

Introduction

- Natural fibre-Polyolefins:
 - NMT, Fibre mat based (door trims, etc.)
 - WPC (decking, siding, etc.)
 - Injection moulding (entering market *1)
- Natural fibre-Poly(lactic acid):
 - PLA has properties that could make it a competitor of PP

*1 Carus & Gahle, Reinf Plast, April 2008

Worst case: Maximum cleaving of PLA chain									
 Assume PLA of Mw = 245,000 Da 30% natural fibre in PLA All water present causes chain scission 									
Resul	ting in:								
	Moisture:PLA (wt.%)	# CI	eaves Mw (-)	(Da)					
Pure PLA	0.025		3.4	72,000					
Fibre, 6%	moisture 2.6		350	700					
Fibre, 10%	6 moisture	4.3	580	420					

Experimental: kneading

Under flow of pre-dried N
10-50 wt.% fibre in PLA
Set Temperature: 175°C
Rotor speed: 100 RPM
Total compounding time: 13 min

AGROTECHNOLOGY & Food Sciences Group Wageningen <mark>Ur</mark>

Experimental: injection moulding + moisture analysis

 Granules dried at 80°C for 4-8 h
 Injection moulding to flexural test bars 4 mm * 10 mm * 80 mm

Moisture analysis of fibres:

- Undried fibres: weight reduction after 16 h at 105°C
- Dried fibres: Mettler Toledo DL39 Karl Fisher Coulometer at 200°C

WAGENINGENUR

AGROTECHNOLOGY & FOOD SCIENCES GROUP

Experimental: Intrinsic viscosity + MFI

IV:

- Viscosity of PLA in chloroform
- Extrapolated to 0 concentration
- IV relates to M_v according to Mark-Houwink
- MFI: flow of material (g/10 min) through a standard die
 - Pre-drying of granules at 80°C for 4 h and for 24 h
 - 190°C
 - 2.16 kg
 - The higher MFI, the lower viscosity, the more degradation

AGROTECHNOLOGY & Food sciences group Wageningen <mark>ur</mark>

Results: Intrinsic viscosity (IV) and Molecular Weight (Mv)

Mark-Houwink: IV = $0.0153 * M_v^{0.759}$

	IV (ml/g)		M _v (Da)	
C	Dried	Undried	Dried	Undried
Blanc	188.4		245,000	
Kneaded	129.4		149,400	
30% Ramie	105.6		114,300	
30% Flax	126.7	117.1	145,300	131,000
30% Cotton	62.9	61.6	57,800	56,200

FOOD SCIENCES GROUP WAGENINGEN UR *³ Dorgan et al., JAPS, 43, 2005, 3100-3111

 Results: Mv, wo Dried fibre: Undried fibre: 		orst case vs. experimental val 0.22-0.40 wt.% moisture 6.6-9.0 wt.% moisture			
Calculated Worst Case Experimental					
Drie	ed	Undried	Dried	Ur	ndried
Blanc			245,	000	
Kneaded	72,000		149,	400	
30% Ramie	19,310	630	114,	300	-
30% Flax	10,590	467	145,	300	131,000
30% Cotton	14,360	636	57,	800	56,200

Flexural Modulus

Charpy Impact = energy absorption capacity

Scanning Electron Microscopy

30 wt.% Flax-PLA

- Fairly good fibre-matrix adhesion

Conclusions

AGROTECHNOLOGY & FOOD SCIENCES GROUP

VAGENINGENUR

- Undried natural fibres cause PLA chain scission during melt processing, though by far not to theoretical *worst case* level.
- Drying of natural fibres prior to compounding appears to be not critical for basic mechanical performance of PLA composites.
- MFI results indicate that natural fibre-PLA composites exhibit an onset point for degradation in the presence of too much water.
- Strength and stiffness properties of natural fibre-PLA composites is better than natural fibre-PP, impact strength is less good.

