Tabaksratelvirus in Gladiool
Overdracht en bestrijding

H.A.E. de Werd, G.A. Hiddink, A.S. van Bruggen
Productschap Tuinbouw

Projectnummer: PPO 320690, PT 36123

Praktijkonderzoek Plant & Omgeving B.V.
Bloembollen
Adres : Prof. Van Slogterenweg 2, Lisse
 : Postbus 85, 2161 DW Lisse
Tel. : 0317 - 47 83 00
Fax : 0317 - 47 83 01
E-mail : infobollen.ppo@wur.nl
Internet : www.ppo.wur.nl
Inhoudsopgave

SAMENVATTING ... 5
1 INLEIDING 7
2 TRV OVERDRACHT VAN MOEDER OP DOCHTERMATERIAAL .. 9
 2.1 Inleiding .. 9
 2.2 Materiaal en methoden .. 9
 2.2.1 Algemene proefbeschrijving ... 9
 2.2.2 Behandelingen en proefopzet ... 9
 2.2.3 Voorgeschiedenis perceel ... 10
 2.2.4 Uitvoering .. 10
 2.2.5 Beoordeling TRV-aantasting ... 10
 2.2.6 Doorteelt van symptoomloze planten ... 10
 2.3 Resultaten ... 13
 2.3.1 Pitten teeltjaar 2002-2005 .. 13
 2.3.2 Kralen teeltjaren 2002-2005 ... 17
 2.4 Discussie en conclusies ... 19
3 MENGTEELT VAN BLADRAMMENAS EN GLADIOOL .. 21
 3.1 Inleiding .. 21
 3.2 Materiaal en methoden .. 21
 3.2.1 Proefopzet ... 21
 3.2.2 Behandelingen ... 21
 3.3 Resultaten ... 22
 3.4 Discussie en conclusies ... 25
4 TOEPASSING GEDROOGDE CLEOME TEGEN TRICHODORIDEN EN TRV ... 27
 4.1 Introductie .. 27
 4.2 Materiaal en methoden .. 27
 4.3 Resultaten ... 28
 4.4 Discussie en conclusies ... 31
5 EINDCONCLUSIES ... 33
Samenvatting

In de teelt van gladiolen is TRV een groot probleem. Door virusaantasting ontstaat verminderde groei en uiteindelijk een lagere bloemproductie en een verminderde bloemkwaliteit. Infectie met TRV leidt ook tot lagere kwalificering van partijen of zelfs tot afkeuring. Infectie kan al in het begin van de keten ontstaan, namelijk bij de productie van uitgangsmateriaal. Door teelt van kralen in besmette grond kan een besmetting met TRV ontstaan die pas later in de keten zichtbaar wordt. Na één jaar teelt op besmette grond blijkt het niet éénvoudig een besmetting kwijt te raken. Teelt op schone grond of intensief ziekzoeken resulteren niet direct in een TRV-vrije partij. Integendeel, in het eerste jaar nateelt in schone grond bleek een secundaire infectie zwaarder te zijn dan verwacht op basis van de symptomen in de besmette grond.

De overdracht van het virus naar kralen blijkt minder efficiënt te zijn dan de overdracht naar pitten en/of knollen. Hierdoor kan, op voorwaarde dat op schone grond geteeld wordt en goed wordt ziekgezocht, een besmette partij, door teelt van kraal op kraal langzaam opgeschoond worden. Het aantal planten met TRV-symptomen kan dan in enkele jaren teruggedrongen worden tot nauwelijks detecteerbaar. Dit wil echter nog niet zeggen dat de partij dan virusvrij is. Onzichtbare TRV-infecties kunnen later in de keten als nog voor problemen zorgen.

TRV leidt in de kralenteelt tot de nodige discussies rond de keuringsmethodiek voor TRV in gladiool. Omdat op kralen geen symptomen waargenomen kunnen worden, wordt de kwaliteit van de partij kralen bepaald aan de hand van de pitten of knollen uit dezelfde partij. Doordat het virus minder overgaat op kralen dan op pitten en knollen zou dit tot een overschatting van het percentage TRV in de kralen leiden. Echter, bij keuring op TRV-symptomen, worden de infecties die nog geen symptomen geven niet waargenomen. Dit leidt tot een onderschatting van het percentage TRV.

Voor kralen zal, indien ondanks de geringe overdracht op kralen nog steeds sprake van onderschatting is, de onderschatting in ieder geval minder zijn dan die in pitten en knollen. Of de percentages TRV in kralen in de praktijk onder- of overschat worden is momenteel niet te zeggen. In het onderzoek zijn namelijk geen exacte percentages overdracht bepaald, maar is naar het verloop van de symptoomvorming over de jaren gekeken.

Een teelt van bladrammenas beperkt het risico op een TRV-besmetting in een gevoelig volggewas. Om aan de teelt van bladrammenas geen groeiseizoen te verliezen is in gladiool getest of bladrammenas als tussengewas, gezaaid tussen de gladiolen, een TRV-reducerende werking had. Het effect is minimaal. Ook het inwerken van gedroogde korrels van het biofumigatie-gewas Cleome resulteerde niet in een lagere aaltjesdichtheid en een minder TRV-symptomen.
1 Inleiding

In de teelt van gladiolen kan tabaksratelvirus (TRV) aanzienlijke schade veroorzaken. Voor knollen bestemd voor export naar Japan geldt zelfs een nultolerantie. De belangrijkste schade door TRV wordt gevormd door verminderde bloemkwaliëteit en misvormde bladeren waardoor de bloem niet meer verkocht kan worden. Planten blijven daarnaast over het algemeen kleiner waardoor minder knolgroei gerealiseerd wordt. TRV wordt overgebracht door Trichodoride aaltjes in de bodem. Deze aaltjes komen voor door het hele bodemprofiel vanaf de toplaag tot aan het grondwater. De aaltjes komen voornamelijk voor in zand- en zavelgronden tot ongeveer 15% afslibbaar. In zwaardere gronden is er voor de aaltjes niet voldoende ruimte tussen de bodemdeeltjes om zich te kunnen voortbewegen. TRV heeft een brede waardeplantenreeks, waaronder veel onkruiden. Als Trichodoriden in de bodem voorkomen is onkruidbestrijding noodzakelijk om TRV-besmetting te voorkomen, zowel in de kralen als de pittenteelt. TRV-besmetting komt aan het licht doordat geïnfecteerde planten symptomen vertonen in de vorm van gekartelde bladeren, bruine strepen in het blad en verminderde groei (foto 1 en 2).

Foto 1. Plant met typische TRV-symptomen Foto 2. Wegval door TRV-aantasting in het veld

Er kan onderscheid gemaakt worden tussen primaire en secundaire symptomen. Primaire symptomen worden zichtbaar in jaar van besmetting, waarschijnlijk als met TRV-besmette Trichodoriden de spruit aanprikken. Secundaire symptomen worden zichtbaar in de nateelt een jaar later. Besmetting heeft in het eerste jaar waarschijnlijk plaatsgevonden via aanprikken van de wortel of de knol. Virusbesmetting leidt dus niet altijd direct tot symptomen. In klein plantmateriaal (kralen) zijn TRV-symptomen niet of nauwelijks zichtbaar. Ziektoezenen is in kralen sowieso niet mogelijk, vanwege de fijnheid van het gewas. Door de beperkte symptoomontwikkeling is vaak niet duidelijk in hoeverre een partij besmet is en of het virus overgedragen wordt van moeder- naar dochtermateriaal. Dit leidt ook tot de nodige discussies rond de keuring van kralen op TRV. De kwaltie van de kralen wordt bepaald aan de hand van pitten of knollen uit dezelfde partij. Het is de vraag in hoeverre de percentages TRV in de kralen, pitten en knollen vergelijkbaar zijn. Om te kunnen bepalen wat de risico's van een teelt op besmette grond zijn voor de teelt in de daaropvolgende jaren is inzicht vereist in het verloop van TRV over de jaren en de overdracht op kralen in vergelijking met de overdracht op pitten en knollen.

Uit eerder onderzoek is gebleken dat de teelt van bladrammenas de infectiedruk vanuit de bodem kan reduceren ten opzichte van de teelt van andere gewassen. Bladrammenas wordt in rotaties met tulp al toegepast. Bij gladiool is de methode moeilijker te implementeren, doordat zowel bladrammenas, als gladiool in de zomer geteeld worden. Daarnaast worden gladiooli meestal op huurland geteeld, waardoor men de voorvrucht niet kan beïnvloeden. In eerdere teeltproeven is uitgezet hoe een mengteelt van bladrammenas en gladiool zonder opbrengstreductie uitgevoerd kan worden. Het was nog niet bekend of bij de mengteelt met bladrammenas de TRV-aantasting in gladiool wordt gereduceerd. Verder kan de TRV-aantasting van gladiool mogelijk beperkt worden door de toepassing van nieuwe stoffen of organismen die Trichodoriden bestrijden. Isothiocyanaten (vergelijkbare stoffen als de omzettingsproducten van metam natrium) kunnen Trichodoriden bestrijden en daardoor TRV-besmetting verminderen. Bepaalde gewassen scheiden tijdens de teelt of na het onderwerken van het gewas stoffen uit die in de bodem omgezet worden in isothiocyanaten. Er wordt dan gesproken van biofumigatie. Het
gewas Cleome is zo'n gewas. Het effect van gedroogde korrels van dit gewas op Trichodoriden en TRV is bepaald. Gele mosterd is ook getest, maar bleek vooral tot vermeerdering van aaltjes te leiden. Binnen dit project zijn drie hoofddoelstellingen te onderscheiden die als hoofdstukken terug te vinden zijn in dit rapport. De eerste doelstelling is het bepalen in hoeverre TRV-besmetting overgedragen wordt van moeder op dochtermateriaal. De tweede doelstelling is om te bepalen of bladrammenas of een ander gewas als menggewas geschikt is om TRV-aantasting te voorkomen of de vector (Trichodoriden) te bestrijden. De derde doelstelling is om de effectiviteit van Cleome biofumigatiekorrels te bepalen.
2 TRV overdracht van moeder op dochtermateriaal

2.1 Inleiding

Een van de problemen met betrekking tot de teelt van kralen in de gladiolenteelt is de bepaling van de besmetting met tabaksratelvirus (TRV). Dit virus wordt overgebracht door trichodoride aaltjes als Paratrichodorus teres, P. pachydermus, Trichodorus similis en T. primitivus. De BKD keurt de partijen kralen op basis van het besmettingspercentage van het moedermateriaal (pitten of knollen). Het is echter niet bekend of en in hoeverre overdracht van TRV plaatsvindt van pit, knol of kraal naar dochtermateriaal. Het is goed mogelijk dat overdracht van het virus van kraal naar pit en van pit naar knol anders is dan van kraal/pit/knol naar kraal. Mochten blijken dat besmetting niet één op één plaatsvindt en keuring van het moedermateriaal geen goede parameter is voor het bepalen van de besmettingsgraad van de dochterpartij (kralen), dan zou dit consequenties voor de teelt van kralen kunnen hebben.

In de uitgevoerde experimenten is gekeken naar de virusoverdracht van moeder- op dochtermateriaal tijdens teelt van een besmette partij in onbesmette grond. Cultivarverschillen werden beoordeeld en er is geprobeerd deze te verklaren aan de hand van cultivareigenschappen zoals vroegheid van beworteling. Als laatste wordt aan de hand van de verkregen resultaten een beeld gegeven van de latent aanwezige virusinfectie in partijen geteeld in schone grond en de effectiviteit van selectie op bovengrondse symptomen van TRV.

2.2 Materiaal en methoden

2.2.1 Algemene proefbeschrijving

In het eerste jaar (2002) zijn kralen (cultivars: Peter Pears, Hunting Song en Traderhorn) of pitten (cultivar: Peter Pears) opgeplant in van nature met Pt en TRV besmette grond. De kralen zijn in geen van de proefjaren gekookt om zo de overdracht zo zuiver mogelijk te kunnen bepalen. Pitten zijn beoordeeld op primaire TRV-aantasting, waarbij de aangetaste planten zijn verwijderd. In de kralen is in 2002 niet geselecteerd op TRV-symptomen omdat deze nauwelijks zichtbaar zijn vanwege de fijnheid van het gewas.

In 2003 zijn de in 2002 geoogste kralen, pitten en knollen opgeplant in onbesmette grond. Vervolgens zijn in 2004 kralen, pitten en knollen opgeplant die werden geoogst in 2003 en in 2005 kralen, pitten en knollen die geoogst werden in 2004 (zie schema 1). In de proefveldjes is elk jaar geselecteerd op TRV-symptomen en zijn aangetaste planten met knol en al verwijderd (zie voor aantallen, bijlage 1). In het daaropvolgende jaar is dus steeds visueel virusvrij materiaal opgeplant in onbesmette grond. TRV-aantastingen die alsnog zichtbaar worden in het volgende jaar worden dus veroorzaakt door latent aanwezige infecties die eerder ontstaan zijn. Overdracht van het virus van kraal naar pit en knol of van pit/knol naar kraal is bepaald aan de hand van de symptomen in het veld.

2.2.2 Behandelingen en proefopzet

De overdrachtproef werd gestart met kralen van drie verschillende cultivars en pitten van één cultivar. Omdat dit voor de praktische uitvoerbaarheid van de proeven nodig was zijn de termen kraal, pit en knol binnen dit onderzoek alleen op maat gebaseerd: kralen <3, pitten 3-6, knollen >6.

Er is de volgende cultivars:
1. Kralen Peter Pears (normaal wortelend en standaard TRV cv).
2. Kralen Hunting Song (vroeg wortelend -> mogelijk meer kans op secundair ratel door langere potentiële infectieperiode).
3. Kralen Traderhorn (laat wortelend -> mogelijk minder kans op secundair ratel door kortere potentiële infectieperiode).
4. Pitten Peter Pears.
De bovenstaande behandelingstellers zijn tevens de nummers die gebruikt zijn in de proefschema's. Om niet alle kralen te hoeven tellen zijn vier maal 50 kralen gewogen en op basis hiervan gewicht van 600 kralen geschat (tabel 2.1). Al het plant materiaal is bewaard bij 17°C, standaard ontsmet en niet gekookt.

<table>
<thead>
<tr>
<th>Behandelingstel</th>
<th>Cultivar</th>
<th>Maat</th>
<th>Gewicht 600 kralen</th>
<th>Geplant (per 1 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peter Pears</td>
<td>1.5-2</td>
<td>51.6 gram</td>
<td>55.9 gram</td>
</tr>
<tr>
<td>2</td>
<td>Hunting Song</td>
<td>1.5-2</td>
<td>49.2 gram</td>
<td>53.3 gram</td>
</tr>
<tr>
<td>3</td>
<td>Traderhorn</td>
<td>1.5-2</td>
<td>27.6 gram</td>
<td>29.9 gram</td>
</tr>
<tr>
<td>4</td>
<td>Peter Pears</td>
<td>4-5</td>
<td>2 x 300 stuks</td>
<td>2 x 3.5 m</td>
</tr>
</tbody>
</table>

1 Er is een overmaat geplant om zeker te zijn van voldoende materiaal in de volgende seizoenen.

Op ratelvrije grond zijn daarnaast nog 2x300 Peter Pears pitten geplant en van elke cultivar een veldje met 600 stuks kralen ter controle op TRV-besmetting van het plantgoed zelf.

2.2.3 Voorgeschiedenis perceel
In het eerste jaar wordt het uitgangsmateriaal geplant op de BKD/Valktuin achter de Achterweg in Lisse. De grond bevat Paratrichodorus teres besmet met TRV. Op dit perceel is in seizoen 2000-2001 een organische stofproef uitgevoerd. Het percentage primair TRV in deze tulpenproef was hoog. Na de tulpenproef heeft er Italiaans raaigras op dit perceel gestaan.

2.2.4 Uitvoering
Zes weken voor het planten van de gladiolen is het Italiaans raaigras doodgespoten met Round-up, en is het gras drie tot vier dagen voor het planten doorgefreest. Er werd geplant op 10 april 2004. Zowel kralen (zie tabel 2.1) als pitten zijn geplant met veurendruk, waarbij de plantveur voor de kralenteelt weer iets is dichtgegooi. Het plantmateriaal is met de hand in de veuren gestrooid. Om infectie te bevorderen is met spuitbomen zes mm water gegeven in de open veur.

2.2.5 Beoordeling TRV-aantasting

De kralen en pitten die ter controle van de partij op niet besmette grond geplant zijn, vertoonden geen TRV-symptomen.

2.2.6 Doorteelt van symptoomloze planten
In 2003 is het materiaal afkomstig van symptoomloze planten in 2002 geplant en geoogst. Als het dochtermateriaal moest worden doorgeteeld, zijn de geoogste kralen, pitten en knollen gesorteerd, geteld en bewaard. Vervolgens is het materiaal opgeplant op een TRV-vrije perceel.

Van de geoogste kralen werden 600 stuks opgeplant; van de pitten en knollen elk maximaal 500 stuks. Indien minder werd geoogst dan werd de hele (gesorteerde) oogst opgeplant in het volgende jaar.

Tussen de blokken zijn jaarlijks 2 rijtjes indicatortitten geplant. Deze pitten zijn van een TRV-vrije partij
(Japan kwaliteit) en dienden om na te gaan of de grond onverhoopt toch besmet was met PT en TRV. In 2004 en 2005 is dezelfde strategie gevolgd. Welke veldjes geoogst zijn en weer opgeplant staat hieronder en in schema 2.1 aangegeven, zie voor de aantallen bijlage 1.

Beschrijving van de proefopzet bij start met kralen in besmette grond (de opzet geld voor alledrie de cultivars, zie ook het schema 2.1):

Jaar 1: - kralen (0, 1kPP, 2kHS of 3kT) planten op besmet perceel -> kralen (1k) en pitten (1p) oogsten

Jaar 2: - kralen van jaar 1 op gezond perceel, (1k) -> kralen (10k) + pitten (10p) oogsten + knollen (10kn) oogsten
 - pitten (1p) van jaar 1 op gezond perceel beoordelen ratel, zieke plant/knollen verwijderen en rest oogsten

Jaar 3: - kralen (10K) van jaar 2 planten op gezond perceel opplanten kralen, beoordelen op ratel zieke plant/knollen verwijderen, rest oogsten, kralen, (100k, verwijderd), pitten (100p) en knollen (100kn)
 - pitten (10p) van jaar 2 op gezond perceel opplanten, beoordelen ratel, zieke plant/knollen verwijderen en rest oogsten
 - knollen (10kn) van jaar 2 planten, knollen (10kn) beoordelen op ratel, daarna afvoeren

Beschrijving van de proefopzet bij start met pitten (Peter Pears) in besmette grond:

Jaar 1: - pitten (4pPP) planten op ziek perceel, zieke planten met knol verwijderen, kralen (4k), pitten (4p) en knollen (4kn) oogsten

Jaar 2: - kralen (4k) van jaar 1 op gezond perceel planten, oogsten kralen (40k), pitten (40p, voornamelijk grote kralen) en knollen (40kn)
 - pitten (4p, voornamelijk grote kralen) van jaar 1 op gezond perceel planten, beoordelen op ratel, oogsten knollen (41kn)

Jaar 3: - kralen (40k) van jaar 2 planten op gezond perceel, oogsten kralen (400k, verwijderd), pitten (400p) en knollen (400kn)
 - pitten (40p) van jaar 2 op gezond perceel planten, beoordelen ratel, zieke plant/knollen verwijderen, oogsten pitten (401p) en knollen (401kn) kralen weg

Jaar 4: - pitten (400p) van jaar 3 op gezond perceel planten, beoordelen op TRV afvoeren
 - knollen (400kn) van jaar 3 op gezond perceel planten, beoordelen op TRV en afvoeren
 - pitten (401p) van jaar 3 op gezond perceel planten, beoordelen op TRV afvoeren
 - knollen (401kn) van jaar 3 op gezond perceel planten, beoordelen op TRV en afvoeren
Schema 2.1. De behandelingscodes schematisch weergegeven per jaar. Per behandeling is ook het gemiddelde percentage planten met TRV-symptomen weergegeven. In de blokken waar een liggend streepje staat zijn geen TRV-symptomen gescoord (kralen). De blokken waar een schuine streep door staat zijn niet opgeplant. 1kpp = P. pears kralen in besmette grond, 2khs = Hunting Song kralen in besmette grond, 3kt = Traderhorn kralen in besmette grond, 4ppp = P. pears pitten in besmette grond. 1 = Peter Pears, 2 = Hunting Song, 3 = Traderhorn, 4 = Peter Pears (pitten). k = kraal, p = pit, kn = knol. In de behandeling (4p) gemerkt met * staat voor p voor 'grote kraal (fysiologisch gezien).
2.3 Resultaten

In 2002 is gestart met zowel pitten (Peter Pears) als kralen. De pitten zijn gebruikt om de initiële besmetting te bepalen en om een beeld te krijgen van de overdracht van TRV van pit naar kraal gedurende de jaren 2002-2005. De kralen zijn gebruikt om te kijken hoelang TRV-besmetting via symptomen zichtbaar blijft bij teelt van kraal op kraal van in onbesmette grond een besmette partij.

In de indicatorpitten geplaatst tussen de kralenveldjes in besmette grond kwamen planten met TRV-symptomen voor. Dit maakt het aannemelijk dat de kralen ook geïnfecteerd zijn.

Eerst worden de resultaten van de pitten weergegeven, daarna die van de kralen.

2.3.1 Pitten teeltjaar 2002-2005

In teeltjaar 2002 (jaar 1) is begonnen met de teelt van kralen en pitten in met Pt en TRV-besmette grond. In grafiek 1 is het percentage planten weergegeven met primaire TRV-symptomen in pitten (gemiddeld 14.4 %, grijze kolommen) geteeld in besmette grond (code 4ppp, schema 1). Er was een behoorlijk verschil in aantasting tussen de verschillende veldjes (blok A-F, grafiek 1) variërend van 5 tot 26 % aangetaste planten. Deze variatie kan veroorzaakt worden door verschillen in de aaltjespopulatie binnen het proefveld. Trichodus-aaltjes komen meestal pleksgewijs voor.

Grafiek 2.1. Het percentage planten met TRV symptomen (geplant als pit, 4ppp, schema 1) geteeld in besmette grond om primaire symptomen, (grijze kolommen) en het percentage zieke planten in de nateelt van knollen verkregen van pitten geteeld in besmette grond (secundaire symptomen, zwarte kolommen). De gestipte kolommen geven het percentage besmette planten weer in pitten (maat 2-4, geoogst in 2002 op besmette grond).

In grafiek 2.1 is ook het percentage secundair ratel in knollen in 2003 afkomstig van pitten uit 2002 weergegeven (zwarte kolommen). Van belang is dat gemiddeld maar liefst 44% van de knollen die als symptomloze planten geoogst zijn in 2002, TRV-symptomen laat zien. Secundair TRV blijkt dus in grote mate in een partij voor te komen ondanks selectie in het veld op primair TRV. Een verklaring hiervoor zou kunnen zijn dat besmetting in 2002 laat in het seizoen heeft plaatsgevonden, waardoor het virus vaak niet meer tot expressie is gekomen. Daarnaast zou ook besmetting door Pt via het aanprikken van de wortels i.p.v. de spruit of stengel kunnen zorgen voor verlate symptoomexpressie of het symptoomloos blijven. Het verwijderen van zieke planten, zoals dat in de praktijk gebeurt, is dus zeker geen garantie dat het overige plantmateriaal virusvrij is en een gezond product zal opleveren bij de aannemer.

De witte kolommen in dezelfde grafiek geven het percentage secundair TRV weer (gemiddeld 5.4 %), dat werd gevonden in pitten die in 2002 nieuw zijn gevormd (kralen maat 3-6 en enkele pitten die de knolmaat niet bereikten hebben in 2002). Opvallend is dat in de nieuwgevormde pitten/kralen het percentage planten

Uit grafiek 2.3 blijkt dat het percentage planten met TRV-symptomen vermindert in de loop der jaren, als een partij besmette kralen, kraal op kraal doorgesteeld wordt in schone grond (uitgaande van besmette pitten) en nauwkeurig ziekgezocht wordt. Telen van een besmette partij kralen in onbesmette grond kan dus leiden tot een lager percentage TRV-besmette planten in de nateelt. Hoe langer de doorteelt van kralen in onbesmette grond kan worden volgehouden des te lager (procentueel gezien) wordt het aantal planten met TRV-symptomen in de partij. Binnen 2 teeltjaren loopt de besmetting terug van een zware aantasting naar nauwelijks zichtbaar op basis van TRV-symptomen. Er vindt echter wel enige overdracht naar kralen plaats.

Ondanks dat er in pitten geselecteerd werd op TRV-symptomen en de zieke planten zijn verwijderd, bleken het volgende teeltjaar TRV-symptomen aanwezig in de knollen. De dochterpartij (41kn / 401 kn) gaf een vergelijkbaar percentage TRV, als de moederpartij (4p / 41 kn) (grafiek 2.4) in zowel 2004 (resp. 5.5 en 4.0 %) als 2005 (resp 0.4 en 0.3%). Dit betekent dat symptoomloos TRV overgaat van moeder- op dochtermateriaal (pit op pit óf pit op knol en waarschijnlijk ook van pit/knol op kraal). Uit de symptomen in 400p een 400 kn blijkt dat ook overdracht van kraal op kraal plaatsvindt.

Grafiek 2.4. Overdracht TRV van pit naar knol (verklaring codes: zie schema 1).
Grote maten (knollen) lijken meer symptomen te vertonen dan pitten, waarschijnlijk door een hogere virusconcentratie in het plantmateriaal en daardoor een heftigere symptoomexpressie. Dit heeft voor de teelt als consequentie dat ook in symptoomvrije partijen schade door TRV kan optreden in het volgende teeltjaar.
2.3.2 Kralen teeltjaren 2002-2005
In de kralenteelt (2002) zijn de primair TRV-besmette planten niet verwijderd, omdat symptomen in kralen niet of nauwelijks zichtbaar zijn. In de nateelt in 2003 kon voor het eerst visueel beoordeeld worden in hoeverre de kralen een TRV-besmetting hebben opgelopen in 2002. Het percentage planten (P.pears) met secundaire TRV-symptomen uit kralen (2003, 1p, 8.6 %) geteeld in besmette grond is niet zo hoog als bij de planten die als pit (primair 12,0 %, secundair 44%) zijn opgeplant in besmette grond (Peter pears, paragraaf 1.3.1). Dit zou erop kunnen duiden dat de kans op infectie met TRV door Trichodoride-aaltjes voor kralen kleiner is dan voor pitten. De grote van het wortelstelsel zou hierbij een belangrijke factor kunnen zijn. Het waargenomen verschil zou echter ook veroorzaakt kunnen zijn op verschillen in symptoomexpressie tussen de verschillende maten.

Tussen de cultivars is er een verschil in het percentage zichtbaar TRV. Het percentage in de cultivar Traderhorn (17.4%) is significant hoger dan in de cultivars Hunting Song (7.5%) en Peter Pears (8.6%) (grafiek 2.6). Op dit moment is er geen verklaring voor dit cultivarverschil. Er werd een effect van de bewortelingsnauwkeurigheid op de infectiepercentages verwacht. Een snellere beworteling heeft een langere groeiperiode tot gevolg, waardoor de infectiekans groter zou kunnen zijn. Op basis van de resultaten lijkt echter eerder het tegendeel het geval te zijn. Andere factoren zoals groeisnelheid van de knol, gevoeligheid voor het virus, aantrekkelijkheid voor de aaltjes en mate van symptoomexpressie zijn blijkbaar van groter belang.

De opkomst van kralen van de cultivar Traderhorn (gemiddeld 32 %) was lager dan van de beide andere cultivars (respectievelijk 55% (P.Pears)en 57 % (H. Song)). Een verklaring voor de lagere opkomst is niet gevonden.

Grafiek 2.5. Percentages TRV-besmette planten in pitten verkregen uit kralen geteeld in TRV-besmette grond in 2002. De pitten (p) komen van kralen die geteeld zijn op besmette grond, die één (code 0p) of twee (00p) jaar als kralen (kral op kraal) doorgeteeld zijn in schone grond.

Uit grafiek 2.5 blijkt dat in 2002 een duidelijk cultivarverschil ontstaan is. Dit verschil blijft bestaan tijdens de nateelt van kralen in onbesmette grond. Bij alledrie de cultivars geldt dat het percentage planten met symptomen significant afneemt tijdens de teelt van kraal op kraal in onbesmette grond. De mate van afname is cultivarafhankelijk. Deze afname was ook te zien in het deel van de proef dat met pitten in besmette grond begon. Omdat selectie op TRV-aangetaste planten niet mogelijk is in de kralenteelt kan de verminderling van het percentage zieke planten hier niet door selecteren op het veld veroorzaakt zijn. Verdunning van het aantal besmette planten in de partij door gezond materiaal is wel een mogelijke oorzaak van de verminderling van het percentage planten met symptomen. Zoals ook aangegeven bij de resultaten van de pitten (paragraaf 2.2.7) is niet duidelijk hoe en of deze verdunning plaatsvindt. De afname van het percentage planten met TRV-symptomen in de tijd verschilt net niet significant tussen de cultivars, dit wordt mede veroorzaakt door de grote variatie in de aantallen geïnfecteerde planten in de verschillende
Bij de overgang van pit naar knol blijkt het infectiepercentage in de partij weinig te verminderen. Intensieve selectie in de partij pitten resulteert uiteindelijk in een vergelijkbaar infectiepercentage in de knollen het volgende jaar (grafiek 2.6). Het percentage planten met symptomen van de cultivar Hunting Song lijkt zelfs te stijgen ondanks dat geen extra besmetting plaats kan hebben gevonden. Hieruit kunnen we concluderen dat in de opgeplante pitten nog symptoomloos TRV aanwezig is. Dit ondersteunt mede de hypothese dat symptoomexpressie toeneemt naarmate de knolmaat groter wordt.

Grafiek 2.6. Het percentage planten met TRV-symptomen in pitten en in dezelfde partij een jaar later als knol, de codes corresponderen met de codes in schema 1.
2.4 Discussie en conclusies

Op basis van de verkregen resultaten kunnen we concluderen dat in dit experiment zowel de pitten als de kralen geïnfecteerd werden met het TRV-virus. In een partij in besmette grond geplante pitten bleek bijna 15% van de planten primaire TRV-symptomen te vertonen. In het eerste jaar nateelt gaf symptoomloos plantgoed (knollen) verkregen uit deze partij echter alsnog 44% planten met TRV symptomen. Niet alle primaire infecties veroorzaken dus symptomen, waardoor ondanks selectie een deel van de partij besmet blijft. Dit wordt mede veroorzaakt door de plaats waar de vector (Pt) aanprik. Het aanprikken van de spruit vroeg in het seizoen veroorzaakt meestal de primaire symptomen. Later aanprikken of het aanprikken van de wortel of knol is mogelijk de oorzaak van minder symptoomexpressie in het jaar van infectie en uit zich in de nateelt als secundaire symptomen. Voor de kralenteelt ligt dit anders. In kralen zijn zowel de primaire als de secundaire symptomen moeilijk zichtbaar en wordt er in de praktijk ook niet op geselecteerd. De kralen kunnen echter wel geïnfecteerd worden en het virus doorgeven zoals blijkt uit de proefresultaten. Het percentage planten dat TRV-symptomen vertoont, lijkt wel af te nemen naarmate langer van kraal op kraal wordt geteeld. Kralen die besmet zijn uiten dit pas als ze voldoende zijn gegroeid, dus als ze de pit of knolmaat hebben bereikt. De symptomen zijn dan secundaire symptomen. Uit literatuur blijkt dat secundair TRV vaak minder goed zichtbaar is, waardoor op basis van TRV-symptomen het percentage planten met TRV lager geschat wordt. Dit kan echter de afname van het aantal planten met zichtbare symptomen niet alleen verklaren. Verdunning van het aantal planten besmet met het virus in de partij zou op kunnen treden, doordat geïnfecteerde pitten en kralen minder kralen produceren waardoor er dus als kraal en (en dus als onzichtbare dragers van het virus) in de moederpartij achterblijven. De partij blijft hierdoor wel besmet en in gunstige omstandigheden kunnen de besmette kralen uitgroeien tot pitten of knollen die planten produceren waarin TRV-symptomen zichtbaar zijn. In onze experimenten tot wel 10% in knollen verkregen na twee jaar kralen in onbesmette grond (301kn)

Het is ook mogelijk dat een plant het virus relatief slecht op kralen overdraagt, waardoor slechts een laag percentage van de kralen gevormd aan een besmette plant besmet raakt. In de praktijk vindt bij het gebruik van kralen mogelijk nog extra verdunning plaats doordat de kralen gekookt worden. Het effect van koken op het percentage TRV in kralen is niet exact bekend.

Mocht een symptoomloze maar besmette partij kralen onverhoopt op een perceel geplant worden waar een behoorlijke populatie Trichodoride-aaltjes aanwezig is, dan zou dit in de vervolgeelt van pitten en kralen voor een plotselinge grote besmetting kunnen zorgen. Maatregelen ter voorkoming van een grote populatie trichodoride-aaltjes zijn dan ook erg belangrijk naast het gebruik van virusvrij voortgangsmateriaal. Het creëren van een virusvrije partij door stamselectie zou een dure, maar effectieve start zijn om problemen met TRV te voorkomen. Hierbij is een betrouwbare serologische toets op TRV noodzakelijk.

Als teeltmaatregelen ter voorkoming van nieuwe infecties van plantgoed en verspreiding van TRV kunnen de volgende maatregelen genomen worden.

- Gebruik alleen plantmateriaal (kralen, pitten en knollen) dat niet alleen symptoomloos maar liefst ook serologisch getest is. Een partij met een Japan verklaring voor een partij is geen absolute garantie voor onbesmet plantgoed maar wel een goede indicator.
- Teel alleen op gronden waar geen Trichodoriden in voorkomen. Dit is lastig sinds grondontsmetting meer een beperkte toelating heeft. Teelt op gronden waardoor dan 15% lost het Trichodoriden probleem op, maar kan problematisch zijn voor de oogst van de kralen.
- Neem gewassen als bladrammenas, waarop TRV en trichodoride-aaltjes niet kunnen vermeerderen, waar mogelijk op in de rotatie. Teel geen Trichodoriden vermeerderende gewassen voor een gladlenteelt. Zie www.digitale.nl voor meer informatie met betrekking tot waardeplantstatus van verschillende gewassen.
- Teel bij de teelt voor plantaardig zoveel mogelijk kraal op kraal om zo het aantal geïnfecteerde planten te verdunnen en de partij op te schonen.
- Houd verschillende partijen gescheiden om vermenging van besmette en onbesmette partijen te voorkomen.
- Plant de kleinste maten van een partij (bijvoorbeeld de kleinste kralen) niet op. Dit zou een reductie van de besmetting kunnen geven, omdat besmette planten minder hard groeien en daardoor minder en kleinere kralen produceren. Dat dit ook daadwerkelijk de besmetting in een partij verminderd is echter nog niet bewezen.
3 Mengteelt van bladrammenas en gladiool

3.1 Inleiding

Bestrijding van Trichodoriden is één van de manieren om TRV-besmetting in een partij te voorkomen. Omdat chemische grondontsmetting niet altijd afdoende werkt en slechts beperkt is toegelaten is gezocht naar alternatieven. Doordat Trichodoriden en TRV zich op bladrammenas niet vermeerderen, geeft dit gewas in vergelijking met de meeste andere voorvruchten een lagere besmettingsdruk in de grond en TRV-aantasting in een gevoelig volggewas. Een probleem voor de toepassing van bladrammenas als voorvrucht voor een zomerbloeiend gewas als gladiool is dat dit in principe een teeltseizoen kost. Op een perceel met Paratrichodorus teres te Lisse is onderzocht of een gelijktijdige teelt van bladrammenas en gladiool ook een reductie van ratelvirusaantasting geeft. De bladrammenas is volvelds of in regels tussen de gladiolen gezaaid. In de proef is verder een behandeling opgenomen met een goede waardplant voor TRV, gele mosterd, om het schadelijke effect dat veronkruiding tijdens de teelt kan hebben te bepalen.

3.2 Materiaal en methoden

3.2.1 Proefopzet

De proef is uitgevoerd op de proeftuin van PPO-Lisse het achterste gedeelte van de “BKD”tuin aan de achterweg. De voorvrucht op het proefveld was italiaans raaigras cv. ’Bartali’. Een MPN en aaltjestelling is uitgevoerd om te bepalen welk deel van het veld geschikt was (voldoende besmettingsdruk) voor de proef.

3.2.2 Behandelingen

De volgende behandelingen zijn ingezet:

1. Controle alleen gladiool (maat 4-6), 300 knollen per veldje code C
2. Mengteelt gladiool met Gele mosterd ‘Maxi’, volvelds 24 g per veldje code G
3. Mengteelt gladiool met bladrammenas ‘Adagio’, volvelds 24 g per veldje code Bv
4. Mengteelt gladiool met bladrammenas ‘Adagio’, op regels 24 g per veldje code Br

De opkomst van de groenbesmeters is op 30 mei beoordeeld. De mengteeltgewassen waren niet in alle veldjes gelijkmataag opgekomen. De opkomst (zie bijlage 4) is beoordeeld op een schaal 0-2 (0=slecht en 2=goed). Bij de volveldstoepassing wordt de bladrammenas doodgespoten. Bij de teelt op regels wordt de bladrammenas mechanisch verwijderd. Het moment van doodspuiten en verwijderen is bepaald op basis van resultaten in een onderzoek naar de opbrengstreductie in mengteelt van gladiool en bladrammenas. In sommige veldjes hebben de gladiolen schade opgelopen door de onkruidbestrijdingsmiddelen die gebruikt zijn om de bladrammenas en gele mosterd dood te spuiten. De schade trad vooral op aan de uiteinden van de veldjes. De schade bestond uit afgestorven bladpunten waarbij in een aantal gevallen de hele plant was vergeeld. Deze planten zijn niet meegeteld in de TRV-symptoombeoordeling. Omdat de mengteelt mogelijk ook een effect heeft op de groei van gladiool is de gewasstand beoordeeld op een schaal van 1-3 (1=slecht, 3=goed). De bladrammenas en gele mosterd (volveldszaai, behandelingen G en Bv) zijn doodgespoten op 30 mei met 2,5 kg metoxuron 80% (o.a. Dosanex) + 250 g MCPA 500 g/l per ha. De Br-behandeling is geschoffeld op 30 mei. Het spuiten en schoffelen is herhaald op 11 juni. De gladiolen zijn visueel beoordeeld op TRV-symptomen om de primaire aantasting te bepalen. Het aantal zieke en het totale aantal planten is geteld. De zieke planten zijn inclusief knol verwijderd. De knollen van de symptoomloze planten zijn gerood in het volgende seizoen weer opgeplant op TRV-vrije grond om het percentage secundair ratel te bepalen. De percentages totaal ratel zijn berekend ten opzichte van het aantal beoordeelde en geroodde planten.
3.3 Resultaten

Wanneer de percentages primair ratel per regel globaal werden vergeleken met de opkomst van de gewassen dan was er geen verband tussen de mate van opkomst en het percentage primair ratel.

Grafiek 3.1. Beoordeling van de stand van de gladiolen in mono- en mengcultuur op een schaal van 1-3 (1=slecht, 3=goed). C = gladiool alleen, G = gladiool met gele mosterd, Bv = gladiool met bladrammenas (volvelds), Br = gladiool met bladrammenas (regels).

De stand van de gladiolen (grafiek 3.1) in mengteelt met gele mosterd was minder dan in de teelt van gladiolen alleen of in de behandelingen gladiool met bladrammenas. De gele mosterd vormde een voller gewas dan de bladrammenas, mogelijk heeft concurrentie daarom meer invloed gehad op de gladiolen. Het percentage planten met primaire TRV-symptomen was hoger in de mengteelt met gele mosterd dan in de controle, waarschijnlijk heeft ook dit de stand van de gladiolen negatief beïnvloed. De mengteelt met bladrammenas had geen effect op de stand van de gladiolen.
Grafiek 3.2. Het percentage planten met primaire TRV-symptomen in mono- en mengteelt. C = gladiool alleen, G = gladiool met gele mosterd, Bv = gladiool met bladrammenas (volvelds), Br = gladiool met bladrammenas (regels).

Het percentage planten met primaire TRV-symptomen (grafiek 3.2) was in de gehele proef vrij laag. De mengteelt met gele mosterd leidde tot een hoger percentage TRV. Dit bevestigt dat gele mosterd een goede waardplant voor TRV is en geeft het risico van veronkruiding tijdens de teelt weer. Een trichodorus vermeerderend onkruid of een onkruid dat drager is van TRV kan een vergelijkbaar effect hebben.

Mengteelt met bladrammenas reduceerde het percentage planten met primaire TRV-symptomen niet. Dat de aaltjes niet bestreden worden is te verwachten (bladrammenas vermeerdert ze niet, maar bestrijdt ze ook niet (bron: Groenbemesters, van teelttechniek tot ziekten en plagen, 2003). De TRV druk zou echter wel verlaagd moeten zijn, omdat het virus bij het aanprikken van de bladrammenas in deze planten achterblijft, zodat deze Trichodoride-aaltjes geen andere planten meer kunnen besmetten.

Het percentage planten met secundaire TRV-symptomen was aanzienlijk (grafiek 3.3). Geen van de mengteelt-behandelingen resulteerde in een lager percentage planten met TRV-symptomen dan de teelt van gladiolen alleen. De mengteelt met bladrammenas leverde zowel bij volvelds als in regels zaaien een vergelijkbaar percentage planten met secundaire TRV-symptomen op. De mengteelt met gele mosterd, als goede waard voor TRV, gaf geen toename van het percentage planten met secundaire TRV-symptomen te zien. De grote variatie tussen de herhalingen zal ook er ook toe bijgedragen hebben dat geen verschillen in secundair ratel tussen de behandelingen aangetoond zijn.
Grafiek 3.3. Het percentage planten met secundaire TRV-symptomen in mono- en mengteelt. C = gladiool alleen, G = gladiool met gele mosterd, Bv = gladiool met bladrammenas (volveels), Br = gladiool met bladrammenas (regels).

Grafiek 3.4. Het totale percentage planten met TRV-symptomen (primaire + secundaire symptomen) in mono- en mengteelt. C = gladiool alleen, G = gladiool met gele mosterd, Bv = gladiool met bladrammenas (volveels), Br = gladiool met bladrammenas (regels). Het zwarte deel van de kolom is het percentage planten met primaire TRV-symptomen, het grijze deel geeft het percentage planten met secundaire TRV-symptomen weer.
Als het totale percentage planten met TRV-symptomen wordt bekeken, kan eveneens geen significante werking van de mengteelt op TRV worden waargenomen (grafiek 3.4). De mengteelt van gladiool met gele mosterd gaf wel een significant hoger percentage ratel dan een regelmenigteelt met bladrammenas. Dit wijst erop dat onkruiden die goede waardplanten zijn voor TRV een risico opleveren voor de gladioolen en besmetting in een partij kunnen verergeren. Bladrammenas als menggewas tijdens de teelt van gladiool biedt niet genoeg perspectief om TRV-aantasting tegen te gaan. Wat verder opvalt, is dat ook in deze proef ondanks selectie en het verwijderen van planten met TRV-symptomen, in de nateelt een zware aantasting met TRV te zien is. De besmetting is ondanks de verschillen in primaire symptomen voor alle behandelingen ongeveer gelijk. Dit wijst er weer op dat selectie op visuele symptomen alleen niet voldoende is om een partij virusvrij te krijgen of te houden.

3.4 Discussie en conclusies

De belangrijkste conclusies met betrekking tot het telen van menggewassen in de gladiolenteelt zijn:
- Mengteelt /tussengroei met een goede TRV waardplant en dus ook veronkruiding kan een toename van het percentage primaire ratelaantasting geven.
- Onkruidbestrijding tussen en tijdens de teelt is van groot belang om de infectiedruk te beperken.
- Mengteelt met bladrammenas geeft geen reductie van TRV in gladiool.
- Het verwijderen van plantmateriaal met primaire symptomen hoeft niet te resulteren in een virusvrije partij, omdat niet alle besmette planten symptomen laten zien na infectie.

Ondanks de bekende effecten van bladrammenas op TRV-besmettingen heeft de mengteelt niet geleid tot lagere percentages zieke planten. Een mogelijke verklaring hiervoor zou kunnen zijn dat het groeiseizoen van de bladrammenas door het doodspuiten beperkt was tot ongeveer een maand. De positieve effecten van de bladrammenas worden dan misschien niet gedaan door de lange periode dat nog infectie op kan treden na het afsterven van de bladrammenas. Het is ook mogelijk dat de effecten van de bladrammenas niet binnen zo een korte tijd optreden.
4 Toepassing gedroogde Cleome tegen Trichodoriden en TRV

4.1 Introductie

De teelt van bladrammenas is de enige niet-chemische maatregel waarvan bekend is dat de infectiedruk op met TRV besmette percelen er actief mee verlaagd kan worden. Na een vroeggerooid gewas is een teelt van bladrammenas nog wel mogelijk (zaai in augustus). Na veel andere gewassen is de tijd echter te kort voor een teelt van bladrammenas. Wil men voor gladiool dan bladrammenas zaaien, dan kost dit echter een groeiseizoen. In samenwerking met het onderzoeksinstituut ISCI in Italië is het mosterdgewas *B. juncea* tegen verschillende ziekten in de bollenteelt getest. *B. juncea* is mogelijk geschikt als biofumigatiegewas. Een biofumigatiegewas produceert gasvormige stoffen die, na omzetting in isothiocyanaten onder vochtige omstandigheden, een bestrijdende werking op verschillende bodemorganismen (waaronder ziekteverwekkers) heeft. Het biofumigati-effect is als het ware een natuurlijke grondontsmetting als de gassen in voldoende hoge concentraties aanwezig zijn. *B. juncea* bleek echter een zeer goede waardplant te zijn voor Trichodoriden. *B. juncea* is daarom geen geschikte kandidaat voor biofumigatie tegen Trichodoride-aaltjes en TRV. De effectiviteit van het toedienen van een biofumigatiegewas in de vorm van pellets in plaats van door het te telen werd daarom getest. Er is gekozen voor pellets van het biofumigatiegewas Cleome. Gedroogde Cleome bleek in een mandjesproef effectief Rhizoctonia in gladiool te bestrijden (PT project, PPO nr: 320687). Een nadeel van deze toepassing is, is dat wanneer de pellets effectief blijken, deze waarschijnlijk aangemerkt zullen worden als een bestrijdingsmiddel waarvoor een toelating vereist is.

4.2 Materiaal en methoden

De proef is uitgevoerd op de proeftuin van PPO-Lisse, op het achterste gedeelte van de “BKD”-tuin aan de Achterweg. Op het proefveld is voorafgaand aan de proef Italiaans raagras (cv. Bartali) geteeld. Voor aanvang van de proef is het perceel bemonsterd op aantallen Trichodoriden, om te bepalen in welke bedden de proef kon worden uitgevoerd.

In de Rhizoctoniaproef werden de Cleome korrels (425 gram per m²) vlak voor planten toegepast. Na toepassing werd enige fytotoxiciteit waargenomen. Om het risico op fytotoxiciteit te verkleinen is in de TRV proef gewerkt met een lagere dosering en werd het materiaal drieeeneenhalve week voor het planten van de gladiolen door de grond gewerkt. Het middel is ondiep (0-20 cm) en diep (0-40 cm) toegepast. De toepassing van 0-20 cm is in de praktijk het gemakkelijkst uitvoerbaar. Omdat Trichodoride-aaltjes ook op grotere diepte voor kunnen komen, is ook voor een 0-40 cm toepassing gekozen.

De volgende behandelingen zijn toegepast:
1. Controle= geen pellets wel de grond doorwerken 0-20 cm
2. Controle= geen pellets wel de grond doorwerken 0-40 cm
3. Cleome pellets doorwerken in de laag tussen 0-20 cm (350 g Cleome per veldje (100 g/m²))
4. Cleome pellets doorwerken in de laag tussen 0-40 cm (700 g Cleome per veldje (200 g/m²))

De behandelingen zijn uitgevoerd in 9 herhalingen (blokken). De Cleome korrels zijn steeds vlak voor het spitten op het veldje uitgestrooid. De proef is afgedekt met papiercellulose en beregend. Vlak voor het planten van de gladiolen zijn grondmonster gestoken om het effect van de behandelingen op het aantal Trichodoriden en op TRV te bepalen.
De cultivar Peter Pears (maat 4-6) is geplant in een dichtheid van 300 pitten per veldje. Op niet besmette grond zijn twee veldjes knollen van de gebruikte partij geplant om na te gaan of de partij TRV-besmet was. Er werden geen TRV-symptomen aangetroffen.

Voorafgaande aan de veldproef is met de zogenaamde tuinkers-kiemingstoets is bepaald of er een kans op schade door fytotoxiciteit was. De mate van kieming van de tuinkers na behandeling van de grond is hiervoor een indicatie. In de tuinkerstoets zijn getest:

1. Controle
2. Cleome 200 g/m² (=1,3 g/pot (pot is 63,6 cm²); = niet fytotoxisch)
3. Cleome 423 g/m² (=2,7 g/pot (pot is 63,6 cm²); = wel fytotoxisch)

4.3 Resultaten

Tussen de controle en de Cleome behandelingen bestonden zowel voor als na de toepassing van Cleome geen significante verschillen in aantallen aaltjes (grafiek 4.1). Toepassing van Cleome korrels heeft dus geen aaltjesbestrijdend effect gehad. De activiteit van de Trichodoride aaltjes kan wel verminderd zijn, waardoor er een verminderde TRV-overdracht zou kunnen zijn. Dit zou dan blijken uit de TRV-symptomen in de gladiolen.

Grafiek 4.1. Aantallen Trichodoriden na de Cleome behandelingen maar voor het planten van de gladiolen
Grafiek 4.2. Het percentage planten met primaire en secundaire TRV-symptomen. Verschillende letters boven de kolommen van dezelfde kleur geven significante verschillen aan. De primaire symptomen verschillen niet significant tussen de behandelingen.

Toepassing van Cleome korrels heeft geen reductie in het percentage planten met een primaire TRV aantasting veroorzaakt (LSD, p<0,05, grafiek 4.2). Ook een diepere grondbewerking heeft niet geleid tot minder planten met TRV-symptomen.

De diepte van de grondbewerking had wel een effect op de secundaire symptomen. Spitten tot 20 cm diep geeft meer secundaire symptomen geeft dan een bewerking tot 40 cm diep. Er is geen direct aanwijsbare oorzaak te geven voor het hoge percentage secundair TRV in de behandeling waar Cleome tot 20 cm wordt ingewerkt. Mogelijk heeft dit te maken met migratie van de Trichodoriden in de bodem. Hierop wordt in de discussie (4.4.) verder ingegaan.

De knolopbrengst (data niet getoond) vertoont hetzelfde patroon. Het toedienen van Cleome heeft geen effect op het gemiddelde knolgewicht (Controle: 11.1 gr, Cleome: 11.4 gr). Dieper spitten leidt wel tot een significant hoger knolgewicht (0-20 cm: 10.1 gr, 0-40: 12.3 gr).

Over alle behandelingen samen bekeken hebben de Cleomekorrels geen reducerend effect gehad op het percentage planten met TRV-symptomen, zowel primair, secundair of opgeteld. Bij toediening van Cleome korrels ontstaat er wel een verschil tussen 0-20 en 0-40. Bij de controles is er geen verschil tussen 0-20 en 0-40. Er is dus sprake van interactie tussen het Cleome-effect en het diepte-effect.

De opkomst van het gewas was in de nateelt in 2004 relatief slecht. Het is onwaarschijnlijk dat knollen van planten die in 2003 geen TRV-symptomen hadden, in volgend jaar door TRV niet op komen. De slechte opkomst moet dus een andere oorzaak hebben. Infectie met TRV zou mogelijk wel de gevoeligheid voor andere pathogenen kunnen versterken. Er zijn symptomen van Fusarium waargenomen. Er is geen direct verband tussen de hoeveelheid secundaire symptomen en het percentage uitval gevonden.
Totale uitval
De totale uitval (TRV + andere oorzaken) was het hoogst in de Cleome 0-20 behandeling (grafiek 4.3). Over het algemeen bleek dat de diepe grondbewerking significant minder uitval gaf (ANOVA, \(P = 0.009 \)), vooral veroorzaakt door het verschil tussen de Cleome 0-20 en Cleome 0-40cm. De precieze invloed van de diepere grondbewerking is uit deze proef niet op te maken.

Grafiek 4.3. Het percentage uitgevallen/niet opgekomen planten in 2004 (LSD, \(p < 0.05 \)).
4.4 Discussie en conclusies

Naar aanleiding van de experimenten kan geconcludeerd worden dat:

- Cleomekorrels niet het gewenste bestrijdingseffect geven.
 - De aantallen Trichodorus-aaltjes namen niet af na het doorwerken van Cleome korrels
 - Doorwerken van Cleome korrels tot 20 cm diep lijkt zelfs een toename van TRV-symptomen te veroorzaken.
- Het ondieper spitten gaf over het geheel genomen meer planten met TRV-symptomen en meer uitval, mogelijk door Fusarium.
- Diep spitten samen met het gebruik van Cleome korrels levert het laagste percentage planten met TRV-symptomen op.

Discussie:
Dat het ondiep inwerken van Cleome korrels geen invloed heeft op Trichodorus-populatie en de hoeveelheid TRV-symptomen wordt mogelijk veroorzaakt doordat Trichodoriden vrij diep in de bodem kunnen zitten. Hierdoor vindt onvoldoende blootstelling aan de gevormde gassen plaats om een zichtbaar effect op de aaltjespopulatie te krijgen.

Het hogere percentage secundaire symptomen na het inwerken van Cleome tot 20 cm diep ondersteunt deze mogelijke verklaring. De secundaire TRV aantasting vindt voornamelijk plaats door het aanprikken van wortels door Trichodoriden. Het virus verspreidt zich dan niet voldoende door de plant om hetzelfde jaar nog bovengrondse symptomen te veroorzaken. De symptomen worden dan pas in het volgende teeltjaar zichtbaar als secundaire symptomen.

Uit eerdere studies van Plant Research International en PPO-AGV blijkt dat verschillende manieren van grondbewerking een gering effect hebben op de overleving van Trichodorusaaltjes, maar dat ze wel gevoelig zijn voor mechanische beschadiging. Intensieve grondbewerkingen zouden een populatie kunnen verkleinen. Echter, in de populatiebepalingen in de proef met Cleome korrels kwamen geen verschillen tussen diep en ondiep spitten naar voren.

Wordt gekeken naar TRV-symptomen dan lijkt Cleome bij ondiep spitten tot meer symptomen te leiden, terwijl bij diep spitten geen effect optreedt.

Mogelijk worden Trichodoriden verjaagd uit de bovenlaag van de grond door de ondiepe grondbewerking en de biofumigatiegassen zonder dat ze gedood worden. Als de aaltjes zich verplaatsen naar de diepere grondlagen, waar zich een groot deel van de wortelmassa bevindt, kan dat resulteren in veel secundair TRV. Als een diepere grondbewerking ook tot migratie van de aaltjes leidt, tot onder de wortelzone, zouden er minder wortels worden aangeprikt en geïnfecteerd worden.

De lagere infectie hoeft daardoor niet perse gerelateerd te zijn aan het aantal getelde Trichodoriden. Omdat van 0 tot 30 cm diepte gemonsterd is, worden ook migrerende alen meegeteld. Als de alen uit de bovenste grondlaag (0-20 cm) zich naar beneden bewegen worden ze wel geteld maar infecteren ze de wortel niet.

Aanvullend maakt een diepere grondbewerking de structuur van de bodem vaak losser, waardoor de aaltjes zich moeilijker kunnen verplaatsen en zo mogelijk minder Infecties kunnen veroorzaken.

5 Eindconclusies

De belangrijkste conclusies voor praktische aanpak van TRV in gladiool:

- Knollen uit besmette pitten hebben, indien nauwkeurig geselecteerd en op schone grond geteeld, ongeveer evenveel TRV hebben als de besmette pitten. Voor pitten uit besmette kralen geldt waarschijnlijk hetzelfde.

- Door teelt van kraal op kraal is de virusbesmetting in de partij te verminderen. De overdracht van het virus van kraal naar kraal lijkt minder efficiënt te verlopen dan van kraal op pit en van pit op knol.

- Bij de keuring van kralen op basis van pitten uit dezelfde partij vindt enerzijds een onderschatting van het percentage TRV plaats doordat een deel van de TRV besmetting niet zichtbaar is. Anderzijds zal door de beperkte overdracht op kralen het percentage in de kralen lager zijn dan het werkelijke percentage in de pitten waaraan deze kralen gevormd zijn.

- Om problemen met (symptoomloze) TRV-besmetting te voorkomen is het van groot belang om in TRV-vrije grond te telen.

- Selectie op besmet plantmateriaal blijft een vereiste maar is geen garantie voor een TRV-vrije oogst.

- Toepassing van bladrammenas om de TRV-druk in een perceel te verminderen is alleen effectief als bladrammenas als zomer- of najaarsteelt toegepast wordt. Een mengteelt van bladrammenas en gladiool lijkt geen toekomstperspectief te hebben.

Voor TRV in de teelt van gladiool is geen kant en klare oplossing voorhanden. Voor pitten uit besmette kralen en knollen uit besmette pitten geldt dat, met teelt op schone grond en nauwkeurig selecteren, de hoeveelheid planten met TRV-symptomen over de jaren ongeveer gelijk blijft. De hoeveelheid TRV-symptomen lijkt bij de teelt van kraal op kraal op schone grond geteeld langzaam af te nemen. Bij de keuring van kralen op TRV wordt er van uitgegaan dat het percentage TRV-besmette planten in kralen en knollen uit dezelfde partij gelijk is. De resultaten uit de overdrachtproef laten zien dat het percentage TRV in kralen doorgaans lager zal zijn dan in pitten of knollen uit dezelfde teelt. Dit zou tot een overschatting van het percentage TRV kunnen leiden. Anderzijds geeft de keuring op zichtbare symptomen een onderschatting van het werkelijke percentage geïnfecteerde planten, omdat een deel van de besmetting symptomloos in een aanwezig kan zijn. Ook vindt in de praktijk mogelijk een snellere afname van het percentage TRV plaats door het koken van kralen. Of voor kralen uiteindelijk de over- of de onderschatting sterker weegt is niet te zeggen, omdat het verloop van de hoeveelheid onzichtbare infecties niet bekend is.

Bladrammenas is één van de weinige gewassen waarbij tijdens de teelt de TRV-druk niet toeneemt. Afhankelijk van de soort Trichodoride zal de aantjespopulatie tijdens de teelt van bladrammenas afnemen, gelijk blijven of licht toenemen. Bij de meeste andere groenbemesters zal de populatie Trichodoriden en de besmetting met TRV toenemen. Mengteelt van gladiool en bladrammenas blijkt geen effectief alternatief te zijn voor een zomer- of najaarsteelt van bladrammenas. De teeltduur van één maand was mogelijk te kort om effecten te zien op de TRV-besmetting. Langer wachten met het doodspuiten of verwijderen van de bladrammenas zal door concurrentie wel tot een lagere knolopbrengst leiden.
Het gebruik van gedroogde Cleomekorrels voor biofumigatie reduceert de Trichodoridenpopulatie of TRV-besmetting niet. Het gebruik van hogere doseringen of van vers plantmateriaal zou effectiever kunnen zijn.

Uit kostenoverweging is in dit project niet met ELISA of PCR op onzichtbare infecties getoetst. Hierdoor kan geen volledig beeld van virusoverdracht of effectiviteit van maatregelen gegeven worden. Toetsing is in principe mogelijk, maar een éénvoudige toets ontbreekt door het voorkomen van verschillende varianten van TRV vooralsnog. Voor validatie van de huidige toetsingsmethode zou het wenselijk zijn de huidige sereologische en DNA-toetsmethoden uit door te ontwikkelen tot een praktische toetsmethode.