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Abstract 

 

 

Predictive modelling of land use change combined with GIS comprise a set of indispensable 
tools to describe land use change processes, manage land use efficiently and predict possible 
land use changes. However, the inevitable uncertainties in spatial data and land use change 
model will propagate through the model and cause uncertainties in the model outputs. These 
uncertain results may be used to support decision making, which may cause unwanted 
results if the uncertainties in model inputs are significant to the application. Therefore, the 
accuracy of the model results need to be quantified and analysed to ensure that the 
uncertainties in the model outputs can be accounted for in further analysis and decision-
making. 

In this thesis research, spatial uncertainty propagation analysis was performed to evaluate the 
effect of uncertainties associated with input data on predictions of land use change made by 
the CLUE-S (Conversion of Land Use and its Effects at Small regional extent) model in the 
Kuala Lumpur region in Malaysia, which has been undergoing rapid developments since the 
early 1980's and where urbanization has dramatically changed land use and land cover in the 
region and the area around. The analysis included identification of important sources of 
input uncertainty, quantification of these uncertainties, propagation of the uncertainties to the 
land use change predictions, and analysis of the results of the uncertainty propagation.  

Elevation (and the slope derived from it) and the travel time to sawmills, important towns 
and highways in general were identified as important uncertain inputs. Uncertainties in the 
Digital Elevation Model (DEM) were simulated using geostatistical methods that take spatial 
correlation into account. The required parameterization was done using the USGS 7.5 
minute DEM documentation and using results from other studies. Uncertainties in travel 
times were also simulated using a pseudo random number generator. In this way normally 
distributed errors were generated with a mean equal to the average speed. The standard 
deviations of the errors in travel speed were specified using expert knowledge. 

Next, quantified input uncertainties were propagated through the CLUE-S model to the 
predicted land use maps. Land use change prediction models are complex non-linear models 
and it is therefore not feasible to analyze error propagation with analytical methods. Instead, 
the Monte Carlo method was used. The idea of the Monte Carlo method is to compute the 
result of the model repeatedly, with uncertain input values randomly sampled from their 
joint probability distribution. The model results form a random sample from the distribution 
of the model output, so that parameters of the distribution, such as the mean and the variance, 
can be estimated from the sample.  

Finally, the results of the spatial uncertainty propagation were analysed using Shannon’s 
information entropy, confusion matrices and three land use fragmentation indices ('total area', 
'clumpiness index' and 'perimeter to area ratio'). The results of the uncertainty analysis were 
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compared with a reference land use map and with the default result of the CLUE-S model, 
which was obtained using error-ignored inputs. 

Overall, the propagated uncertainty in the predicted land use was small. DEM uncertainty 
caused substantial uncertainty in only a small part of the study area (i.e., the islands with 
mangrove forests that became partially urbanized). Elsewhere, the effects of DEM 
uncertainty were limited and the results were similar to the results obtained with the error-
ignored DEM. Uncertainty in travel times affected a larger part of the study area. A 
comparison of the CLUE-S results with the reference land use map suggests that other 
sources of uncertainty also have an important contribution to the accuracy of the predicted 
land use. Uncertainty analysis of model settings and model parameters is therefore needed to 
gain a better understanding of the uncertainties involved with predicting land use change in 
the Kuala Lumpur region.  

 

 

Keywords: Uncertainty propagation, CLUE-S model, Monte Carlo simulation, Digital 
Elevation Model, land use change, Shannon’s information entropy, fragmentation index 
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CHAPTER 1 
INTRODUCTION 

1.1 General background 
As pressure on already limited land resources continues to grow, there is a growing demand 
to predict future land use change, so that measures can be taken to manage land use 
efficiently and prevent unwanted land use change or excessive use of land resources. 
However, land use change is a complex and dynamic process, whereby a large variety of 
driving factors influence the process. These factors not only include biophysical factors 
(such as elevation, temperature and soil type) but also include socio-economic factors (such 
as population density and market value of crops). Some factors act slowly and often 
obscurely over centuries (such as rock type), while other trigger events quickly and visibly 
(such as land use policy change and nature disaster). In any case, many driving factors are at 
work, sometimes operating independently but simultaneously, sometimes operating 
synergistically. The complexity makes predicting land use change a very difficult and 
demanding task and often inaccurate (Meyer and Turner 1994; Burrough and McDonnell 
1998). 

Following the development of geographical information systems (GIS) in the 1990s’, along 
with the development of computer technology and mathematical tools for describing and 
resolving spatial problems, predictive modeling of land use change combined with GIS 
became a useful tool to help people managing, monitoring and predicting land use change 
(Burrough and McDonnell 1998).  

The driving factors and land use maps are represented by two distinct formalized conceptual 
spatial data models in a GIS, object model and field model. In an object model, geographical 
world is represented as discrete entities. Although object model can be conveniently 
modeled by vector data using three basic geographical data primitives: point, line and 
polygon, and further specified by their attributes and geographical locations, it can also be 
modeled by raster data (as is the case for the road network in this thesis). The field model 
represents geographical phenomena by fields of attribute values. The attribute is usually 
assumed to vary continuously over space (Burrough and McDonnell 1998). Uncertainties are 
an integral part of geographical information and the way geographical information is 
modeled in GIS. A GIS built upon discrete objects is largely limited to primitive geometric 
operations that create new objects or compute relationships between objects while fields 
provide the alternative conceptualization of geographical phenomena, since they lend 
themselves naturally to the modeling of continuously varying, multivariate, and dynamic 
phenomena (Zhang and Goodchild 2002).  

The rapid population increase and developments of the Kuala Lumpur region in the last two 
decades have caused dramatic land use and land cover changes in this region and the 
surrounding area. A predictive model of land use change -- the Conversion of Land Use and 
its Effects at Small regional extent (CLUE-S) modeling framework (Verburg and Veldkamp 
2004) was used to simulate the land use change process and to predict the further land use 
change. The result of the model prediction can be used to facilitate land use management and 
support decision-making process.  
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1.1.1 Urbanization in the Kuala Lumpur region 
The Federal Territory of Kuala Lumpur, located in the Selangor province in the mid-western 
part of Peninsular Malaysia, is 24,612 hectares in size. It has a population of 1.37 million 
people, which represent about 6% of the country’s total population (in 1999). The 
importance of this region is reflected by its dominant position in the Malaysian economy. 
Together with its surrounding regions, they contribute about 28% of the gross domestic 
product (GDP) within an area occupying only 1.3% of the total area of Peninsular Malaysia 
(Kraim 1998).  

The Kuala Lumpur region has been undergoing rapid developments since the early 1980's. 
The developments extended well beyond the boundary of the Territory, into the surrounding 
regions of the Selangor province. This caused intensive land use change, including merging 
several towns, development of new research institutions, construction of the new Kuala 
Lumpur International Airport, establishment of recreational facilities and building of a 
government administrative center (Kraim 1998).  

The major land use types in the Kuala Lumpur region are agriculture, built-up areas and 
forest. The main agricultural crops are oil palm, natural rubber, coffee, cocoa and coconut 
(Kraim 1998). 

Urbanization in the Kuala Lumpur region has dramatically changed land use and land cover 
in the region and the area around. To be able to utilize natural resources efficiently and 
mitigate the negative influences caused by urbanization to the local environment, it is 
important to understand the process of urbanization, and therefore be able to explain and 
predict future land use change. This knowledge is crucial to support decision-making. Due to 
the complex and dynamic nature of the urbanization process, a land use change model 
combined with GIS is an indispensable tool. 
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1.1.2 Land use change modeling with the CLUE-S model 
The CLUE-S modeling framework is developed for spatially explicit simulation of land use 
change on a regional scale. The model is based on an empirical analysis of observed land use 
change trends combined with competition and interactions between the spatial and temporal 
dynamics of land use systems (Verburg, Soepboer et al. 2002). The land use change 
prediction procedures of the CLUE-S model are shown in Figure 1.1 (Verburg 2004). 

The CLUE-S modeling framework consists of two independent models, a non-spatial 
demand model and a spatially explicit allocation model. The demand model is used to 
calculate the land use demands of all land use types in an aggregate level, on a yearly basis. 
The demands can be calculated using a simple extrapolation of historical data or complex 
socio-economic models. The spatial allocation procedure then allocates each land use type 
considering four categories of constraints (Verburg, Soepboer et al. 2002). The four 
categories of constraints are:  

Constraint 1 Land use requirements (demands) 
Demands are calculated in the non-spatial model. The total area (total number of cells * 
cell size) of a land use type must equal (within specified tolerance) to the demands for 
each time step. 

Constraint 2 Spatial policies and restrictions 
There are two types of spatial policies and restrictions considered in the CLUE-S model. 

Constraint 2.1 Protected area where land use change is not allowed 
This includes the establishment of protection zones where land use change is not 
allowed.  

Constraint 2.2 Spatial policies that restrict certain types of land use conversions  
The conversions restricted by a certain spatial policy are indicated in a land use 
conversion matrix. For example, residential constructions are not allowed to take place 
in designated agricultural areas or forest reserves. 

Constraint 3 Land use type specific conversion settings 
Two sets of parameters, conversion elasticity and land use conversion settings and 
transition sequence, are used together to model the real world land use conversion process. 

Constraint 3.1 Conversion elasticity  
Conversion elasticity represents the reversibility of land use change. Land use types that 
need higher capital investment have higher conversion elasticity. When the demands for 
those land use types that have higher conversion elasticity do not decrease, they are 
relatively more difficult to be converted into other land use types. Conversion elasticity 
ranges from zero (easy conversion) to one (irreversible change). Conversion elasticity 
for each land use type is specified in a land use conversion elasticity table.  

Constraint 3.2 Land use conversion settings and transition sequence  
Land use conversion settings control the availability of land use change. If a land use 
change is allowed, the transition sequence describes the temporal characteristics of land 
use conversions (how many time steps does it take for a land use type to be converted 
into other land use types, the maximum time steps that a land use type can stay the 
same, et cetera.). Land use transition sequences are specified in a conversion matrix.  
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Constraint 4. Location characteristics  
Location characteristics ensure that land use conversions take place at the most preferable 
locations for a specific land use type at a time step. A binomial logit model is used to 
determine whether to convert a location into a certain land use type or not.  

 

 These four categories of constraints together create a set of conditions that model the real 
world land use change process. The model calculates the most probable locations for land 
use change through an iterative procedure. 

 

Given an original land use map and a set of constraints, the most probable land use type for 
each grid cell is computed according to the allocation procedure (Verburg, Veldkamp et al. 
2004).  

First, all grid cells that are allowed to change are determined. Then, a preliminary allocation 
is made by allocating the land use types with the largest total probability using an equal 
value of the iteration variable. The total allocated area for each land use type is then 
compared with the demand, if it is not equal to the demand, the iteration variable is changed 
and cells are allocated again until the demand is finally met. Through this procedure, it is 
possible that the local suitability based on the location factors is overruled by the iteration 
variable due to the demands. 

 

With the ability to incorporate both socio-economic and biophysical factors for spatial 
explicit prediction of land use change, the CLUE-S model is a valuable tool to support 
decision-making. However, spatial data and land use change models are simplifications of 
the real world phenomena; therefore, they inevitably contain errors. To ensure acceptable 
accuracy for the model predictions made by the CLUE-S model, it is important to analyze 
how errors propagate through the model and affect the predictions. 
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Figure 1.1 Land use change prediction procedures of the CLUE-S model 
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1.2 Problem definition 
As the advance of computer technology and pervasive use of geographical information 
system, predictive modeling of land use change combined with a GIS has become a common 
practice to manage limited land resources, monitoring land use change process and predict 
further land use changes to facilitate decision-making on environmental policies. Spatial data 
are regularly used as inputs (either as original land use map or driving factors) of predictive 
modeling of land use change. Through a set of GIS operations, predictive modeling of land 
use change generates the result that shows the predicted land use distribution in the future. 
Such a result is often used by decision-makers and city-planners to support decision-making 
process. Clear-cut decisions often have to be made based on the result.  

However, an important aspect of the result has often been overlooked -- the quality of the 
result made by predictive modeling of land use change. Spatial data contain inherent 
uncertainties due to for instance our vague definition of some of the geographical 
phenomena and measurement uncertainties. Predictive models of land use change 
themselves also contains inherent uncertainties such as those caused by the inevitable 
simplification and abstraction needed to represent the real world geographical phenomena. 
The combined effect of uncertainties in spatial data and models themselves will propagate 
through the model, and affect and accuracy and of the output. Yet, due to the (falsely) high 
precision and aesthetically pleasing graphics of modern GIS, it is easier to get a false illusion 
about the quality of the output. For some applications, the uncertainties in output are not 
significant enough to cause problem, but for other applications, uncertainties in output may 
have unexpected effects.  

Since land use change prediction models are complex non-linear models, the quantification 
of uncertainties in the model output is not a simple adding of the uncertainties in the inputs. 
Some of the questions involved that need to be considered are listed. Firstly, the causes of 
uncertainties in spatial data and models are so numerous; it is not straightforward to identify 
the sources of uncertainty that are essential for the application. Secondly, correlations may 
exist between uncertainties in different inputs. Last by not least, predictive models of land 
use change are seldom liner and involve many computations; the traditional analytical 
uncertainty propagation methods are not suitable to propagate the uncertainties to the output 
due to the assumptions involved for the analytical methods and numerical complexity.  

On the other hand, there are growing demands to have an understanding of the level of 
uncertainties in the model output, giving the uncertainties in the inputs and model itself. 
Given such information on, for example, the most important and uncertain inputs to the 
model, the sensitivity of the model to the uncertainties in the model inputs and the amount of 
uncertainties in the model output, et cetera, the uncertainties in the model outputs can be 
accounted for in decision-making process and further analysis, and efforts could be directed 
to improve the accuracy that are most important and uncertain to the model in case the 
uncertainties in the model outputs are significant for the application and the accuracy need to 
be improved.  

To evaluate the uncertainties in the model result, uncertainty propagation analysis can be 
performed to identify sources of the uncertainties, quantify the uncertainties, propagate the 
uncertainties to the result, and analysis the result of the uncertainty propagation. 



 

7 

1.2.1 Identification of error sources 
Errors in model output can originate from two sources: errors in inputs and errors in model. 

Errors in model  
There are inevitable errors exist in model since model is a simplification and abstraction of 
the real world land use change process, which is a complex process and involves many 
driving factors (both socioeconomic and biophysical). Which aspect is simplified, abstracted, 
and represented by the model is dependent on the focus of the model and application. In 
practice, only the key processes that are important to the application are modeled by a set of 
GIS operations. Model uncertainty includes uncertainties in the structure of the model 
(conceptual or logical uncertainties), uncertainties in model parameters and uncertainties in 
the solution of the model(Brown and Heuvelink 2004a). 

Errors in model parameters 
Model parameters are specified by users according to the application, so that they fit in a 
particular situation. However, in practice it is difficult to specify correct values because 
models are approximation of reality. Individuals may also have different perceptions on what 
are the appropriate values according to their discipline and focus.  

Errors in model structure 
Uncertainties in model structure may originate from a lack of knowledge about the real 
processes of land use change. Important processes may be overlooked. Errors in model 
structure may also be caused by the simplification and abstraction of the land use change 
process. When less important processes and driving factors are ignored, they become a form 
of uncertainty. Model structure uncertainties are more difficult to quantify than uncertainties 
in inputs and model parameters, although in practice they may be more important than 
parameter uncertainty in evaluating the uncertainty in the model output (Brown and 
Heuvelink 2004a). 

The combined effects of errors in model parameters and model structure will propagate 
through the model and affect the accuracy of the model results (Brown and Heuvelink 
2004a). 
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Errors in inputs 
Various errors exist in inputs, these errors are introduced during the process the real world 
geographical phenomena are abstracted and simplified by spatial data. Our vague definition 
on the real world geographical phenomena, the limitation of measurement instruments and 
human factors can also cause errors.  

Conceptual level 
At a conceptual level, errors occur from our definition of the geographical phenomena. 
Many commonly used geographical terms such as ‘mountain’, ‘river’, ‘towns’ and ‘lake’ are 
loosely defined. Different terms can be used for different levels of resolution, and their exact 
form and extent may also change with time (Burrough and McDonnell 1998). 

Temporal accuracy 

The spatial and thematic component of the real world phenomena change with time (Veregin 
1999). However, geographical data only record them for a certain period at particular 
locations. When time passes by and the spatial and thematic information of the real world 
phenomena change, errors will arise on the spatial data that are originally recorded. For 
example, road map is often used as input for predictive modeling of land use change, when 
its spatial and thematic value changed during the prediction period while not updated on 
time, errors arise in the input and propagate through the model causing uncertainties in the 
output. 

Measurement, sampling and interpolation error 
All spatial data inevitably contain measurement errors due to the limitation of the measuring 
instruments, methods used for measuring (direct measurement or secondary source) and 
experience of the personnel who conduct the measurement, et cetera.  

For practical reasons such as the cost and time for collecting data, data for large areas or of a 
long time-span are often obtained by measuring at selected locations and interpolating to the 
entire area. The errors introduced in this process depend on the sampling density, the 
algorithms used to interpolate the data and the degree of spatial variability in the interpolated 
variable.  

Classification error 
The initial land use map is essential input for predictive modeling of land use change. The 
initial land use map is usually obtained by remote sensing techniques. A typical type of error 
for remotely sensed images is classification error. The magnitude and character of the 
classification error is related to the methods, algorithms used and the characteristics (e.g. 
spectral signature, pattern) of the land use under examination.  

Scale issue 
Errors in input data are strongly related to the scale of the application. Detailed information 
may be lost if data are aggregated to a more general level.  
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1.3  Research objectives 
The objective of this thesis work is to analyze how the most important uncertainties in input 
data propagate to the CLUE-S model predictions of land use change in the Kuala Lumpur 
region. 

To achieve the objective, several research questions should be answered:  

1. What are the most important uncertain inputs in the CLUE-S model when applied to 

the Kuala Lumpur region? 

2. How to identify and quantify the uncertainty in the selected uncertain inputs? 

3. What is the contribution of the individual selected uncertain inputs to the output 

uncertainty? 

4. Which input uncertainty should be reduced in order to improve the accuracy of the 

land use change predictions made by the CLUE-S model? 

 

1.4 Thesis outline 
Chapter 2 introduces the methods used to select uncertain inputs and to quantify the 
uncertainties. The Monte Carlo method was used to propagate the uncertainties to the output.  

In chapter 3, the methods described in chapter 2 were applied to the Kuala Lumpur region 
case study and the results are presented. Shannon’s information entropy map, confusion 
matrices and fragmentation indices were used to analyze the results of the uncertainty 
propagation. 

Chapter 4 discusses and compares the results of analysis presented in chapter 3. The results 
using uncertain DEM and uncertain travel speed are discussed and compared with the default 
result of the CLUE-S model using error-ignore inputs, with the validation map and with each 
other. The difference between the model outputs using error-ignored and error-perturbed 
inputs and using different types of uncertain inputs are interpreted and explained.  

Chapter 5 presents the conclusions of the thesis research.  



 

10 

CHAPTER 2 
METHODOLOGY OF SPATIAL UNCERTAINTY PROPAGATION 

ANALYSIS  

At the beginning of the uncertainty analysis problem is to effectively identify the uncertain 
inputs that are important to the application. The criteria used for selection are presented in 
section 2.1. 

2.1 Selection of uncertain inputs  
Selection of uncertain inputs was based on the following criteria:  

1. Magnitude of uncertainty 

The inputs selected should have relatively large uncertainties. The assessment can be 
based on available data, literature review of similar studies or expert judgment. 

2. Model sensitivity 

The model should be sensitive to the uncertain inputs selected. The selection could be 
based on a sensitivity analysis. Sensitivity analysis was performed by changing the 
values of the inputs (with relatively the same amount) one at a time while keeping others 
constant and observing the corresponding change in the model output. The most 
sensitive input is the one that causes the largest change in the model output. 

2.2 Quantification of uncertainties 
After uncertain inputs are identified, the errors associated with them need to be 
quantitatively defined.  

2.2.1 Definition of error model 
Error is defined as the discrepancy between the ‘true’ value of the real world phenomena and 
the representation of it, and expressed in Equation 2.1 (Heuvelink 1998): 

( ) ( ) ( )xrxtxe −=  (2.1) 

where t(x) is the ‘true’ value of a spatial attribute 

r(x) is the representation of the ‘truth’ 

e(x) is the error  

Since in practice, we are uncertain about the true value, so it is represented by a random 
stochastic variable, which is characterized by a probability distribution (Heuvelink 1998).  

In practice, e(x) in Equation 2.1 is assumed to follow a particular distribution, such as 
Gaussian distribution, which can be completely characterized by mean and standard 
deviation.  

For earth science data, values at neighboring locations are often correlated, and so are their 
errors. The spatial correlated errors at all locations D can be modeled by a spatial random 
field ( )xE , following Equation 2.2 (Aerts, Heuvelink et al. 2003): 
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( ) ( ) ( ) DxallforxεxµxE ∈+=  (2.2) 

where ( )xµ  is the mean value of E(x) and represent the systematic error or bias, which is 
often assumed to be zero. 

The random field ( )xε  represents the random error. It has zero mean and variance ( )2xσ . Its 
spatial autocorrelation is characterized by variance. If we assume the spatial autocorrelation 
of the variance do not depend on the absolute locations of the values, but only dependent on 
lag h , the distance between them (i.e. second-order stationary (Isaaks and Srivastava 1990)), 
the spatial autocorrelation of the variance can be characterized by a variogram. A variogram 
describes the spatial continuity of a variable as a function of the distance between them 
(Isaaks and Srivastava 1990) and is defined in Equation 2.3 (Aerts, Heuvelink et al. 2003).  

( ) ( ) ( )( )[ ]2
z hxExEE

2
1hγ +−=   (2.3) 

where E stands for mathematical expectation 

( )xE  stands for spatial random field of errors 

( )hxE +  stands for spatial random field of errors that are separated by the lag h  

There are three parameters that are used to describe the important features of a variogram: 
range, sill and nugget effect. As the separation distance between pairs of values increases, 
the corresponding variogram value will also generally increase. Eventually, when an 
increase in the separation distance no longer causes a corresponding increase in the average 
squared difference between pairs of values and the variogram reaches a plateau. The distance 
at which the variogram reaches this plateau is called the range. Sill is the plateau that the 
variogram reaches at the range. Nugget effect is the vertical jump from the value of zero at 
the origin to the value of the variogram at extremely small separation distances. 

To ensure that error variance is always positive, positive definite variogram must be used 
(Isaaks and Srivastava 1990).There are three commonly used positive definite variograms: 
the spherical model, the exponential model and the Gaussian model. The exponential model 
is suitable to describe a random function that varies largely over a short distance. The 
spherical model is suitable to describe a random function that is less erratic than the 
exponential model. Gaussian model is suitable to describe a random function that is 
extremely continuous; the variogram is tangential to the x-axis at the origin, and rises very 
slowly (Isaaks and Srivastava 1990). 

2.2.2 Quantification of uncertainties in spatial objects 
With an object model, geographical reality is represented in the form of static geometric 
objects and associated attributes. Many geographical data are naturally modeled as objects, 
such as road networks, buildings, pipelines, et cetera (Zhang and Goodchild 2002).  
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Positional uncertainties 
For spatial data represented by an object model, the position of an object is described by a 
set of coordinates. Positional data are subject to gross, systematic, and random measurement 
errors. Gross errors may be identified by inspection or by repeated measurement. Systematic 
and random errors are traditionally analyzed through well-established statistical approaches. 
Error ellipses (for point features) and epsilon error bands (for line features) are widely used 
to model the positional uncertainty (Zhang and Goodchild 2002). Positional uncertainties are 
not considered in this thesis work.  

Attribute uncertainties 
An attribute value is a specific quality or quantity assigned to an object (Zhang and 
Goodchild 2002). The uncertainties associated with quantitative data can be quantified by 
using more accurate data or expert knowledge. The quantities determined via expert 
knowledge are subject to large amount of uncertainties due to human factors and are 
subjective. Different experts (as well as different groups of experts) may come up with 
different values of how uncertain something is according to their world-view, background, 
information available and focus on the application (Brown and Heuvelink 2004b). However, 
when more accurate data are not available, one has to rely on this approach.  

To evaluate how uncertainties in quantitative attribute values influence the accuracy of the 
model results, the uncertainties can be modeled by random variables. Note that this does not 
mean that the real attribute values themselves are random variables. Rather, it is a reflection 
of our inability to specify the objective ‘true’ value. A common approach to quantify the 
uncertainties is to use a probability model to describe the spatial data that recognizes the 
uncertainties. For errors in continuous variable at a single location, the probability that the 
value of uncertainties below a specified value can be expressed by Equation 2.4 (Brown and 
Heuvelink 2004b). 

( ) ( ) ∞<<∞−≤= zzZProbzE  (2.4)  

In practice, the uncertainties associated with quantitative attribute are usually assumed to 
follow an idealized distribution. One commonly used distribution is Gaussian distribution. 
For a Gaussian distribution, only mean and standard deviation are required to characterize 
the entire distribution of the random variable.  

2.2.3 Quantification of uncertainties in spatial fields 
There are two types of variables to consider for spatial field model, namely continuous 
variable and categorical variable. Only uncertainties in continuous variables were considered 
in this thesis.  

Identification of error models for continuous spatial field 
In section 2.2.1, error model is defined, yielding a number of parameters (mean, variance, 
variogram) that characterize the uncertainties. To identify the error models, the value of the 
parameters need to be estimated.  
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If independent validation data are available, the standard deviation (square root of 
variance ( )2xσ ) can be estimated by Root Mean Squared Error when the error mean ( )xµ  is 
zero. RMSE is defined in Equation 2.5. 

( )
n

t(x)r(x)
RMSE

2∑ −
=  (2.5) 

where r(x) is the sampled value (the representation) 

t(x)  is the ‘true’ value, or more accurate data in practice 

n is the number of samples 

The parameters for the variogram model can be estimated by fitting a variogram to the errors 
derived from validation data and the data used.  

2.3 Error propagation methods 
After uncertainties in the inputs and model have been quantified, their effects on model 
output can be analyzed using uncertainty propagation methods. The problem of uncertainty 
propagation can be formulated generically as in Equation 2.6 (Heuvelink 1998): 

( )m1 u,...,ugy =  (2.6) 

where y is the output of a model. 

g is any computational model that incorporates any number of certain elements. 

ui represent input uncertainties as well as model uncertainties. 

With this definition, the aim of the uncertainty propagation method is to determine the 
uncertainty in the output y, given the operation g and the uncertainties in the inputs. The 
variance of y is a measure for the propagated uncertainty in y. When g is linear and all 
uncertainties are quantitative and quantified, the variance of y can be derived analytically. 
Some commonly employed pseudo-analytical methods include first order Taylor series 
method, second order Taylor series method and Rosenblueth’s method (Heuvelink 1998). 
The Taylor series methods can only be used when g is continuously differentiable. When g is 
not continuously differentiable, Rosenblueth’s method could be used. The advantages of a 
pseudo-analytical method are that it yields an analytical expression for the variance of the 
output error, but the solution is approximate only. However, land use change prediction 
models are complex models and rarely linear, so that analytical models therefore are not 
suitable for analyzing the propagation of errors due to the numerical complexity. 

2.3.1 The Monte Carlo method 
The Monte Carlo method (Heuvelink 1998) is more suitable to perform error propagation for 
a complex non-linear model. The idea of the method is to compute the result of the model 
repeatedly, with uncertain input values randomly sampled from their joint distribution 
(realizations). The model results form a random sample from the distribution of the model 
output, so that parameters of the distribution, such as the mean and the variance, can be 
estimated from the sample (Heuvelink 1998). To perform the Monte Carlo method, first 
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generate many set of realizations of the uncertain inputs (and uncertain model parameters, 
structure and solution, if applicable) that have the same probability of being selected (note 
this does not mean they have the same probability), for each set of realizations, run the 
model and store the model output. Then, compute and store sample statistics from the 
generated outputs. 
The realizations that are needed by the Monte Carlo simulation can be simulated by various 
stochastic simulation techniques (Goovaerts 1998). Among them, unconditional sequential 
Gaussian simulation (sGs) (Deutsch and Journel 1992) is a commonly used method. sGs 
proceeds as follows (Goovaerts 1998):  

sGs visits each node to be simulated using a random path. At each node, the parameters 
(mean and variance) of the Gaussian cumulative conditional distribution function (ccdf) are 
determined using simple Kriging with the variogram model. The parameters are calculated 
using all the previously simulated nodes to preserve the spatial variability as modeled in the 
variogram.  

Then, a random number is drawn from the distribution that has a variance equivalent to the 
kriged variance and a mean equivalent to the kriged value. The random number is drawn 
using a Pseudo-Random Number Generator (PRNG) (Niel and Laffan 2003). Theoretically, 
the value drawn should have an equal chance of being selected. In practice, since all PRNG 
create sequences using a deterministic algorithm, the numbers created are pseudo-random. 
The first value created by PRNG is from a seed value, within the algorithm, each value from 
a random sequence is calculated from the previous one. Given a good algorithm, the 
statistical dependence of sequential values can be relatively insignificant (Niel and Laffan 
2003).  

After the Pseudo-Random Number (PRN) is drawn, it is added to the conditional data set. 
Afterwards, proceed to the next node along the random path and repeat the procedures until 
every location is visited once. If a simulation is conditional, it honors the observed value 
(ground control points), while the unconditional does not honor the observed value.  

The most important advantage of the Monte Carlo method, when compared to analytical 
error propagation methods is that it can yield the entire distribution of the output at an 
arbitrary level of accuracy. The accuracy of the Monte Carlo method is inversely related to 
the square root of the number of runs N. As N increases, the accuracy will slowly improve. 
Other important advantages are that the method is easily implemented and generally 
applicable. The major disadvantage of the Monte Carlo method is the computational load. In 
order to make sure that the accuracy of the result is within acceptable limits, the operation 
has to be executed many times. It becomes extremely time-consuming if the operation itself 
is a complex model that takes a long time to run. Another disadvantage is that the result of 
the Monte Carlo method does not come in a nice analytical form, as is the case for the Taylor 
method. To see how a reduction of input error will have an effect on the output, the entire 
simulation has to be executed again (Heuvelink 1998). 

2.4 Analysis of the results of uncertainty propagation 
Results of the Monte Carlo simulation method are a set of random samples drawn from the 
population of the model prediction. Each of the samples drawn has the same probability of 
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being selected. There are several methods to analyze the results of the uncertainty 
propagation. 

2.4.1 Shannon’s information entropy 
Shannon’s information entropy was used to measure uncertainties associated with results of 
predictive models of land use change. The entropy of a discrete probability set is described 
as follows (Dominich, Goth et al. 2004): 

Given events (alternatives) Ej, j = 1, , m; let pj denote the probability to select alternative 
(probability of occurrence of event) Ej. The entropy H for information is expressed in 
Equation 2.7. 

∑ =
−=

m

1j j2j plogpH   (2.7) 

The information entropy H satisfies the following properties: 

• H is nonnegative because discrete probabilities cannot be greater than one. If and 
only if exactly one alternative is selected, H reaches its lowest value, being zero. 

• H is maximal and equal to log2m if all pj are equal to 1/m. 

For land use allocation models, the events (alternatives) are land use types and pj is the 
probability that a particular land use type occurs at specific locations. If n realizations of the 
model result have been simulated, then pj at location u is calculated as the number of times a 
particular land use type occurs divided by n. To the extreme situation, if H is equal to the 
upper bound log2m, then every land use type has the same probability of occurrence (hence 
model allocation is very uncertain). On the other hand, if H is equal to zero, then only one 
particular land use type occurred during the model runs (therefore model prediction is very 
certain). The rest of the values range between these two extremes, when H is close to the 
upper bound, model predictions are uncertain, and vice versa. 

2.4.2 Confusion matrix 
A common method to assess the accuracy of a land use classification is to draw a confusion 
matrix (or a contingency table, or an error matrix). The confusion matrix can also be adapted 
to evaluate the differences between the results of predictive models of land use change made 
using error-ignored inputs and error-disturbed inputs, but the meaning of the confusion 
matrix and its several derived measures (such as producer’s accuracy, user’s accuracy and 
overall accuracy) change. These characteristics are no longer measures of the classification 
accuracy, but become merely measures of how different the two types of model results are.  

A confusion matrix is derived by comparing a classification against known reference data. In 
this thesis work, confusion matrixes were derived by comparing one of the realizations of the 
model predictions using error-perturbed inputs (on the rows) against the model prediction 
using error- ignored inputs (on the columns). To summarize the results of the confusion 
matrix, the 5th, 50th (or median) and 95th percentile of the derived confusion matrices were 
tabulated.  
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Several characteristics of the difference between two types of model outputs can be 
expressed by a confusion matrix. For example, the diagonal of the confusion matrix records 
the grid cells that stayed the same using error-ignored and error-perturbed inputs. The sum of 
the diagonal elements divided by the total number of grid cells is called the overall accuracy. 
The overall accuracy represents the probability that predicted land use at a randomly selected 
location corresponds with the reference land use.  

Producer’s accuracy is calculated by dividing the number of cells that stayed the same in 
each category (on the major diagonal) by the total number of cells in that category in the 
reference data (the model result using error-ignored inputs). This characteristic is a measure 
of omission error.  

User’s accuracy is computed by dividing the number of cells that stayed the same in each 
category (on the major diagonal) by the total number of cells in that category in a realization 
(the model result using error-perturbed inputs). The user’s accuracy is a measure of 
commission error and indicates the probability that predicted cells for a land use type 
correspond with the reference land use.  

A point should be made about interpreting classification accuracies. This is the fact that even 
a complete random assignment of cells will result in correct values in the confusion matrix. 
To eliminate the effect of the change agreement, the Kappa coefficient was used. The Kappa 
coefficient is computed in Equation 2.6 (Lillesand and Kiefer 2000). 
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where r = number of rows in the confusion matrix 

xii = the number of cells in row i and column i (on the major diagonal) 

xi+ = total of observations in row i  

x+i = total of observations in column i 

N = total number of observations included in the matrix 

This statistic indicates the percentage of correctly classified values of a confusion matrix that 
are due to true agreement versus chance agreement. As the true agreement approaches 1 and 
the chance agreement approaches 0, K approaches 1. In reality, K usually ranges between 0 
and 1. A K of 0 suggests that a given classification is no better than a random assignment of 
cells.  

In this thesis work, confusion matrices were calculated to compare the differences of the 
model results obtained using error-ignored inputs with those obtained with error-perturbed 
inputs. Confusion matrices were also calculated to compare the differences of the model 
results using error-ignored inputs and the validation map.  

The statistics calculated from the confusion matrices (e.g. producer's accuracy and user's 
accuracy) reveal the differences of land use allocation between each land use type. In the 
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cases of comparing default land use map predicted by the CLUE-S model and the results 
using uncertain inputs, the differences indicate how uncertainties in the inputs influence the 
model results. If the producer's and user's accuracy are large (close to 1) for a land use type, 
then the influence of uncertainties is small, and vice versa. In the extreme situation, if a 
producer’s accuracy or user’s accuracy for a land use type is 1, it denotes that there was 
almost no influence for that land use type whether the errors in the inputs were ignored or 
not.  

2.4.3 Dominant map 
The dominant land use map is a map that shows the most frequently occurred land use type 
on every cell predicted by the CLUE-S model using uncertain travel speed and uncertain 
DEM. The most frequently occurred land use type is determined among all occurred land use 
type(s) on each cell predicted by the model using uncertain travel speed and uncertain DEM. 
The dominant land use map shows the most probable land use type on every cell that 
predicted by the CLUE-S model using uncertain travel speed and uncertain DEM.  

2.4.4 Land use fragmentation index 
Although the preciously used coefficients and statistics gave good indications of the 
difference between the model outputs using error-ignored inputs and error-perturbed inputs, 
they fail to express the difference of the patterns of the model outputs. There are numerous 
indicators of patterns of land use maps; some of them communicate the same information. 
Perimeter to area ratio (PERIAREA), clumpiness index (CLUMPINESS) (McGarigal, 
Cushman et al. 2002) and total area per class (CAREATOL) were considered relevant and 
complementary indicators to express the differences in land use patterns in this thesis. All 
the land use fragmentation indices were on class level (McGarigal, Ene et al.).  

Perimeter to area ratio (per class level) 
The Perimeter to area ratio is calculated by dividing the total perimeter for a land use type by 
its corresponding total area per land use class. It is a measurement of the complexity of the 
shapes of patches and an expression of the spatial heterogeneity of a landscape mosaic 
(Eiden, Kayadjanian et al. 2000).  

Clumpiness index (per class level) 
Clumpiness index measures the level of aggregation for a land use type. Its value ranges 
from minus one to positive one. CLUMPINESS equals minus one when the patches of a land 
use type are maximally disaggregated, equals zero when the focal patches of a land use type 
are distributed randomly, and approaches one when the patches are maximally aggregated 
(McGarigal, Cushman et al. 2002). 

Total area (per class level) 
Total (Class) Area equals the sum of the areas of all patches of the corresponding patch type, 
that is, total class area. It is a measure of landscape composition; specifically, how much of 
the landscape is comprised of a particular patch type (land use type). In addition to its direct 
interpretive value, class area was used in the computations for perimeter to area ratio 
(McGarigal, Cushman et al. 2002). 
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CHAPTER 3 
THE KUALA LUMPUR REGION CASE STUDY 

The methodology presented in chapter 2 was applied to the Kuala Lumpur region case. The 
CLUE-S model was used to predict the land use change.  

3.1 The default model specifications and result 
The eight land use types defined for the CLUE-S model in the Kuala Lumpur region are 
shown in Figure 3.1.  

 
Figure 3.1 Original land use map of the Kuala Lumpur region  
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The CLUE-S model allocates the land use change through four categories of constraints. 

Constraint 1 Land use requirements (demands) 

The CLUE-S model allocates the land use change according to the demands calculated in 
the non-spatial part of the model. The predefined demands for the Kuala Lumpur region 
case study are listed in Table 3.1. 

Table 3.1 Land use demands for the Kuala Lumpur region  
             LU 
Year 

urban mining water agric baregr
s 

peatfr mgvfr dipcfr 

1989 39433 9544 6828 191724 11256 15675 22866 83628
1990 45810 9113 6870 188244 10964 14815 22387 82757
1991 52188 8682 6912 184765 10671 13955 21907 81886
1992 58565 8250 6954 181285 10379 13095 21428 81014
1993 64942 7819 6995 177805 10086 12234 20948 80143
1994 71320 7388 7037 174326 9794 11374 20469 79272
1995 77697 6957 7079 170846 9502 10514 19990 78401
1996 84074 6526 7121 167366 9209 9654 19510 77529
1997 90451 6094 7163 163887 8917 8794 19031 76658
1998 96829 5663 7205 160407 8624 7934 18551 75787

Annual 
increment 6377 -431 42 -3480 -292 -860 -479 -871
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Constraint 2 Spatial policies and restrictions 

The restricted areas defined in the study are shown in Figure 3.2. 

 
Figure 3.2 Land use protection zone of the Kuala Lumpur region  

The restriction zone is mainly located in ‘diptocarp forest’. There is also a small patch of 
restriction zone in ‘mangrove forest’ in area A of Figure 3.2. 

 

 

 

 

 

 

A
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Constraint 3 Land use type specific conversion settings 

Constraint 3.1 The conversion elasticity 

The conversion elasticity for each land use type for the Kuala Lumpur region case study 
(Verburg 2004) is listed in Table 3.2. 

Table 3.2 Land use conversion elasticity (CE) for the Kuala Lumpur region  

LU                  CE  
0 urban 1.0 
1 mining 1.0 
2 water 1.0 
3 agriculture 0.2 
4 bare/grassland 0.0 
5 peat forest 1.0 
6 mangrove forest 1.0 
7 diptocarp forest  1.0 

 

Land use type ‘bare/grassland’ had a conversion elasticity of zero, which means that it 
is easy for this type of land use to convert to other land use types. ‘Agriculture’ had a 
conversion elasticity of 0.2; it is relatively more difficult to convert ‘agriculture’ to 
other land use types. The rest of land use types had conversion elasticity equal to one, 
which means irreversible change. 

The conversion elasticity is set in the ‘main parameter’ file of the model. 

Constraint 3.2 Land use transition sequences 

Land use transition sequences for the Kuala Lumpur region case study are given in 
Table 3.3.  

Table 3.3 Land use conversion settings for the Kuala Lumpur region  
              Future LU 
Present LU 0 1 2 3 4 5 6 7 

0 urban 1 0 0 0 0 0 0 0
1 mining 1 1 1 1 1 0 0 0
2 water 1 0 1 0 0 0 0 0
3 agriculture 1 1 1 1 1 0 0 0
4 bare/grassland 1 1 1 1 1 0 0 0
5 peat forest 0 1 1 1 1 1 0 0
6 mangrove forest 1 0 1 1 1 0 1 0
7 diptocarp forest 1 1 1 1 1 0 0 1

 

The rows in Table 3.3 represent the present land use (LU) types, while the columns 
represent the future land use types. A value one in   

Table 3.3 denotes that land use conversion is allowed, while a value zero denotes that 
land use conversion is not allowed. 
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Constraint 4 Location characteristics 

The 25 driving factors defined for the CLUE-S model in the Kuala Lumpur region are 
listed in Table 3.4. Some are biophysical factors (e.g. elevation, slope, soil suitability), 
some are socioeconomic factors (e.g. forest reserves and travel time). All driving factors 
were assumed constant during the prediction period. 

The model predicted land use change from 1989 to 1998. The resulting map of the CLUE-S 
model prediction 1998 (the default run using error-ignored inputs) is shown in Figure 3.3. 

 
Figure 3.3 Default result of the CLUE-S model using error-ignored inputs  
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3.2 Selection of uncertain inputs 
Table 3.4 was made containing the result of sensitivity analysis and the uncertainty level of 
all continuous inputs was made. The inputs that have both high level of sensitivity and 
uncertainty were selected to be analyzed. 

To select the inputs that the model is sensitive to, a sensitivity analysis was performed by 
adding and subtracting 20% of the original value of a driving factor, while kept other driving 
factors unchanged, run the CLUE-S model and observe the resulting change. If the value 
change in a driving factor caused a relatively large change in the model result, then the 
driving factor was given a large sensitivity rank and vice versa. The result of the sensitivity 
analysis is listed in Table 3.4. The level of uncertainty associated with each of the driving 
factor was determined via expert knowledge and is also listed in Table 3.4. The scale is from 
1 to 5, the larger the number the larger the sensitivity or uncertainty.  

Table 3.4 Result of sensitivity analysis and uncertainty assessment of the driving factors  

code Driving factors Uncertainty Sensitivity 

0 elevation 3 4 
1 slope 3 5 
2 travel time (tt) to all towns 97 4 3 
3 tt to important towns 97  4 3 
4 tt to highway 97 4 3 
5 distance to sawmill 2 2 
6 tt to all roads 97 4 3 
7 distance to coast 2 3 

8 protection zone 1 N A 

9 alluvial N A N A 

10 igneous N A N A 

11 limestone N A N A 

12 metamorphic N A N A 

13 high erosion N A N A 

14 moderate high erosion N A N A 

15 low erosion N A N A 

16 soil suitability low N A N A 

17 soil suitability moderately low N A N A 

18 soil suitability reasonable N A N A 

19 tt to all towns 4 2 

20 tt to important towns 89 4 3 

21 tt to highway 89 4 3 

22 tt to sawmill 89 4 2 

23 tt to all roads 89 3 3 

24 forest reserves 1990 2 N A 
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The driving factors that have both high uncertainty and high sensitivity were selected as 
uncertain inputs to be analyzed. The categorical variables were not analyzed (N A). Note 
that if the driving factor were allowed to change during the prediction period, driving factors 
two to six are used in year 1997 instead of driving factors 19 to 23, but since all the driving 
factors were assumed to be constant for the Kuala Lumpur region case study, driving factor 
two to five were actually not used by the model, therefore they were not selected although 
they were also uncertain and the model was also sensitive to them. The results of the 
sensitivity analysis showed that the CLUE-S model was very sensitive to the DEM and its 
derivative, slope. The model sensitivities for the rest of the analyzed driving factors were 
generally smaller and at the same level. 

According to the expert knowledge, travel time to highway, sawmills, all towns and 
important towns were the most uncertain driving factors for the Kuala Lumpur region. 

Combining the results of the sensitivity analysis and expert knowledge on the uncertainties 
of the inputs, DEM (and slope) and travel time were selected as uncertain inputs.  

3.3 Quantification of uncertainties in travel speed 
According to the expert knowledge on local road network, the uncertainties in travel speed in 
the Kuala Lumpur region was assumed to be normally distributed.  

The mean value of the normal distribution for each road type was equal to the average speed 
available for that road type. The standard deviation was related to the road types. Road type 
‘others’ had the largest uncertainty, while ‘railway line’ had the smallest uncertainty. The 
average value for each road type and the standard deviation associated with it are specified 
in Table 3.5. All road segments of the same type were assumed to have the same travel speed 
in a single realization. 

Table 3.5 Average travel speed for each road type and the corresponding standard deviation  

Road type Speed 
(km/h) 

Std. 
(km/h) 

Dual Carriage Road 60 9
Highway 110 8
Motorable Track 40 7
Railway Line 50 6
Others 40 10

 

3.4 Quantification of uncertainties in DEM 
To quantify the uncertainties in DEM, first the error sources in DEM have to be identified.  

3.4.1 Identification of error sources in DEM  
DEM generally contains three types of errors: blunders, systematic errors and random errors. 
A blunder is a vertical error that usually exceeds three standard deviations from the mean. 
When the standard deviation of the error is known, blunders can be identified. Blunders are 
cause by mistakes such as misleading contours, erroneous correlations or careless 
observations, et cetera, and are removed prior to entry in the database (USGS 1997).  
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Systematic errors are those errors that follow some fixed pattern or rule and are generally of 
constant magnitude or sign. They are introduced by procedures or systems, and are typically 
predictable. Systematic errors can be eliminated or substantially reduced when the error 
source is known (USGS 1997).  

Random errors arise from accidental and unknown combinations of sources beyond the 
control of the observer and remain after blunders and systematic errors have been eliminated 
(USGS 1997). In this thesis work, it was assumed that blunders and system errors had been 
eliminated from the DEM, thus errors in DEM only refer to the random errors. Random 
errors were assumed as normally distributed with zero mean (USGS 1997).  

3.4.2 Parameterization of error model 
Typically, errors in DEM’s are reported by Root Mean Squared Error. However, RMSE is a 
global average value for the whole DEM; it does not describe the local variability and spatial 
correlation of the DEM errors. To simulate the spatial correlation of the DEM errors, a 
variogram model was used. 

To estimate the parameters (sill, range and nugget effect) of a variogram model, an 
independent DEM data set with higher accuracy can be used. The standard deviation can be 
estimated by RMSE when error mean is zero, which is generally the case for U.S. 
Geological Survey (USGS) DEM products (USGS 1997). An experimental variogram can be 
fitted to the errors (difference between more accurate DEM and the one used in the 
application). Nugget effect and sill can be estimated from the experimental variogram.  

To parameterize a variogram model, expert judgments will always be required, since the 
variogram model must be interpreted and processed by people (Brown and Heuvelink 
2004a). Nugget effect (sudden value changes at extremely small distances) is not likely to 
happen in the Kuala Lumpur region; therefore, it is set to zero. Sill equals to the standard 
deviation of the DEM. Since USGS DEM products generally have a zero mean, RMSE can 
be used to estimate the standard deviation. The DEM used in the study area has a cell size of 
225 m2, which is 15 meter in length and width. The resolution for the DEM used is 
comparable with USGS 7.5-minute DEM, which has a resolution of 10 or 30 meter (USGS 
1997). Therefore, the parameterization of the error model for the DEM used was performed 
by consulting USGS documentation (USGS 1997) and studies on DEM’s when independent 
validation data is available, combined with the expert knowledge of DEM in the study area.  

According to USGS documentation (USGS 1997), for 7.5-minute DEM's derived from a 
photogrammetric source a vertical RMSE of 7 m is the desired accuracy standard. A RMSE 
of 15 m is the maximum permitted; 90 percent have a vertical accuracy of seven-meter 
RMSE or better and ten percent are in the eight to fifteen meter range. According to expert 
knowledge on the DEM used, range 7-10 meter is reasonable range for the DEM error in the 
mountain part of the study area. Other studies on DEM’s in mountainous region used (Aerts, 
Heuvelink et al. 2003) 65 to one hundred as sill value. Therefore, eight m was chosen as the 
RMSE for the mountain part of the study area. On the other hand, errors in plain part of the 
study area are much smaller according to the expert knowledge, therefore three m was 
chosen as the RMSE for the plain part of the study area. Since elevation in the Kuala 
Lumpur region varies extremely continuous in short distances, the errors associated with 
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elevation are also expected to vary continuously (Kyriakidis, Shortridge et al. 1999; Aerts, 
Heuvelink et al. 2003). Therefore, a Gaussian variogram was used to model the errors in 
elevation. In this study I assumed that there are no abrupt changes within a short distance for 
DEM in the Kuala Lumpur region, so zero nugget was used. I also assumed that DEM errors 
are no longer autocorrelated if the distance between two locations is longer than 1200 m. 
therefore, 1200 was chosen as the range value for the error model of DEM.  

To avoid abrupt value changes along the border of the plain and mountain area (see Figure 
3.4), a unit variogram was used to model the errors in the entire area. The value simulated 
were then multiplied by the corresponding sill in the mountain and plain area and added to 
the original DEM. 

The original error-ignored DEM is shown in Figure 3.4. 

 
Figure 3.4 Original error-ignored DEM  
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One realization (the first one) of the error-perturbed DEM is shown in Figure 3.5. 

 
Figure 3.5 The first simulated uncertain DEM 

3.5 Applying the Monte Carlo method 
The Monte Carlo method was used to perform the error propagation due to the complex 
nature of the predictive land use change model.  

3.5.1 The Monte Carlo simulation for uncertain travel speed  
One hundred realizations for uncertainties in travel speed were simulated using PRNG. This 
was realized using the PRNG in Excel. First, for each road type, one hundred numbers with 
normal distribution were simulated with zero mean and standard deviation equal to the 
standard deviation specified in Table 3.5. The resultant numbers were then added to the 
average speed for each road type (see Table 3.5) correspondingly to derive the error-
perturbed travel speed.  
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3.5.2 The Monte Carlo simulation for uncertain DEM and slope 
One hundred realizations for uncertainties in DEM were simulated using unconditional 
sequential Gaussian simulation (sGs) (Deutsch and Journel 1992). The unconditional sGs 
was perform using the unconditional sGs algorithm in gstat (Pebesma 1999) with search 
radius equal to 2000, omax (maximum number of observations per quadrant ) equal to four, 
sk_mean (simple Kriging mean) equal to zero. One hundred slopes were subsequently 
derived from the simulated DEM. The derivations of slopes were performed in Arc/Info 
using the SLOPE function (ESRI 2001). For each set of simulated uncertain DEM and slope, 
the CLUE-S model was executed and the result was saved. 

3.6 The CLUE-S model results using simulated uncertain DEM and travel 
speed  
The CLUE-S model was executed for each set of the one hundred simulations of uncertain 
inputs. When using uncertain DEM, travel speed was kept constant and vice versa. The 
CLUE-S model results using one realization of uncertain travel speed and DEM are shown 
in Figure 3.6 and Figure 3.7, respectively. 
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Figure 3.6 The model result using one set of simulated uncertain travel speed 
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Figure 3.7 The model result using the first simulated uncertain DEM 

In general, Figure 3.6 was not much different from Figure 3.7. The most noticeable different 
is in area A of there two figures. Other differences are surrounded by ellipse A to ellipse I. 
the differences between the CLUE-S model results using uncertain DEM and uncertain 
travel speed are discussed later in the discussion part.  
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3.7 Analysis of the results of the uncertainty propagation 
The results of the uncertainty propagation were analyzed using Shannon’s information, 
confusion matrices and fragmentation indices. The differences between the model results 
using default error-ignore inputs and simulated uncertain inputs were compared, and they 
were both compared with the validation map in Figure 3.8. 

 
Figure 3.8 The validation map of the Kuala Lumpur region  
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3.7.1 Analysis of the entropy maps 
According to Equation 2.5, for eight possible land use types, Shannon’s information entropy 
range from three (all the land use types have an equal probability of occurrence) to zero (it is 
certain that a land use type will occur).  

The entropy map for the CLUE-S model using uncertain DEM is shown in Figure 3.9 
Entropy map ucdem_rst. The entropy map for the CLUE-S model using uncertain travel 
speed is shown in Figure 3.10 Entropy map uccd_rst.  

 
Figure 3.9 Entropy map ucdem_rst 

In Figure 3.9, the most obvious uncertainties are located in area A and B, there are also other 
relatively small uncertainties scattered across the Kuala Lumpur region. The causes of the 
uncertainties are discussed in chapter four. 
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Figure 3.10 Entropy map uccd_rst 

Figure 3.10 does not has the large uncertainties in area A of Figure 3.9. While for other 
parts, the uncertainties are relatively larger. The causes of uncertainties and the difference 
between Figure 3.9 and Figure 3.10 are discussed in chapter four. 
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3.7.2 Analysis of the confusion matrices 
Since one hundred realizations were obtained for the CLUE-S model results using uncertain 
DEM and travel speed, one hundred confusion matrices were made respectively, comparing 
each realization with the default map.  

The percentiles of the derived confusion matrices comparing the CLUE-S model results 
using uncertain DEM and the default map predicted by the model (Figure 3.3) are listed in 
Table 3.6. The median (the 50th percentile) of the derived confusion matrixes is displayed in 
bold.  

Table 3.6 Percentiles of confusion matrices (dft vs ucdem_rst) 
            ucdem_rst 
dft 

urban mining water agric baregrs peatfr mgvfr dipcfr paccu

 5 39672 52 14 1705 18 179 1025 64 0.92
urban 50 39791 63 28 1724 23 195 1142 69 0.92
 95 39913 76 44 1753 29 209 1255 73 0.93
 5 30 2430 0 18 5 0 0 0 0.97
mining 50 42 2444 0 19 9 0 0 0 0.97
 95 56 2454 0 19 13 0 0 0 0.98
 5 19 0 3115 0 0 20 0 0 0.97
water 50 28 0 3138 0 0 26 0 0 0.98
 95 47 0 3154 0 18 35 0 0 0.99
 5 1318 0 0 69458 377 2 5 0 0.97
agric 50 1362 0 0 69485 399 2 40 0 0.97
 95 1398 0 0 69509 425 2 85 0 0.98
 5 502 0 0 32 3109 63 0 2 0.81
baregrs 50 554 0 11 35 3153 75 0 4 0.82
 95 592 0 18 39 3211 91 0 8 0.84
 5 141 0 2 0 128 3194 0 0 0.91
peatfr 50 154 0 6 0 143 3218 0 0 0.91
 95 163 0 23 0 162 3241 0 0 0.92
 5 951 0 0 2 16 0 6949 0 0.84
mgvfr 50 1085 0 0 10 88 0 7058 0 0.86
 95 1234 0 0 33 148 0 7196 0 0.87
 5 4 0 0 0 0 0 0 33692 1.00
dipcfr 50 7 0 0 0 0 0 0 33697 1.00
 95 13 0 0 0 2 0 0 33701 1.00
 5 0.92 0.97 0.98 0.97 0.81 0.91 0.84 1.00  
uaccu 50 0.92 0.97 0.99 0.97 0.82 0.91 0.86 1.00  
 95 0.93 0.98 0.99 0.98 0.84 0.92 0.87 1.00  

 

The median of the overall accuracy for Table 3.6 was 0.96. 
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The percentiles of the derived confusion matrices comparing the CLUE-S model results 
using uncertain travel speed and the default map predicted by the model are listed in Table 
3.7.  

Table 3.7 Percentiles of confusion matrices (dft vs uccd_rst) 
              uccd_rst 
dft 

urban mining water agric baregrs peatfr mgvfr dipcfr paccu

 5 40774 11 2 731 5 45 0 66 0.95
urban 50 41931 20 26 920 13 80 7 72 0.97
 95 42114 97 57 1808 89 127 31 111 0.98
 5 7 2406 0 0 0 0 0 0 0.96
mining 50 19 2473 0 3 3 0 0 0 0.98
 95 88 2497 0 32 10 0 0 0 0.99
 5 3 0 3118 0 0 1 0 0 0.97
water 50 15 0 3163 0 0 19 0 0 0.99
 95 37 0 3193 49 21 32 0 0 1.00
 5 569 0 0 69130 46 0 2 0 0.97
agric 50 731 0 0 70308 187 0 26 0 0.99
 95 1541 43 0 70551 880 0 38 0 0.99
 5 23 0 0 2 2824 21 0 3 0.74
baregrs 50 158 0 4 47 3574 29 4 3 0.93
 95 535 21 9 371 3731 73 47 8 0.97
 5 34 0 0 0 19 3300 0 0 0.94
peatfr 50 68 0 3 0 49 3399 0 0 0.97
 95 105 0 20 5 83 3447 0 0 0.98
 5 11 0 0 0 0 0 8136 0 0.99
mgvfr 50 37 0 0 0 0 0 8207 0 1.00
 95 105 0 0 3 0 0 8231 0 1.00
 5 67 0 0 0 3 0 0 33586 1.00
dipcfr 50 72 0 0 0 4 0 0 33630 1.00
 95 114 0 0 0 5 0 0 33634 1.00
 5 0.95 0.96 0.98 0.97 0.74 0.94 0.99 1.00  
uaccu 50 0.97 0.98 0.99 0.99 0.93 0.97 1.00 1.00  
 95 0.98 0.99 1.00 0.99 0.97 0.98 1.00 1.00  

 
The median of the overall accuracy for Table 3.7 was 0.98.  
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The percentiles of the derived confusion matrices comparing the CLUE-S model results 
using uncertain DEM and the validation map is listed in Table 3.8. 

Table 3.8 Percentiles of confusion matrices (vli vs ucdem_rst) 
                ucdem_rst 
vli 

urban mining water agric baregrs peatfr mgvfr dipcfr paccu

 5 28138 1042 348 11193 284 67 690 1015 0.65
urban 50 28216 1049 348 11217 295 68 823 1016 0.66
 95 28344 1059 348 11243 313 70 889 1017 0.66
 5 286 908 371 587 134 8 1 178 0.36
mining 50 299 915 380 592 141 12 2 178 0.36
 95 311 919 388 596 147 16 2 178 0.37
 5 303 194 1869 423 21 19 306 18 0.58
water 50 320 196 1871 430 24 20 325 18 0.58
 95 338 198 1872 433 28 21 341 18 0.59
 5 9359 203 122 55622 2681 1270 346 1324 0.78
agric 50 9484 207 139 55656 2712 1276 487 1332 0.78
 95 9623 211 152 55689 2749 1286 627 1341 0.78
 5 985 31 12 2159 39 4 1 566 0.01
baregrs 50 999 31 19 2170 41 4 2 569 0.01
 95 1011 32 21 2179 43 4 3 572 0.01
 5 662 67 31 160 445 2102 0 0 0.60
peatfr 50 678 67 50 160 458 2112 0 0 0.60
 95 694 67 72 160 477 2119 0 0 0.60
 5 910 8 280 176 25 24 6481 0 0.79
mgvfr 50 1042 8 280 211 76 24 6605 0 0.80
 95 1165 8 280 237 118 24 6755 0 0.82
 5 1962 33 96 838 66 0 0 30649 0.91
dipcfr 50 1976 34 97 843 74 0 1 30658 0.91
 95 1988 34 97 849 88 0 1 30667 0.91
 5 0.65 0.36 0.59 0.78 0.01 0.60 0.79 0.91
uaccu 50 0.66 0.36 0.59 0.78 0.01 0.60 0.80 0.91
 95 0.66 0.37 0.59 0.78 0.01 0.60 0.82 0.91

 

The median of the overall accuracy for Table 3.8 was 0.74. 
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The percentiles of the derived confusion matrices comparing the CLUE-S model results 
using uncertain travel speed and the validation map is listed in Table 3.9. 

Table 3.9 Percentiles of confusion matrices (vli vs uccd_rst) 
              uccd_rst 
vli 

urban mining water agric baregrs peatfr mgvfr dipcfr paccu

 5 28046 971 341 11212 259 61 695 1016 0.65
urban 50 28181 1034 345 11398 264 64 705 1017 0.65
 95 28425 1090 347 11450 411 66 721 1019 0.66
 5 289 897 371 551 115 10 1 176 0.36
mining 50 301 924 377 575 144 15 2 178 0.37
 95 319 962 385 608 148 19 8 178 0.38
 5 358 197 1869 424 20 16 275 18 0.58
water 50 369 200 1871 427 22 18 278 18 0.58
 95 371 202 1872 438 27 22 280 18 0.59
 5 9399 197 130 55233 2680 1246 714 1297 0.77
agric 50 9493 218 150 55401 2715 1267 726 1310 0.78
 95 9684 235 162 55482 2776 1310 754 1329 0.78
 5 987 31 11 2144 44 4 1 565 0.01
baregrs 50 1001 31 19 2154 47 4 1 569 0.01
 95 1019 31 22 2178 62 4 1 571 0.02
 5 374 53 47 155 407 2092 0 0 0.59
peatfr 50 626 67 57 161 481 2130 0 0 0.60
 95 675 68 77 413 516 2148 6 0 0.61
 5 1162 8 280 199 13 24 6506 0 0.79
mgvfr 50 1177 8 280 211 13 24 6529 0 0.79
 95 1215 8 280 231 13 24 6534 0 0.79
 5 1746 34 93 877 63 0 0 30595 0.91
dipcfr 50 1875 34 97 938 128 0 0 30612 0.91
 95 2024 34 97 1032 146 0 1 30628 0.91
 5 0.65 0.36 0.58 0.77 0.01 0.59 0.79 0.91 
uaccu 50 0.65 0.37 0.59 0.78 0.01 0.60 0.79 0.91 
 95 0.66 0.38 0.59 0.78 0.02 0.61 0.79 0.91 

 

The median of the overall accuracy for Table 3.9 was 0.74.  
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The confusion matrix for the default map predicted by the CLUE-S model and the dominant 
map using uncertain DEM is listed in Table 3.10. 

Table 3.10 Confusion matrix of domi_ucdem vs dft 

       domi_ucdem_rst  
 
dft 

urban mining water agric baregrs peatfr mgvfr dipcfr paccu

urban 39667 53 21 1706 19 195 1314 58 0.92
mining 33 2452 0 19 9 0 0 0 0.98
water 28 0 3146 0 0 25 0 0 0.98
agric 1338 0 0 69539 406 2 0 0 0.98
baregrs 555 0 11 34 3153 74 0 5 0.82
peatfr 153 0 2 0 145 3223 0 0 0.91
mgvfr 429 0 0 4 6 0 7804 0 0.95
dipcfr 1 0 0 0 0 0 0 33704 1.00
uaccu 0.94 0.98 0.99 0.98 0.84 0.92 0.86 1.00

 

The overall accuracy for Table 3.10 was 0.96.  

The confusion matrix for the default map predicted by the CLUE-S model and the dominant 
map using uncertain travel speed is listed in Table 3.11. 

Table 3.11 Confusion matrix of domi_uccd vs dft 

         domi_uccd_rst  
 
dft 

urban mining water agric baregrs peatfr mgvfr dipcfr paccu

urban 42146 14 19 715 10 63 0 66 0.98
mining 13 2496 0 2 2 0 0 0 0.99
water 8 0 3173 0 0 18 0 0 0.99
agric 612 0 0 70538 111 0 24 0 0.99
baregrs 139 0 4 4 3650 27 4 4 0.95
peatfr 59 0 2 0 49 3413 0 0 0.97
mgvfr 30 0 0 0 0 0 8213 0 1.00
dipcfr 68 0 0 0 4 0 0 33633 1.00
uaccu 0.98 0.99 0.99 0.99 0.95 0.97 1.00 1.00

 

The overall accuracy was for the dominant map using uncertain travel speed versus the 
reference map 0.99.  
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3.7.3 Analysis of the dominant maps 
The dominant map for the CLUE-S model results using uncertain DEM is listed in Figure 
3.11. 

 
Figure 3.11 Domi_ucdem_rst 
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The dominant map for the CLUE-S model results using uncertain travel speed is listed in 
Figure 3.12. 

 
Figure 3.12 Domi_uccd_rst 
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The differences between Figure 3.11 (domi_ucdem) and Figure 3.3 (the default prediction) 
are shown in Figure 3.13. 

 
Figure 3.13 Difference between domi_ucdem and dft 

The land use types shown in Figure 3.13 are from Figure 3.11 (domi_ucdem).  
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The differences between Figure 3.12 (domi_uccd) and Figure 3.3 (the default prediction) are 
shown in Figure 3.14. 

 
Figure 3.14 Difference between domi_uccd and dft 

The land use types shown in Figure 3.14 are from Figure 3.12 (domi_uccd).  
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The differences between Figure 3.11(domi_ucdem) and Figure 3.12 (domi_uccd) are shown 
in Figure 3.15.  

 
Figure 3.15 Difference between domi_ucdem and domi_uccd 
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3.7.4 Analysis of the land use fragmentation indices  

Statistics of the land use fragmentation indices 
The mean, median and standard deviations of the fragmentation indices of the default map 
and the model results using uncertain DEM are listed in Table 3.12.  

Table 3.12 The mean, median and standard deviation of the fi_ucdem_rst  

                                      LU 
fi_ucdem_rst 

urban mining water agric baregrs peatfr mgvfr dipcfr

Mean 0.25 0.01 0.02 0.42 0.02 0.02 0.05 0.20 
Median 0.25 0.01 0.02 0.42 0.02 0.02 0.05 0.20 
Std  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total Area 
(per class) 

Dft 0.25 0.02 0.02 0.42 0.02 0.02 0.05 0.20 
Mean 0.90 0.79 0.64 0.92 0.78 0.91 0.91 0.96 
Median 0.90 0.79 0.64 0.92 0.78 0.91 0.91 0.96 
Std  0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

CLUMPINESS 
Index 

(per class) 
Dft 0.91 0.79 0.64 0.92 0.77 0.92 0.92 0.96 
Mean 21.24 60.22 92.31 13.13 59.47 25.19 13.79 7.26 
Median 21.01 59.99 92.34 13.02 59.53 25.18 13.83 7.23 
Std  1.41 1.61 0.28 0.66 0.60 0.33 1.06 0.20 

Perimeter  
to Area 
Ratio 

(per class) Dft 18.53 58.89 92.36 12.44 61.55 22.58 14.16 7.20 

 

The mean, median and standard deviations of the fragmentation indices of the default map 
and the model results using uncertain DEM are listed in Table 3.13. 

Table 3.13 The mean, median and standard deviation of the fi_uccd_rst 

                                      LU 
fi_uccd_rst 

urban mining water agric baregrs peatfr mgvfr dipcfr

Mean 0.25 0.01 0.02 0.42 0.02 0.02 0.05 0.20 
Median 0.25 0.01 0.02 0.42 0.02 0.02 0.05 0.20 
Std  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total Area 
(per class) 

Dft 0.25 0.02 0.02 0.42 0.02 0.02 0.05 0.20 
Mean 0.90 0.79 0.64 0.92 0.77 0.92 0.92 0.96 
Median 0.90 0.79 0.64 0.92 0.77 0.91 0.92 0.96 
Std  0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

CLUMPINESS 
Index 

(per class) 
Dft 0.91 0.79 0.64 0.92 0.77 0.92 0.92 0.96 
Mean 20.01 59.39 92.32 13.13 61.31 23.67 14.54 7.34 
Median 20.04 59.11 92.41 13.09 61.30 24.31 14.50 7.34 
Std  0.14 0.74 0.36 0.20 0.69 1.56 0.36 0.02 

Perimeter  
to Area 
Ratio 

(per class) Dft 18.53 58.89 92.36 12.44 61.55 22.58 14.16 7.20 
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Error bar plots for the land use fragmentation indices 
The error bar plots of the land use fragmentation indices 'total area', 'clumpiness index' and 
'perimeter to area ratio' for the CLUE-S model results using uncertain DEM and travel speed 
are shown in Figure 3.16, Figure 3.17 and Figure 3.18, respectively.  

 
Figure 3.16 Mean ± Std of the fragmentation index ‘Total Area’ for ucdem_rst, uccd_rst and 
dft 
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Figure 3.17 Mean ± Std of the fragmentation index ‘Clumpiness Index’ for ucdem_rst, 
uccd_rst and dft 
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Figure 3.18 Mean ± Std of the ‘Perimeter to Area Ratio’ for ucdem_rst, uccd_rst and dft 
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CHAPTER 4 
DISCUSSION OF THE CASE STUDY 

4.1 Discussion of the entropy maps  
Figure 3.9 shows uncertainties in the CLUE-S model outputs caused by uncertainties in 
DEM; since all other inputs were kept to their original value. Figure 3.10 shows 
uncertainties in the CLUE-S model outputs caused by uncertainties in travel speed. From 
Figure 3.9 and Figure 3.10 it can be observed that most parts of the study area have entropy 
equal to zero, indicates that the model prediction is stable in most part of the study area; the 
uncertainties in DEM and travel speed did not cause much uncertainty in the model outputs.  

4.1.1 Large areas of uncertainties in circle A of Figure 3.9 
In Figure 3.9, the most obvious uncertainties are in area A. There are also other smaller areas 
of uncertainties scatter across the study area. To further investigate the reason of this pattern, 
Figure 3.5 and Figure 3.7 are zoomed in to the area A in Figure 3.9, and are shown in Figure 
4.1 and Figure 4.2, respectively. 

Comparing Figure 4.2 with Figure 4.1, it shows that those cells that are originally predicted 
as ‘mangrove forest’ in Figure 3.3 have been changed to ‘urban’ in Figure 4.2, if the 
elevation in Figure 4.1 at these grid cell locations are larger than four meter. These grid cells 
are surrounded by circle A to circle N of Figure 4.1 and Figure 4.2.  

In contrast, gird cells in circle O of Figure 3.9 has an entropy value equal to zero, this means 
they have constantly been predicted by the model as 'mangrove forest' in all the model 
realizations using uncertain DEM, even when elevation in circle O is larger than four meter. 
This is because these grid cells are in protection areas (Figure 3.2, circle A) in which land 
use change is not allowed. 

Similar findings are discovered when comparing Figure 3.9 with the 10th simulated DEM 
and the model result using it (not shown in this thesis work). It shows that the pattern is not 
random, the similar pattern occurred in all the model results using uncertain DEM. 
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Figure 4.1 The first simulated uncertain DEM (zoomed in) 
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Figure 4.2 The model result using the first simulated DEM (zoomed in) 

4.1.2 Large uncertainties in circle B of both Figure 3.9 and Figure 3.10 
Circle B of Figure 3.9 and Figure 3.10 shows large uncertainties. Comparing Figure 3.9 and 
Figure 3.10 with the model results using uncertain DEM and travel speed (see circle B in 
Figure 3.6 and Figure 3.7), it shows that grid cells in circle B of Figure 3.9 are located in 
land use transitional zones (the border where one or several land use types change to other 
land use types and the surrounding area). For circle B, this is particularly the case, because 
this is the area where 'urban', 'water', 'agriculture', 'bare/grassland', 'mining' and 'peat forest' 
change land use types.  

4.1.3 Large uncertainties in circle C of Figure 3.10 compared with small 
uncertainties in circle C of Figure 3.9 
Although both areas in circle C are located in land use transitional zones, circle C in Figure 
3.10 shows much larger uncertainties than in Figure 3.9. Being in land use transitional zones 
is not the only reason for circle C in Figure 3.10 to show large uncertainties. To further 
investigate the reason, towns are overlaid on Figure 3.3 and shown in Figure 4.3. 
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Figure 4.3 Towns overlaid on Figure 3.3 

Figure 4.3 shows that circle C in Figure 3.10 is close to towns in circle B in Figure 4.3, the 
uncertainties in travel speed caused accessibility to these towns to change (in contrast, 
uncertainties in DEM did not much changes with respect to accessibility) and therefore 
triggered large area of uncertainties in circle C of Figure 3.10.  

4.1.4 Large uncertainties in circle I and H in Figure 3.10 compared with small 
uncertainties in the same area in Figure 3.9 
The large area of uncertainties in circle I and H in Figure 3.10 are also caused by uncertain 
accessibility to nearby towns (as a result of uncertain travel speed, see circle A and B in 
Figure 4.3).  

This effect is especially obvious in circle H in Figure 3.10 where it is not located in land use 
transitional zones but surrounded by towns ( see circle C in Figure 4.3).  
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4.1.5 Large uncertainties in circle D of Figure 3.10 compared with small 
uncertainties in the same area of Figure 3.9 
Although grid cells in circle D in both located in Figure 3.9 and Figure 3.10 are located in 
land use transitional zones, the uncertainties in Figure 3.10 are much larger. This is because 
uncertainties in travel speed caused accessibility of ‘peat forest’ to nearby towns and sawmill 
to change, consequently caused large uncertainties in the location of 'peat forest'. On the 
other hand, uncertainties in DEM did not cause large changes in term of accessibility to 
towns and sawmills. This is also the reason for larger area of uncertainties in circle E and 
circle G in Figure 3.10 than the same area in Figure 3.9. 

4.1.6 Uncertainties in circle F of Figure 3.9 and Figure 3.10 
The large area of uncertainties in circle F of Figure 3.9 and Figure 3.10 are located in the 
area where urban expansion took place. Large ‘urban’ area expanded into 'agriculture'. The 
large uncertainties follow the pattern of the edge of the transitional zone between ‘urban’ 
and ‘agriculture’. The low conversion elasticity of 'agriculture' (Table 3.2) also contributed 
to the uncertainties.  

From both Figure 3.9 and Figure 3.10, it can be observed that although the exact locations of 
the urban expansion remain uncertain, the general pattern of the urban expansion follows the 
location of towns, especially important towns. Besides, 'urban' tends to aggregate together 
with the existing 'urban' areas. 

The general pattern of uncertainties in circle F of Figure 3.9 and Figure 3.10 is similar, but 
model result using uncertain travel speed have larger areas of uncertainties.  

4.1.7 Difference of uncertainties in mountain and plain area of Figure 3.9 
In spite of the larger DEM errors in the mountain area, in Figure 3.9 the mountain area is 
relatively certain compared with plain area. This is because the demand for ‘peat forest’ (see 
Table 3.1) is relatively stable compared with the total area of ‘diptocarp forest’, and the 
model setting that no other land use types can be converted to ‘diptocarp forest’ (see Table 
3.3) (therefore ‘peat forest’ has to stay to the same location to meet the demands).  

It can also be observed in Figure 3.9 that the manually digitized line to separate mountain 
area and plain area did not cause sudden changes of uncertainties along the line. 

 

It should be noted that the causes of uncertainties in the model output are caused by the 
combined effects of uncertainties in inputs; and influenced by other factors (such as the 
distance to towns and sawmills). Therefore when evaluating the uncertainties in the model 
outputs, many factors should be considered comprehensively.  

4.2 Discussion of the results of the confusion matrices  
For the CLUE-S model, the value of the producer’s accuracy and user’s accuracy are the 
same for realizations using uncertain DEM and travel speed versus the default map. This is 
because the demands remain the same when the uncertain inputs were used. The CLUE-S 
model in effect re-allocated the same amount of cells into different locations.  

The number of grid cells that have changed as a result of uncertain DEM and travel speed for 
each land use type can be observed in the confusion matrices (Table 3.6 and Table 3.7), 
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while the location of the changes can be observed in the entropy maps (Figure 3.9, Figure 
3.10), respectively. 

4.2.1 Discussion of Table 3.6 and Table 3.7 
The producer’s accuracies vary considerably among different land use types. 'Diptocarp 
forest' has the largest producer's accuracy of one (discussed in section 4.1.7). 

On the other hand, 'bare/grassland' has the lowest producer's accuracy of 0.82. This is due to 
its low conversion elasticity of 0.2, as specified in Table 3.2. this low conversion elasticity 
means that 'bare/grassland' is relatively easy be converted to other land use types when there 
is a demand, therefore relatively easy to shift location.  

The producer's accuracy for 'mangrove forest' is particularly low in Table 3.6 (only 0.86), 
when compared with the producer's accuracy for 'mangrove forest' in Table 3.7 (almost one). 
This is because the uncertainties in DEM have caused the original 'mangrove forest' to be 
converted to 'urban', as have already been discussed in section 4.1.1.  

‘Urban’ in the default has been converted to many other land use types (especially 
‘agriculture’ and ‘mangrove forest’). In the model results using uncertain DEM, ‘urban’ also 
contained many cells converted from other land use types (especially ‘agriculture’ and 
‘mangrove forest’). The lower producer's accuracy for 'urban' in Table 3.6 than in Table 3.7 
is mainly caused by this ‘mixing’ of ‘mangrove forest’ and ‘urban’ (discussed in section 
4.1.7). The producer's accuracy is non-spatial measurement; it does not measure spatial 
distribution of classification accuracy (in this thesis work, the percentage of cells that stayed 
the same). Apart from the area in circle A of Figure 3.9, the producer's accuracy is higher for 
'urban' in Table 3.6 than in Table 3.7. 

From the column 'urban' in Table 3.6, we can observe where the grid cells predicted as 
‘urban’ in the model output using uncertain DEM came from. For example, from 50% of all 
model results using uncertain DEM, 39791 (92%, the producer's accuracy) came from the 
original 'urban', 1362 grid cells were converted from ‘agriculture’, 1085 grid cells were 
converted from ‘mangrove forest’, et cetera. The other land use types can be interpreted in 
the same way.  

On the column ‘dipcfr’ in Table 3.6, only a small number of grid cells are converted from 
'urban' and 'bare/grassland' in the default map. The high producer's accuracy of ‘diptocarp 
forest’ confirms the small uncertainties where the cell location is ‘diptocarp forest’, as 
shown in Figure 3.9. 

For the model results using uncertain travel speed (Table 3.7), the percentiles of the 
producer's accuracy generally (except for 'mangrove forest') have a larger variation than the 
model results using uncertain DEM (Table 3.6). It indicates that generally the model results 
using uncertain travel speed have larger uncertainties. The variation of the producer's 
accuracy for 'bare/grassland' in Table 3.6 is particularly large, among 90% of all the model 
results using uncertain travel speed, the producer's accuracy ranges from (0.74 to 0.97). This 
is because many cells that were originally 'bare/grassland' in the default map have been 
converted to 'urban' and 'agriculture' when uncertain travel speed was used.  
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The variations of producer's accuracy and user's accuracy in Table 3.7 are generally larger 
than in Table 3.6. This means that the model results using travel speed are more uncertain 
than using uncertain DEM. 

4.2.2 Discussion of Table 3.8 and Table 3.9 
Overall, the producer's accuracy and user's accuracy in Table 3.8 and Table 3.9 are relatively 
low. This means the model results using uncertain DEM and travel speed are quite different 
from the validation map.  

In Table 3.8 and Table 3.9, 'diptocarp forest' has the largest producer's accuracy (0.91), the 
cause of it has been discussed in section 4.1.7.  

On the other hand, 'bare/grassland' has the lowest producer's accuracy (0.01); most of the 
cells that are 'bare/grassland' in the validation map were predicted as 'urban' and 'agriculture' 
in the model results using uncertain DEM.  

The producer's accuracy and user's accuracy for other land use type are in the middle of 
these two extremes, and can be interpreted in a similar way as for ‘bare\grassland’ in the last 
paragraph. 

The variations of producer's accuracy and user's accuracy in Table 3.8 and Table 3.9 are 
relatively low. This means that the model prediction is stable. 

4.2.3 The dominant map using uncertain DEM versus the default model result  
In general, the producer's accuracy and user's accuracy in Table 3.10 are relatively high. This 
indicates that the dominant maps using uncertain DEM and travel speed are quite similar to 
the default model result.  

From the row 'urban' in Table 3.10, it can be observed that grid cells that are originally 
'urban' in the default model result have been predicted as many other land use types, 
especially as 'agriculture' (1706 cells) and 'mangrove forest' (1314 cells). From the row 
'agriculture' in Table 3.10, it shows that 1338 cells that are original 'agriculture' in the default 
model result have been predicted as 'urban' when using uncertain DEM. In other words, 1338 
cells that are originally 'agriculture' in the default model result shifted location when 
uncertain DEM are used, from the mainland to the island, as can be seen from circle D in 
Figure 3.13.  

The column 'urban' in Table 3.10 shows how many cells from each land use type that were 
originally not 'urban' in the default model result have been converted to 'urban' in the 
dominant map using uncertain DEM. The locations of these cells are shown in Figure 3.13.  

It can be observed that the producer's accuracy of 'mangrove forest' in Table 3.10 is much 
larger than in Table 3.6. This shows that the isolated patches of 'urban' in Figure 3.7 caused 
by uncertain DEM are randomly distributed, no particular locations are dominated by 'urban' 
constantly (because no particular locations have high elevation constantly in the simulated 
DEM). This finding confirms the pattern in circle A in Figure 3.9, where large areas of 
uncertainties occur, but the magnitude of uncertainties themselves are not high. Moreover, 
the pattern of DEM is expected using the unconditional sequential Gaussian simulation 
presented in chapter 2.  
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The producer's accuracy for 'mangrove forest' shows that there is a 95% probability that 
'mangrove forest' stays the same location when uncertain DEM are used. On the other hand, 
the user's accuracy for 'mangrove forest' is relative low (0.86), it shows that there is a 86% 
probability that 'mangrove forest' in the model results using uncertain DEM actually 
belonged to 'mangrove forest' in the default model result.  

In Table 3.10, it can be observed that the producer's accuracy of 'bare/grassland' is quite low 
(0.82). This is because many cells in the default model result (555) have been converted to 
'urban' in the dominant map using uncertain DEM. The user's accuracy of 'bare/grassland' is 
also quite low, this is because among all the cells that are predicted as 'bare/grassland' in the 
dominant map using uncertain DEM, 406 cells and 145 cells are originally belong to 
'agriculture' and 'peat forest' in the default model result, respectively. This shifting of 
location for 'bare/grassland' is caused by the zero conversion elasticity specified in Table 3.2.  

4.2.4 The dominant map using uncertain travel speed versus the default model 
result  
In general, the producer's accuracy in Table 3.11 is very high, and higher than the producer's 
accuracy in Table 3.10, it means there is a very high probability that land use types will stay 
the same in the dominant map using uncertain travel speed. The user's accuracy in Table 
3.11 is also very high, it means that for the cells that are in the dominant map using uncertain 
travel speed, there is a very high probability that they came from the same land use type in 
the default land use map. 

The columns 'urban' in Table 3.11 shows 'urban' in the dominant map using uncertain travel 
speed. The column also shows which land use type these cells came from. The locations of 
these cells that originally not 'urban' in the default model result are shown in Figure 3.14.  

4.2.5 Comparison of dominant map using uncertain travel speed and 
uncertain DEM  
In general, the producer's accuracy and user's accuracy in Table 3.11 are larger than in Table 
3.10.  

The producer's accuracy and user's accuracy of 'bare/grassland' is much larger in Table 3.11 
than that in Table 3.10.  

The user's accuracy of 'mangrove forest' in Table 3.11 is much larger than that in Table 3.10.  

The difference between the dominant map using uncertain travel speed and uncertain DEM 
is shown in Figure 3.15. 

4.3 Discussion of the results of the land use fragmentation indices  
The value changes for the land use fragmentation indices as a result of using uncertain DEM 
and travel speed can be observed in Table 3.12 and Table 3.13, respectively. The mean 
values for 'total area', 'clumpiness index', and 'perimeter to area ratio' and its corresponding 
standard deviations are plotted on the error bar plots in Figure 3.16, Figure 3.17 and Figure 
3.18. 
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4.3.1 Discussion of the index 'total area'  
For a visual presentation of the mean and standard deviation of the 'clumpiness index' of the 
model results using uncertain DEM and uncertain travel speed see the red dots/bars and 
green dots/bars, respectively in Figure 3.17. 

The values of the land use fragmentation index ‘total area’ are the same for model results 
using uncertain DEM (see Table 3.12) and uncertain travel speed (Table 3.13), and both 
equal to the total area for each land use type of the default model result.(dft in Table 3.12 or 
Table 3.13). Moreover, the standard deviation of 'total area' for each land use type is zero 
(see the red dots/bars in Figure 3.16). This result is expected since the demands are the same 
for both error-ignored input and error-perturbed inputs (therefore only the cell location 
changes, the number of cells for each land use type do not change, thus the total area for 
each land use type is stable). The slightly different value for 'mining' in Table 3.12 is due to 
the tolerance settings for model convergence and rounding errors. 

'Agriculture' has the largest area of 0.42 hectare. 'Urban' and ‘diptocarp forest’ has the area 
of 0.25 hectare and 0.2 hectare. The main parts of the study area are dominated by these 
three land use types. The 'total area' of 'mining', 'water', 'bare/grassland' and 'peat forest' are 
quite small, they are around 0.02.  

4.3.2 Discussion of the index 'clumpiness index' 
For a visual presentation of the mean and standard deviation of the 'clumpiness index' of the 
model results using uncertain DEM and uncertain travel speed see the red dots/bars and 
green dots/bars, respectively in Figure 3.18. 

'Diptocarp forest' had the largest 'clumpiness index' of 0.96 in both Table 3.12 and Table 
3.13 and standard deviation of zero. This result indicates that most parts of 'diptocarp forest' 
are aggregated together into large homogeneous patches. The values are equal to the value in 
default model result, this confirms the results derived previously that the location of 
'diptocarp forest' is very stable.  

'Water', on the other hand, had the lowest value of 0.64 in both Table 3.12 and Table 3.13 
and equal to the value for default model result. This finding indicates that there are many 
small patches of 'water' scattered across the study area in the default model result (Figure 
3.3) and the model results using uncertain DEM (Figure 3.6) and travel speed (Figure 3.7). 
The standard deviation of the index 'clumpiness index' is zero, denotes that 'water' are 
constantly been predicted as many patches scattered across the study area.   

the 'clumpiness index' for 'urban' in Table 3.12 shows that the model results using uncertain 
DEM are slightly less aggregated compared to the default model result. The 'clumpiness 
index' for 'urban' in Table 3.12 is equal to Table 3.13 but with a slightly larger standard 
deviation, it shows that although the pattern of the model prediction using uncertain DEM 
(see Figure 3.7) is different from using uncertain travel speed (see Figure 3.6), there is no 
difference in term of clumsiness. However, the variation for the 'clumpiness index' is slightly 
higher for the model results using uncertain DEM than using uncertain travel speed. This 
larger variation for 'urban' confirms the large area of uncertainties in circle A in Figure 3.9. 

The 'clumpiness index' for 'mangrove forest' in Table 3.12 shows that the model results using 
uncertain DEM are slightly less aggregated than the model results using uncertain travel 
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speed and the default model result. This smaller value for 'mangrove forest' confirms the 
large area of uncertainties in circle A in Figure 3.9. 

The 'clumpiness index' of 'peat forest' in Table 3.13 is slightly larger than that in Table 3.12. 
This is because uncertain travel speed caused more changes in the accessibility of 'peat 
forest' to nearby towns and sawmill (modeled by cost distance) than caused by uncertain 
DEM.  

In general, 'clumpiness index' values in both Table 3.12 and Table 3.13 were very similar to 
the default model result, and the variations are almost equal to zero. This indicates that 
uncertain DEM and travel speed have very small effects on the clumpiness of the model 
results.  

4.3.3 Discussion of the index 'perimeter to area ratio'  
For a visual presentation of the mean and standard deviation of the 'clumpiness index' of the 
model results using uncertain DEM and uncertain travel speed see the red dots/bars and 
green dots/bars, respectively in Figure 3.18. 

From Table 3.12 and Table 3.13 it can be observed that 'water' has the largest 'perimeter to 
area ratio' but its standard deviation is small. This result means 'water' has complicated 
border lines (for the default model result and the model results using uncertain travel speed 
and DEM the complicated border lines means many small patches, see Figure 3.3, Figure 3.6 
and Figure 3.7, respectively) while the uncertainties in inputs have little influence on the 
shape of the borders in the model output. This result confirms the result of 'clumpiness 
index' that 'water' has the smallest clumpiness.  

'Diptocarp forest' has the lowest 'perimeter to area ratio' and standard deviation in Table 3.12 
and Table 3.13. This is because 'diptocarp forest' forms large homogeneous patches. 

'Perimeter to area ratio' of 'peat forest' in Table 3.13 is much larger than that in Table 3.12. 
This is because uncertainties in travel speed changed the accessibility of 'peat forest' to 
towns and sawmills, and therefore cause the location for 'peat forest' to be uncertain. On the 
contrary, uncertain DEM did not cause the accessibility of 'peat forest' to change in a large 
degree.  

The 'perimeter to area ratio' of 'bare/grassland' and the corresponding standard deviation is 
very similar in Table 3.12 and Table 3.13. however, when compare the standard deviation 
for 'perimeter to area ratio' with the standard deviation for 'clumpiness index', it reveals that 
the uncertainties in uncertain DEM and travel speed only decreased the complexity of the 
borders to a small degree, but has no effects on the clumpiness of the land use type. 

In general, the standard deviation of 'perimeter to area ratio' for each land use type in Table 
3.12 is larger than those in Table 3.13, except for 'peat forest' and 'bare/grassland', which 
have been discussed above. This means the changes of border complexity of the model 
outputs using uncertain DEM are slightly larger than that using uncertain travel speed, but 
the differences are not large.  

All in all, the land use fragmentation indices are very similar; the uncertainties in DEM and 
travel speed do not cause large changes to the output.  
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4.4 Issues of model execution time and model convergence 
For the Kuala Lumpur region case, the default run of the CLUE-S model takes about 1 hour 
to finish (dependent on the hardware used and the application). When using error-disturbed 
travel speeds, the execution time increased slightly, to about 1 hour and a half. Thus, for one 
hundred runs, in principle it will take about 150 hours to finish. In practice, the execution 
time was longer than expected because 10 runs did not converge. In order for the model to 
converge, two criteria have to be fulfilled. First, the area allocated for each of the land use 
type has to be close enough to the demands calculated in the non-spatial model. This 
parameter was set to be 15 in the default settings. Second, when the first criterion has been 
met, the total difference of each land use type and its corresponding demand has to be within 
a certain limit. This limit was set to 50 in the default settings. If the model could not find a 
solution that fulfills the two criteria within 20000 iterations, it stops and reports an error 
message. To obtain one hundred realizations of the model results using uncertain travel 
speeds, 10 extra runs using the uncertain travel speeds were executed.  

The time needed for the model to finish one run using an uncertain DEM increased to about 
2 hours per run. The time increased more dramatically than using uncertain travel speed. The 
chance that a model run will converge is also considerably decreased. From the execution of 
30 runs, only 10% converged. To obtain one hundred realizations of the model results using 
uncertain DEM, the default setting of convergence criteria was changed. The maximum 
difference allowed for a particular land use type allocated and the demand for it was 
increased to 50, the maximum difference allowed for all land use types allocated and the 
total demand was increased to 200. Using this setting, one hundred runs were executed, 10 
runs did not converge. Therefore, 10 more runs were executed using the uncertain DEMs 
drawn from the same probability distribution.  
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CHAPTER 5 
CONCLUSIONS  

After performing the uncertainty propagation on the selected uncertain inputs, several 
conclusions can be drawn from the analysis. The research questions listed at the beginning of 
the thesis can now be answered.  

The research questions are answered as follows. 

1. What are the most important uncertain inputs in the CLUE-S model when applied to 

the Kuala Lumpur region? 

According to the selection criteria listed in chapter 2, the most important model inputs 
are DEM (and its derivative slope) and travel speed to highway, sawmill and important 
towns. The uncertainty in model parameters was not analyzed.  

2. How to identify and quantify the uncertainty in the selected uncertain inputs? 

For continuous spatial data, uncertainties can be identified and quantified by comparing 
them with more accurate data. When such more accurate data are not available, one has 
to rely on expert knowledge and literatures of similar studies. 

3. What is the contribution of the individual selected uncertain inputs to the output 

uncertainty? 

Taking the entire study area as a whole, uncertain DEM contributes more uncertainties to 
the output uncertainty. 'Mangrove forest' is very sensitive to uncertain DEM. 

Considering the spatial distribution of output uncertainties, uncertain DEM contributes 
more uncertainties to the output in circle A of Figure 3.9. For the rest of the study area, 
uncertain travel speed contributes more uncertainties to the model output.  

The most probable areas where uncertainties will occur are in land use transitional zones 
when uncertain DEM and travel speed are used. However, situated in land use 
transitional zones is not the only reason for the model prediction to be uncertain (and 
sometimes also not the main reason). Uncertainties in the model output are caused by the 
combined effects of many factors, such as the uncertainties in inputs, land use 
transitional zones and the distance to towns and sawmills, et cetera. 

4. Which input uncertainty should be reduced in order to improve the accuracy of the 

land use change predictions made by the CLUE-S model? 

The uncertainties in DEM and travel speeds do not cause large uncertainties in the output 
of the CLUE-S model in the Kuala Lumpur region. Uncertainty analysis of model 
settings and parameters is therefore needed to have a better understanding of the 
uncertainties involved with the model predictions. 



 

60 

References 

Aerts, J. C. J. H., G. B. M. Heuvelink, et al. (2003). "Accounting for spatial uncertainty in 
optimization with spatial decision support systems." Transactions in GIS 7(2): 211-230. 
  
Brown, J. D. and G. B. M. Heuvelink (2004a). Assessing uncertainty propagation through 
physically based models of soil water flow and solute transport. Encyclopedia of 
Hydrological Sciences. A. M.G. Chicester, UK, Wiley. 
  
Brown, J. D. and G. B. M. Heuvelink (2004b). On the identification of uncertainties in 
spatial data and their quantification through probabilistic means. Handbook of GIS. S. 
Fotheringham and J. Wilson. Chicester, UK, Wiley. 
  
Burrough, P. A. and R. A. McDonnell (1998). Principles of Geographical Information 
Systems. New York, Oxford University Press Inc. 
  
Deutsch, C. V. and A. G. Journel (1992). GSLIB: geostatistical software library and user's 
guide. New York, Oxford University Press. 
  
Dominich, S., J. Goth, et al. (2004). "An entropy-based interpretation of retrieval status 
value-based retrieval, and its application to the computation of term and query 
discrimination value." Journal of the American Society for Information Science and 
Technology: 613-627. 
  
Eiden, G., M. Kayadjanian, et al. (2000). FROM LAND COVER TO LANDSCAPE 
DIVERSITY   
IN THE EUROPEAN UNION. 
  
ESRI (2001). ARC/INFO help. 
  
Goovaerts, P. (1998). impact of the simulation algorithm, magnitude of ergodic fluctuations 
and number of realizations on the spaces of uncertainty of flow properties, Stanford Center 
for Reservoir Forecasting, Stanford University, Unpublished annual report No 11. 
  
Heuvelink, G. B. M. (1998). Error Propagation in Environmental Modeling with GIS. 
London, Taylor & Francis. 
  
Isaaks, E. H. and R. M. Srivastava (1990). An Introduction to Applied Geostatistics. New 
York, Oxford University Press. 
  
Kraim, O. A. (1998). http://www.eng.ukm.my/~othman/klang_langat_info.html. 
  
Kyriakidis, P. C., A. M. Shortridge, et al. (1999). "Geostatistics for conflation and accuracy 
assessment of digital elevation models." International Journal of Geographical Information 
Science 13(7): 677-707. 



 

61 

  
Lillesand, T. M. and R. W. Kiefer (2000). Remote Sensing And Image Interpretation. New 
York, John Wiley & Sons, Inc. 
  
McGarigal, K., E. Ene, et al. FRAGSTATS USER GUIDELINES. 
  
Meyer, W. B. and B. L. Turner, Eds. (1994). Changes in land use and land cover: A global 
perspective. Cambridge, UK, Cambridge University Press. 
  
Niel, K. V. and S. W. Laffan (2003). "Gambling with randomness: the use of pseudo-random 
number generators in GIS." International Journal of Geographical Information Science 
17(1): 49 - 68. 
  
Pebesma, E. J. (1999). GSTAT USER'S MANUAL. http://www.gstat.org/manual/gstat.html. 
  
USGS (1997). "Standards for Digital Elevation Models." 
  
Verburg, P. (2004). "Projecting land use transitions at forest fringes in the Philippines at two 
spatial scales." Landscape Ecology 19(1): 77-98. 
  
Verburg, P. and A. Veldkamp (2004). "Projecting land use transitions at forest fringes in the 
Philippines at two spatial scales." Landscape Ecology 19(1): 77-98. 
  
Verburg, P. H., W. Soepboer, et al. (2002). "Modeling the Spatial Dynamics of Regional 
Land Use: the CLUE-S Model." Environmental Management 30(3): 391-405. 
  
Verburg, P. H., A. Veldkamp, et al. (2004). Landscape Level Analysis of the Spatial and 
Temporal Complexity of Land-Use Change. Ecosystems and Land Use. R. DeFries, G. 
Asner and R. A. Houghton, AGU. 153: 217-230. 
  
Veregin, H. (1999). Data quality parameters. Geographical Information Systems Principles 
and Technical Issues. P. A. Longley, M. F. Goodchild, D. J. Maguire and D. W. Rhind. New 
York, John Wiley & Sons, Inc. 1. 
  
Zhang, J. and M. Goodchild (2002). Uncertainty in Geographical Information. London, 
Taylor & Francis Inc. 
  
 
 
 
 
 


