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Concept of risk and uncertainty.

Despite the many papers written on this subject, the discussions and
the conferences, there is no definition of risk everybody agrees upon.
Uncertainty is a very important aspect of life. We will not mention
dull examples here.

In optimisation models this uncertainty is often built in as probabi-
lities in relation to possible states of nature. So here uncertainty is
just caused by nature, However, not all uncertain factors are treated
this way.

Another viewpoint is that uncertainty exists due to lack of
knowledge. Indeed if we knew everything in advance, there would not
have been any uncertainty,

To apply this to the field of optimisation, let us consider three
uyncertain factors which occur in the formulation of a certain optimisa-

tion model:

- We are not sure what will be the right hand side of certain inequality
constraints e.g. the budget.
- What is exactly the average evaporation of the soil. A technical fac-

tor influencing the relations in the model,
- What will be the weather in the planning period of the model.

A1l three factors are indeed related to lack of knowledge, though their
character is different. The factor of the budget depends on behaviour
of other people and after some time we really know what the budget will
be. We apply sensitivity analysis and study the behaviour of the shadow
price., The behaviour of other people is in fields as game theory, eco-
nomics and 1in general social sciences also described with probabili-
ties,
The technical factor of evaporation is not known exactly and it
will not be known, unless some study is done on the technical details
of the soil under consideration. Alsc here sensitivity analysis can be
used to study the sensitivity of the model for this parameter., In this
sense an impression is created of the relevance of an additional study
on this technical factor. To get this insight can be an additional
objective of the use of the optimisation model.

Whether it is going to rain tomerrow can be described with a
probability. With this kind of uncertainty it appears to be not worth
the troubie to make an exact prediction, but stochastic variables are
introduced to describe reality. Apparently stochastic variables satisfy
very well in the description of reality in optimisation models, in par-

ticular in discrete simulation models.
Still risk is not defined. Risk includes the attitude of people

towards this uncertainty and this brings in the subjective aspect. Risk
is defined by Cooper and Chapman [6] as exposure to the possibility of
economic or financial loss or gain, physical damage or injury, as a
consequence of the uncertainty associated with pursuing a particular
course of action. In general we will call risk simply the possibility
of bad outcomes caused by uncertain events. Much is done by economists
and psychalogists to measure the attitude towards uncertainty, In this
attempt the terms risk perception, how is the risk experienced, and
risk preference are distinguished.

It is also hard to see this attitude disconnected from subjective
probabilities. See e.g. the interesting study of B, Verplanken on atti-
tudes and subjective probabilities towards the use of nuclear energy
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before and after Chernobyl in the Netherlands [35].
In our study we don't want to consider this subjective aspect of

probabilities but describe the stochastic nature of the outcomes and
Yink this with various risk criteria which appear to represent dif-
ferent descriptions of attitudes towards uncertainty, various risk per-
ceptions, Ir practice various criteria and formulations have been
applied and compared e.g. by Pintér et. al. in the field of water
quality control. See Somlyddy and Pintér [331.

We will discuss risk criteria on a conceptual base and see which cri-

teria are used as a tool in applications.
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II. Risk and optimisation, A general model.

In this section we will try to come to a general description of
optimisation models regardlies the technigue that is used to find the
optimal decision. It should be kept in mind that focus is on this model
in a stage just before the optimisation process. The optimisation is
namely only one stage in the decision support process. In the for-
mulation of such a model already decisions are made on which objectives
are hidden in the constraints, which are left out and which appear in
the objective function(s).

Another formulation decision that has been made is which uncertain
factors are expressed in stochastic varijables and which factors are
taken deterministic and only taken in consideration as uncertain ele-
ments later on, like the technical factor we mentioned in section I.
The optimisation can also be seen as a stage in a hierarchical decision
process in which f.i. the budget we mentioned earlier can be regarded
as a decision on a higher level.

The various items of an optimisation model are represented in
nearly every handbook of Management Science/0OR., See e.g. Dannenbring &
Starr {7]. The model consists at least of a more or less detailed
description of reatity. The entrance of the model is formed by the
decision variables, which we will call xq,...,xn. We can think of con-
tinuous variable @r integer variables like in combinatorial problems or
there exist perhaps a finite number of possible settings of Xq,...,%pn-
To describe the system some internal dependent variables are necessary
which can only be changed indirectly say Qqi,...,qn. We can think e.g.
of inventory in production-inventory models where decision variables
consists of the production scheme over time and inventory is developing
via the balance equation:

It = I+-1 + Prode - Demands.
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Next to this, as already mentioned, an important tool to describe

reality is found in including stochastic exogenous events,
Wi,...,Wp, in the model. In inventory models we can think of demand. In
agriculture the main uncertain factors that are described are

formed by the uncertainty in the weather, in occurance of pests or in
more higher aggregated and economic maodels by the uncertainty in prices
of inputs and outputs which is also related to the stochastic nature of
yield. See e,g., Hazell 1979 [10]. Another important factor in the
description of reality is formed by the parameters, here called
@7,....0k. In lipear programming we think of the right hand sides, the
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technological coefficients and the cost coefficients.

we can also think of more technical parameters like the evaporation
character of the soil we already mentioned. On the moment of optimisa-
tion they are taken deterministic.

Often some parameters are set by decisions on a higher, more strategic,
level. In the long run those are variable but for the optimisation they
are seen as exogenous.

In order to distinguish w from the model parameters a and the
variables x and q, we will make use of the terms stochastic factors,
events, random elements etc. and not of the terms stochastic parameters
and stochastic variables.

Finally the model delivers certain outcomes 2zy,...,2r which with
the aid of multicriteria tools, are turned to one objective Z.
Optimisation is nothing else than calculation of the set of which
X71,...,Xp has to be an element so that Z is optimal.

This optimisation can be done by various techniques. We will consider
simulation in this context as the technique of calculating the con-
sequence in terms of z; for a certain setting of the decision variables
X1,.0+:Xp. Simulation in this sense is regarded as an alternative to
find the optimal decision, Usually also varying the parameters in order
to do sensitivity analysis is seen as simulation and it is not always
clear what are decision variables and what are the parameters. We act
now as if they can be distinguished very well.

Other techniques are linear programming and non-linear programming.
In this the best x1,....Xn is calculated according to the criterion of
Z. In deterministic dynamic programming an optimal path is calculated
for a number of decision stages., However if uncertainty is brought in
by stochastic dynamic programming only the decision for one stage can
be calculated and decision rules for the other stages are derived. In
each stage after a stochastic factor has been realised, this rule can
be used to determine the optimal X = x1, ..., Xp. In this sense we
should speak of Z¢ and Xt and the former figure only hoids for the
current stage.

We consider further the case in which the outcome is not one Z,
but a distribution function of the objective z. Represented in the
figure:
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The strong assumption is that all endogeneous stochastic factors
are brought into the objective function. Klein Haneveld [16]



- & -

distinguishes stochastic feasibility and siochastic optimalit We act
¥ P Y-

as if all stochastic coefficients, ws, tF ke

in the description ¢F =he
feasible space are, che way or the other, transferred < *he stochas
2bjective z,
ae ! : icultural wadels can
'1 B

Due o gature of yield many agricultura

' L

- . -

D2 rega ed T~ othisg way, First of al?
- _— :

discrete simulation mode a
Tity distributior functizns o
o

d
L frxaming orohabhil

_‘,...,yp are transformed to cne or more cutgoing distrinutioss.
special cases mathematicians rave deen working on the analytica
cavion of composed distribution functions. For convolutiors <&

he done s3sier than for cases im which stochastic variaziss

e

gereral can
are multipiied or divided, but this deperds completely on the digermiba-
icrs that zre chossn., '
i€ the coefficients of the

In the case of Tinear programming e.g.,
objective function, prices or margins, are stochastic with a known proa-
bability distripution anrd there is enough information on covariances
atc., usually” the composed probability distribution of 2z can be
dariyed far every wa, ..., %q.

Tihe case pacomes aore compiex in LP if also the RHS are sitochastic and)
or the technological coefficients. See Vajda 15872 [34]. The field of
probabilistic programming is still attractive for research. Sse the
more recant publication of MLA. Grove [8]. A kind of gcal programming
to soive the case of a stochastic RHS with known

Y-

approach is sugge
naf by him,

3asides simuiation ard probabiiisti programm1ng anotrpl

describe proplems in an uncertain envirgnma=-t ‘3 relzted <
Adoue of Srochastic Dynamic Programming, in which in every peri
stage a decision has %o be made. This approach can he very usef:
dascribing the actions in time a farmer
or in general total return
in which a farmer mas *2 j

agricuitural problems,
consider as to get the desired yield,
mice evample fs that of pest control
the timing of use of pesticides. Every week or day in the growi
season he has to decide on application of pesticides yeas or ro.

See on this Carlson [4] and Ressing (28], Pest damage is described for
svery growth stage of the plant and the cccurance of the pest i3
directly or indirectly stochastic.

Another example can be found in the situdy of Schouwenaars [23] is
wnich the farmer has to decide during the year on sowing or rot, Th
stochastic rainfal gives whether the sowing strategy is succesful

b b

not. However, Schouwenaars doesn’t use dynamic programming but on?y
takes a finite rumber of possib’e sz4rategies into account. In this 'tinc
af dynamic models the actions which can be undertaken are ncre or 7
on the same level, Usually however the farmer first has to maks rors

strategic decisions, on 3 higher level, and after this he has to 4
s tha timing of certain actions which can be described by the dyinand

wodet,

J
-

iy

3

ide

W
0

on the structure of *he model whether the fi~a?l praba-
digsTrinution of Z, which is nabpssa”y to calculate the va'le
st solve the DP problem, can be calculated amalytically or

23 to ke found in simgiation,
1T Y3 useful now to use a small ewxample which zan serve fo-

illustrative purposss later an. We *taxs this erample from Schweignar

distributed coafficisrts,

* a2t Tesst this can be done for normally t



- 7T -

and Klein Haneveld [29] 1985. lLet us consider a farmer who has to
decide on the use of his fields. He has to make a more stategic deci-
sion on which variety to use of maize on his 10 acres of land.
Distributions are given of the yield per acre of two different

varieties Yy and Y».
x1 acres will be planted with variety 1 and x3 acres with variety 2.
= X1Y1 + X2¥2 under

The stochastic harvest of maize is then z
X1 + x2 = 10 and x1,x2 2 0,

Schematically:

Wi=Yy @1=10
Wo=Y2

XN}

-r

Z=X1Y %22
X1+x2=a1

t

IX1’XZ I
. , z

Two probability distributions of Y7 and Y2 do into the system., The pro-
bability distribution of z comes cut of 1t and its shape depends on the

decisions x1 and x2,

We have seen until now that the outcome of a stochastic model gives a
distribution function of z. Let this probability density function of z
be called f and the cumulative distribution function F,

What is optimised if the outcome consists of the cdf F and not of the
scalar Z? In general, optimisation takes place by taking simply only
the expected value E(z) into account. However how can risk, defined as
anxiety for negative outcomes, be dealt with now?

The answer is very simple in principle, but in practice very
complex. Just give an ordering of which c¢df's, F, are preferred above
others. Give for every pair of cdf's F, G whether F » G, or G € F or
G ~ F. .To state it in another way: Label all cdf's, attach a number to
them which represents the grade of preference, Mathematically seen
there should exist a functional ¥[F] which forms a function from the
space of cdf's to the R.

Now the subjective aspect enters our discussion again, because people
experience uncertainty differently, not only in the sense that they are
less or more risk averse (risk preference)}, but also in different atti-
tudes rowards regret, bad putcomes, refsrence points, ete. [risk

perception).

The use of different functional forms ¥ and the derivation of
properties has been done already in the sixties by Schneeweiss in his
book 'Entscheidungskriterién bei Risiko'. See Schneeweiss [27]. In the
next paragraphs we will summarize the ideas of various risk criteria

and discuss their consequences and properties on the basis of this
book, but also on the work of Anderson 1979 [2], Boussard 1979 [3].

and Montazani, Wright 1982 [23].
The general model can now be represented in the following way:




MODEL - - Z

ix‘;,...,)(n'

The cutcome of the model consists of a distribution F of Z which
is determined by the decision xq1,...,xn. The functional Y turns the
distribution F into a preference value Z, In this way the stochastic
optimisation model is transformed into a deterministic optimisation
mode); determine X [or a set of which X has to be a member) so that Z
is at its maximum. This transformation question is the main subject of
stochastic programming in general. Problem with the model formulated
above is, that the reiation Z = g(X) most of the time has to be found
by simulation,

In further studies the purpose will be to trace the consequence of

* *
the use of different functionals ¥ for the optimum values x1,...,xpn.
A basic assumption in the following sections will be that, no matter
which risk criterion is used, only risk aversion is taken intc account.
In general in the agricultural sector this is the case. We have to
admit that studies have been done which gave the opposite result, In
this context we mention the study of Kunreuther and Wright {18] who
found for very small farmers strange enough a risk seeking attitude.
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III.Expected Utility as a possible approach

One way to solve stochastic optimisation models is to look at the
expected values of z only and treat it as a deterministic problem
[#s}
further. In this case Y[F] = [ zdF(z}. The set of distribution functions
-0
with the same Z-value are those with the same expectation.

One way to model the aversion towards bad outcomes is to formulate
a so called utility function on the outcome space of z, u(z}, or a
penalty function on a part of this space, expressing the aversion
towards these outcomes.

00
The expected utility criterion (EU), f u{z)dF(z) can be seen as a func-
-0G
tional Y[F]. The concavity of the utility functions represents very
often in this idea risk aversion.

Difficulty with application of the EU idea in optimisation is that
we do not know a generai applicable form of this function. However the
idea is very useful to evaluate other risk criteria as is done by
Schneeweiss who uses the concept of Bernoulli rationality of the
criteria. Unfortunately the term rationality suggests that criteria not
matching this concept are not rational or not good, Qur interpretation
of Bernoulli rationality is that criteria can be translated in the EU

form,

Stated in an other way: Does there exist a utility function so that
x

¥[(F] = [ u(z)dF(z) or not, We will come back on this idea in the next
-0

section.

The idea of EU has also been used in mathematics to define a

metric of probability functions with a distance function based on the
o0

functional f u(z)dF{z). In this topology of probability distribution
“0c

functions (cdf's), two distributions are called close if their expected

utility values are close. In this sense for any u-function a metric is

defined. Regoli [25] has been working on the specific conditions for

these. functions in order to have a proper definition of such a metric.

u

The idea of convergence Fpn ~ F is used in her work to come to special

sets of u-functions. Im such a set the convergence of cdf's have to be

closely connected.

In reality.we do not know what the utility function is, so that
the idea of a complete set of u-functions leading to the same ordering
of cdf's would be very useful., If one particular feasible cdf, F, is
nreferred above the other feasible cdf's, it would be nice if its
expected utility is higher for a complete set of utility functions. In
general however such a wider definiton of convergence or distance func-
tion will only lead to a partial ordering of the cdf's. We will see
such a partial ordering also later on in the discussion of the idea of
stochastic dominance.

Not only scientists have studied the idea of a utility function as
such, whether it exists or not and whether there is a general form, but
early research has also found that the idea of EU deces not completely
satisfy. To state it in our terms: The EU idea cannot explain comple-

i
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tely the preference relations of distributions revealed by people in
reality. People violate the axioms intuitively. A recent study which
gives a good summary of the problems with the EU concept is due to Weber
and Camerer [38],.

In 1952 Allais showed with a small experiment this violation
already and this example is still used to try to come toc other theories
in which behaviour of people in choice between cdf's {in these theories
the term lotteries is used). Another name in this field is Machina
who postulated a generalised EU utility model in asking for an addi-
tional function on the probabilities say q(F) so that ¥[F] = fu(z}dq(F)
gives the preference functional. However in this kind of experiments
only lotteries are considered with a finite number of outcomes, usually
two, and graduate students appear to be the aselect representation of
mankind to experiment on choices between lotteries.

The disability of EU theory to explain peoples behaviour formed an
important subject of conversation on the Fourth International
Conference on Risk, Utility and Decision theory held in Budapest 1988.
Important flaws of the EU idea can be found in the fact that e.g.
regret plays an important role in peoples behaviour and that people
need a certain reference point to evaluate the utility of the outcomes
which changes quickly over time.

If we link these ideas to the behaviour of a farmer during the
growth season, it is important to see that the attitude of the decision-
maker, the farmer, towards the outcomes, return, of his actions can
change as time proceeds. Let us consider the case of DP in pestcontrol.
The attitude towards a2 Toss of 20% due to pests at the beginning of the
season will be different from that of the same loss of the end of the
season, whereas in the optimisation model this loss has the same
influence on the objective function, if the same utility function is
taken in every stage. Consequently in every decision stage another pre-
ference relation transiated in an utility function or risk criterion
should be used,

Chikén [5] uses the idea of regret explicity in his definition of
risk. He considers risk as the difference between the expected rasult
of the actions undertaken, which were optimal before something happened
and uncertain events realised , and the result of the optimal actions

* *
X1,....%Xn after some events are realised.

In this sense risk is defined as a kind of opportunity losses. See

Dannenbring & Starr [7].
Minimisation of risk in this sense will lead to minimisation of regret.

To come back to the idea of the functional ¥, one has to realise
that, in general, a pdf contains an infinite number of informaticn
pieces. If we consider the moment generating function of a density
function it appears that, if this moment generating function exists for
an open interval around 0, the pdf can be determined completely by its
moments. Of course the function can alsc be seen determined by its fac-
tors in the Taylor expansion and the cdf can be considered determined by
an infinite number of guantiles. To describe the full set of all
passible pdf's one needs an infinite series of information pieces,
whereas ¥ turns one pdf into one single number namely the preference
value.

Fortunately the outcome F of a model will only be a memher of a
subset of the set of all possiblie density functions. Consider e.g. the
classical Markowitz model in which the density functions are only
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described by two moments,
In this sense it is not necessary t0 lock for a generally applicable
criterion, functional ¥, which covers all density functions.



IV. Risk Criteria

Nearly all objectives in optimisation models contain the expected value
of z, E{2). Combined with some measure for risk it forms the functional
¥, which gives the preference in the feasible pdf's. We will mention
many of these criteria here and also refer to some applications in
which these were used. .

In the minimax criterion only the return of the worst possible
case is taken into account, Note that the formulation of the model
should be given in the sense that there exists a worst case. This is
f.i. the case if a finite number of states of nature are taken into
account., In LP this can be implemented by using together with the other
restrictions the formulation:

max M
S.t. _
E ijxj 2 M i=1, ..., m

in which Cj; is e.g. the margin of activity j in weather i, Notice that
no probabilities are needed because the criterion is not weighted,
Combining this criterion with the expected return, E, {for which proba-
bilities are needed) would imply the E-M frontier. Such a frontier will
indicate the highest minimum M possible, given an expected return, and
the highest expected return possible given a certain value of M.

Heyer used this formulation to explain the behaviour of the Masii in
Kenya. See Heyer [13]. We will see other criteria which do not use the
expected value later on.

Let us consider now functionals which take into account E{z), but
alsc other moments of F; by Schneeweiss calied c¢lassical criteria.

If K moments are ftaken into account, ¥ reduces to Y(F) = #(u1,u2,..., k).
How many moments should be taken into account and what should be the
function which relates the moments? This depends on the possible pdf's
that can come out of the model.

If only two parametric families of distributions Tike normal,
Cauchy, lognormal and gamma can come out, it is sufficient to look only
at the first two moments, provided that the moments exist. It will be
very likely that these moments will exist; who builds a model that
gives a Cauchy distributed outcome?

For the more general case however, if risk aversion s anxiety for the
left tail of the pdf, this leads to preference of right skewed pdf's
and therefore the third moment should also be taken into account.

The two parameter-case with 8(u,02) is used very much.

Markowitz designed the portfolic model in the fifties, which could be
solved by quadratic programming. Let x; be the money invested in asset
i with expected return e; and variance and covariances with the other
assets represented in a variance covariance matrix Q.

The expected value of portfolio xy,...,%n is then uy = x'e and the

variance is given by ai = x'Qx. Let 6{u,02) = g - Ac2. Varying A and
choosing the highest ¥ = 8[u(x),02(x)] gives the $0 called efficient Tine
A more recent study on this same idea can be found in Kriens and

Van Lieshout 1886 [18]. This basic idea of quadratic programming was
recently implemented in a farm planning mode! in Greece by Manos and
Kitsopandis, 1986 [21].

They also derive this efficient line and claim that the farmers in
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Macedonia were very satisfied with the result compared with LP plan
outcomes. Huisman [14] states that in economy, in which the attempt is
to explain people's behaviour, this behaviour is always better
explained if a certain form of risk is taken into account than if only
the expected value is maximized. Note that it is necessary to know all
covariances with this approach,

The idea to insert the third moment in ¥, has also been tried
relatively early. By Marchack [22] in social science in 1955 and by
Albach [1] in the financial environment in 1959. It appeared tha*t the
chosen pdf's and with that the decision x1,...,Xpn, didn't differ very
much compared with the criterion based on two moments. Again, this
depends on the possible pdf's,

Jean [15] used recently again even higher moments in the port-
folio model. In his study the starting point is an unknown utility
function which is seen in the light of its Taylor expansion. The strong
assumption is that all comoments of the securities are known. The como-
ment between the return of asset i, yi, and the return of asset j, Yir

is defined as upg = E(y": yq) Some necessary first order conditions for
the optimal port?o11o, expressed in terms of comoments, are derived.
Alse Sinn [30] applied among others various risk perception ideas on
the portfolio theory and the theory of currency speculation.

The practical use of such portfolio models as a tool to describe
the portfolio choice of people can be doubted, because this choice
depends on the subjective probability distribution of the 'economic
agent'. In this sense it is the question how the subjectivity of the
utility function can be distinguished from the subjectivity in the
pdf which serves as a base for this decision,

It is easy to show the relation between a linear ¥ in terms of the
central moment, like in the Markowitz case, and polynomial utility
functions.

For two moments:
_et u(z) = az + bz2 then

= E[az + bzZ] = aE(z) + bE(z2) = auy + buy

For three moments:.
Let u{z) = az + bz2 + cz3:

= E[a_z_+b£2+c_2_3] = aE(§)+bE(52)+CE(53) = allq+buz+cps

A functional which is finear in the moments can be translated to an EU
model with a polynomial utility function. This translatability is
called Bernoull3 rationality by Schneeweiss [26]. Most criteria are
evaluated by him in this sense.

Schweigman and Klein Haneveld [29] show that A in the u,02 cri-
terion ¢{u,02) = p - AoZ is sensitive to scale while in ¢{i,02) = i - Ag
this is not the case,

This criterion with the standard deviation appears not to be Bernoulli
rational so that there does nhot exist a u-function which gives

E[u(z)] = u - Ao for all two parametric distributions. The opposite is
the case with the criterion /o,

A similar criterion as the u,o criterion is that of the mean
absolute deviation MAD = E(!z-u|) but it is not the same. In this case
the matching utility function is u{z) = fz-pl. In this sense the
deviations at the right side are also taken in the risk measurement,
while we do not mind outcomes that are better than average. It looks
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u
more appropriate to take only the middle under deviation [ zdF as a

—
measurement for risk. What is left is the expectation of the left side
of the pdf, which is of course more negative the more F 15 skewed to
the left or stated in another way, the longer and thicker the left taii
is. However this left wing expectation in principle does not differ
very much from the criterion of the absolute deviation expectation, as
the right wing deviation equals the Teft wing deviation:

X oo L u M
[ |z-uldF = f{z-p)dF - [(z-u)dF = -2 [(z-p)dF = -2 [zdF + 2uF(u).
)

bl 4 =X} Xy -Xh

If 1 = 0 the two criteria coincide,
To accentuate this Jeft tail and to see an analogon with the

variance we can also think of a quadratic penalty in the left tail:

M
[ (z-u)2dF which is called the semivariance. In 1970 Markowitz changed

-

his model into this direction

The above mentioned criteria take the total outcome space into
account. Very often however outcomes are experienced as bad if they

come below a certain level zg.
One criterion used very much, takes the expected value of the left

tail below the threshold value zp as a meaurement for risk:
20
[ (2g9-z2)dF.

-
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The measure is shown here in a positive sense and is interpreted by
Schweigman [29] as expected shortage. Consider a situation of a farmer
in a developing country, who is confronted with z as the yield of
food. To feed his family he needs the minimum amount zg. If the return
falls below zg he has to buy food at a high price p and all which is
left over can be sold on the market for a lower price q.

In this case his return is given by

ZD X
-p [ (2-29)dF + g [(z-zp)dF.
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Notice that subjectiﬁity has disappeared in this interpretation,
In this sense he is confronted with a kind of utility function on the
total outcome space resp. penalty function on the space of "bad" out-

comes {-w,zg] in the following sense:

-p(zg-2z)~" L (zp-2)*

28 20

The expected shortage criterion can be introduced in this linear sense,
max E(z) - AE(zg-z)*, but also in a form which uses a restriction 1ike:
max E(z) under E(z-zp)* € sg. What happens in the idea of Schweigman if
there is hardly any alternative food available Tike in many regions in

Mozambique?
To express the fact that it becomes more and more difficult to

f£ind alternatives the penalty on coming below the threshold value can
be made strict convex by using e.g. a quadratic penalty:

\

{{zp-2)*}2

20

This corresponds to the idea of the semivariance. The convexity can
also be carried on toc Tinear models in creating a piecewise linear

. . k
penalty function., Let us define semimoments v (zg) as uk(zo} =

zg -
I Jzg-z]kdF(z).

In fact the quadratic genalty can be generalised, because it makes use

of the two semimoments v1(zg) and v2{zg) generalized quadratic penalty,
p(z) = a{(zo-z)*}z + b(zp-2z)* + ¢, uses more information on the shape
of F in the left tail, because it uses more parameters.

o3
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These figures give fr.r distridutions with each a very different
+ail. Trhe parameters of 6(p+, v, vz) will determine which pdf is
sraferred, The avpactation and the ztandard deviation is the same for
all depicted distributions.

Ore of the most used ideas s rot to make use of
infaormation or F, nut to declare any outcome uncar =
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want the probab111ty of falling urder 2, 25 Tow as possibl
the probability of bancruptcy., The pena1ty or utiligy <“rans
aiven by

xS

penalty(z) = M, e {~x,29.]
Usually the idea is implemented in a restriction ®(z ¢ zg) ¢ . In
s-ochastic dyramic programming after some paricds it an ocIlm that
ES

this probability is always bigger than a for the ou

Rossing [26]. An approach which will give the same opt Taf 3
to use the penalty emquivalant with a very Dig M instesc 27 rhne 72i:
tion formulation. In this chance constraint formulation it is aiss
possible to state more chance conztraints on z: P{z < Ioey Tk
k=1, 2, ... . This defines more af the desired dist-ibutisr

T = T - -
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zZg in this case is the zero level of inventory. The probability of
coming below this level, Py, has to be as small as possible. In these
models the term service degree is used. Also the expected shortage idea
is used with costs for negative inventory in terms of lost sales costs
and back-order costs. Here we see that the ideas discussed above are
used in parts of models. As we mentioned before, we want to focus
further on the use of criteria on the final outcome z.

A LP implementation of the idea that z should exceed the threshold
value can be found in Montazemi and Wright [23]). Next to the usua’
constraints, the following formulation is implemented:

max T 2iXj

under T Cijxj 2 29 Vi

tow [20] uses this approach to describe farmers behaviour in Ghana and

to come to e.g. minimum farm sizes in which special techniques can be
used without too much risk of a disaster. In-general the formulations
that contain restrictions form a lexicographic preference ordening in
terms of Y. First the feasible pdf's which fulfill the restriction are
looked after and then within this group the other objective is optimized.
This lexicography doesn't match the utility theory very much. This
doesn't mean that such an ordering is inferior, See Klein Haneveld [16].

The Pg approach, not to look below the threshold value zg, can be
interpreted as a certain attitude towards uncertainty. Consider a
farmer whose yield falls below the zg value. It is possible that it is
not worth the trouble to elaborate the field any further, because it
costs more than the benefit of the harvest to take further actions. In
this sense it does not matter any more how far z falls below zg.
Huisman [14] used this concept ir explaining the behaviour of farmers
in a Philippine village. _ ’

Let us state again that this last criterion does not take any form
of the left tail of the cdf F into account. The expected shortage idea
of Schweigman and the quadratic expectation of the left tail on the

9
contrary do. The Py criterion gives [ f{z)dz = F(zg) as a measure for

-t

risk, so that the shape of F below zp is not taken into account,
. 20
The expected shortage chiterion E(zg-z)* = | {zg-z)f(z)dz by partial
20 -iX)
integration leads to [ F(z)dz which is exactly the area under F
. -X)
left from zg, so that the shape does matter.
If we proceed with partial integration, it is easy to see that the

z z
quadratic penalty IO (z-zo)Zf(z)dz is equal to fD ? F{z}dzdg. By addi-
=X bt} SHES 4]
tional integration more and more of the left tail is weighted. This
gives the link to stochastic dominanceé and partial stochastic
dominance, We will work out this idea in the next section.
Kiein Haneveld [18] compares mathematically the chance constraint for-
mulation, Pgp < «, the expected shortage criterion E{zp - z) ¢ B. the
conditional expected shortage criterion of Prekopa, E(zg - z) € yPg and

1
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a formulation with E(zg - z}/E{2) € 5. An important property of chance
constraint programming is that the feasible region isn't necessarily
convex.

Let us first go back to the optimization models. Returning to the
implementation of risk expression in models, a lot appears to be ela-
borated on the idea of absolute deviations. Hazell introduced in 1971
His MOTAD model [11]). MOTAD stands for Minimum of Total Absolute
Deviation. The risk expressed 1in absolute deviations is minimized. This
corresponds to the criterion of expected absolute deviation we
discussed earlier.

The LP implementation contains the following items. Let i be
a state of nature, ej be the average coefficient and C;; be the coef-
ficient of action xj under state i. So ej is the expected profit deter-
mined by I Cij = ej. In LP terms Dj = D: - D; will
i

give the deviation under state i via

; (C{j-ej}xj -D; =0
J

Now there exists a trade-off between

+ -
I Dy + Dy : risk expressed in absolute deviation
1‘
Lejxj= E(z) : the expected profit.
J

This leads to a trade off line as in the Markowitz model, the so called
A-E frontier. Tan and Fong [32] applied this model for the optimal crop
mix in the rubber and oil plantation Malaysia. They also give the A-£
frontier. Again there is the question: What is wrong with deviations if
they are positive? We are only afraid of negative outcomes,

As we mentioned before in the discussion of the expected absolute
deviation criterion, the sum of positive deviations is exactly the same
as the sum of negative deviations:

+ -
L D0; -LD;y=1D;j
i i i

Lk (Cij-ejlxj = L L (Cjj-ejlxj = L 0.x5 = 0.
i I j

This means that in the MOTAD application less variables and restric-
tions are necessary in the reformulated version:

minimize the expected absolute deviation: 2 L D;
i

L (Cij-ej)xj + Dj > 0 i=1,2, ..., m.
Jj

This formulation gives exactly the same results. This idea can also be
found in the later work of Hazell, see Hazell 1986 [12]. In this work
it also becomes clear why no probabilities are attached to the pessible
states of nature. Hazell uses time series data for the estimation of
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the coéfficients, so that state i corresponds to a certain year or time
period t. This means again that the time dependent data are not
weighted.

The application of deviations in restrictions in LP has also been used
in multicriteria environment, in which it gives the deviation from the ideal
point, but it also has been applied to express the uncertainty involved in
the restriction. This idea has been used in applications of the fuzzy
set theory. In the fuzzy set theory the idea is that there exists a so
called membership function which represents the grade of the membership of a
certain element of a certain set.

On the FUR conference we saw two applications.
on Nachtnebel [24] gives a trade-off between economic goals and envirormenta
goals in water resource management for a special case, which includes uncer-
tain discharge of the river., Korhonen [17] uses the membership value to
express that certain RHS of some restrictions are not known for sure but
that they lei between two values. The slacks of the restrictions are put
together in a composed way in the objective so that also here a efficient
frontier can be derived. In principle this approach does not differ from the
multicriteria and soft constraint methods that have been used for many
applications. In the two studies mentioned here, linear membership values
where applied, which is the same as putting the slacks indirectly in the
objective function. From these appiications we got the impression that fuzzy
set theory 1is nothing else than, or an economic interpretation of, the soft
constraint methods which have been applied satisfactorily for a long time.

In LP-Tike models, like in the MOTAD case, the uncertainty brought in
is translated directly in the objective without expressing more information
on the distribution of z. However it is good to keep in mind that a model
consists of the various aspects as presented in section 2.

What in the model is due to ¢; what is soft constraint or fuzzy, what are
the main restrictions; what is technical, what is behavioural etc,

Before this paper is finished we will shortly discuss the idea of
stochastic dominance.
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Stochastic Dominance

We focus briefly on the concept of stochastic dominance and its rela-
tion with other functional ideas namely those based on moments and those
pased on utility functions. We should refer to the earliest work in this
field but our information depends heavily on the publications of Anderson
[2]. In the direction of applications we found his ideas completely back,
repeated, in the PhD research of Thornton [33].

Thornton studied a special case of pest control and applied explicitly a
gtiiity function to express the preferences of the farmers,

In nearly all books that contain the subject of decision under risk,
the idea of stochastic dominance ‘s at least presented for a pair 2f COFs as
F{z) < G(z) for all =z.

1

]

0.7 =

2.8

edf
-]
)
L

This means that the COF F iies at the right of G so that F is a'ways pre-
ferred for all people, This gives a kind of Pareto idea, There is no trade-
off between risk and the expected value.
This stochastic dominance rule and the Pareto rule have in common that they
are not very powerful, In terms of the functional ¥, hardly any discrimina-
tion between COFs can be made. On the other hand all people prefer F above
G, if F dominates G.

For people with a concave utility function it appears that this rule can
be made weaker. This corresponds with people who are risk averse,
Second degree stochastic dominance is defined as F » G if and only if

Z z
[ Flq)dq < [ G{q)dq for all z.

- -0

E )nG only if the expectation of F is bigger and the left tail of F Ties at
the right of G,

This means that the CDFs are allowed to intercept at some points as long as
the surface under F from +he left tail to z is smaller than the same surface
under G. 1
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In this same sense third degree stochastic dominance can be defined as

zZ p Z p
F» G if [ [ F(gq)dadp < [ [ G(g)dadp ¥ z

-x) =X —X) =Q

and the expectation of F s bigger than that of G.

This rule is weaker and applies for people with a cencave utility function
which has a positive third derivative. This rule also considers skewness to
the right, As we were focusing on risk averse decision makers, this rule
will be sufficient for all people under consideration, if we take again risk
as anxiety for left tail outcomes. Higher order stochastic dominance of
course determines more the shape of the utility function,

Partial stochastic dominance is defined as stochastic dominance on a
convex subset of the outcome space of z. It is suggested by Anderson not to
take e.g. the extreme tail behaviour of the distribution function into
account, It is more important that F dominates G on the rest of the outcome
space. This is strange because we have already seen some criteria which were
based on this partial stochastic dominance ideas, namely, the Pp criterien
gives the first order dominance on the point zg as a measure of risk;

F(zp). According to the safety first rule F is preferred above G if
F(zog) < G{zp).

In this same way there is a connection between the partial SD idea on
the {23} subspace and the other criteria. As we already saw, the expected
shortage criterion gave by partial integration

0
E{zg-z)* = [ F(2)dz

so that F is preferred above G if

Z0 Z9
[ F(z)dz < [ G{z)dz.
- -0
In the way this criterion corresponds to a special case of partial SD of
the second order. To go on in this way, the quadratic loss function which
corresponds with the idea of semi-variance would prefer F above G, if

29 z0

f ? F(z)dzdg < [ ? G{z)dzdq

—00 = hath (RS 4]
which corresponds to the concept of third degree partial SD.
With these cases of partial dominance only the dominance in the point zp was
taken into account. It appeared that the number of semimoments on (-x,zg)
corresponds to partial dominance on {zg} only of one degree higher. However,
stated the other way around: Stochastic dominance of order n corresponds to
the loss criterion

20
[ (z-zg)n-dF for all zj.

— 20
For one value of zgy at least the expression [ (z-zg)P 'dF can be used as a
functional yr; it gives a value. The stochastic dominance rules indeed give 3
preference relation but do not give one value. Dominance has to be checker
for all values in the outcome space of z. It only forms a partial ordening
of the set of pdf's. '

1



VI. Conclusion and Future Research

In operations research quantitative models are built with the purpose to
serve as a support in decision processes. Already the descriptien of the
objectives and variabies makes clear what is decided upan and which :

are the instruments anrd main restrictions. With the mathematical models we
had in mind a description of an agricultural system in this paper, in which
the main source of uncertainty was not caused by some lack of knowledge, but
more axpgenous {naturally stochastic) like the weather outcomes,

The quantitative description of the input-output system from weather to
yield gives insight in what the main problems are. In optimisation ar simu-
lation models the main factors are evaluated on the base of the objectives.
Later on the other parameters &; are checked in the direction of the objec~
tive to trace what does really matter and what does not. The risk criteria
constitute a bridge between uncertain cutcomes and the objective,

In section Il we gave a schematic model in order to discuss the sta-
tus of such criteria in the context of the model. Sometimes short-cuts can
be made, like in the Markowitz case, in which it i5 not necessary to express
the distribution function explicitly. In the Markowitz model the criterion
is formulated in moments and the ingoing and other outgoing information is

in terms of moments only.
In this paper an enumeration of the criteria was given and a 1ink was
lead to applications on the one hand and more theoretical framework cn the
dominance on the other hand.

base of utility functions and stochastic
Interpretation of criteria, what de they mean in relation to preferences aof
people is also very important. We have to admit that we did not want to go

too deep into the subjectivity of attitudes towards risk.
It is more a task for a social scientist than for a mathematician to describe

peopies behaviour. Though many applications we refered to form in reality a
description of human behaviour from the assumption that people behave

ratioral and optimal.
In this direction including a description of uncertainty and risk appears to

be a swcces.
What should be kept in mind by the mathematician is that every cri-
terion has got its properties which, depending an the structure of the madel
may lead to very different cutcomes. For instance the Pg criterion which is
used very often may not fully describe the decision maker's attitude towards
uncertainty, In future research it may be interesting to find out for
applied models, whether and how the optimal set changes if other criteria

are used or if other formulations are tried.
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