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I. Concept of risk and uncertainty. 

Despite the many papers written on this subject, the discussions and 
the conferences, there is no definition of risk everybody agrees upon. 
Uncertainty is a very important aspect of life. We will not mention 
dull examples here. 
In optimisation models this uncertainty is often built in as probabi­
lities in relation to possible states of nature. So here uncertainty is 
just caused by nature. However, not all uncertain factors are treated 
this way. 

Another viewpoint is that uncertainty exists due to lack of 
knowledge. Indeed if we knew everything in advance, there would not 
have been any uncertainty. 
To apply this to the field of optimisation, let us consider three 
uncertain factors which occur in the formulation of a certain optimisa­
tion model : 

- We are not sure what will be the right hand side of certain inequality 
constraints e.g. the budget. 

- What is exactly the average evaporation of the soil. A technical fac­
tor influencing the relations in the model. 

- What will be the weather in the planning period of the model. 

All three factors are indeed related to lack of knowledge, though their 
character is different. The factor of the budget depends on behaviour 
of other people and after some time we really know what the budget will 
be. We apply sensitivity analysis and study the behaviour of the shadow 
price. The behaviour of other people is in fields as game theory, eco­
nomics and in general social sciences also described with probabili­
ties. 

The technical factor of evaporation is not known exactly and it 
will not be known, unless some study is done on the technical details 
of the soil under consideration. Also here sensitivity analysis can be 
used to study the sensitivity of the model for this parameter. In this 
sense an impression is created of the relevance of an additional study 
on this technical factor. To get this insight can be an additional 
objective of the use of the optimisation model. 

Whether it is going to rain tomorrow can be described with a 
probability. With this kind of uncertainty it appears to be not worth 
the trouble to make an exact prediction, but stochastic variables are 
introduced to describe reality. Apparently stochastic variables satisfy 
very well in the description of reality in optimisation models, in par­
ticular in discrete simulation models. 

Still risk is not defined. Risk includes the attitude of people 
towards this uncertainty and this brings in the subjective aspect. Risk 
is defined by Cooper and Chapman [6] as exposure to the possibility of 
economic or financial loss or gain, physical damage or injury, as a 
consequence of the uncertainty associated with pursuing a particular 
course of action. In general we will call risk simply the possibility 
of bad outcomes caused by uncertain events. Much is done by economists 
and psychologists to measure the attitude towards uncertainty. In this 
attempt the terms risk perception, how is the risk experienced, and 
risk preference are distinguished. 
It is also hard to see this attitude disconnected from subjective 
probabilities. See e.g. the interesting study of B. Verplanken on atti­
tudes and subjective probabilities towards the use of nuclear energy 
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before and after Chernobyl in the Netherlands [35]. 
In our study we don't want to consider this subjective aspect of 

probabilities but describe the stochastic nature of the outcomes and 
link this with various risk criteria which appear to represent dif­
ferent descriptions of attitudes towards uncertainty, various risk per­
ceptions. In practice various criteria and formulations have been 
applied and compared e.g. by Pintér et. al. in the field of water 
quality control. See Somlyódy and Pinter [31]. 

We will discuss risk criteria on a conceptual base and see which cri­
teria are used as a tool in applications. 
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II. Risk and optimisation. A general model. 

In this section we will try to come to a general description of 
optimisation models regardles the technique that is used to find the 
optimal decision. It should be kept in mind that focus is on this model 
in a stage just before the optimisation process. The optimisation is 
namely only one stage in the decision support process. In the for­
mulation of such a model already decisions are made on which objectives 
are hidden in the constraints, which are left out and which appear in 
the objective function(s). 

Another formulation decision that has been made is which uncertain 
factors are expressed in stochastic variables and which factors are 
taken deterministic and only taken in consideration as uncertain ele­
ments later on, like the technical factor we mentioned in section I. 
The optimisation can also be seen as a stage in a hierarchical decision 
process in which f.i. the budget we mentioned earlier can be regarded 
as a decision on a higher level. 

The various items of an optimisation model are represented in 
nearly every handbook of Management Science/OR. See e.g. Dannenbring & 
Starr [7]. The model consists at least of a more or less detailed 
description of reality. The entrance of the model is formed by the 
decision variables, which we will call x-|,...,xn. We can think of con­
tinuous variable or integer variables like in combinatorial problems or 
there exist perhaps a finite number of possible settings of xi,...,xn. 
To describe the system some internal dependent variables are necessary 
which can only be changed indirectly say q-|,...,qm. We can think e.g. 
of inventory in production-inventory models where decision variables 
consists of the production scheme over time and inventory is developing 
via the balance equation: 

It = It-i + Prodt Demandi 

ai,...,ak 
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technological coefficients and the cost coefficients. 
We can also think of more technical parameters like the evaporation 
character of the soil we already mentioned. On the moment of optimisa­
tion they are taken deterministic. 
Often some parameters are set by decisions on a higher, more strategic, 
level. In the long run those are variable but for the optimisation they 
are seen as exogenous. 

In order to distinguish u from the model parameters a and the 
variables x and q, we will make use of the terms stochastic factors, 
events, random elements etc. and not of the terms stochastic parameters 
and stochastic variables. 

Finally the model delivers certain outcomes z-\,...,zr which with 
the aid of multicn'teria tools, are turned to one objective Z. 
Optimisation is nothing else than calculation of the set of which 
xi,...,xn has to be an element so that Z is optimal. 
This optimisation can be done by various techniques. We will consider 
simulation in this context as the technique of calculating the con­
sequence in terms of z\ for a certain setting of the decision variables 
x-|,...,xn. Simulation in this sense is regarded as an alternative to 
find the optimal decision. Usually also varying the parameters in order 
to do sensitivity analysis is seen as simulation and it is not always 
clear what are decision variables and what are the parameters. We act 
now as if they can be distinguished very well. 

Other techniques are linear programming and non-linear programming. 
In this the best x-\,.. * ,xn is calculated according to the criterion of 
Z. In deterministic dynamic programming an optimal path is calculated 
for a number of decision stages. However if uncertainty is brought in 
by stochastic dynamic programming only the decision for one stage can 
be calculated and decision rules for the other stages are derived. In 
each stage after a stochastic factor has been realised, this rule can 
be used to determine the optimal X = x-\, ..., xn. In this sense we 
should speak of Zt and Xt and the former figure only holds for the 
current stage. 

We consider further the case in which the outcome is not one Z, 
but a distribution function of the objective z. Represented in the 
figure: 

<1,...,xn 

0.8 1.6 2.» 3.2 

The strong assumption is that all endogeneous stochastic factors 
are brought into the objective function. Klein Haneveld [16] 



distinguishes stochastic feasibility and stochastic optimality. We act 
as if all stochastic coefficients, w ,•, in the description c^ the 
feasible space are, one way or the other, transferred to the stochast-'n 
objective z. 

Que to the stochastic nature of yield many agricultural models can 
be regarded :~ t'">is way. ^irst of al1 discrete simulation models 'nave' 
:'or t^e oror.e"ty that ircom ''rg orobab i1 '• ty distribution functions of 

•.y- , . . . ,'ijp are transformed to one or more outgoing dist"-!but -c-s. ror 
special cases mathematicians have been working on the analytical deri­
vation of composed distribution functions. For convolut-'ors this ~ n 
general can be done easier than ?or cases in which stochastic i/sr-'ao'es 
are multiplied or divided, 'out this depends completely on t~e c :st-' ibu-
ticns that are chosen. 

In the case of 7inear programming e.g., if the coefficients of t^e 
objective function, prices or margins, are stochastic with a known pro­
bability distribution and there is enough information on covariances 
etc., usually* the composed probability distribution of z can be 
de.r i </ed for every » *,..., xn. 
~;--e case becomes more complex in LP if also the RHS are stochastic and/ 
or the technological coefficients. See Vajda 1972 [341. The field of 
probabilistic programming is still attractive for research. See the 
more recent publication of M.A. Grove [8]. A kind of goal programming 
approach is suggested to solve the case of a stochastic RHS with known 
pdf by him. 

Besides simulation and probabilistic programming another idea to 
describe problems in an uncertain env ino^ne-t "'s related t: t'~e tech­
nique of Stochastic Dynamic Programming, in which in every period or 
stage a decision has to be made. This approach can be very useful in 
agricultural problems, describing the actions in time a farmer has to 
consider as to get the desired yield, or in general total return. A 
nice eyample is that of pest control in which a farmer u.as to decide on 
the timing of use of pesticides. Every week or day in the growing 
season he has to decide on application of pesticides yes o<- ~o. 
See on this Carlson [4] and Rossing [26]. Pest damage is described fo-~ 
every growth stage of the plant and the occurance of the pest is 
directly or indirectly stochastic. 

Another example can be found in f^e study of Schouwenaars [23] vn 
which the farmer has to decide during the year on sowing or not. The 
stochastic rainfal gives whether the sowing strategy is succesful or 
not. However, Schouwenaars doesn't use dynamic programming tut only 
takes a finite number of possib'e strategies into account. In this 'c-'nd 
of dynamic models the actions which can be undertaken are mere c.~ 'ess 
on the same level. Usually however the farmer first has to make vore 
strategic decisions, on a higher level, and after this he has to decide 
:•'••. the timing of certain actions which can be described by the dynamic-

model . 
It depends on the structure of the model whether the ^'ral pro^a-

oil i t y Qist-ioution o~ -, wh-:ch -:s necessary to calculate the vôV.e 
f jnct-ions to solve the DP problem, can be calculated analytically or 
has to be £ound in simulation. 

It -'s useful now to use a small example which can serve p-•-
illustrative purposes later on. We take this e>amp"!e from Gchwe i^a.-

esst this can be done for normally distributed coefficients 
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and Klein Haneveld [29] 1985. Let us consider a farmer who has to 
decide on the use of his fields. He has to make a more stategic deci 
sion on which variety to use of maize on his 10 acres of land. 
Distributions are given of the yield per acre of two different 
varieties Yj and Y2. 
xi acres will be planted with variety 1 and X2 acres with variety 2. 
The stochastic harvest of maize is then z = xiYj + X2X2 under 
xi + X2 = 10 and xi,X2 > 0. 

Schematically: 

z=XiYj+X2Y2 
x-j+x2=ai 

x-,,x2 

Two probability distributions of Yj and Y2 go into the system. The pro­
bability distribution of z comes out of it and its shape depends on the 
decisions xi and X2. 
We have seen until now that the outcome of a stochastic model gives a 
distribution function of z. Let this probability density function of z 
be called f and the cumulative distribution function F. 
What is optimised if the outcome consists of the cdf F and not of the 
sca7ar Z? In general, optimisation takes place by taking simply only 
the expected value E(z) into account. However how can risk, defined as 
anxiety for negative outcomes, be dealt with now? 

The answer is very simple in principle, but in practice very 
complex. Just give an ordering of which cdf's, F, are preferred above 
others. Give for every pair of cdf's F, G whether F >- G, or G ̂  F or 
G ~ F. Jo state it in another way.- Label all cdf's, attach a number to 
them which represents the grade of preference. Mathematically seen 
there should exist a functional Y[F] which forms a function from the 
space of cdf's to the R.» 
Non the subjective aspect enters our discussion again, because people 
experience uncertainty differently, not only in the sense that they are 
less or more risk averse (risk preference), but also in different atti-
tudes towards regret, bad outcomes, reference points, etc, (risk 
perception). 

The use of different functional forms Y and the derivation of 
properties has been done already in the sixties by Schneeweiss in his 
book 'Entscheidungskriterien bei Risiko'. See Schneeweiss [27]. In the 
next paragraphs we will summarize the ideas of various risk criteria 
and discuss their consequences and properties on the basis of this 
book, but also on the work of Anderson 1979 [2], Boussard 1979 [3], 
and Montazani, Wright 1982 [23]. 

The general model can now be represented in the following way: 
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111.Expected Utility as a possible approach 

One way to solve stochastic optimisation models is to look at the 
expected values of z only and treat it as a deterministic problem 

(» 

further. In this case T[F] = ƒ zdF(z). The set of distribution functions 
-00 

with the same Z-value are those with the same expectation. 
One way to model the aversion towards bad outcomes is to formulate 

a so called utility function on the outcome space of z, u(z), or a 
penalty function on a part of this space, expressing the aversion 
towards these outcomes. 

00 

The expected utility criterion (EU), ƒ u(z)dF(z) can be seen as a func-
-00 

tional Y[F], The concavity of the utility functions represents very 
often in this idea risk aversion. 

Difficulty with application of the EU idea in optimisation is that 
we do not know a general applicable form of this function. However the 
idea is very useful to evaluate other risk criteria as is done by 
Schneeweiss who uses the concept of Bernoulli rationality of the 
criteria. Unfortunately the term rationality suggests that criteria not 
matching this concept are not rational or not good. Our interpretation 
of Bernoulli rationality is that criteria can be translated in the EU 
form. 
Stated in an other way: Does there exist a utility function so that 

00 

^[F] = ƒ u(z)dF(z) or not. We will come back on this idea in the next 
-00 

section. 
The idea of EU has also been used in mathematics to define a 

metric of probability functions with a distance function based on the 
(» 

functional ƒ u(z)dF(z). In this topology of probability distribution 
-00 

functions (cdf's), two distributions are called close if their expected 
utility values are close. In this sense for any u-function a metric is 
defined. Regoli [25] has been working on the specific conditions for 
these, functions in order to have a proper definition of such a metric. 

u 
The idea of convergence Fn - F is used in her work to come to special 
sets of u-functions. I« such a set the convergence of cdf's have to be 
closely connected. 

In reality.we do not know what the utility function is, so that 
the idea of a complete set of u-functions leading to the same ordering 
of cdf's would be very useful. If one particular feasible cdf, F, is 
preferred above the other feasible cdf's, it would be nice if its 
expected utility is higher for a complete set of utility functions. In 
general however such a wider definiton of convergence or distance func­
tion will only lead to a partial ordering of the cdf's. We will see 
such a partial ordering also later on in the discussion of the idea of 
stochastic dominance. 

Not only scientists have studied the idea of a utility function as 
such, whether it exists or not and whether there is a general form, but 
early research has also found that the idea of EU does not completely 
satisfy. To state it in our terms: The EU idea cannot explain comple-
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tely the preference relations of distributions revealed by people in 
reality. People violate the axioms intuitively. A recent study which 
gives a good summary of the problems with the EU concept is due to Weber 
and Camerer [361. 

In 1952 Allais showed with a small experiment this violation 
already and this example is still used to try to come to other theories 
in which behaviour of people in choice between cdf's (in these theories 
the term lotteries is used). Another name in this field is Machina 
who postulated a generalised EU utility model in asking for an addi­
tional function on the probabilities say q(F) so that Y[F] = Ju(z)dq(F) 
gives the preference functional. However in this kind of experiments 
only lotteries are considered with a finite number of outcomes, usually 
two, and graduate students appear to be the aselect representation of 
mankind to experiment on choices between lotteries. 

The disability of EU theory to explain peoples behaviour formed an 
important subject of conversation on the Fourth International 
Conference on Risk, Utility and Decision theory held in Budapest 1988. 
Important flaws of the EU idea can be found in the fact that e.g. 
regret plays an important role in peoples behaviour and that people 
need a certain reference point to evaluate the utility of the outcomes 
which changes quickly over time. 

If we link these ideas to the behaviour of a farmer during the 
growth season, it is important to see that the attitude of the decision­
maker, the farmer, towards the outcomes, return, of his actions can 
change as time proceeds. Let us consider the case of DP in pestcontrol. 
The attitude towards a loss of 20% due to pests at the beginning of the 
season will be different from that of the same loss of the end of the 
season, whereas in the optimisation model this loss has the same 
influence on the objective function, if the same utility function is 
taken in every stage. Consequently in every decision stage another pre­
ference relation translated in an utility function or risk criterion 
should be used. 

Chikân [5] uses the idea of regret explicity in his definition of 
risk. He considers risk as the difference between the expected result 
of the actions undertaken, which were optimal before something happened 
and uncertain events realised , and the result of the optimal actions 

Xf,...,xn after some events are realised. 
In this sense risk is defined as a kind of opportunity losses. See 
Dannenbring & Starr [7]. 
Minimisation of risk in this sense will lead to minimisation of regret. 

To come back to the idea of the functional Y, one has to realise 
that, in general, a pdf contains an infinite number of information 
pieces. If we consider the moment generating function of a density 
function it appears that, if this moment generating function exists for 
an open interval around 0, the pdf can be determined completely by its 
moments. Of course the function can also be seen determined by its fac­
tors in the Taylor expansion and the cdf can be considered determined by 
an infinite number of quantiles. To describe the full set of all 
possible pdf's one needs an infinite series of information pieces, 
whereas T turns one pdf into one single number namely the preference 
value. 

Fortunately the outcome F of a model will only be a member of a 
subset of the set of all possible density functions. Consider e.g. the 
classical Markowitz model in which the density functions are only 
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described by two moments. 
In this sense it is not necessary to look for a generally applicable 
criterion, functional ¥, which covers all density functions. 
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IV. Risk Criteria 

Nearly all objectives in optimisation models contain the expected value 
of z, E(z). Combined with some measure for risk it forms the functional 
?, which gives the preference in the feasible pdf's. We will mention 
many of these criteria here and also refer to some applications in 
which these were used. 

In the minimax criterion only the return of the worst possible 
case is taken into account. Note that the formulation of the model 
should be given in the sense that there exists a worst case. This is 
f.i. the case if a finite number of states of nature are taken into 
account. In LP this can be implemented by using together with the other 
restrictions the formulation: 

max M 
s.t. 

E C-ijXj £ M i = 1, . . ., m 
J 

in which C-jj is e.g. the margin of activity j in weather i. Notice that 
no probabilities are needed because the criterion is not weighted. 
Combining this criterion with the expected return, E, (for which proba­
bilities are needed) would imply the E-M frontier. Such a frontier will 
indicate the highest minimum M possible, given an expected return, and 
the highest expected return possible given a certain value of M. 
Heyer used this formulation to explain the behaviour of the Masii in 
Kenya. See Heyer [13]. We will see other criteria which do not use the 
expected value later on. 

Let us consider now functionals which take into account E(z), but 
also other moments of F; by Schneeweiss called classical criteria. 
If K moments are taken into account, Y reduces to T(F) = 9{ß-\ ,\i2, . . . ,Mk) • 
How many moments should be taken into account and what should be the 
function which relates the moments? This depends on the possible pdf's 
that can come out of the model. 

If only two parametric families of distributions like normal, 
Cauchy, lognormal and gamma can come out, it is sufficient to look only 
at the first two moments, provided that the moments exist. It will be 
very likely that these moments will exist; who builds a model that 
gives a Cauchy distributed outcome? 
For the more general case however, if risk aversion is anxiety for the 
left tail of the pdf, this leads to preference of right skewed pdf's 
and therefore the third moment should also be taken into account. 
The two parameter-case with 9(u,cr2) is used very much. 
Markowitz designed the portfolio model in the fifties, which could be 
solved by quadratic programming. Let x^ be the money invested in asset 
i with expected return e-; and variance and covariances with the other 
assets represented in a variance covariance matrix Q. 
The expected value of portfolio xi,...,xn is then u x = x'e and the 

variance is given by a^ = x'Qx. Let 6(n,a^) = M - Aa?. Varying X and 
choosing the highest (J/ = fl[u(x) ,CT2(X) ] gives the so called efficient line 
A more recent study on this same idea can be found in Kriens and 
Van Lieshout 1986 [18]. This basic idea of quadratic programming was 
recently implemented in a farm planning model in Greece by Manos and 
Kitsopandis, 1986 [21]. 
They also derive this efficient line and claim that the farmers in 



- 13 -

Macedonia were very satisfied with the result compared with LP plan 
outcomes. Huisman [14] states that in economy, in which the attempt is 
to explain people's behaviour, this behaviour is always better 
explained if a certain form of risk is taken into account than if only 
the expected value is maximized. Note that it is necessary to know all 
covariances with this approach. 

The idea to insert the third moment in f, has also been tried 
relatively early. By Marchack [22] in social science in 1955 and by 
Albach [1] in the financial environment in 1959. It appeared that the 
chosen pdf's and with that the decision xi,...,xn, didn't differ very 
much compared with the criterion based on two moments. Again, this 
depends on the possible pdf's. 

Jean [15] used recently again even higher moments in the port­
folio model. In his study the starting point is an unknown utility 
function which is seen in the light of its Taylor expansion. The strong 
assumption is that all comoments of the securities are known. The como-
ment between the return of asset i, yi, and the return of asset j, yj, 

P Q 
is defined as jipg = E(yi yj). Some necessary first order conditions for 
the optimal portfolio, expressed in terms of comoments, are derived. 
Also Sinn [30] applied among others various risk perception ideas on 
the portfolio theory and the theory of currency speculation. 

The practical use of such portfolio models as a tool to describe 
the portfolio choice of people can be doubted, because this choice 
depends on the subjective probability distribution of the 'economic 
agent'. In this sense it is the question how the subjectivity of the 
utility function can be distinguished from the subjectivity in the 
pdf which serves as a base for this decision. 

It is easy to show the relation between a linear Y in terms of the 
central moment, like in the Markowitz case, and polynomial utility 
functions. 
For two moments: 
Let u(z) = az + bz2 then 

Eu = E[az + bz2] = aE(z) + bE(z2) = a m + bu2 

For three moments: 
Let u(z) = az + bz2 + cz3: 

Eu = E[az+bz2+cz3] = aE(z)+bE(z2)+cE(z3) = au1+bu2+cu3 

A functional which is linear in the moments can be translated to an EU 
model with a polynomial utility function. This translatabi1ity is 
called Bernoulli rationality by Schneeweiss [26]. Most criteria are 
evaluated by him in this sense. 

Schweigman and Klein Haneveld [29] show that X in the u,cr2 c r - j _ 
terion 4>(u,a2) = M - *<72 "'s sensitive to scale while in <MU,CT2) = U - ACT 

this is not the case. 
This criterion with the standard deviation appears not to be Bernoulli 
rational so that there does not exist a u-function which gives 
E[u(z)] = u - ka for all two parametric distributions. The opposite is 
the case with the criterion u/cr. 

A similar criterion as the u,a criterion is that of the mean 
absolute deviation MAD = E(!z-u|) but it is not the same. In this case 
the matching utility function is u(z) = |z-u|. In this sense the 
deviations at the right side are also taken in the risk measurement, 
while we do not mind outcomes that are better than average. It looks 
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mo re appropriate to take only the middle under deviation ƒ zdF as a 

measurement for risk. What is left is the expectation of the left side 
of the pdf, which is of course more negative the more F is skewed to • 
the left or stated in another way, the longer and thicker the left tail 
is. However this left wing expectation in principle does not differ 
very much from the criterion of the absolute deviation expectation, as 
the right wing deviation equals the left wing deviation: 

•x 'Jo jd U U 

ƒ | z -u |dF = / ( z - u ) d F - / ( z - u ) d F = -2 / ( z - u ) d F = -2 JzdF + 2uF(u) . 
- i X I JU — 'JO - ' » — ••*> 

If H = 0 the two criteria coincide. 
To accentuate this left tail and to see an analogon with the 

variance we can also think of a quadratic penalty in the left tail: 

M 
ƒ (z-ji)2dF which is called the semivariance. In 1970 Markowitz changed 

— <X". 

his model into this direction 

The above mentioned criteria take the total outcome space into 
account. Very often however outcomes are experienced as bad if they 

come below a certain level zn. 

One criterion used very much, takes the expected value of the left 

tail below the threshold value zn, as a meaurement for risk: 
-0 
/ U0-z)dF. 

The measure is shown here in a positive sense and is interpreted by 
Schweigman [29] as expected shortage. Consider a situation of a farmer 
in a developing country, who is confronted with z as the yield of 
food. To feed his family he needs the minimum amount zn. If the return 
falls below zn. he has to buy food at a high price p and all which is 
left over can be sold on the market for a lower price q. 
In this case his return is given by 

ZQ 
-P ƒ (z-Zn)dF + q /(z-zo)dF. 

zo 
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Notice that subjectivity has disappeared in this interpretation. 
In this sense he is confronted with a kind of utility function on the 
total outcome space resp. penalty function on the space of "bad" out­
comes {-*>,ZQ] in the following sense: 

q(z-z0)+ 

-p(zo-z)+ Uo-z) + 

20 z0 

The expected shortage criterion can be introduced in this linear sense, 
max E(z) - AE(zn-z)+, but also in a form which uses a restriction like: 
max E(z) under E(z-zn)+ ^ s 0 - W n a t happens in the idea of Schweigman if 
there is hardly any alternative food available like in many regions in 
Mozambique? 

To express the fact that it becomes more and more difficult to 
find alternatives the penalty on coming below the threshold value can 
be made strict convex by using e.g. a quadratic penalty.-

+ !2 {Uo-z) + } 

Z0 

This corresponds to the idea of the semivariance. The convexity can 
afso be carried on to linear models in creating a pfecewfse linear 

k k 
penalty function. Let us define semimoments v (ZQ) as v (zn) = 

ƒ |z0-z|kdF(z). 

In fact the quadratic [fenalty can be generalised, because it makes use 
of the two semimoments u1(zn) a n d V 2 ( Z Q ) generalized quadratic penalty, 
p(z) = a { ( Z Q - Z ) * } 2 + b(zn-z)+ + c, uses more information on the shape 
of F in the left tail, because it uses more parameters. 

0.6 1.6 2.4 3.2 
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zo in this case is the zero level of inventory. The probability of 
coming below this level, PQ, has to be as small as possible. In these 
models the term service degree is used. Also the expected shortage idea 
is used with costs for negative inventory in terms of lost sales costs 
and back-order costs. Here we see that the ideas discussed above are 
used in parts of models. As we mentioned before, we want to focus 
further on the use of criteria on the final outcome z. 

A LP implementation of the idea that z should exceed the threshold 
value can be found in Montazemi and Wright [23]. Next to the usual 
constraints, the following formulation is implemented: 

max I e j x j 

under I cijxj ^ z0 vi 

Low [20] uses this approach to describe farmers behaviour in Ghana and 
to come to e.g. minimum farm sizes in which special techniques can be 
used without too much risk of a disaster. In- general the formulations 
that contain restrictions form a lexicographic preference ordening in 
terms of t|/. First the feasible pdf's which fulfill the restriction are 
looked after and then within this group the other objective is optimized. 
This lexicography doesn't match the utility theory very much. This 
doesn't mean that such an ordering is inferior. See Klein Haneveld [16]. 

The ?o approach, not to look below the threshold value zn, can be 
interpreted as a certain attitude towards uncertainty. Consider a 
farmer whose yield falls below the zn value. It is possible that it is 
not worth the trouble to elaborate the field any further, because it 
costs more than the benefit of the harvest to take further actions. In 
this sense it does not matter any more how far z falls below zn. 
Huisman [14] used this concept in explaining the behaviour of farmers 
in a Philippine village. 

Let us state again that this last criterion does not take any form 
of the left tail of the cdf F into account. The expected shortage idea 
of Schweigman and the quadratic expectation of the left tail on the 

Z0 
contrary do. The PQ criterion gives ƒ f(z)dz = F(zn) as a measure for 

-1X1 

risk, 'so that the shape of F below zn is not taken into account. 

The expected shortage criterion E(z0-z)+ = ƒ (z0-z)f(z)dz by partial 

zo 
integration leadê to ƒ F(z)dz which is exactly the area under F 

-IX) 

left from zn, so that the shape does matter. 
If we proceed with partial integration, it is easy to see that the 

zo zo q 
quadratic penalty ƒ (z-Zn)2f(z)dz is equal to / ƒ F(z)dzdq. By addi-

-OÜ —<X> - 0 0 

tional integration more and more of the left tail is weighted. This 
gives the link to stochastic dominance and partial stochastic 
dominance. We will work out this idea in the next section. 
Klein Haneveld [16] compares mathematically the chance constraint for­
mulation, Pn < a, the expected shortage criterion E(zn - z) ^ ß, the 
conditional expected shortage criterion of Prekopa, E ( Z Q - z) i. yPn and 
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a formulation with E(ZQ - z)/E(z) ^ 5. An important property of chance 
constraint programming is that the feasible region isn't necessarily 
convex. 

Let us first go back to the optimization models. Returning to the 
implementation of risk expression in models, a lot appears to be ela­
borated on the idea of absolute deviations. Hazell introduced in 1971 
his MOTAD model [11]. MOTAO stands for Minimum of Total Absolute 
Deviation. The risk expressed in absolute deviations is minimized. This 
corresponds to the criterion of expected absolute deviation we 
discussed earlier. 

The LP implementation contains the following items. Let i be 
a state of nature, ej be the average coefficient and C-jj be the coef­
ficient of action XJ under state i. So ej is the expected profit deter­
mined by E C-jj = ej. In LP terms Di = Dt - D7 will 

give the deviation under state i via 

E (Cij-ej)xj - Di = 0 

J 

Now there exists a trade-off between 

Î Oj + D7- : risk expressed in absolute deviation 

E ejXj = E(z) : the expected profit, 

j 

This leads to a trade off line as in the Markowitz model, the so called 
A-E frontier. Tan and Fong [32] applied this model for the optimal crop 
mix in the rubber and oil plantation Malaysia. They also give the A-E 
frontier. Again there is the question: What is wrong with deviations if 
they are positive? We are only afraid of negative outcomes. 

As we mentioned before in the discussion of the expected absolute 
deviation criterion, the sum of positive deviations is exactly the same 
as the sum of negative deviations.-

E D* - E DÏ = E Di = 

Z Z (Cij-ej)xj = E E (Cij-ej)xj = E O.Xj = 0. 

ij J i J 

This means that in the MOTAD application less variables and restric­
tions are necessary in the reformulated version.-

minimize the expected absolute deviation: 2 E Di 
i 

E (Cij-ej)xj + Di £ 0 i = 1, 2, ..., m. 

J 

This formulation gives exactly the same results. This idea can also be 
found in the later work of Hazell, see Hazell 1936 [12]. In this work 
it also becomes clear why no probabilities are attached to the possible 
states of nature. Hazell uses time series data for the estimation o' 



- 19 -

the coefficients, so that state i corresponds to a certain year or time 
period t. This means again that the time dependent data are not 
weighted. 

The application of deviations in restrictions in LP has also been used 
in multicriteria environment, in which it gives the deviation from the ideal 
point, but it also has been applied to express the uncertainty involved in 
the restriction. This idea has been used in applications of the fuzzy 
set theory. In the fuzzy set theory the idea is that there exists a so 
called membership function which represents the grade of the membership of a 
certain element of a certain set. 

On the FUR conference we saw two applications, 
on Nachtnebel [24] gives a trade-off between economic goals and environmenta 
goals in water resource management for a special case, which includes uncer­
tain discharge of the river. Korhonen [17] uses the membership value to 
express that certain RHS of some restrictions are not known for sure but 
that they lei between two values. The slacks of the restrictions are put 
together in a composed way in the objective so that also here a efficient 
frontier can be derived. In principle this approach does not differ from the 
mul tien' teria and soft constraint methods that have been used for many 
applications. In the two studies mentioned here, linear membership values 
where applied, which is the same as putting the slacks indirectly in the 
objective function. From these applications we got the impression that fuzzy 
set theory is nothing else than, or an economic interpretation of, the soft 
constraint methods which have been applied satisfactorily for a long time. 

In LP-like models, like in the MOTAD case, the uncertainty brought in 
is translated directly in the objective without expressing more information 
on the distribution of z. However it is good to keep in mind that a model 
consists of the various aspects as presented in section 2. 
What in the model is due to <j/; what is soft constraint or fuzzy, what are 
the main restrictions; what is technical, what is behavioural etc. 

Before this paper is finished we will shortly discuss the idea of 
stochastic dominance. 
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V. Stochastic Dominance 

We focus briefly on the concept of stochastic dominance and its rela­
tion with other functional ideas namely those based on moments and those 
based on utility functions. We should refer to the earliest work in this 
field but our information depends heavily on the publications of Anderson 
[2]. In the direction of applications we found his ideas completely back, 
repeated, in the PhD research of Thornton [33]. 
Thornton studied a special case of pest control and applied explicitly a 
utility function to express the preferences of the farmers. 

In nearly all books that contain the subject of decision under risk, 
the idea of stochastic dominance ;s at least presented for a pair cf CDFs 
F(z) < G(z) for all z. 

as 

This means that the CDF F lies at the right of G so that F is a^ays pre­
ferred for all people. This gives a kind of Pareto idea. There is no trade­
off between risk and the expected value. 
This stochastic dominance rule and the Pareto rule have in common that they 
are not very powerful. In terms of the functional ty, hardly any discrimina­
tion between CDFs can be made. On the other hand all people prefer F above 
G, if F dominates G. 

For people with a concave utility function it appears that this rule can 
be made weaker. This corresponds with people who are risk averse. 
Second degree stochastic dominance is defined as F y G if and only if 

z z 
ƒ F(q)dq < ƒ G(q)dq 

-00 —x> 

for all z, 

F /^ G only if the expectation of F is bigger and the left tail of F lies at 
the right of G. 
This means that the CDFs are allowed to intercept at some points as long as 
the surface under F from *-he left tail to z is smaller than the same surface 
under G. 



- 21 -

In this same sense third degree stochastic dominance can be defined as 

z p z p 

F > G if ƒ ƒ F(q)dqdp < ƒ ƒ G(q)dqdp V z 
-<X> - 0 0 - 0 0 -CXI 

and the expectation of F is bigger than that of G. 

This rule is weaker and applies for people with a concave utility function 
which has a positive third derivative. This rule also considers skewness to 
the right. As we were focusing on risk averse decision makers, this rule 
will be sufficient for all people under consideration, if we take again risk 
as anxiety for left tail outcomes. Higher order stochastic dominance of 
course determines more the shape of the utility function. 

Partial stochastic dominance is defined as stochastic dominance on a 
convex subset of the outcome space of z. It is suggested by Anderson not to 
take e.g. the extreme tail behaviour of the distribution function into 
account. It is more important that F dominates G on the rest of the outcome 
space. This is strange because we have already seen some criteria which were 
based on this partial stochastic dominance ideas, namely, the Pn criterion 
gives the first order dominance on the point ZQ, as a measure of risk; 
F(zn). According to the safety first rule F is preferred above G if 

F(zo) < G(z0). 
In this same way there is a connection between the partial SD idea on 

the {ZQ\ subspace and the other criteria. As we already saw, the expected 
shortage criterion gave by partial integration 

E(Z0-2)+ = / F(z)dz 
— IX) 

so that F is preferred above G if 

zo z.O 
ƒ F(z)dz < ƒ G(z)dz. 

— X) —00 

In the way this criterion corresponds to a special case of partial SD of 
the second order. To go on in this way, the quadratic loss function which 
corresponds with the idea of semi-variance would prefer F above G, if 

ZQ q zo q 
ƒ ƒ F(z)dzdq < ƒ ƒ G(z)dzdq 

which corresponds to th« concept of third degree partial SD. 
With these cases of partial dominance only the dominance in the point ZQ was 
taken into account. It appeared that the number of semimoments on (-*,zn) 
corresponds to partial dominance on {ZQ} only of one degree higher. However, 
stated the other way around: Stochastic dominance of order n corresponds to 
the loss criterion 

ƒ (z-zo)n"1dF for all z0. 

z0 

For one value of ZQ at least the expression ƒ (z-zn)n~1dF can be used as a 
functional i|/; it gives a value. The stochastic dominance rules indeed give 3 
preference relation but do not give one value. Dominance has to be checked 
for all values in the outcome space of z. It only forms a partial ordening 
of the set of pdf's. 
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VI. Conclusion and Future Research 

In operations research quantitative models are built with the purpose to 
serve as a support in decision processes. Already the description of the 
objectives and variables makes clear what is decided upon and which 
are the instruments and main restrictions. With the mathematical models we 
had in mind a description of an agricultural system in this paper, in which 
the main source of uncertainty was not caused by some lack of knowledge, but 
more exogenous (naturally stochastic) like the weather outcomes. 

The quantitative description of the input-output system from weather to 
yield gives insight in what the main problems are. In optimisation or simu­
lation models the main factors are evaluated on the base of the objectives. 
Later on the other parameters <x\ are checked in the direction of the objec­
tive to trace what does really matter and what does not. The risk criteria 
constitute a bridge between uncertain outcomes and the objective. 

In section II we gave a schematic model in order to discuss the sta­
tus of such criteria in the context of the model. Sometimes short-cuts can 
be made, like in the Markowitz case, in which it is not necessary to express 
the distribution function explicitly. In the Markowitz model the criterion 
is formulated in moments and the ingoing and other outgoing information is 
in terms of moments only. 

In this paper an enumeration of the criteria was given and a link was 
lead to applications on the one hand and more theoretical framework on the 
base of utility functions and stochastic dominance on the other hand. 
Interpretation of criteria, what do they mean in relation to preferences of 
people is also very important. We have to admit that we did not want to go 
too deep into the subjectivity of attitudes towards risk. 
It is more a task for a social scientist than for a mathematician to describe 
peoples behaviour. Though many applications we refered to form in reality a 
description of human behaviour from the assumption that people behave 
rational and optimal. 
In this direction including a description of uncertainty and risk appears to -
be a succes. 

What should be kept in mind by the mathematician is that every cri­
terion has got its properties which, depending on the structure of the model 
may lead to very different outcomes. For instance the Pn criterion which is 
used very often may not fully describe the decision maker's attitude towards 
uncertainty. In future research it may be interesting to find out for 
applied models, whether and how the optimal set changes if other criteria 
are used or if other formulations are tried. 
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