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Summary: 
Integration problems related to modelling land use dynamics in integrated climate change 
models such as the Integrated Model to Assess the Greenhouse Effect (IMAGE 2.0) 
(Alcamo et al., 1994) have been investigated for Costa Rica. These problems can be 
summarized as (I) dynamics of natural vegetation vs. agricultural use, (II) Spatial scales, 
global vs. regional, (III) temporal scales, rapid agricultural changes vs. relatively slow 
climate changes, (IV) Idenfication of relevant land use drivers. First a sensitivity analysis 
of the Terrestrial Vegetation Model (TVM) in IMAGE 2.0, which determines potential land 
cover for natural ecosystems and potential productivity for agro-systems, was made. This 
analysis demonstrated that the TVM is principally a robust model which is not very 
sensitive for climate input variability. Much observed output variability is related to model 
parameters. A first tentative comparison of maize, rice and pulses yield potentials and their 
distribution in Costa Rica during 1973 and 1984, suggests that the assumption that the two 
are related, as assumed in the Land Cover Model (LCM) in IMAGE 2.0, has only limited 
global validity. 
To study the actual spatial and temporal Costa Rican land use dynamics in more detail a 
nested scale analysis was made of Costa Rican land use and cover in 1973 and 1984. 
Spatial distributions of potential biophysical and human land use/cover drivers were 
statistically related to the distribution of pastures, arable lands, permanent crops, natural and 
secondary vegetation, for 0.1° grid units and five artificially aggregated spatial scales. 
Multiple regression models describing land use/cover variability have changing model fits 
and varying contributions of biophysical and human factors, indicating a considerable scale 
dependence of the land use/cover patterns. The observation that for both years each land 
use/cover type has its own specific scale dependencies, suggests a rather stable scale 
dependent system. The nested scale analysis of the Costa Rica land use/cover confirms that 
land use/cover heterogeneity is, like ecosystem and landscape heterogeneity, a multi-scale 
characteristic which can best be described as a nested hierarchical system. The nested scale 
analysis gave also insight into the relevant land use drivers and their scale dependence. To 
support future modelling effects of land use dynamics based on land use drivers, a dynamic 
framework to simulate Conversion of Land Use and its Effects (CLUE) was developed. 
CLUE attempts to simulate land use conversion and change in space and time as a result 
of interacting biophysical and human drivers. 
A dynamic geo-referenced land use/cover model (CLUE-CR) which simulates simultaneous 
local, regional and national land use/cover changes in Costa Rica was developed. CLUE-CR 
simulates the effects of changing demographical and biophysical driving forces on land 
use/cover change in Costa Rica, including feedbacks from land use/cover to those forces. 
The multi-scale aspect of the model allows the simulation of realistic system dynamics 
related to the interaction of top-down and bottom-up effects and constrains. As a model 
CLUE may be implemented for other countries and has the potential to be scaled down 
and/or up to link with regional land use models or integrated global change models. 
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CHAPTER 1: 
General Project outline 

1.1 Project background 
Human activities influence and alter land covers. Recent research indicates that human-
induced conversions (e.g. deforestation) and modifications (e.g. changing land use 
management such as fertilizer use and irrigation practices) of land cover have significance 
for the functioning of the earth system (Houghton et al., 1991; Turner et al., 1994). The 
influence of these land cover changes becomes globally significant through their 
accumulative effects. Most recent land cover modification and conversion is clearly driven 
by human use, rather than natural change (Skole and Tucker, 1993). In general, land use 
is viewed to be constrained by biophysical factors such as soil, climate, relief and 
vegetation. On the other hand, human activities that make use of or change land attributes 
are considered as the proximate sources of land use/cover change. Interpretations of how 
such land use/cover driving forces act and interact is still controversial, especially the 
assessment of the relative importance of the different forces and factors underlying land use 
decisions in specific cases. An illustrative case study of land cover changes (Turner et al., 
1993) demonstrated that land use changes that drive land cover change are tied to numerous 
human factors, some of which may be spatially distant from the area affected, leading to 
the conclusion that the processes involved in land cover and land use change operate across 
many spatial and temporal scales. An understanding of land use/cover change would thus 
be factually incomplete and lead to inadequate projections if its causes were sought only 
in the proximate sources of change or in forces operating within the region and within the 
time-frame studied. The observation that causal links identified at one scale may not appear 
at other scales and v.v. is called the scale effect. Therefore, any attempt to reconstruct or 
link human and biophysical drivers of land use/cover can thus only be successful when this 
effort is carried out at various different scales. 
Summarizing, a major pressing issue associated with global environmental change is its 
detailed effects on land use and, conversely, the impact of land use on the carbon cycle and 
atmospheric C02 processes. Much knowledge has already been gathered in various related 
fields, but integration lags behind in several aspects: 
(I) Natural vegetation vs. agricultural land use: Considerable progress has been made 
recently in predicting global vegetation patterns on the base of plant physiology and climate 
and linking these with GCM, in particular in BIOME (Prentice et al 1992). At present, 
however, these models are not very able to deal with regions where natural vegetation has 
been replaced by varying agro-ecosystems. Further progress in linking land use and global 
change is hampered by the inexistence of a world-wide data base on land use. 



(ID Spatial scales: global vs. regional: The fit between predicted and actual patterns of 
vegetation in models such as that of Prentice et al., (1992) is better at smaller spatial scales, 
partly as a result of differences in human activities such as agriculture. But there is a lack 
of methods to link up global models with agricultural variables available at regional scales 
only. Some initial studies have been carried out in modelling the impact of global climatic 
change on agriculture on a regional scale, especially in sensitive areas with marginal 
agriculture (Parry et al., 1988). In view of the continuing growth rate of the area under 
agricultural land use, in particular in the (sub)humid tropics, an adequate assessment of 
determinants of land use is essential. A first step may be to find ways to "zoom in" into 
greater detail and smaller areas and describe the factors determining land use accordingly. 
This would link up with other efforts to régionalise global change models that are currently 
undertaken. 
(HI) Time scales of processes affecting agriculture: Global-scale models for simulation of 
the effect of climatic change on agriculture depict future output of agricultural systems 
mainly on the base of temperature and precipitation and CQ2 as variables. However, 
sustainable land use refers to a much more complex set of parameters than climatological 
and atmospherical data alone. In order to assess the impact of climatic change we must gain 
a better understanding of sources of variability affecting agro-ecosystems. These fall into 
two broad categories: rates of change of natural processes with time scales extending from 
10 - 106 years, and variability inherent to agricultural land use usually measured on a 
seasonal, annual or decade basis. Dynamic models are required that may accommodate both 
rapid human population growth and concomitant land use, as well as situations where the 
rate of environmental change exceeds that of natural vegetation and crop adjustment. 
(IV) Land use drivers: In the IMAGE 2.0 model, the land use module is based on the 
attribution of single or uniform land use to individual grid (0.5°* 0.5°) cells. For obvious 
reasons, no account can be taken of variability of land uses and crops and the distribution 
of yields within grid cells. Land suitability for crops is based on the FAO agro-ecological 
zoning methods, disregarding the fact that population pressure may lead to overutilization 
of unsuitable lands. As a result, yield estimates are necessarily very crude and insufficiently 
based on known distributions of crop yields. A related issue is the fact that there is still 
very little insight in the driving factors of changing land use. Their relative importance, in 
particular the contribution and interactions of socio-economic (demographic, infrastructure, 
markets) and biophysical factors is still unclear. A case study of main driving factors in a 
rapidly changing situation would also allow the development of simple indicators for further 
incorporation in global models. 



1.2 Project Research Objectives 
The project "Elaborating of land use and related factors and their temporal and spatial 
variability into IMAGE 2 - a pilot study." aims to contribute to a better integration of land 
use and its driving variables in the global IMAGE 2 model through a case study of Costa 
Rica. The four named integration lags were therefore investigated for Costa Rica. The 
research started with an extensive analysis of the IMAGE 2.0 model performance for the 
18 relevant grids representing Costa Rica (Chapter 2). This sensitivity analysis was followed 
by an in depth analysis of both spatial (Lag II) and temporal (Lag III) dynamics of Costa 
Rica land use (Chapter 3). Furthermore it was attempted to identify and "quantify potential 
land use drivers for Costa Rican land use using a nested scale analysis (Lags I and IV). 
Because no existing land use models are able to simulated land use changes as a functions 
of various land use drivers (Lag IV) a new conceptual framework (CLUE) was constructed 
to support future modelling efforts (Chapter 4). This framework was applied for Costa Rica 
based on 1973 and 1984 data (Chapter 5). Finally the conclusions based on the project 
results are given in Chapter 6. 



CHAPTER 2: 
A model analysis of the terrestrial vegetation model of IMAGE 2.0 for 
Costa Rica. 

By: A. Veldkamp & G. Zuidema 

2.1 Introduction 
The Integrated Model to Assess the Greenhouse Effect (IMAGE 2.0) is a multi-disciplinary 
and integrated model designed at the National Institute of Public Health and Environmental 
Protection, the Netherlands, to simulate the dynamics of the global society-biosphere-
climate system (Alcamo et al., 1994). The objectives of the model are to investigate 
linkages and feedbacks in the system, and to evaluate consequences of climate policies. 
Dynamic calculations are performed with different time steps (1970-2050), on different 
geographical scales, depending on the sub-model (ranging from one day to five years and 
0.5° latitude x 0.5° longitude to world region respectively). 
IMAGE 2.0 links and integrates both complex models and Geographic Information Systems 
(GIS). One of the main dangers of integrated computer modelling as done with IMAGE 2.0 
is that unskilled users may uncritically accept simulation results and assume that such a 
complex model performs adequately. Even experts may accept simulated results without 
sufficient validation. Model errors of integrated model-GIS systems are usually related to 
both the GIS data as the model relations (Burrough et al., 1993). Model predictions can thus 
be affected by uncertainty and errors in the geo-referenced data as well as in the applied 
model functions and boundary/threshold conditions. The most direct and effective way to 
analyze these potential error sources is a model analysis. As extensive Monte Carlo 
simulations with IMAGE 2.0 would require years to complete, it was decided to make a 
model analysis for the different sub-models (Alcamo et al., 1994). A first analysis carried 
out for the Atmospheric Composition sub-model showed the existence of a strong 
contribution to output variability by model parameters (Krol et al, 1994). 
Another relevant sub-model in IMAGE 2.0 is the Terrestrial Vegetation Model (TVM) 
which determines potential land cover for natural ecosystems and potential productivity for 
agro-systems (Leemans and van der Born, 1994). A sensitivity analysis of this sub-model 
for the whole global data set would still require an enormous computing effort. It was 
therefore decided to limit the first model analysis to a country with sufficient different 
climatic environments and sufficient data availability. Because the global climate data set 
is relatively more reliable for higher latitudes than for lower latitudes (Leemans and 
Cramer, 1991) a lower latitude country was selected, Costa Rica. This paper describes the 
model analysis of the TVM for the 18 Costa Rican grid cells (0.5°x 0.5° latitude-longitude) 
(Fig. 2.1). 



Fig. 2.1 Location of IMAGE 2.0 grid cells and their individual identification no. 
in Costa Rica. 

2.2 Climate and crops in Costa Rica 
Costa Rica's topography is dominated by a central spine of mainly volcanic mountains 
stretching from northwest to the southeast. Exceeding 2.500 m at numerous places in a 
country only 260 km wide at maximum, the mountains divide the country into two distinct 
zones dominated by Atlantic and Pacific weather systems, creating tremendous variation in 
temperature and precipitation regimes (Herrera, 1985). Costa Rica contains 14 of the 31 of 
the world's tropical bio-climatic zones (Holdridge, 1967; Gomez 1986). Soils, in addition 
to altitude and climate, influence the natural vegetation and the human land uses that 
replace it. Mountainous regions above 1000 m are generally cool and temperate, with 
abundant and moderately seasonal rainfall (2-5 m/yr). Extensional coastal plains lie to the 
east and west of the mountains. In the Atlantic and southern Pacific lowlands, rainfall is 
high (2-7 m/yr) and relatively aseasonal. The northern half of the Pacific coastal plain forms 
a distinct, markedly drier (1-2 m/yr) region, where precipitation is more seasonal than in 
the rest of the country. Nowadays most of the natural vegetation in Costa Rica has been 
replaced by human land use (DGEC, 1987). Each decade the DGEC composes an agrarian 



census database containing detailed crop yields for each canton and province in Costa Rica. 
The 1973 and 1984 crop distributions for rice, maize and beans were aggregated into the 
(0.5°x 0.5°) grid cells to allow a qualitative comparison with the TVM calculated potential 
yield trends. 

2.3 Terrestrial vegetation model of IMAGE 2.0 
The Terrestrial Vegetation Model (TVM) of IMAGE 2.0 simulates the potential distribution 
of vegetation and major crops. A main assumption within the TVM is that there is a strong 
linkage between climate, vegetation and crop distribution (Leemans, 1992; Leemans and 
van den Born, 1994). Another important model assumption is that the vegetation and crop 
distribution exist under equilibrium conditions for completely rainfed conditions on well 
drained soils, thus excluding irrigated agriculture and waterlogging. For natural ecosystems 
their potential is corresponding to a fully developed and not degraded system, while for 
crops it is defined as those conditions adequate for obtaining an economically feasible yield. 
The TVM is implemented with a high-resolution (0.5°x 0.5° latitude-longitude) gridded 
climate data base (Leemans and Cramer, 1991). Climate is described by 'normal' data of 
a station or region based on a long term average of weather records. Such climatic normals 
are essential to describe the interactions between climate and other biosphere components 
such as vegetation and crops. Within IMAGE 2.0 the monthly patterns of temperature 
(mean, minimum and maximum), precipitation (mean and range) and cloudiness are used. 
A water balance model yielding the daily available soil moisture for plant growth is used 
in combination with a temperature regime to define the characteristics of the growing 
season. The length of growing season is defined as that period during the year when 
warmth and soil moisture are adequate for vegetation/crop growth. Besides length of 
growing season, monthly precipitation and temperature of the coldest and warmest month 
are determined. Effective temperature sums are computed by using the interpolated daily 
temperature values. Further several climatic crop requirements are defined for the 16 
selected crop types of which some are listed in Tab. 2.1. If a crop can grow in a certain 
grid cell, its productivity is determined using a simple photosynthetical model based on the 
crop models of de Wit (1965) and adapted from the specific approach by FAO (FAO, 
1978). Photosynthesis is governed by the total amount of irradiance, which is dependent on 
latitude and cloudiness fraction during the growing season and is also a function of 
temperature. Water-limited yields are thus calculated for all crops as listed in Tab. 2.1. 
After these potential yields are calculated some crops are aggregated into economic crop 
groups, roots (potatoes and cassava), Sugar crops (sugar cane and sugar beet) and Oil crops 
(Oil palm, sunflower, rapeseed and cottonseed). For each economic group the highest yield 
potential is used. More specific information is given by Leemans and van den Born (1994). 
These economic crop groups are used in the Land Cover Model (LCM), another sub-model 
of the terrestrial environment system of IMAGE 2.0 (Zuidema et al., 1994), together with 
a demand for agricultural products to calculate actual land cover. 



Tab. 2.1 Climate crop requirements for the 16 major crop varieties in the 
TVM. 
MTR = temperature of the coldest month (°C) ; 
MR = moisture index (ratio of annual AET and PET); 
Final crop group = Economic crop groups. 

Crops MTR MR Final crop group 

Temperate maize 
Tropical maize 
Rice 
Spring wheat 
Winter wheat 
millet 
Potatoes 
Cassava 
Pulses 
Sugar beet 
Sugar Cane 
Soy beans 
Oil palm 
Sunflower 
Rapeseed 
Cottonseed 

-20< <15 
a 5 
a-7.5 
< 5 
< 10 
a-25 
< 15 
£ 10 
< 20 
< 15 
2 10 
< 20 
£ 10 
< 10 
< 10 

B-5 

20.95 

<0.95 

Maize 
Maize 
Rice 
Wheat 
Wheat 
Millet 
Roots 
Roots 
Pulses 
Sugar 
Sugar 
Oil 
Oil 
Oil 
Oil 
Oil 



2.4 Materials and methods 
A standard model analysis consists of performing a sensitivity analysis in order to gain 
more insight in the crucial aspects of the model and its data. A common and effective 
model analyzing technique is the Monte Carlo method using Latin Hypercube Sampling 
(Janssen et al., 1990). The IMAGE 2.0 standard climate data set is derived from an 
extensive interpolation exercise of many meteorological stations. In case of Costa Rica only 
one national meteorological station (San José) was included within this interpolation 
exercise, making the standard IMAGE 2.0 data set less suitable for a sensitivity analysis. 
Based on more than one hundred Costa Rican meteorological stations (Herrera, 1985; 
Gomez, 1986) new climatological data and their variability were calculated. The model 
inputs and outputs were statistically analyzed using the SAS software package. 

Inputs 
The available Costa Rican meteorological stations (Herrera, 1985; Gomez, 1986) were 
grouped in the IMAGE 2.0 grids (0.5°x 0.5° latitude-longitude, Fig. 2.1). The long term 
mean monthly precipitation and mean monthly temperature data were used to determine the 
variability within each grid unit. The amount of stations within a grid cell ranged from 2 
to 12. These monthly precipitation and temperature data, their distributions and correlations 
were used for Monte Carlo sampling with the latin hypercube technique. This technique 
uses a stratified way of sampling from the separate source ranges, sampling each range only 
once (Janssen et al., 1990). 

50 precipitation (mm) and 50 temperature (°C) input combinations were sampled, each 
consisting of 12 monthly temperatures and 12 monthly precipitation data for all 18 grid 
cells. The two different input data sets were combined and used for simulation with the 
TVM of IMAGE 2.0, resulting in 50 * 50 = 2500 runs for each grid cell. Another standard 
input data set in the TVM describes monthly cloudiness (%). As the cloudiness data in 
Costa Rica are limited and of uncertain quality, no reliable statistical analysis could be 
made to support useful monte carlo simulations, consequently the standard IMAGE 2.0 
cloudiness values were used. 
Statistical analysis of the Costa Rican climate data demonstrated strong correlations between 
many data. An analysis of their variance and their interrelationships with ANOVA and 
factor analysis (principal component extraction and varimax rotation) indicated that the 
climatic variability (> 95% of total variance) of both temperature and precipitation can be 
sufficiently described by only three independent climatic variables, mean temperature in 
May (TMAY), mean precipitation in January (PJAN) and mean precipitation in October 
(POCT). 



Input variable, TMAY 

Mean values for each individual grid (°C), Min = 14.8 to Max = 

28.2 °C 

Coefficient of variance for each individual grid (CV), Min = 4.2 

to Max= 9.8 % 

"IT" 

Input variable PJAN 

Mean values for each individual grid (mm), Min= 4 to Max 

372 mm 

Coefficient of variance for each individual grid (CV), Min = 

19.2 to Max= 63.3 % 

Input variable POCT 

Mean values for each individual grid (mm), Min = 210 to Max = 

664 mm 

Coefficient of variance for each individual grid (CV), Min = 8.7 

to Max= 34.0 % 

Fig. 2.2 Distribution of Means and Coefficient of variance (CV) of the Input 
variables TMAY (Mean temperature in May), PJAN (Mean precipitation 
in January) and POCT (Mean precipitation in October). 
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The suitability and validity of these three independent input variables is also supported by 
the observation that they are able to explain up to 98% of the model output variability by 
multiple regression modelling. Grid means and coefficient of variance (CV) values of these 
three input variables are given in Fig. 2.2 and summarized in Tab. 2.2. The maps in Fig. 
2.2 display the range of grid values between the minimum and maximum values. For each 
individual variable 15 equal interval classes were made ranging from its minimum (almost 
white) to its maximum (almost black) leaving many classes empty. The individual 
classification of each variable makes the given maps not directly comparable, but they 
illustrate the different grid values for Costa Rica. 

Outputs 
The 2500 simulation runs of the TVM sub-model yielded the following output variables: 
Potential vegetation class, length of growing season (LENGTH), mean temperature of 
growing season (TEMP), water-limited yield levels for: rice, maize, millet, pulses, roots, 
oil and sugar crops. For each output variable descriptive statistics (see Fig. 2.3) and 
ANOVA were carried out in order to determine the inter and intra grid variances (Tab. 2.2). 
Regression was applied to model the output variables variability by the three independent 
input descriptive variables TMAY, PJAN and POCT both on grid and national level (Fig. 
2.3). The Costa Rica grid maps in Fig. 2.3 indicate the range of grid values for Regression 
model fits (R2), Coefficient of variance (CV) and output means. The minimum (almost 
white) and maximum (almost black) values are also divided into 15 equal interval classes, 
meaning that apart for the R2 maps (all ranging from 0 to 100%), the maps in Fig. 2.3 are 
not directly comparable. 

Fig. 2.3 Distribution of model fits of multiple regressions (see listed models), 
Coefficient of variance (CV) and means of calculated model outputs for 
Costa Rica Grids, LENGTH (Length of growing season, (units: days)), 
TEMP (mean temperature of growing season (units: °C)) and potential 
waterlimited yield levels (units: ton/ha) for Rice, Maize, Millet, Pulses, 
Roots, Oil crops and sugar crops. 
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Model: LENGTH = TMAY + PJAN + POCT 

Model fit for each individual grid (R2), Min= 0 to Max= 0.75. 

Coefficient of variance for each individual grid (CV), Min = 0 to 

Max= 8.9 %. 

Mean values for each individual grid (days), Min= 297 to 

Max= 365 days. 

Model: TEMP = TMAY + PJAN + POCT 

Model fit for each individual grid (R2), Min = 0.96 to 

Max = 0.98. 

Coefficient of variance for each individual grid (CV), Min= 5.0 

to Max= 8.8 %. 

Mean values for each individual grid (°C), Min = 14.1 to Max = 

27.4 °C. 

Model: RICE = TMAY + PJAN + POCT 

Model fit for each individual grid {R2}, Min= 0.61 to Max = 

0.97. 

Coefficient of variance for each individual grid (CV), Min = 1.9 

to Max= 15.9 %. 

Mean values for each individual grid (ton/ha) Min= 799 to 

Max= 1062 ton/ha. 
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Model: MAIZE = TMAY + PJAN + POCT 

Model fit for each individual grid (R2), Min= 0.19 to Max = 

0.96. 

Coefficient of variance for each individual grid (CV), Min = 2.2 

to Max= 6.6 %. 

Mean values for each individual grid (ton/ha), Min= 1387 to 

Max= 1966 ton/ha. 

Model: MILLET = TMAY + PJAN + POCT 

Model fit for each individual grid (R2), Min = 0 to Max = 0.92. 

Coefficient of variance for each individual grid (CV), Min = 4.9 

to Max= 625 % 

Mean values for each individual grid (ton/ha). Min = 0 to Max = 

1127 ton/ha. 

Model: PULSES = TMAY + PJAN + POCT 

Model fit for each individual grid (R2), Min= 0 to Max= 0.79. 

Coefficient of variance for each individual grid (CV), Min = 3.6 

to Max= 700 % 

Mean values for each individual grid (ton/ha). Min = 0 to Max = 

834 ton/ha. 
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Model: ROOTS = TMAY + PJAN + POCT 

Model fit for each individual grid (R2), Min= 0.06 to Max = 

0.97. 

Coefficient of variance for each individual grid (CV), Min = 1 . 9 

to Max= 6.1 %. 

Mean values for each individual grid (ton/ha), Min= 1599 to 

Max= 2124 ton/ha. 

Model: OIL = TMAY + PJAN + POCT 

Model fit for each individual grid (R2), Min= 0.61 to Max = 

0.96. 

Coefficient of variance for each individual grid (CV), Min = 1.9 

to Max= 16.6 % 

Mean values for each individual grid (ton/ha), Min= 933 to 

Max = 1239 ton/ha. 

Model: SUGAR = TMAY + PJAN + POCT 

Model fit for each individual grid (R2), Min= 0.04 to Max = 

0.96. 

Coefficient of variance for each individual grid (CV), Min= 2.1 

to Max= 8.1 %. 

Mean values for each individual grid (ton/ha), M i n - 2037 to 

Max= 5952 ton/ha 
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2.5 Results 

Water-limited yields 
All calculated output variables are given in Fig. 2.3. Wheat is not presented because all 
simulations resulted in yields of 0 ton/ha for all Costa Rican grid cells. A first comparison 
of the input and output data by correlation showed changing correlations for each output 
variable with the three input variables for the entire Costa Rica data set. More detailed 
insight can be obtained from comparing the trends in Fig. 2.2 and Fig. 2.3. The coefficients 
of variance (CV) of the input data (ranging from about 14% for TMAY, 35% for POCT 
to about 88% for PJAN) are usually much larger than the CV of the output data (Fig. 2.3 
and Tab. 2.2), suggesting a certain robustness of the TVM. However this reduction of CV 
does not always occur. Especially millet and pulses outputs demonstrate considerably larger 
CV's, up to 700% for certain grids (Fig. 2.3). More detailed analysis of this high CV, 
revealed that in both cases (millet and pulses) this was caused by many yield failures (0 
kg/ha) during the simulations. This is in both cases directly related to model 
criteria/thresholds concerning crop requirements (as listed in Tab. 2.1). Millet requires a 
moisture index < 0.95, a conditions not often met in the general humid climate of Costa 
Rica. Pulses on the other hand require a coldest month of < 20 °C a condition which is only 
found in the higher cooler grid cells. This strong model parameter related variability is 
confirmed by the observation that grids with higher mean water-limited yield levels for both 
millet and pulses (many years with a yield) have relatively low CV's. Another confirmation 
was obtained by regression modelling for each individual grid cell. These regression models 
attempt to explain calculated water-limited yield variability by the three independent input 
variables TMAY, PJAN and POCT. The model fits (R2) are reported for each individual 
Costa Rica Grid (Fig. 2.3; and Tab. 2.3). The contributions of the three input variables to 
these regression models are listed in (Tab. 2.3) by + and - for each individual grid cell. It 
can be observed that the higher coefficients of determination (R2) are related to lower 
output CV's. The output variable, length of growing season (LENGTH), has many grids 
with a coefficient of determination (R2) of 0 because no variance can occur when all 
calculated length of growing seasons are 365 days (the whole year). For some grid cells a 
very low coefficient of determination is found for water-limited yield levels of crops which 
have a reasonable small CV. Examples are found in certain grids for Roots, Oil and Sugar 
crops. Detailed analysis of these grid cells shows that this was mainly due to the selection 
of different crops within the economical crop groups, Roots, Oil and Sugar. For one cool 
grid cell (no 13 in Fig. 2.1) a different sugar crop, sugar beet, was selected instead of the 
commonly selected sugar cane in the other Costa Rica grids. For this same grid cell potato 
instead of cassava was selected. The temperature related crop requirement parameter 
resulted in a considerable increase in the CV of the model outputs. A very similar 
observation applies for the oil crops were three different crops were selected for the Costa 
Rica grids causing changes in CV in the Oil crop outputs. These examples clearly indicate 
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that the role of model parameters and thresholds can considerably dominate the model 
output variability of the TVM. 

When the Monte Carlo simulations are evaluated for Costa Rica as a whole, similar model 
effects can be observed (Tab. 2.4). The overall regression model fits are reasonable well 
ranging from 72% (Millet) to 99% (mean temperature during growing season), indicating 
the important contribution of both temperature and precipitation in explaining model output 
variability. A grid effect, independent of the three selected input variables, was determined 
by regression modelling. This grid effect ranges from 0.8% (TEMP) to 75% (sugar) of the 
total output variability. This grid effect can be interpreted as the not evaluated effect of 
cloudiness but can also be attributed to the model parameters used for the selection of crops 
for the economical crop groups. The latter effect seems to be most plausible explanation for 
the observed effects in Roots and Sugar variability. This effect could also explain the 
detected differences in the calculated inter/intra grid variance coefficients (Tab.2.2). 

Potential vegetation 
Potential vegetation as calculated by TVM for each grid is presented by 15 classes. Of these 
classes only four are found in Costa Rica, Broadleaved warm mixed forest (A), tropical dry 
savanna (B), tropical seasonal forest (C) and tropical rain forest (D) (Fig. 2.4). Of the 18 
Costa Rica grids seven had temperature/ precipitation values near threshold values causing 
changes in vegetation classes during the Monte Carlo simulations. These grids are found 
in the transition zone between the dry west part of Costa Rica and its humid east coast. The 
most humid and arid results are also given in Fig. 2.4. The observed threshold effects in the 
TVM for potential vegetation types seem less dominant than for the potential water-limited 
yield calculations. This may be due to the more refined and balanced classification 
boundaries use in TVM which are based on the BIOME model of Prentice et al. (1992). 

2.6 Discussion and Conclusions 
Although only a small country was evaluated, Monte Carlo simulations demonstrated that 
the model sensitivity of the TVM in respect to water-limited crop yield-potentials was 
mostly determined by model parameters rather than by input variability of climate data. The 
dominating model parameters are criteria related to crop requirements and clustering of crop 
types into economic crop groups. When climate inputs are not near the specified crop 
requirements (Tab.2.1) a rather limited CV can be observed for the calculated outputs 
compared to the CV of the input data, illustrating the robustness of the TVM in respect to 
its climate data. When model thresholds are met or crossed a strong increase in the CV and 
the inter/intra grid variance coefficient can be observed. This suggests that the current 
model parameters and crop growth criteria are applied too rigorously in the TVM. 
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Potential Vegetation 

Mean (most common) output 

Maximum 'Wet' output 

Maximum 'Dry' output 

= No vegetation 

= Brjeav./warm mixed forest 

= Tropical dry savanna 

= Tropical seasonal forest 

= Tropical rain forest 

Fig. 2.4 Potential Vegetation (see legend), the mean output with the wettest and 

driest outputs. 
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Apparently the crop requirements used are too coarse. It is therefore proposed to remove 
as many model criteria as possible. Another possible solution might be found in applying 
more gradual threshold values, using overlapping domains. The grouping of crops into 
economic crop-groups is not realistic. For example sugar cane and sugar beet have only in 
common that they are used to produce sugar. It is therefore proposed to group the crops in 
phenological/physiological groups with gradual transition criteria from one crop to the other 
instead of the current economic groups. 
Only when the model parameters have been made less dominant in the model performance 
of the TVM of IMAGE 2.0, it will become relevant to collect more detailed and realistic 
climate data as currently available in IMAGE 2.0. 
Our first model analysis for the terrestrial vegetation model of IMAGE 2.0 demonstrates 
that the limitations to successful modelling are more caused by lack of scientific insight 
rather than data availability and quality. The refinement of the TVM of IMAGE 2.0 should 
be sought in model improvement instead of data quality improvement. 
The overall performance of the TVM for Costa Rica seems rather satisfactory (Tab. 2.2 and 
2.4). The different climate environments yielded significantly different water limited yields. 
The calculated TVM results are applied on world region scale in the Land Cover Model 
(LCM) to allocate crops to agricultural grids (Zuidema et al., 1994). The crop distribution 
in IMAGE 2.0 is assumed to be directly related to the calculated crop production potential. 
In order to check the validity of this assumption for Costa Rica the calculated yield 
potentials for each grid cell is compared with crop distributions of maize, rice and beans 
in 1973 and 1984 (DGEC, 1976, 1987). It has to be noted that in reality crop distributions 
are influenced by many other factors unrelated to biophysical potential. In Fig. 2.5 the high 
potential yields and the grid cells were most beans, maize and rice were grown in 1973 and 
1984 are given in dark grey colors. The maps demonstrate that the crop distribution in 
Costa Rica tends to change somewhat in time, but in general a superficial match between 
the calculated yield potentials and their general distributions can be observed, suggesting 
that the basic biophysical assumption in the LCM of IMAGE 2.0 has limited practical merit. 
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MAIZE: 

Potential yields Maize. The grid cells with highest yields are 

black. 

Distribution Maize areas in Costa Rica 1973. Grid Cells with 

most maize areas are darkest. 

Distribution Maize areas in Costa Rica 1984. Grid Cells with 

most maize areas are darkest. 

RICE: 

Potential yields Rice. The grid cells with highest yields are 

black. 

Distribution Rice areas in Costa Rica 1973. Grid Cells with 

most rice areas are darkest. 

Distribution Rice areas in Costa Rica 1984. Grid Cells with 

most rice areas are darkest. 

BEANS: 

Potential yields Pulses. The grid cells with highest yields are 

black. 

Distribution Bean areas in Costa Rica 1973. Grid Cells with 

most Bean areas are darkest. 

Distribution Bean areas in Costa Rica 1984. Grid Cells with 

most Bean areas are darkest. 

Fig. 2.5 Comparison Potential yields of Maize, Rice and Pulses and their 
distributions in 1973 and 1984 in Costa Rica. 



CHAPTER 3: 
Reconstructing land use drivers and their spatial scale dependence for 
Costa Rica (1973 and 1984). 

By: A. Veldkamp and L.O. Fresco 

3.1 Introduction 
Recent research indicates that human-induced conversions and modifications of land cover 
have significance for the functioning of the earth system (Bouwman, 1990; AMBIO, 1992; 
Turner et al., 1993, 1994). Most land cover modification and conversion is now driven by 
human use, rather than natural change (Houghton et al., 1991). In general, land use is 
viewed to be constrained by biophysical factors such as soil, climate, relief and vegetation. 
On the other hand, human activities that make use of or change land attributes are 
considered as the proximate sources of land use/cover change. Interpretations of how such 
land use/cover driving forces act and interact is still controversial, especially with respect 
to the assessment of the relative importance of the different forces and factors underlying 
land use decisions in specific cases (Turner et al., 1994). Relatively few regional 
comparative studies have explicitly addressed the role of these proposed driving forces, 
either separately or in combination. Still fewer have investigated statistical relationships 
between them (Turner et al., 1993). 
An illustrative case study of investigating land cover changes (Skole and Tucker, 1993) 
demonstrated that land use changes that drive land cover change are tied to numerous 
human factors, some of which may be spatially distant from the area affected, leading to 
the conclusion that the processes involved in land cover and land use change operate across 
many spatial and temporal scales. An understanding of land use/cover change would thus 
be factually incomplete and lead to inadequate projections if its causes were sought only 
in the proximate sources of change or in forces operating within the area and the time-frame 
i.e. the scale, studied. The observation that causal links identified at one scale may not 
appear at other scales and v.v. is called the scale effect. Therefore, any attempt to 
reconstruct or link human and biophysical drivers of land use/cover can only be successful 
when this covers several different scales. 
We investigate to what extent and how the distribution of Costa Rican land use/cover and 
its changes between 1973 and 1984 are related to biophysical and human factors at different 
spatial scales. Costa Rica was chosen as case study because this country is well known for 
it great biophysical diversity (Holdridge, 1967; Gomez, 1986), has a rapid expanding 
population and well documented census data. Moreover, Costa Rica is characterized by 
rapid changes in its land use/cover, especially deforestation (Keogh, 1984; Sader and Joyce, 
1988; Harrison, 1991; Veldkamp et al., 1992). 
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Altitudes 
Costa Rica 

Relief 
Costa Rica 

Soil 
Costa Rica 

Fig. 3.1 Biophysical environment of Costa Rica in 0.1° grids. Altitude (Highest 
grids are black), Relief (Flat is black and steep is almost white), Soil 
drainage (black is well drained and white in poorly drained). 
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