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Abstract 

The aim of this thesis was to estimate genetic parameters and identify QTL that are 

involved in the complex multi-factorial metabolic disorder ascites, by a 

combination of genetic and genomics techniques.  

 

Blood gas parameters have been suggested as indicator traits for ascites. Therefore 

we estimated genetic and phenotypic relationships between heart ratio (RATIO – a 

postmortem indicator for ascites) and blood gas parameters. Heritabilities for 

blood gas parameters and genetic correlations between blood gas parameters and 

heart ratio were low. Therefore, the results from this study do not support the 

suggestion that blood gas parameters measured during week 3 or 4 are useful 

indicator traits for ascites.  

 

Male broilers have a higher body weight than females and might consequently be 

more prone to develop ascites. We therefore estimated the genetic correlation 

between RATIO and body weight separately for male and female broilers. The 

results show that genetic correlations differed between male and female broilers 

and therefore under circumstances with ascites, data from male and female 

broilers should be analyzed separately. 

 

Alternatively, ascites data can be analyzed using a liability normal mixture (LNM) 

model. An LNM model can account for differences in (co)variance components 

between healthy and diseased chickens. Results show that the genetic correlation 

between RATIO in healthy and in diseased chickens is 0.75, indicating that RATIO is 

a different trait in healthy and diseased chickens. In addition the genetic 

correlation between RATIO and liability differed between healthy and diseased 

chickens. 

 

Finally, a genome wide association study was performed for RATIO. Significant 

associations were detected on chromosome 1, 2, 3, 7, 8, 10, 11 and 20. The most 

significant SNPs were found on chromosome 1, 8 and on 22. A number of the SNPs 

associated with RATIO were also associated with fluid in the abdomen and body 

weight. 
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1.1 Introduction 

Developments in Poultry Production 

The global consumption of meat has increased during the last century. The world 

production of meat alone for broilers has increased from 58,017 metric tons in 

1999 – 2001 to 79,596 metric tons in 2009 (FAO stat, 2010). Meat consumption 

from broilers is expected to increase at an average annual rate of 1.6% in 

developed countries and 2.7% in developing economy countries (Executive Guide 

to World Poultry Trends, 2010). In recent years there has been increasing attention 

for welfare issues in western countries (Moynagh, 2000). The animal production 

sector has responded to this demand by increased attention to animal welfare in 

breeding programs. 

 

While animal health is an important component of animal welfare, the concern 

with welfare of the broiler has led to increased focus on health and liveability traits 

in breeding programs. According to Arthur and Albers (2003) relative selection 

pressure for production, fertility and liveability traits has changed over the last 

decades (1975 to 2002), and especially liveability traits have gained importance in 

breeding program. The attention for individual diseases in breeding programs has 

also resulted in increased research on the genetic background of diseases and 

relation between diseases and other relevant traits.  

 

Realized Genetic Improvement of Efficiency in Broilers  

The genetic improvement of the commercial broiler has been focused on increased 

growth and high muscle mass. Therefore, the commercial broiler is a fast growing 

bird with a low feed conversion rate and a high breast meat yield. At present, 

broilers are slaughtered when the chicken is between 35 and 40 days old at a live 

weight of approximately 2 kg. Alone genetically improved for the growth rate of 

modern broilers has been fourfold during the last century (Arthur and Albers, 

2003). Focusing on the years 1925 to 1998 the time to reach a body weight of 1.5 

kg has decreased from 120 days to 33 days (Arthur and Albers, 2003). The 

improvement of the commercial broilers is not just a result of genetic selection, but 

a combination of genetic selection, improve nutrition and better management. 

However, the genetic selection by commercial breeding companies contributed to 

about 85 to 90% of the change that has occurred in broiler growth rate the past 

decades. Nutrition has provided 10 to 15% of the improvements (Havenstein et al., 

1994; Havenstein et al., 2003).  
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Havenstein et al. (2003) compared male and female broilers from a 1957 line with a 

modern line from 2001, and both lines were fed on feed formulas from 2001. 

Between three and twelve weeks of age the males from 2001 line increased body 

weight from 0.79 kg to 5.96 kg, whereas males from the 1957 line increased body 

weight from 0.21 kg to 1.90kg. The females from the same 2001 line increased 

body weight from 0.70 kg to 5.08 kg and the 1957 line increased body weight from 

0.18 kg to 1.32 kg. However, the focus on selection for improved growth did not 

result in a comparable increase in organ size (Julian, 2000), for example the 

pulmonary and cardiac capacity of modern broilers is very similar to that of older 

broiler lines (Schmidt et al., 2009). Schmidt et al. (2009) compared relative growth 

of the breast, heart, liver, and intestine, and suggested that selection for increased 

breast muscle has resulted in relative lower weight of the heart muscle. Therefore, 

the muscle mass of the modern broiler increased (Table 1.1), but the relative size of 

the heart muscle has decreased. 

 

Table 1.1 Average body weight (g) of line 1950s and modern line 2009 by day 

Day Line 1950s Modern line 2009 

2 38 36 
7 92 149 
14 234 432 
21 450 856 
28 699 1,411 
35 1,047 1,804 

(Schmidt et al., 2009) 

 

Pulmonary Hypertension Syndrome (PHS or Ascites) 

The reduced relative heart size in the modern broilers might imply insufficient 

cardiac capacity, and this might play a role in the increased susceptibility of modern 

broilers to heart failure and ascites (Maxwell and Robertson, 1998; Olkowski et al., 

2007; Schmidt et al., 2009). Ascites is a cascade of events that results in physically 

abnormality related to the heart including enlarged and loose heart especially the 

right ventricular, and exuded of non-inflammatory fluid in lungs, pericardium and 

abdominal cavity (Balog, 2003). Originally ascites was associated with broilers 

raised at high altitude (Cueva et al., 1974). However, at present ascites is also 

found in populations raised at sea level (Scheele et al., 2005; Decuypere et al., 

2005; Bahadoran and Hassanzadeh, 2010). Ascites is considered to be the result of 

a combination of unfavourable environmental conditions and physiology of the 

chicken, e.g. high growth rate, high feed intake, exposure to high altitude, high CO2 

levels or low temperatures, relative small heart size and obstruction of the airways 

(figure 1.1). A combination of environmental and physiological factors either 
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increases the production or decreases the removal of peritoneal lymph fluid (Julian, 

1993). Ascites is also known as pulmonary hypertension syndrome, and occurs 

when the heart does not have capability to pump adequate blood through the 

lungs (pulmonary) to meet the oxygen requirement of the body, which leads to an 

increase of the blood pressure (hypertension). High oxygen requirement is the 

most critical trigger for ascites and in broilers under cold conditions oxygen 

requirement is increased (Julian, 1998). Broilers that grow faster also have a higher 

oxygen requirement than slower growing broilers (Julian, 1993). For that reason, 

cold conditions are expected to especially increase ascites incidence in broilers with 

a high genetic potential for growth.  

 

The development of pulmonary hypertension syndrome or ascites occurs through a 

progression of contributing factors and physically events (figure 1.1) caused by 

increased pressure in the pulmonary arteries (Baghbanzadeh and Decuypere, 

2008). Usually the development of ascites start with pressure overload on the right 

ventricle causing hypertrophy of the right ventricular wall, valvular insufficiency, 

right ventricular failure and finally the chicken have ascites. Pulmonary 

hypertension syndrome is caused when an increased oxygen requirement in the 

chicken forces the heart to pump additional blood compared to normal through the 

lungs increases and then increase the pressure of the pulmonary arteries. 

 

When venous blood in the chicken enters the right atrium of the heart and then 

passes through the valve into the right ventricle, the right ventricle normally pumps 

at a low pressure that is just sufficient to push all of the returning venous blood 

through the blood vessels of the lungs. However, the lungs of birds are inflexible 

and fixed in the thoracic cavity (figure 1.2). The small capillaries can expand only 

very little if they have to contain increased blood pressure and blood flow. The 

lungs are only capable to expand a little in the birds, because the air goes through 

the lungs into the air sacs and back through the lungs on expiration. The unique 

series of air sacs in birds (figure 1.3) are thin walled pouches connected to their 

lungs (figure 1.2). Therefore, the right ventricle of the heart responds very rapidly 

to the increased workload by enlargement (figure 1.1). If the enlargement 

workload of the heart continues, the right ventricle has to pump harder to meet 

the increased pressure, and the wall of ventricular thickens and enlarges. The 

increase in the weight of the right ventricle is associated with increases in blood 

pressure in the arteries leading to the lungs (pulmonary arteries).  
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Figure 1.1. Flow chart showing the development of the ascites syndrome in broilers 
(Baghbanzadeh and Decuypere, 2008).  
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In order to compensate for the insufficient oxygen supply, there will be an 

increasing pulmonary vascular resistance and pulmonary arterial pressure. The 

right ventricle of the heart responds very rapidly to the increased workload by 

enlargement (figure 1.1). If the pulmonary hypertension continues, the right 

ventricle has to pump harder to meet the increased pressure, and the wall of 

ventricular thickens and enlarges. The increase in the weight of the right ventricle is 

associated with increases in blood pressure in the arteries leading to the lungs 

(pulmonary arteries). After the thickening of the wall of the right ventricle has 

started, the ventricle then begins to stretch and enlarge. The volume within the 

right ventricle has to increase when the increased amount of blood remains within 

the pumping chamber. The enlargement of the right ventricle physically reduces 

the pumping efficiency, and extensive enlargement seems to prevent the valve 

between the right atrium and right ventricle from closing correctly which permits 

blood to flow back into the right atrium during each ventricular contraction. 

 

 

Figure 1.2 Internal Anatomy of chicken. The avian respiratory system delivers O2 from the air 
to the tissues, removes CO2, and maintains the body temperature. Chickens have relative 
small lungs and nine airs sacs, which play an important role in respiration. The air sacs 
permit a unidirectional flow of air through the lungs.  
http://studentvet.files.wordpress.com/2011/03/chicken_turkey_anatomy-3332254071.jpg  

http://studentvet.files.wordpress.com/2011/03/chicken_turkey_anatomy-3332254071.jpg
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Consequently, increased blood flow can force even mild penetration of fluid and to 

lead to the development of ascites at an early age (Julian, 1993). The leakage of 

ascites fluid will increase the vascular permeability and increases the susceptibility 

of the chicken to finally develop ascites (Julian, 2005). Ascitic fluid is a combination 

of lymph and blood plasma which has leaked from the liver and leaking from the 

blood vessels. The accumulation of ascites fluid is most frequently in the ventral 

hepatic, peritoneal, or pericardial spaces, may contain yellow protein clots. The 

leakage of ascites fluid will increase the vascular permeability and increases the 

susceptibility of the chicken to finally develop ascites (Julian, 2005). Many of the 

lesions observed in chickens with ascites are direct consequences of right 

ventricular failure and/or chronic hypoxemia, and often reflect inadequate 

adaptive responses or secondary tissue dysfunction and damage (Julian, 2005). 

 

 

Figure 1.3 Air sac system of the chicken. http://www.fsis.usda.gov/pdf/psit_anatomy.pdf 

 

 

Genetic Parameters for Ascites Indicator Traits  

Several studies have evaluated traits that could serve as indicators for ascites 

susceptibility. Some of the most common clinical signs associated with ascites are 

right ventricular hypertrophy, fluid accumulation in the abdomen and increased 

haematocrit value (Decuypere et al., 2000; Moghadam et al., 2001; Pakdel et al., 

http://www.fsis.usda.gov/pdf/psit_anatomy.pdf
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2005a; Zerehdaran et al., 2006). The ratio of right to total ventricular weight 

(RATIO), which measures right ventricular hypertrophy, has been suggested as a 

good indicator for ascites (Julian, 1993; McGovern et al., 1999; Pakdel et al., 

2005b). The estimated heritabilities for ascites indicator traits, e.g. RATIO and 

haematocrit value are moderate to high (Lubritz et al., 1995; Pakdel et al., 2005b). 

It, therefore, seems reasonable to expect that genetic selection against ascites 

susceptibility can decrease ascites incidence in broilers.  

 

The heritability estimates for indicator traits measured under normal temperature 

conditions have been found to be lower than under cold conditions, for example, 

the heritability estimate for haematocrit values under normal conditions 0.17 as 

compared to 0.46 under cold conditions, and for RATIO the estimated heritability 

under normal conditions was 0.12 compared to 0.45 under cold conditions (Pakdel 

et al., 2005b). The reason for this difference in heritability under different 

environmental conditions might be that genetic differences in ascites susceptibility 

are expressed to a larger extends under cold conditions. This might imply that 

estimated genetic parameters depend upon the incidence of ascites. 

 

Several studies show that both genetic and maternal factors play a role in the 

development of ascites (Lubritz et al., 1995; Pakdel et al., 2002). Not accounting for 

maternal effects in the statistical model has been found to result in overestimated 

heritabilities (van Kaam et al., 1998; Pakdel et al., 2002).  

 

Genetic Correlation between Ascites Related Traits and Production 

Traits 

Genetic correlations between indicator traits and body weight have been shown to 

shift to more positive values under normal conditions as compared to the 

estimates under cold conditions. Pakdel et al (2005b) estimated the genetic 

correlation between body weight and heart characteristics like right ventricular 

weight and total ventricular weight for broilers that were challenged under ascites 

inducing conditions and under normal conditions. Under normal commercial 

environmental contentions the broilers with higher genetic growth potential also 

had higher genetic values for right ventricular weight and total ventricular weight. 

The genetic correlation between body weight and RATIO changed from 0.50 under 

normal conditions to -0.27 under cold conditions and the genetic correlation 

between body weight and haematocrit values changed from 0.55 to -0.23 (Pakdel 

et al., 2005b).  
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The results from Pakdel et al. (2005b) suggest that the genetic parameters for 

indicator traits are very sensitive to temperature conditions, and therefore, to the 

incidence of the disease. A low genetic correlation for body weight measured in 

cold and normal environments were estimated, which indicates that growth under 

normal and cold conditions are genetically different traits. Pakdel et al. (2005b) 

concluded that this genetic correlation indicates an interaction between 

environment and genotype: broilers with high genetic values for body weight under 

normal conditions do not necessarily have high genetic values for body weight 

under cold conditions. The observed genotype by environment interaction might 

be due to ascites. This is in agreement with Wideman (2001), who concluded that 

any increase in body weight for broilers that are clinically healthy can be related to 

increases in total ventricular weight as well as cardiac output and stroke volume. 

 

Alternative Indicator Traits  

Several studies have considered blood gas parameters as indirect criteria in 

selection for reduced incidence of ascites in broilers (Julian and Mirsalimi, 1992; 

Scheele et al., 2003; Wideman et al., 2003; Navarro et al., 2006; van As et al., 

2010). It has been shown that broilers with right ventricular failure have 

significantly lower blood oxygen saturation (sO2) compared to broilers with a 

normal heart (Julian and Mirsalimi, 1992). Further, an elevated RATIO is related to a 

higher partial pressure of carbon dioxide in venous blood (pvCO2), a lower partial 

pressure of oxygen in arterial blood, and increased bicarbonate (HCO3) 

concentrations in arterial blood compared as compared to chickens with a normal 

RATIO (Wideman et al., 2003). Druyan et al. (2007) estimated a moderate 

heritability for blood oxygen saturation, indicating that blood oxygen saturation 

might be used as indicator for ascites susceptibility, although with limited efficacy. 

Based on a smaller study with 200 broilers, they concluded that blood pvCO2 and 

pH in both male and female broilers seem to be critical factors in ascites 

pathophysiology and can be used as phenotypic traits to predict ascites 

susceptibility. Recent findings show that high pvCO2 values together with low pH 

values (males) or high pH values (females) in the venous blood of young broilers 

can predict ascites (van As et al., 2010). 

 

Quantitative Trait Loci for Ascites Related Traits  

The purpose of QTL mapping studies is to identify genetic markers that are closely 

linked to the causal mutation. QTL mapping studies in chicken have identified 

chromosomal regions that contribute to variation in several economically 

important traits (Abasht et al., 2006). The associations between markers and traits 
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can be used in selection and can increase selection response, especially for traits 

that are difficult to measure, such as resistance to disease (Hocking, 2010). 

Genomic information also has been suggested as an effective means to select for 

reduced susceptibility to ascites in broilers (Pakdel et al., 2005a). Rabie et al. (2005) 

identified QTL affecting ascites indicator traits on chromosome 2, 4 and 6 and 

suggestive linkage was found on chromosome 5, 8, 10, 27 and 28. The detection of 

several QTL, each with relatively small effect, suggests a complex genetic 

background.  

 

1.2 Aim and Outline of this Thesis 

The aims of this thesis are to (i) identify and estimate genetic parameters for 

ascites indicator traits using commonly used and alternative statistical methods 

and (ii) perform a genome wide association study used to identify candidate genes 

involved in ascites. 

 

Chapter 2 and chapter 3 present the estimation of genetic parameters. Several 

physiological studies have suggested the use of blood gas parameters as indicators 

of ascites. However, few studies have estimated genetic parameters for blood gas 

parameters. The objectives of chapter 2 were (i) to estimate the heritability for 

RATIO, body weight and blood gas parameters, and (ii) to estimate the genetic and 

phenotypic correlations between RATIO, body weight at two weeks, body weight at 

five weeks and blood gas parameters measured during week three and week four. 

It has been suggested that male broilers are more likely to develop ascites, because 

they tend to grow faster than female broilers. However, no studies have estimated 

genetic parameters for ascites indicator traits separately for male and females 

broilers. The aims of chapter 3 were (i) to estimate the heritability for RATIO and 

BW in male and female broilers, (ii) to estimate the genetic correlation between 

RATIO and BW separately for male and female broilers, and (iii) to estimate genetic 

correlations between BW for ascitic and non-ascitic broilers.  

 

Traditionally the statistical genetic analyses of ascites data are performed using 

linear models. However, explicitly modeling healthy and diseased birds and the 

susceptibility to ascites, i.e. the actual trait of interest might be more appropriate. 

Chapter 4 presents the analysis of RATIO using a liability normal mixture model 

(LNM). The aim of chapter 4 was to apply the LNM model to the ascites-indictor 

trait RATIO and to use this model estimate heritablities.  
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The number of genetic markers that is available for broilers has increased 

dramatically over the last years and the cost for genotyping a single chicken has 

declined. This offers opportunities for detection and fine mapping of QTL related to 

ascites Chapter 5 present the results of a genome wide association study for RATIO. 

The aim of chapter 5 was to detect and characterize chromosomal regions affecting 

RATIO.  

 

Chapter 6 is the general discussion where the four following issues are discussed: 

(i) genetic background of ascites in broilers, (ii) the use of Liability Normal Mixture 

Models in selection for disease resistance, (iii) genome wide association studies 

used for identify ascites, and (iv) comparison between species. 
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Abstract 

Ascites, also called pulmonary hypertension syndrome, is a metabolic disorder in 

chickens that have an insufficient pulmonary vascular capacity. The tendency of 

broilers to develop ascites is heritable, and successful selection against this 

susceptibility would benefit from good and easy-to-measure indicator traits. Blood 

gas parameters have been suggested as indicator traits for ascites susceptibility. 

Therefore, the aim of the present study was to estimate the heritability of blood 

gas parameters and the genetic and phenotypic correlations between blood gas 

parameters, heart ratio (postmortem indicator for ascites), and BW at 2 different 

ages. For this purpose, blood gas parameters, including the partial pressure of 

carbon dioxide in venous blood (pvCO2), the partial pressure of oxygen in venous 

blood (pvO2), and blood oxygen saturation, were measured at an average age of 22 

d in nearly 3,000 broilers. To challenge the resistance of the birds to ascites, they 

were kept under cold conditions. Heritability for heart ratio was 0.43, and the 

heritability estimates were low: 0.02 for pvCO2, 0.03 for pvO2, and 0.07 for blood 

oxygen saturation. The estimated heritability for pH was 0.15, for bicarbonate was 

0.19, and for total carbon dioxide content was 0.19. The genetic correlations 

between heart ratio and total carbon dioxide content (0.31 ± 0.15) and between 

heart ratio and bicarbonate (0.31 ± 0.15) were moderate and positive. For pvO2, 

the genetic correlation with heart ratio was stronger and negative (−0.62 ± 0.21); 

however, this correlation could not be estimated accurately because of the low 

heritability of pvO2. For pvCO2, the genetic correlation with the heart ratio was 

close to zero (−0.04 ± 0.45). Phenotypic correlations between traits were, in 

general, similar to the genetic correlations. Heritabilities for blood gas parameters 

and the genetic correlations between blood gas parameters and the heart ratio 

estimated in the present study do not support the suggestion that blood gas 

parameters measured during wk 3 or 4 are useful traits to select against the 

susceptibility for ascites.   

 

Key words: broiler, ascites, blood gas parameter, heritability, correlation  
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2.1 Introduction 

Ascites, also called pulmonary hypertension syndrome, is a metabolic disorder in 

chickens. The disorder is associated with an insufficient pulmonary vascular 

capacity and results in right ventricular failure (Julian et al., 1987; Julian, 1998; 

Balog et al., 2000). In most cases, ascites is caused by a disproportion between the 

oxygen requirement and the cardiovascular ability to supply oxygen (Julian and 

Mirsalimi, 1992; Scheele et al., 1992; Decuypere et al., 2000). Oxygen shortage puts 

pressure on the pulmonary vascular system and can lead to oxygen deficiency in 

the tissues, which will increase pulmonary arterial pressure. The high blood 

pressure and high work load of the heart lead to fluid accumulation in the 

abdominal cavity and eventually death (Shlosberg et al., 1992; Decuypere et al., 

2000; Havenstein et al., 2003). Mortality caused by ascites ranges from 5 to 8% in 

populations worldwide and can be as great as 20 to 30% in heavier broiler flocks 

(Balog, 2003; Pavlidis et al., 2007).  

 

The increase in the occurrence of ascites has been linked to genetic selection for 

increased growth rate, greater meat yield, and lower feed conversion ratio 

(Decuypere et al., 2000; Balog, 2003). It has been shown that fast-growing broilers 

are more susceptible to ascites than slow-growing broilers (Julian, 1993). Ascites in 

broiler flocks can be reduced by management measures, such as avoiding low 

temperatures, maintaining good air quality and high oxygen concentrations, and 

restricting feeding to restrict growth (Decuypere et al., 2000; Julian, 2000; Balog, 

2003). A variety of physiological studies have evaluated specific traits asindicators 

for ascites susceptibility. Two of the most common clinical signs associated with 

ascites are right ventricular hypertrophy and fluid accumulation in the abdominal 

cavity (Decuypere et al., 2000; Moghadam et al., 2001; Balog et al., 2003; Pakdel et 

al., 2005a; Zerehdaran et al., 2006). The ratio of right to total ventricular weight 

(RATIO), which measures right ventricular hypertrophy, has been suggested as a 

good indicator for ascites (Julian, 1993; McGovern et al., 1999; Pakdel et al., 

2005c).  

 

Studies have shown genetic variation within lines (Wideman and French, 1999; 

Wideman et al., 1999; Deeb et al., 2002; Pakdel et al., 2002) and between lines 

(Lubritz et al., 1995; Buys et al., 1999a,b; Wideman and French, 2000; De Greef et 

al., 2001; Druyan et al., 2007, 2008) for susceptibility to ascites. However, current 

indicator traits, such as RATIO and fluid accumulation in the abdominal cavity, can 

only be measured postmortem. Therefore, selection against ascites susceptibility 

by using these indicators is complicated, and information for selection relies heavily 
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on information from relatives (McMillan and Quinton, 2002; Pakdel et al., 2005a). 

Thus, there is a need for alternative indicator traits that can be measured on living 

birds; blood gas parameters might be a good alternative. It has been shown that 

broilers with right ventricular failure have significantly lower blood oxygen 

saturation (sO2) compared with broilers with a normal heart (Julian and Mirsalimi, 

1992). Wideman et al. (2003) found that chickens with an elevated RATIO had a 

greater partial pressure of carbon dioxide in venous blood (pvCO2), a lower partial 

pressure of oxygen in arterial blood, and greater bicarbonate (HCO3) 

concentrations in arterial blood compared with chickens with a normal RATIO. 

Furthermore, by comparing 2 different broiler lines, Scheele et al. (2003) observed 

a relationship between ascites susceptibility and high pvCO2 at d 11 in juvenile 

chickens and suggested that ascites could be eliminated by selecting for low pvCO2. 

Navarro et al. (2006) demonstrated that sO2 is heritable and suggested that ascites 

susceptibility could be decreased by selecting for increased sO2 values. Druyan et 

al. (2007) reported a moderate heritability for sO2 and indicated that sO2 might 

serve as an indicator in selection against ascites susceptibility, although with 

limited efficacy.  

 

In addition to the studies by Navarro et al. (2006) and Druyan et al. (2007), to our 

knowledge, no other studies have reported heritability estimates for blood gas 

parameters. Furthermore, to our knowledge, only Druyan et al. (2007) reported 

genetic correlations between blood gas parameters and other ascites indicator 

traits such as RATIO.  

 

The objective of the present study was to estimate heritability, heart ratio, and 

genetic and phenotypic correlations between blood gas parameters measured 

during wk 3 and 4 and BW at 2 different ages in broilers.  

 

2.2 Materials and Methods 

Experimental Population and Phenotyping 

Animal Material 

The experiment was carried out by licensed and authorized personnel under 

approval of Hendrix Genetics. The experimental population consisted of 5,987 

broilers. The chickens were from generations 7 and 8 of an advanced intercross 

line, which was a cross between 2 genetically different dam lines originating from 

the White Plymouth Rock breed. The data consisted of 2,413 males, 2,452 females, 

and 1,122 chickens of unknown gender. Birds from generations 3 of this population 

have been used in previous studies on ascites and meat quality traits (van Kaam et 
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al., 1998; Pakdel et al., 2002). The chickens in the experiment were kept under a 

cold temperature regimen to induce ascites. The temperature was 30°C at the time 

of hatching and was gradually reduced to 10°C at 22 d of age. The temperature 

remained at 10°C until the end of the experiment when the chickens were 5 wk of 

age. The chickens were group housed with 20 birds/m2, they had ad libitum access 

to a commercial broiler feed containing 12,970 KJ/kg, and they were exposed to 23 

h of light per day during the entire experiment. Except for the temperature 

schedule applied, the chickens were kept under conditions that closely resemble 

commercial practice. 

 

Venous blood samples were taken when the chickens were, on average, 22 d old 

(ranging from 19 to 27 d old). The blood gas parameters measured (GEM Premier 

3000, Instrumentation Laboratories, Lexington, MA) were blood pH, pvCO2, and 

partial pressure of oxygen in venous blood (pvO2). Bicarbonate and total carbon 

dioxide content (TCO2) were calculated from the pH and pvCO2 by the following 

equations: 

 

Log HCO3 = pH + log pvCO2 − 7.608, and  

TCO2 = HCO3 + 0.03 pvCO2. 

 

Blood sO2 is an indicator of the percentage of hemoglobin saturated with oxygen at 

the time of the measurement; pvO2, pH, and HCO3 were used to calculate sO2 with 

the following equation: 

 ,
23400150XX

150XX
100sO

3

3

2



  

 

where X = pvCO2 × 10
[0.48 (pH-7.4)-0.0013(HCO3-25)]

. 

 

The weight of the heart ventricles was determined at 5 wk of age. The RATIO was 

the weight of the right ventricle as a percentage of the total ventricle weight (TV). 

The chickens were weighed at 2 wk (BW2) and 5 wk of age (BW5). No postmortem 

dissection was performed on the animals that died before the end of the 

experiment; therefore, the cause of death was unknown. Animals that died before 

the end of the experiment were assigned a total mortality (MORT-TOT) score of 1 

and birds that survived got a score of 0.  
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Statistical Analysis 

Genetic parameter estimates were obtained by using ASREML software (Gilmour et 

al., 2006). To determine the importance of maternal effects, a model without a 

maternal effect and a model with a maternal environmental effect were used. The 

following model without a maternal environmental effect was used:  

 

 ijkllkjiijkl eadateIHDsexμy  ,  [1] 

 

where yijkl is the dependent variable of chicken ijkl of sexi, which is the fixed effect 

of sex (i = female, male, or unknown); IHDj is the fixed effect of individual hatching 

day (j = 1, 2, . . ., 34 d at hatching); datek is the fixed effect for date of blood gas 

measurement (k = 1, 2, . . ., 37); al is the random direct genetic effect of individual l 

with )AN(0,~a 2
a  and eijkl is the random residual effect with )IN(0,~e 2

a . The effect 

datek was used only in the model for the blood gas parameters.   

 

The second model with a maternal environmental effect was 

 

ijklmmlkjiijklm edadateIHDsexμy  .  [2] 

 

This model is identical to the first model, except for the random maternal 

environmental effect of dam m (dm) with )IN(0,~d 2
a . The fraction of the variation 

attributable to maternal environmental effects (m
2
) was calculated as 

2
e

2
d

2
a

2
d2

σσσ

σ
m


  

 

To test the significance of the maternal environmental effect, a likelihood ratio test 

with 1 df was used: 

 

L(R)2logL(F)2logX ee
2
1  , 

 

where L(F) is the likelihood of the full model (model [2]), and L(R) is the likelihood 

of the reduced model (model [1]). Univariate analysis was used to estimate 

heritabilities and maternal environmental effects. Bivariate analysis was used to 

estimate genetic and phenotypic correlations between the traits. 
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Some of the animals died before the end of the experiment and had an observation 

for only BW2. The animals that died might have been the ones that were most 

susceptible to ascites, and this selection might have had an impact on the 

estimated genetic parameters. Selection related to BW2 can be accounted for by 

performing a multivariate analysis including BW2 (Ouweltjes et al., 1988). 

Therefore, we also estimated heritabilities by using a bivariate analysis with BW2 as 

a permanent trait. The effect of selection on genetic correlations was studied by 

performing a trivariate analysis with BW2 as a permanent trait. 

 

2.3 Results 

Data Description 

Means, SD, and CV of the traits measured under cold stress conditions are 

presented in Table 2.1. Of the 5,987 chickens retained for measurement of BW2, 

5,222 also had measurements for BW5, 5,155 had measurements for RATIO, and 

2,956 chickens were used for measuring blood gas parameters. Mortality 

recordings were missing for 210 chickens because of the loss of wing bands or 

because the trait was not recorded. The average venous blood pH was 7.38, the 

average sO2 was 84%, the average pvCO2 was 45.4 mmHg, and the average HCO3 

concentration was 26.88 mmol/L (Table 2.1). The average BW of broilers under cold 

stress conditions was 360 g at 2 wk and 1,146 g at 5 wk, and the average RATIO was 

25%. The MORT-TOT was 10%. Coefficients of variation were moderate to high for 

most of the traits (e.g., 14.6% for pvCO2, 20% for pvO2, 29.4% for BW2, 18.9% for 

BW5, and 21.2% for RATIO). However, the CV for pH was very low (0.7%). 

 

Genetic Analyses 

Phenotypic variance, heritability, and maternal environmental effects for the 

ascites-related traits obtained from the univariate models are given in Table 2.2. 

The heritability for RATIO was 0.43. For some of the blood gas parameters, the 

heritabilities were close to zero: 0.02 for pvCO2, 0.03 for pvO2, and 0.07 for sO2. 

However, for pH, HCO3, and TCO2, moderate heritabilities were found: 0.15, 0.19, 

and 0.19, respectively. The estimated heritabilities for the 2 BW measurements 

were 0.15 for BW2 and 0.17 for BW5. The traits BW2, BW5, TV, pvCO2, and MORT-

TOT were significantly affected by maternal environmental effects. The fraction of 

the total variation explained by maternal environmental effects was 0.05 for pvCO2, 

0.12 for BW2, and 0.07 for BW5.  
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Table 2.1 The mean, SD, and CV for BW, heart ratio, blood gas parameters, and mortality of the broiler chickens 

Variable Units Abbreviation Number Mean SD CV
1
 (%) 

BW at 2 wk G BW2 5,987 360 106 29.4 

BW at 5 wk G BW5 5,222 1,146 217 18.9 

Heart ratio % RATIO 5,155 25.01 5.31 21.2 

Right ventricular weight G RV 5,155 1.29 0.38 29.5 

Total ventricular weight G TV 5,155 5.15 0.95 18.4 

Blood pH pH pH 2,956 7.38 0.05 0.7 

Partial pressure of carbon dioxide in venous blood mmHg pvCO2 2,956 45.4 6.62 14.6 

Partial pressure of oxygen in venous blood mmHg pvO2 2,956 52.46 10.5 20 

Blood bicarbonate concentration in venous blood mmol/L HCO3 2,955 26.88 3.33 12.4 

Total carbon dioxide in venous blood mmol/L TCO2 2,956 28.28 3.44 12.2 

Oxygen saturation in venous blood % sO2 2,952 83.98 7.02 8.4 

Total mortality before slaugther Died (0/1) MORT-TOT 5,777 0.1 0.3 — 
1
CV (%) is the CV calculated by taking the SD to the mean. 
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No significant evidence for the presence of maternal environmental effects was 

found for the traits RATIO, pH, pvO2, HCO3, TCO2, and sO2. Using a model without a 

maternal effect gave a heritability estimate of 0.51 for BW2, of 0.37 for BW5, and of 

0.15 for pvCO2 (Table 2.2). Bivariate analysis with BW2 as a permanent trait resulted 

in slightly greater heritability estimates; they were at maximum 0.03 greater than 

the heritabilities estimated by using a univariate model (results not shown). The 

heritability estimates for MORT-TOT were also analyzed by using a binary model 

(results not shown), and the results increased compared with heritabilities 

estimated from the linear model. These results were in agreement with 

heritabilities estimated by transforming the heritabilities from the linear model to 

the underlying scale (Lynch and Walsh, 1998) 

 

Table 2.2. Phenotypic variance, heritability (h
2
), and maternal effect (m

2
) for model [1] and 

model [2]1 

  Model [1] Model [2] Significance of 
log-likelihood 
test

2
 Trait  

Phenotypic 
variance h

2
 (SE) h

2
 (SE) m

2
 (SE) 

BW2   4,606 0.51 (0.06) 0.15 (0.09) 0.12 (0.04) 0 

BW5 34,280 0.37 (0.05) 0.17 (0.08) 0.07 (0.03) 0.029 

RATIO        25.5 0.43 (0.06)   NS 

RV          0.106 0.42 (0.06)   NS 

TV          0.613 0.37 (0.05) 0.17 (0.07) 0.06 (0.03) 0.003 

pH          0.002 0.15 (0.04)   NS 

pvCO2        26.19 0.15 (0.04) 0.02 (0.02) 0.05 (0.01) 0.006 

pvO2        93.25 0.03 (0.01)   NS 

HCO3          5.36 0.19 (0.05)   NS 

TCO2          5.8 0.19 (0.05)   NS 

sO2        36.3 0.07 (0.02)   NS 

MORT-TOT          0.087 0.05 (0.02) 0.01 (0.02) 0.02 (0.01) 0.019 
1
BW2 = BW at 2 wk; BW5 = BW at 5 wk; RATIO = ratio of right to total ventricular weight; RV 

= right ventricular weight; TV = total ventricular weight; pvCO2 = partial pressure of carbon 
dioxide in venous blood; pvO2 = partial pressure of oxygen in venous blood; HCO3 = 
bicarbonate; TCO2 = total carbon dioxide in venous blood; sO2 = oxygen saturation in 
venous blood; MORT-TOT = total mortality.  
2
Log-likelihood results indicate the significant difference between model [1] and model [2]. 

A univariate model was used for the estimations. NS = not significant. 
 

The estimates for genetic correlations (above the diagonal) and the phenotypic 

correlations (below the diagonal) of the blood gas parameters RATIO, BW, and 

MORT-TOT are presented in Table 2.3. The greatest genetic correlation between 

RATIO as a postmortem indicator for ascites and blood gas parameters was found 
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for pvO2 (−0.62 ± 0.21). However, genetic correlations between pvO2 and other 

traits have high SE, mainly because of the low heritability for pvO2. The genetic 

correlations between RATIO and the blood gas parameters TCO2 (0.31 ± 0.15) and 

HCO3 (0.31 ± 0.15) were positive and moderate. For pvCO2 and RATIO, the genetic 

correlation was close to zero (−0.04 ± 0.45). The genetic correlation between BW2 

and RATIO was 0.19, whereas the genetic correlation between BW5 and RATIO 

was −0.18. The genetic correlation between BW2 and BW5 was high (0.88). 

Phenotypic correlations between traits were, in general, similar to the genetic 

correlations. A trivariate model with BW2 as a permanent trait had hardly any 

effect on the estimated genetic correlation between the traits: genetic 

correlations between RATIO and the blood gas parameters increased from 0.01 to 

0.02 when using a trivariate model instead of a bivariate model (results not 

shown). 
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Table 2.3. The genetic correlations (above the diagonal) and the phenotypic correlations (below the diagonal)
1
 

Trait BW2 (SE) BW5 (SE) RATIO (SE) RV (SE) TV (SE) pH (SE) pvCO2 (SE) pvO2 (SE) HCO3 (SE) TCO2 (SE) sO2 (SE) MORT-TOT (SE) 

BW2  0.88 (0.10) 0.19 (0.23) 0.52 (0.16) 0.49 (0.26) 0.79 (0.35)  NC −0.24 (0.43) 0.59 (0.20) 0.58 (0.18) 0.4 (0.29) −0.63 (0.63) 

BW5 0.75 (0.01)  −0.18 (0.16) 0.23 (0.17) 0.3 (0.27) 0.67 (0.23)  −0.90 (0.89) 0.13 (0.31) 0.45 (0.19) 0.53 (0.18) 0.6 (0.21) NC 

RATIO −0.02 (0.03) −0.15 (0.03)  0.81 (0.04) −0.02 (0.16) 0.06 (0.17)  −0.04 (0.45) −0.62 (0.21) 0.31 (0.15) 0.31 (0.15) −0.12 (0.20) NC 

RV 0.36 (0.03) 0.35 (0.03) 0.76 (0.01)  0.62 (0.10) 0.13 (0.17)  0.00 (0.42) −0.41 (0.24) 0.41 (0.14) 0.42 (0.14) 0.06 (0.20) NC 

TV 0.56 (0.03) 0.71 (0.02) −0.05 (0.03) 0.6 (0.02) 0.27 (0.22)  −0.60 (0.90) 0.1 (0.29) 0.33 (0.20) 0.32 (0.20) 0.25 (0.23) NC 

pH 0.12 (0.03) 0.1 (0.03) −0.04 (0.03) −0.02 (0.03) 0.04 (0.03) NC −0.08 (0.26) 0.4 (0.30) 0.12 (0.19) 0.47 (0.17) 

 −0.29 (0.42) 

pvCO2 NC −0.01 (0.03) 0.12 (0.03) 0.13 (0.03) 0.03 (0.03) NC  −0.48 (0.45) 0.69 (0.16) 0.71 (0.15) −0.82 (0.31) −0.14 (0.67) 

pvO2 0.01 (0.02) 0.00 (0.02) −0.06 (0.02) −0.04 (0.02) −0.01 (0.02) 0.05 (0.02)  −0.14 (0.02)  −0.59 (0.21) 0.77 (0.13) −0.58 (0.22) NC 

HCO3 0.1 (0.03) 0.04 (0.03) 0.15 (0.03) 0.15 (0.03) 0.09 (0.03) 0.21 (0.02)  0.58 (0.02) −0.14 (0.02)  NC −0.11 (0.22) 0.30 (0.32)  

TCO2 0.14 (0.03) 0.10 (0.03) 0.15 (0.03) 0.18 (0.03) 0.1 (0.03) 0.15 (0.02)  0.62 (0.01) −0.14 (0.02) NC  −0.15 (0.22) 0.49 (0.36) 

sO2 0.08 (0.02) 0.07 (0.02) −0.08 (0.02) −0.03 (0.02) 0.0004 (0.02) 0.32 (0.02)  −0.34 (0.02) 0.77 (0.01) −0.07 (0.02) −0.09 (0.02)  −0.70 (0.46) 

MORT-TOT −0.19 (0.02) NC NC NC NC −0.07 (0.02)  0.04 (0.02) NC 0.002 (0.02) 0.01 (0.02) −0.06 (0.02)  
1BW2 = BW at 2 wk; BW5 = BW at 5 wk; RATIO = ratio of right to total ventricular weight; RV = right ventricular weight; TV = total ventricular weight; pvCO2 = partial pressure of carbon dioxide in venous blood; pvO2 = partial pressure of 

oxygen in venous blood; HCO3 = bicarbonate; TCO2 = total carbon dioxide in venous blood; sO2 = oxygen saturation in venous blood; MORT-TOT = total mortality; NC = nonconverged. 
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2.4 Discussion 

The objective of the present study was to estimate the heritability and genetic and 

phenotypic correlations between blood gas parameters measured at an average 

age of 22 d, BW at 2 different ages, and heart ratio in broilers. Body weight and 

RATIO were measured on 5,987 birds, and the blood gas parameters were 

measured on a subset of 2,956 birds. The study was performed under cold stress 

conditions to stimulate the metabolic rate resulting in an increased requirement for 

oxygen, which is known to increase the incidence of ascites in chickens (Decuypere 

et al., 2000). To evaluate whether specific blood gas parameters could be used in 

selecting against ascites susceptibility, we studied the heritability and genetic 

correlations with RATIO.  

 

Severity of the Challenge 

Previous studies have indicated that correlations between BW and ascites traits are 

dependent on the frequency of ascitic birds in the population, and therefore on the 

severity of the challenge (De Greef et al., 2001; Zerehdaran et al., 2006). In the 

current study, the average MORT-TOT was 10%. In comparison with the MORT-TOT 

of 16% found by Pakdel et al. (2002) under cold conditions, the mortality in the 

present study was not very high. However, mortality was much greater than the 4 

to 5% mortality found in chickens reared under normal commercial conditions 

(Pakdel et al., 2002). In the study by Pakdel et al. (2002), an average RATIO of 28% 

was found, which is greater than the average value of 25% that was obtained in the 

current study. Julian et al. (1987) suggested that a RATIO of greater than 25% 

indicates susceptibility to ascites. This threshold would imply that, in our 

experiment, 45% of the birds showed signs of ascites. The BW5 in the present study 

was also lower than under commercial conditions. This suppressed growth rate was 

likely due to the cold stress conditions under which the birds were kept. 

 

In the current study, the average pvCO2 was 45.4 mmHg. Scheele et al. (2003) 

found an average pvCO2 at 3 wk of age of 53.8 mmHg in a high-risk broiler line and 

an average pvCO2 of 43.9 mmHg in a low-risk line. Interestingly, however, the pvO2 

was lower (44.6 mmHg for the high-risk line and 46.9 mmHg for the low-risk line) 

than in the current study (52.46 mmHg). However, it should be noted that Scheele 

et al. (2003) used only male broilers, whereas in the current study, the average 

measurements were based on results from both males and females. In addition, 

the previous study compared ascites susceptibility between 2 genetically different 

stocks (high- and low-risk lines), whereas the current study investigated ascites 

susceptibility within one crossed line.  
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It can be concluded that birds in the current study were kept under circumstances 

that caused a mild increase in ascites. Because estimates of genetic parameters 

depend on the severity of the challenge (De Greef et al., 2001; Zerehdaran et al., 

2006), the estimates presented in this study should be interpreted in this context.  

 

Correlations between BW and RATIO  

Pakdel et al. (2005c) found a negative genetic correlation between BW5 and RATIO 

(−0.27). This is consistent with the negative genetic correlation (−0.18) found 

between RATIO and BW5 in the present study. A positive genetic correlation (0.19) 

was observed between RATIO and BW2. These results suggest that susceptible 

chickens tend to have a greater BW early in life (BW2) and a lower BW later in life 

(BW5). These results are in agreement with the general finding that correlations 

between traits are dependent on the frequency of ascitic birds in the population.  

 

Maternal Effects 

A maternal environmental effect may influence the phenotype of the individual, 

which, in case these effects play a role, should be accounted for in the statistical 

analysis (Clément et al., 2001). In the current study, noticeable changes were found 

in the heritabilities for TV, pvCO2, and MORT-TOT when the maternal 

environmental effect was included in the model. De Smit et al. (2008) showed that 

ascites resistance is related to several physiological variables at the embryonic 

stage, which suggests that maternal effects might play a role in susceptibility. 

Several studies have reported a maternal effect for BW (Koerhuis and Thompson, 

1997; van Kaam et al., 1998; Pakdel et al., 2002). Pakdel et al. (2002) found a 

significant maternal effect for RATIO, which could not be confirmed in the present 

study. Navarro et al. (2006) found little evidence for maternal (environmental) 

effects on sO2; of the 4 broiler lines investigated, one of them exhibited significant 

evidence for the presence of maternal effects. In that line, maternal environmental 

effects explained approximately 2% of the total variance. In the present study, we 

did not find significant maternal effects on sO2; however, a significant maternal 

effect was found for pvCO2, which explains 5% of the phenotypic variation.  

 

Blood Gas Parameters as Indicator Traits for Ascites Susceptibility 

In the present study, we evaluated the suitability of blood gas parameters as 

indicator traits for ascites based on heritabilities and correlations with RATIO. For 

some of the blood gas parameters, heritabilities were close to zero (pvCO2, pvO2, 

and sO2), whereas for others, they were moderate (pH, HCO3, and TCO2). The 

heritability estimate for sO2 was in agreement with results by Navarro et al. (2006); 
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however, in that study, sO2 was measured on 6-wk-old chickens that were not cold 

stressed. This might have affected the heritability estimates. Druyan et al. (2007) 

reported a considerably greater heritability estimate (0.49 ± 0.23) for sO2 in 

chickens that were 7 d old. However, this estimate is not significantly different 

from the heritability estimate reported in the present study. The low heritabilities 

indicate that accurate estimates of breeding values for these traits cannot be 

obtained based on single observations. Accuracies might be improved by using 

repeated observations, but this will depend on the repeatability of the traits. 

Repeatability could not be estimated based on the present data; therefore, this is 

still an option that can be explored. In addition to high heritability, a suitable 

indicator trait should also have a high genetic correlation with ascites susceptibility. 

This was evaluated by studying correlations with RATIO. Several authors have 

suggested that RATIO is a good indicator trait for ascites susceptibility (Lubritz et 

al., 1995; Pakdel et al., 2002, 2005b). Julian et al. (1987) recommended the use of 

RATIO as an objective method for assessing right ventricular failure, and therefore 

of diagnosing ascites. However, others have questioned whether RATIO is a good 

indicator trait for birds kept under normal conditions (i.e., conditions that do not 

stimulate ascites; Pavlidis et al., 2007). In the present study, birds were kept under 

cold stress conditions. 

 

Genetic correlations between RATIO and both HCO3 and TCO2 were moderate, and 

correlations between RATIO and pH or pvCO2 were close to zero. The correlation 

between RATIO and pvO2 was −0.62; however, the estimated heritability for pvO2 

was very low, resulting in very high SE for the genetic correlations with this trait. 

Therefore, results from the present study suggest that blood gas parameters are 

not useful as indicators for ascites susceptibility when measured at an average age 

of 22 d. 

 

Experimental results from juvenile chickens (Korte et al., 1999; Scheele et al., 2003) 

showed that at the age of 11 d, a high pvCO2 is associated with a greater incidence 

of ascites at the age of 5 to 7 wk. Scheele et al. (2005) stated that genetic selection 

for low pvCO2 values at 11 d of age will be an effective method of reducing the 

occurrence of the ascites syndrome. However, results from the present study do 

not confirm this. The first explanation for the discrepancy between results from the 

present study and results by Scheele et al. (2003, 2005) may be the different ages 

of the chickens at which the blood gas parameters were measured. The pulmonary 

pressure index values are known to change rapidly over the first 2 wk of the life of 

a chicken. Particularly during the period of juvenile growth, the metabolic rate is 
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high and these conditions impose greater metabolic demands. The increased 

metabolism requires high O2 intake and, at the same time, high maintenance 

requirements. These factors lead to the maximal potential delivery capacity of 

oxygen in the respiratory and cardiovascular systems, which are then exceeded and 

trigger the events that lead to ascites (Decuypere et al., 2000). In the current study, 

the blood gas parameters were measured when the chickens were, on average, 22 

d old. However, in the study by Scheele et al. (2005), the differences in pvCO2 

values between the lines remained consistent until the end of the experiment, but 

did increase as the chickens became older. The pvO2 values decreased as the 

chickens aged, and the differences between the mean pvO2 values in the 2 lines 

became greater (Scheele et al., 2003). It should be mentioned that the severity of 

the challenge differed between the study by Scheele et al. (2003, 2005) and the 

current study. In the current study, the temperature was gradually reduced to 10°C 

at 22 d of age, whereas Scheele et al. (2003, 2005) gradually reduced the 

temperature to 15°C at 16 d of age. Although this did not result in a greater 

mortality, it is possible that even ascites-resistant broilers experienced problems 

with breathing because of the low temperature. This might have had an effect on 

the blood gas parameter values. The second explanation could be the lines that 

were used. Scheele et al. (2003) compared ascites susceptibility between 2 

genetically different stocks (high- and low-risk lines), and several different lines 

were compared in the other study (Scheele et al., 2005), whereas in the current 

study, ascites susceptibility was investigated within one crossed line. A third 

explanation could be the fact that only males were used by Scheele et al. (2003, 

2005), whereas both males and females were used in the current study. The female 

growth rate is slower than the male growth rate; thus, ascites-susceptible females 

will have a lower pvCO2, on average. Therefore, differences in pvCO2 between 

healthy and affected chickens will be smaller. Although previous studies (Scheele et 

al., 2003, 2005) reported the use of pvCO2 as an indicator trait for ascites 

susceptibility in male broilers, the results from the current study do not support 

this. It might be concluded that the severity of the challenge, the genetic lines 

used, the sex of the chickens, and the time of measurement are critical factors.  

 

Conclusion 

The estimated heritabilities for the blood gas parameters pvCO2 and pvO2 were 

almost zero. This indicates that selection based on single measurements of these 

blood gas parameters is not feasible. The heritabilities of HCO3 and TCO2 showed 

enough variation in the population to be used for selection. However, the low 

genetic correlation between RATIO and these 2 blood gas parameters suggests that 
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they are not useful as indicators for ascites susceptibility. Therefore, the current 

data suggest that blood gas parameters measured at an average age of 22 d will 

not be very effective when used for selecting against susceptibility. 
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Abstract 

Ascites or pulmonary hypertension syndrome is a metabolic disorder in broilers. 

Male broilers have a higher BW and are therefore expected to be more prone to 

developing ascites than females. As genetic parameters might be affected by the 

ascites incidence, genetic parameters might differ between male and female 

broilers. The aims of this study were to estimate the heritability for the ratio of 

right ventricular weight to total ventricular weight (RATIO) and BW in male and 

female broilers, the genetic correlation between RATIO and BW separately for male 

and female broilers, and the genetic correlations between BW for ascitic and 

nonascitic broilers. Data were available from 7,856 broilers (3,819 males and 4,037 

females). The broilers in the experiment were kept under a cold temperature 

regimen and increased CO2 levels. In this study, we showed that the incidence of 

ascites is higher in male than in female broilers. Heritability estimates for BW at 7 

wk of age were higher for male (0.22) than for female (0.17) broilers, and for RATIO 

heritability, estimates were higher for female (0.44) than for male (0.32) broilers. 

The genetic correlations between RATIO and BW measured at different ages 

changed from slightly positive at 2 wk of age to moderately negative at 7 wk. The 

change in genetic correlation was more extreme for male (from 0.01 to −0.62) than 

for female (from 0.13 to −0.24) broilers. The difference in ascites incidence 

between male and female broilers is the most likely reason for the difference in 

genetic correlations. The genetic correlation between BW traits measured in 

broilers with fluid in the abdomen and without fluid in the abdomen decreased 

from 0.91 at 2 wk to 0.69 at 7 wk. We conclude that under circumstances with 

ascites, data from male and female broilers should be analyzed separately. 

 

Key words: broiler, ascites susceptibility, sex, heritability, genetic correlation  
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3.1 Introduction 

Ascites or pulmonary hypertension syndrome is a metabolic disorder found in 

broilers that is associated with fluid accumulation in the abdominal cavity as a 

consequence of right ventricular failure (Julian et al.1987; Julian and Mirsalimi, 

1992). Pulmonary hypertension syndrome is caused by increased pressure in the 

pulmonary arteries when the heart struggles to pump more blood through the 

lungs to meet increased oxygen demands. The overload of the blood volume 

increases the pressure on the right ventricle, which causes dilatation and 

hypertrophy of the right ventricular wall, valvular insufficiency, right ventricular 

failure, and ascites (Julian et al., 1987; Peacock et al., 1990; Julian andMirsalimi, 

1992). The development of ascites leads to increased mortality (Julian, 1998; 

Druyan et al., 2007), reduced BW (Closter et al., 2009), and reduced meat quality, 

such as reddish color of the breast fillet (Pakdel et al., 2005b). Mortality due to 

ascites in commercial broiler flocks has been found to range from around 5% 

(Maxwell and Robertson, 1998) to up to 30% in some flocks (Balog, 2003). 

 

Broiler breeding programs have, over the last decades, primarily been focusing on 

growth rate, feed efficiency, and meat yield and secondarily on health traits and 

fertility (Arthur and Albers, 2003; Balog, 2003; Havenstein et al., 2003). Health 

traits like ascites susceptibility have been included in the breeding goal to balance 

the economic losses due to mortality, decreased meat production caused by 

ascites, and to increase the welfare of the chickens (Maxwell and Robertson, 1998; 

Arthur and Albers, 2003). Genetic analyses have demonstrated that ascites is 

heritable, where heritabilities range from 0.21 to 0.45 for the ascites indicator trait; 

that is, ratio of right ventricular weight to total ventricular weight (RATIO; Lubritz et 

al., 1995; Pakdel et al., 2002), and 0.36 to 0.44 for fluid in the abdomen (Lubritz et 

al., 1995). The relative high heritabilities for ascites indicate that genetic factors 

play an important role in ascites susceptibility of broilers. Both simulation as well as 

experimental studies have shown that genetic correlations between RATIO and BW 

are a function of the ascites incidence (de Greef et al., 2001; Pakdel et al., 2005b; 

Zerehdaran et al., 2006; Closter et al., 2009): the genetic correlations become more 

negative when the incidence of ascites increases (de Greef et al., 2001; Pakdel et 

al., 2005b). The effect on the correlation between BW and RATIO from the 

incidence of ascites in a chicken population can be explained by the chickens 

suffering from ascites also showing reduced growth (Zerehdaran et al., 2006). 

Disease incidences have also been found to affect genetic correlations between 

production traits and disease in sheep (Bishop and Stear, 1999) and in rainbow 

trout (Kause et al., 2005). 
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Current statistical methods for estimating genetic parameters for ascites indicator 

traits do not account for differences between healthy and diseased chickens 

(Zerehdaran et al., 2006). However, traits in ascites-affected and non-ascites-

affected broilers actually might be genetically different traits. Furthermore, most 

studies consider traits measured on male and female broilers to be genetically 

identical. Because male broilers have a higher BW, and therefore a higher oxygen 

demand, males are expected to be more prone to developing ascites than females 

(Decuypere et al., 2000). Differences in the incidence of ascites between male and 

female broilers might affect the estimated genetic parameters. The aims of this 

study were 1) to estimate the heritability for RATIO and BW in male and female 

broilers, 2) to estimate the genetic correlation between RATIO and BW separately 

for male and female broilers, and 3) to estimate genetic correlations between BW 

for ascitic and nonascitic broilers. 

 

3.2 Materials and Method 

Experimental Population 

The broilers used in the current study were from a dam line originating from the 

White Plymouth Rock breed. The experimental population descended from 91 sires 

and 804 dams. One sire was mated with 2 to 28 dams, and one dam was mated 

with 1 to 3 sires. The number of offspring per mating ranged from 1 to 22. The 

experimental population consisted of 7,856 broilers of which 3,823 were males and 

4,034 were females.   

 

 

Experimental Conditions 

The broilers in the experiment were kept under a cold temperature regimen and 

increased CO2 levels to challenge the susceptibility to ascites. The temperature was 

30°C at the time of hatching and was gradually reduced to 12°C when the broilers 

were 11 d of age. The temperature remained at 12°C until the end of the 

experiment when the broilers were 7 wk of age. At the same time, ventilation in 

the stables was reduced to increase the CO2 level to approximately 1,500 ppm. The 

broilers were group-housed with 20 chickens/m2. They had ad libitum access to a 

commercial broiler feed containing 12,970 kJ/kg, and they were exposed to 23 h of 

light per day during the entire experiment. Except for the applied temperature 

schedule and increased CO2 level, the broilers were kept under conditions that 

closely resemble commercial practice. The males were slaughtered at 45 d of age, 

and the females were slaughtered at 46 d of age. The experiment was carried out 
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by licensed and authorized personnel under the supervision of Hendrix Genetics 

BV. 

 

Phenotypes 

The broilers were weighed at 2 (BW2), 5 (BW5), and 7 wk (BW7) of age. The BW7 was 

measured on the day of slaughter. Animals that died before the end of the 

experiment were assigned a score of one for total mortality and the other chickens 

received a score of zero. Postmortem examination was performed on broilers that 

were slaughtered as well as on the broilers that died before the end of the 

experiment. Each broiler was examined for the presence of fluid in the abdomen as 

an indicator of ascites. The trait was scored as zero in the case that no fluid 

accumulation was observed in the abdomen and scored as one in the case that 

fluid had accumulated in the abdomen. Broilers that died before the end of the 

experiment and that showed fluid accumulation in the abdomen were considered 

to have died due to ascites. Hearts were collected from all broilers; that is, broilers 

that died before the end of the experiment as well as broilers that were 

slaughtered at the end of the experiment. The hearts were used to determine 

RATIO. 

 

Statistical Analysis 

Genetic parameter estimates were obtained using the ASREML software (Gilmour 

et al., 2006). The following animal model with a maternal environmental effect was 

used: 

 

ijkllkjiijkl edastablebatchsexμy   [1] 

 

where yijkl is the dependent variable of broiler ijkl; sexi is the fixed effect of sex (i = 

male or female, the effect was only in the model when both sexes were analyzed 

simultaneously); batch × stablej is the effect of the interaction between batch and 

stable (j = 1, 2,…, 10), batch consisted of 5 trials and there were 2 stables; ak is the 

random genetic effect of individual k with )AσN(0,~a 2
a ; dl is the random maternal 

environmental effect of dam l with )IσN(0,~d 2
d ; and eijkl is the random residual 

effect with )IσN(0,~e 2
e . For the trait RATIO, the fixed effect of the person who cut 

the heart (Personm = 1, 2,…, 13) was added to the model [1]. The heritability (h
2
) 

was calculated as:  
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    [2] 

 

where 2
aσ is the additive genetic variance, 2

dσ  is the maternal environmental 

variance, and 2
eσ  is the residual variance. Heritabilities are estimated using a 

univariate model. 

 

To test the significance of the maternal environmental effect, a likelihood ratio test 

with one degree of freedom was used:  

 

L(R)2logL(F)2logχ ee
2
1     [3] 

 

where L(F) is the likelihood of the full model [1] and L(R) is the likelihood of the 

reduced model; that is, without a maternal environmental effect. 

 

The fraction of the variance due to maternal environmental effects (M
2
) was 

calculated as: 
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e

2
d

2
a

2
d2

σσσ

σ
M


     [4] 

 

Some of the animals died before the end of the experiment and had an observation 

only for BW2. The animals that died might have been the ones that were most 

susceptible to ascites, and this selection might have an effect on the estimated 

genetic parameters. Selection related to BW2 can be accounted for by performing a 

multivariate analysis including BW2 (Ouweltjes et al., 1988). Therefore, we also 

estimated heritabilities by using a bivariate analysis with BW2 as a permanent trait. 

 

Correlations between RATIO and BW2 were from a bivariate model. The possible 

effect of selection on genetic correlations between BW5 and RATIO and between 

BW7 and RATIO was accounted for by performing a trivariate analysis with BW2 as a 

permanent trait. 

 

The traits BW2, BW5, BW7, and RATIO were also analyzed separately for males and 

females. Bivariate analyses were performed to estimate genetic correlations 

between the same trait in male and in female broilers.  
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Body weights (BW2, BW5, and BW7) of ascitic and nonascitic broilers might be 

genetically different traits. Therefore, we distinguished between broilers with fluid 

in the abdomen (ascitic) and without fluid in the abdominal (nonascitic). 

Heritability and maternal environmental effects were estimated separately for both 

groups. Further, genetic and phenotypic correlations were estimated between 

BW2, BW5, and BW7 in ascitic and nonascitic chickens using a bivariate analysis. 

 

3.3 Results  

Data Description 

Means and SD for BW2, BW5, BW7, and RATIO for all broilers (males and females) 

and for male and female broilers separately are presented in Table 3.1. The 

average weight of the broilers was 248 g at 2 wk, 1,296 g at 5 wk, and 2,075 g at 7 

wk of age. The CV for BW was similar at different ages and around 14%. The BW2 

was similar for females (250 g) and for males (246 g). The BW5 was 126 g higher for 

males than for females, and BW7 was 181 g higher for males than for males. The 

average RATIO for all broilers was 28.7%, where RATIO was 3.4% higher for males 

than for females. Table 3.2 shows the mean and SD of traits for male and female 

chickens with or without fluid accumulated in the abdomen.  

 

Both RATIO and mortality were higher for chickens with fluid accumulated in the 

abdomen, both for males and females. Further, in males and in females, BW5 and 

BW7 were higher for chickens without fluid in the abdomen. The BW2 was lower for 

male chickens without fluid in the abdomen as compared with male chickens with 

fluid in the abdomen. For the females, BW2 was very similar for both groups. Not all 

of the chickens had observations for fluid in the abdomen. Information about fluid 

in the abdomen was missing for 105 males and 85 females that had observations 

for BW2, for 77 males and 58 females that had observations for BW5, for 12 males 

and 36 females that had observations for BW7 and for 33 males and 41 females 

that had observations for RATIO. 
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Table 3.1. The number of observations (N), mean and the standard deviation (S.D.) for BWs (BW) at three different ages, heart ratio and 
mortality for the entire population of broilers and for male and female broilers separately. 

   All  Males  Females 

Variable Units Abbreviation N Mean S.D.  N Mean S.D.  N Mean S.D. 

BW at 2 weeks Gram BW2 7,803 248 38  3,791 246 40  4,012 250 35 
BW at 5 weeks Gram BW5 7,496 1,296 174  3,596 1,362 169  3,900 1,236 156 
BW at 7 weeks Gram BW7 7,121 2,075 295  3,351 2,171 310  3,770 1,990 253 
Heart ratio % RATIO 7,687 28.7 7.6  3,723 30.5 7.8  3,964 27.1 7.1 
Mortality 0/1 MORT-TOT 7,856 0.093 0.29  3,819 0.122 0.33  4,037 0.066 0.25 

Table 3.2. The number of observations (N) , mean and the standard deviation (S.D.) for BWs (BW) at three different ages, heart ratio and 
mortality for male broilers and female broilers and for chickens without fluid accumulated in the abdomen (AS = 0) or with fluid 
accumulated in the abdomen (AS = 1). 
 
 
 

 Males Females 

Variable AS = 0  AS = 1  AS = 02  AS = 1 

 N Mean S.D.  N Mean S.D.  N Mean S.D.  N M SD 

BW at 2 weeks 3,203 244 39  483 262 43  3,660 250 35  267 255 41 
BW at 5 weeks 3,080 1,367 166  439 1,313 170  3,596 1, 40 152  246 1,190 189 
BW at 7 weeks 3,030 2,207 285  309 1,828 321  3,559 2,006 238  175 1,667 337 
Heart ratio 3,209 28.8 6.5  418 41.5 6.6  3,655 26.0 5.9  268 40.7 7.1 
Mortality 3,230 0.06 0.24  484 0.36 0.48  3,681 0.03 0.18  270 0.34 0.48 
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Out of the 7,856 chickens, 3,353 males and 3,772 females survived until the end of 

the experiment, and 466 males and 265 females died before the day of slaughter 

(Table 3.3). It should be noted that 6 of the chickens that survived missed 

observations for BW7 (Table 3.1). A total of 754 chickens had fluid accumulated in 

the abdomen, 484 males and 270 females. Using fluid accumulated in the abdomen 

as a direct indicator for ascites, it was concluded that 9.5% of the chickens 

developed ascites, 12.2% of the males and 6.6% of the females. In total, 265 

chickens died (3.4%) before slaughter and also showed fluid accumulation in the 

abdomen. Of the 466 males with fluid in the abdomen, 172 died before the day of 

slaughter; that is, 4.5% of the total number of males died due to ascites. For the 

females, 93 chickens that died before slaughter showed fluid accumulated in the 

abdomen; that is, 2.3% of the total number of females died due to ascites (Figure 

3.1). In the total population, 323 chickens (4.1%) died before slaughter and did not 

show signs of ascites (fluid in the abdomen) and 200 males (5.2%) and 123 females 

(3%) died without signs of ascites. For 94 males and 49 females, a score for 

accumulation of fluid in the abdomen was not available. Also, 34 males (one with 

fluid accumulated in the abdomen) and 18 females (one with fluid accumulated in 

the abdomen) died during the first 2 wk of the experiment. 

 

Table 3.3. The number of observations for survived chickens, premature death chickens and 
chickens with fluid accumulated in abdomen. 

  All Male Female 

Total number of chickens 7856 3819 4037 

Chickens that survived till day of slaughter 7125 3353 3772 

Chickens that died before day of slaughter  731 466 265 

Chickens with fluid accumulated in the abdomen 754 484 270 

Survived chickens with fluid accumulated in the abdomen 489 312 177 

Premature died chickens with fluid accumulated in the abdomen 265 172 93 

Premature died chickens without fluid accumulated in the abdomen 323 200 123 
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Figure 3.1 Cumulative mortality due to ascites, i.e. broilers with fluid in the abdomen at day 
of death, separately for males and females. The cumulative mortality is given as a 
percentage of the total number of male and female broilers. 

 

Genetic Analyses 

Heritability and Maternal Effects.  

The likelihood ratio test indicated that BW at 2, 5, and 7 wk of age were 

significantly (P < 0.05) affected by maternal effects. For RATIO, the maternal effect 

was close to being significant (P = 0.06) and, therefore, we decided to include 

maternal environmental effect in the model. The heritability for RATIO decreased 

from 0.42 to 0.35 when the maternal environmental effect was in the model. 

 

The heritability and the fraction of the total variance explained by maternal 

environmental effects for BW decreased with age. This was observed for both 

female and male broilers (Table 3.4). Heritability estimates for BW2 and BW5 were 

similar for female and male broilers. The heritability for BW7 tended to be higher 

for male broilers (0.22) than for female broilers (0.17). Maternal environmental 

effects for BW at the 3 ages were similar for male and female broilers and 

decreased from 0.07 for BW2 to about 0.04 at BW7. The largest difference in 

heritability between male and female broilers was found for RATIO: 0.32 in male 

broilers and 0.44 in female broilers. The fraction of the total variance explained by 

maternal environmental effects for RATIO was 0.02 for female broilers and 0.01 for 

male broilers (Table 3.4).  
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Correlation between RATIO and BW. 

The estimates for genetic and phenotypic correlations between RATIO and BW at 2, 

5, and 7 wk of age are presented in Table 3.5. The results show that the genetic 

correlations between BW and RATIO change as the broilers get older. The genetic 

correlation between BW and RATIO estimated based on all data changed from 0.11 

at 2 wk to −0.43 at 7 wk. When analyzing the genetic correlations separately for 

male and female chickens, the same trend was observed; however, the negative 

correlation between BW7 and RATIO was much stronger in males than in females. 

The genetic correlation for males changed from 0.01 at 2 wk to −0.62 at 7 wk, and 

the genetic correlation for females changed from 0.13 at 2 wk to  −0.24 at 7 wk. 

Phenotypic correlations between RATIO and BW showed the same trend as the 

genetic correlations. 

 

Genetic Correlations between BW in Nonascitic and Ascitic Broilers.  

The genetic and phenotypic correlations were also estimated between the same 

trait (BW2, BW5, or BW7) measured in nonascitic (no fluid in abdomen) and in ascitic 

broilers (fluid in abdomen). For BW2, 6,863 chickens were categorized as nonascitic 

and had a mean BW of 244 g for males and 250 g for females. There were 750 

chickens that were ascitic and the males had a mean BW of 262 g and the females 

had a mean BW of 255 g. This indicates that chickens that developed ascites at a 

later age are heavier at 2 wk of age. For the nonascitic chickens, heritability for BW2 

was 0.37 (SE = 0.06) and the maternal effect was 0.05 (SE = 0.01). For the ascitic 

chickens, the heritability for BW2 was 0.36 (SE = 0.11) and the maternal effect was 

0.10 (SE = 0.05). At 5 wk of age, 6,676 chickens were categorized as nonascitic, and 

males had a mean BW of 1,367 g and females had a mean BW of 1,240 g. There 

were 685 chickens with ascites and the males had a mean BW of 1,313 g and the 

females had a mean BW of 1,190 g.  
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Table 3.4. Phenotypic variance, heritability (h
2
) and maternal effect (M

2
) for the entire population of broilers, 

male broilers and female broilers. 

 Phenotypic variance
1)

  h
2
 
2)

  
M2

 
3) 

Variable All Males Females  All Males Females  All Males Females 

BW2 959 917 957  0.33 0.30 0.30  0.06 0.07 0.07 
BW5 25,910 28,440 23,310  0.22 0.23 0.22  0.05 0.05 0.06 
BW7 72,420 88,140 59,810  0.18 0.22 0.17  0.04 0.04 0.05 
RATIO 49.3 53.7 45.2  0.35 0.32 0.44  0.02 0.02 0.01 

 

 

Table 3.5. The genetic and the phenotypic correlations between RATIO and BW for entire population of 
broilers, for the males and the females. BW5 and BW7 have been estimated using a trivariate model 
including BW2. Standard errors are in brackets. 

 Genetic correlation  Phenotypic correlation 

Variable All Male Female  All Male Female 

BW2 0.11 (0.12) 0.01 (0.14) 0.13 (0.14)  0.04 (0.02) 0.04 (0.02) 0.004 (0.03) 
BW5 -0.09 (0.13) -0.24 (0.14) 0.05 (0.15)  -0.06 (0.02) -0.04 (0.02) -0.07 (0.02) 
BW7 -0.43 (0.11) -0.62 (0.11) -0.24 (0.15)  -0.25 (0.02) -0.27 (0.02) -0.22 (0.02) 
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The heritability for BW5 in the nonascitic chickens was 0.24 (SE = 0.04) and the 

maternal effect was 0.05 (SE = 0.01). The heritability for BW5 in the ascitic chickens 

was 0.23 (SE = 0.11) and the maternal effect was 0.05 (SE = 0.05). For BW7, 6,589 

chickens were categorized as nonascitic, and the males had a mean BW of 2,207 g 

and the females had a mean BW of 2,006 g. There were 484 ascitic birds, and the 

males had a mean BW of 1,828 g and the females had a mean BW of 1,667 g. The 

heritability for BW7 in the nonascitic chickens was 0.19 (SE = 0.04) and the maternal 

effect was 0.04 (SE = 0.01). The heritability for BW7 in the ascitic chickens was 0.16 

(SE = 0.12) and the maternal effect was 0.12 (SE = 0.07). The genetic correlation 

between the same trait in the 2 groups (ascitic and nonascitic) went from 0.91 (SE = 

0.09) for BW2 to 0.81 (SE = 0.17) for BW5 and 0.69 (SE = 0.27) for BW7. The 

phenotypic correlation between the 2 groups (ascitic and nonascitic) went from 

0.41 (SE = 0.05) for BW2 to 0.25 (SE = 0.05) for BW5 and 0.14 (SE = 0.05) for BW7. 

 

3.4 Discussion 

The present study included 7,856 broilers from a dam broiler line kept under 

ascites-inducing conditions: cold temperature and increased CO2 level. We showed 

that of the chickens that died during the experiment, almost twice as many males 

as females showed signs of ascites (4.5 vs. 2.3%). Previous studies showed that 

genetic parameters are a function of the ascites incidence (de Greef et al., 2001; 

Pakdel et al., 2005a; Zerehdaran et al., 2006; Closter et al., 2009) and, therefore, 

we estimated genetic parameters separately for male and female broilers. We 

showed that heritability estimates for BW7 are higher for male than for female 

broilers and for RATIO heritability estimates, are higher for female than for male 

broilers. The genetic correlations between RATIO and BW measured at different 

ages changed from slightly positive at 2 wk to moderately negative at 7 wk of age. 

The change in genetic correlation was more extreme for male than for female 

chickens. The genetic correlation between BW traits measured in chickens with 

fluid in the abdomen and without fluid in the abdomen decreased from 0.91 at 2 

wk to 0.69 at 7 wk of age.  

 

Literature 

Total mortality in the present study was 9.3%, which is comparable with previous 

studies under ascites-inducing conditions (de Greef et al., 2001; Closter et al. 2009) 

but lower than mortalities reported by Pakdel et al. (2002). Mortality due to ascites 

mostly starts after d 30 and is highest between wk 6 and 7. The cumulative 

mortality rate for both males and females was lower than what Druyan et al. (2009) 

found for resistance and susceptible lines; however, these broilers were also reared 
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under experimental high-challenge ascites inducing conditions, which is more 

extreme than the ascites-inducing condition used in the current study. The average 

RATIO in the present study was 28.7, which is higher than values reported in other 

studies (de Greef et al., 2001; Pakdel et al., 2002; Closter et al., 2009). The average 

ratio found in the current study is in between values found by Druyan et al. (2009) 

for an ascites-susceptible line (36.1) and an ascites-resistance line (23.5). 

Heritability estimates based on combined male and female data for BW 

measurements and RATIO are in agreement with values reported by Pakdel et al. 

(2002) and Closter et al. (2009) but lower than estimates reported by de Greef et 

al. (2001), which can be explained by adjusting for maternal effects in the present 

study.  

 

Male versus Female Broilers 

In the present study, male broilers were more severely affected by ascites than 

female broilers; 4.2% of the males and 2.3% of the females died due to ascites. 

Further, RATIO, which is commonly used as an indicator for ascites susceptibility 

(Lubritz et al., 1995; Pakdel et al., 2002; Pakdel et al., 2005b), was noticeably higher 

for males (30.5%) than for females (27.1%). Wideman et al. (2010) did not find any 

difference between males and females for RATIO. However, the broilers from the 

Wideman et al. (2010) experiment were reared under standard commercial 

conditions, where the chickens from the present study were reared under cold 

conditions and increased CO2 levels. Pakdel et al. (2005c) showed that ascites-

related traits are influenced by the rearing conditions of the chicken. Higher total 

mortalities and RATIO for males as compared with females has also been reported 

in other studies (Burton et al., 1968; Wideman and French, 2000; Pakdel et al., 

2002; Druyan et al., 2007). It has been suggested that the modern broiler, which 

has been selected for rapid growth and feed efficiency, has problems dealing with 

the high oxygen demand associated with rapid growth, resulting in chickens that 

are more susceptible to ascites syndrome. Therefore, the higher growth rate of 

male broilers is expected to result in an increased oxygen requirement, which 

might be the reason for increased susceptibility of males to ascites (Peacock et al., 

1990; Balog, 2003). 

 

Under normal production circumstances, heritability estimates for growth traits in 

poultry tend to be slightly higher in males than in females (Koerhuis and 

Thompson, 1997; Van Kaam et al., 1999; Mignon-Grasteau et al., 1999; Mulder et 

al., 2009; Wolc et al., 2009). However, in the present study, heritabilities for BW7 

were higher for males (0.22) than for females (0.17). On the contrary, heritabilities 
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for RATIO were higher in females than in males. Because broilers in the present 

study were kept under ascites-inducing conditions, the estimated heritabilities 

might be affected by ascites. This explanation is not in agreement with the 

estimated heritabilities in ascitic and nonascitic broilers; the heritability for BW7 

was higher (0.19) in nonascitic chickens than in ascitic chickens (0.16). However, 

standard error of especially the estimated heritability in ascitic chickens was large, 

and the difference between the heritabilities could not be considered to be 

significant. For BW7, both the additive genetic and residual variances are higher in 

males than in females. However, for RATIO, the additive genetic variance is very 

similar in males and in females, but the higher residual variance in males resulted in 

a lower heritability for RATIO in males. Several studies have estimated genetic 

correlations between BW traits in males and females (Koerhuis and Thompson, 

1997; Mignon-Grasteau et al., 1999; Van Kaam et al., 1999). Genetic correlations in 

general are high (>0.92) but, in some cases, significantly different from one 

(Koerhuis and Thompson, 1997; Mignon-Grasteau et al., 1999). Mignon-Grasteau et 

al. (1999) showed that females have a lower initial growth rate but a higher 

maturation rate than males. This suggests that from a genetic point of view there 

are small but significant differences in growth between males and females. These 

differences might be the cause for the remarkable difference in ascites 

susceptibility between sexes. It has been suggested that reduced early growth 

reduces the incidence of metabolic diseases later in life (Baghbanzadeh and 

Decuypere, 2008). Therefore, the lower initial growth rate in females, as reported 

by Mignon-Grasteau et al. (1999), might explain the lower incidence of ascites. 

Phenotypic and genetic correlations between BW2 and RATIO were positive but 

very weak both in males and in females, which only weakly support a relationship 

between early growth and ascites. However, the BW2 of nonascitic chickens (247 g) 

was lower than the BW2 of chickens that developed ascites later in life (260 g) and 

the findings by Druyan et al. (2008), where mean BW on d 19 were approximately 

5% lower in the broilers from the ascites-resistant line than in those from the 

ascites-susceptible line. Scheele et al. (2005) found that a combination of fast 

growth with a low feed conversion ratio showed by far the highest incidence of 

ascites. However, a very fast-growing broiler cross was much less sensitive to 

ascites than a slower-growing sire line (Scheele et al., 2005). Furthermore, Druyan 

et al. (2008) found that most broilers that remained healthy under the ascites-

inducing conditions exhibited the same growth rate and BW during the first weeks 

as those that later developed ascites. Druyan et al. (2007) hypothesized that the 

tendency to develop ascites is genetically associated with rapid growth rate, 

because the threshold level of rapid growth to develop ascites is higher in ascites-
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susceptible chickens. Based on these results and the relatively high incidence of 

ascites in a slow-growing line, Druyan et al. (2008) concluded that there is very little 

direct genetic association between ascites and genetic differences in potential 

growth rate and suggested that ascites-resistant broilers can be selected for higher 

growth rate and remain healthy. The relationship between growth and ascites 

might explain part of the differences in ascites susceptibility between male and 

female broilers, however, the relationship is not strong and therefore alterative 

explanations should not be excluded. For example, the higher thickness of the right 

ventricular wall at hatching in females as compared with males might play a role 

(Thaxton, 2002). 

 

Change of Correlation due to Ascites Incidence 

The genetic correlation between RATIO and BW changed from positive and weak to 

moderate and negative for both males and females. The change in genetic 

correlation between BW and RATIO over the experimental period was particularly 

noticeable for the males and less severe for the females. The change in correlation 

follows the same pattern as mortality due to ascites, as described in Figure 3.1. 

Previous studies have indicated that the genetic correlation between BW and 

RATIO is dependent on the frequency of ascitic chickens in the population (de Greef 

et al., 2001; Pakdel et al., 2005a,b; Zerehdaran et al., 2006; Closter et al., 2009).  

 

The change in genetic parameters as a consequence of the increase in incidence of 

a disease has also been observed in other species. Bishop and Stear (1999) showed 

that the correlation between productivity and resistance to nematode infection in 

sheep changes as the level of infection or larval challenge changes. Kause et al. 

(2005) found that the genetic correlation between BW and skeletal deformations 

changed from positive to negative when trout got older and more fish showed 

skeletal deformations. Further, several studies indicated that somatic cell scores in 

healthy and infected cattle are genetically different traits (Boettcher et al., 2007; 

Madsen et al., 2008). When more energy is needed to overcome problems due to 

infections or metabolic disorders, less energy is available for production. Therefore, 

estimated correlations between productivity and disease traits are a function of the 

severity of the challenge and these correlations are likely to be lower than, or even 

in the opposite direction from, correlations estimated under normal conditions 

(Van der Waaij et al., 2000). 

 

Most methods currently in use for estimating genetic parameters do not account 

for differences between ascitic and nonascitic chickens. Zerehdaran et al. (2006) 
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used a bivariate mixture model to study the relationships between BW and RATIO. 

Phenotypic correlations between BW and RATIO were 0.10 for the healthy chickens 

and −0.39 for the ascitic chickens. Based on simulation, Zerehdaran et al. (2006) 

showed that when ignoring the difference between healthy chickens and ascitic 

chickens, the estimated phenotypic correlation will be a function of the frequency 

of ascitic chickens in the population. Phenotypic correlations between BW and 

RATIO found in the present study are in line with correlations reported by 

Zerehdaran et al. (2006). 

 

Healthy and Diseased Chickens 

In the present study, BW in ascites-affected (showing fluid in abdomin) and 

nonascitic chickens (not showing fluid in abdomin) were analyzed using a bivariate 

model. de Greef et al. (2001) estimated heritabilities for BW and RATIO in the total 

data set as well as on a subset of nonascitic chickens. Heritability for BW in the 

nonascitic chickens was similar to that in the total data set in the study by de Greef 

et al. (2001). Heritability for RATIO was lower in the nonascitic chickens; however, 

the interpretation of that estimate is not straightforward, as RATIO was used to 

assign chickens to the nonascitic group. To our knowledge, this is the first study 

directly estimating the genetic correlation between BW in ascitic and nonascitic 

chickens. The genetic correlation decreased over time from 0.91 for BW2 to 0.81 for 

BW5 and 0.69 for BW7. These results suggest that BW5 and BW7 may be considered 

genetically different traits in ascites-affected and nonascitic broilers.  

 

Conclusion 

In this study, we showed that the incidence of ascites is higher in male than in 

female broilers. This is the most likely reason for the difference in heritabilities and 

genetic correlations observed between males and females. Therefore, under 

circumstances with ascites, data from male and female broilers should be analyzed 

separately. Recently, mixture models have been used to perform genetic analyses 

of somatic cell count in dairy cattle (Odegård et al., 2003; Odegård et al., 2005; 

Madsen et al., 2008). Application of similar methods for the analysis of ascites in 

broilers seems of interest to further disentangle relations between traits for ascitic 

and nonascitic chickens  
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Abstract 

Observations on the occurrence of ascites as well as for the ascites indicator trait 

ratio of right ventricle to the total ventricular weight (RATIO) for 7,613 broilers 

chickens were analyzed with a two- component liability-normal mixture model. This 

model is used to analyze the genetic background of the ascites syndrome and 

genetic parameters, liability and individual disease risk were estimated. The 

heritability for liability was 0.54, demonstrating that susceptibility to develop 

ascites is highly heritable. Of all chickens in the study 24 % were estimated to be 

affected by the ascites syndrome. Heritability for RATIO of diseased chickens was 

0.31 and for the healthy chickens the heritability was 0.32. The genetic correlation 

between RATIO of healthy and diseased chickens was 0.75, indicating that RATIO is 

a different trait in healthy and diseased chickens. The genetic correlation between 

RATIO and liability was positive for healthy chickens (0.27) whereas the genetic 

correlation between RATIO and liability for diseased chickens is negative (-0.32). 

This negative correlation indicates that chickens with high RATIO are less 

susceptible to the disease, whereas the positive correlation between liability and 

RATIO for the healthy chickens indicates that chickens with high RATIO are more 

susceptible to the disease. Analyses using the LNM model indicate that RATIO is not 

the same trait in healthy and diseased chickens and that almost a quarter of the 

chickens in the analyzed population are affected by ascites. 

  

 

Key words: Broiler, ascites, liability normal mixture model, heart ratio 
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4.1 Introduction 

Genetic improvement for health traits has received increasing attention in breeding 

programs for production animals (Groen et al., 1997). Health status is typically 

recorded as healthy vs. subclinical and clinically diseased or as diseased vs. healthy. 

However, direct selection to reduce the incidence of specific diseases is often 

complicated by difficulties in recording health status of individual animals. 

Alternatively, disease-indicator traits can be used as indirect selection criteria to 

lower the frequency of disease. Examples of indicator trait are ratio of right 

ventricle to the total ventricular weight (RATIO) for ascites in broiler, however, a 

trait that is difficult and time consuming to measure (Pakdel et al., 2005a). Another 

often used indicator trait is milk somatic cell count (somatic cell score, SCS) and 

used routinely to determine mastitis status in dairy cattle (Young et al., 1960). A 

complication when using indicator traits is that depending upon the health status 

the trait may have distinct, but possibly overlapping distributions (Detilleux and 

Leroy, 2000; Ødegård et al., 2003).  

 

The distribution of the disease-indicator trait may be modeled as a mixture of 

distributions from healthy and diseased animals when disease status itself is not 

observable. Modeling of disease-indicator traits using mixture distributions was 

introduced by Detilleux and Leroy (2000) and Ødegård et al. (2003). Detilleux and 

Leroy (2000) proposed a finite mixture model approach with genetic effects and for 

the analysis of SCS, as a selection criterion to improve mastitis resistance in dairy 

cattle in absence of direct information regarding mastitis status. They used the EM-

algorithm for inference by maximum likelihood. The model proposed by Ødegård et 

al. (2003) assumes that the distribution of the random effects in the model were 

independent of the health status. Ødegård et al. (2005) refined their original two-

component normal mixture by using a hierarchical model, the Liability Normal 

Mixture model (LNM). After adjusting for systematic environmental effects the 

LNM model allows estimating probabilities for individual animals of being diseased. 

Health status is modeled in the LNM model as an unobserved binary variable, 

assumed to be fully determined by an also unobserved underlying liability. The 

LNM model is based on an observed disease-indicator trait and predicts genetic 

effects for both the disease-indicator trait and the unobserved liability based on 

observed disease-indicator trait (Ødegård et al., 2005). The LNM model has been 

used to analyze somatic cell count data from dairy cattle (Boettcher et al., 2007; 

Jamrozik and Schaeffer, 2010; Madsen et al., 2008), but not for ascites in broilers.  
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Ascites, also known as pulmonary hypertension syndrome, is a metabolic disorder 

found in broilers. Ascites is associated with fluid accumulation in the abdomen as a 

consequence of a reduced right ventricular function (Julian et al., 1987; Julian and 

Mirsalimi, 1992). The characteristic symptoms of ascites are enlarged heart, 

especially the right ventricle, liver abnormalities and accumulation of fluid in the 

abdomen (Julian et al., 1987; Julian and Mirsalimi, 1992; Peacock et al., 1990). 

However, not all chickens that show enlarged right ventricular develop 

accumulation of fluid in the abdomen. These chickens might be considered to have 

subclinical ascites. The development of ascites leads to reduced growth (Closter et 

al., 2009; Pakdel et al., 2005b), increased disapproval at slaughter and increased 

mortality (Druyan et al., 2007; Julian, 1998). Mortality caused by ascites ranges 

from 5 to 8% in populations worldwide and can be as great as 20 to 30% in heavier 

broiler flocks (Balog, 2003; Maxwell and Robertson, 1998).The estimated 

heritability of the ascites indicator trait RATIO is between 0.21 and 0.45 (de Greef 

et al., 2001; Lubritz et al., 1995; Pakdel et al., 2002) suggesting a genetic 

component in the development of ascites. Zerehdaran et al. (2006) fitted a two-

component mixture distribution to RATIO and provided evidence that the two 

distributions relate to healthy and diseased chickens. Using a multivariate mixture 

model Zerehdaran et al. (2006) showed that the incidence of the disease will affect 

the phenotypic correlation between RATIO and body weight. Closter et al. (2012) 

analyzed body weights at two, five and seven weeks of age separately for ascites 

diseased and healthy broilers classified according to the presence of fluid in the 

abdomen and found that body weight and the relation between RATIO and BW 

may have a distinct genetic bases in ascites diseased and healthy broilers. Instead 

of classifying diseased and healthy broilers based on the presence or absence of 

fluid in the abdomen, using a LNM provides a way to model a continuous transition 

between healthy and diseased birds. The LNM model allows estimating 

probabilities for individual chicken of being ascitic after adjusting for systematic 

environmental effects. Further, instead of analyzing the trait RATIO as is done a 

traditional animal model, the LNM model explicitly models the susceptibility or the 

underlying liability to ascites, i.e. the actual trait of interest.  

 

The aim of the current study is to apply the LNM model to the ascites-indictor trait 

RATIO and to estimate genetic parameters. Specifically, two hypotheses were 

investigated: first, that a broiler population reared under ascites inducing 

conditions can be modeled by a two component mixture distribution of RATIO, 

where each observation is sampled from one of the components depending on 

diseases status, and second, that based on the modeling of the phenotypic 
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distributions the underlying liability for the disease can be identified, genetic 

parameters can be estimated and for each individual a probability of being 

diseased can be inferred.  

 

4.2 Materials and Methods 

Experimental Population  

Data for this study was obtained from a broiler dam line originating from the White 

Plymouth Rock breed. The chickens descended from 91 sires and 800 dams. Each 

sire was mated to between 2 and 28 dams, and a dam was mated to between 1 and 

3 sires. The number of offspring per mating ranged from 1 to 202. The total number 

of offspring with information on RATIO was 7,613 (Table 4.1). 

 

Table 4.1. Statistics summary of the pedigree 

Number of broilers 7,613 

Number of observations on each chicken 1 

Number of sires 91 

Number of dams 800 
Number of animals in pedigree 11,863 

Number of generations in pedigree 25 

 

Experimental Conditions  

The broilers were kept under a cold temperature regime. The temperature was 

30°C at the time of hatching and was gradually reduced reaching 12°C when the 

broilers were 11 days of age. The temperature remained at 12°C until the end of 

the experiment when the broilers were seven weeks of age. Ventilation in the 

stables was reduced to increase the CO2 level to approximately 1500 ppm. The 

animals were exposed to low temperature and increased CO2 levels in order to 

induce ascites. The broilers were group housed with 20 chicken/m2. They had ad 

libitum access to a commercial broiler feed containing 12,970 KJ/kg. They were 

exposed to 23h of light per day during the entire experiment. Except for the 

applied temperature schedule and increased CO2 level, the broilers were kept 

under conditions closely resembling commercial practice. The experiment was 

divided up into five periods with approximate 1,600 chickens per period. All the 

chicken from each period were kept in one stable from day one till day seven. At 

day seven, the chicken were sexed and divided into two separate stables 

depending on sex. Males were slaughtered at 45 days of age and females at 46 
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days of age. The experiment was carried out by licensed and authorized personnel 

under supervision of Hendrix Genetics BV. 

 

Phenotypes 

Post-mortem examination was performed on the chickens dying during the 

experiment and on the chicken slaughtered at the end of the experiment. Chickens 

that showed signs of ascites syndrome (fluid in the abdomen) were assigned a 

health status ABDi = 1, i.e. ascites, and chickens that showed no signs of ascites 

syndrome (no fluid in the abdomen) were assigned an ABDi = 0, i.e. no ascites (van 

As et al., 2010).  

 

Hearts were collected from all broilers. The right ventricular (including the valve) 

was cut from the left ventricle and septum. The right ventricular was weighed, the 

left ventricle and septum were added, and the total ventricular was weighed. The 

weight of the right ventricle as a percentage of the total ventricle weight is referred 

to as RATIO (Julian, 1987). Descriptive statistics of the observed data are in Tables 

4.1 and 4.2.  

 

Table 4.2. Number of chickens, mean, median and the standard deviation (S.D.) for RATIO 
(the weight of the right ventricle as a percentage of the total ventricle weight), ABDi 
(presence of fluid in the abdomen as an indicator of ascites assigned a health status). ABDi 
= 0 refers to no fluid in the abdomen and ABDi = 1 refers to present of fluid in the 
abdomen 

 RATIO RATIO (ABDi = 0) RATIO (ABDi = 1) ABDi 

Number of chickens 7,613 6,864 749 7,613 

Mean 29 27 41 0.10 

Median 27 26 42 0 

SD 7.6 6.3 6.8 0.30 

Skewness 0.83 0.70 -0.65 2.70 

Range 0.09 – 0.60 0.09 – 0.54 0.19 – 0.60 0 – 1 

 

Statistical Model 

The observed trait RATIO for each of the chickens can be viewed as a variable 

drawn from a mixture of two normal distributions, depending on the health status 

(ABDi) of the chicken, e.g. with or without fluid in the abdomen. Therefore, RATIO 

was assumed to follow a mixture of two distributions. For the LNM model, 

observations on RATIO were assigned to one of the two components, depending 

upon their ABDi. The mixture model allows for differences in location (mean) and 
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dispersion parameters (variances) according to ABDi. The choice of mixture 

component is determined by an unobservable (n x 1) vector health status, HS = 

[HSi] of binary values. Health status is determined by an underlying unobservable 

liability.  

 

The observations of RATIO were assigned to the vector y. The distribution and 

genetic parameters for y and liability were estimated based on the additive genetic 

effect in addition to a random residual. Conditionally on z, the following liability-

normal mixture model (Ødegård et al., 2005) was used in the genetic analyses, 

given the vector of indicator variables HSi (health status): 
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where y is the vector of length n of observation of RATIO, λ is a vector of length n of 

unobservable liabilities for ascites, β0 is a vector of length 20 of the fixed effects 

including effects of sex (2 levels), period (5 levels), age of death (1 regression 

coefficient) and person cutting the heart (12 levels); β1 are the (scalar) fixed effect 

of a chicken being classified as diseased (i.e. HSi = 1). β1 are the increase in the fixed 

effects for the diseased chickens as a deviation from the β0. Observations are 

related to fixed effects through the incidence matrix Xy corresponding to β0; MHS is 

an (n x n) diagonal matrix with diagonal elements Mii= HSi, βλ is a vector of length 

21 containing the same fixed effects as β0 augmented by the effect of having 

observed fluid in abdomen and therefore ascites (ABDi); Xλ is the incidence matrix 

corresponding to βλ (including ABDi); a0 is a vector of length qa of random genetic 

effects for healthy chicken (base level), a1 is a vector of length qa of additional 

random additive genetic effects for the chicken with HSi=1 (reaction) to RATIO; aλ is 

a vector of length qa of random additive genetic effects for all the chickens on 

liability wherein qa is the number individuals for which breeding values are 

predicted; Za is an incidence matrix corresponding to random additive genetic 

effects and the vector containing observed fluid in abdomen (ABDi) for all 

observations. The model samples yi either from the distribution of healthy chickens 

(HSi = 0) or diseased chickens (HSi = 1). 
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Assumptions for random effects: 
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where A is the additive relationship matrix. G is the genetic covariance matrix for 

components of a corresponding to a particular individual:  
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eR and eλ are vectors of length n of random residuals distributed as:  
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In each Gibbs cycle the records were assigned to the intercept or healthy chickens 

(a0), the reaction of being diseased (a1) and the liability (aλ) scale. The genetic 

(co)variances for RATIO for healthy and diseased animals and the liability scale are 

obtained as: 
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The parameter 
2

0e  is the residual variance when HSi = 0 and 
2

1e
  is the residual 

variance when HSi = 1.  
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The Gibbs sampling procedure as implemented in the DMU package was used 

(Madsen and Jensen, 2010). Prior distributions for the co-variance components of 

the LNM model were scaled inverted Wishart distributions, Bernoulli for the health 

status (HSi), a beta distribution for the mixing proportions and uniform prior 

distributions were assumed for the fixed effects. In total 1,000,000 cycles were 

generated. The first 10,000 were discarded as burn-in. Posterior means and 

standard deviations were calculated based on every 10
th

 Gibbs cycle.  

Only one observation was available per animal. In this situation analysis of a binary 

trait (like HSi) using an animal threshold model may not work (Ødegård et al., 

2010). This problem was circumvented by sampling the genetic (co)variance 

components based on parental animals only using the algorithm described of 

Ødegård et al. (2010). Posterior means of parameters are indicated by hats. 

Heritability of RATIO in the healthy chickens is estimated as 
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Correspondingly the heritability among diseased chickens is estimated as 
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where σ01 is the genetic covariance between the random residual of RATIO among 

healthy chickens and the increase observed among diseased animals, and 
*

22G  is 

the 2,2 element of 
*G . 

 

Significance of the difference between two correlations 

The z-value was calculated using the the Fisher r-to-z transformation in order to 

assess the significance of the difference between two correlation coefficients.  

 

4.3 Results 

Summary statistics for the traits measured are presented in Tables 4.1 and 4.2. 

Descriptive statistics for RATIO are shown for the whole population and for the 

population split up by presence or absence of fluid in the abdomen (ABD i). The 

distribution of RATIO is shown in Figure 4.1. It has positive skew which is consistent 

with the phenotypic distribution being a mixture of multiple normal distributions.  
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Figure 4.1 The distribution of unadjusted phenotypic observations for RATIO (right 
ventricular weight as percentage of total ventricular weight) of 7,613 birds kept under cold 
temperature conditions and high CO2 levels.  

 

The data shows a significant difference in RATIO between chickens without fluid in 

the abdomen (ABDi = 0) and chickens with fluid in the abdomen (ABDi = 1). Based 

on the presence or absence of fluid in abdomen 10% for the chickens were 

categorized as being affected by ascites. The average RATIO for chicken with ABDi = 

1 (41.2) was higher than for the chicken with ABDi =0 (27.3). However, separating 

the observations based on ABDi (0 or 1) does not yield normally distributed data. 

The skewness of the ABDi = 0 and ABDi = 1 groups deviated from zero (Table 4.2). 

This may be due to the imperfect diagnosis of chickens based on the presence or 

absence of fluid in abdomen.  

 

Performance of the Gibbs sampler  

Trace plots (not shown) were inspected and the sampler was found to be mixing. 

Convergence of the Gibbs sampler was checked by visual inspection of trace plots 

and the method of batching (Schmeiser, 1982). A burn-in period of 10,000 rounds 

was sufficient for the Gibbs chains to converge. The batching method was also used 

to estimate the effective posterior sample size. The post Gibbs analysis was 

conducted for all dispersion parameters, the mixing proportion as well as derived 
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parameters such as heritabilities and correlations. Table 4.3 shows the effective 

samples size for each of the variables and was determined based on the Gibbs 

cycles. The effective sample sizes varied form 129 for the residual variance of 

diseased chickens to 1319 for the residual variance of healthy chickens (Table 4.3). 

Effective sample size of variance for a1 was smaller than effective sample sizes of 

the other parameters. 

 

Table 4.3. Effective sample size and posterior means for dispersion parameters from the 
liability-normal mixture models (posterior standard deviations in parentheses), which 
were directly estimated from the LNM model. a0 is the intercept, a1 is the reaction of 
being diseased and aλ is the liability. Posterior means of the genetic (co)variance 
components for a0 and a1 were multiplied with 10

4
 

 a0 a1 aλ 

Effective sample size    

Genetic (co)variance    

a0 757   

a1 329 233  

aλ 803 498 144 

    

Residual variance 1319 129 NA 

    

Posterior means    

Genetic (co)variance     

a0 5.79 (0.82)   

a1 0.21 (1.01) 5.06 (2.21)  

aλ 0.68 (0.35) -1.95 (0.75) 1.22 (0.40) 

 

The posterior means for the disease frequency (i.e. mixing proportion), the genetic 

(co)variances, residual variances and the genetic correlations are presented in 

Table 4.4. The average for the posterior probability of disease (P(HSi=1)) was 24%, 

i.e. about one quarter of the chickens was classified as diseased. RATIO in diseased 

chickens is 12.6 (standard deviation of 1.3) higher than RATIO of healthy chickens 

(Results not in table).  

 

The estimated probability for each chicken of being classified as diseased or healthy 

was plotted against the observed values for RATIO, and a line representing the 

average probability to be diseased for each observed value of RATIO was added 

(Figure 4.2). Generally, chicken with high RATIO also had a high probability of being 
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classified as being diseased and chicken with low RATIO had a high probability of 

being classified as being healthy. On average, chickens with a RATIO above 25% had 

a probability of being diseased above 0.5. The estimated residual variance for 

RATIO was much higher for diseased chickens as compared to healthy chickens 

(Table 4.4 and Figure 4.3). 

 

Table 4.4 Residual variance and mixing proportion from the liability-normal mixture 
models (posterior standard deviations in parentheses) for RATIO for healthy chickens, 
and RATIO of diseased chickens and the liability. Posterior means of the residual 
variance components for healthy and diseased were multiplied with 10

4
. The 

parameters are calculated from Table 4.3. 

 RATIO (healthy) RATIO (diseased) Liability 

Residual variance  12.20 (0.65) 24.45 (2.41) 1.00 (–) 

    

Mixing proportion  0.76 (–) 0.24 (0.01) – 

 

 
Figure 4.2 The unadjusted phenotypic values of RATIO plotted against probability to be 
diseased. The light grey squares are chickens with no fluid in abdomen and the black dots 
are chickens with fluid in abdomen. The dark grey circles with the straight line are the 
average probability to be diseased for each observed value of RATIO. 
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Figure 4.3 Fitted distributions for ratio of right ventricular weight to total ventricular weight 
(RATIO, in %) for the healthy (grey straight line) and diseased chickens (black dashed line) 
based on LNM model. 
 

Genetic parameters 

The genetic parameters (heritability and genetic correlation) are presented for 

RATIO, both for healthy and diseased chickens, and for liability (Table 4.5). 

Posterior means for heritabilities of RATIO for healthy chicken (0.32) and for 

diseased chickens (0.31) were not significantly different. The estimated heritability 

for liability was 0.54 and considerably higher than the heritability of RATIO. The 

genetic correlation between RATIO in diseased and healthy chickens was 0.75. 

Based on the Fisher r-to-z transformation this genetic correlation was significantly 

different from one. The estimated genetic correlation between liability and RATIO 

in the diseased chickens was weak and negative (-0.32), whereas the genetic 

correlation between liability and RATIO for the healthy was weak and positive 

(0.27). Based on the Fisher r-to-z transformation these to genetic correlations were 

significant different from each other. The negative correlation between liability and 

RATIO in the diseased chickens indicates that chickens with high RATIO are less 

susceptible to the disease, whereas the positive correlation between liability and 

RATIO for the healthy chickens indicates that chickens with high RATIO are more 

susceptible to the disease. 
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Table 4.5. Posterior means and standard deviations (in parentheses) for heritability and 
genetic correlation for the two mixture components) for RATIO for healthy chickens, 
and RATIO of diseased chickens and the liability. The parameters are calculated from 
Table 4.3 based on equation [8]. 

 RATIO (healthy) RATIO (diseased) Liability 

Heritability 0.32 (0.04) 0.31 (0.07) 0.54 (0.09) 

    

Genetic correlation    

RATIO (healthy) 1.00 (–) – – 

RATIO (diseased) 0.75 (0.10) 1.00 (–) – 

Liability 0.27 (0.15) -0.32 (0.17) 1.00 (–) 

 

4.4 Discussion 

Using the LMN allows a coherent modeling of uncertainty for classification, genetic 

architecture as well as differences in mean and variance between diseased and 

healthy chickens in a situation where health status in itself is unobservable or 

difficult to diagnose.  

 

Previous analyzes of the current ascites data using a traditional animal model 

showed that splitting the data based on presence of fluid in the abdomen 

suggested that body weight may be considered a genetically different trait in 

ascites-affected and non-ascitic broilers (Closter et al. 2012). Classifying chickens as 

healthy or diseased based on the presence of fluid in the abdomen may be a crude 

way to assess the susceptibility to ascites as this is one of the final stages of the 

disease. Further, the trait RATIO of chickens with no fluid in the abdomen does not 

show a normal distribution which suggests that this still represents a mixture of 

healthy and diseased birds. Zerehdaran et al. (2006) analyzed broiler data using a 

bivariate mixture model where the chickens where reared either under normal, 

commercial temperature conditions or reared under cold temperature conditions. 

This analysis showed that there was a mixture of two distributions under cold 

temperature conditions, but just one distribution under normal temperature 

conditions. Analyses by Zerehdaran et al. (2006) were performed at the phenotypic 

level and did not consider genetic differences between birds. Results by Closter et 

al. (2012) suggest that RATIO and body weight can be considered as genetically 

different traits in ascites affected and non-ascitic broilers when classified according 

to the presence fluid in the abdomen. The LNM model takes into a count that a 

trait is a mixture of two normal distributions, allows for a different genetic 

background of both distributions and models the underlying liability.  
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Although the statistical evidence supporting the use of LNM model is strong, 

questions remain about the biological implications of applying a LNM model, and 

about the precise meaning of the genetic parameters for RATIO for the healthy 

chickens, RATIO for the diseased chickens and for liability resulting from a LNM 

model. However, the posterior means of predicted breeding values for liability to 

be diseased from the LNM model indicates that the LNM model gives a better 

description of the data and probably more correct selection criteria, compared to a 

standard linear model using an indicator trait like RATIO as selection criteria. Using 

a standard linear animal model, selection would be for lower RATIO, with the 

intention of reducing incidence of ascites (Ødegård et al., 2005).  

 

Residual variance of diseased and healthy chickens  

The LNM model provides estimates of the probability for each chicken being 

diseased given its own RATIO and the RATIO of relatives. The residual variances 

were considerably different between the healthy and diseased chickens: the 

estimated residual variance for diseased chickens was twice high as the residual 

variance for healthy chickens. Similar results were found by Madsen et al. (2008) 

when analyzing somatic cell count data using the LNM model. The reason that 

diseased animals have a higher unexplained variation might be that the part of the 

health condition has not been identified, but still is systematic.  

 

Mixing Proportion 

An essential part of the LNM model is the estimation of the unobserved liability 

and the mixing proportion. The estimated mixing proportion was 24 %. Therefore, 

the model classifies approximately a quarter of the population as being diseased. 

Based on fluid in the abdomen approximately 10% of the broilers reared under cold 

conditions are considered to be affected by ascites and therefore, diseased (Closter 

et al., 2009). The use of a liability based models suggests that the observed cases of 

fluid in the abdomen do not reveal the true disease frequency. The analysis based 

on the LNM model suggests that using fluid in the abdomen as ascites indicator 

misses out on 14% of the chickens which are affected, but do not (yet) show 

accumulation of fluid in the abdomen.  

 

Since ascites is a term for the accumulation of fluid in the abdomen, and only 10% 

of the chickens were observed to have fluid accumulation in the abdomen, the 

term diseased is used to characterize the fraction of chickens with an abnormally 

high RATIO. RATIO is used in selection against ascites susceptibility, since RATIO 

indicate the onset of ascites (Balog et al., 2003; Burton et al., 1968; Cueva et al., 
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1974), however, measurement of RATIO is very labour-intensive. However, there is 

no clear threshold for classifying chickens as healthy or diseased. Several studies 

suggest that a RATIO above 27% to 30% is indicative of right ventricular 

hypertrophy and ascites (Balog et al., 2003; Cueva et al., 1974; Wideman et al., 

1998). Results from the current study indicate that chickens with a RATIO above 

25% have on average a probability of 50% being diseased. 

 

Heritability for Liability  

The estimated heritability for liability was higher than the heritability for RATIO, 

either of healthy or diseased chickens. The heritability for liability was 0.54 

suggesting that susceptibility to ascites is highly heritable. The heritability for RATIO 

for the diseased chicken was 0.31 and 0.32 for healthy chickens, but these two 

heritabilities were not significantly different. These heritabilities give an indication 

that the fraction of phenotype variability that can be attributed to genetic variation 

is similar in diseased and the healthy chickens. 

 

The heritability for liability is higher than heritabilities that have been reported for 

RATIO using a linear animal model without (Lubritz et al., 1995) or with a maternal 

effect (Pakdel et al., 2005c; Closter et al., 2009). Closter et al. (2012) did not found 

significant evidence for the presence of a maternal environmental effect on RATIO 

in the current data. Based on the same data as used in the present study but using 

a linear animal model Closter et al. (2012) estimated heritability for RATIO of 0.35. 

This is slightly higher than the heritability’s based on the LNM model of 0.32 for 

RATIO in healthy chickens and 0.31 for RATIO in diseased chickens. Heritability on 

the observed scale is always smaller than that on the liability scale, due the loss of 

information by the grouping into two categories (Dempster and Lerner, 1950).  

Genetic correlation between RATIO conditional on health status 

 

The estimated genetic correlation between RATIO for healthy chickens and the 

RATIO for diseased chickens was 0.75 (Table 4.5) and was significantly different 

from one, and therefore, the correlation indicates that RATIO in healthy and 

diseased chickens is not genetically the same trait. The high genetic correlation 

indicates that chickens that have a high RATIO when healthy are also more likely to 

have a high RATIO when having developed ascites. At the same time, it suggests 

that RATIO for healthy chickens and RATIO for the diseased chickens can be 

assumed as two different traits (Robertson, 1959). 
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The genetic correlation between RATIO for healthy chickens and liability was 

positive and 0.27 (Table 4.5), indicating that a high genetic value for RATIO in 

healthy chickens is associated with a higher susceptibility to ascites. The genetic 

correlation between RATIO for diseased chickens and liability, however, is negative 

and -0.32 (Table 4.5), which indicates that high genetic value for RATIO in diseased 

chickens is associated with a lower susceptibility to ascites. It should be noted that 

these estimated genetic correlations had high standard error and do not differ 

significantly from zero. However, the two correlation are significant different from 

each other. A possible explanation for the negative genetic correlation between 

RATIO and liability in diseased chickens could be that some chickens have the 

ability to adapt to the higher oxygen demands. Adaptation in these chickens might 

be by increasing the number of red blood cells which in a later stage result in a 

higher RATIO. These chickens have a higher RATIO but the adaptation might be 

sufficient to prevent them from being ascitic.  

 

Conclusion  

Genetic parameters, liability and individual disease risk were estimated. The 

heritability for liability was 0.54, demonstrating that ascites susceptibility is highly 

heritable. Of all chickens in the study 24 % were estimated to be affected by 

ascites. 
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Abstract 

Pulmonary hypertension syndrome (PHS) in broilers, also known as ascites, 

corresponds to initial increase in blood pressure within the pulmonary circulation. 

The pathophysiological progression of ascites is associated with fluid accumulation 

in the abdominal cavity and leads to increased mortality. Ascites related traits like 

ratio of right ventricular weight to total ventricular weight (RATIO), exhibit high 

genetic variation referred to as high heritability. We performed a genome wide 

association study based on two generations of broilers. The parent generation 

consisted of 895 chickens genotyped for 17,790 SNPs, and the offspring generation 

consisted of 7,857 chickens phenotyped for ascites related traits and body weight 

(BW) under ascites inducing conditions. The GWAS was performed using a single 

SNP analysis. The parent generation with own genotype were used together with 

phenotypes information from progeny by calculating the Average Adjusted Progeny 

Trait Value (AAPTV). In total, 25 SNPs were calculated to be significant (FDR <0.30) 

associated with RATIO. Significant association was detected on chromosome 1, 2, 3, 

7, 8, 10, 11 and 20. The most significant SNPs were found on chromosome 1, 8 and 

on 22. This study also identified 16 SNP that were significant associated both with 

RATIO and with fluid in abdomen. Out of these 16 SNPs nine SNPs were also found 

to be significant associated with BW. There were no unambiguous mode of genetic 

inherence for ascites indicator traits and BW at different ages.  

 

 

Key words: Broiler, ascites, Genome-wide association study, heart ratio, body 

weight, fluid in abdomen 

 



5 Genome-Wide Association Study of Ascites in Broiler 

 

83 

 

5.1 Introduction 

The metabolic disorder, pulmonary hypertension syndrome ("PHS or ascites 

syndrome") is a problem in commercial broiler production. When growth is 

enhanced e.g. with high energy pelleted feed, at high altitude and under cold 

temperature conditions, the incidence of ascites can increase up to 25% (Maxwell 

and Robertson, 1998; Balog, 2003). However, mortality due to ascites is rarely 

higher than 5% (Druyan et al., 2007) and even 1% mortality due to ascites causes 

considerable economic losses (Maxwell and Robertson, 1998; Balog, 2003). 

Environmental conditions like low ambient temperature, increased CO2 levels, or 

high altitude tend to increase the incidence of ascites due to increased oxygen 

requirement and subsequent increased hypoxia (Julian, 1993; Balog et al., 2003).  

Physiological studies have shown that ascites is associated with an insufficient 

pulmonary vascular capacity and eventually results in right ventricular failure. The 

main contributor to ascites development is hypoxia that results from a 

disproportion between oxygen requirement and the cardiovascular ability to supply 

oxygen (Currie, 1999; Decuypere et al., 2005). Hypoxia increases the pressure on 

the pulmonary vascular system (Wideman et al., 2010), which leads to pulmonary 

hypertension and progresses to right ventricular hypertrophy (Julian et al., 1987). 

The increase of the right ventricle leads to right ventricular failure, liver congestion 

and eventually excretion of fluid into the abdominal cavity (McGovern et al., 1999). 

The fluid accumulates occurs most frequently in the two ventral hepatic, 

peritoneal, or pericardial spaces (Maxwell and Robertson, 1998).  

 

Genetic studies of ascites indicator traits such as fluid in abdomen (ABD) and ratio 

of right ventricular weight to total ventricular weight (RATIO) have shown that 

susceptibility to ascites is partly due to genetic factors. Heritability for ascites 

indicator traits have been estimated to range from 0.11 to 0.45 (Lubritz et al., 1995; 

Moghadam et al., 2001; Pakdel et al., 2005b; Closter et al., 2009). The substantial 

genetic variation for ascites indicator traits indicates that selection can be used to 

reduce the incidence of ascites. Selection, however, is complicated as ascites or 

indicator traits for ascites can in most cases not be measured directly on selection 

candidates, e.g. RATIO can only be measured post-mortem. Therefore, identifying 

chromosomal regions associated with ascites and understanding the genetic basis 

of ascites indicator traits is of interest both from a physiological point of view as 

well as from a breeding point of view. Rabie et al. (2005) performed a linkage 

analysis to detect QTL involved in ascites, and found significant evidence on 

chromosomes 2, 4 and 6 and suggestive evidence on chromosomes 5, 8, 10, 27 and 

28. The identification of large numbers of single-nucleotide polymorphism (SNP) 
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has made it possible to move from linkage studies to genome-wide association 

studies (GWAS). GWAS present a powerful approach to identify QTL associated 

with complex traits (e.g. McCarthy et al., 2008), such as ascites.  

 

To unravel the genetic basis of ascites we performed a GWAS for the ascites 

indicator trait RATIO using approximately 18,000 SNPs. Further we analyzed the 

effect of the chromosomal regions associated with RATIO for its effects on body 

weight at different ages and on fluid accumulation in the abdomen. 
 

5.2 Materials and Methods 

Experimental Population.  

The chickens used in the current study were from a purebred broiler dam line 

originating from the White Plymouth Rock breed that has been selected for breast 

meat percentage. The experimental population used consisted of two generations; 

parents and offspring. The parents were genotyped, while phenotypic observations 

were collected on the offspring. The parent generation consisted of 91 males and 

804 females. Sires were mated to multiple dams ranging from two to 28, and dams 

were mated to one to three sires. The number of offspring per mating ranged from 

one to 22. The offspring consisted of 3,823 male and 4,034 female birds.   

 

Experimental Conditions 

The offspring were kept under a cold temperature regime. The temperature was 

30°C at the time of hatching and was gradually reduced to 12°C when the broilers 

were eleven days of age. The temperature remained at 12°C until the end of the 

experiment when the broilers were seven weeks of age. Ventilation in the stables 

was reduced to increase the CO2 level to approximately 1500 ppm. The animals 

were exposed to low temperature and increased CO2 levels in order to induce 

ascites (Wideman et al. 1999). The broilers were group housed with 20 chicken/m2. 

They had ad libitum access to a commercial broiler feed containing 12,970 KJ/kg. 

They were exposed to 23h of light per day during the entire experiment. Except for 

the applied temperature schedule and increased CO2 level, the broilers were kept 

under conditions that closely resemble commercial practice. The experiment was 

divided up into five periods with approximate 1600 chicken per period. All the 

chicken from each period were kept in one stable from day one till day seven. At 

day seven, the chicken were sexed and divided into two separate stables 

depending on sex. Males were slaughtered at 45 days of age and females at 46 

days of age. The experiment was carried out by licensed and authorized personnel 

under supervision of Hendrix Genetics BV.  
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Genotypes 

All parents were genotyped with an Illumina Infinium iSelect Beadchip containing 

17,790 SNPs (for details see Elferink et al., 2010). Genotyping was performed using 

the standard protocol for Infinium iSelect Beadchips. Data were analysed with 

Beadstudio Genotyping v3.0.19.0, and quality control was performed according to 

the guidelines from the Infinium genotyping data analysis protocol (Illumina Inc, 

2007). For the current study only markers located on autosomes were used. In 

total, 9,577 autosomal SNPs which are segregating in the current population were 

used in a single SNP association study, implying that 8,213 SNPs were not 

segregating in the population under study. Position of the SNPs was based on 

chicken genome build WASHUC2.  

 

Phenotypic observations 

Hearts were collected and post-mortem examinations were performed on all 

broilers that died during the experiment and on all broilers that were sacrificed at 

the end of the experiment. For each heart the ratio between the right ventricular 

weight and the total ventricular weight (RATIO) was determined. The broilers were 

weighed at two weeks (BW2), five weeks (BW5), and seven weeks (BW7) of age. BW7 

was measured at the day of slaughter. Each broiler was examined for the presence 

of fluid in the abdomen (ABD). This trait was scored as zero in case no fluid 

accumulation was observed in the abdomen, and scored as one in case fluid had 

accumulated in the abdomen.  

 

Statistical Analysis of phenotypic observations 

The following animal model accounting for a maternal environmental effect was 

used: 

 

ijklmmlkjiijklm edaPersonstablebatchsexμy    [1] 

 

where yijklm is the dependent variable of broiler ijklm; sexi is the fixed effect of sex (i 

= 1, 2 male or female); batch × stablej is the effect of the interaction between batch 

and stable (j = 1, 2,…, 10), batch consisted of 5 trials and there were 2 stables; 

Personk is the fixed effect of the person who cut the heart (k = 1, 2,…, 13); a l is the 

random genetic effect of individual l with )AσN(0,~a 2

a
; dm is the random 

maternal environmental effect of dam m with )IσN(0,~d 2

d ; and eijklm is the 
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random residual effect with )IσN(0,~e 2

e
. Genetic parameter estimates were 

obtained using the ASREML software (Gilmour et al., 2006).  

 

Whole-Genome Association for RATIO 

Genotypes were available on the parents and phenotypes were available on the 

offspring. Therefore, for the parents average adjusted progeny trait values were 

calculated. First adjusted trait values were calculated by correcting the phenotypic 

observations for fixed and maternal environmental effect in the model (for details 

see van Kaam et al. 1998). The adjusted trait values for each progeny were 

calculated as 

 

  
^^^

dbXμyATV     [2]  

 

where ATV are the adjusted trait values; y is a vector (unadjusted) trait values; 
^

μ  is 

the estimated overall mean; X is the design matrix for the fixed effects; 
^

b  is a 

vector with estimated fixed effects; 
^

d is the estimated maternal environmental 

effect. Estimates were obtained from model [1]; ATVs were adjusted for the 

estimated breeding value (EBV) of the mate and averaged over the progeny of a 

parent. For each offspring two adjusted trait values were calculated; one adjusted 

for the EBV of the sire and one adjusted for the EBV of the dam. ATV was then 

combined to one average adjusted progeny trait values (AAPTV) for each parent 

(van Kaam et al., 1998).  

 

The genome-wide association study for RATIO was performed using a mixed model 

with the AAPTV as dependent variable. The single SNP analysis was performed 

using the ASREML software (Gilmour et al., 2006) and the analyses were performed 

using following statistical model: 

 

 ijji

*

ij eAnimalSNPμy    [3] 

 

Where 
*

ijy  is the average adjusted progeny trait value (AAPTV) of the chicken ij; µ is 

the overall sample mean; SNPi is the fixed effect of the SNP; Animalj is the random 

genetic effect of individual and eij is the random residual effect. A weighted analysis 
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was performed using the ASREML software (Gilmour et al., 2006). The weight for 

record 
*

ijy  depended on the number of progeny that contributed to the average.  

 

Significance Thresholds 

Significance thresholds were obtained by calculating the false discovery rate (FDR) 

using the QVALUE software package (Storey and Tibshirani, 2003) as implemented 

in R (R Development Core Team, 2011). The FDR was calculated based on the p-

values obtained from model [3]. SNPs with a FDR<0.3 are reported.  

 

Single SNP analysis for body weight and fluid accumulation in 

abdomen 

In order to characterize the effect of the SNPs with a FDR<0.3 for RATIO, these 

SNPs were also analyzed for their effects on BW2, BW5, BW7, and ABD. Similar as for 

RATIO the AAPTV for these traits was calculated using estimates from model [1] 

and using [2]. For BW2, BW5, BW7, and ABD the effect of Person was not included in 

model [1]. The SNP analyses were performed using model [3]. SNPs with a p < 0.05 

were considered significant. 

 

5.3 Results 

Descriptive statistics 

Means and standard deviations for the traits RATIO, ABD, BW2, BW5 and BW7 for 

the offspring generation are presented in Table 5.1.  

 

Table 5.1. Number of observations from offspring generation (N), mean and the 
standard deviation (S.D.) for heart ratio, fluid in abdominal and body weight (BW) for 
the entire population of broilers 

Variable Units Abbreviation N Mean S.D. 

Heart Ratio % RATIO 7,687 28.7 7.6 

Fluid in abdominal 0/1 ABD 7,665 0.10 0.30 

BW at 2 weeks Gram BW2 7,803 248 37.8 

BW at 5 weeks Gram BW5 7,496 1,296 174 

BW at 7 weeks Gram BW7 7,121 2,075 295 

 

 

During the experiment body weight of the broiler increased from 248 g at two 

weeks to 2,075 g at seven weeks and ten percent of the broilers had fluid 
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accumulated in the abdomen. Not all the chickens had observations for RATIO and 

fluid in the abdomen. RATIO was missing for 116 broilers and a score for ABD was 

missing for 138 broilers. Due to premature death, 307 broilers did have no 

observation for body weight at five weeks and 682 broilers had no body weight 

recorded at seven weeks. 

 

Whole-Genome Association for RATIO 

The whole genome association study for RATIO resulted in 25 SNPs, with an FDR 

between 0.19 and 0.30 (-log10P-values between 3.00 and 4.50). Figure 5.1 shows the 

Manhattan plot of the -log10p-values for the trait RATIO. Regions associated with 

RATIO were found on chromosomes 1, 2, 3, 7, 8, 10, 11 and 22 (Table 5.2). 

 

 
Figure 5.1 -log10P-values for association of SNPs with RATIO. The position is represented along 
the x-axis and chromosome numbers are given. The solid black lines indicate grid lines and 
the dashed lines reflect cutoff points for false discovery rate <0.30. 
 

Effects on body weight and fluid accumulation in abdomen  

SNPs with a significant effect on RATIO were analyzed for their effects on ABD, BW2, BW5 
and BW7. Out of the 25 SNP significantly (FDR<0.30) associated with RATIO a total of seven 
SNPs also had a significant effect (p <0.05) on ABD (Table 5.2). The genotypes of the SNPs are 
either associated with high RATIO and high ABD or associated with low RATIO and low ABD. 
Additional seven SNPs also had significant effect for RATIO, ABD and at least one of the BW 
measurement (p <0.05, Table 5.2). The highest -log10P-values were found for ABD on 
chromosome 1 for the two SNPs rs14899763 (-log10P-value = 4.36) and rs13952858 (-log10P-

value = 5.84). 
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The genotypes of the SNP rs14899763 and SNP rs13952858 (both on chromosome 

1) influence all traits (RATIO, ABD, BW2, BW5 and BW7) in same direction, which can 

be specified with reduced RATIO and ABD together with increased BW or with 

increased RATIO and ABD together with decreased BW. These two SNPs are within 

one region and almost fully in LD with each other. Similar, the genotypes for SNP 

rs16183608 (chromosome 22) showed to influenced the traits RATIO, ABD, BW2 

and BW5, in either a favourable direction with reduced RATIO, low ABD and high 

BW or in unfavourable direction with increased RATIO, high ABD and low BW. For 

SNPs, rs13841399 and rs13747646 on chromosome 1 and rs14965732 on 

chromosome 11, the genotypes associated with a higher RATIO and ABD were 

associated with lower values for BW2 and BW5. SNP rs13599609 (chromosome 7) 

was associated with higher RATIO and lower values for ABD and BW7.  
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Table 5.2 SNPs with a significant (FDR<030) effect on RATIO and the significance (–log10 (p-value)) of these SNPs on body weight 
at 2 (BW2), 5 (BW5) and 7 (BW7) weeks and fluid in abdomen (ABD). RATIO, BW2, BW5, BW7 and ABD 

SNP ID Position (in bp) Region 
1
 RATIO

2
 FDR -RATIO BW2

2 
BW5

2
 BW7

2 
ABD

2
 

Chromosome 1 

rs14789557 2,124,737 777,036 3,459,640 3.26 0.30 
NS 

1.39 

rs16079719 7,880,127 7,136,958 8,623,298 4.10 0.19 1.51 

rs13841399 27,984,447 
27,566,929 29,087,815 

3.00 0.30 4.97 2.05 NS 2.10 

rs13747646 28,523,800 3.00 0.30 2.70 NS 1.12 

rs14811108 37,855,143 
37,378,125 38,721,903 

3.00 0.30 
NS 

NS 

rs15236245 38,231,869 3.15 0.30 NS 

rs14899763 148,951,482 
148,523,109 149,533,408 

3.91 0.19 1.66 1.89 2.52 4.36 

rs13952858 149,173,568 3.81 0.19 1.54 1.74 2.70 5.84 

Chromosome 2 

rs14218633 92,844,354 92,247,793 93,302,291 3.00 0.30 NS NS 

Chromosome 3 

rs15257935 3,581,788 3,427,137 3,742,795 3.00 0.30 

NS 

1.14 

rs16225894 7,578,368 

7,353,248 8,010,947 

3.88 0.19 1.28 

rs15272751 7,646,095 3.51 0.21 NS 

rs14317011 7,804,975 3.22 0.30 NS 
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Table 5.2 continued   

SNP ID Position (in bp) Region 
1
 RATIO

2
 FDR -RATIO BW2

2 
BW5

2
 BW7

2 
ABD

2
 

Chromosome 7 

rs14617579 25,555,091 24,880,599 26,234,348 3.00 0.30 NS 1.27 

rs13599609 33,065,420 32,622,689 33,431,198 3.00 0.30 NS 1.40 2.70 

rs16615527 37,568,882 36,352,314 38,754,684 3.15 0.30 NS NS 

Chromosome 8 

rs15920819 19,019,020 
18,317,667 20,023,086 

3.00 0.30 
NS 

NS 

rs15921649 19,584,684 4.50 0.19 1.89 

Chromosome 10 

rs15580567 13,992,235 13,753,162 14,231,310 3.00 0.30 NS 2.52 

Chromosome 11 

rs14965732 15,491,746 
14,962,343 16,074,125 

3.55 0.21 1.27 1.15 NS 1.35 

rs14965814 15,744,073 3.69 0.21 NS 

Chromosome 22 

rs15187369 531,581 

263,725 1,050,313 

3.66 0.21 
NS 

rs16183544 557,109 3.21 0.30 

rs16183608 786,137 4.19 0.19 2.10 2.22 NS 1.82 

rs15187555 906,582 3.58 0.21 NS 

1 ) The region of interest was determined as +/- 1 cM from the position of the SNP, unless genes were partially located at one of 
the ends. In that case, the window size was increased in order to include the entire gene. Overlapping regions are merged.  FDR 
= false discovery rate. NS = Not significant.       
2) –log10 (p-value) 
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5.4 Discussion 

The genetic factors involved in ascites susceptibility in broilers are not known and, 

therefore, a genome wide association study (GWAS) study was performed. The 

present study is the first GWAS for ascites in a broiler population. The GWAS is 

based on 895 genotyped individuals and over 7857 individuals with phenotypes. 

The post-mortem trait RATIO was used as an indicator for ascites and a number of 

regions were associated with RATIO. In total 25 SNPs were associated (FDR < 0.3) 

with RATIO and the SNPs were located on chromosomes 1, 2, 3, 7, 8, 10, 11 and 22. 

Although we detected a number of chromosomal regions associated with ascites, 

no regions with major effects were detected. Therefore it seems that ascites is 

affected by a large number of genes, each with a small effect.  

 

For SNPs significantly associated with RATIO (FDR<0.3), we also estimated effects 

on the traits ABD and BW at 2, 5 and 7 weeks of age. Several SNPs were found to 

be associated with phenotypic variation in more than one trait. Out of the 25 SNPs 

associated with RATIO, 14 SNPs also have an effect on ABD and seven of these SNPs 

were also found to be association with BW  

 

Genetic architecture of ascites 

The detection of multiple chromosomal regions, each with a relatively small effect 

shows that ascites in the current population is a polygenic trait rather than a trait 

that is influenced by a single or a limited number of major genes as were suggested 

by some authors (Navarro et al., 2006; Druyan et al., 2007). This is in agreement 

with Rabie et al. (2005), whom, based on results from another broiler line, also 

concluded that ascites is influenced by multiple genes each with a small effect. 

Furthermore, Wideman and French (2000) stated that a number of genes seem to 

be partly responsible for ascites susceptibility in commercial broilers. The studies 

suggesting that either a polygenic or a monogenic basis for ascites is based on 

different broiler populations. Therefore, it cannot be excluded that different alleles 

are segregating in other populations. 

 

SNPs associated with RATIO 

Some of the chromosomal regions detected in the present study were located close 

to regions identified in a linkage study using a cross between two dam broilers lines 

by Rabie et al. (2005). Rabie et al. (2005) detected significant evidence for QTL on 

chromosome 2 for the ascites related traits right and total ventricular weight as 

percentage for body weight. The trait RATIO reached suggestive association on 

chromosome 2 and on chromosome 8 was there detected suggestive association 
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for traits right ventricular weight as percentage for body weight and for BW5 (Rabie 

el at., 2005). For the region on chromosome 8, Rabie et al. (2005) identified 

association to total ventricular weight as percentage of body weight and BW5, 

however in the present study was it only RATIO that was associated with 

rs15920819. The SNP on chromosome 10 is close to the region identified by Rabie 

et al. (2005) affecting mortality due to ascites and BW5. Comparing results of Rabie 

et al. (2005) with the ones of the present study, we see that in the case of ascites 

indicator traits and traits are associated with the same regions. The current study 

confirms some of the chromosomal regions that have been identified by Rabie et 

al. (2005); however, both studies also identified a number of unique QTL regions. 

 

Significant SNPs for RATIO affecting body weight and fluid in 

abdominal 

The present study focused mainly on the identification and the location of SNPs 

associated with RATIO. Information regarding the effect of SNPs on other traits 

might help to understand how a potential candidate gene could influence both 

RATIO and BW traits. Therefore, the secondary focus of the study was to 

characterize these significant regions in terms of their effects on traits as ABD and 

BW at two, five and seven weeks of age.  

 

Ascites eventually results in fluid accumulation in the abdominal cavity as a 

consequence of right ventricular failure (Julian et al., 1987; Julian and Mirsalimi, 

1992). The genetic correlation between RATIO and ABD has been estimated to be 

0.82 (Pakdel et al., 2005b) and therefore, at least some of the SNPs with a 

significant effect on RATIO also are expected to show an effect on ABD. In total 

seven SNPs were found to be significantly associated with only the traits RATIO and 

ABD. The SNPs associated with ABD were found on chromosome 1, 7, 8, 10, 11 and 

22. The genotypic effects of the SNPs showed that the allele that increased RATIO 

also is associated with higher values for ABD. Since ascites causes major heart valve 

problems leading to a build-up of fluid in the tissues, fluid in the abdomen can be 

considered as one of the last stages of ascites. Therefore, it seems that the SNPs 

that affect both RATIO and ABD, affects the development of ascites over a longer 

period during the life the effected chicken.  

 

In a total of seven SNPs located on chromosome 1, 7, 11 and 22 were found to be 

significantly associated with RATIO, ABD and BW. Several of the significant SNPs 

were found to either influence increased RATIO, increased ABD or lower BW, or to 

influence decreased RATIO, decreased ABD or higher BW. These effects indicate 
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that the SNPs had an effect on both the development of ascites, on early growth 

and late growth. Some of the significant regions had also an effect on BW2; 

suggesting that potential candidate genes might be involved in early growth. 

Furthermore, some of the SNP alleles which are associated with a higher RATIO and 

higher values for ABD also are associated with higher BW2 and higher BW5. This is 

line to some publications stating that increased oxygen demand of rapid growth 

and high metabolic rate need to be related to ascites in broiler (Julian, 2000). This 

could imply that the underlying mutation has an effect on early growth which later 

in life leads to the development of ascites. The effects on BW5 and BW7 are also 

affected when the chickens have developed ascites, since chickens with ascites 

often also have a lower body weight. A possibility could be that a chicken with high 

genetic potential for growth, but does not have a decent potential to provide 

oxygen to sustain that growth. Deeb et al. (2002) found that chickens that have a 

higher potential for growth rate under normal temperature conditions are more 

likely to suffer from ascites under cold conditions as compared to chickens with a 

lower potential for growth rate. 

 

Estimated genetic correlations between the traits BW and RATIO are generally low 

(Pakdel et al., 2005b; Closter et al., 2009; Closter et al., 2012) with correlations 

close to zero. The genetic correlation between RATIO and BW was found to range 

from 0.19 for body weight at week two and -0.18 for body weight at week five 

(Closter et al., 2009). Where in in the current data the genetic correlation between 

RATIO and BW was found to range from 0.11 for body weight at week two, -0.09 

for body weight at week five and -0.43 for body weight at week seven (Closter et 

al., 2012). This indicates that under cold conditions the genetic potential for growth 

shows a weak correlation with the genetic potential for RATIO. The weak 

correlation proposes that there are genes with a positive effect on both traits. 

These genes have a positive effect on one trait and a negative effect on the other 

trait as well as genes with an effect on only one of both traits, e.g. two SNPs on 

chromosome 1 and one on chromosome 11 had a higher value for effect for RATIO 

and ABD compared lower values for BW2 and BW5 or only for BW2. These different 

trends for the SNP effect for the associated SNPs designate the complexity of the 

development of the ascites. Therefore, complexity of the development of the 

ascites suggests that there is a relation between BW, susceptibility to ascites and 

temperature. 
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Enhanced Understanding of ascites 

As RATIO is a good indicator for susceptibility to ascites, obtaining insights 

knowledge to how chromosome regions are associated with RATIO will lead to 

more efficient selection for ascites resistance in broiler chickens. Several regions on 

the chromosomes were found to be significant associated with the ascites indicator 

trait RATIO. In the literature have there not been conclusive evidence if ascites is a 

monogenic or a polygenetic trait. The conclusion based on this study is that there 

are no single regions with a major effect for ascites. Therefore it can be concluded 

that ascites in the current population is affected by a large number of genes, each 

with a small effect.  

 

This study also identified some of the SNPs which are significantly associated with 

RATIO and ABD. However, since only some of the SNPs was associated with both 

RATIO and ABD, and other SNPs only associated with RATIO, it seem that the 

development of ascites is altered by the different stages of the disease. The results 

of the present study indicate that part of analysed SNPs had a pleiotropy effect 

were ascites indicator traits and BW are affected by some SNP simultaneously. The 

pleiotropic loci are associated with multiple traits with opposite effects, e.g. higher 

(or lower) RATIO and ABD compared lower (or higher) with BW. A notable outcome 

of this study was that improved knowledge of the genomic background of ascites 

indicator trait compared with the results of another indicator trait (ABD). The 

current study resulted in the identification of a number of genomic regions that 

seem to play a role in the development of ascites in broilers, which have increased 

the understanding of genetic architecture of ascites. 
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6.1 Introduction 

This thesis is part of a joint project between Hendrix Genetics BV, Cobb-Vantress, 

and Wageningen University (the Netherlands) on “The characterization of genes 

involved in pulmonary hypertension syndrome in chickens”, which is financially 

supported by the Technology Foundation, the Netherlands (STW). Previous studies 

identified heritable variation in phenotypic characteristics related to ascites. In 

addition, some chromosomal regions associated with ascites have been identified. 

The quantitative genetic background of ascites is well established. The use of 

genomic information in selection can substantially increase response to selection 

especially for complex traits or diseases that cannot be measured on breeding 

animals.  

 

In this general discussion, the first section deals with genetic aspects of general 

health of broilers and ascites in particular. The second section deals with the 

liability normal mixture (LNM) model versus the linear mixed model with special 

emphasis on estimated breeding values from the different models. Furthermore, 

the second section deliberates on whether selection of broilers should be based on 

estimated breeding values (EBV) from a linear mixed model (animal model) or EBV 

from a LNM model. The third section of this chapter compares results from genome 

wide association studies (GWAS) using different models: a model that accounts 

only for relations due to sires versus an animal model that accounts for all family 

relationships Furthermore, an alternative model based on phenotypic trait values 

of the individuals and genotype probabilities calculated based on the parental 

genotypes was also examined. The last section of the discussion focuses on lessons 

to be learned from ascites related phenomena in other species. 

 

6.2 Genetic Background of Ascites in Broilers 

The economic importance of genetically improving production and liveability 

differs. Further, heritabilities and genetic and phenotypic correlations differ 

between production and liveability traits. In order to achieve maximum genetic 

progress towards the stated breeding goal and increase the economic efficiency of 

production animals, the aim is to use simultaneous selection for both production 

and liveability traits and in this way improving the total breeding value of animals. 

Ascites is a metabolic disorder, which is linked to growth rate and causes mortality 

(Maxwell and Robertson, 1998). Ascites is associated with insufficient oxygen 

supply of the tissue of the growing broiler (Julian, 1993), and both genetic and 

environmental factors contribute to the development of ascites. Although there 
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has been increased emphasis on liveability traits, health problems of the modern 

broiler have not been fully resolved and, therefore, need further attention. 

 

Current selection of animals is mainly based on Best Linear Unbiased prediction 

(BLUP) methods. Animals used for breeding are selected based on estimated 

breeding values (EBV) for production traits like growth rate and feed conversion. 

However, selection for production traits can result in undesirable responses for 

liveability traits, because of antagonistic relationships that might exist between 

production traits and liveability traits, also called genetic trade-offs. The 

antagonistic genetic relationship between liveability traits on the one hand and 

production traits on the other hand complicates selection of animals. Therefore, 

phenotypic information on both production and liveability traits are required in 

order to improve total efficiency of livestock production. Including a disease trait in 

a breeding program requires a good recording system for the disease itself or a 

related indicator trait. Indicator traits are often used in selection for disease 

resistance as is the case for ascites in broilers, where the ratio of right ventricular 

weight to total ventricular weight (RATIO) is used as indicator for ascites (de Greef 

et al., 2001). Another often used indicator trait is milk somatic cell counts (somatic 

cell score, SCS) which is used to determine mastitis status in dairy cattle (Young et 

al., 1960). In the case of ascites, the development of the disease typically occurs 

under specific (unfavourable) conditions, which implies that the testing 

environment needs to be chosen carefully. 

 

6.3 The Use of Liability Mixture Models in Selection for 

Disease Resistance  

Liveability traits receive increasing attention in breeding programs for production 

animals. Selection for liveability traits is commonly based on indicator traits which 

are often measured on a continuous scale. The indicator traits might represent a 

mixture of (at least) two distributions: healthy and diseased. Mixture models offer 

the opportunity to account for this mixture of distributions. In chapter 4 it was 

assumed that the distribution of RATIO can be regarded as a mixture of two 

components depending on the ascites status of a broiler. In the two-component 

normal mixture model used by Ødegård et al. (2003), the disease related trait is 

assumed to be normally distributed with heterogeneous residual variance. 

However, this model assumes identical prior probabilities of the health status for 

all observations. This assumption might not be correct and therefore, Ødegård et 

al. (2005) suggested an LNM model where health status is modeled as an 
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unobserved binary variable. This unobserved binary variable is assumed to be fully 

determined by the (unobserved) underlying liability. The LNM model predicts 

genetic effects for both the disease indicator trait and for the unobserved liability. 

Estimated breeding values for liability can be used in selection to improve disease 

resistance. Using the LNM model, genetic and residual variances tend to be larger 

in diseased animals as compared to healthy animals. Further, in some studies 

heritabilities for somatic cell score (SCS) in diseased animals were higher than in 

healthy animals (Madsen et al., 2008).  

 

Broilers can be divided in healthy and ascites diseased broilers. However, there are 

no clear criteria to distinguish between these two subpopulations. The use of 

mixture models gives the possibility to assign broilers to one of these two 

subpopulations via probabilities estimated from trait observations (Detilleux and 

Leroy, 2000). The LNM model predicts genetic effects for both RATIO and the 

unobserved liability to ascites. Estimated breeding values based from a LNM model 

for the underlying liability can be useful in selection to improve ascites resistance in 

broilers, i.e. assuming that the ascites status is completely specified by the 

underlying liability.   

 

Estimated breeding values from the Liability Normal Mixture model 

The LNM model was used for the genetic analysis of RATIO as described in chapter 

4. This analysis also results in breeding values for the (unobserved) liability to 

ascites. EBVs for liability based on the LNM analysis might differ from EBVs for 

RATIO using the linear animal model, which was used in chapter 3. Figure 6.1 shows 

the relation between the EBVs obtained from both analyses. The EBVs are 

presented for broilers with phenotypic observation on RATIO, i.e. in total 8503 

broilers.The correlation between the EBVs resulting from both models is 0.72 

indicating that based on the EBVs from both models partly the same broilers will be 

selected. However, breeding values predicted with one model only explain 51.4% 

of the variation in EBVs of the other model, which emphasizes that the models do 

not result in identical EBV. This indicates that broilers are not ranked exactly the 

same and differences in selection response are expected. Figure 6.1 suggests that 

the differences between the two models are smaller for broilers with a low EBV for 

RATIO and a low EBV for liability, i.e. the broilers which are favoured. 

 

It should be noted that clinical ascites is not necessarily the same trait as subclinical 

ascites. Therefore, using the LNM model, selection could be based on EBV for 

liability to ascites rather than by selecting for lower values for RATIO, as is the case 
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in the linear mixed model (animal model). The advantage of using the linear animal 

model is that it requires less computing time and is implemented in routine 

breeding value evaluation software.  

 

Note that an important disadvantage of using RATIO as indicator trait is that RATIO 

is not an easy trait to measure: measuring RATIO is very labour intensive. 

Furthermore, RATIO cannot be measured on the selection candidates themselves 

as they have to be sacrificed and consequently cannot be used for reproduction. 

Therefore RATIO is not included in routine evaluation of broilers. 

 

 
Figure 6.1 Scatter plots of estimated breeding values (EBV) for liability based on a normal 

mixture model and EBV for RATIO using an animal model. The EBVs are presented for 

approximately 8500 broilers with a phenotypic observation. 

 

6.4 Genome Wide Association Studies for Ascites 

A GWAS is aimed at studying common genetic variation across the entire genome 

and to identify genetic associations between specific regions with the observed 

trait. GWAS requires high-density SNP genotypes, which have recently come 

available. Since GWAS examines SNPs across the genome, it represents a promising 

way to study complex, common diseases in which many genes are expected to 

contribute to the risk of being diseased. A linkage study suggested that ascites is 

influenced by several genes each with a small effect (Rabie et al., 2005). The results 
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presented in chapter 5 supports that ascites has a polygenic origin. The findings 

from the current study are a further step towards understanding the genetic 

architecture of this complex disorder.  

 

Statistical models for GWAS  

Ignoring relationships between individuals in a GWAS can result in false positive 

associations (Goddard and Hayes, 2009). However, analyzing data using a mixed 

model which accounts for all relationships between individuals is computationally 

demanding, especially when the analysis has to be repeated for many SNPs. 

Alternatively, one could account for only part of the family relations. E.g. Bouwman 

et al. (2011) screened the bovine genome using a general linear model accounting 

for family relations due to sires only. In a second step Bouwman et al. (2011) 

verified signficant regions from the first step using an animal model accounting for 

all family relations. Bouwman et al (2011) showed that for a typical dairy cattle 

population accounting for relationships due to sires is a very good approximation: a 

correlation of 0.95 was found between the -log10 (P-values) of the general linear 

model (Bouwman et al, 2011) and the mixed model (Bouwman et al., 2012). This 

high correlation indicates that the general linear model correctly identified the 

chromosomal regions of interest and results from the general linear model are 

comparable with results from the mixed model (Bouwman et al. 2012). I compared 

results from both models based on the poultry data described in chapter 5. 

 

A general linear model  

The genome-wide association study was based on SNP genotypes of the parents 

and average adjusted progeny trait values for RATIO. This genome-wide association 

study was based on the following general linear model: 

 

ijjiij eSNPsirey  *  

 

where y* was the average adjusted progeny trait value for RATIO. Phenotypes were 

adjusted for systematic environmental effects. Sire was the fixed effect of sire; SNP 

was the fixed effect of the SNP genotype; and e was the random residual. A sire 

effect was included in the model to account for paternal half-sib relations only, i.e. 

relations between sires are not accounted for. A weighted analysis was performed 

in SAS. The weight for record 
*

ijy  depended on the number of progeny that 

contributed to the average. 
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This analysis resulted in several chromosomal regions with highly significant (P < 

0.0001) effects on the ascites indicator trait RATIO (figure 6.2). In total 67 SNPs 

were found to have significant effects (p value smaller than 0.0001) and a further 

154 SNPs had suggestive significant effects (p value smaller than 0.001). In the case 

of significant (or suggestive) evidence for the presence of a QTL, the region would 

have been reanalyzed using the animal model accounting for all relationships. 

 

 
Figure 6.2 Manhattan plot for single SNP analysis using a general linear model accounting 
only for paternal half sib relations among animals. -log10P-values for association of SNPs with 
RATIO. The position is represented along the x-axis and chromosome numbers are given. The 
dashed line reflects cutoff for p = 0.0001. 

 

The Animal Model  

The second approach was also using SNP genotypes of the parents and average 

adjusted progeny trait values for RATIO but was extended by accounting for 

pedigree relationship between the broilers, i.e. the analysis described in chapter 5 

 

ijji
*
ij eAnimalSNPμy   

 

Where 
*

ijy  is the average adjusted progeny trait value (AAPTV) of the chicken ij; µ is 

the overall sample mean; SNPi is the fixed effect of the SNP; Animalj is the random 
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genetic effect of individual and the pedigree is used to account for relationships 

among animals. eij is the random residual effect. A weighted analysis was 

performed using the ASREML software (Gilmour et al., 2006). The weight for record 
*

ijy  depended on the number of progeny that contributed to the average.  

 

Comparing the –log10(p) values of the SNP analysed using the two models showed 

poor resemblance as quantified by the coefficient of determination of 0.22 (figure 

6.3). Furthermore, the significance level decreased considerably when accounting 

for all relationships with the animal model instead of only accounting for 

relationships due to sires (figure 6.3 and 6.4). Figure 6.4 shows the Manhattan plot 

of the linear model (above the x-axis) and the animal model (below the x-axis). It is 

evident that there are some regions which are highly significant using the linear 

model that do not show up when using the animal model. Other regions are 

significant when using the animal model, but not when using the linear model. 

 

 
Figure 6.3 Scatter plot of –log10 (p-values) based on the single SNP analysis using a linear 
model accounting only for paternal half sib relations versus –log10 (p-values) based on the 
animal model accounting for the full pedigree. The broken line is the line y=x. and the other 
line is a fitted regression line.  

 

The conclusion of this analysis is that results from both models are not consistent. 

The application of a linear model correcting for sire implies that only relations due 

to sires are accounted for and the main benefit of using the sire model is that the 
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analysis is simple and less computationally demanding. However, with the linear 

model, relationships due to dams are not accounted for. This resulted in an 

inflation of the test statistic and increased the number of “significant” SNP effects. 

These results differ from the situation in dairy cattle as described by Bouwman et al 

(2011). In dairy cattle accounting for relations due to sires results in a very good 

approximation of the results obtained using a model accounting for all 

relationships. The difference can be explained by the relevance of maternal family 

relationships in poultry versus dairy cattle: in poultry multiple offspring per female 

are common whereas in dairy cattle this would be an exception. Therefore, it was 

decided to perform the whole genome association study using a mixed animal 

model which accounts for all family-relationship based on the parent generation 

with own genotype, but average adjusted progeny trait values (chapter 5).  

 

 
Figure 6.4 Two Manhattan plots for single SNP analysis using a general linear model 
accounting only for paternal half sib relations among animals (above the x-axis) and single 
SNP analysis using a animal model accounting for all relations among animals (below x-axis). 
-log10P-values for association of SNPs with RATIO. The position is represented along the x-
axis. The dashed line reflects cutoff for p = 0.0001. 

 

Alternative GWAS Model 

In our study phenotypes were recorded on the offspring and genotypes were only 

available on the parents. To bring the genotypic information together with the 

phenotypic information we calculated average adjusted progeny trait values for 
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each parent which was the dependent variable in our analyses. In a sense the 

phenotypic observations were moved from the offspring to the parents. 

Alternatively, to bring the genotypic information together with the phenotypic 

information we could have moved the genotypes from the parents to the offspring. 

This analysis then can be performed based on phenotypic trait values of the 

individuals and genotype probabilities which can be calculated based on the 

parental genotypes. Each broiler in the offspring generation needed to be assigned 

a genotype probability based on the genotypes of its sire and its dam (table 6.1). 

The probabilities presented in Table 6.1 can be including in the analyses as co-

variables. The first regression coefficient results in an estimate of the additive 

effect and second regression coefficients results in an estimate of the dominance 

effect. 

 

Table 6.1. Genotype probabilities and co-variables depending upon the genotypes of the 
sire and the dam. The first regression coefficient (p(AA)-p(CC)) results in an estimate of the 
additive effect and second regression coefficient (P(AC)) results in an estimate of the 
dominance effect. 

Mating Type P(Offspring genotype) Offspring mean P(AA)-P(CC) P(AC) 

AA AC CC 

AA * AA 1 0 0 A 1 0 
AA * AC ½ ½ 0 ½a+½d ½ ½ 
AA * CC 0 1 0 D 0 1 
AC * AC ¼ ½ ¼ ½d 0 ½ 
AC * CC 0 ½ ½ -½a+½d -½ ½ 
CC * CC 0 0 1 -a -1 0 

 

The following animal model could be used: 

 

        ijklmmlijklmijklmjiijklm edaACpCCpAApstablebatchsexy  21 

 

where yijklm is the dependent variable of broiler ijkl; sexi is the fixed effect of sex (i = 

male or female); batch ∙stablej is the effect of the interaction between batch and 

stable (j = 1, 2,…, 10), batch consisted of 5 trials and there were 2 stables; 

    ijklmCCpAAp  and   ijklmACp  are genotype probabilities for each individual 

ijklm; al is the random genetic effect of individual l; dm is the random maternal 

environmental effect of dam l; and eijklm is the random residual effect. The maternal 

effect could be included in the model in case this significantly affects the 

phenotype (e.g. in the body weight analysis). 
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6.5 Comparison between Species 

Ascites has been recognized in poultry for several decades, both at low and high 

altitudes (Julian, 2005), and the genetic susceptibility to this disorder has been of 

interest for broiler breeders for a long period of time. Originally ascites was only 

observed in broilers reared at high altitude. Diseases with symptoms similar to 

ascites in broilers are also observed in other species, e.g. pulmonary hypertension 

and acute altitude sickness in humans or brisket disease in cattle. Both animals and 

humans that are not adapted to high altitude will show an increased risk for 

developing pulmonary or cerebral oedema. Without adequate acclimatization 

extended periods at high altitude leads to chronic pulmonary hypertension and 

related complications (Julian, 1993; Ahola et al., 2006; Scheinfeldt and Tishkoff, 

2010). Both physiological and genome wide association studies performed in 

different species provide information on pulmonary hypertension which can be 

used for an increased understanding of ascites in broilers. 

 

Chronic mountain sickness in humans 

Chronic mountain sickness (CMS) is a syndrome observed in humans, which can 

develop during extended time living at high altitudes. CMS develops when the 

respiratory frequency and ventilator capacity is unable to compensate for extreme 

hypoxia. As a consequence humans might develop severe pulmonary hypertension 

(Zubieta-Castillo, Sr. et al., 2006). While the development of acute mountain 

sickness is experienced shortly after moving to high altitude, chronic mountain 

sickness may develop after many years of living at high altitude. Physiological 

differences among groups of human populations living at high altitude in different 

continents can be caused by strong natural selection during longer exposures to 

hypoxia at high altitude or genetic differences in founder populations (Powell 

2003).  

 

Humans living at high altitude are generally characterized by smaller body size than 

humans living at low altitude. In a study by Tripathy and Gupta (2007) Tibetans 

living at high altitude outside Tibet and Tibetans living at low altitude outside Tibet 

were compared. It was found that the Tibetan living at low altitude outside Tibet 

were advanced in terms of height, weight, skinfold thickness at triceps and upper 

arm circumference compared to Tibetans at high altitude outside Tibet (Tripathy 

and Gupta, 2007). Further, this study indicates that genetic factors account for a 

large proportion of phenotypic variance in haemoglobin concentration in the two 

populations; the results do not identify a specific genetic factor underlying 

intrapopulation or interpopulation differences in response to altitude. 
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Comparative methods have been used to study populations living at low altitude 

with populations living at high altitude native from Andes, Himalayas, the Tabetan 

plateay and East Africa (Powell, 2003). The heritability for improved arterial oxygen 

saturation estimated for the Tibetan population suggests the presence of a major 

gene (Beall et al., 1998; Beall, 2006). A genome wide association study based on 

high- and low-altitude human populations identified candidate genes and QTL 

regions in the two long-resident high-altitude populations; the Andeans population 

and the Tibetans population (Bigham et al., 2010). Several chromosomal regions 

show evidence of association with unique adaptation traits. Some regions are 

unique to either Andeans or Tibetans, suggesting a lack of evolutionary 

convergence between these two highland populations indicating that the change to 

high altitude has triggered different types of adaptation. However, convergence of 

evolution between Andeans and Tibetans is suggested for other chromosomal 

regions: the signal detected for the Hypoxia-inducible factor (HIF) regulatory gene 

EGLN1 was found in both populations. Furthermore, a second HIF regulatory gene, 

EPAS1 and two HIF targeted genes, PRKAA1 and NOS2A, have been identified as 

candidate genes in Tibetans (EPAS1) or Andeans (PRKAA1, NOS2A) (Bigham et al., 

2010) . PRKAA1 and NOS2A play major roles in physiological processes essential to 

human reproductive success (Wilson et al., 2007). These studies indicate that HIF-

regulatory genes play an important role in adaptation to high altitude in Andeans 

and Tibetans (Bigham et al., 2010). HIF genes are ubiquitously expressed 

heterodimeric transcription factors that mediate adaptive responses to hypoxia in 

all nucleated cells of metazoan organisms. Zhang et al. (2013) recently showed that 

HIF genes might be associated with the development of ascites in broiler. 

 

Pulmonary hypertension in cattle 

Brisket disease, also known as high mountain disease or pulmonary hypertension is 

similar to ascites in broilers and results in elevated pulmonary arterial pressures or 

pulmonary hypertension. Brisket disease is caused primarily by an oxygen shortage 

increasing the pressure on the heart. The pressure can continue to build up until 

fluids leaks out of the blood stream and collects in the chest cavity, the brisket, and 

other places. Eventually, the demand on the heart increases too much and the 

animal dies. Pulmonary hypertension occurs as a consequence of a right ventricular 

overload, right-sided heart failure develops in cattle and very similar to the ascites 

in broilers. 

 

Brisket disease is a diseases found among cattle living at high altitudes (Ahola et al., 

2006; Shirley et al., 2008). The mortality due to brisket disease can differ depending 
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on the origin of the cattle. Some cattle are able to tolerate living at high altitude for 

a longer period of time, while others die quickly. In cattle born and raised at high 

altitudes, the losses tend to be lower (0.5% to 5%) than lowland cattle which are 

moved to higher altitude later in live (30% to 40%). Brisket disease in cattle affects 

both sexes and has been found across all breeds including crossbreds and 

heritability of brisket disease have been estimated to ranging from 0.42 to 0.77. 

 

The reduced amount of available oxygen at higher altitudes can affect the lungs of 

the cattle and cause artery walls to thicken similar to the broilers that are 

developing ascites. The decrease of blood pressure in the arteries and subsequent 

pulmonary hypertension, make it difficult for the right ventricular to pump blood 

into the lungs. The right ventricular muscle enlarges from the additional work 

needed to pump blood, resulting in the right ventricle to lose its ability to contract. 

As blood pressure increases and starts to flow back into the heart, it can expand 

the valves of the right ventricle. Some affected cattle develop oedema in the neck 

and brisket, as well as fluid accumulation in the jaws, or along the abdomen. 

Affected cattle may develop problems early in life, or shortly after being brought to 

high altitudes from lower altitudes. Often the sires which are superior in meat 

production and other desired traits are not tested at high altitudes. Therefore, 

these sires are not tested for brisket disease and may produce progeny that 

develop brisket disease. A suggested way to reduce cattle that are susceptible to 

develop brisket disease is to identify signalling pathways in cattle suffering from 

brisket disease and to identify chromosomal regions associated with brisket 

disease.  

 

Gained knowledge about ascites from other species 

Comparative physiology has been established as a useful method to understand 

how animals function under different environmental conditions and therefore can 

be used to identify potential adaptations to environmental oxygen levels. 

Comparing the studies of ascites related diseases in other species is of interest for 

the identification of genes and genetic variation that is related to these diseases. 

Although the causes and symptoms of ascites related diseases show variation 

among the different species, the information and experience gained for other 

species might help in understanding the genetic background of ascites in broilers 

and to identify potential candidate genes involved in ascites in broilers. 

 

There is a general interest in the identification of genes subject to both positive and 

negative selection for adaption to the high altitude diseases in both human and 



6 General Discussion 

 

 

112 
 

animals. Genetic variation that is of importance for positive selection in locally 

adapted populations are expected to show higher levels of population 

differentiation and in some cases extended regions of allelic association or linkage 

disequilibrium (Scheinfeldt and Tishkoff, 2010). The heritability for oxygen 

saturation estimated in human populations differs from the heritability for oxygen 

saturation estimated from our estimate in a broiler population (chapter 2). In our 

study the estimated heritability for oxygen saturation in venous blood was close to 

zero (0.07) (Closter et al., 2009).  

 

Several physiological traits indicate how human populations in Asia, Africa and 

America have uniquely adapted to living at high altitude. Studies of these human 

populations have shown that these populations also from a genetic perspective 

adapted in a unique way to living at high altitude. This supports the hypothesis that 

this adaptation is not due to a single gene but rather a polygenic trait. On the one 

hand, this complicates the genetic analysis but in the case of production animals, it 

also suggests that selection for improved adaptation is possible.  
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Summary  

The pulmonary hypertension syndrome (PHS) in broilers, also known as ascites, 

occurs in all species of poultry. Ascites is characterized by fluid accumulation in the 

abdominal cavity as a result of defects or abnormalities in the heart. Other internal 

organs like the liver and the kidneys can also show abnormalities. The occurrence 

of ascites differs around the world, but it is a recognized problem especially in 

broilers populations. Ascites results in a greater mortality and rejections at 

slaughter. The aim of this thesis was to estimate genetic parameters and identify 

QTL that are involved in the complex multi-factorial metabolic disorder, ascites, by 

a combination of genetic and genomics techniques. The main objectives of the 

project were (1) to identify and genetically characterise traits related to the 

development of ascites, and (2) to identify genomic regions associated with the 

development of ascites.  

 

The general introduction (chapter 1) provides an overview of the developments in 

poultry production with particular focus on commercial broilers and how selection 

for health has been introduced in breeding programs for broilers. Furthermore, the 

physiological background of the development of ascites is reviewed as well as the 

current knowledge regarding the genetic background of ascites. 

 

Blood gas parameters have been suggested as indicator traits for ascites 

susceptibility. Therefore, the aim of the study presented in Chapter 2 was to 

estimate the heritability of blood gas parameters and the genetic and phenotypic 

correlations between blood gas parameters, heart ratio (postmortem indicator for 

ascites), and body weight at 2 different ages. For this purpose, blood gas 

parameters, including the partial pressure of carbon dioxide in venous blood 

(pvCO2), the partial pressure of oxygen in venous blood (pvO2), and blood oxygen 

saturation, were measured at an average age of 22 days in nearly 3,000 broilers. To 

challenge the resistance of the birds to ascites, they were kept under cold 

conditions. Heritability for heart ratio was 0.43. The heritability estimates for blood 

gas parameters were low: 0.02 for pvCO2, 0.03 for pvO2, and 0.07 for blood oxygen 

saturation. The genetic correlations between heart ratio and total carbon dioxide 

content (0.31 S.E. = 0.15) and between heart ratio and bicarbonate (0.31 S.E. = 

0.15) were moderate and positive. For pvO2, the genetic correlation with heart 

ratio was stronger and negative (−0.62 S.E. = 0.21); however, this correlation could 

not be estimated accurately because of the low heritability of pvO2. For pvCO2, the 

genetic correlation with the heart ratio was close to zero (−0.04 S.E. = 0.45). 

Phenotypic correlations between traits were, in general, similar to the genetic 
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correlations. The estimated heritabilities for blood gas parameters and the genetic 

correlations between blood gas parameters and the heart ratio do not support the 

suggestion that blood gas parameters measured during week 3 or 4 are useful traits 

in selecting against the susceptibility for ascites.   

 

Male broilers have a higher body weight and are therefore expected to be more 

prone to developing ascites than females. As genetic parameters might be affected 

by the ascites incidence, genetic parameters might differ between male and female 

broilers. The aims of the study described in Chapter 3 were to estimate the 

heritability for the ratio of right ventricular weight to total ventricular weight 

(RATIO) and body weight in male and female broilers, the genetic correlation 

between RATIO and body weight separately for male and female broilers, and the 

genetic correlations between body weight for ascitic and non-ascitic broilers. Data 

were available from 7,856 broilers (3,819 males and 4,037 females). The broilers in 

the experiment were kept under a cold temperature regimen and increased CO2 

levels. In this study, we showed that the incidence of ascites is higher in male than 

in female broilers. Heritability estimates for body weight at 7 weeks of age were 

higher for male (0.22) than for female (0.17) broilers, and for RATIO heritability, 

estimates were higher for female (0.44) than for male (0.32) broilers. The genetic 

correlations between RATIO and body weight measured at different ages changed 

from slightly positive at 2 weeks of age to moderately negative at 7 weeks. The 

change in genetic correlation was more extreme for male (from 0.01 to −0.62) than 

for female (from 0.13 to −0.24) broilers. The difference in ascites incidence 

between male and female broilers is the most likely reason for the difference in 

genetic correlations. The genetic correlation between body weight traits measured 

in broilers with fluid in the abdomen and without fluid in the abdomen decreased 

from 0.91 at 2 weeks to 0.69 at 7 weeks. Based on these results it was concluded 

that under circumstances with ascites, data from male and female broilers should 

be analyzed separately.  

 

Alternatively, it seems of interest to apply the liability normal mixture (LNM) 

method for the analysis of ascites in broilers. The LNM model has been used in 

other species to disentangle relations between traits for diseased and healthy 

animals when the assignment of individuals to the classes diseased or healthy is 

unknown. In chapter 4 a liability normal mixture (LNM) model was fitted assuming 

separate (co)variance components for RATIO of healthy and diseased chickens. 

Observations on the occurrence of ascites as well as for the ascites indicator trait 

ratio of right ventricle to the total ventricular weight (RATIO) for 7,613 broilers 
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chickens were available. The heritability for liability was 0.54, demonstrating that 

susceptibility to develop ascites is highly heritable. Of all chickens in the study 24 % 

were estimated to be affected by the ascites syndrome. Heritability for RATIO of 

diseased chickens was 0.31 and for the healthy chickens the heritability was 0.32. 

The genetic correlation between RATIO of healthy and diseased chickens was 0.75, 

indicating that RATIO is a different trait in healthy and diseased chickens. The 

genetic correlation between RATIO and liability was positive for healthy chickens 

(0.27) whereas the genetic correlation between RATIO and liability for diseased 

chickens is negative (-0.32). This negative correlation indicates that chickens with a 

high RATIO are less susceptible to the disease, whereas the positive correlation 

between liability and RATIO for the healthy chickens indicates that chickens with 

high RATIO are more susceptible to the disease. The LNM model allowed for richer 

and more detailed inference about disease status and underlying structure than 

previous models did, since using the LNM model reveals hidden structure in data by 

properly modeling uncertainty of disease classification. This also opens up new 

opportunities for selection against ascites susceptibility. 

 

Chapter 5 describes a genome wide association study using the parent generation, 

which was genotyped for SNPs, and the offspring generation, which was 

phenotyped for ascites related traits (chapter 3). The parent generation consisted 

of 895 chickens genotyped for 17,790 SNPs, and the offspring generation consisted 

of 7,857 chickens phenotyped for ascites related traits and body weight, recorded 

under ascites inducing conditions. The GWAS was performed using a single SNP 

analysis. The genotyped parent generation was combined with phenotypic 

information from their progeny by calculating the Average Adjusted Progeny Trait 

Values (AAPTV). In total, 25 SNPs were significantly (FDR <0.30) associated with 

RATIO. Significant associations were detected on chromosome 1, 2, 3, 7, 8, 10, 11 

and 20. The most significant SNPs were found on chromosome 1, 8 and on 22. This 

study also identified 16 SNP that were significantly associated both with RATIO and 

with fluid in abdomen. Out of these 16 SNPs nine SNPs were also found to be 

significantly associated with body weight.  

 

Finally, the general discussion in chapter 6 discusses a number of topics: selection 

against ascites in broilers, the use of LNM model in selection for disease resistance, 

genome wide association studies for ascites and comparison between species. The 

first topic briefly discusses selection against ascites in broilers. The second topic 

discusses the use of LNM models in selection for disease resistance and focuses on 

comparing the estimated breeding values (EBV) for liability based on the LNM 
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analysis with EBVs for RATIO using the animal model. The third topic of the general 

discussion is on using alternative models for the genome wide association study. 

The fourth and last topic is on diseases in other species which are similar or have 

similar symptoms as ascites in broilers. Results from these studies are of interest 

for the identification of chromosomal regions or genes related ascites. Pulmonary 

hypertension and acute altitude sickness disease have been observed in humans 

and Brisket disease in cattle. While causes and symptoms of ascites related 

diseases differ among species, the information and experience gained in other 

species might help in understanding the genetic background and identifying 

potential candidate genes involved in ascites in broilers.  
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Samenvatting  

Het Pulmonale Hypertensie Syndroom (PHS), ook bekend als ascites, komt voor bij 

alle moderne vleeskuikenrassen. Ascites wordt gekenmerkt door de accumulatie 

van vocht in de buikholte als gevolg van afwijkingen aan het hart. Tegelijkertijd kan 

er ook sprake zijn van afwijkingen aan andere organen zoals de lever en de nieren. 

De frequentie waarin ascites voorkomt kan sterk verschillen maar in het algemeen 

wordt ascites gezien als een probleem dat leidt tot hogere mortaliteit en het 

afkeuren van kippen bij de slacht. Het doel van dit onderzoek was om genetische 

parameters te schatten en om QTL te detecteren die betrokken zijn bij de complexe 

metabole ziekte ascites door gebruik te maken van een combinatie van genetische 

en genomische technieken. De belangrijkste doelstellingen van het project waren 

(1) het identificeren en genetisch karakteriseren van kenmerken die verband 

houden met de ontwikkeling van ascites, (2) het identificeren van genomische 

gebieden die geassocieerd zijn met de ontwikkeling van ascites. 

 

De algemene introductie in hoofdstuk 1 geeft een overzicht van de ontwikkelingen 

op het gebied van de pluimveeproduktie met speciale aandacht voor de selectie op 

gezondheid. Daarnaast geeft dit hoofdstuk een overzicht van de fysiologische 

veranderingen die optreden gedurende de ontwikkeling van ascites bij vleeskuikens 

en een samenvatting van de huidige kennis omtrent de genetische achtergrond van 

ascites. 

Bloedgaswaarden worden wel genoemd als mogelijke indicatoren voor ascites. Het 

doel van het onderzoek beschreven in hoofdstuk 2 was daarom om de 

erfelijkheidsgraden van bloedgaswaarden te schatten en om genetische en 

fenotypische correlaties tussen bloedgaswaarden, RATIO (verhouding tussen het 

gewicht van de rechter hartkamer en het totale gewicht van beide hartkamers – 

een post-mortem indicator voor ascites) en lichaamsgewicht op twee leeftijden te 

schatten. Hiervoor zijn bloedgaswaarden gemeten aan bijna 3000 vleeskuikens op 

een leeftijd van gemiddeld 22 dagen. De volgende bloedgaswaarden zijn gemeten: 

de partiële koolstofdioxidespanning in het veneuze bloed (pvCO2), de partiële 

zuurstofspanning in het veneuze bloed (pvO2) en de zuurstofverzadiging van het 

bloed. Om de gevoeligheid van de vleeskuikens voor ascites te toetsen werden ze 

onder koude omstandigheden gehouden. De erfelijkheidsgraad voor RATIO was 

0.43. De erfelijkheidsgraadschattingen voor de bloedgasparameters waren laag: 

0.02 voor pvCO2, 0.03 voor pvO2, en 0.07 voor de bloedzuurstofverzadiging. De 

genetische correlaties tussen RATIO en totaal kooldioxide gehalte (0.31 S.E. = 0.15) 

en tussen RATIO en bicarbonaat gehalte (0.31 S.E.= 0.15) waren gematigd en 

positief. De genetische correlatie tussen pvO2 en RATIO was sterker en negatief 
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(−0.62 S.E. = 0.21). Deze correlatie kon echter niet nauwkeurig worden geschat 

vanwege de lage erfelijkheid van pvO2. De genetische correlatie tussen pvCO2 en 

RATIO was ongeveer 0 (−0.04 S.E. = 0.45). De fenotypische correlaties tussen 

kenmerken kwamen in het algemeen overeen met de genetische correlaties. De 

resultaten in dit hoofdstuk geven geen aanleiding om te veronderstellen dat 

bloedgasparameters gemeten op een leeftijd van 3 of 4 weken een grote bijdrage 

kunnen leveren aan de selectie tegen ascites. 

 

Haantjes hebben een hoger lichaamsgewicht en zijn daarom naar verwachting 

gevoeliger voor ascites. Omdat de genetische parameters mogelijk afhankelijk zijn 

van de ascites incidentie kunnen de genetische parameters verschillen tussen 

haantjes en hennetjes. Het doel van het onderzoek beschreven in hoofdstuk 3 was 

daarom om: 1) de erfelijkheidsgraad voor RATIO en lichaamsgewicht afzonderlijk te 

schatten in haantjes en in hennetjes, 2) de genetische correlatie tussen RATIO en 

lichaamsgewicht afzonderlijk te schatten voor haantjes en hennetjes, 3) de 

genetische correlatie tussen lichaamsgewicht en ascites afzonderlijk te schatten in 

vleeskuikens met ascites en in gezonde vleeskuikens. Voor dit onderzoek waren 

gegevens beschikbaar van 7856 vleeskuikens (3819 haantjes en 4037 hennetjes). 

Om de gevoeligheid van de vleeskuikens voor ascites te toetsen werden ze 

gehuisvest bij een verlaagde temperatuur en bij een verhoogd CO2 niveau. Dit 

onderzoek laat zien dat de incidentie van ascites hoger is in haantjes dan in 

hennetjes. De erfelijkheidsgraden voor lichaamsgewicht op 7 weken waren hoger 

voor de haantjes (0.22) dan voor de hennetjes (0.17). Voor RATIO waren de 

erfelijkheidsgraadschattingen hoger voor de hennetjes (0.44) dan voor de haantjes 

(0.32). De genetische correlaties tussen RATIO en lichaamsgewicht gemeten op 

verschillende leeftijden veranderde van licht positief op een leeftijd van 2 weken 

naar gematigd negatief op een leeftijd van 7 weken. Deze verandering van de 

genetische correlatie was sterker in de haantjes (van 0.01 naar −0.62) dan in de 

hennetjes (van 0.13 naar −0.24). Het verschil in ascites incidentie tussen haantjes 

en hennetjes is de meest voor de hand liggende verklaring voor de verandering in 

genetische correlatie. De genetische correlatie tussen lichaamsgewicht in 

vleeskuikens met vocht in de buikholte (ascites) en die zonder vocht in de buikholte 

(gezond) nam af van 0.91 op 2 weken tot 0.69 op 7 weken. Wij concluderen dat 

gegevens van haantjes en hennetjes afzonderlijk moeten worden geanalyseerd in 

situaties waarin ascites een rol speelt.  

 

Als alternatief kan de data worden geanalyseerd met een Gemengd-

Ziektegevoeligheid-Model (GZM). Dit model kan rekening houden met verschillen 
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tussen gezonde en zieke vleeskuikens. In hoofdstuk 4 is een Gemengde-

Ziektegevoeligheid-Model (GZM) gebruikt voor de analyse van RATIO. In dit model 

kunnen (co)variantie componenten verschillen tussen gezonde en zieke 

vleeskuikens. Dit model is gebruikt om genetische parameters te schatten voor 

RATIO in gezonde en zieke vleeskuikens maar ook om de gevoeligheid voor ascites 

te schatten. In de analyse is gebruik gemaakt van informatie over ascites (vocht in 

de buikholte) en RATIO gemeten aan 7613 vleeskuikens. De erfelijkheidsgraad voor 

ascitesgevoeligheid was 0.54 wat aangeeft dat de aanleg om ascites te ontwikkelen 

sterk genetisch is bepaald. Van alle vleeskuikens in deze studie heeft naar schatting 

24% ascites. De erfelijkheid van RATIO in zieke kippen was 0.31 en in gezonde 

kippen was dit 0.32. De genetische correlatie tussen RATIO in gezonde en zieke 

kippen was 0.75 wat aangeeft dat RATIO in gezonde en zieke kippen genetisch 

gezien niet hetzelfde kenmerk is. De genetische correlatie tussen RATIO en 

ziektegevoeligheid was positief voor gezonde kippen (0.27) terwijl de genetische 

correlatie tussen RATIO en ziektegevoeligheid negatief was voor zieke kippen (-

0.32). Deze negatieve correlatie geeft aan dat kippen met een hoge RATIO minder 

gevoelig zijn voor ascites. De positieve correlatie tussen ziektegevoeligheid en 

RATIO voor de gezonde kippen geeft aan dat kippen met een hoge RATIO 

gevoeliger zijn voor de ziekte. Het Gemengde-Ziektegevoeligheid-Model maakt een 

gedetailleerde analyse van de data mogelijk. Een dergelijke gedetailleerde analyse 

is niet mogelijk met het voorheen gebruikte lineair model. Het Gemengde-

Ziektegevoeligheid-Model biedt daarom nieuwe mogelijkheden om te selecteren 

tegen ascitesgevoeligheid. 

 

Hoofdstuk 5 beschrijft de resultaten van een genoomwijde-associatie studie. Voor 

deze studie zijn genotypes beschikbaar van de ouderdieren en ascites gerelateerde 

fenotypes van de nakomelingen. De 895 beschikbare ouderdieren zijn getypeerd 

voor 17790 SNPs en 7857 nakomelingen hebben fenotypes. De genetische 

associatie studie is voor elke SNP afzonderlijk uitgevoerd. In de analyses zijn de 

genotypes van de ouders gebruikt in combinatie met een Gecorrigeerd-

Nakomelingen-Gemiddelde (GNG). In totaal waren 25 SNPs significant geassocieerd 

met RATIO (FDR<0.30). Significante associaties werden gevonden op chromosoom 

1, 2, 3, 7, 8, 10, 11 en 20. De meest significante associaties werden gevonden op 

chromosoom 1, 8 en 22. In deze studie zijn 16 SNPs gevonden die significant 

geassocieerd waren met zowel RATIO als met het voorkomen van vocht in de 

buikholte. Van deze 16 SNPs waren er 9 die ook significant geassocieerd zijn met 

lichaamsgewicht.  
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Tenslotte worden in hoofdstuk 6 de volgende onderwerpen bediscussieerd: 

selectie tegen ascites, het gebruik van het Gemengde-Ziektegevoeligheid-Model in 

de selectie op ziekteresistentie, alternatieve statistische modellen voor de 

genoomwijde associatie studie en een overzicht van aan ascites gerelateerde 

kenmerken in verschillende diersoorten. Het eerste onderwerp bediscussieerd kort 

de selectie tegen ascites in vleeskuikens. Het tweede onderwerp richt zich op het 

gebruik van het Gemengde-Ziektegevoeligheid-Model in de selectie op 

ziektegevoeligheid. Hiertoe zijn de geschatte fokwaarden voor ziektegevoeligheid 

op basis van het Gemengde-Ziektegevoeligheid-Model vergeleken met de 

fokwaarden voor RATIO op basis van het diermodel. Het derde onderwerp richt 

zich op alternatieve statische modellen voor de genoomwijde associatiestudie. Het 

vierde en laatste onderwerp richt zich op ziektes bij andere diersoorten die 

soortgelijke symptomen vertonen als ascites bij vleeskuikens. Pulmonale 

Hypertensie en hoogteziekte komen voor bij de mens en Brisket ziekte komt voor 

bij rundvee. Terwijl oorzaak en symptomen van aan ascites verwante ziektes in 

andere diersoorten kunnen variëren, kan kennis omtrent de ziekte in ander soorten 

mogelijk bijdragen aan het begrip van de genetische achtergrond van ascites in 

vleeskuikens. 
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