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1 Introduction

The lower part of the atmosphere, where people and animals spend their lives and

plants are growing, is known as the atmospheric boundary layer (ABL). The ABL can

be defined as ‘the part of the troposphere that is directly influenced by the presence of

the earth’s surface, and responds to surface forcings with a time scale of about an hour

or less’ (Stull, 1988). Within the ABL, atmospheric turbulence causes heat and

matter (water vapour, smoke and other substances) to be efficiently transported from

the earth’s surface up to a kilometre or more. This transport can be indirectly measured

with so-called scintillometers. In the following section, we introduce atmospheric

turbulence and the use of scintillometers for ABL research.

1.1. Atmospheric turbulence and scintillometry

Atmospheric turbulence is the irregular, chaotic movement of air parcels within the

atmosphere, which is the main vertical transport mechanism in the ABL. Within the

ABL, turbulence is produced in two ways: by friction of the wind with obstacles near

the surface (shear production, mechanical turbulence), or by density differences between

air parcels (buoyancy production, convective turbulence). Convective turbulence results

essentially from heating of the earth’s surface by solar radiation. The heated surface

does not only heat the soil below, but also the air near the surface will become warmer

and more moist. The air will become more moist, as part of the solar energy is used

to evaporate water within the soil, vegetation or at the surface. The warmer and more

moist air parcels are less dense and more buoyant than the air around it, because air

containing water vapour is less dense than dry air. The more buoyant parcels will be

replaced by denser and less buoyant parcels from above. The chaotic three dimensional

movement of air parcels going up and down is called eddy motion. Buoyancy can also

destroy turbulence. During the night the surface cools, which makes the air near the

surface cooler than above. This causes a temperature inversion near the surface and

thus less turbulence.

The turbulent transport of these “warm and moist” and “cold and dry” air parcels is

in most cases too fast to be felt by human beings. It can, however, be observed by eye:

1



1. Introduction

for example the chaotic movement of smoke from a chimney or dancing air over asphalt

during hot summer days are indirect observations of atmospheric turbulence. The latter

can be explained with some background on electromagnetic radiation. Generally, a light

beam (which is electromagnetic radiation) that travels through media with different

densities changes direction each time it moves from one to another medium, i.e. the light

beam is refracted. The strength of refraction depends on the contrast in density and is

expressed as the refractive index. For a light beam that travels through the atmosphere,

the turbulent transport of air parcels with different densities causes variations in the

refractive index of the air (n) along the path. Now we have this knowledge, we can go

back to observations of the appearance of a ‘dancing’ asphalt during a hot summer day.

On such a day the turbulent transport is strong over the asphalt. Consequently, density

differences among the air parcels are large, and therefore variations of the refractive

index of air too. As a result, each time when the light beam from the asphalt reaches

the eye of the observer, it has been refracted differently. It therefore seems as if the

light beam is coming from somewhere else: the asphalt appears to be ‘dancing’.

Because the amount of solar radiation depends on the location on earth, date, time

of the day, and cloudiness, the strength of the turbulence within the ABL also varies

strongly in time and space. The strength of turbulence has a clear diurnal cycle with a

minimum during the night and a maximum during the day, and as a consequence the

ABL is typically deeper during day than during night (Stull, 1988). The partitioning

of solar energy between heating the soil, heating the air or evaporating water varies

spatially, too. Above a lake or a wet grassland more energy is used to evaporate water

than above asphalt or a dry wheat field. As a consequence, the amount of heat and

water vapour that are transported from the surface into the atmosphere varies between

these different surfaces. In physics, the amount of energy that is transferred per unit

of time across a reference plane is called flux density, mostly abbreviated as flux. In

meteorology, the energy flux related to the amount of heat transported into the atmo-

sphere is called the sensible heat flux (H) and the energy flux related to the amount of

water vapour transported into the atmosphere the latent heat flux (LE).

The area-averaged values of H and LE over natural landscapes are of interest for

many meteorological applications, for instance to evaluate mesoscale numerical weather

models and satellite-based retrieval algorithms (see for a extensive overview Beyrich

et al. 2012). Furthermore, knowledge of the latent heat flux is also important for

water budget studies and for active water management because it is a measure of

the amount of evaporation. Nowadays, the surface heat fluxes are often measured

with eddy-covariance (EC) systems (Lee et al., 2004; Foken, 2008). An EC system

consists of a fast response anemometer, a fast response thermometer, and a fast response

hygrometer. It is important to have fast response instruments, in order to resolve

the high-frequency fluctuations. From the measured high-frequency fluctuations, the

covariances with the vertical wind speed are calculated that are a measure of the surface

fluxes. Because EC systems are located at one point, they are very suitable to determine

2



1.1. Atmospheric turbulence and scintillometry

a. Sketch of the scintillometer setup within the ASL
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b. Steps to obtain the fluxes from the scintillometer measurements
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...behaviour of: & ...application of:

Fig. 1.1. Sketch of the scintillometer setup (a), and the steps to obtain fluxes from the scintillometer output
(b).

the fluxes locally or representative over a homogeneous landscape. Natural landscapes

are, however, mostly heterogeneous, and the surface heat fluxes differ among fields. As

a consequence, a point measurement such as the EC method is not suitable to determine

area-averaged fluxes in such a case.

Scintillometry deals with the use of scintillometers to measure the fluxes indirectly

using the characteristics of atmospheric turbulence. In contrast to the EC method,

scintillometry has proven to be a reliable method for determining the spatially aver-

aged fluxes over heterogeneous surfaces (e.g. Green et al., 2001; Meijninger et al., 2002b,

2006; Evans et al., 2012). Figure 1.1 schematically shows the setup of a scintillometer

system and the steps to obtain the fluxes. A scintillometer system consists of an electro-

magnetic beam transmitter at one end and a receiver at the other end of a path, which

is in the order of 1 up to 5 km for the scintillometers used in this study. As explained

before, turbulent eddies along the propagation path of an electromagnetic beam cause

variations in the refractive index of air. These in turn cause variations in the received

intensity of the electromagnetic radiation beam, also called scintillations. The magni-

tude of these intensity fluctuations (σ2
ln I) is proportional to the path-averaged structure

parameter of the refractive index of air (C2
n), which is the basic parameter that can be

3



1. Introduction

derived from the scintillometer data. As fluctuations in the refractive index of air are

caused by the air parcels going up and down with different temperature (T ) and hu-

midity (q), C2
n can be expressed through the structure parameters of temperature (C2

T )

and humidity (C2
q ). The relative contributions of C2

T and C2
q to C2

n depend on the

wavelength emitted by the scintillometer and on the ratio between H and LE. Optical

scintillometers, e.g. the large aperture scintillometer (LAS, operating at wavelengths

in the visible and the near-infrared), are mainly sensitive to temperature fluctuations,

while for microwave scintillometers (MWS, operating at millimetre wavelengths) the

temperature and humidity fluctuations are equally important (Hill et al., 1992; Ward

et al., 2013). The structure parameters of temperature and humidity are a measure of

turbulent fluctuations of temperature and humidity and can therefore be linked to the

surface sensible and latent heat fluxes. The method that links them is called Monin-

Obukhov Similarity Theory (MOST, Monin and Obukhov, 1954; Wyngaard, 1973; Hill

et al., 1992, among others).

Despite the reliable results of scintillometry to obtain surface averaged fluxes, there

are still a number of open issues that require further research. The issues discussed

in this thesis are related to the behaviour of the structure parameter within the atmo-

sphere and to the applicability of MOST (indicated with the grey block in Fig. 1.1).

Therefore, before going into detail within these issues, some background information on

the structure parameter –the basic parameter used in scintillometry– (Sect. 1.2.1), and

MOST –the method to obtain the fluxes from the structure parameters– (Sect. 1.2.2)

is given in the next section.

1.2. The structure parameter and MOST

1.2.1. The structure parameter

As explained before, the structure parameter of an atmospheric scalar s (C2
s ) is a

measure of the intensity of fluctuations of that scalar caused by turbulence. To allow

for a better understanding and a more precise definition, this section starts with some

more details about turbulence.

Turbulence is one of the unsolved problems within classical physics. Turbulence is

characterized by:

• deterministically chaotic: it is not reproducible in detail and can only be described

in a statistical sense and by similarity approaches,

• diffusive: it is an effective mechanism to mix energy, heat and matter,

• dissipative: its kinetic energy is converted into heat,

• three dimensional: it is characterized by rotating vortices called eddies at different

scales. The kinetic energy of the eddies (turbulent kinetic energy) is produced at

the largest scales, which have the size of the ABL depth. These eddies are broken

into smaller eddies and they are dissipated at the smallest scales at about a few

mm. This process is called the energy cascade.

4



1.2. The structure parameter and MOST

Fourier spectrum
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Fig. 1.2. A schematic picture of a temperature spectrum (left, on a double logarithmic scale) and of the
structure function (right) as could be found in the atmosphere. κ is the wave number, and r is the separation

distance. Within the temperature spectrum, the area below the plot is proportional to the variance (T ′2), and
the level of the line within the inertial subrange to the structure parameter (C2

T ).

Because turbulence is chaotic, its behaviour can only be described through statistics

such as variances and covariances. In statistics, the variance is a measure of the spread

of data. In the analysis of turbulence, it can be interpreted as a measure of fluctuations

of an atmospheric quantity (s), and is denoted as: s′2. Here, s′ is defined by Reynolds

decomposition as the deviation of an atmospheric quantity (at a certain moment and

a certain location) from its mean: s′ = s − s, where the overbar indicates averaging.

Instead of the variance, often the standard deviation (
√

s′2) is used because it has the

same dimension as s.

In statistics, the covariance is a measure of how much two variables correlate. In the

analysis of turbulence, the covariance is denoted as: s′as
′
b, in which sa and sb are two

different atmospheric quantities. In the atmosphere, turbulence is the main mechanism

to transport heat, momentum and matter from the earth surface into the atmosphere

–vertical transport–, which makes the covariance between the vertical windspeed fluc-

tuations (w′) and other quantities important. For instance, the covariance between w′

and the temperature fluctuations (T ′) is a measure of the amount of sensible heat that

is transported upward (if w′T ′ > 0) or downward (if w′T ′ < 0).

Within the turbulent motion, eddies with different scales are involved, and therefore

it is worthwhile to investigate the variance or covariance associated with a particular

scale instead of investigating the total variance and covariance. This can be achieved

by calculating the turbulent spectrum with Fourier analysis. The left hand side of Fig.

1.2 shows a schematic picture of a temperature spectrum as it can be typically found

in the ABL. In this figure we can observe three regimes. The borders of the centre

regime are the outer scale Louter, which has the size of ≈ 0.4 times the measurement

height, and inner scale linner, which has the size of only a few mm. At the smallest

5



1. Introduction

wavenumbers (largest eddies, eddy size > Louter), temperature fluctuations are gener-

ated by turbulence (production range). At the largest wavenumbers (smallest eddies,

eddy size < linner), temperature fluctuations are dissipated (dissipation range). The

regime between the production range and the dissipation range is called the inertial

subrange (linner < eddy size < Louter). In this regime, temperature fluctuations are

neither produced nor dissipated, but they are transferred from the largest to the small-

est scales. The decrease of spectral energy of temperature fluctuations with increasing

wavelength is uniform and follows the −5/3 power law of Kolmogorov (Kolmogorov,

1962):

STT = 0.25C2
Tκ

−5/3 (1.1)

This relationship leads to a more precise definition of the structure parameter (for

humidity fluctuation it is similar). According to Eq. 1.1 the structure parameter is the

measure of the turbulent fluctuations within the inertial subrange (level of the spectrum

line where it follows the −5/3 power law). In contrast the variance is the measure for

the total amount of fluctuations, which is proportional to the area below the spectrum

line.

Another way to decompose the amount of fluctuations of an atmospheric quantity by

eddy size is by using the second order structure function (Dss). The spatial structure

function Dss,x describes the relation of a quantity s at a location (x) compared to its

value at a location further away (x+r, with r the separation between the two locations),

viz,

Dss = [s(x+ r)− s(x)]2 (1.2)

The right hand side of Fig. 1.2 shows a schematic picture of the structure function

of temperature versus the separation. In this figure again the three regimes can be

distinguished, and the behaviour in the inertial subrange is uniform:

DTT = C2
T r

2/3 (1.3)

From the relation of the structure function in the inertial subrange, the nomenclature

of the structure parameter becomes clear. A parameter is a “constant or variable term

in a function that determines the specific form of a function”1 - in this case a parameter

used in the structure function.

The reason why the structure parameter is used in scintillometry, instead of for in-

stance the variance, is that the intensity fluctuations of the electromagnetic beam as

measured by the receiver are related to eddies within a typical range of length scales.

This range depends on the scintillometer type that is used. For the LAS the typical

range is an order of a few decimeters, in the order of the size of the aperture D. For the

MWS, it is about a few meters, in the order of the first Fresnel zone (
√
λL, in which

λ is the wavelength and L the path length). For both instruments the ranges of scales

1http://dictionary.reference.com, Dec 2013
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1.2. The structure parameter and MOST

are located within the inertial subrange, and therefore σ2
ln I can be related to C2

n.

The exact relation between σ2
ln I and the path averaged structure parameter (C2

n)

is described with a complex mathematical expression that integrates over the typical

range of eddy scales, and over the scintillometer path (see among others Beyrich et al.,

2012; Van Kesteren, 2012; Hartogensis, 2006). In this thesis, we confine ourselves to a

more convenient form of this relation, which specifies that the contribution of C2
n to the

scintillometer signal varies with location along the path:

σ2
ln I ∝

∫ Lpath

0
C2
n(x)W (x)dx ∝ C2

n (1.4)

in which Lpath is the total distance of the path, and W (x) is the path weighting function.

The shape of W (x) depends on the scintillometer type, but it closely resembles a bell-

shape curve. This means that the scintillometer is not sensitive to fluctuations near the

transmitter (x = 0) and the receiver (x = Lpath), and most sensitive to fluctuations in

the centre of the path (x = Lpath/2).

1.2.2. Monin-Obukhov Similarity Theory

In order to describe the behaviour of turbulence often the Buckingham Π-theorem

(Buckingham, 1914) is used. In the context of scintillometry Monin-Obukhov Similarity

Theory (MOST) is an important framework (Monin and Obukhov, 1954). MOST links

the surface fluxes with other turbulent quantities, such as mean gradients, standard

deviations or structure parameters2. MOST assumes that the dimensionless turbulent

quantity is fully determined by four parameters:

1. the kinematic surface heat flux (sensible or latent)

2. the observation height above the surface,

3. the friction velocity as a proxy of the mechanical turbulence at the surface, and

4. the buoyancy flux as a measure of the convective turbulence at the surface.

Within MOST two dimensionless groups can be formed. The first dimensionless group

is the dimensionless height: z/L, in which z is the observation height and L is the

Obukhov length. The Obukhov length can be interpreted as the height of the sub-layer

of dynamic turbulence (Monin and Obukhov, 1954). Here, z/L is a measure of the

stability and is defined as follows3:

z

L
= −zκg

Tv

w′T ′
v

u3∗
(1.5)

2Note that Monin and Obukhov (1954) derived only the flux-based dimensional analysis for wind and temperature
gradient for non-neutral flows. Obukhov (1960), however, was the first to derive the similarity relations for structure
parameters, independent of the Monin-Obukhov similarity framework (Foken, 2006). However, because in literature
the term Monin-Obukhov similarity is commonly used for surface flux-based scaling in general, we use the term
here for the similarity relationships of structure parameters as well.

3In thesis we focus on processes near the surface instead of the entire ABL, therefore, we assume that temperature
variations due to changes in height (pressure altitudes) can be neglected. In other words, we use the normal
temperature (T ) instead of the potential temperature (θ).

7



1. Introduction

in which u∗ is the friction velocity, w′T ′
v is the buoyancy flux, κ = 0.4 is the von-

Kármán constant, and g = 9.81 m s−2 is the acceleration due to gravity. Stability can

be considered as a measure of the effect of buoyancy relative to shear in the production

of turbulence. Three stability regimes are defined:

• the near-neutral regime: the effect of buoyancy is small, turbulence is mainly

produced by shear (w′T ′
v ≈ 0, u∗ >> 0, so that z/L ≈ 0).

• the unstable regime: the effect of buoyancy is large, turbulence is mainly produced

by buoyancy (day time conditions: w′T ′
v > 0, u∗ ≈ 0, so that z/L < 0).

• the stable regime: the effect of buoyancy is large, but now turbulence is suppressed

by buoyancy and only produced by shear (night time conditions: w′T ′
v < 0, u∗ ≈ 0,

so that z/L > 0).

In this thesis we focus on atmospheric observations that are obtained during unstable

conditions.

The second dimensionless group is the dimensionless mean turbulent quantity of inter-

est, e.g. the dimensionless gradient, dimensionless variance or dimensionless structure

parameter. In scintillometry, the dimensionless structure parameter (C̃2
s ) is of interest.

Using MOST, the structure parameter is made dimensionless as follows:

C̃2
s =

C2
s z

2/3

s2∗
(1.6)

Then the universal relation fs
(
z
L

)
between the C̃2

s with z/L is empirically determined

using experimental data. The most commonly used expression for unstable conditions

of this relation is as follows:

C̃2
s = fs

( z

L

)
= cs1(1− cs2z/L)

−2/3 (1.7)

Equation 1.7 shows that the mean C2
s decreases with height and instability in terms

of z/L. This decrease with height is non-linear: it is larger close to the surface than

at larger heights. For free convection conditions, buoyancy strongly dominates over

friction (i.e. −z/L is large), so that the decrease of C2
s is ∼ z−4/3.

MOST is restricted to the part of the ABL close to the surface. This layer is called the

atmospheric surface layer (ASL, with depth zASL). In the ASL, turbulence is controlled

by surface processes, whereas processes that occur in the rest of the ABL, such as

entrainment, are neglected. Entrainment, in this context, is the mixing of air parcels

from the layer above the ABL (the free atmosphere) within the ABL. A rough estimate

of the depth of the ASL is about 10 % of the ABL depth (see for a more precise

definition Chapter 2). As the ABL depth grows during the day, the ASL depth is not

constant. At midday, when turbulent transport is strong, the ABL can be as deep as

1 km in summer time, and the ASL depth has the order of 100 m. During night, when

turbulence is destroyed and the ABL depth has the order of 100 m or even less, the

ASL is only around 10 m deep.
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1.3. Open issues discussed in this thesis

Another restriction for the use of MOST is that it is defined for stationary and homo-

geneous conditions only. To be able to describe the structure of the turbulent boundary

layer over heterogeneous surface (i.e. differences in H and LE between patches of differ-

ent surface characteristics), several concepts have been developed. The first concept is

that MOST is only valid above a certain level (the so-called blending height: zb), where

the influence of the individual patches is not visible anymore due to turbulent mixing.

In case of scintillometry, this level has to be located in the ASL, because otherwise

MOST is questionable. In literature, different zb for various quantities can be found.

When measuring at levels below zb, the heterogeneous surface along the scintillometer

path becomes important. Therefore, in the second concept, it is necessary to consider

the relative influences of the patches within the area that are “seen” by the instrument.

This area is called ‘effective fetch’, ‘footprint’ or ‘source area’ (Schmid, 2002). Mei-

jninger et al. (2002b) calculated the relative influences of the different patches with a

footprint analysis, and combined this with a land-use map to obtain path-averaged sur-

face fluxes from local EC measurements above patches of different land use. They used

these path-averaged fluxes as a reference to validate the fluxes from the scintillometers.

1.3. Open issues discussed in this thesis

With the background explanation of the structure parameter and MOST, we can now

address the issues discussed in this thesis. The first two issues are related to the

applicability of MOST, whereas the second two are related to measuring C2
s over a

heterogeneous surface.

1.3.1. The applicability of MOST

It appears that the theory behind the LAS is only valid for the weak scattering regime.

In case of stronger scattering, the upper limit of scintillations that can be measured is

reached: the signal gets saturated. In order to reduce the total amount of scintillations

and therefore to prevent saturations, the LAS can be installed over a shorter path or

at a higher level. The latter solution considers that the magnitude of the structure

parameter decreases with height, as discussed in Sect. 1.2.2. However, a disadvantage

of installing the LAS at an elevated level is that this level could be above the ASL if

the ASL is shallow. This is especially the case during the morning when the ABL is

shallow. Because MOST is only defined for the ASL, the use of MOST is not justified

in these cases. The first research question studied in this thesis is therefore related to

the depth of the ASL:

Question 1 - To what extent can the sensible heat flux be determined from the structure

parameter of temperature observed at elevated levels, particularly during

the morning period when the measurement level is situated above the

atmospheric surface layer?

The second question is related to the large variety of the Monin-Obukhov similarity

functions (fs) that are reported in literature (Wyngaard, 1973; Wesely, 1976b; Andreas,

9



1. Introduction

1988; Hill et al., 1992; Thiermann and Grassl, 1992; de Bruin et al., 1993; Li et al.,

2012; Maronga, 2014). This suggests that the dimensionless function seems not to be

a universal relation. Reasons for these large variations are likely related to differences

between the studies in: a) the regression approaches to determine fs, b) the stability

ranges covered by the data, c) the measurement heights (z), d) the instrumentation, e)

the data processing, and f) the characteristics of the underlying surface with respect

to surface heterogeneity and soil moisture conditions. Because most of the effects vary

simultaneously between the studies, it is difficult to separate the effect of one aspect

from the effects of others. Therefore, here we will investigate the behaviour of fs within

one dataset for unstable conditions, so that we can assume uniform data processing,

instrumentation and the surface characteristics. The related research question is:

Question 2 - To what extent is the expression for the dimensionless structure parameter

influenced by specific regression approaches, stability ranges and observa-

tion levels?

1.3.2. C2
s over a heterogeneous surface

Information about the variability of the structure parameter is important for the vali-

dation of scintillometry over heterogeneous surfaces. Results of Petenko and Shurygin

(1999); Cheinet and Siebesma (2009), and Cheinet and Cumin (2011) showed that C2
s

varies over several orders of magnitude (local variability of C2
s ), when C2

s is obtained

at one point (variation in time) or above a homogeneous surface (variation in space).

This means that one observes variations in C2
s for two reasons if C2

s is measured along

a path over a heterogeneous surface (see the sketch in Fig. 1.3). The path-averaged

C2
s varies due to the local variability at each point along the path (black line in Fig.

1.3), but it also varies due to surface heterogeneity. The variability due to surface het-

erogeneity, in contrast to the local variability, would be relatively constant in time and

near zero above a single patch (dark gray line in Fig. 1.3). In order to describe the

relation between heterogeneous surface fluxes and the (path-averaged) scintillometer

signal, a better understanding of the different types of variability in C2
s along the path

is needed. To identify the variability in C2
s related to heterogeneity, one needs to know

the magnitude of the local variability.

Therefore, the third research question of this thesis is related to the local variability

of C2
s . If the local variability of C2

s is known over a range of conditions (height, stability

etc.), it can be considered as a kind of "background noise" superimposed on the vari-

ability caused by surface heterogeneity. Consequently, a measure of the local variability

of C2
s can be used to assess whether observed spatial differences in C2

s along a path can

be attributed to surface heterogeneity or have to be considered to lie within the range

of local variability.

Question 3 - What determines the local variability of the structure parameter within

the atmospheric surface layer at different heights and under different sta-

bility regimes?

10



1.4. Research strategy

TR

Fig. 1.3. Sketch of the scintillometer setup over a heterogeneous surface. The red patches correspond to areas
with higher sensible heat flux and the blue ones to areas with lower sensible heat flux. The black line is the
local C2

T observed along the path, and the grey line is the averaged C2
T over each patch.

The fourth question is related to the surface heterogeneity along the scintillometer

path. In literature, the validation of scintillometer measurements over heterogeneous

surfaces is usually performed by comparing the scintillometer-based fluxes with fluxes

from aggregated EC measurements (Meijninger, 2003; Beyrich et al., 2006; Meijninger

et al., 2006), whereas a direct validation of the path-averaged structure parameters

against independent measurements is still missing. A direct validation is needed, be-

cause the relation between structure parameters and fluxes is non-linear. This non-

linear relation results in an overestimation of the flux obtained from a LAS compared

to fluxes from aggregated EC measurements (Meijninger, 2003; Meijninger et al., 2006).

Therefore, it is necessary to validate the path-integrated structure parameter from the

scintillometers with other independent data sources, such as airborne measurements or

Large Eddy Simulation (LES) model results. This was the main goal of the LITFASS-

2009 experiment4. In this context the abbrevation LITFASS can be understood as

LIndenberg-To-Falkenberg Aircraft Scintillometer Study. During this field experiment,

several EC stations were set-up at different patches along a 5 km LAS path and an

unmanned aircraft (the meteorological mini aerial verhicle, M2AV) was flown along the

same path in order to obtain independent path averaged structure parameters (see Fig.

1.4). Here we focus on the comparison of the LAS with the M2AV, which brings us to

the last research question:

Question 4 - To what extent are the path-averaged structure parameters of large aper-

ture scintillometers in agreement with the structure parameters obtained

with an unmanned aircraft?

1.4. Research strategy

In order to answer the above research questions, data of three experiments are used. As

said before, the use of MOST is restricted to homogeneous surface conditions. Therefore,

data from two sites with relatively homogeneous surface conditions are analysed to

answer the first two research questions related to the applicability of MOST (Cabauw,

4The LITFASS-2009 experiment was carried out within DFG-NWO project ‘Turbulent Structure Parameters over
Heterogeneous Terrain - Implications for the Interpretation of Scintillometer Data’ of which this PhD-project was
a part.
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1. Introduction

the Netherlands for question 1, and Leon, Kansas, USA for question 4). For the last two

questions we use data collected during LITFASS-2009 and LITFASS-2010 (Lindenberg,

Germany), which is characterised by a moderately heterogeneous surface.

In this section we briefly describe the research strategy related to each question in-

cluding some background information about the experiments. Before, we note that

whereas a better understanding of the scintillometer signal is the primary motivation

of our study, we chose to determine C2
s using other instruments (mainly EC systems)

to answer the first three research questions. One reason for this is that in that case the

footprint of C2
T is similar as other measurements needed in the analysis (e.g. MOST,

point measurements).

Question 1 is answered using data from the Cabauw tower, which is located in the

western part of the Netherlands. Between the Cabauw Tower and the TV tower of

IJsselstein an eXtra Large Aperture Scintillometer (XLAS Kipp & Zonen) has been

set-up at a height of 60 m. Therefore, in Chapter 2, data from an EC system installed

at 60 m at the Cabauw Tower is used. The research question has been accentuated

as follows: How should H be determined from C2
T obtained at 60 m under unstable

conditions, particularly during the morning period when the depth of the ASL is smaller

than 60 m. To answer this question, we compare results from two proposed theoretical

concepts. In the first concept, we assume that MOST applies at 60 m during the entire

day and C2
T therefore scales with the surface flux. In the second concept, C2

T at 60 m is

scaled with the sensible heat flux at the same level, rather than with the surface flux.

To obtain the surface heat flux a correction for the flux divergence in the column below

the level of observation has to be applied.

Question 2 is answered using data from the Cooperative Atmosphere-Surface Ex-

change Study (CASES-99, Poulos et al., 2002). This experiment was performed in

October 1999 near Leon, Kansas, U.S.A. During CASES-99, 32 thermocouples were

mounted along a 50 m tower. This offers a very useful dataset covering a wide range of

observation heights (z) in addition to a wide range of stabilities (1/L). The study in

Chapter 3 can be split in two parts: In the first part, we investigate the impact on fs of

applying a certain regression approach using the entire dataset (from all measurement

levels and for all stability classes). In the second part we investigate the impact on fs
of measuring within different stability ranges and at different heights. Therefore, we

divide the dataset into eight height classes and eight stability classes. For each class

the regression coefficients are determined using the regression approach selected in part

1. Finally, the results of the different classes are compared to each other and to the

results of the entire dataset.

Question 3 and 4 are answered using data from the LITFASS-2009 experiment

(Beyrich et al., 2012). The study area is moderately heterogeneous with a mixture

of farmland patches, forest, small lakes and small villages (Fig. 1 in Beyrich et al.

(2012)). The vegetation of the farmland patches mainly consists of maize, sunflowers,

colza, barley, and triticale. During the experiment several measurement techniques were

12
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Fig. 1.4. Setup of the LITFASS-2009 experiment

employed, namely eddy covariance, unmanned aircraft and scintillometers (see Fig. 1.4

for an overview).

Question 3 is answered by determining C2
T and C2

q from EC systems. To investigate

the height dependence of the local variability, we used the EC data from three levels:

2.5 m (surface station above triticale), 50 m, and 90 m (along the 99 m tower above

grass). The stability dependence is investigated by dividing the data into thirteen

stability classes. First, we investigate the shape of the probability density functions

(PDF) of C2
s . Second, we quantify how the variability of C2

s depends on the size

of averaging window. Finally, we discuss implications for the interpretation of path-

integrated structure parameters over heterogeneous surfaces.

To answer question 4, we finally focus on data obtained from scintillometer measure-

ments. Because the meteorological conditions were unfavourable to measure a complete

diurnal cycle with the unmanned aicraft, M2AV, during the LITFASS-2009, we also use

data from an additional flight campaign (LITFASS-2010). A first comparison of C2
T

presented in Beyrich et al. (2012) using LAS and M2AV from just one flight day (13

July 2009) shows that the afternoon decrease of C2
T obtained by the M2AV and LAS is

consistent, but the values of C2
T from the M2AV are systematically larger than from the

LAS. One reason for this difference could be that for this first comparison C2
T from the

two systems were processed using a standard procedure, not taking into account dif-

ferent averaging times and the LAS path weighting function (Eq. 1.4) when analysing

the M2AV data. Therefore, we accentuate the last research question as follows: Can

similar differences be found on the other days, and can these differences be reduced or

explained through a more elaborate processing of either or both the LAS and the M2

AV data?
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1. Introduction

1.5. Thesis outline

The research questions presented in Sect. 1.3 will be answered in chapters 2 to 5. These

chapters were independently prepared for publication in Boundary-Layer Meteorology.

Chapter 2 has been published in 2012, Chapter 3 has been accepted for minor revisions

in March 2014, Chapter 4 has been published in 2014, and Chapter 5 is in preparation

for submission. The chapters are presented in the article form. As a consequence,

some repetition will occur, mainly in the sections were the theory, data or methods are

described. The summary of the entire thesis is given in Chapter 6. In the final chapter

the general discussion and recommendations are presented.

In the appendix, a validation of C2
n obtained by two LAS built by the Meteorology and

Air Quality group (MAQ) of Wageningen University is given, which has been published

as an internal report of MAQ. The motivation for this study was the fact that for the

LITFASS-2009 experiment the signals from the two LAS were processed in different

ways. Moreover, one of these LAS, which has been in operational use for more than ten

years, was recalibrated after the experiment. We therefore investigated the differences

in data processing and the effect of the calibration on C2
n obtained from the two LAS.
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2 Monin-Obukhov scaling in and above the

atmospheric surface layer: the complexities of elevated

scintillometer measurements

2.1. Introduction

The area-averaged surface flux of sensible heat is of interest for many meteorological

and hydrological studies, e.g. to evaluate mesoscale numerical models or satellite-based

retrieval algorithms. Over homogeneous terrain, the eddy-covariance method or other

local point measurement techniques can be used to determine this flux (Lee et al.,

2004; Foken, 2008). Over heterogeneous terrain, however, point measurements are not

suitable. During recent years, the use of scintillometers has proven to be a reliable

method for measuring the spatially-averaged flux over heterogeneous surfaces under

daytime conditions (e.g. Meijninger et al., 2002b; Beyrich et al., 2005; Kohsiek et al.,

2006). To obtain the sensible heat flux from the scintillometer signal several steps are

involved. From the scintillometer data the structure parameter of the refractive index

of air is determined, which is used to calculate the structure parameter of temperature

(C2
T ). Then, the surface sensible heat flux is derived by applying Monin-Obukhov

similarity theory (MOST, Wyngaard, 1973; Meijninger, 2003; Moene et al., 2004), which

is valid for the atmospheric surface layer, where fluxes are assumed to vary little with

height.

One limitation of the scintillometer is that it has an upper limit on scintillations that

can be measured, due to the saturation of the scintillometer signal (Kohsiek et al., 2002,

2006). One way to prevent saturation is to install a scintillometer at an elevated level,

since the magnitude of the structure parameter of temperature decreases with height.

However, a consequence of a greater height is that the observations are not always

located in the atmospheric surface layer and the application of MOST is in principle

not justified. This situation particularly occurs in the morning when the boundary layer

is relatively shallow.

This chapter is published as Braam M, Bosveld FC, Moene AF (2012) On Monin-Obukhov scaling in and above the
atmospheric surface layer: The complexities of elevated scintillometer measurements. Boundary-Layer Meteorol
144:157–177
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2. MOST in and above the ASL

In order to obtain the surface sensible heat flux from the structure parameter of tem-

perature at elevated levels under unstable conditions, two different theoretical concepts

are proposed. In the first concept, we assume that MOST still applies at levels just

above the atmospheric surface layer and that C2
T still scales with the surface flux. In

the second concept, the structure parameter of temperature at elevated levels has to

be scaled with the local sensible heat flux, rather than with the surface flux. To obtain

the surface heat flux a correction for the flux divergence in the column below the level

of observation has to be applied.

Whereas the scintillometer is the motivation of our study, we chose to evaluate the two

proposed concepts with data from a sonic anemometer/ thermometer (sonic) installed

on the Cabauw tower, the Netherlands, about 60 m above the surface. The footprint

of the path-averaged C2
T obtained by the scintillometer differs from the footprint of

the sensible heat fluxes (point measurements), which are calculated from sonic data.

Consequently, the main question is how the surface sensible heat flux should be deter-

mined from the structure parameter of temperature determined at 60 m under unstable

conditions, particularly during the morning period when the level of 60 m is situated

above the atmospheric surface layer. Since several MOST relationships are proposed in

the literature (see, Moene et al., 2004), we perform an analysis of the relationships of

Andreas (1988); Hill et al. (1992); and de Bruin et al. (1993, hereafter referred to A88,

H92 and DB93, respectively) before comparing the two concepts, to investigate which

similarity relationship is most suitable for our dataset.

The paper is structured as follows: in Sect. 2.2 the theory behind MOST and the two

proposed concepts are described. Information about the experimental set-up, dataset

and the applied corrections can be found in Sect. 2.3. Section 2.4 provides a description

of the boundary-layer structure, a similarity study of the MOST relationships with the

data observed in the atmospheric surface layer is presented, and the two proposed

concepts are compared. In the final section the conclusions are given.

2.2. Theory

Monin-Obukhov similarity theory applies to the atmospheric surface layer (ASL, with

depth zASL) under stationary and horizontally homogeneous surface conditions (e.g.

Businger et al., 1971). In the ASL, turbulence is controlled by surface processes, whereas

processes in the rest of the atmospheric boundary layer (with depth zi), such as entrain-

ment, play a less important role. For this reason, the only height in the dimensional

analysis that is taken into account is the observation height (z). This holds if z << zi,

which is operationalized as z < 0.1 zi. If we assume a linear sensible heat-flux profile

and no entrainment at the top of the boundary layer then surface-layer fluxes do not

differ by more than 10 % from the surface flux (w′T ′
s) within the surface layer, as is

illustrated in Fig. 2.1 by the solid line. Therefore, the surface layer is often referred

to the constant-flux layer. However, in the case of dry air entrainment, the variation

in the heat flux is more than 10 % over the depth of the ASL (0.1 zi, Fig. 2.1). The

16



2.2. Theory

Fig. 2.1. Three sketches of the linear turbulent sensible heat-flux profile in the boundary layer. Solid line:
without an entrainment flux (w′T ′

e = 0). Dashed line: free-convection situation (w′T ′
e = −0.2w′T ′

s). Dash-

dotted line: early morning situation (w′T ′
e = −1.2w′T ′

s).

dashed line represents a case for the free convection situation with an entrainment flux

(w′T ′
e) that amounts to −0.2w′T ′

s of the surface flux (Tennekes, 1973). In that case

the fluxes across the surface layer do not vary that much: 12 %. During the morning

period however, when the entrainment flux is large (dash-dotted line) the fluxes within

the ASL can differ much more. From our dataset we find an entrainment ratio of −1.2,

two hours after sunrise. This gives a flux variation of 22 % across the atmospheric sur-

face layer. Consequently, the application of MOST at elevated levels is questionable in

the morning period for two reasons: (a) the relative height z/zi of a certain observation

level can easily be larger than 0.1 if the boundary layer is shallow, and (b) the flux

divergence in the surface layer can be larger than 10 % when (the absolute value of) the

entrainment ratio is large. Kohsiek (1988) used mixed-layer scaling to scale structure

parameters at levels up to 200 m under convective conditions. This approach may be

also questionable in the early morning when the boundary layer is not yet well-mixed.

MOST is based on the observation that the statistics of turbulence in the surface

layer are fully determined by four parameters: the surface flux of the scalar under

consideration, the friction velocity u∗, the buoyancy flux (g/T )w′T ′
v and the height

above the surface z (Wyngaard, 1973; Stull, 1988; Meijninger, 2003; Moene et al., 2004).

Applying this to the structure parameter of temperature we obtain:

C2
T z

2/3

T 2
∗

= f
( z

L

)
(2.1)

with the Obukhov length L = Tu2∗/(κgTv∗), the temperature scale T∗ = −H/(ρcpu∗)

and the friction velocity u∗ =
√

τ0/ρ, in which T is the temperature, Tv the virtual

temperature, κ = 0.4 is the von-Kármán constant, g = 9.81 m s−2 is the gravity
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2. MOST in and above the ASL

Table 2.1. Expressions for the similarity relationships (f (z/L) = c1 (1− c2z/L)
−2/3) under unstable condi-

tions. Note that the similarity relationship of A88 is a modification of Wyngaard (1973) with κ = 0.4.

c1 c2 d Observation level [m] Stability range Reference

4.9 6.1 1.46 5.66, 11.3 and 22.6 scatter cloud −z/L < 1.1 Andreas (1988)
6 points: 1.1 < −z/L < 2.5

8.1 15.0 1.33 3.95 50 % of data: 0.1 < −z/L < 0.5 Hill et al. (1992)
4.9 9.0 1.13 11.3 scatter cloud: −z/L < 3 de Bruin et al. (1993)

6 points: 3 < −z/L < 100

acceleration, H is the surface sensible heat flux, ρ is the density, cp is the specific heat

at constant pressure and τ0 is the surface shear stress. Several expressions for f (z/L)

exist in the literature for stable and unstable conditions (for an overview see Moene

et al., 2004). Since we focus our research on unstable conditions only, the formulations

of H92, A88 and DB93 are evaluated (Table 2.1). The relationships all have the form:

f
( z

L

)
= c1

(
1− c2

z

L

)−2/3
(2.2)

in which the coefficients (c1 and c2) have been empirically determined with near-surface

data by varying L. The coefficient c1 is the asymptotic value of f (z/L) for the neutral

limit. On the other hand, 1/c2 is a measure of stability (z/L) at which the neutral limit

transits into the free convection limit. The exponent −2/3 ensures the correct behaviour

in the free convection limit. The fourth and fifth columns in Table 2.1 display the

observation level and the stability range for the datasets on which the relationships are

based. For near-neutral conditions the H92 relationship gives the highest values, due to

the high value of c1. The similarity relationships of DB93 and A88 have the same value

of c1. However, since c2 is much higher for DB93, the transition point from neutral to

unstable conditions occurs at a lower stability. As a result, the similarity relationship

of DB93 shows the lowest values. Under very unstable conditions the three show quite

similar results. In the free convection limit Eq. 2.2 reduces to f (z/L) = d (−z/L)−2/3

in which d = c1c
−2/3
2 ; d is also given in Table 2.1 showing that A88 gives largest and

DB93 gives lowest values in the free convective range.

As discussed above, MOST might not be expected to be valid at the measurement

height during the morning period due to the shallow surface layer and the large en-

trainment flux. In order to obtain the surface sensible heat flux from the structure

parameter of temperature at elevated levels, two different concepts are proposed.

In the first concept (MOSTs, s for surface), the structure parameter of temperature

at 60 m is scaled with the surface flux. Although the surface flux may not affect the

turbulence outside the ASL directly, it does so indirectly. The surface heat flux is the

cause of the temperature contrast over the depth of the atmospheric boundary layer,

and as such is the primary source of turbulent temperature fluctuations. Therefore

the structure parameter, which is a measure of temperature fluctuations, will scale on
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the surface flux. Consequently, we hypothesize that MOST can be applied at higher

levels as well. In the second concept (MOSTl, l for local level), the structure parameter

is scaled with the local-level fluxes. The assumption is that there is a local relation

between vertical heat transport and the smaller scale temperature fluctuations in the

turbulent cascade towards the dissipation range. This use of MOST is comparable with

the local scaling hypothesis that is often used in the stable boundary layer (Nieuwstadt,

1984). In order to obtain the surface flux, a correction for the flux divergence between

the surface and the observational level needs to be applied when using this concept.

2.3. Research strategy & Methods

The data have been collected at the Cabauw tower (52◦58.22’ N 4◦55.57’ E), which is lo-

cated in the western part of the Netherlands. The area around the tower is open pasture

terrain for 400 m; for a detailed description of the site area see van Ulden and Wieringa

(1995). At first sight the surroundings of Cabauw have quite homogeneous surface

characteristics, though on closer inspection a distinction has to be made between the

regional characteristics and those close to the tower. First, the near-tower aerodynamic

roughness length (z0 m) is smaller than the regional value (grassland, z0 m ≈ 0.03 m and

scattered rows of trees, z0 m ≈ 0.15 m, respectively). For a given geostrophic wind, the

near-tower friction velocity will be different from the regional value. Second, we find a

distinction between the near-tower and regional Bowen ratios (see Sect. 2.4.1). Since

we investigate data from elevated levels that have a larger footprint area than surface

observations, the regional surface characteristics are relevant for this study. Notice

that, in this manuscript, the adjective near-tower (in contrast to regional) refers to the

local horizontal area that influences the sonic measurements. This is done, because the

adjective local-level (in contrast to surface) is already used to specify the local vertical

measurement level used for scaling.

The analyzed period covers 4 May 2008 till 11 May 2008, a period chosen because

it consists of cloud-free days, and the synoptic weather conditions show only little

variation. Due to this small variation we are able to use a composite of the eight days

for part of the analyses using 30-min averaged data.

This section starts with a description of the main steps in the analysis, which is

supported by Fig. 2.2. Subsequently the methods of calculating fluxes and C2
T from

the sonic anemometer/thermometer (sonic) data (Sect. 2.3.2) and the determination of

C2
T from the scintillometer data are outlined (Sect. 2.3.3).

2.3.1. Research Strategy

This research can be split into two steps. In the first step we evaluate which of the

proposed similarity relationships is valid for our dataset, while the second step evaluates

the validity of the MOSTs and MOSTl concepts.

In both steps an independent measure of the structure parameter of temperature is

needed (row 1, Fig. 2.2). In step 1 we need the independent C2
T as input to compare
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2. MOST in and above the ASL

the two dimensionless groups (z/L and C2
T z

2/3/T 2
∗ ) in MOST. In step 2 the indepen-

dent C2
T are used to validate the 60-m structure parameter of temperature calculated

with the two different MOST concepts (C2
T 60 mMOSTs and C2

T 60 mMOSTl). Ideally, we

would use the scintillometer to determine the independent structure parameter, be-

cause the scintillometer measurements at elevated levels are the motivation behind our

study. However, the MOST-scaling variables (row 2, Fig. 2.2) that are used in the

validation cannot be obtained from the scintillometer but are available from the sonic

measurements. So, then the footprints of the MOST-scaling variables (sonic: point

measurements) will differ from the one of the independent structure parameter (scin-

tillometer: path measurements). Furthermore, the scintillometer does not measure C2
T

directly, but it is obtained from C2
n. Therefore, we decided to analyze the directly

observed C2
T from the sonic instead of C2

T derived from the scintillometer. Another

advantage of using the sonic is that data are also available at 3, 100 and 180 m. In

other words, in this research the concepts are solely analyzed with sonic data (see Sect.

2.3.3 for details about the determination of C2
T from the sonic), whereas the scintil-

lometer is our motivation. Therefore, scintillometer output is only used to compare the

path-averaged C2
T with the point measured C2

T , in order to ensure that our conclusions

are relevant for scintillometer data as well.

Furthermore, both steps also need MOST scaling variables as input data (row 2, Fig.

2.2). Strictly speaking, the temperature scale and the friction velocity are calculated

from the surface fluxes (see Sect. 2.2), but in practice H and τ0 cannot be measured.

Instead, the fluxes are derived from the turbulence fluxes measured with the sonic. For

the scaling related to the 3-m data it is assumed that there is no vertical flux divergence

so that the observed turbulence fluxes are equal to the near-tower surface fluxes (column

1 of row 2, Fig. 2.2). As said before a difference was found between the near-tower and

the regional fluxes around Cabauw, therefore in the scaling related to the 60 m we use

the regional fluxes. For the local-level scaling (MOSTl) this means that we are using

the regional local-level friction velocity and the regional local-level turbulent heat flux.

For the surface scaling (MOSTs), it is assumed that there is only flux divergence for

the sensible heat flux. Hence, the regional surface sensible heat flux is derived from the

observed flux at 60 m with a correction for the flux divergence. This correction is based

on the time rate of change of the temperature as observed along the mast, and where

advection is neglected. Furthermore, in MOSTs we used u∗60 m for the momentum flux.

Consequently, the difference between MOSTl and MOSTs corresponds to the use of the

regional local-level heat flux and the regional surface heat flux, respectively (column 2

and 3 of row 2, Fig. 2.2).

In order to evaluate which of the proposed similarity relationships (see Table 2.1)

is valid for our dataset, we determine the similarity relationships for the 3-m data

and the 60-m data (step 1, Fig. 2.2). In this analysis we focus on ASL data only,

where MOST can be expected to be valid. As indicated in the previous section, the

surface-layer depth is defined as 10 % of the boundary-layer depth. The boundary-layer
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depth is determined from a wind profiler (LAP 3000) following Beyrich and Görsdorf

(1995) and Klein Baltink and Holtslag (1997). At 3 m (located in the ASL the entire

time) all data under unstable conditions are selected (w′T ′
3 m > 0). For the 60-m

level we consider only the unstable data where 60 m is located within the surface layer

(w′T ′
ll,60 m > 0 ∧ zASL > 60 m). Both MOSTs and MOSTl are used; due to the small

variation of the flux with height within the surface layer MOSTs and MOSTl should

show similar results.

The second step (Fig. 2.2) is to determine the validity of the MOSTs and MOSTl

concepts at 60 m. We calculate the 60-m structure parameter of temperature with

the two different MOST concepts (C2
T 60 mMOSTs and C2

T 60 mMOSTl ), and compare them

with the directly observed values from the sonic (C2
T 60 msonic). Note that the label sonic

refers to the directly measured C2
T without scaling, in contrast to the labels MOSTs

and MOSTl that refers to C2
T derived from sonic data by applying the scaling relation.

The reason to use MOST in the reverse way (to obtain C2
T from observed fluxes) is

that we are interested in the different processes that act on the structure parameter

of temperature rather than the flux itself. In our analysis all the data under unstable

conditions are considered (w′T ′
ll,60 m > 0). In addition, the unstable data are split

into two other groups. The first group contains data where 60 m is located in the

atmospheric surface layer (‘ASL’, zASL > 60 m), whereas the second group consists of

data obtained above the surface layer (during the early morning period, ‘NASL’, which

represents non-atmospheric surface layer, zASL < 60 m).

2.3.2. The sonic anemometer/thermometer

The sonic anemometer/thermometer (Gill Solent R3, sample frequency: 10 Hz) is used

(a) to obtain the directly measured structure function of temperature (C2
T sonic), and

(b) to determine the turbulent fluxes that are used to calculate the MOST scaling

parameters. The sonic path has a length of 0.15 m. Sonics are installed at 3, 60, 100

and 180 m height, with the sonic at 3 m is positioned on a small mast approximately

200 m north of the main tower. The others are placed on the south-east booms of the

tower. With easterly winds, as is in the case for the period analyzed here, no significant

flow obstruction occurs.

The structure parameter of temperature

The structure parameter of temperature within the inertial subrange can be defined by

(Stull, 1988; Bosveld, 1999; Moene et al., 2004):

C2
T =

DTTx(r)

r
2
3

=
[T (x+ r)− T (x)]2

r
2
3

(2.3)

in which DTTx is the spatial (x) structure function, r is the spatial separation, T (x) and

T (x+r) are the temperatures at location x and x+r. However from point observations

(e.g. sonic data), only the temporal structure function of temperature (DTTt) can be
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Fig. 2.2. Sketch of the research strategy. The first two rows represent the input data (the first the directly
measured C2

T and the second the combinations of friction velocity and turbulent sensible heat flux used in
MOST). The second two rows show the output (first line), with which condition the data are filtered (second
line) and in which figure and table the analysis is shown (last lines). Solid arrows mean ‘is input of’, the dashed
arrows mean ‘will be used to validate’ and the dotted ones ‘will be split into’. The abbreviation ‘ASL’ stands
for surface-layer data, ‘NASL’ for non-atmospheric surface-layer data, ‘L’ for line and ‘C’ for column.

derived:

DTTt(τ) = [T (t+ τ)− T (t)]2 (2.4)

in which the subscript t indicates that it is the temporal structure function, T (t) and

T (t + τ) are the temperatures at times t and t + τ , and τ is the temporal separa-

tion. Lumley (1965) and Wyngaard and Clifford (1977) derive the conversion from the

wavenumber to the frequency domain. Here we are concerned with the conversion from

the time to space domain and follow Bosveld (1999). The conversion is performed by

(a) assuming stationary and horizontally homogeneous conditions, (b) applying Taylor

hypothesis, and (c) assuming that the turbulent variation of the wind vector has a

three-dimensional Gaussian distribution:

DTTx(r) =
DTTt(r/U )

1− 1
9
σ2
u

U
2 + 1

3
σ2
v

U
2 + 1

3
σ2
w

U
2

(2.5)

in which, σ2
x is the variance of x, where x can be the wind component in the u, v and

w direction respectively and U is the averaged length of the horizontal wind vector

(

√
u(t)

2
+ v(t)

2
). The variance in the three directions and the wind speed itself are

determined with the sonic anemometer/ thermometer. In this study we use fixed time

22



2.3. Research strategy & Methods

lags, consequently, the spatial separation (r = τU) varies in time. After investigating

the width of the inertial subrange by spectral analysis (Braam, 2008), we chose a time

lag of 0.2 s for the sonic at 3 m and of 1.8 s for the other levels.

The temperature data from the sonic anemometer/ thermometer are determined from

the speed of sound. In the conversion from the so-called sonic temperature to the air

temperature, the former is corrected for wind speed and humidity (Schotanus et al.,

1983; Liu et al., 2001). The wind-speed correction is already done internally in the

instrument (Gill Instruments Ltd., 2002). Essential variables in the humidity correc-

tion are specific humidity and mean temperature. Since the sonic cannot measure the

absolute value of the temperature very accurately, we used the mean air temperature

(T ) measured with KNMI Pt500-elements at 200, 140, 80, 40, 20, 10 and 1.5 m in the

humidity correction. To determine the mean temperature at the height of the sonics, a

linear interpolation between the two nearest levels is done. Based on the correction for

temperature fluctuations (first part of Eq. 6 of Schotanus et al. 1983 and Eq. 10 of Liu

et al. 2001), the temporal structure function corrected for humidity becomes:

[Tcor(t+ τ)− Tcor(t)]
2 =

[
Tson(t+ τ)− Tson(t) + 0.51T (q(t)− q(t+ τ))

]2
(2.6)

in which the subscript ‘cor’ indicates the corrected value and ‘son’ the sonic measure-

ments. The specific humidity fluctuations are derived from open-path gas analyzers

(LiCor-7500) placed at the same height as the sonics.

A disadvantage of using sonics to determine the structure parameter is that the tem-

perature fluctuations smaller than the path length are not taken into account. To correct

for these spectral losses, the correction of Hartogensis et al. (2002) for the deviation of

the measured spectrum from the inertial subrange is used.

Turbulent heat fluxes

The turbulent fluxes are obtained from the sonic data, and in order to correct the

turbulent heat flux for humidity, we use the first part of Eq. 12 of Liu et al. (2001).

A tilt correction is applied as well. Streamline tilt is estimated by a linear regression

between the mean vertical wind on mean horizontal wind for wind-direction bins of

20 degrees and for wind speeds > 3 m s−1. Fluxes are corrected given this wind-

direction dependent mean streamline tilt. The turbulent fluxes are corrected for low

frequency loss due to a finite averaging period. The correction is based on calculation

of low-frequency contributions from standard surface layer cospectra (Bosveld, 1999),

extended to levels above the atmospheric surface layer by Schalkwijk et al. (2010).

2.3.3. The scintillometer

An eXtra Large Aperture Scintillometer (XLAS Kipp & Zonen) has been set-up between

the Cabauw Tower and the TV tower of IJsselstein (52◦00.72’ N. 5◦03.23’ E). The XLAS

transmits a light beam with a near infra-red wavelength of 880 nm. The aperture

diameter is 0.328 m. The distance between the two towers is 9.8 km. The terrain
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around Cabauw is flat and the height of the optical path above the surface is 59.9 m,

which is the average of the receiver (61.7 m) and transmitter height (62.1 m) minus

2 m, which accounts for the earth’s curvature along the path (Kohsiek et al., 2002).

To calculate the structure parameter of temperature from the structure parameter of

the refractive index of air (C2
n) (the primary output of the scintillometer), the following

approximation can be used (Wesely, 1976a; Moene, 2003):

C2
T = C2

n

T 2

A2
T

(
1 +

0.03

β

)−2

(2.7)

in which β is the Bowen ratio and AT ≈ −0.78 ×10−6p/T where p is the surface pressure.

The Bowen ratio is determined from the turbulent fluxes at 60 m observed with the sonic

and the LiCor. For the temperature we use the 10-m temperature. The Bowen-ratio

correction ((1 + 0.03/β)−2), which is a correction for humidity-related scintillations)

is not applied for β ≈ −0.03 (−0.04 < β < −0.02), since C2
T becomes numerically

unstable when β approaches −0.03.

2.4. Results

2.4.1. The structure of the boundary layer

In order to understand the relationship between surface fluxes, local-level fluxes and

the observed temperature structure parameters, we first need to study the dynamics of

the boundary layer and the different fluxes separately. In this section first the depth of

the boundary layer is discussed. Next, the temporal evolution of the friction velocity,

an important variable in MOST, is studied. Finally, the turbulent heat fluxes and the

measured C2
T at the four different levels are investigated.

The development of the boundary layer is quite similar for the eight days studied.

The boundary layer starts growing around sunrise (0600 UTC) with its depth reaching

600 m between 0930 UTC and 1030 UTC. Thus only in the early morning is the 60-m

level not located in the surface layer. Then, the boundary layer grows rapidly: between

1000 UTC and 1100 UTC the boundary layer reaches 1000 m in depth. A few hours

before sunset, the boundary-layer depth reaches its maximum around 2000 m.

The composite diurnal cycle of the friction velocity is plotted in Fig. 2.3. During

the night, the friction velocity is relatively small between 0.1 and 0.2 m s−1, whereas

during the day higher values are observed. It is remarkable that u∗ll,60 m is almost twice

that of u∗3 m, around 0.55 and 0.3 m s−1, respectively. This is caused by the difference

between the near-tower roughness and the regional roughness (see Sect. 2.3.1). In the

early morning a flux divergence in turbulent stress is observed between 60, 100 and 180

m. This is a result of a deceleration of the flow when the rising convective boundary

layer entrains air from the free troposphere that has been accelerated during the night

when air aloft was decoupled from surface friction.

Figure 2.4a presents the time evolution of the local-level turbulent heat fluxes at
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2.4. Results

Fig. 2.3. The temporal evolution averaged over the eight days of the friction velocity (u∗ll) at 3 m (⋄), 60 m
(+), 100 m (∗) and 180 m (×).

Fig. 2.4. The temporal evolution averaged over the eight days of (a) the local-level turbulent heat flux (w′T ′
ll)

at 3 m (⋄), 60 m (+), 100 m (∗) and 180 m(×) and (b) as in (a) but corrected for atmospheric storage below

the sensor level (w′T ′
s).

the four levels averaged over the eight days. As can be seen, the fluxes decrease with

height in the morning period until 1100 UTC. The fluxes at the elevated levels deviate
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more than 10 % from the 3-m flux, as a result of the shallow surface layer and a large

entrainment flux. For instance, at 0800 UTC the boundary-layer depth is almost 400 m,

resulting in a surface-layer depth of 40 m. The entrainment flux could be estimated as

almost −0.06 K m s−1, by assuming a linear flux profile and using w′T ′
180 m ≈ 0 and

w′T ′
3 m ≈ 0.05 K m s−1. In other words, in the morning period the flux divergence is

large and the application of MOST is questionable. On the other hand, after 1100 UTC

the fluxes at different levels are more comparable. The values and the pattern of the 60-

m and 100-m fluxes are almost the same. The 180-m flux shows a comparable pattern.

However, the values are almost 20 % lower from 1100 until 1500 UTC. From 1530 until

1700 UTC, when for most days the boundary layer was deeper than 1800 m, the 180-m

flux had the same values as the 60-m and 100-m fluxes.

The flux at 3 m is less variable than that at the other three levels. At 3 m the

turbulent structures are much smaller than at the elevated levels. As a consequence

more structures pass the sensor during the averaging time, resulting in statistically more

stable values. Surprisingly, in the afternoon the 3-m flux is lower than the 60-m and

100-m fluxes, and after 1400 UTC even lower than the 180-m flux. This deviation of

the 3-m flux can also be observed in Fig. 2.4b. Figure 2.4b shows the 3-m flux together

with the fluxes of the other levels, corrected for flux divergence. The corrected fluxes

at 60, 100 and 180 m are quite comparable, especially in the afternoon from 1200 until

1800 UTC. The 3-m flux on the other hand is much lower during the entire day. A

possible reason for the differences between the 3-m flux and those at the other levels

might be that the instrument at 3 m measures a different footprint. Probably the soil

of the surroundings is drier than the soil just around the tower, which leads to smaller

latent heat flux and larger sensible heat flux at the elevated level when compared to

3 m. This is confirmed by further observations that show that the four levels give about

the same total heat flux, where the 3-m level shows a different distribution of available

energy over the latent and sensible heat fluxes (figure not shown). Thus, the near-

tower terrain does evaporate more then the surrounding region. Hence, in Cabauw a

distinction has to be made between the near-tower and regional Bowen ratios. In order

to ensure comparable footprints between the surface flux and the local-level flux, in

MOSTs the regional surface flux (w′T ′
s,60 m) is used.

Figure 2.5 shows the temporal evolution of the structure parameter of temperature

at the four selected levels computed from the sonic data. C2
T decreases with height, e.g.

the values at 3 m are a factor of 10 larger than those at 60 m. The structure parameter

of temperature has a clear diurnal cycle with a minimum observed in the morning and

evening transition periods. In the morning sharp minima are observed around 0530

and 0700 UTC at the 3-m and 60-m levels respectively, whereas at 100 and 180 m

the minimum is less pronounced (0800 and 1000 UTC). In the evening the minima are

found at 1600 UTC for the 3-m observations and at 1700 UTC at the other levels.

Those minima are related to the minimum in temperature fluctuations under neutral

conditions. Consequently the turbulent heat flux crosses zero at the same time (Fig.
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Fig. 2.5. The temporal evolution averaged over the eight days of the direct measured structure parameter of
temperature with sonics at 3 m (⋄, right x-axis) and at 60 m (+), 100 m (∗) and 180 m (×) (all left-axis).

2.4). At higher levels the minima in C2
T correspond to the zero local-level turbulent

heat flux and not to the surface flux at that moment, which by then already has a

significant positive value (Fig. 2.4).

At 100 and 180 m the structure parameters have a large peak before they reach their

minimum around 0600 and 0700 UTC, respectively. The observations at 60 m do not

really show a peak, but still the C2
T has a maximum at the end of the night (0500 UTC).

Those maxima indicate strong temperature fluctuations, which occur at the moment

that the particular level is located inside the entrainment zone. This is supported by the

fact that the maxima at a specific level are observed at the moment when the turbulent

heat flux at that level reaches its most negative value (Fig. 2.4a).

The early morning minima of C2
T have larger values than the afternoon minima:

around 1 × 10−3 and 2 × 10−4 K2 m−2/3 respectively. This is probably related to the

non-stationarity of the morning transition. The large temperature variances that are

created during the passage of the rising entrainment layer continue to influence C2
T ,

even though the local stratification is close to neutral. Thus during and just after

the morning transition a direct relation between C2
T and the sensible heat flux is not

guaranteed.

These first results indicate that the structure parameter of temperature at a specific

level shows a stronger relationship with the turbulent flux at that level than with the

surface flux. This is in favour of the second concept: MOSTl.
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Fig. 2.6. The similarity relationship obtained from the turbulent heat flux and the friction velocity at 3 m, (⋄),

at 60 m with MOSTs (+), at 60 m with MOSTl (◆), and three similarity relations proposed in the literature
(lines). For the 3-m data, unstable conditions are selected: w′T ′

3 m > 0. For the 60-m data only data
within the ASL are taken into account (w′T ′

60 m > 0 ∧ zASL > 60). Data with C2
T z

2/3/T 2
∗ > 8 occur

but are not shown for clarity (11 data points for 3 m and 6 data points for 60 m).

2.4.2. The proposed similarity relationships in the surface layer, step 1

In this section we analyze the similarity relationships with (a) the 3-m data, and (b)

the ASL data observed at 60 m from MOSTs and MOSTl (step 1, row 3, Fig. 2.2).

Figure 2.6 shows the similarity relation between z/L and C2
T z

2/3/T 2
∗ for all unstable

30-min observations as well as the relationships proposed in the literature.

The 3-m data cover a stability range from 0.015 < −z/L < 0.46. For 60 m we

observe larger values for −z/L ranging between 0.09 and 3. This is lower than a factor

20 (60/3), because apart from the difference in z we also use a different u∗ and w′T ′ for

the two measuring levels (see Sect. 2.3.1). During the day, u∗60 m is around 1.6 to 1.8

times larger than u∗3 m (see Fig. 2.3) and w′T ′
60 m is a factor 1.5 larger than w′T ′

3 m

(see Fig. 2.4). All these differences imply that −z/L is 6-9 times larger at 60 m than

at 3 m.

Most scatter is found in the neutral region for both the 3-m data (−z/L < 0.06)

and the 60-m data (−z/L < 0.3). For the 60-m data, even the relationship of H92

underestimates the measured values. Note that all the data points where C2
T z

2/3/T 2
∗ is

higher than 8 are also located in the near-neutral range. The neutral data are observed

during the morning and the late afternoon transition period, when (a) the turbulent heat

flux is small and temperature fluctuations are non-zero, and (b) the friction velocity is

low. In other words, we do not observe neutral conditions because of a high wind speed,
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Table 2.2. Values of the coefficient c2 in the similarity relationships (f (z/L) = c1 (1− c2z/L)
−2/3) obtained

from a fit through the ASL data with an orthogonal distance regression method (ODRPack Boggs et al., 1987).
Fit 1 with a fixed c1 of 8.1 as proposed by H92 (c2 H92 = 15) and fit 2 with a fixed c1 of 4.9 as in the relationships
from A88 (c2 A88 = 6.1) and DB93 (c2 DB93 = 9).

Dataset Fit 1: c1 = 8.1 Fit 2: c1 = 4.9

H92 A88 DB93

c2 fit c2 Tol
c2 Tol
c2 fit

c2 fit−15
15

c2 fit c2 Tol
c2 Tol
c2 fit

c2 fit−6.1
6.1

c2 fit−9
9

3 m 24.95 0.80 0.032 0.66 8.01 0.34 0.042 0.31 −0.11
60 m MOSTs 20.12 0.89 0.045 0.34 8.64 0.44 0.051 0.42 −0.04
60 m MOSTl 17.14 0.82 0.048 0.14 7.26 0.42 0.058 0.19 −0.19

but because of a low sensible heat flux. The low heat flux means that the absolute error

in the scaled structure parameter could be relatively large, which makes the neutral data

more uncertain. Similar effects around near-neutral conditions for the relation between

variances and fluxes mentioned by Weaver (1990). On the other hand, our neutral data

points are clustered above the similarity relationships from the literature, which is an

indication that the error is a bias rather than a random error. Furthermore, DB93

found also a higher scatter and a slight overestimation during near-neutral conditions

(see their Fig. 2). In order to further investigate the similarity relation under near-

neutral conditions, observations are needed with a combination of large friction velocity

and a larger sensible heat flux than those observed in our data.

Under unstable conditions (−z/L > 0.06), the 3-m data are centred around the

similarity relationships of DB93 and A88, with H92 as the upper limit. The 60-m

data are more centred around the similarity relationship of DB93. Moreover, a small

difference between MOSTs and MOSTl is observed, since in spite of evaluating only

ASL data the sensible heat flux at the two levels differ slightly (see Fig. 2.7a), with the

values of MOSTl being marginally higher.

In order to investigate more systematically which of the proposed similarity relations

we have to use with our dataset, the relationship f (z/L) = c1 (1− c2z/L)
−2/3 is fitted

to the data with an orthogonal distance regression method. Due to the limited range

of z/L in our dataset, especially under neutral conditions, it is impossible to fit both

coefficients simultaneously. We decide to fix c1 because our dataset does not contain

many near-neutral observations and those are also more uncertain than the unstable

ones (see above). We tried two fits, the first with c1 = 8.1 as proposed by H92 and the

second with c1 = 4.9 as in A88 and DB93.

Table 2.2 shows c2 and their tolerance obtained from the two fits for the different

ASL datasets. Furthermore, the relative deviation of our fitted coefficient (c2fit) from

that obtained from the literature is given (columns 5 , 9 and 10). We observe that c2 fit1

varies from 17 to 25. The c2 of our datasets is thus between 14 % and 66 % larger than

15 observed by H92. The values of these deviations are quite high compared with the

observed tolerance ranging between the 0.03 and 0.05. For c2 fit2 we find a variation
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between 7.2 and 8.6.

In order to distinguish between fit 1 and fit 2, we calculate the relative difference in

c2 between the 3-m and 60-m dataset ((c2, 3m − c2, 60m)/c2). We make this comparison,

because in the framework of MOST a variation of z/L through a variation in z should

yield the same similarity relationship as when L is varied (as is normally done). We

observe a larger difference for fit 1 than for fit 2 (using MOSTs for 60 m: 0.21 and

−0.07, for fit 1 and fit 2 respectively, and using MOSTl: 0.37 and 0.10). Consequently,

it seems that for our data c1 = 4.9 is more consistent between the two levels than

c1 = 8.1. This can also be observed from Fig. 2.6: we observe a larger overestimation

of the H92 relationship for the more neutral 3-m data than for the more unstable 60-m

data. Further, the high values of (c2 fit − c2 H92)/c2 H92 compared with DB93 and A88

indicate that the relation of H92 is not the best similarity relationship to use for our

dataset.

If we compare (c2 fit − c2 A88)/c2 A88 with (c2fit−c2 DB93)/c2 DB93, we observe first that

the fitted coefficient is larger than that of A88 and smaller than that of DB93. In other

words, our fit is situated between A88 as an upper limit and DB93 as a lower limit. For

the 60-m MOSTl dataset, c2 fit2 is exactly located between the two proposed coefficients.

Second, in general the overestimation of our fit compared with A88 is much larger than

the underestimation compared with DB93. We conclude that our data best follows the

relationship of DB93, and so we use this similarity relationship in the following section.

2.4.3. The two concepts evaluated at 60 m, step 2

Figure 2.7a presents a composite diurnal cycle of the 60-m regional surface heat flux

(w′T ′
s,60 m) and the 60-m regional local-level heat flux (w′T ′

ll,60 m). Note that the

heat flux is the only difference in the scaling between MOSTs and MOSTl (see row 2,

Fig. 2.2). Figure 2.7b shows the composite diurnal cycle of the structure parameter

of temperature measured directly from the sonic and the scintillometer and calculated

with MOSTl and MOSTs using the similarity relationship of DB93.

Before evaluating the two concepts, we shortly compare the directly observed struc-

ture parameter of the scintillometer and the sonic, since the former is our motivation

and the latter is used in our analysis. The two structure parameters show a quite

comparable variation with time. Both instruments show a minimum at 0700 UTC of

1.2 × 10−3 K2 m−2/3 and at 1600 UTC of 0.3 × 10−3 K2 m−2/3. When comparing the

original 30-min data a coefficient of determination (r2) is found of 0.71, which is quite

large. The good comparison between the two instruments can be attributed to the

relatively homogeneous surface around Cabauw. One difference is that the XLAS gives

much smoother results, caused by the path averaging (Hartogensis et al., 2002). Fur-

thermore, the XLAS shows sligthly larger values than the sonic, which could be caused

by surface inhomogeneity combined with different footprints for the two methods. But

it could also suggest that the linear error (called high-C2
n) found by Van Kesteren and

Hartogensis (2011) not only affects the Kipp & Zonen LAS but also the Kipp & Zo-
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2.4. Results

Fig. 2.7. The temporal evolution of (a) w′T ′
s,60 m (⋄) and w′T ′

ll,60 m (+) and (b) C2
T measured with the

sonic (×) and the XLAS (∗) and calculated with MOSTs (⋄) and MOSTl (+) averaged over the eight days.
In MOST the similarity relationship of DB93 is used, note that for −z/L < 0 (thin lines) the relationship for
stable conditions is used.

nen XLAS. Nevertheless, to be consistent in our investigation we further only analyze

the observations of the sonic, because the MOST-scaling variables are obtained from

the sonic. Furthermore, the quite high level of agreement between the sonic and the

scintillometer suggest that the conclusion of the coming analysis will be valid for the

scintillometer data as well.

First, we investigate the concept MOSTs, since here MOST is applied in a standard

way. By evaluating the ASL data (afternoon period) we observe (Fig. 2.7b) that the

calculated structure parameter of temperature is comparable to the directly measured

one. This observation is confirmed by the scatter plot of Fig. 2.8a. Figure 2.8a shows

C2
T determined with MOSTs against the one directly measured with the sonic. The

coefficients of the best linear fit, the coefficient of determination (r2) and the coefficient

of variation of the RMSD (CV ) are shown in Table 2.3. The coefficient of determination
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2. MOST in and above the ASL

Fig. 2.8. The directly measured C2
T from the sonic against the calculated C2

T from MOSTs in (a) and MOSTl
in (b) for observation inside (grey) and outside the surface layer (black). The dashed line represents the best
fit through all the data, whereas the dotted grey line represents the best fit through the data inside the surface
layer and the dotted black line outside the surface layer (see Table 2.3 for the functions). The solid black line
is the 1:1-line.

Table 2.3. The equations of the best linear fit through the 60-m data in Fig. 2.8 together with the coefficient
of determination (r2) and the coefficient of variation of the RMSD (CV ). x is C2

T from the sonic and y is C2
T

from MOST (similarity relationship of DB93).

MOSTs MOSTl

equation r2 CV equation r2 CV

all data y = 1.03x − 1.5 × 10−4 0.70 0.32 y = 0.96x − 5.2 × 10−4 0.69 0.40
ASL data y = 1.02x − 2.7 × 10−4 0.77 0.29 y = 0.90x − 2.5 × 10−4 0.73 0.35

NASL data y = 1.14x − 1.0 × 10−4 0.46 0.40 y = 0.98x − 8.8 × 10−4 0.52 0.54

is a measure of the correlation, whereas CV indicates how much the data deviates from

the 1:1-line. Notice that for this figure single data points are used instead of the

composite of the eight days. The linear fit for the ASL data is located near the 1:1-line,

indicating that within the surface layer MOSTs gives reliable results. Furthermore, we

observe that for small values (C2
T sonic < 1×10−3 K2 m−2/3) MOSTs underestimates the

observed values. These data correspond to the neutral conditions during the evening

transition (as a consequence of a low sensible heat flux instead of a high u∗).

Analyzing the NASL data (morning period) Fig. 2.7 shows that C2
TMOSTs has a mini-

mum at 0600 UTC when w′T ′
s,60 m approached zero (Fig. 2.7a). This is one hour before

the minimum in C2
T sonic. Moreover, from 0700 until 1000 UTC MOSTs overestimates

the observations. From Fig. 2.8a we observe that the overestimation is almost 14 %.

From 0600 to 0700 UTC MOSTs underestimates C2
T sonic. This underestimation is not

visible in the scatter plot of Fig. 2.8a, since in that plot only unstable data are shown.
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2.4. Results

Notice that it is therefore important to plot a diurnal cycle as well, rather than to show

scatter plots only. The coefficient of determination is 40 % lower for NASL data than

for ASL data. Furthermore, the coefficient of variation of the RMSD (CV ) is higher

for NASL data, indicating that for the ASL data the values of MOSTs is closer to the

observations than for NASL data. All in all, we can conclude that the surface sensible

heat is not the correct scaling parameter for NASL data. Therefore, the second step is

to evaluate MOSTl.

In this analysis we again make a distinction between the ASL data and NASL data.

For the ASL data, we obtained from the composite diurnal cycle that C2
TMOSTl is

similar to C2
T sonic. The difference with MOSTs is relatively small. However, MOSTl

shows slightly lower values because the local-level sensible heat flux is slightly lower

than the regional surface sensible heat flux (see Fig. 2.7a). The small underestimation

is also obtained from the scatter plot. The underestimation is around 10 % (the slope

of the fit is 0.90). Consequently, the CV is also slightly higher than for MOSTs. In the

end, we observe for MOSTl a relatively high r2 of 0.73, similar to the value obtained

for MOSTs.

Figure 2.7 shows that the C2
TMOSTl has a minimum at 0700 UTC, as observed by

C2
T sonic as well. This is a first indication that the local-level sensible heat flux is a

better scaling variable than the surface sensible heat flux in the transition morning

period. Furthermore, the coefficient of determination and therefore the correlation is

larger for MOSTl than MOSTs (0.52 and 0.46, respectively) for the NASL data during

this morning period.

However, in spite of the comparable pattern during the morning transition, MOSTl

underestimates the measured structure parameter by a factor of ten (C2
TMOSTl =

1.26× 10−4 K2 m−2/3 and C2
T sonic = 1.16× 10−3 K2 m−2/3 at 0700 UTC. This can also

be seen in the group of data points in Fig. 2.8b where C2
T sonic lies between 0.5 × 10−3

and 1.5 × 10−3 K2 m−2/3 whereas C2
TMOSTl ≈ 0. The structure parameter obtained

with MOSTl shows a deep minimum due to the near-zero value of the local-level sen-

sible heat flux. Therewith it misses the finite value of C2
T sonic that is probably due to

ongoing transfer of temperature variance, previously produced within the entrainment

zone (non-stationarity). Notice that MOSTs does not show the clustered data points

in Fig. 2.8, but for the wrong reason. In Fig. 2.8 only unstable data are taken into

account (see the solid lines in Fig. 2.7). Therefore the minimum of MOSTs, which is

as low as the one for MOSTl, is not present in Fig. 2.8. During the rest of the morning

period (0730 - 1100 UTC), MOSTl is in general 1 × 10−3 K2 m−2/3 lower than the

observations (see the offset in the linear fit equation). The coefficient of variation of

RMSD is also 36 % higher than for MOSTs (0.54 instead of 0.40). This suggest that

MOSTs is on average closer to the observations than MOSTl, and the overestimation

of MOSTs is smaller than that of MOSTl.

Overall, outside the surface layer neither of the two concepts provides a useful rela-

tionship between C2
T and the sensible heat flux.
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2. MOST in and above the ASL

2.5. Discussions and Conclusions

We investigate whether MOST can be used to obtain the surface sensible heat flux

from elevated structure parameter data (in our case at 60 m). In this analysis two time

periods are distinguished: the early morning and the afternoon. During the afternoon

the 60-m level is located in the atmospheric surface layer (assumed to be the lowest

10 % of the boundary layer) and MOST is valid. During the morning the application

of MOST is not always justified for two reasons. First, the observation height can be

larger than 0.1 of the boundary-layer depth. Second, the divergence of the turbulent

heat flux within the ASL can be considerably higher than in the afternoon due to

relatively strong entrainment. Therefore, the strict definition of the surface-layer depth

(zASL = 0.1zi) does not imply that below that level the fluxes differ less than 10 %

(constant-flux layer). For instance, in the free convection limit (entrainment ratio of

−0.2) or during the morning, when entrainment is strong (e.g. entrainment ratio of

−1.2) the fluxes differ 12 % or 22 %, respectively, within this layer. In other words,

in our study the definition of the atmospheric surface layer is stretched and the fluxes

could vary by more than 10 % in that layer.

Two theoretical concepts are proposed and compared. In the first concept (MOSTs),

we assume that C2
T at 60 m scales with the surface flux. In the second concept (MOSTl)

C2
T is scaled with the local-level sensible heat flux. Stability in the two concepts is also

based on the surface and local-level sensible heat flux respectively. On the other hand,

both concepts share the same friction velocity in the formulation of stability, in this

case based on the stress measured at the 60-m level.

First, we analyzed 3-m and 60-m surface-layer data (ASL data) only, in order to

investigate which of the MOST relationships proposed in the literature (DB93, H92

or A88) is suitable. We find an overestimation of our data with respect to the three

relationships under low-heat-flux neutral conditions during the morning and evening

transition. The data points are clustered indicating that the overestimation is a bias

rather than a random error. However, since our dataset contain only low-heat-flux neu-

tral data the scaling of C2
T under near-neutral conditions could not fully be investigated.

Therefore, we would recommend to further investigate the MOST relationships under

high-wind-speed neutral conditions.

With an orthogonal distance regression method a MOST relationship of the form

f (z/L) = c1 (1− c2z/L)
−2/3 is fitted to the data. First, we fixed c1 with a value 8.1

and 4.8 based on the relationships found in the literature. Then, the values for c2 are

compared with the coefficients of DB93, H92 and A88. In general the deviation is the

smallest for DB93, and so we use the DB93 similarity relationship.

Second, we compare the pattern of C2
T obtained from sonic observations, at the four

levels. In the early morning when the observation level is in or close to the entrainment

zone, the sonic observations show a remarkable behaviour in C2
T . First, when the

elevated level is located in the entrainment zone, observations at 100 and 180 m show a

peak in C2
T before they reach their minimum. Second, the minimum in C2

T occurs when
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2.5. Discussions and Conclusions

the local-level flux crosses zero, whereas the surface flux is already positive. Finally,

the evening transition shows deeper minima of C2
T than in the morning. These three

observations suggest that temperature variations in the entrainment layer influence the

structure parameter during the morning transition, which indicates that the surface

flux is not the sole parameter that determines C2
T at higher levels.

Finally, the observed C2
T from a sonic is compared with C2

T calculated from the

two concepts. Comparing the two concepts during the morning (NASL data), both

methods show a low correlation with the observed C2
T . We observe that the minimum

C2
T of MOSTs occurs indeed one hour before the observations, whereas that for MOSTl

occurs at the same moment. However, the minimum value of MOSTl is much lower

than the observations. In other words, the pattern of C2
T obtained from MOSTl is closer

to that of the observations than that of MOSTs, but the values of MOSTl are too low.

This indicates that, during the transition zone, additional temperature fluctuations are

present that do have no relation with the scaling theory. The values of C2
TMOSTs are

more similar to C2
T sonic; we found a slight overestimation. For ASL data both concepts

agree with the observations.

As stated before, we use the relationship of DB93, because for ASL data the deviations

of our fits are in general a minimum for DB93. However, for MOSTl the deviations

of the fitted c2 relative to the literature values are similar for the different similarity

relations (see Table 2.2). Some of the above results may differ if another similarity

relationship (instead of DB93) is used. If using the relationship of H92 or A88, the

structure parameter obtained from MOST becomes larger. This will improve the results

of MOSTl, since the underestimation becomes less. As a consequence, for H92 and

A88 the coefficient of variation of the RMSD (CV ) of MOSTl is smaller than MOSTs.

Other observations such as (a) the time when the C2
Tminimum is observed, (b) the large

underestimation of C2
Tminimum obtained by MOSTl compared to the observations, and

(c) the values for the coefficients of determination all give similar results for the proposed

similarity relationships (see also Table 2.4 in the Appendix). In other words, the main

conclusions do not significantly change when using these other relationships.

To conclude, neither MOSTs nor MOSTl is the final answer to the question of how

to calculate the surface flux from the structure parameter at elevated levels. When the

elevated level is located within the surface layer, MOSTs and MOSTl perform equally

well. But in the morning hours neither works well: MOSTs does not have the correct

temporal behaviour, whereas MOSTl does not provide the correct value (probably due

to the strong instationarity).
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2.A. Statistics of the two concepts using another similarity relationship

The results, and therefore the conclusions, from Sect. 2.4.3 could change by using

another similarity relationship. Table 2.4 shows the same statistics as in Table 2.3 but

now for the three proposed similarity relationships (A88, H92 and DB93). Notice that,

for completeness, we include the information of DB93, which is a repetition from Table

2.3.

Table 2.4. As Table 2.3 but than for A88, H92 and DB93.

MOSTs MOSTl

equation r2 CV equation r2 CV

A88
all data y = 1.28x − 2.0× 10−4 0.69 0.44 y = 1.18x − 6.6× 10−4 0.69 0.37
ASL data y = 1.27x − 3.6× 10−4 0.76 0.38 y = 1.12x − 3.4× 10−4 0.73 0.34
NASL data y = 1.44x − 1.3× 10−4 0.46 0.61 y = 1.23x − 1.1× 10−3 0.52 0.48

H92
all data y = 1.26x − 1.7× 10−4 0.70 0.42 y = 1.18x − 6.3× 10−4 0.69 0.36
ASL data y = 1.26x − 3.0× 10−4 0.77 0.37 y = 1.11x − 2.8× 10−4 0.74 0.32
NASL data y = 1.38x − 1.2× 10−4 0.46 0.55 y = 1.19x − 1.1× 10−4 0.52 0.48

DB93
all data y = 1.03x − 1.5× 10−4 0.70 0.32 y = 0.96x − 5.2× 10−4 0.69 0.40
ASL data y = 1.02x − 2.7× 10−4 0.77 0.29 y = 0.90x − 2.5× 10−4 0.73 0.35
NASL data y = 1.14x − 1.0× 10−4 0.46 0.40 y = 0.98x − 8.8× 10−4 0.52 0.54
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3 Monin-Obukhov relations for C2
T : dependence on

regression approach, observation height and stability range

3.1. Introduction

In atmospheric models and in the analysis of micro-meteorological observations (e.g.

scintillometer data), Monin-Obukhov similarity theory (MOST) is typically used to link

surface fluxes to other turbulent quantities, such as mean gradients, standard devia-

tions or structure parameters. In this study we focus on the structure parameter of

temperature (C2
T ) measured under unstable conditions. The structure parameter can

be derived in two ways, either from fast response temperature measurements or from

optical scintillation measurements. The latter can be done by optical scintillometers

and as such C2
T is a key variable in obtaining path-averaged sensible heat fluxes. Path-

averaged fluxes are of interest for many meteorological and hydrological studies and

applications (Meijninger et al., 2002b; Beyrich et al., 2005, 2012, among others).

In the literature a variety of MOST functions (f (z/L)) for C2
T is reported (for unstable

conditions see e.g. Obukhov, 1960; Wyngaard et al., 1971; Wyngaard, 1973; Wesely,

1976b; Andreas, 1988; Hill et al., 1992; Thiermann and Grassl, 1992; de Bruin et al.,

1993; Li et al., 2012; Maronga, 2014). They are usually based on a regression fit through

observational data measured in the atmospheric surface layer (ASL). The functional

expressions and in particular the regression coefficients differ between the studies. These

differences may be related to variations in the experimental design, instrumentation and

data processing such as:

1. the regression approach used to determine f (z/L);

2. the stability ranges (−1/L) covered by the data;

3. the measurement heights (z);

4. the instrumentation;

5. the data processing,

6. the characteristics of the underlying surface, with respect to surface heterogeneity

This chapter is accepted with minor revisions as Braam M, Moene AF, Beyrich AAM F Holtslag Similarity relations
for C2

T in the unstable atmospheric surface layer: Dependence on regression approach, observation height and
stability range. Boundary-Layer Meteorol
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and soil moisture conditions.

Generally, it is difficult to separate the effect of one aspect from the effects of the others

aspects, because most of them differ simultaneously between the studies. Therefore,

in this paper we investigate f (z/L) within one dataset so that the data processing,

instrumentation and the surface characteristics are as uniform as possible. Hence, we

can focus on the impact on f (z/L) of applying various regression approaches, and of

measuring within different stability ranges and at different heights (the first three issues

from the list above). The dataset used here was obtained from the 60 m tower during

the CASES-99 experiment (Poulos et al., 2002). It contains data over a large range of

measurement heights and stabilities. The impact of different surface characteristics on

f (z/L) and the MOST function for C2
q and ǫ, under both unstable and stable conditions,

is investigated by Kooijmans (2013). They evaluate these MOST functions for 11 field

experiments obtained above different surface (issue 6) by Wageningen University during

the last decades. The data from these experiments are uniformly processed and obtained

with the same instrumentation (issue 4 and 5).

The first part of the present research concerns the impact on f (z/L) of applying a

certain regression approach. In the oldest studies the regression fit was often done by

eye, whereas in the more recent ones a mathematical method was usually applied (e.g.

non-linear least-squares method). The application of different regression approaches

may lead to differences in f (z/L), because each approach uses specific definitions for

the residuals, i.e. the differences between the observed and the fitted values. Further-

more, in some studies the regression analysis was performed after the data had been

logarithmically transformed. We will thus answer the following questions: What are

the differences in f (z/L) due to the use of different regression approaches, and what

are the advantages and disadvantages of these approaches?

The second part concerns the impact on f (z/L) of measuring within different stability

ranges (in terms of −1/L) and at different observation levels. The similarity functions

reported in the literature are usually based on a single dataset, obtained with a given

setup of observation levels and containing measurements over a certain stability range.

Both the observation levels and the stability range differ between the studies, and can

therefore be one of the reasons for the observed differences in f (z/L). For most studies

the experimental data were measured at a limited height range close to the surface. We

will thus answer the following question: What is the impact on f (z/L) of measuring

within different stability ranges and at different heights?

The paper is structured as follows: In Sect. 3.2, background information on MOST

and the similarity equations proposed in the literature is given. In Sect. 3.3 we briefly

introduce the various regression approaches. Section 3.4 provides information about

the CASES-99 experiment and the dataset used in this study. In Sect. 3.5 the research

strategy is described. In Sect. 3.6 we present and discuss our results. In the final

section conclusions are given.
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3.2. Monin-Obukhov similarity Theory functions for C2
T

3.2.1. Dimensionless analysis

MOST is a concept based on the Buckingham Π-theorem. MOST applies within the

atmospheric surface layer (ASL), under the condition that turbulence is only controlled

by stationary and horizontally homogeneous surface conditions. It assumes that the

non-dimensionalized quantity of interest, in this case C2
T , is fully determined by four

parameters: a) the kinematic sensible surface flux at the surface (w′T ′), b) the height

above the surface (z), c) the friction velocity (u∗) as a proxy of shear production of

turbulent kinetic energy, and d) the buoyancy flux (g/Tv)w′T ′
v indicating the buoyancy

production or destruction of TKE (where T is the mean temperature, w′T ′
v is the virtual

temperature surface flux, and g = 9.81 m s−2 is the acceleration due to gravity). Using

these four parameters, the MOST scaled structure parameter (C̃2
T ) is a dimensionless

function of z/L:

C̃2
T =

C2
T z

2/3

T 2
∗

= f (z/L) (3.1)

in which T∗ is the temperature scale T∗ = −w′T ′/u∗, and L is the Obukhov length. The

Obukhov length can be interpreted as the height of the sub-layer of dynamic turbulence

(Monin and Obukhov, 1954), and it is defined as:

L = −Tu∗
3
/(κgw′T ′

v) (3.2)

in which κ = 0.4 is the von-Kármán constant.

We want to note that Monin and Obukhov (1954) derived only the flux-based di-

mensional analysis for wind and temperature gradient for non-neutral flows. Obukhov

(1960), however, was the first to derive the similarity relations for structure parameters,

independent of the Monin-Obukhov similarity theory framework. However, because in

literature the term Monin-Obukhov similarity is commonly used for surface flux-based

scaling in general, we use the term here for the similarity relationships of structure

parameters as well.

3.2.2. Similarity relations

Several expressions for the Monin-Obukhov similarity relations (f (z/L)) under unstable

conditions are reported in the literature. Because we focus on variations in regression

approach, measurement height and stability ranges, here we summarize the conditions

with respect to those aspects for the studies in Table 3.1.

First, Table 3.1 shows that some studies used observations from only one level, whereas

others used more. But for most studies the observations were done not higher than at

about 10 meters, except for the study of Wyngaard (1973, who measured up to 20 m)

and Maronga (2014, who used high-resolution large eddy simulation (LES) from 14 m

up to 100 m). Second, the data were measured within different stability ranges (in
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Table 3.1. Background information on Monin-Obukhov similarity relations for the structure parameter of
temperature under unstable conditions proposed in the literature. For the upper block Eq. 3.3 was fitted,
whereas in the lower block other functions were fitted. The first part gives information about the dataset:
the measurement height z, and the stability in terms of −1/L. The second part gives information about
the regression approach: Transformation (are the data or axes transformed on a logarithmic scale), and the
Regression method that is used (in which LSR means classical non-linear least-squares). The third part gives
the values of the regression coefficients for the upper block. NI means no information

Reference dataset Regression approaches coefficients

z [m] −1/L [m−1] Transformation Regression c1 c2 d

Wyngaard (1973) 5.66, 11.3, 22.6 scatter cloud: −1/L < 1.1 loglog NI 4.9f 6.1f 1.5
6 points: 1.1 < −1/L < 2.5

Hill et al. (1992)a 3.95 50 % of data: NI NI 8.1 15.0 1.3
0.025 < −1/L < 0.125

de Bruin et al.

(1993)b
11.3 scatter cloud: −1/L < 0.3 loglog eye 4.9 9.0 1.1

6 points: 0.3 < −1/L < 10
Li et al. (2012)b 0.9, 1.9, 2.9, 3.9 0.0025 < −1/L < 10 loglog LSR 6.7 14.9 1.1
Maronga (2014)c 14 up to 100 0.0025 < −1/L < 10 loglog LSR 6.1 7.6 1.6

Wesely (1976b)b 1 up to 2 0.025 < −1/L < 1 NI NI d

Thiermann and
Grassl (1992)a

2 NI NI NI e

a. from scintillometer measurements,
b. from eddy covariance measurements,
c. from large eddy simulation data,

d.
(

1 + 0.45(−z/L + 1.5) + 0.01(−z/L + 1.5)10
)2

which is only valid for 0.05 < −z/L < 0.1,

e. 6.37
(

1 − z/L+ 75(z/L2
)

−1/3
,

f. these are the constants proposed by Andreas (1988), who modified the coefficient proposed by Wyngaard (1973) by
replacing κ = 0.35 by κ = 0.40

terms of −1/L). The older studies were based on a smaller range of −1/L than the

more recent ones.

The most common shape of f (z/L) under unstable conditions is (Wyngaard et al.,

1971; Wyngaard, 1973; Andreas, 1988; Hill et al., 1992; de Bruin et al., 1993; Li et al.,

2012; Maronga, 2014):

f (z/L) = c1 (1− c2z/L)
−2/3 (3.3)

in which c1 is the asymptotic value of f (z/L) for −z/L = 0 and 1/c2 is the value of

−z/L where the neutral range approximately transits into the free convection range

(see Fig. 3.1). This shape is first introduced by Wyngaard et al. (1971), similar to the

Businger-Dyer type of functions used for dimensionless gradients. In the free convection

limit (−z/L >> 1) Eq. 3.3 becomes f (z/L) = d (−z/L)−2/3, where d = c1c
−2/3
2 is the

coefficient for the free convection range. The coefficients are also listed in Table 3.1.

Their values differ between the different studies. The variation between the five values

in Table 3.1 is large with a relative standard deviation of 0.22 for c1, 0.40 for c2, and

0.17 for d. The shape of the equation in the free convection limit is similar to the

similarity relation proposed by Obukhov (1960).

Because Eq. 3.3 is the most common shape and the shapes of Thiermann and Grassl

(1992) and Wesely (1976b) are exceptions, and because the two coefficients can be

interpreted physically, we choose to only evaluate Eq. 3.3.
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Fig. 3.1. A sketch of plotting C̃2
T versus −z/L for the three different data transformation approaches: linlin

(left column), loglin (centre column), and loglog (right column). In grey the construction lines to find the
regression coefficients, see also the text.

3.3. Regression approaches

The regression method used to fit an empirical relation to the data differs between the

studies. In the oldest studies the regression function was determined by eye, whereas

in the most recent studies often a mathematical regression method is used. The use of

different mathematical regression methods can lead to differences in c1 and c2, because

the different methods use different definitions for the residuals. A difference in the

definition of the residual only impacts on the regression coefficients if the residuals are

large, which is the case if the data is scattered. The latter is common in plots of C2
T

versus −z/L. In the first part of our research, we evaluate regression approaches that

differ in four aspects: the transformation of data, the mathematical regression methods,

a weighing of the data, and the number of regression coefficients to fit. In total this

leads to thirty regression approaches1. Each aspect is explained below.

3.3.1. Transformation of data

Often, the figures of C̃2
T versus −z/L are displayed semi-logarithmically (loglin) or

double-logarithmically (loglog) instead of linearly (linlin). The advantage of using a

logarithmic x-axis is that the behaviour of C̃2
T in the neutral range and in the free

convection range can be studied in the same graph, despite the large −z/L range

covered by the data.

The advantage of both a logarithmic x-axis and a logarithmic y-axis is that the

coefficients and the exponent in Eq. 3.3 can be deduced from the plot, as seen in

the sketch shown in Fig. 3.1. The coefficient c1 and the exponent can be deduced

immediately, as c1 is defined as the level of the horizontal asymptote in the neutral

range, and the exponent is defined as the slope of the oblique line in the free convection

range. Furthermore, c2 can be deduced indirectly: 1/c2 is defined as the transition

point, which in a loglog plot coincides with the point where the extended horizontal

and oblique lines cross.

The disadvantage of plotting loglin or loglog is that the regression function fitted to

130 = (3 (data transformation) × 2 (mathematical regression method) × 2 (weighting data) × 3 (fitting coefficients))
− 6 (because the values of the coefficients are the same for linlin and loglin if using LSR, see Sect. 3.3.2)
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3. Dependence on regression approach, observation height and stability on MOST

the data (linlin) does not correspond with the data that are shown. In order to be

consistent, one must first transpose the data to the logarithmic values and then fit the

coefficients. The relation for the loglin fit has the shape:

yloglin = f (z/L) = c1 (1 + c210
xlog)−2/3 (3.4)

The relation for the loglog fit has the shape:

yloglog = log10 (f (z/L)) = log10 c1 − 2
3 log10 (1 + c210

xlog) (3.5)

with xlog = log10 (−z/L). Using Eq. 3.4 or Eq. 3.5 instead of Eq. 3.3 results in

different values for the coefficients c1 and c2. The choice of the transformation depends

on which stability range one wants to emphasize.

3.3.2. Mathematical regression methods

The most commonly used mathematical regression method is the classical non-linear

least-squares (abbreviated as LSR) method. The term ‘non-linear’ means that the re-

gression function represents a non-linear combination of the model coefficients and the

independent variable (x-value). ‘Least-square’ regression is a method that searches for

a solution where the sum of the squared residuals has its minimum. In classical least

square regression the residual is defined as the difference between the observed and esti-

mated dependent variable (y-values). No uncertainties in the independent variable are

assumed. Orthogonal distance regression (ODR, also called total-least-square, among

others, Boggs et al., 1987; Zwolak et al., 2007) does take into account uncertainties in

both the dependent and independent variables. In other words, in LSR the residuals

are perpendicular to the x-axis, whereas in ODR the residuals are perpendicular to the

fitted function. Because L is determined from several micro-meteorological measure-

ments (Eq. 3.2), in MOST the x-values (−z/L) can have observational uncertainties,

just as much as C̃2
T . Therefore, ODR is considered a more appropriate choice for fitting

the similarity relations than LSR.

Notice that because the residuals are parallel to the y-axis when using LSR and only

the data on the x-axis is transformed when using loglin (Eq. 3.4) instead of linlin (Eq.

3.3), the coefficients of the combination of LSR and loglog have the same value as LRS

and loglin.

3.3.3. Weighting of data

When using observational data, some data points might be less reliable than others

because of various reasons. If these unreliable data points are located outside of the

scatter cloud (outliers) they could have a large impact on the regression. One way to

overcome the problem of outliers, is to use a data filter that removes the most unreliable

data points. Another way, is to minimize their impact by weighting the data by their

errors. The most reliable data points obtain a larger weight in the regression than
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3.4. Data

unreliable data points. Using this approach (abbreviated as ‘weight’), the regression

coefficients are essentially based on the most reliable data. This makes ‘weight’ a more

logical choice than using an unweighted dataset (‘notWeight’).

3.3.4. Number of regression coefficients to fit

Generally, one would prefer to fit both regression coefficients simultaneously (abbrevi-

ated as ‘unfixed’), but this could be difficult if the data cover only a limited range of

−z/L. In that case it is impossible to fit both coefficients simultaneously, and one has

to choose to fix one of the two coefficients (abbreviated as ‘fixed c1’ and ‘fixed c2’, see

also Braam et al. 2012).

3.4. Data

The data used in this study were obtained during the Cooperative Atmosphere-Surface

Exchange Study (CASES-99, Poulos et al., 2002). The experiment took place in

October 1999 near Leon, Kansas, U.S.A. (37.6486◦ N, 96.7351◦ W). CASES-99 focused

on stable conditions, but most instruments operated also during daytime. The area is

relatively flat and covered with prairie grasses with a typical roughness length (z0 m) of

about 0.03 m (Steeneveld et al., 2008).

3.4.1. Temperature data from the 60 m Tower

We calculate C2
T from temperature measurements with 32 thermocouples (Chromel/

Constantan, 0.0254 mm, sample frequency of 5 Hz) mounted at the 60-m tower oper-

ated by the National Center for Atmospheric Research (Burns and Sun, 2000). The

thermocouples were separated vertically by 1.8 m with the lowest level at 2.3 m and

the highest level at 58.1 m. The vertically highly-resolved temperature data within the

atmospheric surface layer makes this dataset ideal to investigate not only the influence

on f (z/L) of variations in −1/L but also of variations in z.

The dataset as available from NCAR is already processed in the sense that spikes

within the time series were removed, and that the time stamp differences and mean

differences between the data from the three Campbell CR2X data loggers have been

corrected (Burns and Sun, 2000).

C2
T is calculated as the mean of the spatial structure function (DTTx) over a range of

spatial separations (r) within the inertial subrange.

C2
T =

〈
DTTx(r)

r
2
3

〉
=

〈
DTTt(τ)

(τU)
2
3

〉
=

〈
[T (t+ τ)− T (t)]2

(τU)
2
3

〉
(3.6)

in which DTTt is the temporal structure function, T (t) is the temperature at time t and

T (t+ τ) the temperature at time t+ τ , τ (= r/U) is the temporal separation, U is the

mean horizontal wind speed, the overbar indicates temporal averaging (30 min), and

the 〈〉 indicate the averaging over a range within the inertial subrange. This range is
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3. Dependence on regression approach, observation height and stability on MOST

estimated as 0.4s < τ < z/U (0.4U < r < z). Consequently, for the lowest levels C2
T is

not always available (i.e. in the case that 0.4U > z).

For the conversion from temporal into spatial structure parameter, we need U at each

thermocouple level. However, the measured wind speed (Umeas) profile is not easy to

use for this purpose. First, Umeas is not always available during the selected periods.

Second, Umeas is only available at twelve levels measured with different instruments2.

Third, the inaccuracies in Umeas resulted in profiles that are not smooth (some levels

show a large discrepancy, especially the sonic measurements at 20 m). Therefore, we

decided to calculate the mean wind speed at each thermocouple level with the flux profile

relation of Businger-Dyer (UBD, Businger et al., 1971) using the surface flux and wind

speed observed with the eddy covariance station (see Sect. 3.4.2). From a linear least

square regression analysis over the selected available wind speed measurements at all

levels2 except for the 20 m level, we find that UBD = 0.98Umeas + 0.5 m s−1 with the

coefficient of determination (r2) of 0.97.

3.4.2. Surface data required by MOST

Surface data are needed to determine the scaled temperature structure parameter (C̃2
T ,

Eq. 3.1) and the stability3 (L, Eq. 3.2). For this we use the processed dataset from the

eddy covariance station (CSAT3 sonic anemometer and a KH20 Krypton hygrometer

- Campbell Scientific Inc., Logan, U.S.A.) located 300 m east-south-east of the tower

at a height of 2.65 m above the surface. This eddy covariance station was operated

and processed by the Meteorology and Air Quality Group of Wageningen University

(Hartogensis et al., 2002). Hartogensis et al. (2002) processed the data with EC-pack

(van Dijk et al., 2004) over a time window of 30-min. A number of corrections were

applied in the processing of raw data to fluxes4 and the uncertainty of the variables5

(∆s) was calculated (van Dijk et al., 2004).

3.4.3. Data selection

We select only periods for which:

• local time is between 10h30 and 17h00, in order to exclude periods in which data

may be too instationary (around transition) and the atmospheric boundary layer

may be so shallow that parts of the mast are located above the ASL,

• the atmosphere is unstable (−z/L > 0.00 and H > 0 W m−2),

• the relative uncertainties (rel∆s = ∆s/s, with ∆s obtained from EC-pack5) of the

fluxes (w′T ′ and w′q′) and of the friction velocity (u∗) is smaller than 0.3.

2sonic anemometer measurements at 1.5, 5, 10, 20, 30, 40, 50, 55 m, and cup anemometer measurements at 15, 25,
35, 45 m

3in which w′T ′

v = w′T ′(1 + 0.61q) + 0.61Tw′q′
4a) double rotation; b) the sonic temperatures are corrected for humidity (Schotanus et al., 1983; Liu et al., 2001);

c) the Krypton hygrometer signal is corrected for sensitivity to oxygen fluctuations, and off-sets in the calibiration
caused by weathering of the instrument’s magnesium fluoride window are removed; d) the time series are linearly
detrended, see Hartogensis et al. (2002) for the details.

5∆s = 2σ(s)/
√
nindep, in which s is the variable under consideration, and nindep is the number of independent samples

(van Dijk et al., 2004)
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3.5. Data Analysis

This leaves us with a total of 190 time periods of 30 minutes.

3.5. Data Analysis

3.5.1. Part 1: Regression approaches

In part 1, we assess the regression approaches introduced in section 3.3. This part

consists of three steps. The first step is to fit the entire dataset (all selected time

periods and levels) using the thirty regression approaches, and determine the coefficients

c1 and c2 for each approach. Normally, however, we are not interested in the coefficients

themselves but in their impact on the sensible heat flux that was calculated from them.

Therefore, the second step is to assess the impact of the regression approaches on the

surface fluxes derived from observed C2
T and stability. Finally, in the third step we

discuss the main differences between the regression approaches, based on the results of

step 1 and 2. From this discussion, we select the most suitable approaches that we will

apply in the second part of the research. In the sections below, the details about the

strategy of step 1 and step 2 are given.

Step 1, Impact of regression approaches on the regression coefficients

The data is fitted with the Fortran95 library ODRPACK95 (Zwolak et al., 2007) using

the thirty approaches as presented in section 3.3. ODRPACK95 calculates the best fit

through the data according to the principles of ODR, but the option LSR is also avail-

able. The boundaries of the range for the regression coefficients can be set beforehand.

For both coefficients we select a lower limit of 0 and an upper limit of 108.

For the option ‘weight’, we define the weights for x and y as one divided by the uncer-

tainties for x (1/∆x) and y (1/∆y). ∆x and ∆y are calculated using error propagation

from the uncertainties in the fluxes obtained from EC-Pack5, and assuming a relative

uncertainty in C2
T to be 0.1. This makes ∆x = −z/L

√(
∆

w′T ′
v

w′T ′
v

)2

+ 3
(
∆u∗
u∗

)2
, and

∆y = C̃2
T

√
2

(
∆

w′T ′
v

w′T ′
v

)2

+ 2
(
∆u∗
u∗

)2
+

(
0.1
C2

T

)2
. The uncertainty in xlog is calculated as

∆(xlog) = ∆x/(x ln(10)) and in ylog as ∆(ylog) = ∆y/(y ln(10)), in which x and y are

the original (non-logarithmic) data.

For the ‘fixed c1’ and ‘fixed c2’ procedure, we are using the coefficients of de Bruin

et al. (1993): c1 = 4.9 and c2 = 9.0.

In addition to the estimated coefficients, ODRPACK95 gives an estimate of their un-

certainty (∆c1 and ∆c2) and the Weighted Residual Standard Deviation (WRSD) of the

regression. From the uncertainty we calculate the relative uncertainty (rel∆c = ∆c/c),

which together with WRSD is used as an indicator of the quality of the fitting approach.

In the determination of WRSD the weights are included. As a consequence WRSD can

not be used to compare different regression approaches for which the magnitude of the

weights differs, i.e. between ‘weight’ and ‘unWeight’ or between the three transforma-
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3. Dependence on regression approach, observation height and stability on MOST

Table 3.2. The range and the number of data points for the eight z classes (left columns) and for the eight
−1/L classes (right columns).

z classes −1/L classes

nr height [m] data points nr log(−1/L) −1/L −L data points

1 2.3 - 7.7 551 1 − 2.90 - − 2.25 0.001 - 0.006 178 - 841 443
2 9.5 - 14.9 672 2 − 2.25 - − 2.00 0.006 - 0.010 100 - 178 707
3 16.7 - 22.1 665 3 − 2.00 - − 1.75 0.010 - 0.018 56 - 100 814
4 23.9 - 29.3 663 4 − 1.75 - − 1.50 0.018 - 0.032 31 - 56 754
5 31.1 - 36.5 651 5 − 1.50 - − 1.25 0.032 - 0.056 17 - 31 670
6 38.3 - 43.7 679 6 − 1.25 - − 1.00 0.056 - 0.100 10 - 17 583
7 45.5 - 50.9 668 7 − 1.00 - − 0.75 0.100 - 0.178 5.6 - 10 698
8 52.7 - 58.1 667 8 − 0.75 - 0.11 0.178 - 1.32 0.7 - 5.6 547

tot 2.3 - 58.1 5216 tot − 2.90 - 0.11 0.001 - 1.32 0.7 - 841 5216

tions. In order to check if the behaviour in the free convection limit differs between the

regression approaches, we will also evaluate d.

Step 2, Impact of regression approaches on the fluxes

In order to assess the impact of the different regression approaches on the derived surface

fluxes, we calculate the surface sensible heat flux with the similarity relationship given

in Eq. 3.1 using f (z/L) according to Eq. 3.3 and the coefficients c1 and c2 as obtained

with each regressions approach. This calculated surface flux (HMOST) is compared to

the observed sensible heat flux (Hobs) at the surface station (Sect. 3.4.2). The additional

quantities needed in Eq. 3.1 and Eq. 3.3, are obtained from the surface station (Sect.

3.4.2).

For the comparison of HMOST and Hobs, we do a linear least squares regression forced

through the origin (the data are not weighted). The slope (a), the coefficient of de-

termination (r2) and the coefficient of variation (abbreviated as CV ) are evaluated.

The coefficient of determination is a measure of the strength of the correlation, and

CV indicates how much each point –in a relative sense– deviates from the 1:1-line on

average.

3.5.2. Part 2: Stability and height dependency

In part 2, we assess the impact of measuring within different stability ranges and at

different heights within one dataset. To that end, we divide our dataset into eight

−1/L classes and eight z classes (Table 3.2). Splitting the 32 measurement levels in eight

z classes, containing four levels each, ensures that these classes contain a comparable

number of data points. In order to be consistent, the borders of the eight −1/L classes

are specified in such a way that the −1/L classes represent a comparable number of

data points too. For each class the regression coefficients are determined using the

regression approach selected in part 1. The eight −1/L classes represent a limited
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range of −z/L, especially the more unstable classes 5 to 8, which makes it impossible

to fit both coefficients simultaneously (see section 3.3). In part 2 we, therefore, choose

to fix c1. The value of c1 used is the one obtained from the entire dataset in part 1,

using the most suitable approach. As a consequence, we can now determine c2 for each

class or for the entire dataset.

To investigate if the differences in c2 and d between the classes are statistically signif-

icant, we compare ∆c2 (which is given from ODRPACK95) and ∆d (which is calculated

as d

√
rel∆2

c1 +
(
2
3rel∆c2

)2
) within each class with the variation of c2 and d between the

classes.

Notice, that in this paper we are not in search of the best shape of f (z/L), but we

are interested in the effect of using various regression approaches and measuring within

different stability ranges and at different heights on f (z/L). Therefore, we discuss the

values of the coefficients relative to other regression approaches (Part 1) and between

the classes (Part 2), and do not compare the values of the coefficients with literature.

3.6. Results and Discussion

3.6.1. Part 1: Regression approaches

Step 1, impact of regression approaches on the regression coefficients

The first step of part 1 is to fit the entire dataset (all selected time periods and levels)

using the thirty regression approaches, in order to assess the effect on the regression

coefficients. The coefficients obtained with the different regression approaches are given

in the centre part of Table 3.3 for LSR and in the centre part of Table 3.4 for ODR.

Notice that for LSR, the loglin transformation is not given because the coefficients are

the same as the those of the linlin transformation.

In general, we find that c1 ranges from 3.9 (LSR, loglog, ‘notWeight’, ‘unfixed’)

up to 8.5 (ODR, loglin, ‘notWeight’, ‘unfixed’) and c2 ranges from 8.0 (LSR, loglog,

‘notWeight’, ‘unfixed’) up to 34.5 (ODR, loglin, ‘notWeight’, ‘unfixed). For both co-

efficients, rel∆ is small with a maximum of 4% for c1 and 7% for c2. The large range

of coefficients in combination with the small relative uncertainty implies that the ex-

perimentally determined similarity relations depend on the details of the regression

approach used.

The coefficient of the free convection approximation, d, is more comparable among

the approaches (ranging from 0.81 up to 1.11) than c1 and c2 individually. This means

that the approaches are relatively consistent in the free convection range. Consequently,

we conclude that the deviations between the approaches are mainly due to data in the

near-neutral range, when T∗ is not well defined. Hence, as c2 depends on c1 through

d = c1c
−2/3
2 , an ill-defined c1 will affect c2. As the data used in each regression approach

are identical, differences in c1 and c2 are thus to be related to the influence on the

regression of data points in the neutral range. Another effect of the dependency of c1
and c2 through d, is that the value of c1 and c2 are positively correlated: if c1 of a
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3. Dependence on regression approach, observation height and stability on MOST

Table 3.3. The results of the different regression approaches using classical linear least square (LSR). The
centre columns show the results of the regression (Step 1): the regression coefficients (c1, c2 and d, all shaded to
easily find them) with the corresponding relative uncertainty (rel∆) and the WRSD of the fit. The right columns
show the results of the linear least square regression Hobs versus HMOST (forced through the origin) calculated
from the obtained coefficients (Step 2): the slope (a), the coefficient of determination (r2) and the coefficient of
variation (CV ). The approaches differ in the following three aspects: 1. Weighting of data: ‘notWeight’ (first
part); and ‘weight’ (second part), 2. Transformation of data: linlin (first block per part); and loglog (last block
per part), 3. Number of coefficients to fit: ‘unfixed’; (first row per block); ‘fixed c1’ (second row per block); and
‘fixed c2’ (third row per block).

Step 1 Step 2
approach c1 rel∆ [%] c2 rel∆ [%] d WRSD a r2 CV

’notWeight’
linlin
’unfixed’ 5.1 1.2 14.1 2.8 0.88 0.443 1.02 0.587 0.241
’fixed c1’ 4.9 12.7 0.9 0.90 0.443 1.00 0.592 0.234
’fixed c2’ 4.3 0.4 9.0 0.99 0.453 0.96 0.608 0.220

loglog
’unfixed’ 3.9 1.7 8.0 3.1 0.97 0.131 0.98 0.611 0.220
’fixed c1’ 4.9 12.0 0.7 0.93 0.133 0.98 0.595 0.228
’fixed c2’ 4.1 0.4 9.0 0.96 0.131 0.99 0.606 0.224

’weight’
linlin
’unfixed’ 4.4 1.4 11.6 2.9 0.85 0.801 1.04 0.594 0.246
’fixed c1’ 4.9 14.5 0.8 0.82 0.805 1.06 0.584 0.260
’fixed c2’ 3.9 0.4 9.0 0.90 0.807 1.02 0.605 0.233

loglog
’unfixed’ 4.0 1.7 8.7 3.1 0.95 0.483 0.99 0.607 0.224
’fixed c1’ 4.9 12.4 0.7 0.91 0.488 0.99 0.593 0.232
’fixed c2’ 4.1 0.4 9.0 0.94 0.483 0.99 0.606 0.224

certain approach is larger than that of another approach c2 will be larger too.

In order to understand the differences between the various regression approaches, Fig.

3.2 shows C̃2
T versus −z/L of the entire dataset in each of the three data transformations

used in the regression analysis: linlin (left column), loglin (centre column), and loglog

(right column). The first row shows the entire range of the data points. From these

figures, the differences between the three transformation methods can be observed, as

is described in Sect. 3.3. The range of observed −z/L is from 7.5 10−3 up to 7.6 101.

Because, at −z/L ≈ 0.005 (the left border of the logaritmic x-axes) the regression lines

are not horizontal, we conclude that the neutral asymptote is not reached yet.

The results of the several regression approaches are shown in the second up to the

fourth row of Fig. 3.2. These rows show a segment of the near-neutral range, because

we already analysed that the behaviour of the free convection range is similar for the

various fits. In the following paragraphs, the differences between the approaches are

discussed, with the focus on rel∆ of c1 and c2, and WRSD.

1. Transformation of the data. First, we compare the coefficients from linlin (Eq.

3.3), loglin (Eq. 3.4), and loglog (Eq. 3.5). In this paragraph we start with a focus on
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Table 3.4. The results of the different regression approaches using orthogonal distance regression (ODR). The
centre columns show the results of the regression (Step 1): the regression coefficients (c1, c2 and d, all shaded to
easily find them) with the corresponding relative uncertainty (rel∆) and the WRSD of the fit. The right columns
show the results of the linear least square regression Hobs versus HMOST (forced through the origin) calculated
from the obtained coefficients (Step 2): the slope (a), the coefficient of determination (r2) and the coefficient of
variation (CV ). The approaches differ in the following three aspects: 1. Weighting of data: ‘notWeight’ (first
part); and ‘weight’ (second part), 2. Transformation of data: linlin (first block per part); loglin (second block
per part); and loglog (last block per part), 3. Number of coefficients to fit: ‘unfixed’; (first row per block);
‘fixed c1’ (second row per block); and ‘fixed c2’ (third row per block).

Step 1 Step 2
approach c1 rel∆ [%] c2 rel∆ [%] d WRSD a r2 CV

’notWeight’
linlin
’unfixed’ 4.8 4.0 12.8 6.8 0.88 0.156 1.02 0.591 0.240
’fixed c1’ 4.9 13.2 0.7 0.88 0.156 1.02 0.590 0.240
’fixed c2’ 3.9 0.4 9.0 0.91 0.157 1.02 0.605 0.233

loglin
’unfixed’ 8.5 2.8 34.5 4.9 0.81 0.180 1.04 0.554 0.272
’fixed c1’ 4.9 12.3 0.9 0.92 0.224 0.99 0.594 0.231
’fixed c2’ 4.8 0.4 9.0 1.11 0.247 0.89 0.611 0.231

loglog
’unfixed’ 4.3 1.7 9.8 3.2 0.95 0.115 0.99 0.603 0.226
’fixed c1’ 4.9 12.2 0.7 0.92 0.115 0.99 0.594 0.230
’fixed c2’ 4.1 0.4 9.0 0.96 0.115 0.99 0.606 0.224

’weight’
linlin
’unfixed’ 5.4 2.2 17.1 3.8 0.82 0.560 1.06 0.578 0.264
’fixed c1’ 4.9 14.4 0.7 0.83 0.561 1.05 0.585 0.258
’fixed c2’ 3.9 0.4 9.0 0.90 0.586 1.02 0.605 0.233

loglin
’unfixed’ 6.0 1.7 20.0 3.2 0.82 0.641 1.05 0.572 0.264
’fixed c1’ 4.9 13.5 0.8 0.86 0.649 1.03 0.588 0.244
’fixed c2’ 4.1 0.4 9.0 0.95 0.679 0.99 0.606 0.224

loglog
’unfixed’ 4.4 1.7 10.2 3.2 0.93 0.436 0.99 0.601 0.226
’fixed c1’ 4.9 12.6 0.7 0.90 0.438 1.00 0.592 0.233
’fixed c2’ 4.1 0.4 9.0 0.94 0.437 0.99 0.606 0.224

ODR (Table 3.4) only, because for LSR the coefficients are the same using linlin and

loglin (Sect. 3.3.2).

For the options ‘notWeight’ (first part of Table 3.4) and ‘weight’ (second part of

Table 3.4), we observe the same pattern: loglin given the largest coefficients and loglog

given the smallest coefficients. The tendency for loglin to show the largest coefficients

is supported by Fig. 3.2, where the largest values of C̃2
T (outliers) in the near-neutral

range are better visible for loglin than linlin and loglog. In other words, outliers with

large C̃2
T in the near-neutral range have the largest influence on the coefficient when

using loglin.

Comparing the rel∆c of the approaches we observe that the smallest errors are ob-

tained for the loglog transformation. These small values suggest that the loglog ap-
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Fig. 3.2. The scaled structure parameter of temperature (C̃2
T ) versus stability (−z/L). The first row shows

the entire dataset for the three data transformation approaches: linlin (left column), loglin (centre column), and
loglog (right column). The second up to fourth row show a segment in the near-neutral range (the black box
in the first row), including the lines resulting from the different regression approaches. The approaches differ
in the following three aspects: 1. Mathematical regression method: LSR (black lines) and ODR (grey lines), 2.
Weighting of the data: ‘notWeight’ (solid line) and ‘weight’ (dashed line), and 3. Number of coefficients to fit:
‘unfixed’ (second row), ‘fixed c1’ (third row), and ‘fixed c2’ (fourth row).

proach has the most robust coefficients. Notice that for LSR (Table 3.3), the rel∆c has

larger values for loglog than for linlin, however, the differences are small.

Another way to investigate which data transformation gives the most robust regression

results is to compare the regression coefficients for all approaches while keeping the

data transformation constant. We therefore calculate for each transformation (linlin,

loglin, and loglog) a standard deviation in c1 and c2 of the eight approaches. The eight

approaches results from the combinations of two methods (LSR and ODR), two options

(‘notWeight’ and ‘weight’) and two procedures (for c1: ‘unfixed’ and ‘fixed c2’, and for

c2: ‘unfixed’ and ‘fixed c1’). Using the eight values of c1 gives a standard deviation in c1
of 0.6 (linlin), 1.5 (loglin), and 0.2 (loglog). For c2 the standard deviation is 1.7 (linlin),
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3.6. Results and Discussion

7.6 (loglin), and 1.8 (loglog). For c1, loglog has the smallest standard deviation among

the approaches, and for c2 linlin. The standard deviation of c1 of loglog is comparable

with the one of linlin. This means that the loglog transformation is the most consistent

among the different approaches. This can be understood by looking to Fig. 3.2: in the

neutral range the scatter is least for loglog.

2. Mathematical regression methods. Second, we compare the classical least

square regression (Table 3.3) with the orthogonal distance regression method (Table

3.4). ODR yields larger coefficients than LSR for most of the approaches. Especially,

when applying the loglin transformation the c1 and c2 are much larger. The relative

uncertainties of the coefficients are smaller for LSR than for ODR in case of linlin and

loglin, and similar in case of loglog, whereas the WRSD is larger for LSR than for ODR

in any case. This means that the results do not show a preferred method. However, the

use of LSR is not an appropriate choice, because uncertainties in −z/L are not taken

into account whereas for ODR they are (Sect. 3.3).

3. Weighting the data. Third, we compare the unweighted dataset with the weighted

dataset (see the errorbars in Fig. 3.2). There is not a clear pattern which of these two

options gives the larger coefficients This is to be expected, because the weighted dataset

has to be seen as a new dataset, and the weighting (1/rel∆) differs between linlin, loglin

and loglog (Sect. 3.5.1).

If the data is weighted, rel∆c is reduced for all the approaches compared to the

unweighted dataset. This can be understood as follows: most outliers have a large

uncertainty and consequently a low weight. Hence, these have a lower impact on the

regression and thus the rel∆c is reduced.

4. Number of regression coefficients to fit. Fourth, we compare the ‘unfixed’

procedure with the ‘fixed c1’ or ‘fixed c2’ procedure. On the one hand if comparing

the coefficients obtained with these procedures, we observe that using ‘unfixed’, the

obtained coefficients are less robust as compared to ‘fixed c1’ and ‘fixed c2’. This is

found by comparing for each of the three procedures the standard deviation in c1 and in

c2 of the twelve approaches, which we have by varying the three transformations (linlin,

loglin and loglog), the two methods (LSR and ODR) and the two options (‘notWeight’

and ‘weight’). The 12 values of c1 give a standard deviation of 1.3 for ‘unfixed’ and 0.3

for ‘fixed c2’. The standard deviation in c2 is 7.2 for ‘unfixed’ and 0.9 for ‘fixed c1’.

Furthermore, the rel∆c of the ‘unfixed’ coefficients are also the largest. This reduced

robustness if using ‘unfixed’ is to some extent trivial, because when one of the coefficients

is fixed, the regression will have fewer degrees of freedom than when both are kept

unfixed. On the other hand, WRSD is the smallest for the ‘unfixed’ procedure. However,

in some cases the differences are minor. The smallest WRSD for ‘unfixed’ is to be

expected, because this procedure obtains the optimal fit through the data.
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3. Dependence on regression approach, observation height and stability on MOST

Step 2, impact of regression approaches on the fluxes

The right parts of the Table 3.3 (LSR) and Table 3.4 (ODR) give the results of the

comparison between the observed sensible heat fluxes (Hobs) and the calculated sensible

heat fluxes (HMOST). The latter are calculated from the coefficients obtained in Step

1 with Eq. 3.1 using f (z/L) according to Eq. 3.3. However, the fluxes are the same

when using Eq. 3.4 or 3.5. In other words, when knowing the coefficients a data

transformation does not affect the calculations of the sensible heat flux.

In general the ratio of HMOST and Hobs is about one, with a r2 of about 0.60 and a

CV of about 0.23. The differences between the approaches are small despite the large

differences in the coefficients. This is an important result for using MOST in practice.

The reason why the different approaches generally have comparable HMOST can be un-

derstood as follows. A linear regression through the origin is mainly dominated by large

values. These relatively large values of H correspond to large values of −z/L. Large

values of −z/L are close to the free convection limit, for which regression approaches

(d) are comparable (see step 1).

Step 3, evaluation and discussion of the regression approaches

Based on the theory given in Sect. 3.3 and on the results above, we now can identify a

recommended regression approach.

1. Transformation of data: loglog, because it shows the most robust coefficients (the

smallest rel∆ and the most comparable coefficient between the approaches).

2. Mathematical regression method: ODR, because uncertainties in −z/L are taken

into account as well.

3. Weighting of data: ‘weight’, because the more uncertain data points have less

influences on the fit.

4. Number of coefficients to fit: ‘unfixed’ if the data cover a broad range of −z/L

including near-neutral data, because the WRSD has the lowest values and one does

not have to chose a fixed value beforehand.

To summarize, we recommend to calculate the regression using a double logarithmic

transformation, an orthogonal distance regression method, weighted data, and keeping

both coefficients unfixed (provided that the −z/L range is sufficiently large). This is

the regression approach we like to use in Part 2, however, in that analysis the range of

−z/L within in one stability class is limited (Table 3.2). Therefore we choose to have

a fixed value c1 = 4.4, which is the value obtained with this approach over the entire

dataset.

Note that if a limited −z/L range makes fixing of one of the coefficients necessary, the

value of that fixed coefficient will influence the value of the coefficient that is left free in

the regression. The asymptotic value for the similarity relations as stability approaches

neutral conditions is under discussion (Hill et al., 1992; Thiermann and Grassl, 1992;

Van Kesteren, 2012). Hill et al. (1992) found a value of 8.1, and Thiermann and Grassl

(1992) and Van Kesteren (2012) argue that c1 has to be 6.37 based on an analysis of
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3.6. Results and Discussion

Table 3.5. Results of additional regression approaches tested using ODR: the coefficients (c1, c2 and d) with
the corresponding relative uncertainty (rel∆) and the WRSD of the fit. First part: using a ‘fixed c1’ of 6.37
as argued by Thiermann and Grassl (1992); Van Kesteren (2012) (ODR, weight, ‘fixed c1’). Second part: an

artificial dataset with randomized w′T ′ (ODR, ‘notWeight’, ‘unfixed’). Third part: an artificial dataset with
randomized u∗ (ODR, ‘notWeight’, ‘unfixed’).

approach c1 rel∆ [%] c2 rel∆ [%] d WRSD

test another c1: c1 = 6.37
linlin 6.4 22.6 0.7 0.80 0.562
loglin 6.4 22.0 0.7 0.81 0.641
loglog 6.4 19.9 0.7 0.87 0.449

test artificial data with randomized w′T ′

linlin 18.0 9.5 0.0 34.1 153.44 37.583
loglin 658.1 1.0 458.0 94.2 11.08 11.656
loglog 4.3 11.7 0.3 30.4 10.36 0.817

test artificial data with randomized u∗

linlin 5.2 7.9 15.5 13.0 0.84 0.185
loglin 52.9 34.1 567.3 51.6 0.77 0.182
loglog 6.3 4.1 18.8 6.6 0.89 0.141

the budget equations and the neutral asymptote (equal to one) for the gradient MOST

relations. This value is relatively large compared to the values we found. Because c1
and c2 are positively correlated, using a fixed value for c1 of 6.37 increases c2 (up to

20). Consequently, using c1 equal to 6.37 gives larger WRSD than using 4.9, except for

the ODR-loglin approach (Table 3.5).

So far we compare the various regression approaches to fit the most common shape of

C̃2
T (Eq. 3.3). However, also different shapes have been proposed (Table 3.1). For in-

stance Thiermann and Grassl (1992) and Wesely (1976b) used a function with more co-

efficients. The reason why we choose this shape is already given in Sect. 3.1. Moreover,

as observed from our study, it is already difficult to fit two coefficients simultaneously,

so using an extra coefficient only creates extra uncertainty.

Because the parameters plotted on the x-axis (−z/L) and the y-axis (C̃2
T ) in MOST

contain common variables (H and u∗), the observed correlation can be an artificial

self-correlation. Baas et al. (2006) investigated the effect of self-correlation on the

determination of flux-gradient relationships within the stable boundary layer. They

generated artificial data, based on observed data, for which MOST variables (H and u∗)

were randomized. To analyse the effect of self-correlation on the regression approaches

for C̃2
T , we repeat the method of Baas et al. (2006) by generating two artificial datasets.

In the first dataset only w′T ′ is randomized (the combination of C2
T and u∗ still is

the same as in the original dataset). In the second dataset only u∗ is randomized.

Table 3.5 shows the regression results for both artificial datasets (ODR - ‘notWeight’

- ‘unfixed’). The coefficients obtained from the artificial dataset with the randomized

w′T ′ are totally different from the original dataset: they even have unreasonable values

(with e.g. c2 about zero). On the other hand, the artificial dataset with the randomized
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3. Dependence on regression approach, observation height and stability on MOST

u∗ gives reasonable values. This is to be expected, because in the free convection limit,

when winds are calm, the surface stress and therefore u∗ becomes unimportant. Hence,

the intact combination of C̃2
T and w′T ′ is sufficient to reproduce the correct d. For data

in the free convection range perturbations in u∗ will cause a displacement along the free

convection relationship. This means that the behaviour of data points of the artificial

dataset in the free convection range is similar as for the data points of the real dataset.

In the neutral range, however, a randomly large u∗ will cause an increase in C̃2
T and a

decrease in −z/L. This means that data points in the neutral range are located higher

than data points of a real dataset. These higher values in the neutral range cause both

coefficients and their relative uncertainty to become larger.

3.6.2. Part 2: Stability and height dependency

Variation of MOST relations between eight −1/L classes

We start this section with analysing the impact of measuring within different stability

ranges on the Monin-Obukhov similarity functions. Fig. 3.3 shows the scaled structure

parameter (C̃2
T ) versus the stability (−z/L) together with the best fit for the entire

dataset and for each class separately. Fig. 3.4 shows bar charts of the values of c2 and

d, including their uncertainty (∆), in order to investigate how c2 and d change with

increasing −1/L.

Three remarks have to be made related to Fig. 3.4.

1. We recall that here we use the regression approach ‘fixed c1’, and therefore d is

proportional to c
−2/3
2 . As a consequence, an increase in c2 results in a decrease in

d and in a downward shift of the regression line given in Fig. 3.3.

2. In general ∆c2 and ∆d are smaller for each class than the variations between the

classes. The standard deviation of c2 (σ(c2)) among the classes is 1.9 and the mean

size of the uncertainty (∆c2) is 0.21. This indicates that the differences in c2 and

d between −1/L classes are statistically significant.

3. The uncertainty of d for the entire dataset is larger than that of each −1/L class

except for the first class. The larger ∆d for the entire dataset occurs because there

we use the regression approach ‘unfixed’, and c1 is included in the calculation of ∆d,

whereas for the eight −1/L classes, we use the approach ‘fixed c1’, and therefore

the uncertainty in c1 is zero. The reason for the larger uncertainty in d for the first

class is that in this class only near-neutral data points are included which create

extra uncertainty in describing the behaviour in the free convection limit.

From Fig. 3.3, we conclude that the regression lines of the border classes are located

higher than those of the centre classes, resulting in a smaller c2 and a larger d (Fig.

3.4). Especially, the first class (c2 = 6.2 and d = 1.3) deviates from the entire dataset

(c2 = 10.2 and d = 0.9). Notice, that the number of data points in this class is less than

in the other classes resulting in a larger ∆c2 . Nevertheless, ∆c2 is still smaller than the

differences in c2 between the first and second class and thus c2 is significantly different.

The higher position of the regression line of the first class implies that under neutral
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Fig. 3.3. The scaled structure parameter (C̃2
T ) versus stability (−z/L) for all data and for the eight

−1/L classes. Each colour represents a different z class. The black dashed line is the fit calculated over
the entire dataset (ODR-’weight’-loglog-’unfixed’), with c1 = 4.4 and c2 = 10.2. The grey solid line is the fit
for the specific −1/L class (ODR-’weight’-loglog-’fixed c1 = 4.4’). In the right corner the borders of the class,
and the number of data points (#) in the class are given.

conditions the observed data is located higher compared to the other classes. This is

also observed in other studies. First, Hill et al. (1992) obtained a large c1 from a dataset

observed under near neutral conditions. Second, in the studies of de Bruin et al. (1993);

Li et al. (2012); and Braam et al. (2012) data points in the neutral range have generally

higher values compared to the regression line through the respective entire dataset.

The consistency between the studies and the relative small uncertainty (see errorbars

in Fig. 3.3) indicates that in the near-neutral range the behaviour differs from that in

the other ranges. However, the deviation in the first class can also be a mathematical

artefact. With c1 (the neutral asymptote) fixed we need information from more unstable

data (beyond −z/L ≈ 1/c2, see Fig. 3.1) to be able to determine c2. The near-neutral

class contains only few points that are sufficiently unstable.

The regression fits of classes 2 up to 5 are all located below the fit of the entire

dataset (c2 is larger and d is smaller). The −z/L ranges of these classes are around
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Fig. 3.4. Bar charts with errorbars of the values of c2 (left) and d (right) for the eight −1/L classes. Above
the bars the value of the coefficient is given. The values above the plot are the number of data points in each
class.

the transition point (≈ 1/c2) where the neutral class develops into the free convection

range. Furthermore, when looking in detail at the entire dataset and its regression fit

(first panel in Fig. 3.3), the regression fit indeed overestimates the data in these −z/L

ranges. Moreover, the difference between class 2 and 3, and between class 4 and 5 is

smaller than the size of the errorbar, so statistically class 2 and 3, and class 4 and 5 are

not different.

For classes 6 up to 8, the regression fits of each class are located above the fit of the

entire dataset (c2 is smaller and d is larger). For class 8 the overestimation is larger

than for class 6. This means that the behaviour of the free convection limit is different

from that of the entire dataset.

In the end, we can conclude that measuring within different stability ranges changes

the Monin-Obukhov similarity function for our dataset. The pattern we observe depends

on the measured −z/L range. For the most neutral and most unstable classes c2 is

smaller and d is larger than for the centre classes. This could indicate that the data in

these classes are located too close to the edge of the entire dataset (in terms of −z/L),

with a too limited range to properly apply the regression.

Variation of MOST relations between eight z classes

The analysis of the impact of measuring at different heights is based on Figures 3.5 and

3.6. Figure 3.5 shows the similarity fit for each class, and Fig. 3.6 shows the bar charts

of the values of c2 and d. Notice, that the three remarks related to the analysis of the

eight −1/L classes (Fig. 3.4) hold as well for the eight z classes. With respect to the

second remark, we observe σ(c2) = 1.5 and ∆c2 = 0.22 among the classes, which implies

that a variation in c2 and d due to variations in observation height is also statistically

significant.

For the eight z classes we find that c2 decreases and d increases with increasing

height. In other words, for the classes with a low z the regression fit is located below
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the regression fit of the entire dataset and for the classes with a high z it is located above.

This means that the observed pattern differs from that found for the eight −1/L classes.

One reason can be that the scaled structure parameter behaves differently for a given

range of −z/L, depending on whether this range is attained by varying the height or by

varying −1/L. This would undermine one of the basic assumptions of MOST. Another

reason is related to the −z/L range of each class. The −z/L range of each z class is

about 3 decades, which is twice as large as the range in each −1/L class. This is as

expected, because in our entire dataset z varies less (≈ 55 m) than L (≈ 840 m). The

increased −z/L range has two effects. First, the larger −z/L range of each z class

better corresponds to the −z/L range of the entire dataset. Consequently, we observe

a smaller σ(c2) for the eight z classes than for the eight −1/L classes. Second, in each

z class, the −z/L range includes the transition point (1/c2), where the neutral range

develops into the free convection range. In class 1, the class with the near-neutral data,
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Fig. 3.6. Bar charts with errorbars of the values of c2 (left) and d (right) for the eight z classes. Above the
bars the value of the coefficient is given. The values above the plot are the number of data points in each class.

the transition point is 7.8 10−2 and the −z/L range varies from 2.9 10−3 up to 10.

In class 8, the class with the most unstable data, the transition point is 1.1 10−1 and

the −z/L range varies from 6.7 10−2 up to 75. As each z class includes the transition

point, the way how the value of c2 varies between the classes is different in shape and

magnitude for the eight z classes when compared to the eight −1/L classes.

Discussion

In this section we start to discuss three issues related to splitting the dataset in eight

classes: First, as stated before, the size of the errorbar for c2 within a class is smaller

than the variations between the classes which makes the results statistically significant.

In order to further substantiate this conclusion, an additional analysis is performed.

Therefore, we divided the entire dataset into eight random classes, by assigning each

data point a random number from 1 up to 8. Each class now contains data points

randomly attributed to different z and different −1/L values. For this dataset, c2
is determined for each class, including the average size of the errorbar for each class

(∆c2), as well as the variability between the classes (σ(c2)). This procedure is repeated

hundred times. These hundred divisions in eight random classes have a σ(c2) ranging

from 0.28 up to 1.01 with an average of 0.58, and a ∆c2 ranging from 0.21 up to 0.65

with an average of 0.64. In seventy out of the hundred realizations ∆c2 is larger than

σ(c2). The difference between σ(c2) and ∆c2 for each division ranges from −0.36 up to

0.60 with an average of −0.05. These values are smaller than the difference between

σ(c2) and ∆c2 for the eight −1/L classes (1.7) and for the eight z classes (1.3). Thus the

division in random classes gives coefficients that are statistically identical for each class.

So we can conclude that the height and stability dependency in the eight −1/L classes

or eight z classes is statistically significant.

Second, in order to investigate if the pattern that is visible for eight classes depends

on the number of classes, we repeat the analysis using four and sixteen −1/L classes

58



3.6. Results and Discussion

and z classes (Figures not shown). For the four −1/L classes we observe a similar but

weaker pattern as for eight −1/L classes. Again c2 is small and d is large for the most

neutral and most unstable classes. When dividing into sixteen −1/L classes, the pattern

is similar to that of eight −1/L classes. Only the classes with the smallest number of

data points deviate from the pattern, probably because the −z/L range gets too small.

For the four and sixteen z classes, the pattern is identical with the eight z classes: c2
decreases and d increases with increasing z. Moreover, contrary to the −1/L classes,

σ(c2) is also similar: σ(c2) is 1.6 for the four and 1.5 for the sixteen classes.

Third, related to the number of classes, it is difficult to compare the behaviour of

eight −1/L classes and eight z classes because they have different −z/L ranges. No-

tice, however, that it is physically impossible to have a comparable class width and a

comparable number of data points per class. In our case this would mean that z would

have to vary by 840 m as well, and then the highest levels are located far outside the

ASL and MOST is not applicable any more.

The division of the dataset in −1/L classes shows that the coefficients differ among

each class. This can be related to the shape of f (z/L). In our research we use the most

common shape with two coefficients. As a consequence of using two coefficients, the data

is within two regimes: the near-neutral range (described with c1) and the free-convection

range (described with d), and the transition between these two regimes is described

with just one value (1/c2, see also Section 3.1). However, from the results for the eight

−1/L classes it seems that three regimes exist (near-neutral range, transition range,

and a free-convection range), which indicates that the function with two coefficients is

probably not sufficiently flexible to describe f (z/L). For turbulent quantities other than

C2
T , Kader and Yaglom (1990) also observed that the data can be separated into three

regimes: the dynamic regime (−z/L < 0.04), the dynamic-convective regime (0.12 <

−z/L < 1.2), and the free-convective regime (−z/L > 5). Notice that, because their

regimes do not cover the full stability range, and Kader and Yaglom (1990) searched

separate equations for the three regimes, their solution is not a practical one. Another

possible solution would be to use a function with more coefficients as introduced by

Wesely (1976b); Thiermann and Grassl (1992), it is however not a priori clear if each

coefficient is sensitive to one particular stability regime.

The division of the dataset in z classes shows a height dependence. Here we discuss two

issues related to this. First, the observation of a height dependence of MOST relations

could be related to flux divergence. Under unstable conditions the flux decrease with

height. Therefore, one could argue that when analysing elevated levels it is better to

use the fluxes observed at that level (local level fluxes) than those observed at the

surface, as was suggested for the stable boundary layer by Nieuwstadt (1984). Using

local level fluxes, which are smaller than the surface fluxes, will give larger values of C̃2
T

at a certain −z/L (Fig. 6 of Braam et al. 2012). This in turn would yield a increase in

d and a corresponding decrease in c2. As the data for larger z already show relatively

large d and small c2, the use of local fluxes would enhance this pattern rather than
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diminish it.

Second, the height dependence can be related to the fact that the size of the footprint

of the observations increases with the observation height. If sampling another footprint

would be the reason for the observed decrease of c2 and increase of d, the surface flux

would have to increase with increasing distance to the tower on average. This is not

likely, because, the surface around the tower is relatively homogeneous.

3.7. Conclusions

In literature different values of the coefficients (c1 and c2) are reported for the most

common shape of Monin-Obukhov similarity relations for the structure parameter of

temperature C2
T (f (z/L) = c1 (1− c2z/L)

−2/3). These coefficients were empirically

obtained by applying various regression approaches to datasets with different charac-

teristics (e.g. stability in terms of −1/L and the measurement height z). Here we

investigate the impact on the numerical value of the regression coefficients of applying

different regression approaches and using data from different heights and within different

stability ranges. By doing this for one dataset we can exclude causes of variations due

to differences in the data processing, instrumentation and the surface characteristics.

From the comparison of different regression approaches, we conclude the following:

1. Applying different regression approaches has an impact on the regression coeffi-

cients c1 and c2. The range of c1 and c2 among the approaches is large, and the

differences are statistically significant. However, variations in the coefficient of the

free convection limit (d) are small. Therefore, differences in c1 and c2 are mainly

related to data in the near-neutral range. In turn, as under near-neutral conditions

the sensible heat flux is relatively small, the effect of the different approaches on the

sensible heat fluxes is small. When presenting similarity relations it is important

to specify the regression approach used in the determination.

2. We suggest to use an orthogonal distance regression method (ODR) such that

uncertainties in −z/L are also taken into account, where both dimensionless groups

(C̃2
T and −z/L) are logarithmically transformed (loglog), the data are weighted

such that unreliable data points have a smaller influence on the fit (‘weight’), and

both coefficients are fitted (‘unfixed’) simultaneously.

From the division of the dataset into eight −1/L classes and into eight z classes, we

obtained different coefficients for each class, therefore we conclude the following:

1. Measuring at different heights, and within different stability ranges can have an

impact on the regression coefficients c1 and c2. The variations in the coefficients

as given in literature, can thus be an effect of variations in the height and stabil-

ity range between datasets (see Table 3.1). Moreover, new presented coefficients

measured at another z or within a different −1/L range will likely differ from

previously observed regression coefficients.

2. One should thus be careful with applying the coefficients to z ranges or −1/L

ranges different from the dataset for which they were derived. Even if the −z/L
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range corresponds, it does not guarantee that the coefficients are correct when z

or the −1/L range are very different.

3. The observed variation in the coefficients within one dataset is an first indication

that the most common shape with two coefficients is not sufficiently flexible to

describe f (z/L). However, it is not advisable to simply use a shape with more

coefficients, because we found from the comparison of the different regression ap-

proaches that it is already difficult to fit two coefficients simultaneously.

4. The −z/L range has to be large enough and has to cover both near-neutral and

free convection data to allow for a reliable estimation of the regression coefficients.
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4Variability of the structure parameters of temperature

and humidity observed in the atmospheric surface layer

under unstable conditions

4.1. Introduction

During recent years, scintillometers have been proven to be reliable instruments for

determining the path-averaged sensible and latent heat fluxes over different terrain

and surface types (e.g. Green et al., 2001; Meijninger et al., 2002b, 2006; Evans et al.,

2012). A scintillometer system consists of an electromagnetic beam transmitter at one

end and a receiver at the other end of a path. The received electromagnetic signal varies

in intensity due to fluctuations in the refractive index of air (scintillations) caused by

turbulent eddies along the propagation path. The variance of these fluctuations is pro-

portional to the path-averaged structure parameter of the refractive index of air (C2
n),

which is the basic atmospheric parameter derived from scintillometer data. From C2
n

the structure parameter of temperature (C2
T ), humidity (C2

q ) and the cross-structure

parameter of temperature and humidity (CTq) can be obtained (provided multiple scin-

tillometers or additional meteorological observations are available, e.g. Hill et al., 1992;

Moene, 2003). C2
s and C2

q are measures of the turbulent fluctuations in temperature

and humidity and can be used to calculate path-averaged surface sensible and latent

heat fluxes using Monin-Obukhov similarity theory (MOST) (Monin and Obukhov,

1954; Wyngaard, 1973; Hill et al., 1992, inter alia). Scintillometers operating at optical

wavelengths (e.g. in the near-infrared) are basically sensitive to temperature fluctua-

tions, while for scintillometers operating at microwave wavelengths the contributions of

temperature and humidity fluctuations are equally important. Thus an optical scintil-

lometer can be used to derive the sensible heat flux, while a combination of an optical

and a microwave scintillometer is necessary to derive both the sensible and latent heat

This chapter is published as Braam M, Moene AF, Beyrich F (2014) Variability of the structure parameters of
temperature and humidity observed in the atmospheric surface layer under unstable conditions. Boundary-Layer
Meteorol 150:339-422
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fluxes.

The scalar structure parameter (now denoted as C2
s for a generic scalar s) is a measure

of the magnitude of fluctuations in space or time of a turbulent quantity s within

the inertial subrange of turbulence. C2
s has a log-normal distribution in time and

space (Kolmogorov, 1962). From sodar and large-eddy simulation (LES) data, Petenko

and Shurygin (1999), Cheinet and Siebesma (2009), and Cheinet and Cumin (2011)

(hereafter denoted as PS99, CS09 and CC11, respectively) found a large width of the

probability density function (PDF) of log(C2
s ), which indicates a variability of C2

s over

several orders of magnitude. Furthermore, they found a bimodal distribution of log(C2
s ),

which is caused by differences in C2
s between upward and downward motions.

In PS99, CS09 and CC11, the variability of C2
s is described for heights of several

decametres above the ground at one point (in the case of the sodar) or above a homo-

geneous surface and one specific surface forcing (in the case of LES). Both approaches

characterize the local variability of C2
s of a turbulent field. If, however, C2

s is mea-

sured along a path over a heterogeneous surface, the averaged C2
s may vary in time

due to the local variability at each point along the path, but may vary in addition

due to surface heterogeneity (i.e. differences in the surface sensible and latent heat

fluxes between patches of different surface characteristics). The variability due to sur-

face heterogeneity, in contrast to the local variability, would be relatively constant in

time and about zero above a single patch. The separation of these two effects is still

an open research question relevant for scintillometry. In order to describe the relation

between heterogeneous surface fluxes and the (path-averaged) scintillometer signal, a

better understanding of the different types of variability in C2
s along the path is needed.

To identify the variability in C2
s related to heterogeneity, one needs to know and re-

duce the influence of the local variability. One way to achieve this could be averaging.

For example, van den Kroonenberg et al. (2012) used repeated flights over the same

path for this purpose, and in this way they identified patterns in C2
s that were more

or less constant in time. Another way to decompose the effect of the local variability

and the variability caused by surface heterogeneity on the path-averaged C2
s could be

to determine the local variability of C2
s over a range of conditions (height, stability

etc.). This variability could then be considered as the background noise superimposed

on the variability caused by surface heterogeneity. Subsequently, this measure of the

local variability can be used to assess whether observed spatial differences in C2
s along

a path can be attributed to surface heterogeneity or have to be considered to lie within

the range of local variability.

The aim of this study is thus to quantify the local variability of C2
s at a given point for

a range of heights and stabilities. For this, we use eddy-covariance (EC) measurements

obtained at three heights in the atmospheric surface layer (ASL) during the LITFASS-

2009 experiment (Beyrich et al., 2012). The analysis is restricted to unstable conditions.

There are two reasons to use EC measurements to investigate the local variability of

C2
s : first, the use of EC measurements instead of sodars (PS99) or LES (CS09 and
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CC11) has the advantage of covering the lowest part of the ASL. Second, the use of

EC measurements instead of LES has the advantage that EC measurements are di-

rect observations rather than model simulations, obtained during different atmospheric

conditions rather than representing a single, ideal situation. By using one month of

observations it is possible to describe the variability over a range of different stability

classes (representing different weather conditions). To the authors’ knowledge it is the

first time that the variability of C2
s is evaluated from EC measurements obtained over

a long period (one month) at different heights in the ASL.

In order to identify the behaviour of C2
s in general, and to quantify the variability of

log(C2
s ), we investigate the mean, the probability density function and the variances of

log(C2
s ) in the ASL, and answer the following two research questions:

• What is the shape of the probability density function of log(C2
s ) at several heights

in the ASL?

• What determines the variance of log(C2
s ) at these heights?

4.2. Theory

4.2.1. Definition of the structure parameter

The scalar (subscript s) structure parameter is defined within the inertial subrange as

(Stull, 1988; Bosveld, 1999),

C2
s =

Dss,x(r)

r
2
3

=
〈[s(x+ r)− s(x)]2〉

r
2
3

(4.1)

in which Dss,x is the spatial (x) structure function, s(x) and s(x + r) are scalar ob-

servations at locations x and x+ r, r is the spatial separation, and the angle brackets

indicate spatial averaging over x. The distance over which the averaging takes place is

one of the topics discussed herein, later referred to as ‘window size’.

4.2.2. Mean structure parameter

The behaviour of the mean C2
s in the ASL under unstable conditions is discussed for

temperature by e.g. Wyngaard (1973); Andreas (1988); Hill et al. (1992) and Li et al.

(2012), and for humidity by Li et al. (2012). The dependence of the mean C2
s on

height and instability within the ASL is described using Monin-Obukhov similarity

theory (MOST) scaling, which is valid under stationary conditions and over horizontally

homogeneous surface. Using MOST C2
s can be made dimensionless, and the scaled

structure parameter is denoted as C̃2
s ,

C̃2
s =

C2
s z

2/3

s2∗
= fs

( z

L

)
= cs1(1− cs2z/L)

−2/3 (4.2)

with the observation height z, the Obukhov length L = Tvu
2
∗/(κgTv∗), the scalar scale

s∗ = −w′s′0/(u∗) and the friction velocity u∗ =
√

τ0/ρ, in which T is the temper-
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ature, Tv∗ is the virtual temperature scale, κ = 0.4 is the von-Kármán constant,

g = 9.81 m s−2 is the acceleration due to gravity, ρ is the air density, τ0 is the

surface shear stress, and w′s′0 is the surface flux of scalar s. The overbar indicates time

averaging. The right-hand side of Eq. 4.2 is the most commonly used expression for

f (z/L) for unstable conditions. Several values for the empirical constants (cs1 and cs2)

have been proposed in the literature, and in this study we use the set of Andreas (1988)

with cs1 = 4.9 and cs2 = 6.1, who modified the original MOST relation of Wyngaard

(1973) by replacing κ = 0.35 by κ = 0.40. The similarity relation in Eq. 4.2 shows that

the mean C̃2
s decreases with height and instability in terms of −z/L; the decrease of

the mean C̃2
s with height is non-linear. It is larger close to the surface than at larger

heights in the ASL; for free convection conditions the decrease of C2
s is ∼ z−4/3.

4.2.3. Variability of the structure parameter

Although the mean C2
s has been studied extensively, less is known about the variability

of C2
s . Kolmogorov (1962) assumed that C2

s has a log-normal distribution. A property of

a log-normally distributed random variable is that the standard deviation is proportional

to the mean (Wilks, 2006), and is the main reason to study the variability of the

logarithm of the structure parameter (log(C2
s )) rather than that of C2

s . Furthermore,

PS99, CS09 and CC11 also focussed their analysis on log(C2
s ); their results already

provide two insights into the shape of the PDFs of log(C2
s ) and so into the variability

of the structure parameter.

Insight 1: Deviation from a log-normal distribution

The PDFs of log(C2
s ) deviate from the normal distribution under some circumstances

and this deviation varies with height. The PDF is flatter than that of a normal dis-

tribution or even bimodal, due to differences in C2
s between upward and downward

motions. PS99 suggest that the PDFs of log(C2
s ) of the upward and downward motions

separately are log normal leading to a total PDF that is flatter or bimodal.

In upward motions (air from a lower level) C2
s is larger than in the downward motions

(air from a higher level), because the mean C2
s decreases with height (Sect. 4.2.2). Dif-

ferences in C2
s between upward and downward motions increase with increasing height

(sketch in the left panel of Fig. 4.1 and the right lowest two panels of Fig. 5 of CS09).

This can be understood by considering and combining two concepts:

• The decrease of C2
s with height is larger at lower levels (Sect. 4.2.2). Consequently,

C2
s in air from a lower level (upward motions) differs more from the C2

s at the

observation level than for air from a higher level (downward motions).

• The distance over which the air is transported (δz) increases with height and

instability (Moene and Schüttemeyer, 2008).

Both concepts combined explain that the differences in C2
s between upward and down-

ward motions are larger at higher levels than at lower levels. Note that this model does

not take into account differences in δz for upward motion and downward motion.
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Fig. 4.1. Left panel : sketch of the PDFs of log(C2
s ) at two heights, z1 near the surface and z2 at a larger height

in the ASL (total: grey dashed, upward motions: red, and downward motions: orange). Right bottom panel :
the variability of log(C2

s ) versus the window size for the two heights (z1: solid, z2: dash-dotted) separated into
three regimes (based on Fig. 8 of CS09). Right upper panel a sketch of the window size (indicated with ↔)
within the atmosphere with upward motions in red and downward motions in orange for regime I and regime III.
Regime II can be seen as the transition regime. Left sketch: one window (↔) covers either a part of the upward
motions or a part of the downward motions (regime I); right sketch: the window (↔) covers the entire domain
including both upward and downward motions (regime III).

For the two lowest levels used in CS09 (80 m and 310 m), δz can be estimated as 56 m

at z = 80 m and 270 m at z = 310 m (using the similarity functions for the variance

of de Bruin et al. (1993) and the similarity functions for the mean gradient of Businger

et al. (1971) with L = −15.3 m). The differences in log(C2
T ) between the upward and

downward motions can be estimated as 1.0 at z = 80 m and as 1.5 at z = 310 m

(log(C2
T )+δz − log(C2

T )−δz = −2
3 log

(
[z+δz − cs2z

2
+δz/L]/[z−δz − cs2z

2
−δz/L]

)
). The in-

crease of differences in C2
s between upward and downward motions with height causes

the width of the total PDF, and hence the variance, to increase (Fig. 2 in CS09 and

Fig. 1 in CC11).

In conclusion, if the total PDFs of log(C2
s ) deviate from a log-normal distribution and

are flatter or even bimodal, this can be explained by the contrast in C2
s between upward

and downward motions.

Insight 2: Variation of variability with averaging window size

The variability of C2
s depends on the averaging window size (the spatial averaging in Eq.

4.1). The variability of C2
s decreases if the averaging window size increases, because

an increasing part of the variability is averaged out. CS09 showed the effect of the

averaging window size on the variability of C2
s for a horizontal slab of a LES run (their

Fig. 8 and the lower right panel of our Fig. 4.1). They found that the rate of decrease

67



4. Variability of C2
s and C2

q in the ASL

of variance with window size is height-dependent and can be split into three regimes.

The variation of that dependence with height can be explained by differences between

upward and downward motions (see also the text on p 1011 of CS09).

In regime I, where the window size is small, the rate of decrease of the variance with

window size (‘slope’) is moderate and similar for each height. The window covers either

a part of the upward motion or a part of the downward motion (left sketch in the

upper right panel of Fig. 4.1). Hence, the variance is mainly due to the contrast in C2
s

between upward motion and downward motion. The variability of C2
s for the smallest

window (the ‘offset’) increases with height, because differences in C2
s between upward

and downward motions increase with height. In regime II (transition regime), where

the window covers parts of both the upward and the downward motions, the slope is

enhanced, because differences between upward and downward motions are mixed in the

averaging process and variability is lost with increasing window size. In regime III,

where the window covers almost the entire LES domain (right sketch in the upper right

panel of Fig. 4.1), the slope is moderate again and the variances reach an asymptotic

value of zero. Because, the offset of regime I increases with height the slopes in regime II

and III increase with height as well.

4.3. Data and Research Strategy

4.3.1. The LITFASS-2009 experiment

The data used in this study have been collected during the LITFASS-2009 experi-

ment in the area around the Meteorological Observatory Lindenberg - Richard-Aßmann-

Observatory (MOL-RAO) of the Deutscher Wetterdienst (DWD, German Meteorolog-

ical Service), about 60 km south-east of Berlin. One main objective of LITFASS-2009

was to better understand the influence of a heterogeneous surface along a scintillometer

path on the scintillometer signal. During the experiment several measurement tech-

niques were employed, e.g. eddy covariance, unmanned aircraft and scintillometers. For

a detailed description of the experimental set-up and the instrumentation see Beyrich

et al. (2012). The surface in the study area is moderately heterogeneous with a mixture

of farmland patches, forest, small lakes and small villages (Fig. 1 in Beyrich et al.,

2012). The patches mainly consists of maize, sunflowers, colza, barley and triticale,

with the typical dimension of the patches varying between 300 m and 1000 m.

Here, we used observations from three EC systems at effective heights of 2.5 m,

50 m, and 90 m. The effective height was calculated as zeff = zm − d, in which zm
is the observation height, and d is the zero-plane displacement estimated as 2/3 of

the vegetation height. At each height the instrumentation consisted of a combination

of a sonic anemometer/thermometer (sonic) and an infrared hygrometer (LiCor), see

Table 4.1. The 2.5-m observations were performed above triticale. The 50-m and 90-m

observations were obtained above grass, from the 99-m tower located at GM Falkenberg

(where GM stands for Grenzschichtmessfeld, the German translation of boundary-layer
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Table 4.1. Characteristics of the three EC systems. lp is the path length, zeff (= zm−d) is the effective height

triticale tower 50 m tower 90 m

Sonic CSAT-3 USA-1 USA-1
Campbell Sci., UK METEK GmbH, Germany METEK GmbH, Germany

lp Sonic (m) 0.116 0.18 0.18
Hygrometer LI7500 LI7500 LI7500

LiCor Inc., U.S. LiCor Inc., U.S. LiCor Inc., U.S.

lp LiCor (m) 0.125 0.125 0.125
zeff (m) 2.5 50 90

boom orientation 160◦ 190◦ 190◦

field site). Furthermore, we used data from the standard operational measurement

systems at MOL-RAO:

• pressure, measured at 1 m (PTB220, Vaisala Oy, Finland). The pressure at 50 m

and 90 m was estimated by assuming a linear decrease of 12.5 Pa m−1,

• precipitation, measured with a weighing precipitation gauge (Pluvio, Ott GmbH,

Germany),

• temperature and humidity profiles, measured on a 10-m tower (at 0.5, 1, 2, 4 m)

and the 99-m tower (at 10, 20, 40, 60, 80 m, HMP245, Vaisala Oy, Finland)

• boundary-layer depth, deduced from simultaneous sodar/RASS (DSDPA 90-64/

MERASS, METEK GmbH, Germany), windprofiler/RASS (TWP16000, Radian

Cop, USA) and ceilometer (CHM 15k Jenoptik GmbH, Germany) measurements.

Data were collected from 26 June to 22 July 2009 (day of the year, DOY: 177-203),

a period when the meteorological conditions were not very favourable to study surface-

layer turbulent processes. The first three days were completely overcast, whereas the

other days were intermittently cloudy; rain showers in the morning or afternoon hours

occurred during 14 of the 27 days. The noontime Bowen ratio (the sensible heat flux

divided by the latent heat flux) for the different surfaces was relatively constant during

the experiment: around 1.2 over the forest, smaller than 0.5 for maize and grass, around

0.6 for colza, around 3 for barley, and between 1 (start of experiment) and 2 (end of

experiment) for triticale. Except for the forest, these values can be found in the lower

panel of Fig. 3 in Beyrich et al. (2012).

Section 4.3.2 describes the methods used to determine the input data for the sub-

sequent analysis: scalar structure parameter (4.3.2) and the surface fluxes (4.3.2). In

Sect. 4.3.3 the logic of the actual analysis is given. The text is supported by Fig. 4.2

giving an overview of the different steps of the analysis.
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4.3.2. Data preprocessing

The first step in the data processing was the preparation of an input dataset for the

subsequent analysis (row 1 in Fig. 4.2). This dataset consists of the scalar structure

parameters for different window sizes and the turbulent fluxes averaged over 10 min.

Details of the calculations are given in Sect. 4.3.2 for C2
s and in Sect. 4.3.2 for the

turbulent fluxes.

The scalar structure parameter

Before calculating C2
s (left block of row 1 in Fig. 4.2) the raw 20 Hz data from the EC

systems were checked and converted to physical values. Using a block length of 1200

data points, data were checked for unphysical values1, spikes, and insufficient amplitude

resolution based on Vickers and Mahrt (1997). The spikes and the data beyond physical
1Values that are specified as unphysical are outside the following ranges: the vertical wind speed (w): [−10, 10] m s−1,

the components of the horizontal wind vector (u and v): [−40, 40] m s−1, the temperature signal of the sonic

(Tsonic): [240,320] K and the humidity signal of the LiCor (ρv): [0, 0.025] kg m−3
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limits were excluded. From the amplitude resolution check we found that the PDFs of

the sonic temperature of the USA-1 have more gaps than those of the CSAT-3. This

is due to a combination of a higher resolution of the CSAT-3 (theoretically: 0.001 K

for the CSAT-3 and 0.01 K for the USA-1) and the internal crosswind correction in the

CSAT-3 (personal communication: Ulrich Weisensee, MOL-RAO, 2012). The spectra of

the USA-1 do not, therefore, have a well-defined inertial subrange at small amplitudes

or high frequencies.

We applied two conversions to the raw data. First, the temperature signal of the sonic

and the humidity signal of the LiCor were iteratively converted to air temperature and

absolute humidity (Schotanus et al., 1983; Liu et al., 2001). We applied the crosswind

part of Eq. 3 of Liu et al. (2001) for the USA-1 only, because for the CSAT-3 it is already

applied internally. Second, the wind components of the sonic were rotated using the

planar fit method (Wilczak et al., 2001) and the coordinate system was rotated such

that the x-axis is along the mean horizontal wind. The planar fit angles were calculated

with EC-Pack version 2.5.23 (van Dijk et al., 2004) over the entire experiment (Sect.

4.3.2).

We calculated C2
s via the structure function (Eq. 4.1) that is more robust than the

spectrum method (Hartogensis, 2006) for the small window sizes that were needed to

determine the variability of C2
s . Furthermore, the structure function can still be used

when the dataset has gaps, whereas for the calculation of spectra a continuous data

series is needed.

From EC observations only the temporal structure function (Dss,t) can be derived,

Dss,t, win(τ) = [s(t+ τ)− s(t)]2
wint

(4.3)

in which the subscript t indicates the temporal structure function, s(t) and s(t + τ)

are scalar observations at times t and t + τ , and τ is the temporal separation with U

being the mean horizontal wind speed. The overbar indicates time averaging and wint
the temporal window size over which the averaging is performed. We calculated C2

s

over six window sizes varying from 1 to 10 min (win = 1, 2, 3, 4, 5, and 10 min). The

conversion of Dss,t to Dss,x was done using Eq. 5 from Braam et al. (2012) following

Bosveld (1999). C2
swin was calculated as the mean of Dss,x,win r−2/3 over a range of

fixed spatial separations within the inertial subrange: 2lp < r < κzeff = 0.4zeff (where

2lp is the path length of the instrument, and the spatial separation was linked to the

temporal separation as τ = r/U). Here 2lp is the smallest size of eddies that can

be properly resolved, and κz is a measure for the neutral mixing length (Moene and

Schüttemeyer, 2008); κz can be interpreted as a measure of the size of the largest eddies

and hence of the scale of the production range of turbulence under neutral conditions.

For unstable conditions the limit of κz is a conservative estimate for the border of the

inertial subrange as can be diagnosed from the spectra of Kaimal et al. (1972, in which

the inertial subrange starts at a normalized frequency of ≈ 1, which corresponds to a

wavelength of z). The use of a range of fixed separations implies the range of time lags
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to vary in time with wind speed U (2lp/U < τ < κzeff/U ).

The amplitude resolution problem of the USA-1 caused the structure function to be

not well-defined at small separations (that is, high frequencies). In order to ensure

that our calculations were performed for a well-defined inertial subrange, we decided to

increase the lower separation limit to a value of 5 m instead of 2lp for the USA-1 data

measured at z = 50 m and 90 m. This decision was based on plots of DTT,s versus r

for a series of typical situations. These plots showed a slope reasonably close to −2/3

for separations larger than 5 m.

A disadvantage of using EC data to determine the structure parameter is that fluc-

tuations smaller than the path length of the sonic or LiCor instruments (Table 4.1)

are not taken into account. To correct for these losses, the correction of Hartogensis

et al. (2002) for the deviation of the measured spectrum from the inertial subrange was

applied on Eq. 4.3.

Turbulent fluxes

As stated before, the turbulent fluxes were calculated over a 10-min averaging window.

This choice was a compromise between the request to be as close as possible to the

averaging window size used for calculating C2
s and the generally accepted lower limit

for flux calculation using the EC method (Lee et al., 2004).

Turbulent fluxes (right block of row 1 of Fig. 4.2) and the corresponding tolerances

were calculated with the EC-Pack flux-software package (version 2.5.23) developed by

Wageningen University (van Dijk et al., 2004). The following corrections were applied:

a) planar fit rotation (Wilczak et al., 2001); b) correction for density effects on the

latent heat flux (Webb et al., 1980); c) humidity correction (Schotanus et al., 1983; Liu

et al., 2001) for the sonic temperature; d) cross-wind correction (Schotanus et al., 1983;

Liu et al., 2001) for the sonic temperature measured with the USA-1, and e) corrections

for spectral loss due to path averaging and sensor separation (Moore, 1986).

MOST scaling is based on the turbulent fluxes measured near the surface. For the

measurements at the tower, we did not use local surface fluxes obtained at the tower

site (grass) but regional scale surface flux estimates. The reason for this is that the

footprint at z = 50 m and 90 m covered more land-use types than simply grass, and

the Bowen ratio differed between the different fields around the tower (see Sect 4.3.1).

The regional surface fluxes were derived (for z = 50 m and 90 m separately) from the

observed flux at the respective observation level corrected for the flux divergence. This

correction was obtained by assuming that the time rate of change of temperature and

of humidity along the tower was only determined by flux divergence, and that other

processes (e.g. horizontal advection) could be neglected.

Data Selection

In order to focus on well-defined atmospheric conditions, we finally applied a filter on

the dataset and selected only 10-min blocks for which:
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• the ASL was unstably stratified (−z/L > 0.001);

• there was no rain;

• there was no flow obstruction caused by the tower. Wind directions for a sector

of ±45◦ around the tower orientation were filtered out (tower orientation = boom

orientation +180◦);

• the relative tolerance of w′T ′, u∗ (in both the temperature and humidity analysis),

and w′q′ (in the humidity analysis only) was < 0.3, in order to exclude intervals

when the fluxes were not well-defined;

• zeff was located within the ASL. As a rough criterion for the latter condition, we

required the measurement levels to be below 10% of the actual boundary-layer

depth (Braam et al., 2012). We thus excluded the periods when the ABL depth

was lower than 500 m for the 50-m level and lower than 900 m for the 90-m

level. The ABL depth was estimated from the height of elevated maxima in the

sodar/windprofiler backscatter intensity, and in the aerosol backscatter gradients

in case of the ceilometer data.

4.3.3. Data Analysis

To investigate the variability of C2
s , we calculated C2

s using averaging over six window

sizes, ranging from 1 to 10 min. When the statistical properties of log(C̃2
swin) are then

evaluated over a given time period, e.g., 1 hr, this would correspond to a dataset of

between 60 points (for the window size of 1 min) and 6 points (for the window size

of 10 min). This would not be very robust statistically. We therefore used a different

approach and calculated the statistics over stability (−z/L) classes rather than over

given time periods. Statistics over a stability class can be considered as proxies of

ensemble statistics, representing comparable atmospheric conditions within one class.

The preparation of the stability classes and the scaled structure parameters is discussed

in Sect. 4.3.3, whereas the methodology of the analysis of the statistics of the structure

parameters is discussed in Sect. 4.3.3.

Preparation

The second step in the data processing was to calculate both the logarithm of the

scaled structure parameter and −z/L10 min, and to split the dataset into stability classes

(centre two blocks in Fig. 4.2). The logarithm of the scaled structure parameter (centre

block in Fig. 4.2) was calculated in two phases: first, we calculated C̃2
swin from C2

s for

each of the six window sizes and scaled it with the corresponding 10-min averaged

surface fluxes (see sect 4.3.2). Thus, structure parameters determined over windows

shorter than 10 min have been scaled with the corresponding 10-min averaged surface

flux. Second, we calculated the decadic logarithm of the scaled structure parameter

(log(C̃2
swin)). We used the logarithm with base ten to retain clear information on the

order of magnitude of the original data.

The stability (−z/L10 min) was calculated using the 10-min averaged surface flux
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data (see Sect. 4.3.2); then the dataset was split into classes, where we specified three

stability classes per decade. The total dataset encompassed 13 classes, where the first

class started with −z/L10 min = 10−8/3 and the last class ended at −z/L10 min = 104/3.

Figure 4.3 shows the number of available 10-min periods per stability class for the

three heights and for the two scalars considered. Note that the only difference in avail-

able time periods between the temperature and humidity analysis is that for humidity

the relative tolerance of the humidity flux has to be < 0.3 as well (see Sect. 4.3.2). In

order to have sufficient data per stability class, we only analyzed the classes with more

than 20 10-min periods (marked with colours in Fig. 4.3). Each class, consequently,

consists of more than 200 1-min periods and more than 20 10-min periods. With this

criterion five to six stability classes remained for each height. For each level at least

three stability classes contained more than 100 10-min periods.

Analysis

After determining log(C̃2
s ) and separating the data in the corresponding stability classes,

we performed the analysis of the data in three different ways (Fig. 4.2, lower row). First,

we analyzed log(C̃2
s 1 min) versus −z/L10 min for the three heights and for the two scalars

(Fig. 4.2, lower row, left block). The focus was on the class-mean scaled structure

parameter (meanz/L

(
log(C̃2

s 1 min)
)
), because this gave the possibility of investigating

whether the structure parameter calculated over the short 1-min window gives reason-

able values (that is, comparable to published stability dependences).
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Second, we analyzed the shape of the PDFs of C2
s and C2

q in the ASL (Fig. 4.2, lower

row, centre block), by answering the following two questions: does the shape (width,

skewness and kurtosis) of the PDF depend on the scalar (T or q), height (z is 2.5 m,

50 m or 90 m) and instability (−z/L10 min class), and does the bimodal shape of the PDF

observed by PS99, CS09 and CC11 also exist close to the ground? To this end, we exam-

ined the PDFs of log(C̃2
s 1 min) per stability class (PDFz/L

(
log(C̃2

s 1 min)
)
) for T and q

at the three heights. Note that, since we had already evaluated meanz/L

(
log(C̃2

s 1 min)
)
,

we could focus on the shape of the PDFs only and did not have to consider the central

location. In order to answer the second question, we split our data into two groups

using conditional sampling: upward motions (w1 min > 0.0) and downward motions

(w1 min < 0.0). Note that the conditional sampling is based on the 1 min mean vertical

wind speed, that is, relatively large-scale rising and sinking motions. Finally, we ana-

lyzed how the variability of log(C̃2
s ) depends on the measurement height, stability and

the averaging window size (Fig. 4.2, lower row, right block).

Note that within the first two steps we used only the 1-min (smallest) window size,

whereas for the last step we used all six window sizes. In this study we use the loga-

rithm of C̃2
s , therefore the statistical moments (mean, variance, kurtosis and skewness)

were determined by first calculating log(C̃2
s ) of each observation and by subsequently

estimating the statistical moment for each stability class. Consequently, the resulting

statistics should not be interpreted as statistical properties of the structure parameter

itself.

4.4. Results and Discussion

4.4.1. Stability-class mean log(C̃2
s )

We start with the analysis of the stability dependence of the logarithm of the scaled

structure parameters for temperature (Fig. 4.4) and humidity (Fig. 4.5) for the three

heights. The range of log(C̃2
s 1 min) values is broader than observed in other studies (cf.

Fig. 2 in de Bruin et al. 1993, Fig. 1 in Li et al. 2012, or Fig. 6 in Braam et al. 2012).

This is a logical consequence of the fact that we used a 1-min averaging window, as

opposed to typical 15-min to 30-min windows used in other studies.

As stated before, the class mean log(C̃2
s 1 min) was determined by first calculating

the logarithm of each observation and subsequently averaging over the stability class.

We followed this procedure for consistency reasons with our analysis below where we

consider the PDF and the variance of log(C̃2
s ). Moreover, this way of averaging is con-

sistent with plotting on a logarithmic y-axis. The procedure differs from e.g. Li et al.

(2012), who averaged C2
s instead of log(C2

s ). Applying our procedure gives a lower class

mean than if averaging is done before taking the logarithm. A small underestimation,

therefore, compared to the similarity relation proposed by Andreas (1988) had to be ex-

pected. Note that the difference between these two procedures increases with increasing

scatter, and hence are smaller if using a 10-min window.
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Discussing the results in Figs. 4.4 and 4.5, we first compare the observed class mean

log(C̃2
s 1 min) at z = 2.5 m with the similarity relation proposed by Andreas (1988). In

general, the observations follow the similarity relation. For temperature, the observed

class mean log(C̃2
T 1 min) in class A is larger than described by the similarity relation

proposed by Andreas (1988). This deviation in the near-neutral range was also observed

by Braam et al. (2012). For near-neutral conditions, the sensible heat fluxes are small

whereas temperature fluctuations may still be finite (but uncorrelated to the vertical

wind speed). This may cause an overestimation in log(C̃2
T 1 min) (Braam et al., 2012).
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Furthermore, the relative error in the sensible heat fluxes is large, which makes the value

of log(C̃2
T 1 min) more uncertain for near-neutral conditions than for unstable conditions.

For humidity, the observed meanz/L

(
log(C̃2

q 1 min
)
)

in class A is comparable to the

corresponding values from the similarity relation of Andreas (1988). The reason for

the difference in near-neutral behaviour for temperature and humidity can be related

to the size of the sensible heat flux and moisture flux under near-neutral conditions. If

the near-neutrality is caused by a small heat flux (rather than a large shear stress), the

sensible heat flux is by definition close to zero, whereas the latent heat flux can still be

substantial.

Second, we analyze the other two levels. In general, for both the temperature and

humidity the observed meanz/L

(
log(C̃2

s 1 min)
)

at z = 50 m and at z = 90 m also

follow the similarity relation of Andreas (1988) except for the most neutral classes.

Furthermore, it seems that the meanz/L

(
log(C̃2

s 1 min)
)

increases with height, resulting

in a small overestimation compared to the similarity relation proposed by Andreas

(1988) at larger heights. One cause for this overestimation could be that the fluxes used

to non-dimensionalize C2
s and z (via s∗ and L) were too small, due to the short averaging

interval of 10 min (low frequency loss). Bosveld (1999) estimated this low frequency loss

due to a finite averaging time as a function of wind speed and stability. After applying

his suggested correction to our dataset, we found that the meanz/L

(
log(C̃2

s 1 min)
)

is

more comparable with the similarity relation of Andreas (1988) (figure not shown). For

some data points with very low wind speeds, however, the correction causes unrealistic

values, which will have an effect on C̃2
s 1 min, and therefore the variability of log(C̃2

s 1 min).

Becaus the focus here is on the variability rather than on the mean value, we did not

correct our data for low frequency losses in the fluxes.

4.4.2. Shape of log(C̃2
s ) histograms per stability class

Analysis

Next we consider the shape and width of the PDFs of log(C̃2
s 1 min) for the different

stability classes. The results are shown in Fig. 4.6 for temperature and Fig. 4.7 for

humidity. First, the total PDFs (upward and downward motions together) for both

log(C̃2
T 1 min) and log(C̃2

q 1 min
) at different heights are discussed. At first sight, the

PDFs show a distribution that does not deviate much from a log-normal distribution.

In particular, we do not observe a bimodal distribution as did PS99 and CS09. The

PDFs for log(C̃2
s 1 min) of the most neutral and most unstable classes contain fewer data

points and are therefore less smooth. Because log(C̃2
s 1 min) decreases with instability

(see also Fig. 4.4 and Fig. 4.5), the PDFs shift from right to left if instability increases.

With increasing height, we observe that the width of the PDFs, which is a measure of

the variability of log(C̃2
T 1 min), increases slightly for temperature. For humidity however,

the PDFs observed at z = 50 m and at z = 90 m are much wider than at z = 2.5 m.

PDFs of log(C̃2
T 1 min) that deviate from the normal distribution can be a first in-
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which the letters and colours corresponds to the nomenclature introduced in Fig. 4.3. Left column: triticale z
= 2.5 m, centre column: tower z = 50 m, and right column: tower z = 90 m). Grey: the total dataset, red:
the upward motions (w1 min > 0.0), and orange: downward motions (w1 min < 0.0). The histograms range from
−1.5 up to 2.5 divided in 40 bins. The vertical lines at the top of the graphs show the mean value for the entire
dataset (grey), the upward motions (red), and the downward motions (orange). The number of data points that
are taken into account is given in the upper left part of each graph.

dication of the impact of differences between upward and downward motions (see

Sect. 4.2.3). Therefore, we here look at the variation of the higher-order moments
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Fig. 4.7. Histograms of log(C̃2
q 1 min

) for each observation level (columns) and each stability class (rows). Top

row: most neutral class, and bottom row: most unstable class, see right legend for the stability ranges, in which
the letters and colours corresponds to the nomenclature introduced in Fig. 4.3. Left column: triticale z = 2.5 m,
centre column: tower z = 50 m, and right column: tower z = 90 m). Grey: the total dataset, red: the upward
motions (w1 min > 0.0), and orange: downward motions (w1 min < 0.0). The histograms range from −1.5 up to
2.5 divided in 40 bins. The vertical lines at the top of the graphs show the mean value for the entire dataset
(grey), the upward motions (red), and the downward motions (orange). The number of data points that are
taken into account is given in the upper left part of each graph.

of log(C̃2
s 1 min) with height and instability. In most cases the skewness is slightly nega-

tive, and the traditional kurtosis is close to 3 (normal distribution). Both higher-order
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moments do not show a regular behaviour with changing height or instability. This

confirms the results of PS99, who stated that they did not find a "definite regularity in

the time and height behaviour" of the higher-order moments.

Despite the fact that we do not find a bimodal distribution, it is still of interest

to investigate the impact of differences between upward and downward motions on

the PDF for log(C̃2
s 1 min) for the different scalars, stability classes and heights. The

conditional PDFs of the upward (red) and downward motions (orange) for log(C̃2
s 1 min)

are shown in Fig. 4.6 and Fig. 4.7. We focus on differences in the mean for the

upward and downward motions (vertical lines at the top of the panels). We observe

that the difference in the mean of log(C̃2
s 1 min) between upward and downward motions

is enhanced with increasing instability. At z = 2.5 m in class A up to D (less unstable

conditions) the means of log(C̃2
s 1 min) for the upward and downward motions nearly

overlap. However, under more unstable conditions, the mean value of log(C̃2
s 1 min) for

upward motions is located at higher values compared to that for the downward motion.

At z = 50 m and at z = 90 m, this feature becomes more pronounced.

For the two stability classes E and F (0.215 < −z/L10 min < 1) for which data

from all three heights can be considered, we examine how the PDF for log(C̃2
s 1 min)

between upward and downward motions depend on height. We do not find a clear

tendency in the differences between upward and downward motions with increasing

height. For temperature, the separation between the mean of log(C̃2
T 1 min)up and

log(C̃2
T 1 min)down

does not differ substantially between the levels. For humidity, we ob-

serve that at z = 50 m and at z = 90 m the distance between meanz/L

(
log(C̃2

q 1 min
)up

)

and meanz/L

(
log(C̃2

q 1 min
)down

)
is larger than at z = 2.5 m.

All together, we only found an instability dependence (in terms of −z/L10 min) for the

differences in C2
s between upward and downward motions and not a height dependence

as described in CS09. As a consequence, the increase in total variability with increasing

height cannot be explained by the different behaviour between upward and downward

motions. The reason why we found an instability dependence only can be explained

by combining the two concepts introduced in Sect. 4.2.3. There we showed that δz

increases with instability and as a consequence log(C2
s )+δz − log(C2

s )−δz also increases.

Furthermore, we showed that log(C2
s )+δz − log(C2

s )−δz is smaller at lower levels for a

fixed L. But in our analysis we did not compare the differences between upward and

downward motions for a fixed L, but for a fixed stability class −z/L (that is: one row

in Figs 4.6 or 4.7). If determining log(C2
s )+δz − log(C2

s )−δz at different heights in the

same way as in Sect. 4.2.3, but using a fixed −z/L instead of a fixed L, log(C2
s )+δz −

log(C2
s )−δz would be identical for each height (consistent with what was observed in

Figs 4.6 and 4.7). In other words, our results do not contradict the results of CS09.

CS09 analyzed just one LES case (L = −15.3 m) and their observed height dependence

is a result of increasing −z/L with height.

In analyzing the conditional PDFs, we have up to this point only focussed on the mean
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values, which changed with stability, but not with height. If we, however, investigate

the widths of the conditional PDFs we do observe a height dependence within a given

stability class (class E and F). With increasing height the width of the conditional PDFs

increase slightly for log(C̃2
T 1 min) and considerably for log(C̃2

q 1 min
). This has the effect

that the width of the total PDFs increase as well, as we observed above. Thus, apart

from a stability effect on the variance of log(C̃2
s 1 min), there also appears to be a height

effect. The reason for the increase of the width of the conditional PDFs with height is

still unclear.

Discussion

We would like to note that these general results do not depend on the specific choice of

the threshold that separates upward and downward motions. Instead of using the fixed

threshold of w1 min = 0.00, we also tried to separate downward and upward motions

by introducing a ‘buffer’ range (w1 min < wdown and w1 min > wup m s−1), with several

thresholds for wdown and wup. Using such a ‘buffer’ range changed the location of

meanz/L

(
log(C̃2

s 1 min)
)
up

and meanz/L

(
log(C̃2

s 1 min)
)
down

, however, it did not change

our basic findings related to the height and stability dependence. Still, the distances

between meanz/L

(
log(C̃2

s 1 min)
)
up

and meanz/L

(
log(C̃2

s 1 min)
)
down

stayed similar with

increasing height and increased with increasing instability (figures not shown).

4.4.3. Variability of log(C̃2
s ) as a function of window size and stability

Analysis

In this section, we quantify the variance of log(C̃2
s ) and discuss its dependence on the

window size as was also done by CS09. The top panels of Fig. 4.8 and Fig. 4.9 show

how varz/L

(
log(C̃2

swin)
)

varies with the window size for temperature and humidity

(compare with Fig. 8 from CS09). In these figures the window size is normalized by

a time scale of 1 sec to make the argument of the logarithm dimensionless. For each

scalar, height and stability class varz/L

(
log(C̃2

swin)
)

decreases with increasing window

size as was also found by CS09. The slope of this decrease depends on stability, and it

is smaller at z = 2.5 m than at z = 50 m and at z = 90 m, especially for humidity.

We want to quantify how the decrease depends on the observed scalar, measurement

height and stability. Therefore, a simple linear regression was applied to the points in

the top panels of Figs 4.8 and 4.9, viz.

varz/L

(
log(C̃2

swin)
)
= −as log(win) + bs (4.4)

in which −as is the slope and bs is the offset, where the subscript s indicates the scalar

being investigated. The bottom panels of Fig. 4.8 and Fig. 4.9 show as and bs as

a function of stability. As the upper panels of the figures are a part of the larger

picture describing the dependence of varz/L

(
log(C̃2

swin)
)

on window size (sketched in
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Fig. 4.8. Top panel : The variances of log(C̃2
T ) versus the logarithm of the window size normalized by 1 sec

for different stability classes indicated by the different colours for the three heights (left: triticale z = 2.5 m,
centre: tower z = 50 m and right: tower z = 90 m). Bottom panels: aT , the negative slope (left) and bT , the
offset (right) of a simple linear regression (y = −aT x + bT ) through the data of the top panel versus stability
for the three heights. The points have been assigned to the centre of each stability class.

Fig 4.1), it is relevant to assess which regime or regimes our window sizes cover. For

the determination of the regimes we convert our window size to the spatial window

of CS09. In the conversion we assume frozen turbulence and an observed mean wind

speed of 2.5 m s−1 for the triticale dataset at z = 2.5 m, and of 5 m s−1 for the tower

dataset at z = 50 m and z = 90 m. Hence, the temporal window sizes used here (1 min

< wint < 10 min) translate into spatial window sizes (winx) of 150 m up to 1500 m for

triticale and of 300 m up to 3000 m for the tower. From Fig. 8 in CS09 we estimate

the boundary between regimes I and II to be located at approximately 180 m and that

between regimes II and III at 500 m (with winx = 2r′, where r′ is the radius of the

averaging disk in CS09). This places our window sizes in regimes II and III.

For the temperature observations (bottom panels of Fig. 4.8), aT ranges from 0.04 (z

= 2.5 m: class A) up to 0.15 (z = 50 m: class H). The slope increases with instability,

except for the most unstable case both at z = 50 m and at z = 90 m. The reason for the

fact that the most unstable class shows a smaller decrease of varz/L

(
log(C̃2

swin)
)

with

window size than the neighbouring class at z = 50 m and at z = 90 m is still unclear.

However, the deviation could be due to the relatively small number of data points in
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Fig. 4.9. Top panel : The variances of log(C̃2
q ) versus the logarithm of the window size normalized by 1 sec

for different stability classes indicated by the different colours for the three heights (left: triticale z = 2.5 m,
centre: tower z = 50 m and right: tower z = 90 m). Bottom panels: aq, the negative slope (left) and bq , the
offset (right) of a simple linear regression (y = −aqx+ bq) through the data of the top panel versus stability for
the three heights. The points have been assigned to the centre of each stability class.

this class compared to other stability classes at these heights. The largest values of

aT are observed at z = 50 m, but the three heights show similar results for the two

overlapping classes. The offset, bT , also increases with instability except for the most

unstable case both at z = 50 m and at z = 90 m. The offset ranges from 0.12 (z =

2.5 m: class B) up to 0.48 (z = 90 m: class H). For the offset the two overlapping

classes shows a clear distinction between the data at z = 2.5 m and the data at z =

50 m and 90 m.

Comparing the temperature and humidity data (Fig. 4.8 with Fig. 4.9), we find

that at z = 2.5 m the offset and the slope are comparable. At z = 50 m and at z =

90 m, however, the offset and the slope are larger for humidity than for temperature.

Comparison of the humidity data between the three levels shows that for the overlapping

classes D-F the slope and the offset at z = 50 m and at z = 90 m are different from

those at 2.5 m. It is still unclear, why aq and bq at z = 50 m and at z = 90 m are

larger than at z = 2.5 m, and larger than aT and bT at the corresponding heights.

One could suspect that surface heterogeneity in the footprint area of the z = 50-m and

90-m measurements might have caused the larger variability. But we have not been
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able to find a relation between the variance and either wind direction or Bowen ratio

(both variables can be seen as indicators for source areas with different characteristics).

Furthermore, the 1-min time series of C2
q and C2

T show similar variations at each level

at the tower.

The increase in as and bs with increasing instability could be explained as follows.

Differences in log(C̃2
s ) between upward and downward motions increase with increasing

instability (Sect. 4.4.2). As a consequence, if the window is sufficiently small such that it

represents either a part of the upward or downward motions (regime I), varz/L

(
log(C̃2

s )
)

would increase (see also right upper panel of Fig. 4.1). Moreover, as and bs are an

estimate of the variability of log(C̃2
s ) in regime I despite our window sizes being located

in regime II and III. This is because regime II connects the variability of regime I with

regrime III (where the variability reaches the asymptotic value of zero), and an increase

in varz/L

(
log(C̃2

s )
)

at small window sizes will lead to an increase of the offset and slope

in regime II and III.

We would like to compare our results on the window-size dependence of log(C̃2
T 1 min)

to those of CS09. However, their type of data and analysis differ from ours, hence the

comparison can only be a rough indication. CS09 calculated the variance of ln(C2
T ) over

a horizontal slab in their LES domain. First, they calculated at each grid point a disk

average of ln(C2
T ) using disks with different radii (r′). Subsequently, they calculated

the variance over all these disk-averaged ln(C2
T ) within a horizontal slab. In order to

compare the results of CS09 to ours, we need to convert the radius of their spatial disk to

a time window assuming frozen turbulence and also to convert ln(C2
T ) into log(C̃2

T 1 min).

The wind speed needed for the conversions is calculated with the similarity functions

for the mean gradient of Businger et al. (1971) and z0 = 0.05 m. In regimes II and III at

z = 80 m, CS09 found that the variance of ln(C2
T ) is between 0.4 for ln(r′) = 5 and zero

for ln(r′) = 7. This corresponds to varz/L

(
log(C̃2

T )
)

0.08 for a window size of 1 min and

zero for a window size of 7.3 min (using −z/L = 5.2 and U80 m = 5.1 m s−1). A simple

linear regression gives aT is 0.04 and bT is 0.26. Compared to our results CS09 found a

lower slope and therefore a lower variance of ln(C2
T ). The reason is probably that CS09

determined the variances over a disk (two-dimensional averaging) and plotted it against

the radius of the disk (one dimension), whereas we determine the variance over a time

series (one-dimensional averaging) and plot it against the length of the time series (one

dimension). The two-dimensional averaging will automatically lead to a lower variance

for a given window (or disk) size.

Discussion

One limitation of the LITFASS data is that observation were not made under very

favourable weather conditions. The intermittent cloudy situations ensured that the

incoming radiation did not follow a smooth diurnal cycle. The net radiation at the

surface forces the turbulence in the ASL, and therefore it is possible that extra variability

of C2
s is produced by the variable forcing on cloudy days. In order to investigate if
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our results are reasonable despite the cloudy days, we look at data obtained on seven

clear-sky days during the BLLAST campaign 2011 (Lannemezan, France, see Lothon

and Lenschow (2010)). We use data observed at z = 2.5 m above grass at the “edge

site” (DOY: 170, 171, 176, 178, 182, 183 and 186, van de Boer et al., 2012). The data

were processed in the same way as the LITFASS data. The BLLAST data show a similar

slope as the LITFASS data at z = 2.5 m: 0.022 < aT < 0.055, and 0.021 < aq < 0.054

for class D - G. The offset is lower: 0.09 < bT < 0.17 and 0.07 < bq < 0.16 for

class D - G. If the intermittently cloudy days during BLLAST are included as well

(DOY: 166 - 186), the results do not change essentially. For class D - G, the slopes are

0.022 < aT < 0.051 and 0.023 < aq < 0.049, and the offsets are 0.10 < bT < 0.16 and

0.08 < aT < 0.14. This leads us to conclude that the intermittent cloudy days during

LITFASS probably did not introduce extra variability in C2
s .

Having quantified varz/L

(
log(C̃2

s )
)

within the ASL, we now give an example of how

this estimate can be used to assess the contribution of surface heterogeneity to the

total variability of C2
s along a flight or scintillometer path. If one measures log(C̃2

T )

with an aircraft over a heterogeneous surface, the choice of the spatial window size is a

compromise between a small window such that individual patches can be distinguished,

and a large window such that the sampling uncertainty is reduced. The pragmatic

solution is to choose the spatial window to have the same size as the typical patch size.

Let us assume a heterogeneous surface with a patch size of around 300 m. Furthermore,

the atmospheric conditions are unstable with −z/L = 0.8 (class G) and the wind speed

is 5 m s−1. When C2
s is determined from aircraft data, a spatial window instead of a

temporal window is used (assuming that the ground speed is sufficiently large). The

spatial window size is 300 m, which corresponds to a temporal window size of 60 s,

assuming Taylor’s frozen-turbulence hypothesis. With the given −z/L, aT ≈ 0.1, and

bT ≈ 0.35 (Fig. 4.8), which makes varz/L

(
log(C̃2

T 1 min)
)
≈ −0.1 log(60) + 0.35 ≈ 0.2.

This estimate indicates the level of local turbulent variability of log(C̃2
T ) to be expected

under given atmospheric conditions. Differences in log(C̃2
T ) between patches of different

land use along a flight path must thus exceed a value of
√
0.2 in order to be attributed

to surface heterogeneity.

Despite the fact that the slope and offset are an indication of the variance in regime I,

it is not advisable to use the linear regression results for window sizes outside the range

considered in this study (1 min < wint < 10 min), where one would enter regime I or

the tail of regime III. In these ranges the approximate linearity of the decrease of the

variance with an increase of window size can no longer be assumed (Fig. 4.1).

4.5. Summary and Conclusions

In this study we quantified the local variability of the logarithm of the Monin-Obukhov

scaled structure parameter of temperature (log(C̃2
T )) and humidity (log(C̃2

q )) where the

structure parameters were determined over a range of averaging windows. To achieve
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this, we examined log(C̃2
s ) determined from EC data measured at different heights (one

surface system above triticale at 2.5 m, and two tower systems at z = 50 m and at z =

90 m) obtained within one month during the LITFASS-2009 experiment.

Before investigating the local variability, the mean values of the scaled structure

parameters determined over a 1-min window were examined. At z = 2.5 m class mean

log(C̃2
T 1 min) and log(C̃2

q 1 min
) both follow the similarity relation proposed by Andreas

(1988). At z = 50 m and at z = 90 m, in contrast, meanz/L

(
log(C̃2

T 1 min)
)

is slightly

larger than the similarity relation suggests. This overestimation could be an effect of

an underestimation of the surface fluxes, which might be explained by missing flux

contributions due to the short averaging interval of fluxes used for the scaling (10 min).

From the probability density functions (PDFs) of log(C̃2
s 1 min) per stability class (in

terms of −z/L10 min), we found increasing differences in log(C̃2
s 1 min) between upward

(large values of C2
s ) and downward motions (small values of C2

s ) with increasing instabil-

ity (−z/L). However, these differences are not sufficiently large to produce a bimodal

overall PDF. Moreover, within a given stability class, the differences in log(C̃2
s 1 min)

between upward and downward motions do not depend on height.

The variance of log(C̃2
s ) decreases with an increase in the averaging window size (win)

over which C2
s was determined. The magnitude of this decrease seems to be dependent

on instability. We made a rough quantification of the decrease by fitting a simple linear

regression between varz/L

(
log(C̃2

swin)
)

and log(win). Generally it appeared that both

the offset and (the absolute value of) the slope increased with instability: the variance

becomes increasingly sensitive to the averaging window size as instability increases. The

explanation is that, at larger instability, the differences between upward and downward

motions cause larger variances if the window size is sufficiently small. For temperature,

the offset and slope are similar at the three heights. For humidity, however, at 2.5 m

the offset and the slope are the same as for temperature, whereas at z = 50 m and at

z = 90 m the offset and the slope for humidity are larger than for temperature.

The offset and the slope of the linear regression of varz/L

(
log(C̃2

swin)
)

versus log(win),

can be used to quantify the local variability of C2
s for averaging times down to about

1 min for a given stability. In the context of the spatial sampling over a heterogeneous

surface, this estimate of the local variability can be used to assess whether differences

in C2
s along a scintillometer or flight path might be attributed to surface heterogeneity.

This observational study provides for the first time information on the variability of

structure parameters of temperature and humidity in the ASL at different heights under

different stability conditions. However, a number of problems remain. The differences

in the variances between C2
s and C2

q are still unexplained; furthermore, the apparent

discontinuity between the data at z = 2.5 m and those at z = 50 m and at z = 90 m

calls for an investigation using data with a more gradual spacing in the vertical.
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5 On the discrepancy in simultaneous observations of

C2
T by scintillometers, sonics and unmanned aircraft during

LITFASS-2009 and LITFASS-2010

5.1. Introduction

During the past twenty years, large aperture scintillometers (LAS) have proven to be

reliable instruments for providing area-averaged surface fluxes over natural landscapes

(among others Green et al., 2001; Meijninger et al., 2002b, 2006). These measurements

are important for validation of numerical models and satellite-based retrieval algorithms

(see for an extensive literature review Beyrich et al., 2012, hereafter denoted as B12).

A scintillometer does not measure the area-averaged surface fluxes directly, and ob-

taining fluxes from scintillation measurements involves several steps (Moene et al.,

2004). From the scintillation measurements the path-averaged structure parameter

of the refractive index of air (C2
n) is determined. Large aperature scintillometers are

operating at optical wavelengths for which C2
n is basically determined by temperature

fluctuations. Hence C2
n is subsequently used to derive the path averaged structure pa-

rameter of temperature (C2
T , e.g. Hill et al., 1992; Ward et al., 2013). Finally, the

area-averaged sensible heat flux can be derived from C2
T by applying Monin-Obukhov

similarity theory (MOST, Monin and Obukhov, 1954; Wyngaard, 1973; among others).

Until now, the validation of LAS measurements over heterogeneous surfaces has been

performed by comparing the scintillometer-based fluxes with fluxes from aggregated

eddy-covariance (EC, Meijninger et al., 2002a,b, 2006) or from airborne measurements

(Beyrich et al., 2006; Moene et al., 2006). However a direct validation of the path-

averaged structure parameters against independent measurements is still missing. Such

a direct validation is needed, because the relation between structure parameters and

fluxes is non-linear. This non-linear relation results in a consistent overestimation of the

flux obtained from a LAS compared to an aggregated flux of a number of EC systems

when measuring above heterogeneous terrain (Meijninger, 2003; Meijninger et al., 2006).

Beyrich et al. (2005) were among the first to validate C2
T from the scintillometer with

This chapter is in preparation for submission to Boundary Layer Meteorology
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independent measurements; however, they compared path-averaged LAS-based C2
T with

EC measurements which are point measurements. Maronga et al. (2013) validate C2
T

of the LAS with data obtained from a large eddy simulation (LES) and aircraft data

obtained during the RECAB campaign near Cabauw in the Netherlands. This study

extends beyond Beyrich et al. (2005) and considers a path averaged C2
T , but it is limited

to two case studies over a relatively homogeneous terrain. Furthermore, the lowest flight

level of the aircraft was located at about twice the height of scintillometer path.

It was the aim of the LITFASS-2009 and LITFASS-2010 experiments to validate C2
T

from the LAS with independent measurements over a moderately heterogeneous surface

(B12, van den Kroonenberg et al., 2012, hereafter denoted as vdK12). Therefore,

C2
T was derived from data of the unmanned meteorological mini aerial vehicle (M2

AV, Spiess et al., 2007) that flew along the path of a LAS over a distance of several

kilometres.

B12 show a first comparison for one flight day (13 July 2009). The 30-min and path-

averaged C2
T derived from the LAS was compared with the mean of the flight-track

C2
T from the M2AV within the 30-min interval. B12 observed that the decrease with

time of C2
T in the afternoon is consistent between M2AV and LAS (Fig. 5 in B12),

but the values of C2
T from the M2AV are systematically larger than those from the

LAS (Fig. 6 in B12). For this preliminary validation, the data of both systems were

processed using a standard procedure, which is not optimal for such a comparison. The

question arises whether the processing could explain (part of) the observed differences.

For instance, the temporal averaging differs: thirty minutes for the LAS compared to

about two minutes for the M2AV. Moreover, despite the fact that the M2AV flew along

the scintillometer path, the spatial averaging differs: the path-averaged C2
T from the

LAS has a bell-shaped weighting function (Wang et al., 1978), whereas the flight-track

C2
T from the M2AV was obtained from the leg as a whole.

During LITFASS-2009 the meteorological conditions were unfavourable to perform

measurements over a complete undisturbed diurnal cycle with the M2AV. Therefore

a second small flight campaign was performed on 11 and 12 July 2010 (vdK12). So

far, the M2AV data of LITFASS-2010 have only been compared with EC data. Both

systems show good agreement in the morning and in the afternoon, but C2
T from the

M2AV is larger than that from EC around noon (Fig. 4 in vdK12), which might be

caused by a difference in the footprint of both observations.

The present study tries to improve on the studies of B12 and vdK12 by answering

the following research questions:

1. Are the differences between LAS and M2AV (initially found for 13 July 2009) also

found for the other days during LITFASS-2009 and LITFASS-2010?

2. Can the differences be reduced or explained by a more elaborate processing of

either or both the LAS and the M2AV data?

Such a more elaborate processing includes:

a. the normalization of measured C2
T values to a reference height for both systems
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Fig. 5.1. Overview of the instrumental set-up of LITFASS-2009 and LITFASS-2010 experiments as used in
this paper. In the lower part of the figure the path weighting function W (x) of the LAS is shown.

taking into account stability,

b. the consideration of possible saturation effects on the LAS data (also called satu-

ration correction),

c. proper treatment of the effect of humidity fluctuations on C2
n in deriving C2

T with

the LAS (also called humidity correction),

d. the reduction of the LAS averaging time to the flight leg duration,

e. the use of alternative mathematical methods to determine the structure parameters

from M2AV data,

f. the proper weighing of the M2AV data by taking into account the scintillometers

path-weighting function.

A side-effect of applying such an elaborate data processing is that for each step of the

data processing different options can be compared. This brings us to the last research

question,

3. What is the influence on C2
T of applying the various options in the data processing

for the two measurement systems?

5.2. Data and Methods

The LITFASS-2009 and LITFASS-2010 experiments (where LITFASS stands for LInden-

berg-To-Falkenberg Aircraft Scintillometer Study) were performed in the area around

the Meteorological Observatory Lindenberg – Richard-Aßmann-Observatory (MO Lin-

denberg) of the German Meteorological Service (Deutscher Wetterdiens, DWD). The

surface in the so-called LITFASS-area (Beyrich et al., 2002) is moderately heteroge-

neous with a mixture of farmland, forest, small lakes and small villages (see Fig. 1

in B12 for a map of the different land-use types during LITFASS-2009). The vegeta-
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Table 5.1. The scintillometers operating during the two experiments, where zeff is the effective height of the
scintillometer above the surface (Beyrich et al., 2012)

system location receiver zeff datalogger freq

LITFASS-2009
WURLAS98005-MWUB Lindenberg 43 m CR9000 500 Hz
WURLAS98005 G2 10 min
WURLAS98006 Falkenberg 63 m CR9000 500 Hz

LITFASS-2010
WURLAS98005 Lindenberg 43 m G2 10 min
BLS900 Falkenberg 63 m 10 min

tion of the farmland mainly consists of maize, sunflowers, colza, barley and triticale.

The typical dimensions of the crop fields vary between 300 m and 1000 m. Fig. 5.1

shows a schematic overview of the instrumental setup during the two experiments along

the LAS-path. The weather conditions during the two experiments differed. During

LITFASS-2009 (29 June - 24 July 2009) cloudless conditions never lasted longer than

a few hours. Rain occurred on more than 50 % of the days. The wind speed at 10 m

frequently exceeded 6 m s−1 preventing safe operation of the M2AV (B12). During

LITFASS-2010 (11 and 12 July 2010) the sky was mostly cloud-free, and during day

time the wind speed at 10 m was between 2 and 5 m s−1 (vdK12).

In the sections below we present the methodology of how C2
T is calculated from data

of the three measurement systems.

5.2.1. C2
T from LAS

During the two experiments two scintillometers were operated at an effective height

(zeff) of 43 m and 63 m over a path of ≈ 4800 m between the 99 m tower at GM-

Falkenberg (see Fig. 5.1, where GM stands for“ Grenzschichtmessfeld”, German trans-

lation for boundary-layer field site) and a 26 m tower at MO-Lindenberg. Note that

the lower path is almost parallel to the slanted surface, while the height above ground

decreases from Falkenberg to Lindenberg for the upper path. The scintillometer signal

was sampled in several ways (see Table 5.1).

During LITFASS-2009, the data of two LAS systems (WURLAS98005, zeff = 43 m,

and WURLAS98006, zeff = 63 m, Meijninger et al., 2000, built at Wageningen Uni-

versity, the Netherlands) were sampled and stored with a frequency of 500 Hz on a

Campbell CR9000 datalogger. The WURLAS98005 is in long-term operation at DWD.

Its internal data logger routinely stores data as well (G2 datalogger with a storage in-

terval of 10 min). Furthermore, it was combined with a microwave scintillometer built

by the University of Bern (MWUB, logged on the CR9000). For a more detailed setup

of the scintillometers we refer to B12, and for a comparison of data obtained from the

two dataloggers to chapter A.

92



5.2. Data and Methods

During LITFASS-2010, the WURLAS98005 was routinely operated with the G2

datalogger. Moreover, at zeff = 63 m a BLS900 (Scintec AG, 2006, Scintec, Ger-

many) was operated and stored data with a sampling interval of 10 min (replacing

the WURLAS98006 used in 2009).

Data from the systems were processed with an averaging time of 10 min. In addition,

for LITFASS-2009 the WURLAS98005 and WURLAS98006 data were processed over

the exact time window of the flight legs as well (see item d of the elaborate processing

list in Sect. 5.1). This was not posible for LITFASS-2010, because for that second

experiment no raw data of the LAS were available.

From the scintillometer signal to C2
n

The first step when analysing LAS data is to obtain the path averaged C2
n from the

variance of the logarithmic signal amplitude (σ2
ln(I)). Because for the G2-logger (Mei-

jninger et al., 2000) and the BLS900 (Scintec AG, 2006) this step was already applied

internally, it had to be applied for the raw data logged on the CR9000 only. For the

500 Hz data, the following relation was used:

C2
n =

σ2
ln(I)

4b(D,L)
(5.1)

in which the constant b was obtained from the scintillometer equation (compare Eq. 1

in B12), depending on the aperture size D and the path lenth L. For both WURLAS

instruments b ≈ 20.60 × 1012. The CR9000 datalogger at Falkenberg used to log the

signal of WURLAS98006 did not have a stable calibration. Therefore a correction for

each day was applied (see chapter A).

Saturation correction

One issue related to scintillometry is the limitation of the theory to a weak scattering

regime. In case of stronger scattering C2
n is no longer linearly proportional to σ2

ln(I):

the signal gets saturated. While it is better to prevent saturation (by reducing the

path length or increasing the observation level), one can also correct the C2
n signal.

From an extensive comparison of different saturation correction methods, Kleissl et al.

(2010) recommended the Clifford correction method (Clifford et al., 1974). For both the

WURLAS and BLS, the saturation correction factor m = C2
ncor/C

2
nuncor was calculated

for seven values1 of C2
nuncor. Afterwards a linear interpolation method was used to

obtain C2
ncor for each time interval. In order to be consistent between the WURLAS

and the BLS, we decided to apply this saturation correction also to the BLS900 data,

instead of using the correction that is implemented in the Scintec software (Scintec AG,

2006).

1C2
nuncor

= (0.1, 0.5, 1.0, 2.5, 5.0, 7.5, 10, 25, and 50) ×10−15 m−2/3
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From C2
n to C2

T - correction for humidity contribution

The structure parameter of the refractive index of air is related to C2
T , C2

q and CTq via

(Hill, 1989; Lüdi et al., 2005; Ward et al., 2013):

C2
n =

A2
T

T
2 C

2
T +

ATAq

Tq
CTq +

A2
q

q2
C2
q (5.2)

in which AT and Aq are the partial derivatives of the refractive index of air with respect

to temperature (T ) and humidity (q), respectively, and the overbar indicates averaging.

For the WURLAS98005-MWUB system, which measured C2
n at two wavelengths, C2

T

was explicitly solved. In literature, two methods can be found to obtain C2
T from a

two-wavelength scintillometer system, by using either

1. the covariance between the signal of the two instruments (covln(ILAS),ln(IMWS), see

Lüdi et al., 2005; Ward et al., 2013), or

2. the correlation coefficient between T and q (RTq, see Hill, 1989).

For the systems that measured C2
n at an optical wavelength only, the humidity con-

tribution to C2
n (the second and third term in Eq. 5.2) had to be estimated from other

meteorological measurements. This reduces Eq. 5.2 to:

C2
n =

A2
T

T
2 C

2
T cqcon (5.3)

in which cqcon is a correction for humidity contribution that can be estimated in three

different ways (see Moene, 2003, hereafter denoted as M03), from Aq, AT , q, T and:

3. RTq and the standard deviation of temperature and humidity (σT and σq) using

Eq. 8 of M03,

4. RTq and the Bowen ratio (β, the ratio of the sensible to the latent heat flux) using

Eq. 11 of M03, or

5. β using Eq. 12 of M03, which is comparable with the Eq. 10 of Wesely (1976b).

M03 has shown that the relative error for the last three methods is smaller than 1% if

|β| > 1. For |β| < 1, the deviation of the three methods is larger, using method 3 gives

errors of less than 3%, whereas method 5 gives errors of 5-40 % (his Fig. 8). Because his

analysis was based on EC-data, he did not include the methods of the two-wavelength

scintillometers in his analysis (method 1 and 2).

5.2.2. C2
T from the M2AV

The M2AV is an unmanned aircraft built by the Institute of Aerospace Systems of the

Technische Universität Braunschweig (TU-BS, Spiess et al., 2007; Martin et al., 2011,

vdK12). The wind direction and wind speed are obtained using a 5-hole probe, an

inertial navigation unit and a GPS receiver. Temperature is measured with a Vaisala

HMP 50 (response frequency of 1 Hz) and a custom-made thermocouple (10 Hz). The

final temperature data is a combination of those two instruments using complementary

filtering with a cut-off frequency of 0.02 Hz (vdK12).
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During the two experiments different flight patterns were flown (B12, vdK12). In this

study, we only analyse the ‘line profile’ and ‘scintillometer profile’ data (both called leg

in vdK12) where the aircraft flew at different levels below 110 m along the scintillometer

path either parallel to the surface or parallel to the LAS beam. These patterns were

flown on 7 days: 5 days in 2009 (7, 12, 13, 17 and 21 July), and 2 days in 2010 (11, 12

July). Both patterns covered only the southern part of the scintillometer path (3.3 km

≈ 70%), because it was not allowed to fly above the village of Lindenberg. The mean

ground speed was about 24 m s−1. Consequently a leg took between two and three

minutes. In Fig. 5.1 a schematic example of the line profile is given.

Related to the data of the M2AV two remarks have to be made. First, after the

experiments it appeared that the temperature of the Vaisala HMP 50 (slow thermome-

ter) showed a dependency on solar exposure (personal communication: Sabrina Martin,

TU-BS, 2010). Second, on some flights during the LITFASS-2009 experiment the height

above the surface was not well measured. For these flights the average height was esti-

mated as the level pre-set when programming the flight mission. This is a reasonable

estimate as proven for those flights where the altimeter worked properly.

Different methods to calculate C2
TM2AV

The first method to calculate C2
T from the aircraft data employs the traditional way

using the structure function (DTT = [Ti − Ti−∆i]
2, in which i is the temperature mea-

surement at a certain location or time and ∆i is the separation). Here we follow the

methods described in vdK12. The 100 Hz temperature data observed with the M2AV

is considered as a time series, from which the temporal structure function is calculated

over a range of separations. Then the conversion of the temporal to the spatial structure

function is done by applying Taylor hypothesis using the mean ground speed. In the

end C2
T is calculated as the mean of DTT times the separation to the power −2/3 over

a range of spatial separations within the inertial subrange (IS, C2
T = DTT∆i−2/3

IS
).

In the present dataset, the inertial subrange exists for separations between 2.5 and 25

m (vdK12). First, we calculated DTT and C2
T over the leg as a whole as was done in

B12 and vdK12. Second, following vdK12 we calculated DTT over a moving window to

obtain the spatial series for applying the LAS path-weighting function. The length of

the window was about 300 m.

The second method to calculate C2
T is via the Fourier spectrum using the routines

as described in Hartogensis et al. (2002). Within this routine, the inertial subrange is

automatically determined. Here again the 100 Hz data was analysed as a time series

and the mean ground speed was used in the conversion from temporal to spatial data.

The third method to calculate C2
T is using wavelet spectrum as described in Maronga

et al. (2013). Using the geo-location of the 100 Hz data, we converted the time series

of temperature along the leg to an equidistant space series (linear interpolation was

used). The spatial resolution was equal to the mean spatial resolution of the original

time series (approximately 0.25 meter). Next, the wavelet spectrum was calculated for
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each point in the spatial series. The wavelet function was the Morlet wavelet with a

nondimensional frequency of 6. C2
T was derived from Eq. 14 in Maronga et al. (2013)

and it was subsequently spatially averaged over a running window of 300 m around each

measurement point and stored for every 2 meter along the flight leg. Spectral averaging

was applied over a range of scales from 2.5 to 25 m.

Applying the path-weighting function

In B12 C2
TM2AV is obtained over the leg as a whole. In order to obtain spatial averaging

similar to that of the scintillometers, we also applied the LAS path weighting function

(W (x), Wang et al., 1978) to the spatial series obtained with the M2AV. This procedure

consists of four steps:

1. W (x) is determined for different x along the scintillometer path;

2. the grid of the spatial series of C2
T is projected on the scintillometer path (x in

meters, note that because the M2AV did not fly exactly parallel to the scintillometer

path ∆x varies). This gives us C2
T (x);

3. for each location x, the path weighting function W (x) is obtained using interpola-

tion;

4. the mean C2
T along the path including the path weighting function of the LAS

(C2
TW (x)LAS) is calculated:

C2
TW (x)LAS =

∑
C2
T (x)W (x)∆x (5.4)

5.2.3. C2
T from sonic measurements at the tower

In order to have an independent validation, C2
T was also determined from two sonic

anemometer/ thermometers (USA-1, METEK GmbH, Germany) located at 50 m and

at 90 m on the 99 m tower of GM-Falkenberg. We calculated C2
T from the temporal

structure function of temperature over the same time window as the LAS (10 min),

following the procedure described in (Braam et al., 2014). Because the C2
T from the

USA-1 is only an extra validation, we do not repeat details of the method to calculate

C2
T here2.

5.2.4. Normalizing C2
T to one reference level

The mean structure parameter decreases with height in the ASL. The scintillometers,

M2AV and the sonics measured C2
T at different levels (zm), which makes it difficult to

compare C2
T between the instruments. Therefore, we normalized all C2

T data to a com-

mon reference level of 50 m (C2
T 50m). For this we used Monin-Obukhov similarity theory

(MOST) scaling. The normalization of the structure parameter at the observation level

2The raw 20 Hz data were checked for unphysical values, spikes, and insufficient amplitude resolution based on Vickers
and Mahrt (1997), converted to physical values (Schotanus et al., 1983; Liu et al., 2001), and wind components were
rotated using the planar fit method (Wilczak et al., 2001) and the x-axis is along the mean horizontal wind. The
conversion of the temporal structure function into the spatial structure function was done with Eq. (5) from Braam
et al. (2012) following Bosveld (1999). To correct for fluctuations smaller than the path length, the correction of
Hartogensis et al. (2002) for the deviation of the measured spectrum from the inertial subrange was applied.
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(C2
T zm

) to 50 m is, for unstable conditions (subscript un), given by:

C2
T un50m = C2

T zm

z
2/3
m (1− c2unzm/L)

2/3

502/3 (1− c2un50/L)
2/3

(5.5a)

and for stable conditions (subscript st) by:

C2
T st50m = C2

T zm

z
2/3
m

(
1 + c2st (zm/L)

2/3
)

502/3
(
1 + c2st (50/L)

2/3
) (5.5b)

in which L is the Obukhov length (L = Tvu∗
2
/(κgTv∗) with Tv being the mean virtual

temperature, u∗ the friction velocity, κ = 0.4 the von-Kármán constant, g = 9.81 m s−2

the acceleration due to gravity, and Tv∗ the virtual temperature scale); c2 is the second

regression coefficient used in the most common expression of MOST. In this study, we

used the regression coefficients of Andreas (1988), who modified the original MOST

relation of Wyngaard (1973) by replacing κ = 0.35 with κ = 0.40: c2un = 6.1 and

c2st = 2.2. The Obukhov length needed in the normalization was obtained from the

fluxes measured with the EC system at 50 m (see the first item in the list of Sect. 5.2.5).

5.2.5. Other data

For the humidity correction and the height normalization additional data are needed:

• RTq, σT , σq, β and L were obtained from data measured with the USA-1 together

with a LI7500 infrared hygrometer (LiCor Inc., U.S.) at 50 m and at 90 m. They

were calculated with the EC-Pack flux-software package (version 2.5.23) developed

by Wageningen University (van Dijk et al., 2004) over a 10 min window (Braam

et al. 20143). The influence of unreliable data points and data gaps in the time

series is minimized, to reduce possible errors if applying the corrections. We,

therefore, excluded in the 10-min time series of each variable spikes (following the

method of Vickers and Mahrt, 1997) and the data points with a relative uncertainty

> 0.3. Afterwards, all gaps in the 10-min time series were filled using linear

interpolation and the dataset was smoothed using a running average of 2 data

points. Moreover, the third humidity contribution correction was not applied if

β ≈ Aq

q
T
AT

cp
Lv

≈ −0.03, because then C2
T becomes numerically ill-defined4.

• pressure, measured at 1 m (PTB220, Vaisala Oy, Finland). The pressure at 50 m

and 90 m was estimated by assuming a linear decrease of 12.5 Pa m−1,

• precipitation, measured with a weighing precipitation gauge (Pluvio, Ott GmbH,

Germany),

3The following corrections were applied by Braam et al. (2014): a) planar fit rotation (Wilczak et al., 2001); b)
correction for density effects on the latent heat flux (Webb et al., 1980); c) humidity and cross wind correction
(Schotanus et al., 1983; Liu et al., 2001) for the sonic temperature; and d) corrections for spectral loss due to path
averaging and sensor separation (Moore, 1986).

4Range of rejected Bowen ratios: −0.4
Aq
q

T
AT

cp
Lv

< β < −1.6
Aq
q

T
AT

cp
Lv
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5.3. Research Strategy

This research consist of three parts. In all these parts, we use linear least square re-

gressions forced through the origin abbreviated as LLSRO. With LLSRO we evaluate

the slope (a), the coefficient of determination (r2) and the coefficient of variation (ab-

breviated as CV ). The coefficient of determination is a measure of the strength of

the correlation, and CV indicates how much each point deviates from the 1:1-line on

average.

For the comparison of the LAS and the sonic and the different data processing methods

of the LAS, we analyse the data measured on the flight days between 0500 UTC and

1800 UTC (local summer time is UTC + 2 h). Furthermore, we mainly focus on C2
T 50m.

To simplify notation, we remove the subscript 50 m throughout the rest of the paper.

As an effect C2
T LAS43m refers to the 50-m normalized structure parameter obtained from

the LAS with zeff = 43 m.

In part 1, we answer our first research question and compare C2
T obtained with the

LAS and M2AV for all the days. For this, we calculate C2
T LAS and C2

TM2AV as follows

(see also Table 5.5): C2
T LAS is not corrected for saturation, it is corrected for humidity

using Eq 12 of M03, and it is averaged over 10 min. C2
TM2AV is calculated directly over

the entire leg, using the method as proposed by vdK12.

In part 2, we focus on the last research question: the impact on C2
T of applying dif-

ferent options from the elaborate data processing list (see Sect. 5.1). The C2
T obtained

with the different options as suggested above are therefore compared to each other. In

this part we evaluate the LAS (part 2a) and M2AV (part 2b) separately.

The weather conditions differed between LITFASS-2009 and LITFASS-2010. This

can have an effect on the corrections. Therefore, we analyse the two experiments sep-

arately. During LITFASS-2009 conditions were more moist than for LITFASS-2010.

The noontime Bowen ratio (determined with the EC system data at 50 m and averaged

between 1000 and 1500 UTC) is 0.78 for LITFASS-2009 and 3.15 for LITFASS-2010.

In part 3, we investigate if the elaborate data processing done in the analysis can

reduce and explain the deviations between LAS and M2AV as found in B12 (research

question 2).

5.4. Results and Discussion

5.4.1. Part 1: Comparison of C2
T for all flight days

The bottom panel of Fig. 5.2 shows the daytime evolution of C2
T obtained with the

various instruments during the days where the M2AV flew the line profile or the scin-

tillometer profile at a height smaller than 110 m.

Validation of the height normalization (item a)

We start to compare C2
T derived from the different observation levels for the LAS and

the sonic to evaluate the method to normalize C2
T to 50 m. It can be seen that for both
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Fig. 5.2. The daytime evolution of C2
T LAS43m

(solid black line), C2
T LAS63m

(dashed black line), C2
T M2AV

(grey

circles), C2
T sonic50m

(solid grey line), and C2
T sonic90m

(dashed grey line) during the flight days of LITFASS-2009

and LITFASS-2010 experiments (see Sect. 5.3 and Table 5.5 for the applied methods and corrections to obtain
C2

T ). The top panel shows the normalized differences (NDM2AV,LAS, see Eq. 5.6) between C2
T M2AV

and the

other instruments for each leg (× NDM2AV,LAS and △ NDM2AV,sonic) and their daily averaged value (black

lines NDM2AV,LAS, and grey lines NDM2AV,sonic).

systems normalized C2
T obtained at the two levels are comparable. LLSRO between C2

T

obtained at the higher level versus C2
T obtained at the lower level gives a = 1.00 and

r2 = 0.92 for the LAS, and a = 1.11 and r2 = 0.70 for the sonic. We observe a better

comparison between the two levels for the LAS than for the sonic, because the two levels

of the LAS are closer to each other and centred around 50 m. The largest deviation is

found during the evening transition. Separation of the data by stability shows that, for

unstable conditions (z/L < 0), a = 0.99 and r2 = 0.98 for the LAS, and a = 1.08 and

r2 = 0.76 for the sonic. For stable conditions (z/L > 0), a = 1.40 and r2 = 0.71 for the

LAS, and a = 1.78 and r2 = 0.59 for the sonic. These deviations for stable conditions

illustrate the limited applicability of MOST at several decameters above ground (see

also Braam et al. 2012). Because most of the flight data were obtained during unstable

conditions, we conclude that the method to normalize C2
T to 50 m is justified to compare

the M2AV data with the LAS.

Comparison of C2
T obtained with LAS, M2AV and sonic

Comparing C2
T obtained from the three instruments to each other, we observe that

C2
TM2AV is in generally higher than C2

T LAS and C2
T sonic. This is also visible in the top

panel of Fig. 5.2, which shows the normalized difference (abbreviated as ND) between

C2
TM2AV and C2

T of the other instrument (subscribt other) defined as:

NDM2AV,other =
C2
TM2AV − C2

T otherz

C2
T otherz

(5.6)
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in which, C2
T otherz is the average C2

T of the normalized values from the two measurement

levels. In general ND is located around one or two, as also observed in B12 and

vdK12. Most of the time NDM2AV,LAS is larger than NDM2AV,sonic, especially during

LITFASS-2010; for these data C2
T sonic is typically larger than C2

T LAS. From LLSRO

between C2
T LASz and C2

T sonicz, we observe an overestimation of 17% with an r2 of 0.49.

The underestimation of the LAS can be explained by the notion that the saturation

correction is not applied, this will be discussed in more depth in the next section.

Another possible reason for the deviation may be the difference in the footprints of the

two instruments. The relatively small value for r2 is attributed to the smoother curve

of the LAS when compared to the sonic (Figure 5.2), caused by the path averaging

(Hartogensis et al., 2002).

Despite of the general tendency that ND is larger than zero (which implies C2
TM2AV >

C2
T other), there are also a few flight legs when they are smaller (C2

TM2AV < C2
T other).

Figure 5.2 suggests that these situations basically occur in the early morning or late

afternoon. These exceptions indicate that there could be a physical reason for the

overestimation of C2
TM2AV compared C2

T of the other methods. Therefore, we compared

ND against different meteorological variables, such as mean wind speed, mean cross

wind, wind direction, RTq, z/L, β. However, scatter plots between ND and these

variables did not give any clear indication of a relation between one of those variables

and ND (figures not shown, r2 < 0.05).

In addition, we investigated the dependence of NDM2AV,LAS on the flight level and

flight direction (more or less north-south or south-north), but for both we did neither

find and clear relationship (figures not shown). The flight direction was considered

because, first, one possible reason for the overestimation of C2
T from the M2AV could

be errors in the temperature measurements due to solar heating of the temperature

sensor. Note that the dependency on solar heating of the Vaisala HMP 50 cannot be

the reason. That is because this temperature is only used for the low frequency range

(< 0.02 Hz), whereas C2
TM2AV is calculated over a range of scales between 2.5 and 25

m (corresponding to 9.6 and 0.96 Hz, assuming a mean ground speed of 24 m s−1). It

is possible, however, that the thermocouple shows a dependency on solar heating too.

Second, another reason could be the use of the mean ground speed instead of the true

airspeed in the calculation of C2
TM2AV. Differences in C2

TM2AV using these two air speeds

would likely be opposite for the two flight directions. Extra temperature fluctuations

(higher C2
T ) due to intermittent cloudy situations along the flight leg could also not

be the reason for the large ratios, because an overestimation by M2AV is also observed

during LITFASS-2010 that was characterized by cloud-free situations.

To conclude, we cannot explain the differences in C2
T between the instruments by a

clear relation to atmospheric conditions or flight parameters. Therefore we investigate

if a more elaborate data processing can reduce and explain the differences.
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Table 5.2. Comparison of C2
T LAS

corrected for humidity (y) relative to uncorrected for humidity (x, y = ax)

for the WURLAS98006 (zeff = 43m), together with the coefficient of determination (r2) and the coefficient of
variation (CV )

LITFASS-2009, β = 0.78 LITFASS-2010, β = 3.15

correction method reference a r2 CV a r2 CV

Using LAS-MWS
1 covln(ILAS),ln(IMWS) Ward et al. (2013) 0.959 0.995 0.067
2 RTq Hill (1989) 0.942 0.998 0.078
Using LAS only
3 RTq + σT + σq Eq. 8 of M03 0.949 0.989 0.095 0.974 1.000 0.032
4 RTq + β Eq. 11 of M03 0.945 0.991 0.094 0.981 1.000 0.024
5 β Eq. 12 of M03 0.910 0.957 0.176 0.975 0.999 0.037

5.4.2. Part 2a: Evaluation of the determination of C2
T from LAS measurements

Saturation correction (item b)

The applied saturation correction only depends on the measured C2
T . The correction

factor m is largest if C2
T is large. Because C2

T decreases with height, the correction has

a larger influence on C2
T obtained at 43 m than at 63 m. On average the values of C2

T

obtained during LITFASS-2009 and LITFASS-2010 are comparable, so the effect of the

correction between the two experiments will be comparable as well; during LITFASS-

2009, m is on average 1.16 for C2
T LAS43m, and 1.11 for C2

T LAS63m, and during LITFASS-

2010, m is 1.15 for C2
T LAS43m, and 1.10 for C2

T LAS63m. If only the flight times are taken

into account, the correction is even somewhat larger (LITFASS 2009: 1.18 for 43 m and

1.12 for 63 m, LITFASS-2010: 1.17 for 43 m and 1.11 for 63 m).

The saturation correction of C2
T LAS improves the comparison of C2

T obtained from

the LAS and the sonic. LLSRO between C2
T LASz and C2

T sonicz now gives a slope of 1.03

(before it was 1.17), taking both experiments together.

From C2
n to C2

T - correction for humidity contribution, item c

The effect on C2
T of applying the various correction methods for the humidity contri-

bution to C2
n is given in Table 5.2. We choose to focus on 43 m for two reasons. First,

method 1 and 2 could be validated at 43 m only, because a MWS was not available at

63 m. Second, for the last three methods the corrections are identical, because we had

to use the data obtained with the sonic at 50 m for the corrections at both levels.

The table shows that the correction for the humidity contribution to C2
n is larger for

LITFASS-2009 (within 10 %) than for LITFASS-2010 (within 3%). This is expected,

because the LITFASS-2009 experiment was characterized by more humid conditions.

During LITFASS-2009 the noontime Bowen ratio is in the range for which M03 found

the highest relative error between method 3-5 (|β| < 1). Note that M03 compared

C2
T obtained from the three correction methods with the real value based on EC data,

whereas we compare it with the uncorrected value from the LAS. As a consequence, the

a we found does not give the error as is given in Fig. 8 of M03. During LITFASS-2009,
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Table 5.3. Comparison of C2
T M2AV

calculated using Fourier spectrum or Wavelet spectrum (y) relative to

C2
T M2AV

calculated using the structure function over the entire leg (x, y = ax), together with the coefficient of

determination (r2) and the coefficient of variation (CV )

method a r2 CV

Fourier 0.96 0.98 0.14
Wavelet 0.75 0.98 0.37

the deviations between the methods are large. The correction is largest for method 5,

and smallest for method 2. The two methods using the LASMWS combination (method

1 and 2) give a similar correction. The two methods of M03 based on RTq are also in

this range (method 3 and 4). This indicates that the humidity correction should be

approximately 5% during LITFASS-2009.

During LITFASS-2010, the deviation between the three methods is much smaller.

This is to be expected, because under dry conditions (β= 3.15) the influence of humidity

is negligible and the error in the three methods is similar (M03).

We conclude that C2
T is underestimated within about 4-5 %, by the traditional Bowen

ratio method (method 5) as used in the first validation in B12 and in Fig. 5.2. In Part 3,

we will therefore use method 3, because it shows similar results as the methods obtained

via the LASMWS, and it has the smallest error according to M03.

Synchronizing averaging times (item d)

In order to investigate the effect of taking a different time window for the LAS data

than for the M2AV, we calculate C2
T LAS exactly over the time intervals of the flights

of the M2AV during LITFASS-2009 from the 500 Hz data available. LLSRO between

the C2
T LASz (y) based on the 10-min interval compared to C2

T LASz (x) based on the

flight interval gives a slope of 0.97, r2 = 0.83 and CV = 0.21. These results indicate

that C2
T LAS differs when measuring at shorter intervals. However, the comparison does

not show a bias, which means that flight intervals of the M2AV are not systematically

related to intervals with large C2
T .

5.4.3. Part 2b: Evaluation of the determination of C2
T from the M2AV data

Different methods to calculate C2
T (item e)

Because C2
TM2AV deviates from both the C2

T obtained with other systems, we extensively

checked the methodology and its implementation to calculate C2
TM2AV. Table 5.3 shows

the comparison of the three methods (see section 5.4.3) to calculate C2
TM2AV. We

note that the method via DTT and via Fourier spectrum give similar results, which

is expected because they are mathematically equivalent. Differences occur, because

the first method averaged over a predefined inertial subrange between 5 and 25 m,

whereas the latter takes only points within the spectrum that pass the check for the

−5/3 slope. The wavelet method gives lower values, which would better correspond

to the C2
T LAS and C2

T sonic. One difference between the wavelet method and the other
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Table 5.4. Comparison of C2
T M2AV

calculated from the spatial series along the path evenly weighted (y =

W (x) = c) or applying the path-weighting function (y = W (x) from LAS) relative to C2
T M2AV

calculated over

the leg as a whole (x, y = ax), together with the coefficient of determination (r2) and the coefficient of variation
(CV )

LITFASS-2009 LITFASS-2010

a r2 CV a r2 CV

y = C2
T M2AV W (x)=c 1.04 0.96 0.10 0.96 0.99 0.32

y = C2
T M2AV W (x)LAS 1.17 0.97 0.32 0.83 0.64 0.63

methods is that the data is first converted to spatial data using the geo-location and

linear interpolation, whereas the other methods use temporal data and the mean ground

speed. To investigate if this explains the differences, we calculate C2
TM2AV via the spatial

structure function using the spatial dataset. The differences between these two options

are small: LLSRO gives a slope of 0.97 and r2 = 1.00. The reason for the lower values

of the wavelet method remains unclear, it might be related to the choice of the wavelet

function.

Finally, because the structure function and Fourier spectrum method show compa-

rable results, we conclude that the method and its implementation to obtain C2
TM2AV

cannot explain the larger values compared to the other instruments. Therefore, in

the following paragraphs we calculate C2
TM2AV via the structure function method as

described in vdK12.

Applying the LAS path-weighting function (item f)

Here, we evaluate the effect of the LAS path-weighting function on the M2AV data.

Before doing so, we compare the C2
TM2AV obtained over the leg as a whole (C2

TM2AV EL)

with C2
TM2AV obtained as the average of the spatial series (i.e. constant weighting,

C2
TM2AVW (x)=c, first line in Table 5.4). Both methods determine C2

TM2AV via the same

method (via DTT ) and using the same dataset. Therefore we expect the same value.

However, this is not the case. For LITFASS-2009 we observe that C2
TM2AV W (x)=c is

larger than C2
TM2AV EL, whereas for LITFASS-2010 we find the opposite. There are

three reasons for this deviation:

1. calculating DTT from a smaller dataset (≈ 300 m instead of ≈ 3000 m, in case of

C2
TM2AVW (x)=c) increases the random error.

2. calculating DTT from a smaller dataset causes that at the border of each small

sample (300 m) the temperature measurements is taken into account only once

(via Ti or Ti−∆i).

3. applying the moving window causes that in the averaged C2
TM2AV W (x)=c temper-

ature fluctuations ([Ti − Ti−∆i]) in the centre of the entire leg are more frequently

considered than at the borders. Consequently, turbulence at the borders of the leg

has less influence on C2
TM2AV.

The deviation due to the second reason drops out if first a dataset of the temperature

deviations is obtained (T ′ = [Ti − Ti−∆i]) and then DTT is determined using a moving
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window over this new series. However, we choose to be consistent with vdK12, and

determine DTT using a moving window over the original temperature series.

Applying the path-weighting function of the LAS (C2
TM2AV W (x)LAS, second line in

Table 5.4) gives larger values of C2
TM2AV for LITFASS-2009 and smaller values for

LITFASS-2010. This indicates that surface heterogeneity can play a role, as the con-

tribution of C2
T in the centre of the path is enhanced. During LITFASS-2009, the

vegetation at the border of the path near Falkenberg was maize that was actively tran-

spiring, whereas in the centre of the path it was dry triticale (in the south) and barley

(in the north), both being senescent. Above barley and triticale the daily averaged

C2
T was larger than above maize (see B12), which results in a net increase in C2

T when

applying W (x) from LAS.

During LITFASS-2010, the field at the southern border near Falkenberg was barley.

The vegetation at the two centre fields was maize (in the south) and colza (in the north).

Because LITFASS-2010 took place in July as well, we can assume that barley and colza

were dry and senescent, while the maize was actively transpiring. Consequently, C2
T

decreases when applying W (x) from LAS.

For both experiments, the direction of the deviation of C2
TM2AVW (x)=c from C2

TM2AV EL

and the one of the deviation of C2
TM2AV W (x)LAS from C2

TM2AV EL is similar: an overes-

timation during LITFASS-2009 and an underestimation during LITFASS-2010. More-

over, as mentioned above, the deviation of C2
TM2AV W (x)LAS from C2

TM2AV EL is related

to the smaller contribution of the vegetation at the southern field at the border relative

to fields in the centre. This indicates that the third reason in the list above has the

main impact in the deviation of C2
TM2AV W (x)=c from C2

TM2AV EL.

In order to investigate if C2
T calculated from DTT based on a moving window can be

used to study the effect of surface heterogeneity on C2
T (as done in vdK12), we compare

the spatial series of C2
T using this method with the wavelet method (Fig. 5.3). We

already observed that the averaged values of the wavelet method were lower, so we

focus now on the spatial pattern of both methods. Figure 5.3 shows that the spatial

pattern of the two methods is similar. This means that, while for both methods the

average value differs, they can both be used to indicate the relative effect of surface

heterogeneities on C2
T along a leg, which was the main goal of vdK12. In order to

remove time varations, vdK12 normalized the spatial series of C2
TM2AV with C2

TM2AV

over the entire leg. Note that for the latter only C2
TM2AVW (x)=c can be used, because

of the differences between C2
TM2AV EL and C2

TM2AV W (x)=c.

Another issue might be whether the path-weighting function should be applied before

or after the height normalization. The differences between these two options are less

than one percent. First applying the height normalization needs spatial information of

the flight level. This is not available for the legs where the height above the surface

was not well measured, therefore, we applied the path-weighting function first in our

analysis.
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Fig. 5.3. The variation of C2
T M2AV

along the scintillometer path during one leg for the structure function

method (black lines) and for the wavelet method (grey lines). Together with the averaged values along the
leg: constant weighted (dotted horizontal line, y = W (x) = c), applying the path-weighting function (solid
horizontal line, y = W (x) from LAS), and calculated over the leg as a whole via the structure function (dashed
line)

5.4.4. Part 3: Effect of the elaborate data processing

In this section we investigate if the differences between C2
TM2AV and C2

T LAS can be

reduced or explained by applying the more elaborate data processing. The effect on C2
T

is shown in Fig. 5.4.

We here calculate C2
T LAS and C2

TM2AV as follows: C2
T LAS is corrected for saturation,

it is corrected for humidity using Eq 8 of M03, and it is both averaged over 10 min

and averaged over the time window during the flight legs. C2
TM2AV is calculated via

DTT as proposed by vdK12 (item e) and applying the path-weighting function (item f).

As already expected from the results of the analysis of Sect. 5.4.2 and Sect. 5.4.3 the

normalized difference between C2
TM2AV and C2

T other decreases, but is still substantial in

most cases.

Applying the two corrections for the LAS improves the correlation between the sonic

and LAS. Now, LLSRO between C2
T LASz and C2

T sonicz has a slope of 1.00 and a r2 of

0.47, taking data from both experiments together. The slope of 1.00 indicates that C2
T

does not show system deviations for these datasets, although the footprints of the two

instruments differ (point versus path-averaged). It is therefore unlikely that the reason

for the observed differences between LAS and M2AV is the fact that the M2AV legs

covered only the southern 70 % of the LAS path and missed the village of Lindenberg.

When comparing C2
T LAS calculated for exactly the time intervals of the aircraft, we
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Fig. 5.4. The daytime evolution of C2
T LAS43m

(solid black line), C2
T LAS63m

(dashed black line), C2
T M2AV

(grey

circles), C2
T sonic50m

(solid grey line), and C2
T sonic90m

(dashed grey line) during the flight days of LITFASS-
2009 and LITFASS-2010 experiments after applying the more elaborate data processing see Sect. 5.3 and
Table 5.5 for the applied methods and corrections to obtain C2

T . The black symbols represents C2
T LAS

dur-

ing the flight legs (× is C2
T LAS43m

and ◦ is C2
T LAS63m

). The top panel shows the normalized difference

between C2
T M2AV

and the other instruments for each leg (× NDM2AV,LAS and △ NDM2AV,sonic, in which

NDM2AV,other =
(
C2

T M2AV
− C2

T otherz

)
/C2

T otherz
) and the daily averaged value (black lines NDM2AV,LAS and

grey lines NDM2AV,sonic).

refer to our conclusion in Sect. 5.4.2; namely that the time intervals of the M2AV

are not coincidentally related to the moments with large values of C2
T LAS and cannot

explain the differences between the two instruments.

5.5. Conclusions and Outlook

This study shows an elaborate comparison of the structure parameter of temperature,

C2
T , from two LAS, the M2AV, and two sonic anemometers during the LITFASS-2009

and LITFASS-2010 experiments. It is an extension of the study of Beyrich et al. (2012),

who found that the C2
T obtained with M2AV is larger than C2

T from LAS for one flight

day when data from LAS and M2AV were processed using standard procedures.

We conclude that for the other measurement days during LITFASS-2009 and LITFASS-

2010 similar differences can be found. C2
TM2AV overestimates both C2

T LAS and C2
T sonic.

A more elaborate data analysis did improve the agreement between C2
T LAS and C2

T sonic,

but did not substantially improve the agreement of C2
TM2AV on the one hand and C2

T LAS

and C2
T sonic on the other hand.

Furthermore, from the more elaborate data analysis we learn that

• it is important to apply the saturation correction for the LAS at 43 m and 63 m

along the 5 km scintillometer path between Falkenberg and Lindenberg,

• during the LITFASS-experimenst the correction for humidity should be performed,
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based on the correlation between T and q and the standard deviation of T and

q (method 3). The use of the Bowen ratio method underestimates the true C2
T

during LITFASS-2009, which agrees with the study of M03,

• calculating C2
TM2AV with structure functions or Fourier spectrum gives similar

results, whereas the wavelet method gives lower C2
T , which might be related to

the choice of the wavelet function,

• C2
TM2AV obtained from the structure function determined over the leg as a whole

differs from the leg-averaged value obtained from a spatial series of C2
TM2AV values

determined over sections of the leg and using a moving window,

• the spatial pattern of C2
TM2AV along the leg is consistent between the structure

functions applying a moving window and the wavelet method.

Finally, we have to conclude that the deviations between C2
TM2AV on the one hand, and

C2
T LAS and C2

T sonic on the other hand cannot be explained so far. Therefore, we recom-

mend further experimental studies. A useful modification of the measurement strategy

for any new experiment is to use multiple unmanned aircraft flying synchronously along

the scintillometer path, in order to obtain statistical information on C2
TM2AV as well.

Another reason could be related to the determination of C2
TM2AV from a temperature

dataset that varies in time and space. The amount of variation in time and space

is related to the mean ground speed. It might be possible that C2
TM2AV can only be

determined from a temperature dataset that varies only in space if an aircraft flies

extremely fast, or from a temperature dataset that varies only in time as is the case

for the sonic. In order to investigate this we propose to initiate a sensitivity analysis of

C2
T from virtual flights in a Large Eddy Simulation model with different mean ground

speeds.
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5.A. Overview of the options used for the data processing

Table 5.5. Overview of the options used for the elaborate data processing in this study.

explanation method results

correction Sect. specification references Sect. Fig. 5.2 Fig. 5.4

All instruments
a normalization to one z 5.2.4 via MOST, 50 m - 5.4.1 X X

LAS 5.2.1
b saturation 5.2.1 - Kleissl et al. (2010) 5.4.2 X

c humidity 5.2.1 1. covarln(ILAS),ln(IMWS) Ward et al. (2013) 5.4.2
2. RTq Hill (1989)
3. RTq , σT , σq Eq. 8 of M03 X

4. RTq , β Eq. 11 of M03
5. β Eq. 12 of M03 X

d synchronizing time 5.2.1 only LITFASS-2009 - X

M2AV 5.2.2
e methods C2

T 5.2.2 1. DTT vdK12 5.4.3 X X

2. Fourier spectrum Hartogensis et al. (2002)
3. Wavelet spectrum Maronga et al. (2013)

f applying W (x) 5.2.2 1. leg as a whole1 - 5.4.3 X

2. moving window1 - W (x) = c -
3. moving window1 - W (x)LAS - X

1. using DTT
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6 Summary

6.1. Atmospheric turbulence and scintillometry

Atmospheric turbulence is the main vertical transport mechanism in the atmospheric

boundary layer (ABL). The surface fluxes related to this turbulent transport are the

sensible (H) and latent heat fluxes (LE). Their strength depends, among others, on

the location on earth, date and time. One way to determine H and LE is using

scintillometers. A scintillometer system consists of an electromagnetic beam transmitter

at one end of a propagation path and a receiver at the other end. The length of the

propagation path is of the order of 1 up to 5 km for the scintillometers used in this study.

The intensity of the electromagnetic signal at the receiver varies due to fluctuations in

the refractive index of air (n) caused by turbulence along the path. The magnitude

of these fluctuations is proportional to the path-averaged structure parameter of the

refractive index of air (C2
n). From C2

n the structure parameter of temperature (C2
T ) and

of humidity (C2
q ) can be derived. C2

T and C2
q are measures of the turbulent fluctuations

in temperature and humidity within the inertial subrange of the turbulence spectrum.

The relative contribution of C2
T and C2

q to C2
n depends on the wavelength emitted

by the scintillometer. Large aperture scintillometers (LAS, operating at wavelengths

in the visible and the near-infrared) are mainly sensitive to C2
T , while for microwave

scintillometers (MWS, operating at millimetre wavelengths) C2
T and C2

q are equally

important (Hill et al., 1992; Ward et al., 2013). Finally, C2
T and C2

q are used to determine

path-averaged H and LE via Monin-Obukhov similarity theory (MOST).

Monin-Obukhov similarity theory (MOST) is based on dimensional analysis (Monin

and Obukhov, 1954; Foken, 2006). As such it uses universal functions to link surface

fluxes to other turbulent quantities, i.e. structure parameters in case of scintillometry.

MOST is restricted to homogeneous and stationary conditions and to the part of the

atmosphere close to the surface: the atmospheric surface layer (ASL). Within the ASL

turbulence is controlled by surface processes, whereas other processes in the ABL, such

as entrainment and advection are neglected. The depth of the ASL, estimated as the

lowest 10 % of the ABL, is not constant during the day. In the afternoon, when

turbulence is strong, it will reach its maximum, whereas during the morning and at
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night, it will be relatively shallow.

The area-averaged values of the fluxes are of interest for many meteorological applica-

tions, e.g. to evaluate mesoscale numerical weather models and satellite-based retrieval

algorithms. Natural landscapes are often heterogeneous, i.e. H and LE differ among

fields. This makes scintillometry a more suitable method for obtaining area-averaged

fluxes over natural landscapes than traditional point measurements. During the past

twenty years, scintillometry has proven to be a reliable method for determining the

area-averaged flux over heterogeneous surfaces (e.g. Meijninger et al., 2002b; Beyrich

et al., 2005; Kohsiek et al., 2006)). However, there are still open issues that require

further research. The four questions answered in this thesis are related to the applica-

bility of MOST (chapters 2 and 3) and to the behaviour of structure parameters over

heterogeneous surfaces (chapters 4 and 5). All together, the primary motivation of this

thesis is to better understand and quantify the scintillometer signal in terms of the

structure parameter.

For our studies we used meteorological data of three sites. We confine ourselves

to observations obtained during daytime: under unstable conditions when turbulence

is mainly produced by buoyancy. Because MOST is restricted to homogeneous surface

conditions, the first two questions (chapter 2 and 3) related to the applicability of MOST

are answered with data measured at sites with relatively homogeneous surface conditions

(Cabauw; the Netherlands, and CASES-99; Leon; Kansas; USA, in which CASES stands

for Cooperative Atmosphere-Surface Exchange Study). The last two questions (chapter

4 and 5) are answered using data from two experiments with moderately heterogeneous

surface conditions (LITFASS-2009 and LITFASS-2010; Lindenberg; Germany, in which

LITFASS stands for LIndenberg-To-Falkenberg Aircraft Scintillometer Study). For the

first three research questions we obtain C2
T from point measurements rather than from

scintillometers, despite that understanding of the scintillometer signal is the primary

motivation.

6.2. The applicability of MOST

6.2.1. On Monin-Obukhov scaling in and above the ASL

One limitation of scintillometry is that the theory behind it is only valid for the weak

scattering regime, because in case of stronger scattering the signal gets saturated. One

way to prevent saturation is to install the scintillometer at a higher level, because C2
s

decreases with height. However, a disadvantage of installing the scintillometer at more

elevated levels is that the observation level might be located outside the ASL if the ASL

is shallow. In that case the validity of MOST can be questioned. This brings us to the

first question that is answered in chapter 2:

Question 1 - To what extent can the sensible heat flux be determined from the structure

parameter of temperature observed at elevated levels, particularly during

the morning period when the measurement level is situated above the
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atmospheric surface layer?

In order to answer this question, two concepts to determine H from C2
T are proposed

and compared. In the first concept, MOSTs, C2
T scales with the surface heat flux, and

thus it is based on the assumption that MOST still applies at levels just above the ASL.

In the second concept, MOSTl, C2
T scales with the local heat flux rather than with the

surface heat flux, which is comparable with the local scaling hypothesis used in the

stable boundary layer (Nieuwstadt, 1984). To obtain the surface heat flux, a correction

for the flux divergence in the column below the level of observation has to be applied.

We calculate C2
T with the two MOST concepts using flux observations (MOST in

the reverse way), and compare them with C2
T directly derived from sonic anemometer/

thermometer (sonic) measurements at 60-m height on the Cabauw tower. In the analy-

sis, we distinguish two time periods: the early morning and the afternoon. During the

early morning, the 60-m level is located above the ASL and MOST can be questioned,

whereas during the afternoon, the 60-m level is located within the ASL and MOST is

likely to be valid.

In the afternoon both concepts give results that are comparable to the values of C2
T

directly derived from sonic measurements. In the morning, our data do not unequiv-

ocally support one of the two concepts. Firstly, the peak in C2
T that occurs when the

measurement height is located in the entrainment zone disqualifies the use of MOST

at that moment. Secondly, MOSTl shows the correct temporal behaviour, the time of

the zero flux corresponds with the time of the C2
T minimum, but underestimates C2

T

by a factor of ten. Thirdly, a linear least squares regression shows that the slope is

closer to one for MOSTl, whereas the offset is closer to zero for MOSTs. Finally, the

correlation between C2
T observed directly and estimated with the two concepts is low

and similar for MOSTl and MOSTs. For all these reasons, we conclude that MOST is

not applicable for the morning hours when the observation level is located above the

ASL.

6.2.2. Dependence on regression approach, observation height and stability range

The universal function that links H and C2
T within MOST (f (z/L), where z is the

height, and 1/L is a measure of the stability) needs to be determined empirically. In

literature a great variety of the similarity functions can be found. One reason for this

variation is that these studies differ in experimental design, instrumentation and data

processing. In chapter 3 we therefore used one single dataset (CASES-99) to answer

the following question:

Question 2 - To what extent is the expression for the dimensionless structure parameter

influenced by specific regression approaches, stability ranges and observa-

tion levels?

The advantage of using one single dataset is that we can exclude other causes of varia-

tion, such as differences in data processing, instrumentation and surface characteristics.
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We confine ourselves to the most commonly used shape of f (z/L) for unstable con-

ditions, which describes the relation by a power law and two empirical coefficients c1
and c2: f (z/L) = c1 (1− c2z/L)

−2/3.

In the first part of our research, we evaluate regression approaches that differ in four

aspects: the logarithmic transformation of data, the mathematical regression methods,

weighing of the data i.e. taking into account the measurement accuracy of each data

point, and the number of regression coefficients to fit. The results show that applying

various regression approaches has an impact on the regression coefficients c1 and c2.

This means that studies always should specify the regression approach, when presenting

similarity relations. We advice to use an orthogonal distance regression method, applied

to the logarithmic transformation of both dimensionless groups, and weighted such that

unreliable data points have a smaller influence on the fit.

Dividing the dataset in eight z and eight 1/L classes we show that the observation

height and the stability range have an impact on the coefficients too. This implies that

variations in c1 and c2 found in literature may result from variations in the height and

stability ranges among the datasets. Furthermore, application of a given f (z/L) on a

dataset measured at a different height or within a different stability range has to be

done with care. Finally, the variation in the coefficients between the classes indicates

that the Monin-Obukhov similarity function for C2
T is not sufficiently described by the

two-coefficient function used here.

6.3. C2
s over heterogeneous surfaces

Knowledge about the variability of C2
s over a heterogeneous surface is important, be-

cause the MOST relation between C2
s and the fluxes assumes homogeneous surface

conditions.

6.3.1. Variability of C2
T and C2

q observed in the ASL

Whether variations in C2
s along a scintillometer path or aircraft flight leg are within

the range of local variability in C2
s , or whether they could be attributed to surface

heterogeneity, we formulate the following question in chapter 4:

Question 3 - What determines the local variability of the structure parameter within

the atmospheric surface layer at different heights and under different sta-

bility regimes?

In this study, we focus on the logarithm of the Monin-Obukhov-scaled structure param-

eters for temperature and humidity (denoted as log(C̃2
s )), where C2

s is determined over

a range of averaging windows varying from 1-10 min. We use 1 month of observations

from EC systems installed at 2.5 m over a triticale field and at 50 m, and 90 m at the

99-m tower in Falkenberg during the LITFASS-2009 experiment.

We find that the variability of log(C̃2
s ) is determined by stability and by the size of the

averaging window over which log(C̃2
s ) is calculated. If instability increases, differences

112



6.3. C2
s over heterogeneous surfaces

in log(C̃2
s ) between upward motions (large C2

s ) and downward motions (small C2
s ) in-

crease. The differences are, however, not sufficiently large to result in a bimodal overall

probability density function.

If the averaging window size increases, the variance of log(C̃2
s ) decreases. A rough

estimation of this decrease is made by fitting a simple linear regression between the

variances of log(C̃2
s ) and the averaging window size. From this we found that for

various stability classes both the offset and slope (in absolute sense) decrease with

increasing instability. For temperature, the offset and slope from the three heights

show comparable results. For humidity, in contrast, the offset and slope are larger at

50 m and 90 m than at 2.5 m.

The offset and slope can be used to quantify the local variability for averaging times

down to 1 min for a given stability range. This in turn can give an indication if variations

in C2
s along a scintillometer or flight path might be attributed to surface heterogeneity.

6.3.2. A comparison of C2
T from LAS and unmanned aircraft measurements

In the final chapter we answer the following question:

Question 4 - To what extent are the path-averaged structure parameters of large aper-

ture scintillometers in agreement with the structure parameters obtained

with an unmanned aircraft?

This study is an elaboration of the study of Beyrich et al. (2012). They compared C2
T

obtained with the unmanned meteorological mini aerial vehicle (M2AV) with C2
T ob-

tained with the LAS for five flights on one single day during LITFASS-2009. Processing

the data using standard procedures, they found that C2
T obtained from the M2AV data

is systematically larger than from the LAS data. Here, we investigate if similar differ-

ences can be found for other days, and if these differences can be reduced or explained

through a more elaborate processing of both the LAS data and the M2AV data.

We conclude that the difference reported in Beyrich et al. (2012) can be found for

other days during LITFASS-2009 and LITFASS-2010 as well. C2
T obtained from the M2

AV data is larger than from the data of the LAS and the sonic. A more elaborate data

analysis does not substantially improve the results. Moreover, an exact synchronization

of the LAS data with the time intervals of the M2AV data does not eliminate the

discrepancy between both datasets. Consequently, the deviation between C2
T from the

M2AV on the one hand and from the LAS and sonic on the other hand cannot be

explained so far.
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This thesis shows four different aspects related to the behaviour of C2
s under conditions

that are near the limits of MOST, and therefore scintillometry. There are, however,

several issues that were not discussed in the thesis, and new questions that arose. In

this section, our results are therefore discussed and placed in a broader perspective. We

again start with the subjects presented in this thesis: applicability of MOST (Section

7.1) and C2
s over heterogeneous surfaces (Section 7.2). Following, we focus on subjects

that were of relatively lesser importance within this thesis: the structure parameter

of humidity (Section 7.3); determination of C2
n using LAS (Section 7.4); differences in

obtaining turbulent fluxes using scintillometry or using eddy covariance methods (EC,

Section 7.5).

7.1. The applicability of MOST

From the study in chapter 2 we learned that the use of MOST is not always justified

when the ASL is shallow and the observation level is located above the ASL. These find-

ings are based on data obtained during unstable conditions during the morning period.

It is, however, likely that MOST has also to be questioned during stable conditions,

when the ASL is very shallow and turbulence at an elevated level can be decoupled

from the surface.

In our study, we used the simple estimation of the ASL depth as the lowest 10 % of

the ABL. The value of 10 % has the following background. First, the heat fluxes are not

allowed to diverge more than 10 % within the ASL, in order to ensure that turbulence

is only controlled by surface processes. Second, if we assume –for simplicty– that there

is no entrainment flux, and the flux profile is linear in the ABL, the 10 % decrease

in flux corresponds to the lowest 10 % of the ABL-depth. During the morning period,

however, the divergence of the sensible heat flux can be larger than 10 % over the lowest

10 % of the ABL. For instance, we observed a decrease in the flux with ≈ 22 % during

the morning transition. Moreover, the entrainment ratio (the entrainment flux divided

by the surface flux) of latent heat is often much larger than 0 (Maronga, 2014; van de

Boer et al., 2013, see also 7.3). In such cases processes other than surface processes
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play an important role even when the observation level is located within the ASL using

the above simple definition.

During recent years, also other similarity relations have been proposed in order to

take into account entrainment processes (Laubach and McNaughton, 2009; van de Boer

et al., 2014) for turbulence quantities other than structure parameters, e.g. spectra

and variances. In these studies the relevant height scale in the dimensional analysis is

not only the observation height, but also the ABL depth and entrainment flux. This

makes it not a practical solution for scintillometry, because it requires extra additional

observations not routinely available. Moreover, it can be questioned if this is a necessary

extension for C2
s . This is because these studies show deviations of spectra at larger

scales, but at scales within the inertial subrange, where C2
s is determined, the spectrum

scales already correctly with traditional scaling parameters (Laubach and McNaughton,

2009).

The study in chapter 3 shows that in determining the functional shape of MOST, the

results are affected by the regression approach, measurement height and stability range.

We used the most common shape of the MOST function with two coefficients. This

shape splits the data in two regimes: the near-neutral range and the free-convection

range. However, our results suggest the existence of three regimes (near-neutral range,

transition range, and a free-convection range), which indicates that the function with

two coefficients is probably not sufficiently flexible to describe f (z/L). Using an alter-

native shape with more coefficients (e.g. Wesely (1976b); Thiermann and Grassl (1992))

can be a solution. There are, however, also several disadvantages. First, the shape of

Wesely (1976b) is only applicable up to −z/L = 1. Second, our study shows that under

some conditions it is already difficult to fit two coefficients simultaneously, and using

an extra coefficient would create additional uncertainty. Furthermore, it is not a priori

clear whether each coefficient is sensitive to one particular stability regime.

So in the end, we conclude that the use of MOST to obtain fluxes from structure

parameters is not always that straightforward and calls for further research.

7.2. C2
s over heterogeneous surfaces

At the end of chapter 4, we discuss how our findings on the variability of C2
s can give an

indication if variations in C2
s along a scintillometer or flight path might be attributed

to surface heterogeneity using an hypothetical example. It would, however, be of more

interest to discuss this based on real data. Therefore, we propose to investigate if the

variability in C2
T observed by the M2AV during LITFASS-2010 as shown by van den

Kroonenberg et al. (2012) can really be attributed to surface heterogeneity. This consists

of two steps. First, the local variability of log(C̃2
T ) has to be estimated with the results of

the simple linear regression given in chapter 4, using −z/L10 min obtained from e.g. EC

data. This estimate indicates the local variability expected under the given atmospheric

conditions. Only if differences in log(C̃2
T ) between patches of different land use exceed

this value it can be attributed to surface heterogeneity. Therefore, as a second step,
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the variability found by van den Kroonenberg et al. (2012) has to compared with this

estimate.

There are a number of remaining issues following from the study of chapter 4. First,

the difference in variability of C2
T and of C2

q is still unexplained. Second, the apparent

discontinuity between the variability of C2
s at z = 2.5 m on the one hand and those at

z = 50 m and at z = 90 m on the other hand calls for an investigation using data with

a more dense spacing in the vertical such as the CASES-99 dataset.

In chapter 5 the path averaged C2
T from LAS is compared with the C2

T obtained

with M2AV during the LITFASS-2009 and LITFASS-2010 campaigns. The reason for

the deviation of C2
T obtained with the M2AV with respect to the LAS and to the sonic

remains unexplained to large extent. Therefore, we would recommend to repeat the field

experiments, and then to use multiple unmanned aircraft flying synchronously along the

scintillometer path, in order to obtain statistical information about calculating C2
T from

the M2AV.

The ultimate goal of the LITFASS-2009 experiment1 was to compare the path aver-

aged C2
T from the LAS measured with the M2AV data, LES data from the PArallelized

LES Model (PALM Raasch and Schröter, 2001) and an aggregated C2
T obtained from

the surface stations over the different fields along the path (see figure 1.4). The com-

parison of C2
T obtained with all these methods would then give a comprehensive picture

of C2
T in the ASL. So far, only the LAS data is compared with M2AV data (chapter 5).

The reason that no LES has been based on LITFASS-2009 is that during this exper-

iment the meteorological conditions were unfavourable to simulate the daytime ABL

evolution. There were no clear sky conditions during an entire day, and the geostrophic

wind speed was too large. Therefore, the PALM simulations focussed on data of the

LITFASS-2003 experiment (Maronga, 2014; Maronga et al., 2014). The disadvantage

of using this experiment is that no airborne measurements where performed at the lev-

els of the LAS between Falkenberg and Lindenberg. Using data from LITFASS-2010

was not an option either, because for this experiment H and LE at the different fields

within the LES domain were not measured, which would be needed as input data for

PALM.

The PALM studies based on LITFASS-2003 data are used to investigate the appli-

cability of the blending height concept. This concept assumes that over heterogeneous

terrain MOST is only valid above the blending height (zb), where the influence of the in-

dividual patches is not visible anymore due to turbulent mixing. Maronga et al. (2014)

showed that the influence of the individual patches over the heterogeneous surface

along the LAS path between Falkenberg and Lindenberg is still present in the structure

parameters up to 100-200 m. This is in agreement with another LES study (Dutch

Atmospheric LES Heus et al., 2010) based on an idealized heterogeneous striped sur-

face pattern (van Laar, 2013). Van Laar (2013) found that the blending height, ranges

from 70-955 m, which is larger than the 8-15 m based on a thermal blending height

1DFG-NWO project ‘Turbulent Structure Parameters over Heterogeneous Terrain - Implications for the Interpretation
of Scintillometer Data’
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expression given in Bange et al. (2006). Both studies indicate that the measurement

level of the scintillometers during the LITFASS experiments is below zb. As a conse-

quence, the blending height concept cannot be used for the LAS between Falkenberg

and Lindenberg. This is because differences in C2
s of individual patches along the path

are visible in the path-averaged C2
s . Moreover, the study of van Laar (2013) found that

the domain-averaged C2
s over the heterogeneous surface differs from that over the ho-

mogeneous surface, whereas the averaged prescribed surface fluxes are identical. Both

findings create extra uncertainty in the use of MOST to obtain the fluxes.

One reason why we did not consider the aggregated C2
T from the meteorological sta-

tions is that the inter-comparison study of different laser scintillometers (SLS, Scintec)

that took place just before LITFASS-2009 showed differences in C2
T between the in-

struments (Beyrich et al., 2012). These differences were unexplained so far, but can

probably be reduced with the new calibration procedure of the SLS that can be applied

retroactively (Van Kesteren et al., 2013).

Moreover, there are still some open questions related to obtaining an aggregated

C2
T . An aggregated C2

T can be obtained using footprint models, see the examples

given by Meijninger (2003); Meijninger et al. (2006). It is, however, unclear whether

these footprint analyses can be applied for C2
T because of two reasons. First, footprint

models have been formulated for measurements of concentrations and fluxes. In these

analyses the distribution of the surface source and sink strength is combined with a

footprint function. These functions are based on diffusion (e.g. Gaussian diffusion),

advection-diffusion or dispersion equations (Schmid, 2002). C2
s , however, is a property

of a turbulent field and it is neither transported (as in case of a concentration) nor is

it a direct measure of the transport (as in case of the fluxes). Second, the footprint

functions differ for each atmospheric quantity, e.g. between T and q (Schmid, 2002),

and have to be defined for structure parameters before they can be used to calculate

aggregate values.

As a further research step, we therefore propose to evaluate if the footprint models

for concentrations or fluxes can be used for structure parameters. One way to evaluate

this, is to apply to C2
s the method used by van de Boer et al. (2013) for evaluating

analytical flux footprints. They compared observed fluxes at a station on the edge of

two fields to fluxes that were obtained by combining observed fluxes in the centre of

those fields, using the relative contribution of the fields derived with different footprint

models.

7.3. The structure parameter of humidity

Within chapters 2, 3, 5 we focussed on C2
T only, whereas for obtaining LE from scintil-

lometry the MOST relation for C2
q is needed. The focus on C2

T has two reasons. First,

fast response hygrometers were unavailable at the tower during the CASES-99 experi-

ment and at the M2AV during the LITFASS experiments. Second, the evaluation of C2
q

had less practical need until now. To obtain C2
q from scintillometry, a two-wavelength
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scintillometer system –a combination of a LAS and a MWS– is needed. The LAS is

available commercially and is in long term operational use at several places (Beyrich

et al., 2002), whereas the MWS is still in a prototype stage (only few experimental in-

struments exist) mainly used during research campaigns (among others Beyrich et al.,

2012; Leijnse et al., 2007).

In the coming years, however, this situation is expected to change because of a suc-

cessful cooperation2 that has lead to the development of the prototype of a commercial

MWS by Radiometer Physics GmbH. This would make research into the behaviour of

C2
q also of more practical interest.

There are also other reasons why research into the behaviour of C2
q is important.

First, its behaviour seems to be different from C2
T (Li et al., 2012; Maronga, 2014). This

contradicts with the theory where the similarity relations for C2
q and C2

T are necessarily

equal. The equality is based on the standard assumption of MOST (stationary and

homogeneous conditions, turbulence is controlled by surface processes only) and that

the correlation between temperature and humidity (RTq) is one. However, within the

ASL RTq is observed to be smaller than one because of several reasons (Katul et al.,

2008). Li et al. (2012) show that a small value of RTq leads to a deviation in the

shape of the MOST relations of C2
T and C2

q . Based on a sensitivity study with large-

eddy simulation (LES), Maronga (2014) found that both C2
T and C2

q follow MOST if

RTq ≈ 1. If, however, RTq < 1, e.g. due to dry air entrainment, the behaviour of C2
q

deviates from MOST.

The bigger impact of entrainment on C2
q than on C2

T , in such cases, can cause that

at a certain height the impact of surface heterogeneity is less visible for C2
q than for

C2
T . In other words, the level up to which surface heterogeneity is visible is lower for

C2
q than for C2

T , as is also observed with LES by Maronga et al. (2014) and van Laar

(2013). Because this level is then an indirect effect of dry air entrainment, it is not the

same as the zb. Above this level MOST is still not valid, which has to be considered

when studying the blending height concept.

Second, observations of C2
q can be used to investigate the behaviour of MOST within

the near-neutral regime. Under near-neutral conditions C̃2
T is sometimes unreliably

large. The reason for the large values of C̃2
T is as follows. For near-neutral conditions

H is small, whereas temperature fluctuations may still be finite (but uncorrelated to

the vertical wind speed). As H is small, a small error in absolute sense can be large in

relative sense. Moreover, an underestimation in H results in a larger deviation in C̃2
T

than an overestimation in H. For instance, an error of 20 % in H leads to an increase in

C̃2
T of 25 % if H was underestimated, but to a decrease of 16 % if H was overestimated.

In these near-neutral periods LE can be still substantial, and therefore the error in C̃2
q

is smaller.

All together, for the reasons as given above, we would propose to focus on the be-

2within the STW project ‘WTC7484: Innovations in Scintillometry - Measuring surface fluxes of water vapour, sensible
heat and momentum on field to kilometre scales’
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haviour of C2
q in coming research.

7.4. Scintillometer measurements

Scintillometers do not measure C2
s directly, but C2

n is obtained from the variance

of the logarithmic intensity σ2
ln I . As is shown in appendix A, it appears that σ2

ln I

differs between two calculation methods. The deviation between these two methods

could be the reason for the underestimation of C2
n obtained from the LAS of scintec

(BLS900) compared to those from the LAS of WUR (WURLAS), as it was found from

long-term intercomparison study (personal communication: Frank Beyrich, Bram van

Kesteren, MOL-RAO, 2012-2013). It was shown that the difference between BLS900

and WURLAS depends on the mean cross-wind along the path. The exact reason for

this deviation is still not clear. In order to investigate if the differences between be-

tween the two instruments can be related to the differences of the two methods, we

recommend to investigate if the latter does also show a cross-wind dependency. The

intercomparison study and the study in appendix A, both used data along the same

path (Lindenberg-Falkenberg), and therefore we propose to investigate if the deviation

is also visible for other datasets.

7.5. Turbulent Fluxes

In order to validate MOST (chapter 2 and 3) and to better understand the variability

of the local structure parameter (chapter 4) turbulent fluxes were used. In our case,

we obtained these fluxes using EC technique. However, we would like to make some

remarks related to obtaining fluxes with EC (Van Kesteren, 2012, among others):

• EC systems measure at one point, whereas scintillometers measure along a path;

• EC observations are sensitive to flow distortion by the mast or instrument, whereas

scintillometer observations are not;

• In order to obtain the flux with an EC system all eddy scales relevant contributing

to the flux have to be sampled, whereas scintillometers are only sensitive to eddy

scales within the inertial subrange;

• In order to sample the largest eddy scales EC needs a period of stationary con-

ditions (Lee et al., 2004), whereas scintillometers allow small flux averaging times

because they combine spatial and temporal averaging;

Moreover, although EC is a direct method to determine the turbulent fluxes, after-

wards several corrections have to be applied. For instance, humidity correction for the

sonic temperature (Schotanus et al., 1983; Liu et al., 2001), corrections for spectral loss

due to path averaging and sensor separation (Moore, 1986), and a correction for the

rotation of the wind components of the sonic (Wilczak et al., 2001). A sensitivity study

of Mauder et al. (2007) shows that different options in applying these corrections re-

sulted in a deviation of 10 % for H and 15 % for LE. The uncertainty in the EC fluxes

is an important issue in micro-meteorology, because it can be one of the reasons for the
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non closure of the surface energy balance as it is often observed with experimental data

(Q∗ +G 6= H + LE, in which Q∗ is the net radiation, and G is the soil heat flux).

While scintillometry has many advantages over EC, its disadvantage is that it is an

indirect method: it uses the functional relations described in MOST or an alternative

scaling method. These relations have to be empirically determined using experimental

data, which are often obtained by EC-systems. This creates a vicious circle. In order to

use scaling one needs the true fluxes. These fluxes could probably better be obtained

by scintillometry than by EC, especially over heterogeneous surfaces. However, for

obtaining these fluxes we need scaling. This brings us to one open issue in micro

meteorology: How do we have to obtain the fluxes correctly? And if we can measure

them correctly can this reduce the non closure of the energy balance?

Consequently, we propose to search for alternatives methods to obtain the real surface

fluxes and to validate MOST or another scaling method. For the latter, the study of

Maronga (2014) shows that the use of LES models running at very high resolution can

be a possible solution.
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A Validation of C2
n observed from two LAS during the

LITFASS-2009 experiment

A.1. Research Motivation

In order to obtain the structure parameter of refractive index of air (C2
n) from the light

intensity (I) measured with the receiver of a Large Aperture Scintillometer (LAS) the

following equation is used (Wang et al., 1978):

C2
n = 1.12D7/3L−3

pathσ
2
ln(I) (A.1)

in which D is the diameter of the beam (D = 0.15 m for the WURLAS), Lpath is the

path length of the scintillometer, and σ2
ln(I) is the variance of the logarithmic intensity.

Because the capacity of dataloggers for high frequency raw data storage used to be

small, the LAS built by Wageningen University (WURLAS) processes its electronic

signal internally. This analogue processing converts the demodulated signal (I) from

the diode into an output voltage (Vout) that is directly related to C2
n via (Moene et al.,

2005):

C2
n = 10−12+Vout (A.2)

During the LITFASS-2009 experiment 500 Hz data were saved as well from two

WURLAS instruments (sn98005 and sn98006). It would be of interest to investigate

how well C2
n obtained via Eq. A.1 corresponds to C2

n via the processing by analogue

electronics. Moreover, after the LITFASS-2009 campaign the electronics within the

WURLAS from DWD (WURLAS98005) were recalibrated. This brings us to the first

two questions answered in this study:

Question 1 - How good is the analogue processing of the WURLAS?

Question 2 - Does the recalibration have any effect on the results?
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A. Validation of C2
n from two LAS

Table A.1. The different methods of calculating C2
n .

name method equations filtering datalogger variables averaging time

Mvardirect σ2
ln(I) directly A.1+A.3a Matlab CR9000 I 500 Hz

Mvarlognorm σ2
ln(I) assuming A.1+A.3b None CR9000 I 500 Hz

lognormal CR9000 σI and I 1min
10min

distribution G2 σI and I 10 min

MVout Vout A.2 Analogue CR9000 Vout 1min
10min

G2 Vout 10 min

A.2. Strategy

As said above, we compare C2
n obtained from Eq. A.1 using the raw (500 Hz) data

with C2
n obtained from Eq. A.2 observed from both WURLAS instruments within the

LITFASS-2009 experiment.

The variance of the logarithm of the intensity (σ2
ln(I)) in Eq. A.1 can be calculated

in two ways. Directly from the 500-Hz data (abbreviated as Mvardirect):

σ2
ln(I) =

1

N

N∑

i=1

(
ln(I)− ln(I)

)2
(A.3a)

but also assuming a log-normal distribution and fluctuations that are small compared

to the mean value (abbreviated as Mvarlognorm):

σ2
ln(I) = ln

(
1 +

σ2
I

I
2

)
(A.3b)

in which the overbar in both equations indicates the mean. The log-normal distribution

assumption (Eq. A.3b) is also used in Van Kesteren and Hartogensis (2011) and in

the data analysis of the BLS900 (Scintec AG, 2006, boundary layer scintillometer of

Scintec). The advantage of the second method is that then Eq. A.1 can be used to

calculate C2
n because σI and I can be saved using simple data logger. For instance,

they are part of the standard output of the WURLAS. In order to have an indication

when Eq. A.3b could be used, Fig. A.1 shows probability density functions of artificial

datasets obtained with a randomized data generator, assuming a log-normal distribution

with four different standard deviations. From this figure it can be concluded that the

difference between the two methods (Mvardirect and Mvarlognorm) can be neglected if

σI < I and start to become important if σI >> I.

This brings us to the last question answered in this study:

Question 3 - What are the differences between C2
n calculated with the three different

methods (see Table A.1)?
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Fig. A.1. Bar charts of an artificial dataset obtained with a randomized data generator assuming a log-normal
distribution with four different standard deviations in Matlab.

Table A.2. The scintillometers used in this study. The location is the location of the datalogger and receiver,
zeff is the effective height, G2 is the internal data logger of the WURLAS (1 Hz) and CR9000 an additional
data logger used during LITFASS-2009 (500 Hz). The time window and frequency as is specified in the table
indicate the saving window and frequency.

WURLAS location zeff G2 CR9000

10 min 1 min 500 Hz

98005 Lindenberg 43m Vout, σ
2
Vout

, I, σ2
I , C2

n Vout, σ
2
Vout

, I, σ2
I , C2

n I

98006 Falkenberg 63m Vout, σ
2
Vout

, I, σ2
I , C2

n I

A.3. Data and Methods

A.3.1. Data

The scintillometers and data loggers

During LITFASS-2009, two WURLAS instruments were set-up between the Lindenberg

and Falkenberg towers (Lpath = 4800 m)1) with an effective height (zeff ) of 43 m

(WURLAS98005) and 63 m (WURLAS98006 Beyrich et al., 2012).

The 10-min data (slow dataset) from the WURLAS98005 was logged on the internal

datalogger: the G2, which is in operational use for more than 10 years (see Table

A.2). Notice that within the G2, C2
n was internally calculated with Eq. A.2 and then

averaged, which differs from calculating C2
n with Vout.

The 1-min data (slow dataset) and the 500 Hz data (raw dataset) from both in-

struments (WURLAS98005 and WURLAS98006) were logged on a datalogger CR9000

(see Table A.2). Within the CR9000, the 1-min C2
n was internally calculated as in the

G2. The 1-min data of the datalogger CR9000 was averaged up to 10 min in order to

compare it with the data of the G22.

1L = 4800 m was determined with GPS and GIS after the experiment. The pot-setting P of the WURLAS98005

was set for L = 4700 m (P =
(

5475.81/
(√

4.474D−7/3L−30.3314 · 1012 + 5.23
))

− 47, Meijninger et al., 2000.

As a consequence, P had to be set to 922.2 instead of 924.5. In order to correct C2
n MVout, C2

n was multiplied

with a factor 0.939 ((4700/4800)3).
2σ2(x)10 min = σ2(x)1 min

10 min
+ σ2(x1 min)10 min
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Fig. A.2. Top: Unfiltered and filtered energy spectrum of the 500 Hz data (WURLAS98005) between 1230
UTC and 1300 UTC at 4 July 2009 (doy 185). Middle: the first 10 min plotted for the unfiltered and filtered
series. Below: Bar charts of the demodulated signal (left) and the logarithm of the demodulated signal (right)
including a probability density function of the normal distribution.

During the LITFASS-experiment the pot-setting of the WURLAS98006 was set to

404.5 which corresponds to L = 720 m instead of 4800 m (Meijninger et al., 2000).

Therefore, the structure parameter from the processed 1-min data needed to be cor-

rected: Cn2cor = Cn2meas

(
720
4800

)3
= 3.375 × 10−3Cn2meas.

A.3.2. Obtaining C2
n using the three methods

C2
n via Vout (MVout)

To obtain Vout, several steps are required within the analogue electronics of the LAS.

The demodulated intensity signal: a) is low-pass filtered at 400 Hz in order to exclude

electronic noise, b) passes a log-amplifier, c) is amplified with a gain that depends on

L and D and d) is high-pass filtered at 0.1 Hz to exclude water vapour absorption

fluctuations, e) passes through a RMS-to-DB converter (Moene et al., 2005). The

averaged values of the final signal (Vout) and C2
n were saved on the internal datalogger

(10 min, G2 datalogger) and the CR9000 datalogger (1 min).

C2
n via σ2

ln(I) directly calculated (Mvardirect)

To obtain C2
n using Eq. A.1, and Eq. A.3a or Eq. A.3b from the 500-Hz data, four

steps were taken with Matlab: a) Data points corresponding to a demodulated signal of

zero are removed, b) ln(I) and I are high-pass filtered at 0.1 Hz using Fourier spectrum.

This is done in order to exclude the absorption fluctuations from the raw signal. The

upper part of Fig. A.2 shows an example of the filtered and unfiltered spectrum at 4

July 2009 (1230 UTC, local summer time is UTC + 2 h) of I. These data will not

be low-pass filtered at 400 Hz, because the Fourier spectrum has a cut-off at 250 Hz

to avoid aliasing. c) From the Fourier spectrum over a 10-min window, σ2
ln(I) or σI is
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calculated, in order to easily compare it with the analogue processed data from the G2

datalogger. d) The 10 min averaged C2
n is calculated using Eq. A.1.

This method differs from MVout in i) the raw data is not low-passed filtered, ii)

a different high-pass filter is used, and iii) possible errors within calibration of the

analogue processing do not influence the raw data.

C2
n via σ2

ln(I) assuming log normal distribution (Mvarlognorm)

Eq. A.3b was applied using the raw data (500 Hz) and the slow data (10-min in case

of the G2, and 1min
10min

in case of the CR9000). Notice that in the latter case, the

demodulated intensity signal was not band-pass filtered at all. In order to check if the

log-normal distribution assumption can be used, the lowest part of Fig. A.2 shows the

probability density functions of the 500-Hz demodulated signal and the logarithm of the

demodulated signal. Figure A.2 indicates that for this time window the data shows a

log-normal distribution. The standard deviation of the demoduladed signal σI is 23.33

and the mean intensity is 78.36. So in this case σI < I that indicate that σ2
ln(I) obtained

from Mvardirect and Mvarlognorm are expected to be similar.

Data selection

In this study we used the following data:

• LITFASS-2009: from 2 July 2009, day of the year (DOY) 183 until 22 July 2009,

DOY 203,

• LITFASS-2009POST: from 26 July 2009, DOY 207 until 4 September, DOY 247.

Data were only selected when the averaged value of the intensity was higher than

75 mV, in order to neglect the weak signal intensity cases which could occur during fog

or rain fall.

All the Figures, except for Fig. A.2 and A.6, show the data of the entire experiment.

A.4. Results

A.4.1. Comparing the slow data of the two dataloggers

Figure A.3 shows the analogue processed 10-min output data from the G2 datalogger

compared to the 1min
10min

data from the CR9000 datalogger. On first sight, both

dataloggers show quite comparable results, especially for Vout and C2
n , the important

variables. The small differences between the dataloggers could originate from a different

time stamp.

But on a closer look, Fig. A.3 shows two large differences in I observed from the two

dataloggers. First, the G2 data does not have a continuous range of values, but the

data is clustered in bins. The difference between the bins is 2.8 mV. The reason that

this resolution problem is not visible for Vout and C2
n is that their measured range is

larger. It is therefore only slightly visible in the zoom in. For Vout and C2
n the entire
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Fig. A.3. The slow data of the G2 datalogger (x-axis, 10-min) versus the slow data of the CR9000 datalogger

(y-axis, 1min
10min

) for Vout, σVout , I, σI and C2
n (all black). For the average and standard deviation of the

intensity, also the 500 Hz data are shown (grey).

range of the Analogue Digital Converter (ADC) is used, whereas for I and σI much less

bins are used. For σI just 22 of the total number of bins (4096) are used.

Second, the G2 data shows an offset of 3 mV, whereas the slope of the regression line

is almost one. With an averaged intensity 100 mV this corresponds to an overestimation

of 3 %. An explanation for this difference in the offset is that the G2 itself is not well

calibrated. However, in the operational standard use, the averaged intensity signal is

only applied as data filter and for that the signal is accurate enough.

The structure parameter itself shows comparable results between the two dataloggers,

which means that the internal datalogger (G2) can still be used. However, because the

G2 datalogger was only mounted on the WURLAS98005, the following results are based

on the data of the CR9000.

A.4.2. Comparing the three different methods to calculate C2
n

Mvarlognorm versus Mvardirect

Figure A.4 shows C2
n calculated via Mvarlognorm (Eq. A.3b, 500 Hz and 10 min) versus

C2
n calculated via Mvardirect (Eq. A.3a, 500 Hz). Notice, that only the 500 Hz data is

high-pass filtered. This means that the correction to exclude absorption fluctuation is
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Fig. A.4. C2
n calculated via Mvarlognorm versus C2

n calculated via Mvardirect for WURLAS98005 (zeff =
43 m, left) and WURLAS98006 (zeff = 63 m, right) at a linlin scale (upper) and a loglog scale (below). With

σ2
I and I

2
obtained from the CR9000 slow dataset (grey circles, 1min

10min
, without the band-pass filter), from

the CR9000 500-Hz dataset (black circles, including band-pass filter), and in case of the WURLAS98005 from
the internal G2 slow dataset (grey crosses, 10 min, without the band-pass filter).

not taken into account for Mvardirect 10min.

From the double linear plots (linlin), we observe that the C2
n calculated with Mvar-

lognorm underestimate Mvardirect for larger structure parameters, whereas for smaller

structure parameters the data is more located closer to the 1:1-line. The underesti-

mation is better observed for the data from WURLAS98005 than for WURLAS98006,

because the range of C2
n is larger due to a lower zeff of the WURLAS98005. The double

logarithmic plots (loglog) show that for small structure parameters the two methods

are similar.

The underestimation using the lognormal assumption is also found by the intercom-

parison study of the WURLAS98005 and a BLS900, both installed between Falkenberg

and Lindenberg (personal communication: Frank Beyrich, Bram van Kesteren, MOL-

RAO, 2012-2013). Within this comparison C2
n from the WURLAS98005 was determined

from the anologue signal (MVout), however, from the results in the next paragraph, we

found that C2
n MVout and C2

n Mvardirect are similar. The BLS determines C2
n via Mvarlog-

norm. They found an underestimation of the BLS900 compared to the WURLAS98005

of 16% with a regression of 0.84. Further research shows that this underestimation

depends on the amount of cross wind along the path.
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Table A.3. C2
n calculated via Mvarlognorm from slow data (y) versus C2

n calculated via Mvarlognorm from
raw data (x) obtained with the CR9000.

y is obtained from 1min
10min

y is obtained from 1-min

equation r2 equation r2

WURLAS98005 y = 0.97x + 1.41 × 10−17 0.97 y = 1.00x + 5.12× 10−19 1.00
log y = 0.99 log x− 1.20× 10−1 1.00 log y = 1.00 log x− 1.88 × 10−3 1.00

WURLAS98006 y = 0.97x + 2.57 × 10−17 0.96 y = 1.00x + 5.26× 10−20 1.00
log y = 0.99 log x− 1.12× 10−1 0.99 log y = 1.00 log x− 5.53 × 10−4 1.00

The slow dataset (grey circles, 1min
10min

) shows a larger underestimation than the

raw dataset (black circles, 500 Hz). This could be caused by rounding errors in the

second calculation step of the 10-min processed data. First, the CR9000 datalogger

processed the 500-Hz data over 1 min (averaged and taking the standard deviation),

and afterwards these 1-min data is averaged up to 10 min. In order to investigate, if

this is the reason, C2
n obtained from the slow data is compared to the raw data for

the 1-min averaged intervals (see Table A.3). From the Table we observe that a small

underestimation is visible for the 10-min averaged intervals, whereas it is not observed

for the 1-min averaged interval. Furthermore, the r2 improved using the 1-min averaged

interval.

For the WURLAS98005 (Fig. A.4 left), we also include C2
n obtained via Mvarlog-

norm using the slow data logged on the G2. The G2 datalogger underestimates C2
n

Mvardirect even more than the CR9000 datalogger does. The small overestimation of

3.5 mV in the averaged intensity (see Fig. A.3) contributes to this underestimation.

Furthermore, the scatter in C2
n is a bit larger when using the G2. This is an effect of

the resolution problem in σI and I (see Fig. A.3).

Mvardirect versus MVout - How is the calibration of the WURLAS during LITFASS-2009?

WURLAS98005 In Fig. A.5 C2
n calculated via MVout versus C2

n calculated via

Mvardirect is plotted as observed by the WURLAS98005. For this instrument, the two

methods show comparable results, except of some very large values of C2
n Mvardirect that

decrease the slope of the regression to 0.87 (see also last paragraph of this section) with

a correlation coefficient of 0.86 (Fig. A.5 left). This means that the calibration was

already good during LITFASS-2009 and a recalibration was actually not needed.

Whereas the recalibration was not needed, we have to investigate the effect of the

calibration. Table A.4 show the results for the LITFASS-2009POST experiment. It

appears that still after the calibrations the two methods shows comparable results,

which means that the recalibration was done well.

WURLAS98006 The WURLAS98006, however, does not show comparable results

(Fig. A.5 right). C2
n calculated via MVout shows a large overestimation (44 %) com-

pared to C2
n calculated via Mvardirect. It seems that the degree of overestimation
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Fig. A.5. C2
n calculated via MVout versus C2

n calculated via Mvardirect for WURLAS98005 (zeff = 43 m,
left) and WURLAS98006 (zeff = 63 m, right) at a linlin scale (upper) and a loglog scale (below). The colour
represents the day of the year (DOY) when the measurements were taken.

depends on the day of the measurement. At the beginning of the experiment the over-

estimation is larger than at the end of the experiment.

One reason can be that the WURLAS98006 is not well calibrated, which will result in

an error in the calculation of Vout. In order to investigate if the WURLAS98006 is not

well calibrated, we study data from the WURLAS98006 observed during the BLLAST

experiment done in Lannemezan (France) during June 2011. During BLLAST only the

1-min data and not the raw 500-Hz data were saved on a CR10 datalogger. This makes

it only possible to compare C2
n MVout with C2

n Mvarlognorm and not with C2
n Mvardirect,

and therefore two remarks have to be made:

1. we focus on 1-min data, because we observe that averaging over 10 min could cause

Table A.4. C2
n calculated via MVout (y) versus C2

n calculated via Mvar (x) obtained during the LITFASS-
2009POST experiment (Mvardirect) and during the BLLAST experiment (Mvarlognorm).

equation r2

WURLAS98005 LITFASS-2009POST y = 0.98x + 1.34× 10−16 0.96
log y = 1.01 log x+ 2.09 × 10−1 0.99

WURLAS98006 BLLAST y = 1.09x + 4.12× 10−16 0.96
log y = 1.00 log x− 1.55 × 10−3 1.00
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rounding errors (see Sect. A.4.2),

2. we could expect a small overestimation at large values of C2
n , because we use C2

n

Mvarlognorm instead of C2
n Mvardirect (see Sect. A.4.2).

The linear regression through the BLLAST data is given in table A.4. Comparing the

two methods, we observe that C2
n calculated via MVout overestimates C2

n calculated

via Mvarlognorm with 10 %, which is smaller than for the Falkenberg data. Notice,

that if we had compared the MVout-method with the Mvardirect-method instead of

Mvarlognorm the overestimation would be smaller (see remark 2). This effect is even

stronger than during LITFASS-2009, because zeff is lower and as a consequence C2
n is

a factor 10 higher for BLLAST than for LITFASS-2009. So, it seems that the large

overestimation of the analogue processed data of the WURLAS98006 during LITFASS-

2009 is not caused by a wrong calibration of the WURLAS.

Another reason for the deviation could be that both signals are saved on another

module of the CR9000 data logger: Vout is saved on the standard module (CR9050),

and I is saved on the module CR9052. The module CR9052 can be used to sample

several signals simultaneously, so that the raw data IMWS (the intensity signal of the

microwave scintillometer) and ILAS could be sampled simultaneously.

Most likely the problem has to be searched in the CR9052 module. There are two

reasons for this. First, the same module on the same data logger (CR9052 on CR9000-

sn1041) showed also some signs of malfunctioning at beginning of the LITFASS 2012

campaign. Therefore, during this campaign the standard module (CR9050) was used

to save I instead (personal communication: Bram van Kesteren, MOL-RAO, 2013).

Second, a comparison of C2
n Mvardirect transformed to a height of 50 m shows that the

C2
n of the WURLAS98006 is lower than C2

n of the WURLAS98005. It seems that this

underestimation of the WURLAS98006 depends also on the day of measurement. In

order to have a better comparison, we applied a least squared linear regression through

the origin between C2
n MVout and C2

n Mvardirect of the WURLAS98006 for each day dur-

ing daytime conditions (0600 - 1800 UTC). Moreover, we applied least-squared linear

regression between C2
n 50mMvardirect of the WURLAS98005 and WURLAS98006. The

factor and the correlation coefficients are given in Table A.5. For both regressions the

correlation is large, and the factors are comparable, which indicates that the malfunc-

tioning of the CR9052 module is the reason for thedeviation between C2
n Mvardirect and

C2
n MVout.

Exceptionally large values for C2
n calculated via Mvardirect

Figure A.5 shows some data points where C2
n MVout is considerably underestimated

compared to C2
n Mvardirect, which is also observed during BLLAST and the LITFASS-

2009POST experiment (figures not shown). In other words, using the 500 Hz data gives

extra variability in the intensity. This occurs on different days (colour coding in Fig.

A.5), different moments of the day, under stable and unstable conditions, for different

values of I and σI . One possible reason for losing variability is that the analogue band
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Table A.5. The factor between C2
n MVout and C2

n Mvardirect for the WURLAS98006 (zeff = 63 m), and the

factor between C2
n Mvardirect transferred to 50 m from the WURLAS98006 and the WURLAS98005, for each

day during the LITFASS-2009 experiment based on data observed during 0600 and 1800 UTC without rain.

date doy C2
n MVout vs C2

n Mvardirect C2
n WURLAS98005 vs C2

n WURLAS98006

factor r2 factor r2

03-07-2009 184 2.21 0.93 2.45 0.32
04-07-2009 185 2.21 0.95 2.29 0.80
05-07-2009 186 1.74 1.00 1.80 0.98
06-07-2009 187 1.68 1.00 1.73 0.98
07-07-2009 188 1.56 0.88 1.52 0.87
08-07-2009 189 1.18 0.60 1.35 0.95
09-07-2009 190 1.39 1.00 1.43 0.99
10-07-2009 191 1.33 0.88 1.40 0.98
11-07-2009 192 1.42 1.00 1.42 0.99
12-07-2009 193 1.35 0.99 1.38 0.99
13-07-2009 194 1.40 0.99 1.42 0.99
14-07-2009 195 1.48 1.00 1.58 0.97
15-07-2009 196 1.50 1.00 1.51 0.98
16-07-2009 197 1.44 0.99 1.48 0.96
17-07-2009 198 1.54 1.00 1.55 0.98
18-07-2009 199 1.47 0.96 - -
19-07-2009 200 1.45 1.00 1.54 0.99
20-07-2009 201 1.44 0.99 1.49 0.99
21-07-2009 202 1.41 1.00 1.49 0.99

pass filter is too narrow.

In order to search for a possible explanation, we investigate the spectrum and PDF of

the demodulated signal intensity of such a data point. Figure A.6 shows the spectrum

and the PDF of the most right data point from Fig. A.5 (C2
n Mvardirect = 3.6 × 10−14

m−2/3 and C2
n Mvardirect = 1.8 × 10−15 m−2/3). Three remarks can be made. First, I

does not have a lognormal distribution, but has a distribution with different peaks at

low intensities. Second, the spectrum of I has a small slope for low frequencies. Third,

the evolution of I in time seems not to be stationary.

Other data points show similar patterns, especially the peaks at smaller intensities.

Therefore, we create a filter to check if the PDF of I is log normal distributed3. Using

this filter improves the results. For the WURLAS98005 the slope increases from 0.87

to 0.98 and the correlation coefficient from 0.86 to 0.99. For the WURLAS98006 the

slope increases from 1.44 to 1.47 and the correlation coefficient from 0.89 to 0.96.

3The calculations to check if the data is log-normally distributed consist of three steps. First, we determine
the maximum difference between the measured distribution and the estimation of the log-normal distribution

(= 1

x
√

2πσ2
e
−

(ln x−µ)2

2σ2 ), i.e., the maximum difference between the red and black lines in Fig. A.2 and A.6.

Second, we calculate the ratio of this maximum difference with the maximum of the measured distribution, i.e. the
highest peak of the red line. For a log-normal distribution, the maximum difference is small and the ratio will be
around 0. Third, we excluded data points with a ratio higher than a threshold value of 0.15.
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Fig. A.6. Top: Unfiltered and filtered energy spectrum of the 500 Hz data (WURLAS98005) between 1110
UTC and 1120 UTC at 9 July 2009 (doy 190). Middle: the first 10 min plotted for the unfiltered and filtered
series. Below: Bar charts of the demodulated signal (left) and the logarithm of the unfiltered demodulated
signal (right) including a probability density function of the normal distribution.

A.5. Conclusions

1. The two dataloggers (G2 internal datalogger and the CR9000) give comparable

results: Vout and C2
n are identical. The resolution of the G2 is lower, which is

visible for the demodulated intensity measurements. The demodulated intensity

of the G2 shows an overestimation with an offset of 3 mV (around 3 %) compared

to the CR9000, probably caused by a wrong calibiration of the G2 datalogger.

2. The structure parameters obtained via Mvarlognorm are smaller than those via

Mvardirect, especially if C2
n is large.

3. If the probability distribution of I is not log normal (under non-stationary con-

ditions), the data of the analogue processed data shows a much smaller structure

parameter than the 500 Hz data processed in Matlab. Removing these data points

improves the correlation.

4. For the WURLAS98005, the structure parameters obtained via MVout is compa-

rable with those obtained via σ2
ln(I) before and after the recalibration (correlation

coefficient of 0.99 and a slope around 1). This means that the instrument was al-

ready well calibrated and the recalibration was not needed but did not deteriorate

the results.

5. For the WURLAS98006, the structure parameters obtained via MVout are larger

than those obtained via Mvardirect. The differences depend on the measurement

day. This is a consequence of the malfunctioning of the CR9052 module on the

CR9000 datalogger (sn1041). Therefore, if C2
n obtained via MVout from the 500 Hz

data (datalogger: CR9000-sn1041, module: CR9052) is used during LITFASS-2009

a correction per day has to be applied as given in Table A.5.
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A.6. Outlook

A.6. Outlook

During this research some new questions arose:

1. The filter obtained in Matlab has a sharp cut-off, whereas the analogue filter is

smoother. It would be of interest to investigate if a much smoother filter would

make the results of the analogue processed and the Matlab processed data more

similar.

2. Why is C2
n calculated via Mvarlognorm (assuming a log normal distribution)

smaller than those of the other methods?

3. What causes those non-stationary conditions that result in a deviation from a

log-normal distribution?

4. What is the reason for the malfunctioning of the CR9052 module on the CR9000

datalogger during LITFASS-2009 and LITFASS-2012, and why does the correction

factor depend on the day of measurement?
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Atmosferische turbulentie en scintillometrie

Atmosferische turbulentie is het belangrijkste mechanisme voor het verticale transport

van energie en materie, zoals waterdamp, in de atmosferische grenslaag (“Atmospheric

Boundary Layer”, ABL). De oppervlaktestromen (fluxen) die gerelateerd zijn aan dit

turbulente transport zijn de voelbare (H) en latente warmteflux (LE, verdamping).

Hun grootte is onder andere afhankelijk van jaargetijde, de tijd op de dag, en de locatie

op aarde. Eén manier om H en LE te meten is door gebruik te maken van scintillome-

ters. Een scintillometersysteem bestaat uit een zender, die elektromagnetische straling

uitzendt, en een ontvanger die deze straling opvangt. Voor de scintillometers die in deze

studie worden gebruikt is de typische lengte van het pad tussen zender en ontvanger

ongeveer 1 tot 5 km. De intensiteit van het elektromagnetische signaal dat door de

ontvanger wordt gemeten varieert door fluctuaties in de brekingsindex van lucht (n),

die op hun beurt weer veroorzaakt door turbulentie langs het pad. De grootte van de

brekingsindexfluctuaties is evenredig met de padgemiddelde structuurparameter voor de

brekingsindex (C2
n), en met C2

n kunnen de structuurparameters voor temperatuur (C2
T )

en luchtvochtigheid (C2
q ) worden bepaald. C2

T en C2
q zijn een maat voor de turbulente

temperatuur- en vochtfluctaties in de “inertial subrange” van het turbulente spectrum.

De mate waarin C2
n afhangt van C2

T en C2
q is afhankelijk van de golflengte van de straling

waarmee de scintillometer uitzendt. Als deze straling in het bereik van zichtbaar licht

en infrarood ligt, zoals de “large aperture” scintillometer (LAS, Scintillometer met een

grote opening), is C2
n voornamelijk gevoelig voor C2

T . Terwijl C2
T en C2

q even belangrijk

zijn voor scintillometers die geberuiken maken van micro- of radiogolven (“Microwave

scintillometer”, MWS). Met C2
T en C2

q worden uiteindelijk de padsgemidddelde H en

LE bepaald door het toepassen van de gelijkvormigheidstheorie van Monin en Obukhov

(“Monin-Obukhov similarity theory”, MOST).

MOST is een theorie die gebaseerd is op dimensie-analyse. MOST biedt een kader

waarmee met behulp van universele, empirische, functies de oppervlaktefluxen gekop-

peld kunnen worden aan andere turbulente grootheden: structuurparameters in het

geval van scintillometrie. MOST is alleen geldig boven homogeen landschap, tijdens sta-

rionaire situaties en in de atmosferische oppervlaktelaag (“Atmospheric Surface Layer”,

ASL). In het algemeen wordt aangenomen dat turbulentie in de ASL voornamelijk wordt

veroorzaakt door processen aan het aardoppervlak, en dat andere processen, zoals bij-
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voorbeeld “entrainment” en grootschalige advectie, kunnen worden verwaarloosd. De

dikte van de ASL varieert sterk al naargelang de tijd van de dag en is ongeveer 10 % van

de ABL. Aan het einde van de middag, wanneer de turbulentie het sterks ontwikkeld

is, is de ASL het dikst, terwijl hij gedurende de ochtend en de nacht relatief dun is.

De gebiedsgemiddelde fluxen zijn belangrijk voor verschillende meteorologische toe-

passingen, zoals bijvoorbeeld voor het valideren van numerieke weermodellen en satel-

lietalgoritmen. In de natuur is het landschap vaak heterogeen op een schaal van 1 tot

5 km dat wil zeggen, het bestaat uit verschillende velden die variëren in H en LE.

Daarom is het logischer om scintillometrie te gebruiken dan traditionale puntmetingen

te gebruiken voor het bepalen fluxen die representatief zijn voor het gehele gebied. Ge-

durende de laatste twintig jaar is aangetoond dat scintillommeters gebiedsgemiddelde

fluxen over een heterogeen landschap kunnen bepalen. Toch zijn er ook nog onopgeloste

kwesties die meer onderzoek vereisen. De vier vragen die in dit proefschrift aan bod

komen zijn gerelateerd aan de toepassing van MOST (Hoofdstuk 2 en 3) en aan het

gedrag van de structuurparameter boven heterogeen landschap (Hoofdstuk 4 en 5). Met

andere woorden, de motivatie van dit onderzoek is het beter begrijpen en kwantificeren

van het scintillometersignaal en dan met name gericht op de structuurparameter.

De gegevens die we in dit onderzoek analyseren zijn gemeten op drie verschillende

locaties. We analyseren alleen de observaties van overdag: onstabiele situaties wanneer

turbulentie vooral wordt veroorzaakt door “buoyancy” (drijfvermogen, d.w.z. menging

van de lucht door verschil in dichtheid). Omdat MOST alleen geldig is boven ho-

mogeen landschap, beantwoorden we de eerste twee MOST-gerelateerde vragen met

gegevens die gemeten zijn op een station in relatief homogeneen landschap (Cabauw;

Nederland voor hoofdstuk 2, en CASES-99; Leon; Kansas; VS voor hoofdstuk 3). De

laatste twee vragen (hoofdstuk 4 en 5) worden beantwoord met gegevens die zijn verza-

meld gedurende twee experimenten over een relatief heterogeen landschap (LITFASS-

2009 en LITFASS-2010; Lindenberg; Duitsland, waarin LITFASS de afkorting is voor

“LIndenberg-To-Falkenberg Aircraft Scintillometer Study”). Overigens is het zo dat on-

danks het beter willen begrijpen van het scintillometersignaal de voornaamste drijfveer

was voor dit onderzoek, we de eerste drie vragen in dit onderzoek met C2
T bepaald uit

gegevens gemeten door traditionele puntmetingen beantwoorden, d.w.z. via de eddy-

covariantiemethode (EC), in plaats van met scintillometers.

De toepassing van MOST

Monin-Obukhovschaling in en boven de oppervlaktelaag

Eén beperking van scintillometrie is dat de achterliggende theorie alleen geldig is voor

situaties met zwakke verstrooiing. Het signaal verzadigt namelijk als er sterkere ver-

strooiing plaats vindt. Verzadiging kan worden voorkomen door de scintillometer hoger

boven het aardoppervlak te plaatsen, aangezien C2
n afneemt met de hoogte. Dit brengt

echter ook een nadeel met zich mee: als de ASL dun is, zal een hoger observatieniveau

al gauw boven de ASL liggen, en kan er worden betwist of MOST nog geldig is. Dit
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brengt ons tot de eerste onderzoeksvraag die wordt beantwoord in hoofdstuk 2:

Vraag 1 - In welke mate kan de voelbare warmteflux worden bepaald door de tem-

peratuursstructuurparameter gemeten op grotere hoogte boven het aardop-

pervlak, en dan met name gedurende de ochtend, wanneer het meetniveau

boven de ASL zal liggen?

Om deze vraag te beantwoorden, zijn twee concepten om H met C2
T te bepalen geïn-

troduceerd en met elkaar vergeleken. In het eerste concept, MOSTs, schaalt C2
T met

de oppervlakteflux. In dit concept veronderstellen we dat MOST nog steeds toepas-

baar is net boven de ASL. In het tweede concept, MOSTl, schaalt C2
T met de lokaal

gemeten flux in plaats van met de oppervlakteflux. Dit concept is vergelijkbaar met

de lokale schalingshypothese die wordt gebruikt in de stabiele grenslaag (Nieuwstadt,

1984). Om uiteindelijk de oppervlakteflux te bepalen moet er worden gecorrigeerd voor

fluxdivergentie in de kolom onder het observatieniveau.

Aan de hand van deze twee MOST-concepten, berekenen we C2
T uit de fluxmetin-

gen (m.a.w. MOST in omgekeerde volgorde), en vergelijken we deze met de C2
T die

rechtstreeks is bepaald uit de sonische wind-/ temperatuurmetingen (sonicmetingen)

op het 60-m-niveau van de Cabauwtoren. In de analyse onderscheiden we twee perio-

des: ’s ochtends en ’s middags. ’s Ochtends ligt het 60-m-niveau boven de ASL en kan

MOST worden betwist, terwijl ’s middags het 60-m-niveau in de ASL ligt en MOST in

principe toegepast kan worden.

’s Middags waren de waardes van C2
T bepaald met de twee concepten vergelijkbaar

met die van C2
T rechtstreeks bepaald uit de sonicmetingen. ’s Ochtends, daarentegen,

is er geen eenduidige voorkeur voor een van de twee concepten. Ten eerste observeren

we een piek in C2
T wanneer het meetniveau in de entrainmentlaag ligt, wat door geen

van beide MOST-concepten wordt ondersteunt. Ten tweede geeft MOSTl weliswaar het

juiste verloop in de tijd weer: het moment wanneer de warmteflux nul is valt gelijk met

het moment wanneer C2
T het kleinst is. Maar aan de andere kant onderschat MOSTl

C2
T met een factor tien. Ten derde laten de lineaire regressies tussen C2

T rechtstreeks

bepaald en C2
T geschat met de twee concepten zien dat voor MOSTl de helling dichter bij

één ligt en voor MOSTs het begingetal dichter bij nul. Ten slotte is de correlatie tussen

C2
T rechtstreeks bepaald en C2

T geschat met de twee concepten voor beide concepten

laag en vergelijkbaar. Om al deze redenen concluderen we dat MOST niet toepasbaar

is voor de ochtenduren wanneer het observatieniveau zich boven de ASL bevindt.

Afhankelijkheid van regressiemethode, observatieniveau en stabiliteitsbereik

Binnen het kader van MOST moet de universele functie (f (z/L), waarbij z is de hoogte

en 1/L is een maat voor de stabiliteit) die H en C2
T met elkaar verbindt, empirisch wor-

den bepaald. In de literatuur is een grote verscheidenheid aan vormen van deze functies

te vinden. Een reden voor deze verscheidenheid is dat de locatie, instrumenten en da-

taverwerking van studie tot studie verschilt. Wij gebruik daarom één enkele dataset

(CASES-99) om in hoofdstuk 3 de volgende vraag te beantwoorden:
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Vraag 2 - In hoeverre wordt de vorm van de universele functie beïnvloed door de keuze

van een specifieke regressiebenadering, de opgetreden stabiliteitsrange en de

observatie hoogte?

Het voordeel van één dataset is dat we andere oorzaken van variatie uitsluiten, zoals

bijvoorbeeld verschillen in de dataverwerking, instrumentatie en het landschap. In deze

studie wordt de meest gangbare vorm van f (z/L) voor onstabiele omstandigheden ge-

bruikt, namelijk diegene die wordt beschreven met een machtsfunctie en twee empirische

coëfficiënten c1 en c2: f (z/L) = c1 (1− c2z/L)
−2/3.

In het eerste deel van dit onderzoek evalueren we de verschillende regressiebenade-

ringen. Deze benaderingen verschillen in vier aspecten: het al dan niet logaritmisch

transformeren van de data, de wiskundige regressiemethode, het wegen van de data

met de meetnauwkeurigheid van elk datapunt, en het aantal regressiecoëfficiënten dat

wordt meegenomen in de regressie. De resultaten tonen aan dat het toepassen van deze

verschillende benaderingen een invloed heeft op de resulterende regressiecoëfficiënten,

en het vermelden van de toegepaste benadering is dus van groot belang. Wij adviseren

om een orthogonale regressiemethode te gebruiken, waarbij beide dimensieloze groepen

logaritmisch getransformeerd zijn, en de data gewogen is zodat onbetrouwbare metingen

een kleinere invloed hebben op de coëefficiënten.

Het verdelen van de dataset in acht klassen voor z en acht klassen voor 1/L laat zien

dat de hoogte en stabiliteit invloed heeft op de resulterende coëfficiënten. Dit betekent

dat de variatie van c1 en c2 in de literatuur het gevolg kan zijn van verschillen in meet-

hoogten en stabiliteitsbereiken tussen de verschillende datasets. Bovendien betekent

het dat een f (z/L) niet zonder meer kan worden toegepast op een dataset gemeten op

een andere hoogte en gedurende een andere stabiliteitsbereik. Tenslotte suggereert de

variatie in de coëfficiënten tussen de klassen dat het gebruik van maar twee coefficienten

in de similariteitsrelatie onvoldoende kan zijn.

C2
s boven heterogeen landschap

Kennis over de variabiliteit van C2
s boven heterogeen landschap is belangrijk, omdat

MOST, de link tussen C2
s en de fluxen, in principe alleen geldig is voor homogene

situaties.

Variabiliteit van C2
T en C2

q waargenomen in de ASL

Of variaties in C2
s langs een scintillometer- of vliegtuigpad in het bereik liggen van de

lokale variabiliteit van C2
s , of dat ze moeten worden toegeschreven aan heterogeniteit,

is in hoofdstuk 4 de volgende vraag geformuleerd:

Vraag 3 - Wat bepaalt de lokale variabiliteit van de structuurparameter in de atmosfe-

rische oppervlaktelaag die gemeten is onder verschillende stabiliteitsbereiken

en op verschillende hoogtes?

In dit hoofdstuk richten we ons op de logaritme van de Monin-Obukhovgeschaalde

structuurparameter voor temperatuur en luchtvochtigheid (aangeduid als log(C̃2
s )) waar
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C2
s wordt bepaald over tijdvensters variërend van 1-10 min. We gebruiken één maand

aan EC-data, verkregen tijdens het LITFASS-2009 experiment op 2,5 m boven een

triticaleveld en op 50 m, en 90 m hoogte in de 99-m toren in Falkenberg.

We zien dat de variabiliteit van log(C̃2
s ) wordt bepaald door de stabiliteit van de

atmosfeer en de breedte van het venster waarover C2
s is berekend. Als de instabiliteit

groter wordt, is het verschil in log(C̃2
s ) tussen stijgende lucht (grote C2

s ) en dalende

lucht (kleine C2
s ) groter. De verschillen zijn echter niet voldoende om een bimodale-

kansdichtheidsfunctie te creëeren. Als de venstergrootte toeneemt, neemt de variantie

van log(C̃2
s ) af. De daling wordt ruwweg afgeschat met een eenvoudige lineaire regressie

tussen de varianties van log(C̃2
s ) en de vensterbreedte. Hieruit blijkt dat voor verschil-

lende stabiliteitsklassen zowel het begingetal als de helling (absoluut gezien) afnemen

met toenemende instabiliteit. Voor temperatuur zijn het begingetal en de helling ge-

meten op de drie hoogtes vergelijkbaar. Voor luchtvochtigheid, daarentegen, zijn het

begingetal en helling groter voor 50 m en 90 m dan voor 2,5 m.

Het begingetal en de helling kunnen worden gebruikt om voor een gegeven stabili-

teitsbereik de lokale variatie te kwantificeren. Dit kan, op zijn beurt, een indicatie geven

of variaties in C2
s langs een scintillometer- of vliegtuigpad moet worden toegeschreven

aan heterogeniteit.

Een vergelijking van C2
T bepaald uit LAS en onbemande vliegtuigmetingen

In het laatste hoofdstuk beantwoorden we de volgende vraag:

Vraag 4 - Tot op welke hoogte zijn de padgemiddelde structuurparameters bepaald

met scintillometrie vergelijkbaar met die, die bepaald zijn met een onbemand

vliegtuig?

Deze studie borduurt voort op de studie van Beyrich et al. (2012). Voor vijf vluchten op

één enkele dag tijdens LITFASS-2009 vergeleken zij C2
T bepaald uit metingen van een

onbemande vliegtuig (de “meteorological mini aerial vehicle”, M2AV) met C2
T bepaald uit

LAS-metingen. Gebruikmakend van de standaard dataverwerkingsprocedures vonden

zij dat C2
T bepaald uit M2AV-data systematisch groter is dan C2

T bepaald uit LAS-data.

In dit hoofdstuk onderzoeken we of we gelijkwaardige verschillen zien tijdens de andere

dagen, en of we deze verschillen kunnen verminderen of verklaren als we een uitvoerigere

dataverwerkingsprocedure toepassen op zowel de LAS-data als de M2AV-data.

We concluderen dat het verschil dat Beyrich et al. (2012) waarnam ook op de andere

dagen van LITFASS-2009 en LITFASS-2010 te zien is. C2
T bepaald uit de M2AV-data

is groter dan uit de data van de LAS en de sonic. De uitvoerigere dataverwerkingspro-

cedure verbetert de resultaten niet wezenlijk. Bovendien worden de verschillen tussen

beide datasets niet kleiner wanneer de LAS-data exact gesynchroniseerd zijn met de

tijdsintervallen van de M2AV-vluchten.

Dit betekent dat uiteindelijk het verschil tussen C2
T van de M2AV enerzijds en C2

T

van de sonic en LAS anderzijds tot nu toe niet kan worden verklaard.
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