystem contained more biomass and soil C and N compared to the 

homogenous 25 and 30 year old pine forests and the MW (Tables 4.1 and 4.4). 

Studies in Mozambique showed 7.6 kg C m-2 in MW soils (Ryan et al., 2011), a 

figure which is lower than the C in the MW in this study area and within the range 

of other MW in Southern Africa (3 – 13.3 kg m-2). The conversion from a moist 

forest to a plantation, can however result in depleted C and N stocks (Hudiburg et 

al., 2009; Gonzalez-Benecke et al., 2010; Wendling et al., 2010; Liao et al., 2012) 

whilst C benefits may be realised when MW is converted to pine plantations 

beyond 25 years. Similar results of differences between broad leaved forests and 

pine plantations were reported by Jandl et al., (2007) and Wendling et al., (2010), 

who showed the former ecosystems to contain more SOC than shallow rooted 

pine plantations. In addition, pine plantations have poorly developed rooting 

systems which make them less efficient at trapping nutrients when compared to 

natural moist forests (van Bodegom et al., 2008). Nevertheless, Brown et al. 

(1986) stated that plantations can sequester more C with time as they develop 

and grow into older age classes and supports the results of this study.  

A rotation has a set of programmed silvicultural operations such as thinning 

(4 years and 14 years) and pruning (3 years and 12 years) and weeding which can 

continually add C inputs into forest floor and soil C pools and this could be the 

reason why the one year old stand was not severely depleted. Although the forest 

was under pines for 25 years, the SOC stocks were not restored to the levels of 

MF though part of the C is stored as root biomass. In addition, the rotation system 

contains charcoal produced during burning for land preparation causing 

redistribution of C and N at depths of 10-30 cm at 10 years and even deeper after 

several years. There were no significant differences between MW and the older 

age classes of Pinus stands of 20, 25 and 30 years at a depth of 30-60 cm. The 

lower biomass C in MW at 0−10 cm and 20−30 cm could be attributed to frequent 
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disturbance as neighbouring communities utilise the woodland for timber and 

non- timber forest products and this results in a higher degradation pressure 

accompanied with lower C storage than their potential (Brown, 1997).  

A diverse undergrowth can produce litter exposed to decomposers 

following establishment of a new rotation and hence the 10 year old stand had 

the highest C and N concentrations at a time when all pioneer species are gone 

which could be attributed to incorporation of F and H material into mineral soil. 

This high accumulation of C could be associated with litter input from the non- 

tree vegetation (Black et al., 2009). In this way the process of succession and 

decomposition of pioneer species enhanced more fine roots and litter in the 

upper soil thereby increasing C concentrations in the early years of establishment 

(Hoosbeek et al., 2011). There was also an increases in C inputs into upper soil 

layers despite the burning for land preparation where fine roots are burnt and 

charcoal is added into the soil. Black et al. (2009) studied Picea sitchensis, Bong. 

Carr. and found highest sequestration rates at 10 years, which subsequently 

declined after canopy closure in older and thinned stands. There could also be 

other factors affecting C and N dynamics including management activities such as 

pruning, thinning and other tending operations. In this study, the C and N were 

lowest soon after establishment but recovered rapidly by the age of 10 years, 

after which it declined possibly as a result of silvicultural operations such as 

thinning and pruning after which was a recovery again by the age of 25 years. This 

shows that plantations can be used efficiently to create C sinks because of the 

rapid growth rates soon after establishment and additions that come as the trees 

develop and grow into older age classes. 

There was a small decrease in soil C:N ratios before 10 years of stand 

development which is similar to the findings of Georgiadis (2011) who was 

working in temperate forests. This was supported by Olsson (1996) who showed 

decreased C:N ratios during the initial 8 to 15 years of stand development. The 

highest C:N ratio was in the 25 year old stands showing a limitation in the rate of 

decomposition which may be affected by the low pH values.  
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4.4.3 Carbon and nitrogen in soil organic matter fractions 

 

There were no outstanding differences in mass distribution of the MaHF among 

stand ages and forest types. Differences were distinct in fLF and oLF showing 

highest proportion of fLF in moist forest whilst oLF was not outstanding but only 

lowest at 25 years (Figure 4.7). The pattern of C and N storage in SOM fractions 

was consistent with bulk soil C. Carbon and N in different forests showed greater 

quantities of fLF C in moist forest due to incorporation of above ground litter into 

the mineral soil by bioturbation. Under pine stands, bioturbation is negligible 

leaving the above ground litter on top of the mineral soil. Carbon and N in fLF 

under pines is mostly the result of root turnover.  

The fLF C showed a decrease with increasing depth (Figure 4.7) in all pine 

stand ages except the 1 year old and natural forests which is in line with the 

observed root distribution. Tropical soils, such as the ones in the study area, are 

reported to contain high fLF C in the top 30 cm of the soil (Trumbore et al., 1996) 

decreasing with depth due to less inputs (litter and fine roots become fewer with 

increase in depth). However, this trend was not evident in the one-year old stand, 

MW and MF. This deviation could be attributed to the influence of fire before land 

preparation and additions through root decomposition in the soil layers after 

subsequent harvesting in pine stands and root decay after land clearing. A 

combination of the effects of preparatory fire, management (harvest removal and 

pruning) and decomposition could result in addition of more free light organic 

matter to deeper soil layers without any pattern.  

Total C and N in soil and in occluded and mineral associated fractions 

generally decreased with increase in depth in all forest types and ages which is 

similar to other studies (Tan et al., 2007; Usuga et al., 2010; Jiménez et al., 2011). 

Age of a forest plays an important role in determining SOC quantities as shown by 

significant differences in SOC fractions. The MaHF is important for containing 

recalcitrant C and thus contributes more to the long term stabilised SOC pool (Tan 

et al., 2007). Increasing stable C with successive rotations were noted by Zhang et 

al. (2009).  
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The C:N ratios among the density fractions were different between the 

light fractions and the mineral associated fractions. A wider variation of C:N ratios 

among density fractions were also shown by Golchin et al. (1994). The observed 

decrease of C:N ratios with increasing SOC stabilisation, except for MW where 

anthropogenic effects may be dominant, is due to increased humification of SOM 

and the accumulation of large N-rich organic molecules originating from microbial 

biomass (Chan et al., 2008). Differences between C:N ratios of fLF, oLF and MaHF 

are probably due to differences in decomposition states where oLF is slightly 

more decomposed whilst MaHF is more advanced (Hassink, 1995). 

 

4.5 Conclusion 

 

We investigated the C storage potential of a Pinus patula age sequence (1, 10, 20, 

25 and 30 years) and two natural forests. Cumulative C and N storage in stem 

biomass, forest floor and soil increased with stand age in pine stands. Although 

we may not have a perfect reference forest, assumption of stable equilibrium 

condition and C storage potential can be assessed using existing forest fragments 

(MF and MW). In this regard the conversion from a moist forest to a plantation 

forest, results in depletion of C and N stocks but conversion of a miombo 

woodland to a pine plantation can be beneficial in the long run. Forest floor C and 

N peaked at 30 years and this may be related to additions from fine root biomass 

and litter fall. Stem biomass increased from 1 to 10 years and from 10 to 25 years 

and increased at a decreasing rate thereafter. As stem biomass and forest floor C 

increased at 30 years, SOC decreased. Pine plantations store significantly more C 

and N in the forest floor than natural forests. Carbon in the forest floor decreased 

from L to F to H while in mineral soil it decreased with increasing soil depth. Tree 

biomass increased with increasing age in this pine age sequence and 

corresponded with increasing forest floor C. Soil organic C and N concentration 

however decreased for each stand age and natural forest with increasing soil 

depth from a mean of 36.9 g of C kg-1 at 0–10 cm to about 19.4 g of C kg-1 at 30–

60 cm depth although there were deviations in the MW. Nitrogen followed similar 

trends from 2.1 g of N kg-1 at 0–10 cm to 1.3 g of N kg-1 at 30–60 cm. 
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In pine plantations soil C storage is maximised at 10 years and declines 

after thinning and gradually increases again towards the rotation age of 25 years. 

Thickness of litter layer did not have corresponding effect on the amounts of C 

stored in forest soils although there was positive correlation between litter layer 

and MaHF and fLF. Total C and N in bulk soil and density fractions generally 

decreased with increase in soil depth for all forest types and ages. 

The contribution of fLF C, oLF C and MaHF C to SOC was 8–13%, 1–7% and 

90–91% respectively. The C:N ratios of SOM fractions decreased as: fLF > oLF > 

MaHF. Plantations can therefore be an efficient means of creating C sinks owing 

to the rapid development rates soon after establishment and additions that come 

as the trees develop and grow into older age classes. Thus, the period of stand 

maturing between the age of 20 and 25 may be considered most important for C 

sequestration due to an increase in both the above and below ground C and N 

storage. If plantation forestry is to benefit from global arrangements such as 

REDD+, mitigation should aim at reducing disturbances such as fire and other 

forms of C emissions. The focus should be on afforestation and enrichment 

planting to increase and maintain the area of forest land coupled with proper 

monitoring and silvicultural practices that increase C sequestration. Maintenance 

of high conservation value moist forests has greatest benefits of both C and 

biodiversity conservation and these should be conserved and if possible be 

considered as part of future REDD+ projects. Additional studies are needed on 

biomass C partitioning. 
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Modelling soil carbon from agriculture and forest 

areas of Zimbabwe 

 

ABSTRACT 

Assessment of the potential for soil organic carbon (C) sequestration based on 

land management, soil type and climate conditions is important for selecting 

agricultural practices that can be used to mitigate greenhouse gas emissions.  The 

Rothamsted carbon model (RothC) was used to predict soil organic carbon (SOC) 

changes in response to land management practices and climate change. 

Agricultural and natural forest soils on Luvisols and Arenosols under tillage and 

fertility treatments were assessed. Density separated soil organic matter 

fractionations were compared with conceptual pools of the RothC model. 

Modelled SOC stocks were comparable to measured stocks of 2010. There was 

good correlation between the density fractions and modelled values of Humified 

Organic Matter (HUM) + Inert Organic Matter (IOM) and Resistant Plant Material 

(RPM) with poor correlation for the decomposed plant material (DPM). Microbial 

biomass was part of RPM + DPM. Results showed strong positive relationships 

between measured MaHF and HUM + IOM (R2 = 0.98). All treatments showed 

rapid increase in the initial years with slow increase thereafter except for the 

control which showed a decline in C stocks with time. The results suggest greater 

increase of SOC stock in clayey soils and natural forests than cropping systems on 

sandy soils. Sandy soils have less capacity to store more C unless there are 

supplementary organic inputs and/or integration of practices such as agroforestry. 

Results have shown that linking RothC model with measured soil data, can be 
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useful for estimating the potential C sequestration resulting from land 

management practices in Zimbabwean forest and cropping systems. 

 

Key words: RothC, soil carbon pools, modelling, climate change, tillage, 

fertilisation  

 

5.1 Introduction 

Sequestration of C in agricultural and forest soils is seen as a way of decreasing 

atmospheric carbon dioxide concentrations and mitigating climate change. The 

capacity of a soil to store C depends on soil type, land management practice and 

climatic conditions. Human activities continue to increase greenhouse gas 

emissions and statistics have shown that atmospheric concentrations of carbon 

dioxide (CO2) and other heat-trapping gases increased from 1.7 ppm between 

1993 and 2003 to 2.1 ppm over the 2003-2012 decade.  By March 2013 the 

concentration of atmospheric C had risen to 393.31 ppm (National Climate Data 

Center (NOAA), 2013). 

Land use change has had a significant impact on global C stocks with 

cultivation reported to cause significant depletion of organic matter and releasing 

carbon dioxide (CO2) into the atmosphere (IPCC., 2000). Some of the major causes 

of CO2 release from the earth to the atmosphere are deforestation and 

degradation which are driven mostly by agricultural expansion and shifting 

cultivation (Williams et al., 2008), production of charcoal and fuel wood 

(Chidumayo, 1991), legal and illegal timber logging (Sunseri, 2009), construction 

and wild fires. Agricultural activities that release C from the soil into the 

atmosphere include tillage and other forms of soil disturbances that facilitate 

gaseous exchange between the soil and the atmosphere. Soil disturbances also 

enable the incorporation of plant materials into the soil (Pretty et al., 2002).  

Although agricultural activities have been identified as major sources of 

CO2 emissions, it is also possible to have agricultural activities that are adapted to 

reverse these negative effects and promote soil C sequestration in addition to 
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other benefits of food security and ecosystem sustainability (Food and Agriculture 

Organisation (FAO), 2010a). Soil C sequestration can offer a valuable offset for 

greenhouse gas emissions in agriculture, forestry and other land uses (AFLOU) 

(IPCC, 2006) and benefit from existing C markets. Lal (1999) stated that 

developing countries have the greatest potential for soil C sequestration since 

most of the soils are highly degraded and therefore below C saturation. 

Agricultural practices that reduce emissions and promote C storage can be 

designed to achieve sustainable land use but the need for simple, rapid 

monitoring methods cannot be overemphasised. A number of scientific evidence 

gaps are linked to the accuracy of C accounting, ascribed to a lack of data and 

uncertainties related to C storage and C flux models (Stringer et al., 2011). 

Soil carbon models have been developed for prediction and provision of 

information on the rate of soil C sequestration or loss. Several models have been 

designed and reviewed by Smith et al. (1997). Among these are RothC, DNDC, 

CENTURY and DAISY all based on conceptual carbon pools with different turnover 

rates. The RothC model is among the models which have been identified by FAO 

(2004) as a widely applicable easy to use model. The model has been applied to 

estimate SOC changes in response to land use or climate change in arable and 

non- arable soils in many parts of the world (Jenkinson et al., 1987; Coleman & 

Jenkinson, 1996; Kaonga & Coleman, 2008b; Yokozawa et al., 2010) although with 

limited applicability in Southern Africa. 

Changes in the rates of soil C sequestration due to changing 

environmental or management factors, can take several years to become 

apparent (Pretty et al., 2006). Therefore, future impact of agriculture activities 

and associated land use change can only be predicted by the use of observations 

in combination with models which can provide a means of evaluating the 

changing practices in the future. Currently, there is limited information on the 

potential for future C sequestration in sandy and clayey soils of Zimbabwe 

especially on smallholder farmers’ fields despite the importance of SOC in soil 

biological, physical and chemical processes. Equilibrium levels are important in 

determining the potential of a soil to store more C and several mathematical 

models are used. In this study we compare the output of the Langmuir equation 

with the equilibrium levels estimated using RothC model.  
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There is lack of data for monitoring long-term SOC in Zimbabwean soils 

making it imperative to  use the measured soil data as validation dataset for 

testing the RothC model outputs for the time period of 2010–2050 and to 

investigate long term effects of rising temperatures on SOC storage. The 

objectives of the study were to: (1) assess the effects of land management 

practices on future soil C storage (2) test the relationship between density 

separated SOC pools and modelled pools required in RothC and compare 

estimates of soil C changes between measured and simulated C. (3) assess the 

sensitivity of Roth C model to temperature rise and (4) compare equilibrium levels 

from RothC with equilibrium levels estimated using the Langmuir equation.  

 

5.2 Materials and Methods 

5.2.1 Study sites 

Modelling of tillage impacts was done on soils representing clayey and sandy soils 

from Hereford in Bindura district (17˚42΄ S; 31˚44΄ E), Nyarukunda in Shamva 

district (17˚00΄S; 31˚ 43΄E) and Murewa district latitude (17° 39' 13" S and 

longitude 31° 48' 30" E). A description of the sites is given by Mujuru et al. (2013) 

and Mujuru et al. (Submitted). Briefly, Hereford soils are red clays varying from 

silty clay loam to clay, with characteristics corresponding to Rhodic Ferralsols 

(Nyamapfene, 1991; FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) and falling into the 

category of low activity clays (Batjes, 2010). Sandy soils, are derived from coarse 

granite covering almost 70% of Zimbabwe (Thompson & Purves, 1981) and are 

classified as the Kaolinitic order, Fersiallitic group under the Zimbabwean soil 

classification, which corresponds to Ferric Luvisols (Thompson & Purves, 1981; 

Scoones, 2001; FAO, 2006) but using IPCC default classes derived from the 

harmonised world soils database (Batjes, 2010) they can be classified them as 

Arenosols, (>70% sand and <8% clay) and are broadly referred to as sandy soils. 

Murewa soils are granitic sands (Haplic Arenosols) (FAO/IIASA/ISRIC/ISSCAS/JRC, 

2012) which are strongly weathered having low levels of available nutrients and 

low nutrient reserves. These are interspaced with pockets of dolerite intrusions 
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that give rise to small patches of relatively fertile clays (Chromic Luvisols) 

(Nyamapfene, 1991; FAO, 2006). Bindura represented clayey soils whereas 

Shamva represented sandy soils for tillage assessments whereas Murewa 

represented both clayey and sandy soils under fertility treatments. 

Seven land management practices (A-G) were selected with consideration 

to the current farming systems and examined using density separated SOC pools 

for soils at 0-10 and 10-30 cm depths: [A] - conventional tillage (CF) with maize 

legume rotation– consists of an ox drawn plough to a depth of 15-20 cm once 

before planting, residues were removed and the remaining biomass incorporated 

into the soil during ploughing in the next season, 

[B] - Ripping (RP) - minimum tillage with an ox drawn ripper to a depth of 

15-20 cm with maize- legume rotation, crop residues were to be retained in the 

field after harvesting, ground cover of 2.5-3.0 Mg ha-1 was required in RP, 

[C] - Direct seeding (DS) - no tillage using an ox drawn direct seeder with 

synchronised seeding and fertiliser application with maize-legume rotation, 

residues were also retained or supplemented to achieve the 2.5-3.0 Mg ha-1 

ground cover and cropping in each tillage system was maize (Zea mays. L) 

/cowpeas (Vigna unguiculata L. Walp) rotation at Nyarukunda or  soy bean 

(Glycine max L. Merr) at Hereford, each treatment received annual basal fertiliser  

of 165 kg ha-1 compound D (i.e. 11kg ha-1 N, 10 kg ha-1 P, 10 kg ha-1 K), which was 

followed by 69 kg ha-1 N applied as ammonium nitrate in splits at 4 and 7 weeks 

after germination (Thierfelder et al., 2012; Thierfelder & Wall, 2012),  

[D] - Natural forest (NF),  

[E] - Conventional tillage with continuous maize cropping and no fertility 

amendments (control), 

[F] - Conventional tillage under continuous maize cropping with annual 

addition of nitrogen fertiliser (N Fert), 

 [G] - Conventional tillage with continuous maize cropping with a 

combination of nitrogen fertiliser and cattle manure (N Fert + manure) where 

ammonium nitrate supplies 100 kg N ha-1 and  cattle manure applied at 5 Mg ha-1 

supplied an equivalent 10 kg P ha-1 and 0.9 % N each cropping season.  Each 

scenario was run for sandy and for clayey soil under current and changing 
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temperature conditions. The SOC stock predicted by RothC model were compared 

with the SOC data for 2010 (Mujuru et al 2013; Mujuru et al submitted). 

5.2.2     Modelling of carbon sequestration potential  

Data for SOC for whole soil and density fractions under tillage and fertility 

treatments were obtained from Mujuru et al. (2013) and Mujuru et al. 

(Submitted) respectively (Table 5.1). The RothC model used in this study is based 

on monthly time step calculations that simulate SOC turnover over periods 

ranging from a few years to a few centuries (Jenkinson & Rayner, 1977; Jenkinson 

et al., 1990). The model inputs were (a) climatic data (monthly rainfall (mm), 

monthly evapotranspiration (mm), average monthly mean air temperature (°C)), 

Climate data were obtained from world climate database collection of 

meteorological data (2013). The ETo calculator (Raes, 2009) was used to estimate 

potential evapotranspiration based on temperature and rainfall of each specific 

location (b) Soil data (clay%, initial soil organic carbon (SOC) stock (Mg C ha-1), 

depth of the soil layer (30 cm), inert organic matter (IOM) (Table 5.1) 

approximated using equation [1] proposed by Falloon et al, (1998) because the 

radiocarbon content was not known and because we did not do any chemical 

fractionation to separate this chemically resistant pool. In this study, the IOM was 

assumed to be part of the mineral associated heavy fraction (MaHF).  

IOM = 0.049TOC1.139               [1] 

Where: TOC is Total organic carbon, Mg C ha-1 

 IOM is Inert organic matter, Mg C ha-1 

and (c) land use and land management data (soil cover, monthly input of 

plant residues (Mg ha-1), monthly input of farmyard manure (FYM) (Mg C ha-1), 

residue quality factor (decomposable plant material (DPM)/resistant plant 

material (RPM) ratio) (Coleman & Jenkinson, 1999). Soil cover was based on 

whether the soil is bare or vegetated in a particular month and is indicated as 

either covered or fallow (Coleman & Jenkinson, 1999). 

SOC is split into four active pools DPM, RPM, microbial biomass (BIO) and 

humified organic matter (HUM) which decompose by a first-order process, each 

with its own characteristic rate, and an amount of inert organic matter (IOM) 
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resistant to decomposition (Figure 5.1). The plant materials in RothC are 

subdivided into DPM and RPM, whereas plant debris in soils is found as free light  

 

 Table 5.1: Inert organic matter (IOM), clay% and SOC stocks in whole soil   and 

density fractions in agricultural lands and natural forest systems (Mean (SD)) to 

a depth of 30 cm.  

Soil type Land management SOC              LFC                 MaHF   IOM Clay content  

                          (Mg ha
-1

)             (%)     

Clayey CF 31.17(4.57) 2.18(0.36) 28.99(4.38) 1.13 22 

Clayey RP 32.27(3.04) 2.39(0.37) 29.88(3.05) 1.17 23 

Clayey DS 30.62(4.23) 2.02(0.27) 28.60(4.13) 1.10 26 

Clayey NF 43.88(5.70) 2.37(0.20) 41.51(5.17) 1.65 25 

Clayey Control 17.48(1.66) 0.67(0.10) 16.81(4.58) 1.33 54 

Clayey N Fert 24.74(1.80) 0.95(0.66)  23.79(7.08) 2.24 52 

Clayey N Fert + manure 31.12(1.61) 1.18(0.09) 29.94(7.13) 2.72 54 

Sandy CF 7.97(1.69) 0.49(0.12) 7.48(1.62) 0.24 4 

Sandy RP 10.28(1.93) 0.76(0.15) 9.52(1.37) 0.34 4 

Sandy DS 11.37(2.08) 0.75(0.25) 10.62(1.99) 0.36 5 

Sandy NF 29.25(2.57) 1.58(0.20) 27.67(2.55) 1.04 5 

Sandy Control 5.92(1.15) 0.38(0.10) 5.54(1.54) 0.38 12 

Sandy N Fert 11.66(1.60) 0.56(0.08) 11.10(1.04) 0.84 12 

Sandy N Fert + manure 10.72(1.61) 0.65(0.07) 10.07(1.52) 0.75 12 

C 

 
CF = conventional farming, RP = Ripping, DS = direct seeding, N Fert = 

Nitrogen fertiliser, N  Fert + manure = nitrogen fertiliser + cattle manure. 

 

fraction (fLF), occluded light fraction (oLF) and forms of dissolved organic carbon 

(DOC). The three measured fractions are particulate organic matter found outside 

of aggregates (fLF), POM found within aggregates (oLF), and a mineral-associated 

fraction (MaHF). In the model, plant C inputs are assumed to exclusively enter the 

DPM and RPM in proportions, determined by the source of the plant materials 

(Figure 5.1). The process algorithms in RothC are affected by the three climatic 
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factors (soil moisture, temperature and plant cover) with each pool decomposing 

by first order kinetics having characteristic decomposition rates. 

The model apportions plant litter input between DPM and RPM depending 

upon the vegetation type. For most agricultural crops and improved grassland, a 

DPM/RPM ratio of 1.44 was used, i.e. 59% DPM and 41% RPM whereas DPM/RPM 

ratio of 0.25 was used for deciduous or tropical woodland i.e. 20% as DPM and 

80% RPM. In the model, the proportion that goes to CO2, BIO and HUM is 

determined by the amount of clay in the soil (Coleman & Jenkinson, 1999).  

Although RPM estimated using the RothC model correlated well with 

measured LFC in sandy soils and natural forests, LFC in the cropland clayey soils 

neither correlated with RPM nor DPM in croplands. Because of this discrepancy 

the model default decomposition rate constants for active compartments were 

initially used (i.e. RPM (0.3), DPM (10.0) BIO (0.66) and HUM (0.02)) (Coleman & 

Jenkinson, 1999). 

 

 
Figure 5.1: Structure of the Rothamsted Carbon Model (Coleman and Jenkinson, 

1999). 

The measured SOC content was used for running the RothC model to 

equilibrium under constant environmental conditions. The constant climatic 

conditions were taken as the average of the climatic data from 2000–2050. For 

each land management practice, RothC was initially run to equilibrium (10 000 
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years), iteratively fitting carbon inputs to match the initial SOC stock and the 

corresponding distribution in compartments (DPM, RPM, BIO,HUM) with different 

decomposition rates. Data of C and radiocarbon ages in all the compartments 

received in equilibrium mode (initial soil state, initial radiocarbon ages) were used 

to run the model in short term mode ( from 2000- 2050). The assumption implied 

in this inverse simulation procedure, was that RothC could simulate the dynamic 

changes in SOC under the specified conditions. Model estimated pools of RPM + 

DPM + BIO were compared with LF C (fLF +oLF) whilst HUM + IOM were compared 

with MaHF for each land management system. The RPM, DPM, BIO, LF represent 

amounts of C input.  

5.2.3 Comparison of equilibrium SOC levels from RothC and Langmuir equation  

SOC equilibrium levels were estimated using the Langmuir equation and 

compared with equilibrium levels estimated by RothC model. The Langmuir 

equation can be used to evaluate the adsorption of light fraction C (LF C) onto 

mineral surfaces, and becoming mineral associated heavy fraction C (MaHF C) and 

is regarded as sequestered C (Yin et al. (2005). We assumed that over time, the LF 

C decomposes and in part becomes adsorbed onto mineral soil particles as the 

MaHF C. In addition, soil minerals can randomly adsorb LF C until the MaHF has 

reached C saturation. Therefore, interaction between LF C and soil minerals 

follows adsorption and desorption processes that can be described using the 

Langmuir equation. Equation 2 shows the linearization used to fit the data 

following Yin and Cai (2005) and Bolter and Hornberger (2007).   

LF C / MaHF C = LF C / MaHF Cmax + 1 / (k MaHF C)          [2] 

Where MaHFCmax is the maximum adsorption capacity for organic C 

(equilibrium value for soil organic C in the MaHF) and k is the equilibrium 

constant. LFC/MaHFC versus LFC yields a linear relationship with slope 

1/(MaHFCmax) and intercept 1 / (k MaHFC). The equilibrium level estimated using 

Langmuir equation was compared with the equilibrium level obtained from RothC 

model. 
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5.2.4 Data analysis 

 

Relationships between mean values (± SD) for modelled and measured SOC and 

equilibrium C levels in each land management system were analysed using linear 

regression. The goodness of fit was tested using correlation coefficient (r) and 

root mean square error (RMSE) in addition to standard deviation. RMSE shows the 

percentage term for the total difference between predicted and observed values. 

The bias value was calculated as Yi –Xi where Yi = measured SOC or equilibrium 

level and Xi = modelled SOC or equilibrium level. A t-test was conducted to 

compare measured with modelled C. Significant differences were tested at p≤ 

0.05. 

 

5.3 Results and Discussion 

5.3.1 Relationship between measured and modelled SOC stocks 

The RothC model is designed to simulate soil organic C turnover using user 

estimates of the C inputs making the evaluation of the soil C turnover components 

easier. If input data is not available, inverse simulation techniques are used to 

determine inputs needed to match the observed SOC in a particular year. Running 

the RothC model in reverse mode estimated the inputs required to attain the SOC 

stocks in 2010 for the seven land management practices in clayey and sandy soils. 

The simulated amounts of the SOC in the RothC was initially used to calculate the 

annual plant inputs to soils using the mode of known total SOC content.   

 Soil organic matter concentration at any time is the balance of the C 

addition to the soil pool and the carbon lost from it through decomposition and 

other loss mechanisms. One may argue that the lack of simulation of plant 

production, hence C input into soil could be a disadvantage if not done carefully. 

Inverse simulation techniques allow the determination of input needs to match 

the observed SOC. With the default setting of the decomposition rate constant for 

resistant plant material, there was good agreement between the simulated SOC 

and measured SOC (2010) in all treatments (Table 5.2). However, the largest 

discrepancies were found in sandy soils. On the other hand, the model appeared 
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to under-estimate SOC in all tillage systems mainly on clayey soils. In sandy soils, 

SOC in CF, DS and N Fert + manure were overestimated.  

Carbon Stocks on clayey soils with continuous conventional tillage, under 

control, N Fert and N Fert + manure had higher C than in sandy soils although they 

had similar inputs. Differences are most likely a result of clay content and the root 

biomass input corresponding to higher crop yields. Highest measured SOC was 

found in natural forests whilst lowest was in control treatments of both tillage and 

fertility treatments. Measured SOC on clayey soil was NF > RP > CF >  N Fert + 

manure > DS > N Fert > Control whereas the modelled SOC was: NF > N Fert + 

manure > DS > RP > CF > N Fert > Control.  In sandy soils the trend for measured 

SOC was NF > N Fert > N Fert + manure > RP > control > CF whilst the modelled 

was NF > N Fert + manure > N Fert > DS > RP > CF > control. The higher SOC in NF 

reflects the changes associated with conversion of forests to croplands. 

 

Table 5.2: Soil organic carbon (SOC) measured and predicted using site 

specific soil input  values for the 0-30 cm depth in seven land management 

practices on clayey and sandy soils. 
 

Soil type Treatment 
Measured         Modelled                  

Mg ha
-1 

Difference        %   
Difference 

Clayey CF 31.17(0.77) 28.45 -2.72 4.56 

Clayey RP 32.27(076) 29.38 -2.89 4.69 

Clayey DS 30.62(0.77) 30.47 -0.15 0.25 

Clayey NF 43.88(1.08) 41.18 -2.7 3.17 

Clayey Control 17.48(1.58) 19.09 1.61 4.40 

Clayey N Fert 24.74(1.46) 27.06 2.32 4.48 

Clayey N Fert + manure 31.12(1.42) 34.77 3.65 5.54 

Sandy CF 7.97(0.74) 8.42 0.45 2.75 

Sandy RP 10.28(0.77) 8.91 -1.37 7.14 

Sandy DS 11.37(1.27) 11.84 0.47 2.02 

Sandy NF 29.25(1.09) 25.84 -3.41 6.19 

Sandy Control 8.92(1.42) 7.76 -1.84 13.45 

Sandy N Fert 11.66(1.41) 13.27 1.61 6.46 

Sandy N Fert + manure 10.72(1.34) 14.43 3.71 14.75 

 
 

CT = conventional tillage, RP = ripping, DS = direct seeding, NF = natural forest, N Fert 

= Nitrogen fertiliser, N   Fert + manure = nitrogen fertiliser + cattle manure. 
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Under the current climate scenario, there is potential for additional 

carbon storage in Compared with measured SOC, RothC underestimated all SOC 

values in all natural forests and tillage treatments on clayey soils whereas on 

sandy soils the model overestimated the three fertility treatments and DS (Table 

5.2). Clayey soils had lower deviations (0.25−5.54%) than sandy soils (2.02 

14.75%). The regression model combining both clayey and sandy soils performed 

better than separated analysis y = 0.9125x + 0.7656 having significant positive 

correlation between modelled and measured values on both sandy and clayey 

soils (p<0.001, R2 =0.978; SE = 1.62) Figure 5.2.  

Higher estimates of C than measured could be caused by 

misrepresentation of clay content coupled with a soil depth which was higher 

than the model’s 23 cm. In addition, RothC estimates lower than measured values 

could be a reflection of a potential insensitivity of the model to tillage. Although 

the model was developed in Rothamsted, UK, based on the farming systems 

where soil was managed by ploughing and stubble incorporation soon after crop 

harvest, the simulated SOC matched the observed SOC, suggesting that large 

fraction of the suitability of the model to predict changes in SOC in semi-arid soils.  
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Figure 5.2: The relationship between observed C stocks and modelled C stocks 
from RothC carbon model. 
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5.3.2 Relationship between measured SOC pools and conceptual RothC SOC 
pools 

Density fractionations were compared with model outputs of RPM+DPM and 

HUM+ IOM. Estimated resistant plant material carbon pool (RPM) in the RothC 

model and measured light fraction carbon (LFC) content were compared. The 

conceptual pools estimated using the RothC model for each site are shown in 

Table 5.3.  

 
Table 5.3: Conceptual SOC pools in the RothC model estimated for each site                                                                    

Soil type 

Land management 

practice RPM DPM BIO HUM Total 

Clayey CF 2.53 0.20 0.36 13.57 16.66 

Clayey RP 2.27 0.18 0.33 12.31 15.27 

Clayey DS 3.04 0.2 0.45 15.65 19.51 

Clayey NF 5.68 0.07 0.42 15.41 21.65 

Clayey Control 4.84 0.29 0.73 24.95 31.1 

Clayey N Fert 3.95 0.39 0.65 24.02 29.4 

Clayey N Fert +Manure 4.39 0.43 0.72 26.66 32.63 

Sandy CF 1.84 0.3 0.26 9.02 11.72 

Sandy RP 1.26 0.07 0.19 6.75 8.34 

Sandy DS 1.34 0.08 0.2 7.15 8.85 

Sandy NF 3.78 0.06 0.28 10.67 14.85 

Sandy Control 1.3 0.09 0.16 5.83 7.47 

Sandy N Fert 2.19 0.15 0.28 9.82 12.59 

Sandy N Fert +Manure 2.41 0.16 0.3 10.81 13.84 

CT 
                                                                 

CT = conventional tillage, RP = ripping, DS = direct seeding, NF = natural forest, N 
Fert = Nitrogen fertiliser, N Fert + manure = nitrogen fertiliser plus cattle manure. 

 

Although there was a good relationship between light fraction  (fLF +oLF) 

C and RPM (R2 = 0.674, p < 0.001, SD= 0.185, SS = 1.25) (Figure 5.3a) and between 
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MaHF C and HUM (R2 = 0.797, p<0.01, SD=3.74, SS= 824.71), they did not match 

perfectly for substitution in the model but MaHF C and HUM + IOM had a perfect 

match (R2 = 0.98, p< 0.01) (Figure 5.3b). 

 

 

 

 

  

Clayey soil 

sandy soil 

 (a) (b) 
 

Figure 5.3: Relationship between (a) measured LF C and model RPM and (b) MaHF 

C vs modelled HUM + IOM. 

5.3.3 Long term prediction of C storage in different systems 

The average values of SOC stock estimated for a 40 year modelling period based 

on 2010 measured  C values, showed greater increases in C stock in clayey than 

sandy soils. Additional storage capacity varied with land management and ranged 

between -29% and 36% (-12.88 to +33.96 Mg ha-1). This shows that practices such 

as conventional farming without fertility amendments cause loss of C from the soil 

(29%) (Figures 5.4).  

In cropping systems the conservation tillage practices reached more than 

70% of their potential to store C. However, the overall assessment shows that 

cropping systems are only able to sequester as much C as Natural forests with 

addition of large quantities of organic inputs as reflected in RP and DS. Other 

studies confirm that the cropping systems are characterised by lower SOC than 

natural forests on similar soils (Guo & Gifford, 2002). The lower C in control and 

CF systems also support the findings of Scholes and Hall (1996) who showed that  
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(b)   

Figure 5.4: Predicted SOC in seven land management practices under current 
climate on (a) clayey  and (b)  sandy soils. CF = conventional farming with maize 
legume rotation, RP = Minimum tillage with maize legume rotation, DS = no tillage 
with maize legume rotation, NF = Natural forest, Control = Conventional tillage 
under continuous maize cropping (no fertility amendments), N Fert = conventional 
tillage under continuous maize cropping (nitrogen fertiliser 100 kg ha-1) and N Fert 
+ manure = Conventional tillage under continuous maize cropping (nitrogen 
fertiliser + cattle manure). 

 

approximately 50% of SOC is lost in the first 20 years following conversion of 

tropical woodland, grassland or savannah. Such losses can be evident even after 5  

(a) 
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years (Lal, 1999).  Although tillage is considered a major cause of SOC loss in 

agricultural systems (Pretty et al., 2002), the model did not predict a large 

difference between tilled and untilled sites on clayey soils. Instead, soil fertility 

amendments, mainly a combination of N fertiliser and manure, can be more 

beneficial for SOC sequestration.  

The modelling of C to 2050 showed that most sites have a theoretical 

capacity to store more C ranging from 0.06 t0 33.96 Mg ha-1 over the 40 year 

period. The resultant annual rates of C sequestration are in the range of 0.002- 

0.31 Mg ha-1 and 0.46 – 0.85 Mg ha-1 yr-1 in sandy and clayey soils respectively 

depending on practice. The rate of C sequestration in sandy soils is less than the 

range for dry lands (0.1-0.2 Mg ha-1 yr-1 proposed for conservation tillage in dry 

lands by Lal (1999) but clayey soils showed higher values than Lal et al (1999). 

Though the increase is small, the model showed higher rate of increase in the 

early years followed by an increase at a decreasing rate in later years. This 

confirms the fact that SOC storage can only be possible up to a limit beyond which 

no sequestration occurs because SOC will only continue to increase up to 

equilibrium. Clayey soils have greater potential than sandy soils whose increase is 

marginal in all treatments except NF. Later, mainly after 2030, a decrease of the 

rate of C increase is noticed in soils under N Fert and N Fert + manure on clayey 

soils. The rate of SOC stock increase in the initial years of the modelling period can 

be affected by changing input factors or incomplete initialisation.  

Increased clay content supports higher SOC storage potential although it 

can be affected by soil depth. The aim of any land management system should be 

to increase plant productivity while maintaining the soil health. Results suggest 

that sandy soils are almost saturated and have limited capacity to sequester more 

C. Productivity  and C sequestration can only be achieved through soil fertility 

amendments i.e. eliminating the constraints to plant growth in order to achieve 

reasonable changes in future C stocks. Thierfelder et al., (2010), Thierfelder and 

Wall (2012) and Rusinamhodzi et al., (2011) showed that average crop yields for 

smallholder farming systems yield about 2.5 Mg ha-1 grain yield and this yields 

about 7 Mg ha-1 of total above ground biomass. Thus about 3.36 Mg C ha-1 is 

produced annually as biomass C assuming plant C content of 48%.   
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The RothC model was also run under past and future changing climate 

given temperature rise of 1.5˚ C rise and a baseline of 1850. A 1.5˚ C rise in 

temperature shows different responses in clayey and sandy soils with the clayey 

soils having greater C accumulation whereas in sandy soils, modelled C stocks are 

below current stocks. Clayey soils benefit from increased temperatures whereas 

sandy soils tend to decline. Under the changing climate scenario the potential for 

additional carbon storage is limited in all land management practices on sandy 

soils. Clayey soils showed similar trends for NF but greater potential for DS than 

the two fertility treatments (N Fert and N Fert + manure) whereas on sandy soils, 

fertility treatments had higher accumulation than DS and RP but lower than NF 

(Figure 5.5). An increase in temperature can result in increased C stocks. 

Although the N fertiliser sites accumulated more C than no till sites (DS) 
other studies found inorganic fertilisers detrimental to C storage e.g. Farage et al. 
(2007) apart from the costs associated with its acquisition. Increased 
temperatures cause increased plant production resulting in higher biomass and C. 
However, soil respiration also increase with increasing temperature but the 
balance between these two processes will make the difference. In this 
assessment, modelling with RothC suggests that increased biomass production 
may be larger than increased decomposition resulting in increased C stocks. 

In all cases, modelling of SOC in clayey and sandy soils of Zimbabwe 

showed that a new steady state will be reached if the current practices are 

maintained, and so subsequent declines in SOC become relatively small with time. 

The modelling has shown that under current climatic conditions all systems 

except the natural forest on clayey soils have reached steady state whereas a 1.5˚ 

C rise in temperature causes some of the systems on clayey soils to sequester 

more C. The results also show that when holding all the other factors constant, 

the model is sufficiently sensitive to a rise in global temperatures with sandy soils 

reaching an equilibrium much earlier than clayey soils. 
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Figure 5.5: Fitted and projected SOC stocks on (a) clayey and (b) sandy soil up to 
year 2050 under a temperature rise of 1.5˚ C. CF = conventional farming with 
maize legume rotation, RP = Minimum tillage with maize legume rotation, DS = no 
tillage with maize legume rotation, NF = Natural forest, Control = Conventional 
tillage under continuous maize cropping (no fertility amendments), N Fert = 
conventional tillage under continuous maize cropping (nitrogen fertiliser 100 kg 
ha-1) and N Fert + manure = Conventional tillage under continuous maize cropping 
(nitrogen fertiliser + 5 Mg ha-1 yr-1cattle manure). 

 

(a) 

(b) 
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5.3.4 Comparison of equilibrium level estimation by Langmuir equation vs RothC 
model 

The Langmuir equation could not estimate equilibrium levels for the three fertility 
systems (control, N fertiliser and N fertiliser + manure) on sandy soils due to poor 
model fit (Table 5.4) having R2 values below 0.50. Information on equilibrium 
levels is important in determining the amount of additional C a soil can add. This is 
normally achieved using equations such as the Langmuir equation whose 
limitations have been pointed out (Bolster & Hornberger, 2007).  
 
 Table 5.4: Equilibrium C levels estimated by Langmuir equation for land 
management practices on clayey and sandy soils .  

 

Soil type Practice 
Equilibrium C   
(Mg ha

-1
) 

 
*R

2
 

 
*SE 

 
*P value 

Clayey CF 38.76 0.43 0.022 < 0.001 

Clayey RP 13.84 0.49 0.020 < 0.001 

Clayey DS 33.67 0.61 0.025 < 0.001 

Clayey NF 16.81 0.63 0.011 0.002 

Clayey Control 17.15 0.86 0.005 <0.010 

Clayey N Fert 44.05 0.73 0.002 <0.010 

Clayey manure 42.19 0.73 0.022 0.031 

Sandy CF 6.36 0.09 0.01 Ns 

Sandy RP 7.45 0.61 0.022 <0.001 

Sandy DS 8.02 0.17 0.019 0.050 

Sandy NF 14.22 0.49 0.013 0.011 

Sandy Control ND 0.86 0.009 <0.001 

Sandy N Fert ND 0.62 0.016 <0.001 

Sandy manure ND 0.75 0.009 <0.001 

CT  
                                                       

CT = conventional tillage, RP = ripping, DS = direct seeding, N Fert = Nitrogen 

fertiliser, Manure = nitrogen fertiliser + cattle manure, Ns = not significant, ND= 

not determined, SE = Standard error.* from regression of the Langmuir equation 

 
A comparison of equilibrium levels estimated using the RothC model and 

Langmuir equation shows positive correlation between the two methods on clay 

soils (R2 = 0,87, P<0.01, SE = 4.86) (Figure 5.6). In clayey soils, measured SOC in CF, 

DS, N Fert and N Fert + manure were below equilibrium levels whereas RP, control 
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and natural forest reached equilibrium. In sandy soils all systems were below 

equilibrium levels estimated by RothC as the Langmuir could not be applied to 

sandy soils due to poor model fit.   

It is important to note that uncertainties of up to 20% can be found due to 

insufficient information about soil and climate (Poussart et al., 2004). Therefore, 

since the data used in this study was obtained from short term experiments (4-9 

years), Sources of uncertainties between the measured and modelled data can be 

recognised and based on the input data. For example, the values of initial carbon 

stock. Another uncertainty is that the data of SOC stock were modelled using 30 

cm soil depth whilst the model is based on 23 cm depth. The SOC stock is 

calculated from bulk density and depth. 

                                   
Figure 5.6: Relationship between equilibrium levels estimated by RothC model 
and the Langmuir equation. 
 

5.4 Conclusion 

 

RothC model is one of the most widely used models for the estimation and 

prediction of SOC stock on agricultural and forest land due, based on successful 

past evaluations and the generally good availability of required input data. The 

RothC model is simple and uses readily available input data to estimate SOC stock 
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on any management systems in non-waterlogged soils. The modelling approach 

represented an important and promising method for the estimating C stock 

changes and provided some level of confidence for future soil C scenarios for 

cropping and forest systems on sandy and clayey soils of Zimbabwe. On the basis 

of our results, it can be concluded that RothC 26.3 model is able to estimate SOC 

stock changes on Zimbabwean sandy and clayey soils although it cannot 

distinguish effects of soils disturbance (such tillage intensity). Practices that had 

more organic inputs such as the conservation tillage practices and the N Fert + 

manure showed greater potential for future C storage.  

There was also good relationship between equilibrium levels estimated by 

RothC model and those estimated using the Langmuir equation. The model also 

showed that under current climatic conditions all systems on sandy soils were 

approaching steady state. Therefore, the RothC model equilibrium output can be 

used for assessing the capacity of a soil to store additional C based on  measured 

values. The model’s conceptual pools of RPM and HUM showed a good 

correlation with measured LFC and measured MaHF in both sandy and clayey 

soils. Holding other factors constant, a 1.5˚ C rise in temperature causes some of 

the systems on clayey soils to sequester more C than the current. A higher 

temperature has a positive effect on the stock of soil organic C in natural forests 

and in soils with N fertiliser and manure inputs. The model is therefore sufficiently 

sensitive to a rise in global temperatures with sandy soils reaching an equilibrium 

much earlier than clayey soils. The modelling approach represents one of the 

most promising methods for the estimation of SOC stock changes and allowed us 

to evaluate the changes in SOC in the past  and future periods on the basis of 

measured data.  
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CHAPTER 6 

 

 

 

SYNTHESIS 
 

6.1 Introduction 

 

Agricultural and forestry systems of sub-Saharan Africa (SSA), are more vulnerable 

to the changing climatic conditions caused by increased concentrations of 

greenhouses in the atmosphere (Food and Agriculture Organisation (FAO), 2010a). 

Projections showed several Sub-Sahara African countries becoming increasingly 

more prone to severe droughts (Rojas et al., 2011). The models also suggested 

major effects on agricultural production due to disturbances in rainfall patterns 

and water availability regime, thus, increasing Africa’s vulnerabilities to food 

deficits. Such challenges can be overcome by choosing land management 

practices that increase productivity while maintaining environmental integrity. 

Agricultural systems account for a large share of total land use in Zimbabwe, 

making them a prime target in any strategy aimed at slowing, halting, or reversing 

the emission of  carbon into the atmosphere. Generally, there is no compensation 

for ecosystem services including  benefits of environmental goods such as C 

sequestration, a factor likely contributing to the historically observed reduction in 

some ecosystem services manifested in form of land degradation in agricultural 

land and deforestation in natural forests. 

Soil organic carbon is a constituent of soil organic matter important for 

maintaining soil fertility, soil moisture, soil structure and energy for soil biota. The 

dynamic processes that influence SOM quality and quantity are complex, 

operating through time at different locations and situations (Baldock & Skjemstad, 

1999) resulting in SOM being both a source of C release (e.g. land degradation) 
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and a sink for C sequestration. Managing land for C sequestration is a sustainable 

strategy that can be implemented in both agricultural and forest systems for 

productivity. The C storage potential of a soil is a function of existing organic C 

levels and biomass input relative to other factors (e.g. the practice, climate, soil 

mineral composition, soil biota, and position in the landscape)  facilitating the 

continuous exchange of C between the earth and the atmosphere. In this way the, 

rate of sequestration or release of C is strongly influenced by these interactions 

with isolation of the influence of each individual factor often complicated (Lal, 

2007). In a meta –analysis, Guo and Gifford (2002) showed the importance of land 

use on C storage by revealing increased soil C stocks following land use change 

from crop to pasture while the reversed land use change led to decreased C 

stocks. This supports the idea that the feasibility of increasing soil C storage 

depends on the management practices, type of soil and fertilisation (This thesis). 

However, C (air) is a common property, where any one individual, community, 

organisation or nation takes only a small share of the cost of the C they add to the 

atmosphere. In this regard, the private costs that motivate decisions to sequester 

C may fall short of social costs, resulting in too much carbon dioxide accumulating 

in the atmosphere and affecting all. Despite this fact, land management practices 

that minimise C losses by creating positive ecosystem C budget and enhancing C 

storage need to be identified and promoted. Such identification improves our 

understanding of the extent to which each land management practice affects 

greenhouse gas reduction efforts and mitigation of human induced increases in 

atmospheric carbon dioxide. 

Alternative livelihood development strategies have been suggested as a 

means of enabling rural people to shift from subsistence livelihoods through 

projects, such as fisheries and beekeeping. Such projects help to decrease the 

amount of deforestation and forest degradation in line with REDD+ objectives by 

shifting local economies away from activities that damage forests, such as clearing 

more land for cropping, unsustainable charcoal production and firewood vending. 

Initiatives with such a focus have met with varying success e.g. in Kenya Wild life 

Works have established a clothing factory and in Tanzania they have started bee- 

keeping projects as part of REDD+. 
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 The land management options should focus on increasing net primary 

production (NPP) and reducing C loss from soils (e.g. combating land degradation 

and deforestation). In the quest to promote soil C sequestration to mitigate 

climate change, it is important to realise that the C sequestration process is based 

on the fact that: the process of soil C storage is reversible; soils have   finite 

capacity to store C and is linked to fluxes of other greenhouse gases, such as 

nitrous oxide (N2O) and methane (Powlson et al. (2011).  

Changes in SOC associated with land use and management occur slowly 

and can be explained by the way C and N are allocated in different SOM fractions. 

Density fractionation can separates SOM that is residing outside aggregates (fLF) 

from that inside aggregates (oLF) and organic matter bound to minerals (MaHF). 

The pools/fractions have different turnover and they can show impacts of land 

management practices on SOM (this thesis) which are normally not evident in 

whole soil. Thus, SOM fractions serve as good indicators of both short term and 

future changes in total C and N stocks and provide evidence of stability of each 

fraction. However, the storage of SOC is suggested to be influenced by selective 

preservation of recalcitrant compounds, physical protection against 

decomposition and interactions with mineral surfaces (von Lützow et al., 2008).  

 

6.2 Potential of tillage management practices for SOC sequestration 

 

Agriculture activities have been one of the key drivers of deforestation in most of 

the tropical countries and agriculture is likely to benefit from agroforestry 

practices that have potential to increase soil fertility at minimal costs. The use of 

agroforestry can be part of the afforestation/reforestation or it can be a special 

option by itself to contribute to emissions reductions through additional 

sequestration and/or avoided emissions. When land is managed using a 

combination of agricultural and forestry approaches, there are benefits of 

sequestration of additional C in trees and/or soil thus, reducing C emissions when 

compared to business-as-usual agricultural practices. Agroforestry simultaneously 

increases plant cover more than contained in natural woodlands. Planting of trees 

in agro ecosystems can be in the form of protection of existing trees in agricultural 

land, creation of agro-forestry parks, soil fertility enhancement and soil erosion 
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control, other on farm tree planting activities, fruit tree planting or livestock 

management. Trees can either be native or exotic species. In this regard, planting 

trees reduces the need to open up more natural forests for crop production and 

thus, help to strengthen small holder forest management initiatives while 

mitigating climate change since trees not only have the potential to sequester and 

store additional C in above ground biomass, but even more so significantly 

increase SOC. Natural woodlands on sandy soil had lower C and N stocks than 

woodlands on clayey soils (Figure 2.3). 

Although there are no estimates of total GHG emissions from 

deforestation and degradation of African woodlands (Bond et al., 2010) the socio-

economic relations between the state, private sector, and local people, coupled 

with the persistent poverty have hastened the rate of deforestation. Poverty, 

hunger and increasing demand for agricultural land have chiefly driven local 

communities to over exploit forest resources for their livelihoods. Greater loss of 

C into the atmosphere is attributed to the conversion of native land to agriculture 

and much of the newly cropped land is unsuitable for agriculture and degrades 

quickly, thereby forcing the farmer to convert even more land to agriculture 

(Walker & Desanker, 2004). There is however a relationship between SOC content 

and soil texture as shown by the greater difference between native forests and 

croplands on sandy soils than clayey soils (Table 2.1). Such differences are likely a 

result of harvesting of major above ground components in croplands without 

substantial returns to the soils. There are competing uses for residues (Livestock 

feed and fuel). Aboveground biomass only enters the soil labile carbon pool via 

roots, root exudates and litter input leading to increased C and N storage at 

deeper layers of the soil. It is estimated that about 1.14 Pg C may be annually 

emitted into the atmosphere through erosion induced processes (Janzen, 2006). 

In addition, accelerated erosion and other degradation processes cause significant 

loses of topsoil (Lal, 2012) although the impacts of erosion on C losses depends on 

the fate of the C after the soil is deposited. 

Smallholder farmers have traditionally used the hand hoe for tilling and 

weeding land. The hoe only ploughed the upper surface leaving a hard pan at 

lower levels. A development from the hoe led to the use of the mouldboard 

plough going deeper and breaking the hard pan thus allowing rain water 
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permeation. The plough exposed soils to greater bioturbation. Tillage is known to 

affect distribution of organic C in the soil profile, mixing soil materials in the 

plough layer and destroying soil structure. Ploughing exacerbates depletion of 

SOC depending on climatic, edaphic and management factors. To date, several 

tillage practices are used to improve soil moisture and fertility in croplands. 

Cultivation and tillage however, affect the distribution of SOC depending on the 

quantity and quality of SOM. Depletion of SOC in arable or other highly disturbed 

systems, can also occur due to lower plant litter input (Figure 2.2), faster SOM 

breakdown (as it is more accessible in soil aggregate disruption during ploughing) 

and increased displacement of C-rich surface soil through erosion. The SOC can be 

preserved using maize/legume rotations with magnitudes varying with soil texture 

and tillage intensity (Chapter 2) and can also be increased using agroforestry 

technologies.  

Furthermore, the inherent infertility of Zimbabwean soils (Nyamapfene, 

1991) coupled with regular tillage operations result in lower C levels in croplands 

than native forests. Depletion of the SOC pool in tillage systems demonstrates 

potential impacts of conversion of natural forests to croplands although other 

interacting factors such as variable temperature regimes, low biomass C inputs, 

higher decomposition rates and alterations in soil moisture determine the pace. 

Although the tillage studies (Chapter 2), were short term observations, the 

analysis took into consideration both the bulk/whole soil analysis and density 

fractions. Density fractions, mainly the light fraction are a good indicators of the 

impacts of short term changes in land management (Marín-Spiotta et al., 2008). 

Despite the short period of time in this assessment, results suggest that there 

were short term increases in whole soil C and N stocks over a four year period 

with magnitudes varying with soil type (Chapter 2). In this study, SOC and TON 

were greater under minimum and no tillage activities at 0-10 cm depth in both 

sandy and clayey soils when compared with initial stocks. Contrary to this, clayey 

soils showed conventional tillage being comparable to ripping (minimum tillage) 

and direct seeding (no till) (Table 2.2). Sandy soils are however more sensitive to 

tillage and tend to benefit more from no tillage practices and this supports other 

scholars who also found C storage benefits under no tillage (DS). Although the 

methodologies used to analyse the initial C stocks could be different, a 
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comparison of conservation tillage practices with conventional tillage showed 

similar trends to those obtained by comparing with the baseline data. 

In this study the magnitude of SOC and TON depletion was minimised by 

ripping and direct seeding (Chapter 2) when compared with conventional tillage 

on sandy soils (Figure 2.3). Results suggests that tillage and other forms of soil 

disturbance can release C from the soil enhancing gaseous exchange between the 

soil and the atmosphere but can also facilitate the incorporation of plant 

materials into the soil (Pretty et al., 2002). Better management, more C inputs and 

the root biomass incorporation into the soil during ploughing contributed to a an 

increase in SOC under conventional tillage. In tillage systems, plant roots are the 

major source of organic matter input to the soil whereas in forest systems the 

major component is above ground biomass retained after litter fall in addition to 

below ground parts. 

Soils with low C stocks have less capacity for SOC accumulation as shown 

by sandy soils having less capacity to stabilise more C and N than clayey soils (This 

thesis) although the extent of C and N storage is modified by land management 

practice and other environmental factors. Results show the likelihood of strong C 

decomposition regime facilitating increased sequestration of labile C during the 

cropping season. Although sandy soils showed low greenhouse gas mitigation 

potential (shown by low potential of C storage) when compared with clayey soils, 

results suggest that the no tillage system (DS) is the best management for C 

storage on sandy soil whilst the conventional tillage (CT) system is the worst. 

Sandy soils are hence more sensitive to disturbance. 

Currently tillage practices are confined to farmer managed experimental 

plots with potential for up scaling on small portions of land. Inputs and equipment 

are supplied by the project where a farmers share the direct seeder and the 

ripper. The experimental plots have provided some information on technical 

performance of each tillage practice. The relevance of the practices is however 

hampered by two major challenges: 1) Policy that does not allow residue 

retention because livestock graze freely in the dry season. Residues either have to 

be removed or left in the field for livestock to graze.2). Even if left in the field, 

residues are consumed by termites and other small organisms during the long dry 

period lasting five to six months. Given this scenario, all conservation tillage 
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practices get supplementary residues (grass) at the beginning of each cropping 

season.  In sandy soils, the practice of conservation tillage increases soil C and N in 

the top soil layers when compared to conventional tillage. Other factors such as 

climatic conditions and possible incorporation of residues under conventional 

tillage did not lead to more soil C loss when compared with no tillage (DS) at 0−10 

cm. In this case conservation tillage practices did not show expected results of 

greater C and N possibly due to competing needs for crop the residues (mainly as 

animal feed).  

In clayey soils, SOC and TON stocks in conservation tillage practices (RP 

and DS) were not significantly different from conventional tillage but were lower 

than in natural forests. Clayey soils seem to be more affected by various stress 

factors including a long dry spell and trampling by both small and large livestock 

causing possible mixing of soils in the upper soil layers and reduction of residues 

left in situ. Ideally, no till and reduced tillage plots should have continuous surface 

cover and this is usually violated because of institutional and socio-economic 

factors. Farmers are not able to fence off their fields over the dry period 

subjecting all fields to open access grazing. Only small portions on experimental 

plots and home gardens are protected. Fencing does not make the fields 

inaccessible to small livestock e.g. goats. To compound the matter, the erected 

fences are usually vandalised as is the case in the study area. 

Although conventional tillage practices are often known to have a greater 

rate of SOC loss when compared to conservation tillage, there was a relative SOC 

gain under conventional tillage at 0−10 cm when compared to reduced tillage (RP) 

and no tillage (DS) practices on clayey soils whereas on sandy soils no tillage (DS) 

had better C storage than RP and CT. Some studies have shown that conservation 

tillage increases C storage in the 0−10 cm depth while conventional tillage 

decreases C stocks at the same depth level. The lack of significantly different C 

and N gains under conservation tillage systems could be due to the limited 

residue cover which makes the soils even more vulnerable to agents such as wind 

erosion than ploughed soils, where the transient roughness created by tillage may 

reduce wind and water erosion (Blanco et al., 2009). Thus, the inadequate 

amounts of crop residues coupled with climatic conditions (with a long dry spell) 
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could have direct influence on soil water conservation, soil erosion control and 

nourishment of microbial communities in each system.  

Despite having lower C and N stocks than NF, tillage systems increased C 

stocks at 0-10 cm. Interestingly, the rate of C increase in CT on sandy soil was 

similar to the rate of C increase under DS on clayey soils although the actual 

values were higher in clayey soils than sandy soils. Increase in C and N stocks in 

cropping systems has been attributed to better nutrition and management 

intensity compared to the time prior to the start of the experiment. For example, 

fertiliser application is limited in most smallholder farms as inorganic fertiliser is 

usually beyond the reach of most farmers. As a result, most fields are highly 

depleted creating a potential for C sequestration. Sanderman et al. (2010) 

reported between 0.2 and 0.3 Mg C ha-1yr-1 increases in C stocks under improved 

land management of croplands (including enhanced rotation and no-tillage) than 

under conventional management across a range of Australian soils. They found 

greatest largest gains within the first 5 to 10 years with the rate of change 

decreasing to almost zero after 40 years and they attributed absolute declines to 

continuous responses of soils to the initial disturbance of the native soils. 

Although Lal et al (1997) suggested that conservation tillage may provide even 

less opportunity to increase SOC in the tropics, results suggested that 

conservation tillage can lead to high SOC near the surface compared to 

conventional tillage only in sandy soils. The hypothesis that soils under no tillage 

management accumulate more SOC in surface soil layers than conventional tillage 

(Jagadamma & Lal, 2010) can only be applicable to sandy soil in this study since on 

clay soils CF accumulated more C in surface soil than RP and DS. However, at 

lower depths, RP and DS had more C and N (Table 2.2) which is contrary to most 

studies which associate CF with distribution of soil organic C and N in the profile. 

VandenBygaart et al. (2002) found that at 0-30 cm, DS accumulated more C and N 

than CF and RP. This was however contrary to clayey soils where the highest 

amounts at 0−30 cm were under RP and the lowest C stock were under DS. There 

was a demonstration of differences in C storage as affected by texture, mainly the 

clay content. Clay content is known to exert a major control on amounts of 

organic C a soil can store (Schimel et al., 1994). Biotic factors influence the storage 

of C and N in the soil although they were not part of this study.  
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There is need for continuous maintenance of environmental benefits 

resulting from increased SOC content. Fundamental soil biological processes, 

which govern soil nutrient cycles are based on key processes of soil C storage and 

can be achieved by either reduced decomposition or improved management, 

either by fertility amendments, or by adoption of reduced tillage. Exposure of 

organic material to microbial degradation results in less fLF. The SOC pool receive 

fresh organic matter through litter input whereby soil microbial activity drives the 

process of conversion of litter into stable humus and is also related to 

bioturbation (e. g. termite and earthworm activities), which affect both aeration 

and SOM incorporation into clay minerals at deeper soil layers. In this study, the 

activity of arthropods was important for mixing organic matter at different soil 

layers. The transformation of litter to SOC can be illustrated as in Figure 6.1.  

  

                  Residue fragmentation      

 

 

 
 

Humus formation 

    Microbial decomposition 

Carbon dioxide 

Termites 

and earthworms 

Arachnids 

             Centipedes,  millipedes etc. 

Carbon dioxide 

  

Figure 6.1 Process of litter transformation in litter decomposition in agricultural 

systems  

 

Accordingly, the sampling time of the study (spring) might also affect the 

amounts of C in the different SOC pools in both croplands and forests. Shortage of 

organic matter for soil fauna is often demonstrated by the consumption of crops 

in the field (mostly by termites) mainly towards the end of the growing season. 

Litter and the resulting humic substances are decomposed, mainly by the bulk soil 

micro-organisms that comprise bacteria, fungi and soil meso- and macro-fauna, 



                                                              Synthesis 

 

                                                      146 

 

resulting in respirations and subsequent soil CO2 efflux and alterations to the soil 

chemical and physical properties. Seneviratine (2003) suggested inoculation of soil 

fauna into litter to enhance decomposition, thus improving nutrient storage. 

Activities of inoculation are however, not necessary in smallholder areas under 

study as the litter is always inadequate for the decomposers mainly during the 

cropping season when climatic conditions are favourable.  

The natural forests are often subjected to annual fires making a possibility 

of charcoal fragments floating with the fLF and oLF since they are within the same 

densities. It is therefore possible that charcoal derived from annual burnings 

contributed to fLF and oLF C in all sites. The overlapping densities make it 

impossible to separate the charcoal from plant materials in light fractions. The fLF 

and oLF reflect the extent of alterations imposed on the soil by management 

activities and can thus be used as sensitive indicators of the quality of a soil. The 

light fraction C accounted for the lowest proportion of the total soil C in all tillage 

(6.6%) and forest systems (4.2%) on sandy soils, but the proportion increased and 

stabilised in the clayey soils (Table 2.3).  

Although most studies of SOC are based on long term assessments, the light 

fraction C is thought to be an early indicator of soil quality improvement and C 

sequestration because it is more sensitive to land-use and management practices 

than total SOC (Six et al., 2002). In support of this, Soon et al. (2007) showed light 

fraction C significantly responded to tillage after 4 years, whereas the tillage 

effects on total SOC was not apparent until the 12th year. In the present study, I 

found that the response of the light fraction C storage was not more sensitive 

than the response of total soil C. The clayey and sandy soils are in areas with a 

long dry period characterised by slow decomposition resulting greater fLF. The 

greater amounts of fLF in sandy soils show importance of fLF in soils of limited 

sorption capacity. 

The lack of baseline data on SOC pools makes it difficult to gauge the effects 

of land management activities on SOC pools. However, if we consider the natural 

forest (chapter 2) as the natural state, we observe that conservation tillage 

practices and fertility amendments increase SOC and TON in MaHF. Ripping and 

direct seeding show an increase of 5% each on sandy soils while they increase C 

by 5 and 7% respectively in clayey soils when compared with conventional tillage. 
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Furthermore, DS on clayey soils has a difference of 1% with the adjacent natural 

forest while on sandy soils differences with natural forest are up to 9%.  

The main way of enhancing stable SOM pool is to increase litter 

incorporation and humus formation rates (de Moraes Sà & Séguy, 2008). The 

maximum level of C stabilisation under conventional tillage is likely to be lower 

than that under RP and DS because of faster decomposition and lower soil 

aggregation (Reicosky & Archer, 2007). The stability of SOM is demonstrated 

when organic matter resists further transformation or degradation (Sollins et al., 

1996). The MaHF controlled the behaviour of all soils. The lack of significant 

differences between CT, RP and DS on clayey soils may be attributed to relatively 

sufficient C and N supply by the crops during the growing season, the amounts of 

clay and silt and possible existence of Fe and Al oxi-hydroxides (although these 

were not assessed in the study). The cropping season is characterised by rapid 

depletion of organic matter likely to have corresponding effects on the increase in 

MaHF C and N. The accumulation of greater quantities of MaHF C and N in both 

sandy and clayey soils could be a result of the transformation of fragmented litter 

into humus by earthworms and termites. Once plant residues enter the soil 

mineral horizon, they go through microbial degradation and, are simultaneously 

stabilised through interactions with soil mineral particles. 

The management options that increase SOC should increase productivity, 

profitability and promote sustainability of a land area. Although residue retention 

is critical for the success of conservation tillage practices, local institutional 

arrangements during the long dry period are not favourable (fields are 

communally grazed by animals and left overs are consumed by termites and other 

micro fauna. For this reason residues are supplemented by grass at the beginning 

of the cropping season to maintained the recommended 2.5-3.0 Mg ha-1.  

Furthermore, conservation tillage practices have lower short term gains despite 

the insignificant SOC stocks among the tillage systems (especially on clayey soils), 

conservation tillage practices have lower short term gains in crop yields than 

conventional tillage (Thierfelder et al., 2012; Thierfelder & Wall, 2012) with better 

gains at three years i.e. after accumulation of residues and consequently SOC. The 

low production makes it difficult for farmers to understand the benefits of 

conservation tillage practices if associated with some loss in the initial years. 
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Smallholder farmers grow crops for subsistence and cash income and they may 

not be willing to loose production for a reason. Therefore, to facilitate faster 

adoption of reduced and no tillage practices, there is need for subsidies in the 

initial years to compensate farmers for opportunity costs foregone. The future is 

also uncertain given the possibilities of  climate change effects with no guarantee 

for a good harvest in the next season. Increased C stocks and better crop yields 

make conservation tillage practices superior only after the initial years. In sandy 

soils, better moisture retention and better management make DS more superior 

than the other two practices. The reduction in crop yields in initial years under 

conservation tillage may reduce the chances of farmers shifting from conventional 

to conservation tillage. In order to match yields in conventional tillage practices, 

conservation tillage practices need more N fertiliser in the initial years 

(Rusinamhodzi et al., 2011). 

Furthermore, since SOC is an environmental good/service, there may be 

need for incentives, either in the form of direct government subsidies or credits 

from an emissions trading market to stimulate positive uptake of technologies 

that increase SOC stocks. Such regulatory measures will prepare the ground for 

adoption of other practices which in the same way as CA can be hampered by 

unfavourable institutional arrangements. In developing countries, the strong 

theoretical basis for SOC sequestration is partially supported by a limited number 

of field studies. In addition, a general lack of research in this area is currently 

preventing a more quantitative assessment of the potential of soil C sequestration 

in both agricultural and forest soils. Smallholder farmers can only benefit from CA 

practices in the presence of government support (e.g. for conservation tillage 

equipment and supportive policies) and this will result in achievement of the goals 

of C sequestration, soil conservation and eventually better crop production (FAO, 

2010).  

 

6.3 Effects of fertilisation on SOC and TON storage 

 

Poor soil fertility coupled with erratic rainfall constrain food production and 

sustainability of small holder farming systems. The inherently infertile soils have 

been identified to have potential for enhancing SOC sequestration with an 
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estimated global sequestration potential of 0.4–1.2 Gt C yr-1 with corresponding 

positive impacts on crop yields (Lal, 2004). There is however, need for continuous 

replenishment of the labile C pools through practices that increase C inputs and 

stabilise labile C pools (e.g. the return of crop residues and the application of 

manure and fertilisers). Techniques that have been proposed for improving soil 

fertility include legume intercropping, green manuring, agroforestry (e.g. 

improved fallows), inorganic and organic fertilisers (Vanlauwe et al., 2010). 

Addition of manure and inorganic fertilisers has often been recommended to 

increase SOM and enhance soil C sequestration (Gulde et al., 2008). Several 

scholars have highlighted the benefits of combining manure with inorganic 

fertiliser for improving SOM and its fractions (Rudrappa et al., 2006; Purakayastha 

et al., 2008). 

Application of N fertiliser and cattle manure reduces depletion of SOC and 

TON stocks in cropping systems (Chapter 3) and show that amendments reduce 

depletion of SOC stocks. Mann (1986) showed that conversion of native 

vegetation to croplands had impacts ranging from a loss of 70% to gains of up to 

200% in SOC stocks depending on soil type, fertilisation tillage system, cropping 

history and sampling depth with the greatest changes occurring in the first 20 

years. When conventional tillage is the only available option, the application of 

nitrogen fertiliser (chapter 3) is more beneficial for increasing C stock in sandy 

soils. Nitrogen fertilizer can increase soil organic matter in soils that have nitrogen 

deficiency but emissions from CO2 released from fossil fuel combustion during the 

production and transport can reduce the net amount of carbon sequestered in 

fertilised systems. The fertilisers can also be lost through run off into nearby 

streams and water bodies where it may have significant negative ecological 

effects. In some cases the use of N fertiliser without organic amendments leads to 

mineralisation of SOM and loss of SOC (Manley et al. (2002). This was however 

true for clayey soils where the application of manure plus N fertiliser was more 

favourable than N fertiliser alone. 

Factors such as soil moisture and soil texture are also important in 

facilitating changes in micro climate resulting in more rapid mineralisation of C in 

soils that have a high initial C stock (Mann, 1986). Blanchart et al. (2007) showed 

that on sandy soils, fertiliser application causes an initial nitrogen flush early in 
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the cropping season (about 20 days), with net N mineralisation accompanied by 

net nitrification favouring loss of N early in the cropping season (about 20 days). 

The N flush is accompanied by increased microbial biomass at the onset of the 

rainy season which is followed by rapid decay of organic matter in soils that have 

limited capacity to protect their organic matter. The accelerated decomposition 

during the cropping season consequently results in more soil CO2 releases into the 

atmosphere. However, increased decomposition rates may stimulate greater soil 

N availability, leading to higher net primary production (NPP) with potential to 

increase C inputs into the soil through rhizodeposition and litter fall thus 

offsetting increased soil C loss (Gelman et al., 2013). Soils might then gain more C 

than they lose due to such favourable environmental conditions in a N-rich 

environment. The higher N content might also stimulate initial litter 

decomposition but also suppresses humus decay in some stages, leading to 

stabilisation of SOM in mineral-associated fractions. Results support the 

hypothesis that application of N fertiliser increases N availability causing increased 

NPP and subsequently litter production and thus soil C inputs (Figure 3.2).  

Rudrappa et al. (2006) and Brar et al. (2013) found considerable build-up of 

SOM fractions under fertiliser being greatest under a combination of manure and 

N fertiliser. Favourable moisture and temperatures during the cropping season 

promotes greater mineralisation of fLF organic matter resulting in less 

accumulation of LFC and N in fertiliser and manure treatments on clayey soils. The 

fLF C and N is governed by the degree to which temperature and moisture 

conditions constrain decomposition of accumulated SOM (Biederbeck et al., 

1994). The addition of N fertiliser and manure can significantly improve fLF C at 

0−10 cm and at 10−20 cm depths when compared with the control and N fertiliser 

only. In clayey soils, the control treatment had the lowest fLF C at all depths levels 

due to low productivity capacity, inputs coming from better crop growth after 

addition of fertiliser and manure. The oLF was more under fertiliser at 0− 10 and 

10−20 cm in clayey soils while in sandy soils there was no statistical difference at 

the three depths and also among treatments. Increased fLF and oLF N under N 

fertiliser may be a result of priming effect of fertiliser on fresh organic inputs, 

which stimulates microbial activity and eventually decomposition.  
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However, the use of both fertiliser and cattle manure may limit the 

number of farmers participating in carbon sequestration activities, mainly because 

of the prohibitive costs of inorganic fertilisers and the lack of draught power. The 

poor will not be able to contribute unless some enabling economic and 

institutional policy strategies are designed. Existing carbon markets are likely  to 

have only modest impacts on the poor, even if relatively high carbon prices are 

offered. It is highly unlikely that poor farmers will participate in carbon 

sequestration projects as they are likely to be constrained by the same attitudinal, 

economic and institutional factors that have inhibited their socio-economic 

improvement in the past.  

 There was strong positive linear relationship between LF C and MaHF C on 

clayey soils whereas sandy soils had no linear relationship. It is possible that fLF 

and oLF in both sandy and clayey soils may be exhausted and need to be replaced 

through continuous cover. The linear relationship on clayey soils showed a 

decreasing intercept representing a decline of labile SOC with the remaining levels 

being largely recalcitrant C (Figure 3.5 and Table 3.3). The inherent infertility of 

outfields caused the soils to reach a new low equilibrium mainly in the control 

treatments whereas application of N fertiliser on outfields indicated a state close 

to equilibrium level. The added fertiliser can facilitate rapid decomposition of 

available SOM which is in turn taken up by the crops. There is always a limit to 

sequestration potential of a soil, such that once a particular amount of C has been 

sequestered, the soils have limited capacity to serve as C sinks. It is for this reason 

that degraded soils and ecosystems are thought to have the highest potential for 

C sequestration (Lal, 2004). Similarly, Powlson et al. (2012) analysed data from 

long term experiments at Rothamsted research in UK and found that soils under 

control treatment remained stable over the experimental period. They attributed 

this to the attainment of a new low equilibrium which is maintained by the 

cropping regimes. Soils with the same properties could exhibit different levels of 

maximum C sequestration potential even under similar management practices. In 

such cases, the capacity for soil C sequestration, varies considerably among sites 

on same soil type due to initial levels of labile SOC and the ability of management 

practices to stabilise greater amounts of organic inputs (Mann, 1986). In support 

of this, Chan et al. (2008) showed that soil C stocks may increase over periods of 
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50-100 years only until the equilibrium level is achieved and where management 

practices are not altered but rather improved. Even under such conditions, there 

is a finite limit to C sequestration potential beyond which the soils are less able to 

function as C sinks. 

The MaHF is based on sorption of organic C to mineral surfaces and clayey 

soils had more MaHF than LF. The greater MaHF was due to the protection of 

MaHF caused by stronger sorption and reduced desorption of organic C to the 

mineral surfaces (Kögel-Knabner, et al., 2008). In this case, the MaHF becomes 

less bioavailable as the fLF becomes a more available energy/nutrient source.  

 

 6.4 C:N ratios in different land management practices 

 

Carbon to nitrogen ratio is an important indicator of soil quality. Results showed 

sandy soils having higher C:N ratio than clayey soil (Chapter 2) under different 

tillage treatments. Fertility treatments using inorganic fertiliser and manure 

showed a different trend with clayey soils having higher C:N ratios than sandy 

soils. A similar trends was reported by Zingore et al,. (2007) while reporting on the 

initial soil conditions of the Murewa study area. Other studies have reported 

higher C:N ratios in sandy soils than loamy soils and clayey soils. Highest C:N ratios 

were found in forest floor L layer (Table 4.1). The C:N ratios of the top 10 cm was 

higher than the lower depths in conventionally tilled treatments than reduced and 

no tillage treatments. Tillage treatments had significant short term effects on C:N 

ratios whereas the nine years of cultivation under different fertility treatments did 

not cause any significant differences in C:N ratios within each soil type. The 

differences in C:N ratios by depth were not evident in fertility treatments (Chapter 

3) which had C:N ratios between 10 and 23.  

Density separation studies have shown higher C:N ratio in fLF than oLF 

and MaHF with differences in C:N of up to seven units in tillage and fertility 

treatments (Table 2.2 and 4.1). On average, the C:N ratio of fLF was 24 (standard 

deviation [SD] 4) and that of oLF was 21 (SD 3), indicating higher mean and 

variance in fLF. The MaHF had consistently lower C:N ratios (mean 14, SD 3). 

Other studies, on agricultural sites (Poirier et al., 2005), calcareous forest soils 

(Rovira & Vallejo, 2003), lowland tropical forest and pastures Marin-Spiotta et al., 
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(2008) showed a distinct decline in C:N from fLF to oLF, in accord with current 

models. 

The C:N ratios were however higher for the fLF under N fertiliser which 

could be a result of increased N in microbial biomass. Higher C:N ratios in the fLF 

are possibly a result of existence of higher amounts of carbohydrates (Dalal & 

Henry, 1988; Golchin et al., 1994a) mainly in form of unprocessed plant residues 

and sugars (Oades, 1972). The results support current models showing declining 

C:N ratio from fLF to oLF then MaHF as organic C is oxidised by heterotrophic 

microbes during decomposition, whilst N is somewhat preserved in the microbial 

biomass because of microbial N demand (their biomass has a much lower C:N 

ratio than plant biomass). The C:N ratio of oLF is intermediate between that of 

MaHF and that of fLF. Results support that MaHF is dominated by microbially 

processed compounds and/or N-rich compounds, such as peptides, with little 

inclusion of high C:N plant detritus (Chan et al., 2008). 

Pine plantation soils tended to have higher C:N ratios in fLF than 

agricultural soils and natural forests, perhaps because the conifers contain source 

materials with wider ranges of chemical compositions than agricultural soils (e.g. 

(Kölbl & Kögel -Knabner, 2004). In addition to the preferential degradation of C-

rich, labile substrates, selective preservation of high C:N compounds seems 

necessary to account for the 10–20 unit higher C:N ratios in fLF in these soils. 

 

6.5 Potential of plantation forests to mitigate climate change 

 

Agriculture and overgrazing cause major losses of woody vegetation cover (IPCC, 

2007) as people expand cropping areas to meet the demand for food in addition 

to their need for wood energy. As natural forest shrink, there is need to conserve 

the remaining forest areas and focus on fast growing plantations species to relieve 

pressure through promotion of private planting of fast growing species mainly on 

degraded areas under favourable climatic zones. In forest ecosystems, C storage is 

mainly a result of higher accumulation of biomass in woody tissue corresponding 

to above ground biomass production which is faster than growth and turnover 

rates of the belowground biomass. Atmospheric C retained in plant biomass 

increases the carbon reservoir of vegetation (Schulze, 2006).  
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Forests and woodlands provide essential materials for local consumption 

(wood fuel being the primary energy source), trade and export.  In addition, they 

provide environmental and cultural services. Forests and woodlands are often 

important sacred and burial sites in Africa. The use of wood fuel is likely to 

continue in both rural and urban areas as it remains the most reliable, affordable 

and accessible source of energy for poor households. Furthermore, the frequent 

power cuts make the use of woodfuel unavoidable. If the value of above and 

below ground C sequestration is added to the above values, the value of forests 

increases and can adequately support the livelihoods of forest dependent 

communities. The benefits of C sequestration in forests is well documented and 

their role in biodiversity conservation is an added advantage. Therefore, investing 

in forest plantations and/or conservation can allow communities to benefit from 

carbon trading. In forest ecosystems, C is stored in biomass, forest floor and soils.   

The forest floor layer is mainly composed of woody tissue (e.g. twigs, 

bark) leaves, flowers, fruits, mosses, lichens and fungi whereas below-ground 

inputs are from dead roots and their associated mycorrhizal hyphae and root 

exudates. Some studies showed that roots and mycorrhiza were also more 

important elements for the accumulation of below ground SOM than above-

ground leaf litter. Exotic monocultures (including pine forests) exhibit superior 

ability in sequestering C above and below ground (Shan et al., 2001). The build- up 

of SOM in forested ecosystems depends on the amount of litter, its chemical 

composition, the rates and mechanisms of decomposition, and climatic factors 

(Berg et al., 1995). The fate of all forest floor material is eventually to become 

below-ground SOM input and this can be facilitated by bioturbation and 

cultivation.  

Although the living fine root biomass constitutes only a small fraction of 

the total stand biomass, the contribution of fine roots to total stand biomass, and 

total soil C inputs can be substantial. When the same type of vegetation grows on 

the same site for a long time, an equilibrium state is attained through litter input 

and its associated rate of decomposition. Ultimately, an organic layer that is 

typical of a particular site is eventually formed (Evans et al., 2001).  

Wild fires are a threat to forests and woodlands, causing enormous 

destruction to both flora and fauna. However, fire plays an important role in 
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determining the distribution and composition of some vegetation types and is 

responsible for the extensive occurrence of grasslands in Southern Africa. In 

tropical savannahs (woodlands, bush lands and grasslands) fire is a common tool 

used to convert forestland to agriculture and forest plantations. During the 

burning, C is lost from the forest floor, whereas losses from the mineral soil layers 

depends on fire intensity, frequency and thickness of litter layers. In all cases, fire 

can become a source of CO2 emission to the atmosphere and alter net 

assimilation rates of the standing vegetation causing a decrease in the supply of 

organic matter and root-derived substrates to the soil (Duguy et al., 2007). Not 

only is CO2 lost but other soil nutrients are also either volatilised or transformed 

into ashes resulting in a net loss of nutrients through wind blow, erosion or 

leaching. In other natural systems, fires of low intensity are used to consume the 

under storey and part of the forest floor layers to prevent fuel build-up (Ferran et 

al., 2005). The fire events consume all forest floor material the severity of which 

depends on the intensity of the fire. High intensity fires can extend deeper into 

the mineral soil layers (Duguy et al., 2007) causing some alteration of soil physico-

chemical properties (Neary et al., 1999) and affecting soil nutrient fluxes and 

consequently C stocks.  

During and after a fire, in the short term soil fertility usually increases due 

to higher nitrogen and phosphorous availability in the soil solution. Increased pH 

and concentration of base cations  temporarily enhance soil respiration causing 

higher nitrogen mineralization and nitrification. The processes cause some areas 

as in the one year old stand not to show drastic decline in soil C and N stocks 

(Chapter 4). The magnitude of the nutrient flush depends on the temperature and 

duration of the fire and the amount of organic matter burned.  

In the 0–60 cm depth, the fLF, oLF and MaHF C and N were significantly 

lower in the miombo woodland and pine stands than in the moist forest. 

Generally, LF, oLF and MaHF C and N stocks declined consistently with increasing 

soil depth. Significant differences in LF C, oLF C and MaHF C were between the 

moist forest and the one year old pine stand at 0–20 cm depth, especially the top 

10 cm, whereas there was less change below 30 cm, indicating that labile fraction 

losses due to forest transition mainly occurred in the surface soils. This suggests 

that conversion of miombo woodlands and moist forest to pine plantations 
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significantly reduces fLF C, which may be attributed to a combination of factors 

including quantity of litter materials, microbial activity and management 

disturbances, which would change greatly with the forest conversion.  

Results suggest that net C storage is likely to occur in forested land and 

the ultimate fate of the wood products determines the final assessment of C 

sequestration potential.  For example, if the rotation age is extended or if the 

forest is not harvested, the C is sequestered for longer periods of time. 

Sequestration can also be long lived if trees are processed to sawn timber and 

used in construction of houses and these can last for decades. On the other hand, 

sequestration is short lived if trees are burned for firewood, or processed into 

paper. Tree residues can also be recycled into organic amendments for use in 

cropping systems. 

 

6.6 Modelling soil C stocks in Zimbabwean agro- ecosystems  

 

Future impact of land management practices can effectively be predicted by the 

use of observations in combination with models providing a means of evaluating 

the changing practices in the future. In the RothC soil C model decomposition 

processes are represented in three arbitrary SOM pools, which only vaguely relate 

to measurable SOC fraction, with specific turnover rates and an additional clay 

decomposition modification factor. Simulation modelling using the RothC model, 

showed good agreement between the simulated and observed SOC for 2010 in all 

treatments on sandy soils except the natural forest where the C was 

underestimated by 30%. On clayey soils, fertility treatments showed better 

agreement with small deviations than tillage treatments and natural forest. 

Highest measured SOC was found in natural forests on clayey soils whilst lowest 

was in control treatments of both tillage and fertility treatments. There may be 

many weaknesses and limitations of SOM models, since most were parameterised 

under particular management or climatic regions. Ideally SOM is affected by 

complex interactions which models do not account for such as parent material, 

pH, time, litter quality and biota management. Despite this shortfall, the 

modelling approach gives a guideline of C dynamics under a particular 

management system. The failure of RothC to account for some of these factors 
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may affect the accuracy of predictions. Furthermore, the theoretical 

compartments/pools of RothC model are difficult to match with measurable pools 

making it difficult to initialize the models and validate model-calculated results for 

the individual pools (Kutsch et al., 2009). Despite this disparity, there was good 

relationship between measured mineral associated heavy fraction and modelled 

HUM + IOM whereas the LF had a weak relationship with RPM.  

Under dry land conditions on the sandy soils of West-Africa, simulation 

model predictions using the CENTURY and RothC models suggested that 

conversion to no-tillage will result in small increases in soil C contents (0.1–0.2 t 

ha-1 year-1) (Farage et al., 2007). Only practices that entailed an increased input of 

organic matter, for example through agroforestry or manure, were predicted to 

result in large increases in soil C. Although it is often difficult to separate the 

effects, increases in modelled SOC are probably due to increased biomass 

production and retention in conservation tillage systems (RP and DS) rather than 

reduced or no-tillage supporting the arguments of Corbeels et al. (2006). 

 

6.7 Conclusion 

 

Any technology or practice that increases the photosynthetic input of carbon 

and/or slows the return of stored carbon to CO2  through respiration, erosion or 

fire has potential to store carbon and can be a potential C sink. Significant 

amounts of SOC can be stored in this way, through a range of practices, 

depending on local environmental conditions. Substantial amounts of vegetative C 

can also be stored in perennial plantings including agro-forestry systems. The use 

of conservation tillage, and use of manure and nitrogen fertiliser contribute to 

improving soil C status in cropping systems although the benefits of N fertiliser 

can offset by higher N2O emissions from soils and CO2 from production of 

fertiliser. Results of this study indicate that C storage varies with tillage and 

fertility amendments ranging from 15.3 to 32.0 and 4.0 -14.6 Mg ha-1 on clayey 

and sandy soil respectively. The difference in SOC content between native forests 

and croplands (50%) on sandy soils was less than the difference between native 

forests and croplands in clayey soils (16%). Although sandy soils showed a weaker 

greenhouse gas mitigation potential (shown by low potential of C storage) when 
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compared with clayey soils, results suggest that the no tillage system (DS) is the 

best management for C storage on sandy soil whilst the conventional tillage (CT) 

system is the worst. When conventional tillage is the only available option, the 

application of nitrogen fertiliser (Chapter 2) is more beneficial for increasing C and 

N stock. Significant differences in C and N storage in plantation stands were 

shown between the different age classes and natural forest stands at 0−10 cm and 

10−30 cm. However, when sampling deeper in the profile (below 30 cm), 

differences were not evident because of the increasing magnitude of random 

variation associated with a greater soil depth.  

Separation of SOM into discrete fractions has been successfully used to 

isolate changes in the structure and function of SOM pools in response to land 

management activities. The application of density fractionation has been limited 

in tropical soils of Africa. Three distinct SOM pools (free light fraction (fLF), 

occluded light fraction (oLF) and mineral associated heavy fraction (MaHF)) were 

isolated by density fractionation procedure for sandy and clayey soils in 

smallholder farming systems and on a Pinus patula age series. In all treatments 

the stocks of C and N were in the order oLF<fLF<MaHF. Each fractional 

component was higher under RP and DS than CT and higher under N Fert + 

manure than N fertiliser and control on clayey soil except oLF which was higher 

under control than manure. On sandy soils the three fractions were higher under 

DS than RP and CT and higher under N fertiliser than  N Fert + manure and 

control. 

The fLF contributed less to total soil mass, has a high C concentration and 

wider C:N ratios relative to the oLF and MaHF, a characteristics consistent with 

general trends in other findings. In conceptual models of SOM pools, the MaHF is 

assumed to be a more stable pool. Results show that, in cropping systems, 

planted forests and natural forests, soils can be isolated into distinct SOM 

fractions that are distinguished by their contributions to total soil mass, C and N 

storage. The fLF is of recent origin, while the MaHF is a more recalcitrant pool of 

SOM and the oLF is intermediate. Relative to the fLF, the oLF was the smallest 

fraction with respect to total soil mass and having a higher C:N ratios than MaHF 

but also having high C and N concentrations. This shows the extent of physical 

protection within aggregates and suggests that stability is a function of the 
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position of SOC within the soil matrix. If well protected, the oLF is less altered by 

microbial processing when compared to the fLF. We can infer from these patterns 

that mostly, the MaHF and to a lesser degree, the fLF and oLF all drive soil 

properties in the upper soil layers because of their contribution to soil mass and C 

concentrations, whereas at lower depths, the bulk soil was most similar to the 

dominating MaHF. 

The vertical distribution of fLF and oLF showed similar depth trends in soil 

mass, C concentration, C content, and C:N ratios. The C and N concentration and 

contribution to total soil mass decreased with increasing soil depth whereas there 

was no general depth trend in the C:N ratio. Distribution of fLF and oLF was 

consistent with their conceptual and functional roles of being relatively labile 

pools of SOM that are free and occluded within the soil matrix and that are poorly 

decomposed. While the fLF and oLF are critically important in the context of 

organic matter cycling and site productivity, their contribution to total C and N 

storage is small (average 6%). These pools are also much easier to manipulate 

using selected management practices than the MaHF. It is much easier to alter the 

rate and nature of inputs and controls on outputs in the upper soil layers than 

manipulating deeper soil layers. Cases where there is less SOC and TON in light 

fractions, suggest that the light fraction inputs were transformed rapidly into 

MaHF leading to more physically protected C and N in MaHF. Although fLF and oLF 

are often more sensitive to land management practices than TOC, in some soils 

there may be no significant difference between MaHF due to accruals in MaHF 

(Jastrow, 1996) resulting in rapid response of MaHF to management. 

In the 1, 10 and 25 year old plantation stands, the C:N ratio decreased with 

depth, while in the 20 and 30 year old stands, the C:N ratio decreased in both the 

free and occluded light fractions. Factors such as the preferential leaching and 

desorption of C from deep soil along with other processes may also play a role 

and account for some of the variability in C and N over the age sequence. 

Differences in the deeper mineral soil layers, in particular the 30–50 cm 

depth interval, are mainly driven by the MaHF fraction. The MaHF accounted for 

over 98% of the soil mass at 0-30 cm and over 85% of SOC below 30 cm. This 

shows that the contribution of the MaHF to total C and N storage also occurs 
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below 20 cm and yet depths beyond 20 cm are often overlooked in most studies 

examining changes in C and N storage in response to land management.  

There is also a need to obtain more data on long-term effects of different 

tillage systems on C and N dynamics for various agro activities in order to gain a 

full understanding of the C and N cycling. Understanding soil quality can help in 

the design of crop and soil systems for agricultural sustainability and should focus 

on further investigation under a more holistic approach.  

Charcoal and wood fuel use, logging, poor agricultural and land use 

practices will ultimately, continue to threaten forests unless alternative energy 

sources are utilised, alternative livelihoods are sought, and sustainable 

agricultural methods are employed on farmlands. Urban and peri-urban energy 

demand increases fuelwood and charcoal prices and demand eventually leading 

to deforestation unless alternative energy supply is provided. 

Finally, the discussions in his thesis suggest that cultivation, tree planting 

and forest conservation for carbon sequestration can become profitable if 

harmonised with other services for soil conservation, water quality, wildlife 

habitat, biodiversity and the environment. Although a hectare of forest may 

sequester more C than a hectare of crop land, tree plantations cannot be 

markedly expanded on cropland or woodlands without generating some costs to 

society. Opportunities for expanding carbon sequestration in tree plantations 

exists in marginal lands where rainfall is adequate. In Africa, REDD+ pilot projects 

have demonstrated that climate change mitigation through forest carbon 

payments can enhance the incomes of the rural poor, as well as increasing 

opportunities for adaptation and growth. Generally, payments for REDD+ and 

other ecosystem services have great potential in light of the diversity of schemes 

that are likely to emerge and the diversity of services likely to be obtained 

including potential positive impact on the environment. REDD+ has ability to save 

public and private sector funds by promoting a diversity of benefits, improving 

people’s livelihoods and having potential to reduce conflicts. Since C 

sequestration is best viewed as part of environmental benefits or costs, activities 

normally accrue to society as externalities. The focus on the monetary valuation 

and payment for environmental services can contribute to the attraction of 

political support for soil conservation. Developing countries therefore, need to 
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formulate enabling economic and institutional land management policies that 

have positive impacts on poverty alleviation, food security and environmental 

sustainability. The current initiatives for GHG mitigation show the need for 

synergy between sustainable development, climate change and environmental 

integrity  as a means for realisation of the mitigation potential of the agricultural 

sector. 
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SUMMARY 

Climate change adversely affects human livelihoods and the environment through 

alteration of temperatures, rainfall patterns, sea level rise and ecosystem 

productivity. Developing countries are more vulnerable to climate change because 

they directly depend on agriculture and natural ecosystem products for their 

livelihoods. Mitigation of climate change impacts includes practices that can store 

carbon (C) in soil and biomass thus, reducing concentrations of atmospheric 

carbon dioxide (CO2) and other greenhouse gasses. In addition, planted and 

natural forests that store large amounts of C, can become key resources for 

mitigating and reducing vulnerability to climate change, whilst infertile 

agricultural soils require large amounts of chemical and/or organic fertilisers to 

improve productivity. Increasing awareness about climate change mitigation has 

led to realisation of a need for sustainable land management practices and 

promoting soil C sequestration to reduce the greenhouse effects. 

 The C storage potential of agricultural soils is compounded by 

conventional tillage practices, covering large areas with only small portions of 

fields dedicated to conservation farming practices. Maintaining soil and crop 

productivity under these agricultural systems becomes a major challenge 

especially in rain-fed arid and semi-arid regions, characterised by long annual dry 

spells. Conservation tillage practices, such as no-till and reduced tillage, have been 

reported to increase soil organic carbon (SOC) stocks in agricultural systems as 

they reduce soil disturbance, whereas conventional tillage has been criticised for 

causing soil C losses, accelerating soil erosion and displacing of soil nutrients, 

despite benefits, such as reduced soil compaction, weed control and preparation 

of favourable seedbed, which have been reported under conventional tillage. The 

identification of appropriate agricultural management practices is critical for 

realisation of the benefits of Soil C sequestration and reducing emissions from 

agricultural activities.  

This thesis was planned to improve our understanding on how tillage, 

fertilisation, tree planting or natural forest conservation can enhance C 
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sequestration and thus mitigate climate change. The main goal was to quantify 

the influence of tillage, fertilisation and plantation forestry practices on C and N 

dynamics in bulk soil and density separated soil organic matter (SOM) fractions 

relative natural forest. Tillage treatments under reduced tillage (RP), no tillage 

(DS) and conventional tillage (CT) were compared with natural forests (NF) in 

sandy Haplic Arenosols and clayey Rhodic Ferralsols. Impacts of fertilisation were 

assessed from three fertility treatments; unfertilised control (control), nitrogen 

fertiliser (N Fert) and nitrogen fertiliser plus cattle manure (N Fert + manure) in 

conventionally tilled fields on Arenosols (sandy soil) and Luvisols (clayey soil) 

along two soil fertility gradients. Similarly, C and N storage in tree farming was 

studied using a Pinus patula chronosequence. Soil sampling followed randomised 

complete block design with four replications in agricultural systems and two 

replicates in each plantation age stands and natural forest. Sodium polytungstate 

(density 1.6 g cm-3) was used to isolate organic matter into free light fraction (fLF), 

occluded light fraction (oLF) and mineral associated heavy fraction (MaHF). 

Carbon an N were analysed by dry combustion and C and N stocks calculated 

using bulk density, depth and C and N concentration. The RothC model was used 

to match density separated fractions with conceptual model pools for agricultural 

and natural forest soils.  

Findings from tillage studies showed significantly larger C and N stocks in 

natural forests than tillage systems despite the open access use of the natural 

forests. The C and N stocks were significantly lower in sandy than clayey soils. At 

0–10 cm depth, SOC stocks increased under CT, RP and DS by 0.10, 0.24, 0.36 Mg 

ha−1yr−1 and 0.76, 0.54, 0.10 Mg ha−1yr−1 on sandy and clayey soils respectively 

over a four year period while N stocks decreased by 0.55, 0.40, 0.56 Mg ha−1yr−1 

and 0.63, 0.65, 0.55 Mg ha−1yr−1 respectively. Under prevailing climatic and 

management conditions, improvement of residue retention could be a major 

factor that can distinguish the potential of different management practices for C 

sequestration.  

Among the fertility treatments, there were significantly higher SOC and 

TON stocks under N Fert and N Fert + manure at 0-10 cm soil depth in Luvisols. 

Although this effect was not significant at 20-30 cm and 30-50 cm depth. On 

Arenosols, N Fert had highest C and N at all depths except at 0-10 cm. The storage 
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of C and N on Luvisols, followed: control < N Fert < N Fert + manure whereas 

Arenosols had control < N Fert + manure < N Fert. Compared with control, N Fert 

and N Fert + manure enhanced fLF C on homefields and outfields by 19%, 24% and 

9%, 22% on Luvisols and 17%, 26% and 26%, 26% respectively on Arenosols. 

Homefields on Luvisols, under N Fert and N Fert + manure had similar equilibrium 

levels, which were 2.5 times more than control. 

Forests play a major role in regulating the rate of increase of global 

atmospheric CO2 storing C in soil and biomass although the C storage potential 

varies with forest type and plant species composition. In this research, storage of 

C and N were highest in moist forest and lowest in the Miombo woodland. In both 

natural and planted forests, above ground tree biomass was the major ecosystem 

C pool followed by forest floor’s humus (H) layer. The mineral soil had 45%, 31% 

and 24% of SOC stored at the 0–10, 10–30 and 30–60 cm soil depths respectively. 

Stand age affected C and N storage significantly having an initial decline after 

establishment recovering rapidly up to 10 years, after which it declined and 

increased again by 25 years. Average soil C among the Pinus compartments was 

12 kg m-2, being highest at 10 years and lowest in the 1 year old stands. Organic N 

was also highest at 10 years and least at 25 years. The proportional mass of fLF 

and oLF in Miombo woodlands was similar while the other stands had higher fLF 

than oLF. The highest LF was in the moist forest. In the Pinus patula stands the fLF 

C contributed between 22−25 , the oLF C contributed 8−16  and MaHF C 

contributed between 60−70  to total SOC. Carbon in MaHF and oLF increased 

with depth while the fLF decreased with depth in all except the 1 and the 10 year 

old stands. Conversion of depleted Miombo woodlands to pine plantations can 

yield better C gains in the short and long run whilst moist forests provide both 

carbon and biodiversity. Where possible moist forests should be conserved and 

enrichment planting done in degraded areas to sustain them and if possible the 

forests can be considered as part of future projects on reduced emission from 

deforestation and degradation (REDD+). It is believed that REDD+ can promote 

both conservation and socio economic welfare, including poverty alleviation by 

bringing together the development of the forest and climate change link in African 

forests and woodlands. The focus on the monetary valuation and payment for 

environmental services can contribute to the attraction of political support for soil 
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conservation. Developing countries therefore, need to formulate enabling 

economic and institutional land management policies that have positive impacts 

on poverty alleviation, food security and environmental sustainability. 

Soil C models are used to predict impacts of land management on C 

storage. The RothC 2.63 model was used for estimating SOC stock under selected 

land management practices on the clayey and sandy soils of Zimbabwe. There is 

greater potential to store more C in clayey soils than sandy soils and in practices 

that receive more organic inputs. Results show that the RothC model pool of HUM 

+ IOM is related to the measured MaHF from density fractionation and that the 

model can be used to estimate SOC stock changes on Zimbabwean agricultural 

and forest soils. The relationship between equilibrium levels estimated by the 

RothC model and those estimated using the Langmuir equation was good. A 1.5˚ C 

rise in temperature was found to cause the A and B systems on clayey soils to 

sequester more C. The results also show that, when holding all the other factors 

constant, the model is sufficiently sensitive to a rise in temperatures with sandy 

soils reaching an equilibrium much earlier than clayey soils. The modelling 

approach represents one of the most promising methods for the estimation of 

SOC stock changes and allowed us to evaluate the changes in SOC in the past 

period on the basis of measured data. However, since the data were obtained 

from short term experiments (4−9 years), further ground validation can be 

hampered by the lack of long-term experimental trials in the southern African 

region. The deficiency of adequate experimental sites also limits further work on 

model uncertainties. The understanding soil quality and dynamics however, helps 

to design sustainable agricultural systems, while achieving the urgently needed 

win-win situation in enhancing productivity and sequestering C. 
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SAMENVATTING 

Klimaatverandering heeft een negatief effect op het welzijn van mensen en op het 

milieu door veranderingen van temperatuur, neerslagpatronen, zeespiegelstijging 

en ecosysteem productiviteit. Ontwikkelingslanden zijn kwetsbaarder voor 

klimaatverandering omdat ze meer afhankelijk zijn van landbouw en natuurlijke 

ecosysteem producten voor levensonderhoud. Tegengaan van de gevolgen van 

klimaatverandering omvatten maatregelen zoals het opslaan van koolstof (C) in 

biomassa en bodem waarmee de concentraties van atmosferische CO2 en andere 

broeikasgassen verlaagd worden. Bovendien, plantages en bossen die grote 

hoeveelheden C opslaan kunnen belangrijke mogelijkheden bieden om de 

kwetsbaarheid door klimaatverandering te verminderen. Daarnaast vereist 

onvruchtbare landbouwgrond grote hoeveelheden anorganische of organische 

meststoffen om de productiviteit te verbeteren. Een toenemende bewustwording 

m.b.t. klimaatverandering heeft geleid tot de realisatie dat er behoefte is aan 

duurzame land managementpraktijken en de bevordering van opslag van C in de 

bodem om de effecten van broeikasgassen te verminderen. 

Het C-opslag potentieel van landbouwgrond is afgenomen door 

conventionele grondbewerkingsmethoden die betrekking hebben op grote 

gebieden. Alleen op kleine arealen worden duurzame landbouwmethoden 

toegepast. Behoud van bodem en gewas productiviteit onder conventionele 

landbouwsystemen wordt een grote uitdaging met name in de regen-gevoede 

droge gebieden die gekenmerkt worden door lange jaarlijkse droge perioden. 

Duurzame grondbewerkingsmethoden, zoals “zonder-ploegen” en gereduceerde 

bodembewerking kunnen de bodem organische koolstof (SOC) voorraden 

verhogen in omdat ze de verstoring van de bodem verminderen. Conventionele 

grondbewerking wordt bekritiseerd door het veroorzaken van bodem C verliezen, 

het versnellen van de bodemerosie en het verlies van nutriënten ondanks de 

voordelen zoals verminderde bodemverdichting, onkruidbestrijding en toename 

van nutriëntbeschikbaarheid aan het begin van het groeiseizoen. De vaststelling 

van goede landbouwmethoden is cruciaal voor de verwezenlijking van de 
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voordelen van de bodem C opslag en daarmee de vermindering van emissies als 

gevolg van landbouwactiviteiten. 

Dit proefschrift heeft als doel om onze kennis te verbeteren m.b.t. hoe 

grondbewerking, bemesting, het planten van bomen en bosmanagement kunnen 

bijdragen aan de verbetering van C opslag in de bodem. Het voornaamste doel 

was het kwantificeren van de invloed van grondbewerking, bemesting en plantage 

bosbouwpraktijken op C en N dynamiek in de bodem en op afzonderlijke bodem 

organische stof fracties. Verschillende grondbewerkingsmethoden, zoals 

“verminderde grondbewerking” (RP), geen grondbewerking (DS) en conventionele 

grondbewerking (CT) werden vergeleken met natuurlijke bossen (NF) in Haplic 

Arenosols en Rhodic Ferralsols. Effecten van bemesting werden beoordeeld door 

middel van drie behandelingen; onbemest (controle), stikstof toediening (N Fert) 

en stikstof toediening plus organische (vee) mest (N Fert + mest) in conventioneel 

bewerkte velden op Arenosols (zandige grond) en Luvisols (kleiachtige bodem) 

langs twee bodemvruchtbaarheidsgradiënten. Koolstof en N opslag in plantages 

werd ook bestudeerd met behulp van Pinus patula opstanden met oplopende 

ouderdom. Grondmonstername was gebaseerd op een gerandomiseerde volledig 

blokontwerp met vier herhalingen in de landbouwsystemen en twee herhalingen 

per plantage opstandleeftijd en in de oorspronkelijke bossen. Natrium 

polytungstate (dichtheid 1.6 g cm-3) werd gebruikt voor het isoleren van bodem 

organisch materiaal in de vrije lichte fractie (fLF), beschermde lichte fractie (oLF) 

en de mineraalgebonden fractie (MaHF). Koolstof en N werden geanalyseerd door 

droge verbranding in een “CN analyser” en C en N voorraden berekend aan de 

hand van bodemdichtheid, diepte en C en N concentratie. Het RothC model werd 

gebruikt om gemeten bodem organische stoffracties te vergelijken met 

conceptuele bodemkoolstofvoorraden in landbouw- en bosbodems. 

Bevindingen uit grondbewerkingsstudies lieten aanzienlijk grotere C en N 

voorraden zien in natuurlijke bossen dan in landbouwsystemen ondanks de open 

toegang en het gebruik van natuurlijke bossen. De C en N voorraden waren 

beduidend lager in zandige dan in kleiige bodem. Op 0–10 cm (diepte), SOC 

voorraden stegen onder CT, RP en DS met 0.10, 0.24, 0,36 Mg ha−1yr−1 en 0.76, 

0.54, 0,10 Mg ha−1yr−1 op zandige en kleiige bodems respectievelijk over een 

periode van vier jaar terwijl N voorraden respectievelijk daalden met 0,55, 0.40, 
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0.56 Mg ha−1yr−1 0.63 en 0,65, 0.55 Mg ha−1yr−1. Onder het huidige klimaat en 

bodembeheer zou verbetering van het behoud van gewasresten een belangrijke 

factor zijn die het potentieel van verschillende C-opslagmethoden zou kunnen 

verbeteren.  

Bemestingsproeven liet aanzienlijk hogere SOC en TON voorraden zien 

onder N Fert en N Fert + mest op 0-10 cm (diepte) in Luvisols. Hoewel dit effect 

niet significant was op 20-30 cm en 30-50 cm (diepte). In Arenosols, N Fert gaf de 

hoogste C en N waarden op alle diepten behalve op 0-10 cm. De opslag van C en N 

in Luvisols volgde van laag naar hoog: control < N Fert < N Fert + mest. Terwijl in 

Arenosols de volgorde was: controle < N Fert + mest < N Fert. In vergelijking  met 

controle, N Fert en N Fert + mest vergrootte fLF C op homefields en outfields met 

19%, 24% en 9%, 22% op Luvisols en 17%, 26% en 26%, 26% respectievelijk op 

Arenosols. Homefields op Luvisols, onder N Fert en N Fert + mest hadden 

vergelijkbare FLF niveaus die 2,5 keer groter waren dan in de controle velden. 

Bossen spelen een belangrijke rol bij het reguleren van de stijging van 

mondiale atmosferische CO2 door het opslaan van C in bodem en biomassa, 

hoewel het C-opslag potentieel per bos type varieert. In dit onderzoek, opslag van 

C en N waren het hoogst in vochtige bossen en het laagste in het Miombo-bos. In 

zowel natuurlijke als aangeplante bossen, de bovengrondse biomassa bevatte de 

grootste C voorraad gevolgd door de humus (H) laag van de bosbodem. De 

minerale bodem had 45%, 31% en 24% SOC opgeslagen op 0–10, 10–30 en 30–60 

cm bodemdiepte. Bosopstand leeftijd beïnvloed aanzienlijk. Na een aanvankelijke 

daling na initiatie volgde een toename van C en N opslag rond de leeftijd van 10 

jaar met een verdere stijging tot 25 jaar. Gemiddelde bodem C onder de Pinus 

percelen was 12 kg m-2 na tien jaar met de laagste C waarden na 1 jaar. 

Organische N was ook het hoogste na 10 jaar en het minste na 25 jaar. De 

hoeveelheid C in fLF en oLF was ongeveer gelijk in Miombo-bos, terwijl in de 

andere bosopstanden meer fLF dan oLF aanwezig was. De hoogste LF was in het 

vochtige bos. In de Pinus patula opstand, fLF  bevatte tussen 22−25  , de oLF 

8−16  en MaHF 60−70  tot het totaal SOC. Koolstof in MaHF en oLF steeg met 

diepte, terwijl de fLF met diepte afnam behalve in de 1- en 10-jarige opstanden. 

Conversie van verarmd Miombo-bos naar Pinus plantages kan betere C-opslag op 

de korte en lange termijn opleveren terwijl vochtige bossen zowel meer koolstof 
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opslag  en biodiversiteit bieden. Waar mogelijk moeten vochtige bossen worden 

behouden en aangetaste gebieden zouden deels aangeplant kunnen worden en 

indien mogelijk zouden de bossen kunnen worden beschouwd als onderdeel van 

toekomstige projecten die gericht zijn op verminderde uitstoot door het 

voorkomen van ontbossing en degradatie (REDD+). In het algemeen kan gesteld 

worden dat REDD+ zowel de kwaliteit van het milieu en sociaal economische 

welvaart kan bevorderen, met inbegrip van armoedebestrijding, door het 

samenbrengen van de ontwikkeling van het bosgebieden en het tegengaan van 

klimaatverandering. Aandacht voor monetaire waardering en de betaling voor 

ecosysteemdiensten kan bijdragen aan de toename van politieke steun voor 

bodembescherming. Ontwikkelingslanden moeten daarom economische en 

institutionele beleidsregels opstellen voor landgebruik met het doel positieve 

effecten te hebben op armoedebestrijding, voedselzekerheid en ecologische 

duurzaamheid. 

Bodem C modellen worden gebruikt om de gevolgen van veranderend 

landgebruik op C-opslag in de bodem te voorspellen. Het RothC 2.63 model werd 

gebruikt voor het schatten van SOC voorraad onder geselecteerde vormen van 

landgebruik op kleiige en zandige bodems van Zimbabwe. Er is een groter 

potentieel om C op te slaan in kleiige bodems dan in  zandige bodems en onder 

landgebruik waarmee meer organische stof wordt ingebracht. Resultaten tonen 

aan dat de in het RothC model gebruikte C voorraden “HUM + IOM” gerelateerd 

zijn aan de gemeten MaHF voorraad, en dat het model gebruikt kan worden om 

veranderingen in de SOC voorraad in Zimbabwaanse landbouw- en bosbodems te 

schatten. De relaties tussen evenwichtsniveaus geschat door het RothC-model en 

die geschat met behulp van de vergelijking Langmuir waren goed. Een 

gesimuleerde stijging van de temperatuur met 1.5˚ C veroorzaakte in systemen op 

kleiige bodems een toename van C-opslag. De resultaten toonden ook aan dat 

wanneer alle andere factoren constant gehouden worden, het model voldoende 

gevoelig is t.a.v. een stijging van de temperatuur waarbij met zandige bodems een 

nieuw evenwicht eerder bereikt wordt dan met kleiige bodems. Het gebruik van 

modellen vertegenwoordigt een van de meest veelbelovende methoden voor het 

schatten van veranderingen in SOC en geeft de mogelijkheid om veranderingen in 

SOC voorraad te evalueren op basis van gemeten data. Echter, aangezien de 
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bodem C data werden verkregen uit korte termijn experimenten (4−9 jaar) is 

lagere termijn voorspelling beperkt door het ontbreken van lange termijn 

meetreeksen in de regio zuidelijk Afrika. Ook het tekort aan geschikte 

experimentele proefvelden beperkt verdere werkzaamheden m.b.t. 

modelonzekerheden. Meer begrip van de kwaliteit en dynamiek van de bodem is 

van belang bij het ontwerpen van duurzame landbouwsystemen waarbij zowel 

het verbeteren van productiviteit en het vastleggen van bodem C een “win-win” 

situatie oplevert. 
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