MEDEDELINGEN LANDBOUWHOGESCHOOL WAGENINGEN • NEDERLAND • 71-7 (1971)

FREELIVING AND PLANT PARASITIC NEMATODES FROM SPITZBERGEN, COLLECTED BY MR. H. VAN POSEN

P. A. A.LOOF
Department of Nematology, Agricultural University, Wageningen, The Netherlands

Received 22-X-1970

1. Introduction

In July 1965 Mr. H. van Rossen visited Spitzbergen as nematological participant of an expedition organized by I.Y.F. (International Youth Federation for the Conservation and Study of Nature). Some basis camps were made, from which the field work was done. Sixty-five nematode samples were taken. In this paper the data on collection localities and techniques, supplied by Mr. van Rossen, will be given first. Then a review will be given of the nematodes found.

2. The island of spitzbergen and the collection localities

The island of Spitzbergen -- more exact Vest Spitzbergen - lies in the arctic part of Europe, extending from $76^{\circ} 30^{\prime}$ to $80^{\circ} \mathrm{N}$. latitude and $11^{\circ}-22^{\circ} \mathrm{E}$. longitude. The warm Gulf current influences the climate to such a degree that Ny Alesund, the northernmost town, located at $79^{\circ} \mathrm{N}$. lat., is accessible from the sea all the year round, though the inland temperatures may sink to $-48^{\circ} \mathrm{C}$. Summer lasts for about four months; its mean temperatures lie between 3 and $11^{\circ} \mathrm{C}$ at Ny Alesund. In the northern parts the sun does not set for nearly four months so that the top soil is warmed rather constantly.

The northern part of Spitzbergen enjoys a warmer climate than the southern region (from Sörkapp to Hornsund) because of the influence of the cold Novaya Zemlya current in the south.

In enclosed niches temperature may rise to $22^{\circ} \mathrm{C}$. On the other hand, temperature may drop suddenly owing to strong glacial winds.

The relative humidity of the air is very low. Precipitation is 310 mm per year, mostly in the form of snow. With the exception of more exposed places the soil is usually moist or frozen.

There were two basis camps. The first was a tent camp at Longyearbyen, from which samples were taken in the surroundings of this site, and also during a five-days trip in the mountainous region south of Longyearbyen. The second was in a house in Ny Ålesund. Here too samples were taken in the surroundings, and during a longer trip of three days.

Finally boat trips were made to Blomstrandhalvöya, Magdalenafjorden and Virgohamna (See map).

Description of sampling sites:
A. Silt localities. Along the sea, from outer flood line (marked by sea weeds) inland. The tidal difference is 40 cm . The water has a low salt content owing to large inflow of water from glaciers.

1. Isfjorden, Adventdalen, $78^{\circ} 15^{\prime} \mathrm{N}$. lat. Close to Longyearbyen. Two localities:
a. Haf along lagoon opposite end-moraine, 2 km south-east from bridge over Longyearbreen River; just inland from sea weed line, between driftwood, silt vegetation and nests of Eider Duck and Arctic Tern. Sample 2.
b. Near bridge of Longyearbyen, south-east side. Between tufts of grass and nests of Arctic Tern, from eroding sandy slope towards the sea, behind a wooden shed. Water temperature $4^{\circ} \mathrm{C}$. Air temperature $4-11^{\circ} \mathrm{C}$. Sample 6.
2. Kongsfjorden, 79° N. lat. Stuphallet. Halfway between Ny Ålesund and the mouth of the Kongsfjord at Kvadehuk. Stuphallet is a birds mountain one km from the shoreline. Sample taken along the beach with red sand, without vegetation; and higher up the dune, where a few grass tufts were present. A small brooklet, most covered with snow, enters the sea here. Domain of Arctic Petrel. Water temperature $2^{\circ} \mathrm{C}$. Air temperature $8-10^{\circ} \mathrm{C}$. Sample $57 / 58$.
3. Kongsfjorden, 79° N.lat. Blomstrandhalvöya, Gorillahytte. A peninsula facing south. Gorillahytte is situated in the north-eastern enclosure, close to the glacier. Many ice-bergs come floating along here, on their way to sea. Bathing place of seals. Shore of white sand without vegetation. Water temperature 2°. Air temperature 9°. Sample 66.
4. Kongsfjorden, $79^{\circ} \mathrm{N}$.lat. Ny Ålesund. One meter above sea level, about 20 m from shoreline. Vegetation typical for exposed coastal plains. Air temperature $2-6^{\circ}$. Samples 68 (permafrost at 30 cm) and $69(60 \mathrm{~cm})$.
5. Magdalenafjorden, $79^{\circ} 35^{\prime}$ N. lat. Small peninsula used as cemetery for Dutch whalers, $2-4 \mathrm{~m}$ above sea level, exposed to winds. Fjord surrounded by glaciers. Greater part of peninsula covered by snow. Many ducks swim around, the Arctic Skua breeds here. Water temperature 2°. Air temperature 5°. Sample 48, from moss zone with some grasses and Saxifragaceae.
6. Smeerenburgfjorden, Dansköya, Virgohamna, $79^{\circ} 45^{\prime}$ N.lat. Opposite the former Smeerenburg, founded by the Dutch in 1630, is a small bay which was used as launching-site for the exploration balloon of the Swede Andree. Many remains of wood and iron materials can still be found. This region -

Map of Spitzbergen showing collection sites. $\mathbf{B a}=$ Bayelva; $\mathbf{B l}=$ Blomstrandhalvöya; $\mathbf{E}=$ Eskjeret; $\mathbf{F}=$ Fardalen; $\mathbf{J}=$ Juttahl $; \mathbf{K j}=$ Kjarsvika; Kv $=$ Kvadehuk; $\mathbf{L}=$ Longyearbyen; $\mathbf{M}=$ Magdalenafjord; $\mathbf{N}=\mathbf{N y}$ Ålesund; $\mathbf{S}=$ Stuphallet; $V=$ Virgohamna; $\mathbf{Z}=\mathbf{Z e p p e l i n f j e l l e t . ~}$

Meded. Landbouwhogeschool Wageningen 71-7 (1971)
northernmost point of Vest Spitzbergen - is very cold because of its exposure to winds from the northern polar ice cap. Temperature about 0°. We never saw the sun owing to a dense fog. No bird's song was heard. Conditions along bay and under overhanging rocks optimal for mosses. Sample 46 from a site with grasses and lichens, sample 47 from a site with mosses (Calliergon and Drepanocladus).
B. Freshwater sites.
7. Isfjorden, Longyearbyen, $78^{\circ} 15^{\prime}$ N.lat. End-moraine, just behind camping site, along brook, 25 minutes' walk along road, south east from telegraph station. Sampling sites:
a. Slope exposed to wind and sun. Vegetation typical for dry exposed places. Gravel; tundra plants. Samples 17-20 and 40-44.
b. Lower part of slope. Vegetation denser, typical for moist soils. Sample 21.
c. Mosses and grasses near patch of snow. Samples 1, 15, 16.
d. A heap of sand, accidentally thrown up, with Festuca brachyphylla and Poa spec. at foot of slope. Samples 3 and 4.
e. Pool in lowest part of the terrain. Sample 5.
8. Isfjorden, Longyearbyen, $78^{\circ} 15^{\prime} \mathrm{N}$. lat. Mountain slope, immediately north west of Longyearbyen, rather steep, leading to Sverdruphamare, 400 m above sea level. Air temperature $5-11^{\circ}$. Two samples taken every 50 m : one under plants, one at least 50 cm from plants. According to vegetation this slope can be divided into four zones:
a. Vegetation abundant. $10-50 \mathrm{~m}$ above sea level. Dryas octopetala, Cassiope tetragona, Salix polaris form a dense mat, together with many grasses and other plants.
b. Vegetation still rich but more dispersed on eroded soil. $50-100 \mathrm{~m}$.
c. Many mosses in wet places; less higher plants, more widely spaced on eroded soils; species typical for more exposed and drier places. $150-350 \mathrm{~m}$; plants becoming scarcer with increasing altitude.
d. Very few plants; or no vegetation where soil had been washed away between sharp basalt stones. Very steep slope. $350-400 \mathrm{~m}$. Samples $22-39$.
9. Isfjorden, Fardalen, $78^{\circ} 15^{\prime}$ N. lat. Mountainous country south of Longyearbyen. Samples taken close to Fardalenhytte, from a dense dark green mat of various grass species; presumably nitrogen-rich soil, elsewhere vegetation yellowish-green. Air temperature 3-5 ${ }^{\circ}$. Permafrost at 25 cm . Samples 7-11, from various depths.
10. Kongsfjorden, Ny Ålesund, Zeppelinfjellet, 79° N.lat. Northern mountain slope, south of Ny Ålesund, rather exposed and dry; fairly warm. Sample 51 on top of mountain, under Saxifraga, close to snow layer, alt. 435 m . Temperature 5°. Samples 52 and 67 lower, at 50 m altitude where slope gradually becomes more horizontal.Samples taken in and around polygones. Temperature $5-11^{\circ}$.
11. Kongsfjorden, birds' islands Eskjeret and Juttahl. 79° N. lat. These islands are elevated $20-30 \mathrm{~m}$ above sea level. Eider duck nests all over the islands; thus sampling sites rich in nitrogen, with tufts of dark green grass (Phippsia spec.).

Exposed areas. Temperature 5-12 ${ }^{\circ}$. Samples 53 (Eskjeret) and 54-56 (Juttahl). 12. Kongsfjorden, Stuphallet, 79° N.lat. Halfway between Ny Ålesund and mouth of Kongsfjord. Tundra plain between foot of birds' mountain and the sea. Typical tundra vegetation (Saxifraga oppositifolia is conspicuous here) with polygones. Temperature $8-10^{\circ}$. Samples 59,61 and 62 ; sample 60 straight under bird rocks, very moist soil, dense grass tufts intermixed with other plants characteristic for nitrogen-rich soils.
13. Kongsfjorden, Kvadehuk, 79° N.lat. Beachhead in sea, 30 m altitude, at mouth of fjord opposite tip of Prins Karls Forland Island. Typical tundra with polygones and permanently frozen soil (pure loam). Temperature 3-4. Sample 63 taken under one grass and one Saxifraga plant, no other plants being visible here.
14. Forlandsundet, Bröggerhalvöya, Kjarsvika, 79° N.lat. Mountain slope behind Kjarsvika hytte, about 5 km from Kvadehuk. Southern slope below birds' mountain, protected from continental glacial winds; the sea in front of it is a shallow basin between Bröggerhalvöya and Prins Karls Forland. Very warm place, temperature rising to 22°. Sample 65, from nitrogen-rich soil below bird rocks, not far from den of Arctic Fox.
15. Kongsfjorden, Bayelva, $79^{\circ} \mathrm{N}$. lat. Plains north of the red Bayelva river, which runs into Kongsfjord 2 km from Ny Ålesund. Loamy soil with poor vegetation, mostly grasses and mosses. Temperature $5-7^{\circ}$; kept low by glacial winds from Bröggerbreen. Sample 64.
16. Kongsfjorden, Ny Ålesund, town. 79° N. lat. Sand and loam. Eroded soils, vegetation typical for open but rather moist sites. Temperature $5-11^{\circ}$. Sample 70.
17. Kongsfjorden, Blomstrandhalvöya, 79° N.lat. Peninsula in Kongsfjord, altitude about 40 m ; vegetation abundant; rather warm in spite of a glacier wall 30 m high in the immediate vicinity. Sample 50, between marble stones. Sample 49 from a cold site on a slope close to the sea.

List of individual samples:

1. Longyearbyen, camping site Adventdalen, Isfjorden, southern slope, 40 m altitude; vegetation grasses and mosses.
2. Longyearbyen, beach; grasses, driftwood, sea weed.
3. Longyearbyen, camping site, thrown-up sand heap; grasses.
4. Longyearbyen, camping site, thrown-up sand heap; fine grasses.
5. Longyearbyen, camping site, pool with Eriophyllum sp. along road.
6. Longyearbyen, behind wooden shed near bridge, grass tufts.
7. Fardalenhytte, close to hut. Moss and flowers.
8. Fardalenhytte, close to hut, $0-10 \mathrm{~cm}$ depth. Grasses.
9. As 8 , depth $10-15 \mathrm{~cm}$.
10. As 8, depth $15-20 \mathrm{~cm}$.
11. As 8 , depth $20-25 \mathrm{~cm}$ (25 cm permafrost).
12. Longyearbyen, end-moraine, western slope towards sea, just under snow. Fine grasses and mosses.
13. As 15 , grass tufts and moss in centre, alt. 10 m .
14. Longyearbyen, western edge of high plain, alt. 20 m .
15. Longyearbyen, high plain, gravel, grass and Salix reticulata.
16. Longyearbyen, end-moraine above northern slope. Grass, Papaver, Silene, Saxifraga, Draba, Oxyria, Polygonum.
17. Longyearbyen, end-moraine, middle of northern slope, 10 m alt. Grass tufts and Salix.
18. Longyearbyen, lower part of slope. Grasses.
19. Longyearbyen, bare sand.
20. As $22,10 \mathrm{~m}$ alt., with grasses.
21. Longyearbyen, between houses, alt. 50 m , bare sand.
22. As 24, much coal-dust; grasses.
23. Longyearbyen, alt. 100 m ; between sites with vegetation.
24. As 26, grass.
25. Longyearbyen, alt. 150 m ; bare soil.
26. As 28 , grass tufts and mud. Up to this altitude there is an even vegetation cover.
27. Longyearbyen, alt. 200 m ; bare sand.
28. As 30 , grass and moss tufts, mud.
29. Longyearbyen, alt. 250 m ; bare sand between coal.
30. As 32, grass and moss tufts between rocks.
31. Longyearbyen, alt. 300 m ; bare sand.
32. As 34, grasses and mosses between rocks.
33. Longyearbyen, alt. 350 m ; bare sand.
34. As 36 ; grass and moss tufts between stones.
35. Longyearbyen, alt. 400 m ; bare sand near third Stone Man.
36. As 38 , grasses and mosses.
37. Longyearbyen, Cerastium.
38. Longyearbyen, Saxifraga groenlandica.
39. Longyearbyen, Papaver dahlianum.
40. Longyearbyen, Carex saxatilis.
41. Longyearbyen, Draba alpina.
42. Virgohamna, very moist soil with grasses.
43. As 46; mosses.
44. Magdalenafjord, cemetery on peninsula. Mosses.
45. Blomstrandhalvöya, near Ny London, very cold soil. Grasses and mosses.
46. Blomstrandhalvöya, warm soil, 5 m above sea level. Between stones.
47. Ny Ålesund, summit of Zeppelinfjellet, 435 m alt. Under Saxifraga.
48. Ny Ålesund, base of Zeppelinfjellet, alt. 50 m , in polygones; permafrost at 30 cm .
49. Island of Eskjeret, nesting site of eider ducks. Fine grasses.
50. Island of Juttahl, alt. 10 m ; grasses near house.
51. Island of Juttahl, under bird rock. Grasses.
52. Island of Juttahl, old eider duck nest on top of island, alt. 30 m . Grasses.
53. Stuphallet, between Ny Ålesund and Kvadehuk. Beach under rocks, above flood line.
54. Stuphallet, on dune along beach, alt. 20 m . Red sand. (Samples 57 and 58 combined in one vial).
55. Stuphallet, bird mountain, moss vegetation, lower part of slope.
56. Stuphallet, just under nests, where vegetation on slope begins. Fine grasses.
57. Stuphallet, Polygone, high stony edge; Saxifraga oppositifolia.
58. Stuphallet, Polygone, center, Grass.
59. Kvadehuk, polygone plain, loam. Bare except for one grass plant and one Saxifraga.
60. Bayelva, between Ny Ålesund and Kvadehuk, opposite radio satellite station. Grass.
61. Kjoerfjellet, under bird rock near Kjarsvika. Fine grasses.
62. Blomstrandhalvöya, Eastern side, near Gorillahytte. Bare sand.
63. Ny Ålesund, end moraine under Zeppelinfjellet. Bare.
64. Ny Ålesund, near beach. Permafrost at 30 cm . Bare.
65. Ny Ålesund, near beach, permafrost at 60 cm . Bare.
66. Ny Ålesund, town. Poa alpina vivipara.

3. TECHNIQUE OF SAMPLING AND PROCESSING

With a small handspade $100-200$ grams of soil were dug out and stored in plastic bags. The samples were sifted over a wide-mesh sieve; in this way coarse material and stones were removed. The remaining soil - about 50 g - was washed into a 2 litre plastic container. The samples were then washed by the stir and decanting method: add ample water, stir with a spoon, let heavier particles settle for about ten seconds; then decant into a second container. This was repeated thrice. The suspension thus obtained was filtered over two 45μ sieves. The residue was washed onto two cottonwool filters which were left in a basin with a thin water layer for at least six hours, after which the basin was emptied into a conical 100 ml beaker. After one more hour the upper part of the water was sucked off cautiously. The bottom suspension containing the nematodes was washed into 12 ml glass tubes, which were now filled about halfway. These tubes were heated in boiling water to kill the nematodes. After cooling F.A.A. of double concentration was added.

The Longyearbyen samples were washed in brook water, the others in the water of the washing house at Ny Ålesund.

4. Results

In the laboratory each sample was first surveyed for species. Then the remainder was counted in counting dishes divided into 20 compartments, from which at least three were fully counted. Total numbers were estimated on this basis. Thus the numbers of specimens are approximate except for small samples.

Owing to prolonged stay in formalin-containing fixative the nematodes had
grown rather dark. Otherwise the state of conservation was good generally. Most dorylaims were even excellent, the oesophageal gland nuclei being distinct. The total number of specimens found in these 65 samples approached 25.000 .
Sample 1.
Eudorylaimus agilis
Prismatolaimus intermedius
Achromadora semiarmata
Eudorylaimus spec.
Tylenchus davainei
Tylenchus cf. thornei
Enchodelus conicaudatus
Aphelenchoides arcticus
Monhystera villosa
Prismatolaimus spec.
Plectus rhizophilus
Eudorylaimus lugdunensis
Plectus parietinus
Chiloplacus saccatus
Tylenchorhynchus leptus
Bastiania gracilis
Eudorylaimus megodon

Sample 2.
Anaplectus granulosus
Eucephalobus oxyuroides
Chiloplacus saccatus
Teratocephalus lirellus
Tylenchus thornei
Eudorylaimus spec.
Monhystera spec.
Sample 3.
Tylenchus leptosoma
Tylenchus thornei
Teratocephalus lirellus
Chiloplacus saccatus
Plectus acuminatus
Acrobeloides enoploides
Aphelenchoides arcticus
Tylenchorhynchus arcticus
Eucephalobus arcticus
Monhystera villosa
Monhystera filiformis
Heterolobus elongatus

Tylenchorhynchus leptus 2
Eudorylaimus megodon 2
105 Eudorylaimus spec. 2
59 Enchodelus conicaudatus 2
48 Plectus assimilis 2
53 Bastiania gracilis 1
27 Prismatolaimus intermedius 1
20 Achromadora tenax 1
13 Tylenchus spec. 25
12 Indeterminable 3
11 Total 1432

8 Sample 4.
7
6
2
Chiloplacus saccatus 8
2 Eucephalobus arcticus 8
1 Eudorylaimus spec. 6
392 Plectus assimilis 4
Monhystera villosa 4
Tylenchorhynchus leptus 3
Plectus cf. parvus 2
Plectus parietinus 2
4 Cephalobus spec. 2
3 Enchodelus spec. 2
3 Eudorylaimus alleni 1
3 Anaplectus granulosus 1
1 Total 63

1

Sample 5.
Monhystera vulgaris 32
Aphelenchoides arcticus 30
Eudorylaimus spec. 38
453 Heterocephalobus elongatus 19
398 Plectus rhizophilus 13
175 Monhystera stagnalis 6
157 Tripyla papillata 6
87 Neotylenchidae 6
48 Eucephalobus arcticus 7
20 Eudorylaimus megodon 3
19 Prismatolaimus spec. 1
17 Chiloplacus saccatus 1
8 Ditylenchus spec. 1
6 Prodorylaimus spec. 1
3 Total 164
Meded. Landbouwhogeschool Wageningen 71-7 (1971)
Sample 6.
Chiloplacus saccatus
Panagrolaimus rigidus Aphelenchoides arcticus Prismatolaimus intermedius Ditylenchus spec.
Sample 7.
Tylenchus spec. 61
Tylenchus thornei 29
Prismatolaimus dolichurus 19
Plectus spec. juveniles
Tylenchus leptosomaEudorylaimus spec.Basiria dolichuraAchromadora tenaxPlectus rhizophilus
Plectus parvus
Anaplectus granulosusDitylenchus spec.Heterocephalobus elongatusIndeterminable
Sample 8.Teratocephalus lirellusPlectus rhizophilusPrismatolaimus primitivusPrismatolaimus dolichurusTylenchus thorneiAchromadora tenax
Monhystera filiformis
Monhystera vulgaris
Euteratocephalus crassidens
Eudorylaimus spec.Aphelenchoides arcticusBasiria dolichura
Heterocephalobus elongatusAnaplectus granulosusTylenchus leptosomaChiloplacus saccatusSample 9.Tylenchus thorneiEudorylaimus subjunctusPrismatolaimus primitivus

15

15

15

15

15

15

15

12 Tylenchus thornei

12 Tylenchus thornei 1261 1261 1261 1261 1261 1261 1261 1261 1261 1261 1261
12 Tylenchus thornei
12 Tylenchus thornei 19 19 19 19 19 19 19 19 19 19 19
7 Prismatolaimus spec.
7 Prismatolaimus spec. 12 12 12 12 12 12 12 12 12 12 12
6 Plectus spec.
6 Plectus spec. 6 6 6 6 6 6 6 6 6 6 6
6 Teratocephalus lirellus
6 Teratocephalus lirellus 6 6 6 6 6 6 6 6 6 6 6
5 Ditylenchus spec.
5 Ditylenchus spec. 4 4 4 4 4 4 4 4 4 4 4
4 Tylencholaimus proximus
4 Tylencholaimus proximus 2 2 2 2 2 2 2 2 2 2 2
3 Tylenchorhynchus arcticus
3 Tylenchorhynchus arcticus 2 2 2 2 2 2 2 2 2 2 2
1 Monhystera spec.
1 Monhystera spec. 2 2 2 2 2 2 2 2 2 2 2
12 Anaplectus spec. juv.
12 Anaplectus spec. juv. 2 2 2 2 2 2 2 2 2 2 2
Total 192 192 192 192 192 Total 1316 Total 1316
Sample 11.
Sample 10.
6 Tylenchus thornei 282
2 Eudorylaimus subjunctus 10
1 Plectus rhizophilus 6
1 Monhystera spec. 4
1 Prismatolaimus spec. juv. 2
Total 11 Aphelenchoides arcticus 1
Tylenchus leptosoma 1
Heterocephalobus elongatus 1
Achromadora cf. tenax 1
Total 308

Sample 17.		Acrobeloides spec.		7
		Prismatolaimus spec.		5
Tylenchus thornei	714	Ereptonema arcticum		2
Eudorylaimus parvus + spec.	71	Chiloplacus saccatus		1
Monhystera spec.	44	Panagrolaimus rigidus		1
Enchodelus cf. macrodoroides	26	Neotylenchidae		1
Tylencholaimus proximus	26		Total	473
Cervidellus serratus	22			
Plectus spec.	22			
Teratocephalus lirellus	21	Sample 20.		
Aphelenchoides arcticus	17			
Ditylenchus spec.	10	Tylenchus thornei		51
Enchodelus analatus	7	Cervidellus serratus		43
Acrobeloides tricornis	6	Eudorylaimus spec.		21
Chiloplacus saccatus	3	Tylenchus spec.		21
Ereptonema arcticum	1	Aphelenchoides arcticus		15
Tylenchorhynchus cf. nothus Total	1	Plectus spec.		15
	991	Tylenchus leptosoma		12
		Tylenchus davainei		12
		Teratocephalus lirellus		12
Sample 18.		Acrobeloides enoploides		10
		Monhystera spec.		3
Cervidellus serratus	213	Tylenchus costatus		2
Tylenchus thornei	95	Heterocephalobus elongatus		2
Tylencholaimus proximus	52	Indeterminable		10
Tylenchorhynchus leptus	50		Total	229
Tylenchorhynchus arcticus	32			
Helicotylenchus spitsbergensis	19			
Aphelenchoides arcticus	15	Sample 21.		
Eudorylaimus spec.	14			
Tylenchus davainei	12	Tetylenchus joctus		70
Panagrolaimus rigidus	9	Monhystera filiformis		55
Chiloplacus saccatus	8	Aphelenchoides arcticus		49
Plectus parvus	5	Achromadora tenax		49
Pseudhalenchus spec.	4	Cervidellus serratus		43
Stegelleta mucronata	3	Prismatolaimus dolichurus		30
Acrobeloides spec.	3	Teratocephalus lirellus		30
Acrobeloides tricornis	2	Ereptonema arcticum		24
Enchodelus cf. macrodoroides	1	Acrobeloides enoploides		19
Tylenchorhynchus magnicauda ${ }^{\text {Total }}$	1	Eudorylaimus spec.		17
	538	Tylenchus costatus		13
		Tylenchus leptosoma		12
		Acrobeloides tricornis		8
Sample 19.		Plectus longicaudatus		8
		Heterocephalobus elongatus		7
Monhystera spec. (filiformis-group)	214	Ditylenchus spec.		7
Plectus acuminatus	50	Tylenchus davainei		6
Plectus parvus	50	Tylenchus spec.		6
Tylenchus thornei	32	Prismatolaimus intermedius		6
Aphelenchoides arcticus	29	Chiloplacus spec.		3
Plectus rhizophilus	27	Monhystera villosa		2
Tylenchus davainei	24	Tylenchorhynchus leptus		1
Cephalobus nanus	16	Enchodelus analatus		1
Eudorylaimus spec.	11	Indeterminable		6
Enchodelus analatus	7		Total	472

Acrobeloides spec. 7
Prismatolaimus spec. 5
Ereptonema arcticum 2
Chiloplacus saccatus 1
Panagrolaimus rigidus
Total 473

Sample 20.
Tylenchus thornei 51
Cervidellus serratus 43
Eudorylaimus spec. 21
Tylenchus spec. 21
Aphelenchoides arcticus 15
Plectus spec. 15
Tylenchus davainei 12
Teratocephalus lirellus 12
Acrobeloides enoploides 10
Monhystera spec. 3
Tylenchus costatus
Indeterminable 10
Total 229

Sample 21.
Tetylenchus joctus 70
Monhystera filiformis 55
Aphelenchoides arcticus 49
Achromadora tenax 49
ervidellus serratus
Prismatolaimus dolichurus 30
Teratocephalus lirellus 30
Ereptonema arcticum 24
Acrobeloides enoploides 19
Eudorylaimus spec. 17
Tylenchus leptosoma 12
Acrobeloides tricornis 8
Plectus longicaudatus 8
Heterocephalobus elongatus 7
Tylenchus davainei 6
Tylenchus spec. 6
Prismatolaimus intermedius 6
Chiloplacus spec. 3
Monhystera villosa 2
ylenchorhynchus leptus
Indeterminable 6
Total 472

Sample 22.
Monhystera cf. dispar
Eudorylaimus spec.

Sample 25.
2 Tylenchus leptosoma 180
1 Tylenchus thornei 89
Total 3 Cervidellus serratus 53
Tylenchorhynchus leptus 13
Aphelenchoides arcticus 10
Teratocephalus lirellus 10
91 Tylenchorhynchus arcticus 10
28 Acrobeloides enoploides 9
23 Plectus acuminatus 9
18 Eudorylaimus lugdunensis 8
13 Enchodelus analatus 4
11 Tylenchus spec. 4
9 Monhystera cf. vulgaris 3
8 Plectus parvus 2
7 Alaimus spec. 2
7 Heterocephalobus elongatus 1
6 Eudorylaimus megodon 1
5 Tylencholaimus proximus 1
Helicotylenchus spitsbergensis 1
Total 410
Ditylenchus spec. 4
Acrobeles ciliatus 3
Heterocephalobus elongatus 3
Hexatylus spec.
Plectus parietinus
Monhystera cf. filiformis
Anaplectus granulosus
Eucephalobus oxyuroides
Helicotylenchus spitsbergensis
Total 249

Sample 24. (17 specimens lost)
Tylenchus davainei
Aphelenchoides arcticus
Nothotylenchus spec.
Tylenchorhynchus leptus
Tylenchus spec.
Ditylenchus spec.
Monhystera spec.
Tylenchus leptosoma
2 Sample 26.
2 Tylenchus leptosoma 89
1 Tylenchus thornei 48
1 Tylencholaimus proximus 36
1 Tylenchus spec. 29
1 Monhystera filiformis 23
249 Tylenchorhynchus leptus 21
Eudorylaimus spec. 24
Alaimus parvus 14
Plectus spec. 8
33 Tylenchorhynchus magnicauda 7
5 Chiloplacus spec. 3
4 Rhabdolaimus terrestris 2
2 Criconemoides hemisphaericaudatus 2
2 Enchodelus cf. macrodoroides 2
2 Cervidellus serratus 2
2 Prismatolaimus intermedius 2
1 Achromadora tenax 1
Acrobeloides enoploides 1
Ditylenchus spec. 1
Total 315

Sample 27.
Tylenchus spec. Aphelenchoides arcticus
Tylenchus cf. thornei
Tylenchus leptosoma
Ditylenchus spec.
Eudorylaimus spec.
Monhystera villosa
)
Monhystera vulgaris
Achromadora semiarmata
Teratocephalus lirellus
Tylenchus cf. davainei
Rhabdolaimus terrestris
Eudorylaimus cf. lugdunensis
Enchodelus conicaudatus
Plectus assimilis
Alaimus parvus
Achromadora tenax
Plectus spec.
Cervidellus serratus
Prismatolaimus intermedius
Longidorella magna
Heterocephalobus elongatus
Criconema spec.
Tylenchorhynchus leptus
Enchodelus cf. macrodoroides
Total 1018
302
144
97

87

Sample 29.

83 Prismatolaimus intermedius
75 Monhystera spec.
Teratocephalus lirellus 6
Enchodelus analatus 2
Enchodelus conicaudatus 1
Alaimus spec. 1
Total 1421

Sample 30.
Tylenchus thornei 8
Eudorylaimus spec. 6
Tylenchus leptosoma 5
Enchodelus spec. 4
Chiloplacus saccatus 2
Aphelenchoides arcticus 2
Cervidellus serratus 1
Achromadora tenax 1
Monhystera filiformis 1
Tylenchorhynchus microdorus 1
$\begin{array}{llr}\text { Acrobeloides enoploides } & & 1 \\ & \text { Total } & 32\end{array}$

Sample 31.
Tylenchus spec. 45
Tylenchus leptosoma 20
Teratocephalus lirellus 18
Eudorylaimus spec. 13
Prismatolaimus dolichurus 12
9 Basiria spec. 8
6 Ditylenchus spec. 3
6 Aphelenchoides arcticus 2
3 Plectus parvus 2
3 Achromadora tenax 1
3 Anaplectus granulosus 1
3 Cylindrolaimus melancholicus 1
2 Enchodelus conicaudatus 1
1 Heterocephalobus elongatus 1
Monhystera filiformis 1 Total 129
Tylenchus leptosoma 837
Tylenchus thornei 317
Achromadora tenax 189
Eudorylaimus spec. 4343

17

Sample 28.
Tylenchus thornei
Eudorylaimus spec.
Prismatolaimus intermedius
Enchodelus parvus
Tylenchus davainei
Tylenchus leptosoma
Tylenchus spec.
Tylenchus costatus
Enchodelus analatus
Ditylenchus spec.
Teratocephalus lirellus
Monhystera spec.
Achromadora semiarmata
Tylenchorhynchus leptus
Tylencholaimus spec.
Eudorylaimus cf. megodon

Total 119
,

Sample 32.
Achromadora tenax 2
Plectus parvus 2
Tylenchus thornei 2
Eudorylaimus spec. 1
$\begin{array}{lll}\text { Prismatolaimus spec. } & & 1 \\ & \text { Total } & 8\end{array}$

Sample 33.			Enchodelus analatus		3
Tylenchus leptosoma		97	Theristus spec.		2
Teratocephalus lirellus		18	Tylenchus leptosoma		2
Plectus spec.		15	Plectus cf. inquirendus		1
Eudorylaimus spec.		12	Plectus spec.		1
Prismatolaimus spec.		12	Indeterminable		2
Monhystera spec.		7		Total	177
Plectus cf. armatus		5			
Aphelenchoides arcticus		4			
Heterocephalobus elongatus		2	Sample 37.		
Tylenchus spec.		2	Tylenchus leptosoma		186
Cylindrolaimus melancholicus		1	Eudorylaimus spec.		31
Enchodelus analatus		1	Achromadora semiarmata		19
Achromadora semiarmata		1	Enchodelus conicaudatus		15
Alaimus spec.		1	Chiloplacus saccatus		13
Indeterminable		1	Prismatolaimus dolichurus		11
	Total	179	Tylenchus davainei		9
			Cephalobus persegnis		8
			Eudorylaimus agilis		6
Sample 34.			Heterocephalobus elongatus		4
Tylenchus thornei		472	Achromadora tenax		4
Eudorylaimus spec.		71	Teratocephalus lirellus		3
Monhystera filiformis		30	Alaimus spec.		2
Prismatolaimus primitivus		27	Eudorylaimus subjunctus		2
Enchodelus analatus		26	Plectus inquirendus		1
Tylenchus leptosoma		20		Total	314
Plectus spec.		14			
Tylenchus davainei		11			
Achromadora semiarmata		10	Sample 38.		
Eudorylaimus subjunctus		9	Tylenchus leptosoma		11
Neotylenchidae		9	Tylenchus costatus		7
Prismatolaimus intermedius		8	Prismatolaimus intermedius		5
Enchodelus cf. macrodoroides		5	Tylenchus spec.		1
Aphelenchoides arcticus		3	Achromadora tenax		1
Tetylenchus joctus		2	Tylencholaimus proximus		1
Alaimus spec.		1	Plectus acuminatus		1
Ereptonema arcticum		1	Acrobeloides enoploides		1
Amphidelus dolichurus		1		Total	28
Ditylenchus spec.		1			
	Total	721			
			Sample 39.		
			Tylenchus davainei		240
Sample 35.			Teratocephalus lirellus		58
Tylenchus leptosoma		164	Prismatolaimus spec.		11
Teratocephalus lirellus		5	Monhystera spec.		7
	Total	169	Eudorylaimus spec.		6
			Tylenchus leptosoma		5
			Enchodelus conicaudatus		2
Sample 36.			Heterocephalobus elongatus		2
Prismatolaimus dolichurus		130	Tylenchus spec.		1
Tylenchus costatus		8	Plectus assimilis		1
Tylenchus spec.		8		Total	333
Aphelenchoides arcticus		8			
Achromadora tenax		6			
Eudorylaimus spec.		6			
Meded. Landbouwhogeschool Wageningen $71-7$ (1971)					13

Sample 40. Plectus acuminatus		67
Tylenchus spec.		24
Tylenchus davainei		21
Enchodelus spec.		15
Acrobeloides enoploides		9
Cervidellus serratus		7
Teratocephalus lirellus		
Eudorylaimus spec.		8
Tylenchorhynchus arcticus		
Helicotylenchus spitsbergensis		
Achromadora tenax		
Eucephalobus arcticus		4
Aphelenchoides arcticus		3
Prismatolaimus spec.		3
Monhystera spec.		3
Tylenchus leptosoma		1
Chiloplacus spec.		1
Nothotylenchus spec.		1
	Total	185
Sample 41.		
Teratocephalus lirellus		49
Tylenchus leptosoma		47
Aphelenchoides arcticus		18
Prismatolaimus dolichurus		10
Prismatolaimus primitivus		10
Tylenchus spec.		5
Eucephalobus arcticus		4
Plectus spec.		
Euteratocephalus crassidens		2
Eudorylaimus spec.		2
Monhystera spec.		1
Achromadora tenax		
	Total	152
Sample 42.		
Cervidellus serratus		15
Ditylenchus spec.		15
Plectus spec.		14
Aphelenchoides arcticus		10
Chiloplacus spec.		9
Eudorylaimus subjunctus		5
Acrobeloides spec.		5
Eudorylaimus spec.		6
Tylenchus davainei		5
Tylenchus spec.		3
Eudorylaimus megodon		3
Acrobeloides tricornis		1
Monhystera spec.		1
Acrobeles ciliatus		1
Eucephalobus arcticus		1
Plectus cf. armatus		1
	Total	95

Sample 43.

Cervidellus serratus 37
Helicotylenchus spitsbergensis 29
Acrobeloides enoploides 25
Tylenchus cf. thornei 18
Teratocephalus lirellus 12
Aphelenchoides arcticus 11
Tylenchorhynchus leptus 9
Plectus parvus 9
Eudorylaimus spec. 3
Tylenchus leptosoma 3
Eucephalobus arcticus 1
Cephalobus persegnis 1
Tylenchorhynchus spec.
Total
Total 159 159
Sample 44.
Cervidellus serratus 511
Tylenchus spec. 136
Teratocephalus lirellus 126
Plectus spec. 108
Tylenchus thornei 61
Monhystera spec. 38
Tylenchus leptosoma 25
Plectus cornus 25
Eucephalobus arcticus 18
Heterocephalobus elongatus 18
Acrobeles ciliatus 14
Aphelenchoides arcticus 7
Tylenchorhynchus leptus 7
Longidorella magna 5
Eudorylaimus spec. 5
Helicotylenchus spitsbergensis 4
Chiloplacus spec. 4
Prismatolaimus intermedius 1
Enchodelus spec. 1
Ditylenchus spec. Total 1115
Sample 46.
Eudorylaimus subjunctus 42
Plectus spec. 26
Teratocephalus lirellus 25
Tylenchus davainei 18
Tylenchus leptosoma 7
Enchodelus conicaudatus 3
Monhystera spec. 2
Aphelenchoides arcticus 2
Enchodelus analatus 1
Tylenchus thornei 1
Alaimus spec. 1
Total 128

Sample 47.			Sample 52.		
Tylenchus spec.		43	Tylenchorhynchus arcticus		18
Tylenchus leptosoma		41	Tylenchus costatus		10
Teratocephalus lirellus		32	Tylenchus leptosoma		5
Plectus spec.		23	Eudorylaimus subjunctus		4
Aphelenchoides arcticus		3	Tylenchus davainei		3
	Total	142	Tylenchus spec.		3
			Aphelenchoides arcticus		2
			Heterocephalobus elongatus		1
Sample 48.			Prismatolaimus intermedius		1
Tylenchus leptosoma		439	Enchodelus conicaudatus		1
Acrobeloides enoploides		50	Tylencholaimus proximus		2
Cephalobus nanus		38	Tylenchorhynchus leptus		1
Tylenchorhynchus arcticus		21		Total	51
Plectus spec.		19			
Aphelenchoides arcticus		12	Sample 53.		
Plectus rhizophilus		11	Sample 53.		
Tevatocephalus lirellus		6	Tylenchorhynchus microdorus		404
Eudorylaimus subjunctus		4	Eucephalobus arcticus		181
Eudorylaimus spec.		2	Tylenchorhynchus leptus		153
Heterocephalobus elongatus		2	Teratocephalus lirellus		139
Tylenchus davainei		1	Cervidellus serratus		113
Tylenchus thornei		1	Aphelenchoides arcticus		110
	Total	606	Anaplectus porosus		40
			Stegelleta mucronata		32
			Tylenchus spec.		29
Sample 49.			Monhystera spec.		19
Tylenchus leptosoma		169	Tylenchus leptosoma		18
Cervidellus serratus		64	Eucephalobus striatus		17
Eudorylaimus spec.		24	Ereptonema arcticum		17
Enchodelus conicaudatus		11	Chiloplacus spec.		15
Teratocephalus lirellus		6	Panagrolaimus spec.		6
Tylenchus thornei		2	Eudorylaimus vanrosseni		4
Tylachus thome	Total	276	Eudorylaimus spec. Plectus parvus		1
				Total	1299
Sample 50.					
Panagrolaimus papillosus		164	Sample 54.		
Tylenchus davainei		16	Tylenchorhynchus microdorus		186
Aphelenchoides arcticus		15	Teratocephalus lirellus		124
Tylenchorhynchus leptus		1	Cervidellus serratus		93
	Total	196	Tylenchus spec.		40
			Tylenchus leptosoma		34
			Acrobeles ciliatus		24
Sample 51.			Acrobeloides tricornis		23
Plectus parietinus		4	Eucephalobus arcticus		22
Tylencholaimus spec.		3	Ereptonemo arcticum		10
Plectus spec.		2	Prismatolaimus spec.		7
Panagrolaimus spec.		1	Tylenchus davainei		7
Aphelenchoides arcticus		1	Anaplectus granulosus		5
Tylenchus thorrei		1	Eudorylaimus spec.		4
	Total	12	Eucephalobus oxyuroides		3
			Chiloplacus spec.		2
			Aphelenchoides arcticus		1
				Total	585
Meded. Landbouwhogeschool	agenin	$71-7$	(1971)		15

Sample 55.
Rhabdolaimus terrestris
Teratocephalus lirellus 242
Cervidellus serratus 225
Prismatolaimus intermedius 48
Aphelenchoides arcticus 23
Tylenchorhynchus leptus 22
Ereptonema arcticum 19
Tylenchus cf. thornei
Eudorylaimus spec.
Tylenchus leptosoma
Plectus parvus
Achromadora tenax
Monhystera spec.
Heterocephalobus elongatus
Enchodelus macrodorus
Eudorylaimus agilis
Eucephalobus arcticus
Eudorylaimus vanrosseni
Nygolaimus spec.
Tylenchus davainei 17 14 14
7 Plectus spec. 44
Sample 60.
Panagrolaimus rigidus 39
Monhystera filiformis 33
Cervidellus serratus 33
Ereptonema
Plectus spec. 30
6 Chiloplacus saccatus 24
5 Aphelenchoides arcticus 17
4 Anaplectus porosus 17
3 Teratocephalus lirellus 9
2 Eudorylaimus spec. 7
1 Tylenchus spec. 7
1 Heterocephalobus spec. 4
Total 816 Monhystera spec. 4
Ditylenchus spec. 1
Sample 56.
Cervidellus serratus 201
Teratocephalus lirellus 153
Tylencholaimus teres
Tylenchorhynchus leptus
Monhystera spec.
Tylenchus spec.
Acrobeles ciliatus
Pratylenchoides crenicauda
Eudorylaimus spec.
Aphelenchoides arcticus
Rhabdolaimus terrestris
Tylenchorhynchus magnicauda
Tylenchus costatus 105 59 48 43
34 Tylenchus spec. 15
Sample 61.
Tylenchus leptosoma 36
Teratocephalus lirellus 23
Rhabdolaimus terrestris 20
29 Tylenchus davainei 14
25 Cervidellus serratus 10
18 Monhystera spec. 8
6 Tylenchus costatus 6
5 Chiloplacus spec. 2
1 Plectus spec. 2
Plectus spec. 1 Odontolaimus chlorurus 2
Total 728 Tylenchus bryophilus 1
Total 155
Sample 57/58.
Teratocephalus lirellus 180
Prismatolaimus dolichurus 20
Eudorylaimus spec. 12
Monhystera spec. 9
Tylenchus spec. 8
Plectus parvus 8
Plectus acuminatus 8
Basiria dolichura 3
Tylenchus davainei 2
Cylindrolaimus melancholicus 1
Acrobeloides spec. 1
52

Sample 62.		Tylenchorhynchus arcticus		2
Tylenchus leptosoma	101	Anaplectus granulosus		1
Teratocephalus lirellus	97	Plectus assimilis		1
Tylenchus bryophilus	77	Tylenchus spec.		1
Tylenchus spec.	48	Cephalobus nanus		1
Rhabdolaimus terrestris	41	Prismatolaimus intermedius		1
Aphelenchoides arcticus	29		Total	266
Tylenchus davainei	19			
Teratocephalus decarinus	17			
Plectus (parvus +) spec.	13	Sample 65.		
Eudorylaimus spec.	12	Teratocephalus lirellus		101
Monhystera spec.	30	Monhystera vulgaris		97
Achromadora tenax	12	Ereptonema arcticum		87
Ereptonema arcticum	6	Monhystera spec.		45
Chiloplacus saccatus	3	Plectus parvus		33
Cervidellus serratus	2	Plectus longicaudatus		17
Anaplectus granulosus	1	Cervidellus serratus		13
Tylencholaimus proximus	1	Eudorylaimus alleni		11
Cephalobus persegnis	1	Panagrolaimus rigidus		4
Cylindrolaimus melancholicus	1	Anaplectus granulosus		4
Eudorylaimus megodon	1	Chiloplacus spec.		3
Heterocephalobus elongatus	1	Plectus assimilis		3
Criconemoides hemisphaericaudatus	1	Teratocephalus decarinus		3
Indeterminable	1	Acrobeloides tricornis		1
Total	515	Tylenchus costatus Neotylenchidae		1
			Total	424
Sample 63.				
Tylenchus davainei	133			
Enchodelus parvus	56	Sample 66.		
Tylenchus thornei	52	Rhabdolaimus terrestris		170
Enchodelus analatus	17	Tylenchus cf. thornei		128
Tylenchus costatus	14	Teratocephalus lirellus		67
Eudorylaimus spec.	14	Acrobeloides tricornis		66
Plectus (parietinus +) spec.	11	Tylenchus leptosoma		53
Alaimus depressus	4	Prismatolaimus intermedius		22
Eudorylaimus circulifer	2	Monhystera filiformis		20
Cylindrolaimus melancholicus	1	Achromadora tenax		15
Prismatolaimus intermedius	1	Tylenchorhynchus magnicauda		12
Tylenchus leptosoma	1	Tylenchus bryophilus		10
Panagrolaimus rigidus	1	Tylenchorhynchus arcticus		4
Total	307	Teratocephalus decarinus		4
		Eudorylaimus spec.		4
		Tylenchus costatus		2
Sample 64.		Longidorella magna		2
Tylenchus thornei	64	Achromadora semiarmata		2
Plectus parvus	48	Cervidellus serratus		1
Tylenchus leptosoma	47	Chiloplacus saccatus		1
Acrobeloides enoploides	24	Enchodelus conicaudatus		1
Eudorylaimus subjunctus	21	Tylencholaimus teres		1
Monhystera spec.	19	Acrobeles ciliatus		1
Eudorylaimus spec.	15	Plectus spec.		1
Rhabdolaimus terrestris	12		Total	587
Cervidellus serratus	5			
Teratocephalus lirellus	4			

Sample 67.			Sample 69.		
Tylenchus thornei		98	Plectus rhizophilus		28
Tylenchus spec.		66	Tylenchus thornei		28
Enchodelus $\}$ spec.		58	Tylenchus davainei		14
Eudorylaimus \quad spec.			Tylenchus leptosoma		9
Plectus assimilis		31	Prismatolaimus dolichurus		8
Plectus cf. armatus			Eudorylaimus maksymovi		7
Monhystera spec.		8	Eudorylaimus spec.		6
Plectus parvus		8	Enchodelus conicaudatus		4
Teratocephalus decarinus		7	Enchodelus analatus		4
Tylencholaimus proximus		6	Achromadora tenax		3
Tylenchus costatus		6	Aphelenchoides arcticus		3
Tylenchus davainei		6	Chiloplacus spec.		1
Eudorylaimus megodon		3	Ereptonema arcticum		1
Chiloplacus saccatus		3	Bastiania gracilis	Total	1
Prismatolaimus spec.		3			113
Aphelenchoides arcticus		3			
Plectus cf. acuminatus		1			
	Total	307	Sample 70.		
			Ereptonema arcticum		314
			Chiloplacus saccatus		180
Sample 68.			Plectus parvus		89
Tylenchus thornei		40	Panagrolaimus rigidus		41
Prismatolaimus intermedius		38	Aphelenchoides arcticus		18
Tylenchus leptosoma		12	Cervidellus serratus		3
Eudorylaimus spec.		10		Total	645
Plectus rhizophilus		9			
Tylenchus davainei		8			
Enchodelus conicaudatus		3			
Enchodelus analatus		2			
Achromadora semiarmata		1			
Bunonema reticulatum		1			
Acrobeloides tricornis		1			
	Total	125			

5. TaXonomic part

In the following pages a number of species found will be described more explicitly. The scale lines in the illustrations correspond to 50μ unless otherwise indicated. The type slides marked WT are in the collection of the Landbouwhogeschool, Wageningen, The Netherlands.

Family Bunonematidae
Bunonema reticulatum Richters, 1905.
One female. Dimensions: $L=0.27 \mathrm{~mm} ; \mathrm{a}=12.6 ; \mathrm{b}=3.3$; $\mathrm{c}=14.1$; $V={ }^{12} 58^{10}$. Wart series consisting of 38 warts, the anterior one separate. Sample 68.

Family Cephalobidae
Acrobeloides tricornis (Thorne, 1925) Thorne, 1937 (Fig. 1, A-C).
Five females. Dimensions: $L=0.36-0.48 \mathrm{~mm} ; a=15-18 ; b=2.7-3.6$; $\mathrm{c}=19-23 ; \mathrm{V}={ }^{9-16} 65-66^{10-18}$. The specimens agree well with Thorne's original description. The swelling of the corpus is distinct. The nerve ring surrounds the isthmus; opposite it is the excretory pore and a distinct hemizonid two annules long, immediately behind the excretory pore. Cuticular annulation 2μ wide, shallow and indistinct over the greater part of the body. Tail with nine to ten annules. Vulva lips slightly protruding. The postvulvar part of the gonad extends farther from the vulva than the prevulvar part. Rudiment of second gonad shorter than body width. The double flexure behind the vulva is well developed in one specimen only. Dimensions of an intra-uterine egg: $52 \times 19 \mu$. The intestine is densely filled with globules so that the gonad does not show up very well.

Samples 17, 18, 21, 42, 54, 65, 66 and 67.
Acrobeloides enoploides n.sp. (Fig. 1, D-I).
Dimensions:
Females $(\mathrm{n}=21): \mathrm{L}=0.38 \mathrm{~mm}(0.34-0.43) ; \mathrm{a}=16$ (14-19); $\mathrm{b}=3.4$ (3.1-3.6); $\mathrm{c}=19(17-21) ; \mathrm{V}=66(64-68) ; \mathrm{G}$ prevulvar $=13(7-17)$; G postvulvar $=13$ (7-16); T/ABW $=1.5$ (1.4-1.7).

Female, holotype: $\mathrm{L}=0.40 \mathrm{~mm} ; \mathrm{a}=15 ; \mathrm{b}=3.4 ; \mathrm{c}=18 ; \mathrm{V}={ }^{10} 65^{14}$; $\mathrm{T} / \mathrm{ABW}=1.6$.

Male not found.
Body stout, fusiform. Transverse striation of cuticle distinct, measuring nearly 2μ on mid-body. Lateral field with two inconspicuous wings (three longitudinal grooves). Prelabial probolae with slightly drawn out, acute tip; somewhat indented halfway. No distinct labial probolae. Corpus of oesophagus fusiform. Excretory pore and hemizonid opposite or slightly behind junction of corpus and isthmus; excretory gland opposite junction of isthmus and bulbus. Vulva lips protruding in some specimens, hardly so in others; this may be connected with the age of the individual. Gonad cephaloboid, ovary with double

Fig. 1. A-C: Acrobeloides tricornis (Thorne), female. A: neck region; B: vulva; C: tail. D-I: A.enoploides n.sp., female. D: neck region; E: gonad; F-I: tails.
flexure behind the vulva. Rudiment of second gonad extremely short. Tail very plump, very broadly rounded, tip often slightly oblique; with nine to twelve annules. Immediately before and behind the anus there is usually an annule twice as long as the others. Phasmids opening just before the middle of the tail.

Holotype: Female on slide WT 1197. Paratypes: 20 females on slides WT 1198-1211.

Type locality and habitat: Sample 3. Paratypes from samples 3, 20, 24, 25, 26, 48 and 64 . Found furthermore in samples 21, 23, 30, 38, 40 and 43.

This species resembles A.enoplus Steiner, 1938, from which it differs by the much plumper tail and the faint indention in the - somewhat Chiloplacus-like prelabial probolae.

Acrobeles ciliatus von Linstow, 1877.
Sixteen females. Dimensions: $\mathbf{L}=0.40 \mathrm{~mm}(0.36-0.44) ; a=13-16 ; b=$ $3.4-4.0 ; \mathrm{c}=8.8-10.1 ; \mathrm{V}={ }^{12-15} 60-62^{13-20}$. The excretory pore lies on the 20th-23rd annule from head end; there are 84-89 annules between excretory pore and vulva, 49-63 between vulva and anus and about 14-17 on the tail. Total annule number about 171-188, slightly less than in the neotype population
(Thomas \& Allen, 1965) which also is slightly larger (0.45-0.54 mm). Excretory pore located at $39-49 \%$ of neck length from head end. The tail measures 2.6-3.1 anal body widths. Males were not found.

Samples 23, 24, 42, 44, 54, 56 and 66.
Stegelleta mucronata n.sp. (Fig. 2A).
Females $(\mathrm{n}=9): \mathrm{L}=0.32-0.40 \mathrm{~mm} ; \mathrm{a}=16-20 ; \mathrm{b}=3.3-4.1 ; \mathrm{c}=13-15$; $V={ }^{15-21} 63-66^{10-19}$.

Female, holotype: $\mathrm{L}=0.37 \mathrm{~mm} ; \mathrm{a}=19 ; \mathrm{b}=3.5 ; \mathrm{c}=13 ; \mathrm{V}={ }^{16} 66^{13}$.
Male not found.
Body somewhat slenderer than in Acrobeles and Cervidellus, but of same shape. Transverse striation very coarse, 2.7μ in mid-body. The excretory pore lies on the 29th-33rd annule; there are 62-67 annules between excretory pore and vulva, $38-43$ between vulva and anus and $12-15$ on the tail. Total annule number $=147-154$. Number of longitudinal grooves about 20-24. Lateral field with two wings (three longitudinal grooves). Labial probolae well developed, acute, with sclerotized edges; between them some sclerotized points. Prelabial probolae setiform, bifurcate over about one-third of their length, the prongs slightly recurved. Corpus of oesophagus $2.5 \times$ as long as isthmus, with slight fusiform swelling; not offset by alteration of tissues from the isthmus. The terminal bulb fills almost the whole body cavity and measures 60% of corresponding body width. The nerve ring surrounds the isthmus in its middle. Hemizonid conspicuous, two annules long. Excretory pore immediately anterior to hemizonid. Vulva lips hardly protruding. Gonad cephaloboid, the double postvulvar flexure in some specimens not present. Dimensions of an intra-uterine egg: $48 \times 19 \mu$. Tail conoid, 1.9-2.4 anal body widths long, the tip mucronate, irregular.

Holotype: Female on slide WT 1212. Paratypes: Eight females on slides WT 1213-1214.
Type habitat and locality: Sample 53. Paratypes also from sample 18.
This species differs from. S.cancellata (Thorne, 1925) and S. tuarua Yeates, 1967 by the shape of the prelabial probolae; from S.iketaia Yeates, 1967 and S.ophioglossa Andrássy, 1967^{1} by the short tail; from S.incisa (Thorne, 1937) by shape of the labial and prelabial probolae and the tapering tail; from S. argentinica Andrássy, 1963 (of which only males are known) by the presence of a fusiform swelling in the corpus; from S.lineata (Thorne, 1925) by the larger terminal bulb, relatively longer tail and irregular terminus.

Cervidellus serratus (Thorne, 1925) Thorne, 1937 (Fig. 2B)
Dimensions of 50 females: $L=0.38 \mathrm{~mm}(0.30-0.46) ; a=15(14-19) ; b=3.2$ (2.9-3.8); $\mathrm{c}=12.5(11-14) ; \mathrm{V}=65(60-67)$.

This species is very common and widespread on Spitzbergen. Body stout, tapering only slightly anteriorly, the diameter at the base of the oesophagus

[^0]

Fig. 2. A: Stegelleta mucronata n.sp., female; B: Cervidellus serratus (Thorne), female.
being about twice the width of the lip region. Cuticle with coarse transverse striae about 2μ apart in mid-body; anteriorly they become more spaced, being 2.5-3.0 μ apart behind the lip region. Lateral field with two wings (three longitudinal grooves), about one-sixth of body diameter. Labial probolae acute, sclerotized, the axils bearing forward pointing acute processes. Prelabial probolae bifurcate over nearly half their length. Mouth cavity cephaloboid, details of rhabdions invisible as in the other cephaloboid species. Isthmus of oesophagus offset from corpus chiefly by alteration in the tissues. Terminal bulb well developed, with valves. Deirids not seen. The nerve ring surrounds the posterior end of the corpus. The excretory pore lies at level of anterior end of isthmus. Hemizonid immediately behind excretory pore, one to two annules long. Intestine with wide lumen. Vulva lips strongly protruding. Gonad cephaloboid, with spermatheca at the anterior flexure; the postvulvar part may show a double flexure or not. Dimensions of two intra-uterine eggs: $54-56 \times 20-23 \mu$. In most specimens the posterior rudimentary gonad is relatively large as described by Thorne (1925); however, generally it is small, till one-half of body width, in specimens in which the anterior gonad is little developed. This condition is found generally in young slender females. In most older and fatter specimens the posterior gonad measures 1.3-1.8 body diameters. Rectum about as long as anal body diameter. Tail 1.8-2.3 anal body widths long, regularly conoid with acute, in some specimens slightly offset, terminus.

Found in samples $17,18,20,21,23,25,26,27,30,40,42,43,44,49,53,54$, $55,56,60,61,62,64,65,66$ and 70.

Chiloplacus saccatus n.sp. (Fig. 3, A-C).
Syn. C.quadricarinatus apud van Rossen \& Loof, 1962;
Nec C.quadricarinatus (Thorne, 1925) Thorne, 1937;
C.quadricarinatus apud Loof, 1964.

Dimensions:
Females ($n=34$): $L=0.56-0.83 \mathrm{~mm} ; a=20-28 ; b=3.5-4.4 ; c=16-20$; $\mathrm{V}=64-68 ; \mathrm{G}$ prevulvar $=13-20 ; \mathrm{G}$ postvulvar $=13-22 ; \mathrm{G}_{2}=8-13$.

Female, holotype: $L=0.74 \mathrm{~mm} ; \mathrm{a}=22 ; \mathrm{b}=4.1 ; \mathrm{c}=20 ; \mathrm{V}=67$; G prevulvar $=16 ; G$ postvulvar $=17 ; G_{2}=11$.

Male not found.
Body almost straight in death except for a slight bend ventrad in the vulvar region. Cuticular annulation distinct, 2.4μ in mid-body, 2μ in anterior part of neck. Lateral field with four wings (five longitudinal grooves). Prelabial probolae bifurcate over one-third of their length. Edges of lips somewhat sclerotized, but true labial probolae appear not to be present. Corpus of oesophagus cylindrical, $3.4-4.4 \times$ as long as isthmus. Nerve ring surrounding the corpusisthmus junction. Deirids conspicuous, located at $75-83 \%$ of neck length from the head end, always posterior to the corpus-isthmus junction. Isthmus slender, $29-35 \mu$ long. Terminal bulb measuring $17-21 \times 13-16 \mu$, with valves. Hemizonid two annules long, opposite or slightly behind corpus-isthmus junction. Excretory pore immediately anterior to hemizonid.

Fig. 3. A-C: Chiloplacus saccatus n.sp., female. A: neck region; B. gonad; C: tail. D-E: C. quadricarinatus (Thorne) from Venezuela, female: D: vulva; E: tail F-G: C.contractus (Thorne), female topotypes. F: vulva; G: tail; H-J: C. quadricarinatus (Thorne), female topotypes. H: vulva; J: tail.

Vulva with protruding, large, asymmetrical lips. Gonad cephaloboid, in most specimens with double postvulvar flexure. No sperm. Rudiment of second gonad large, $69-87 \mu$ or $30-45 \%$ of vulva-anus distance. Tail sub-cylindroid with broadly rounded or somewhat truncate terminus which usually is indented in the middle. Number of tail annules 14-18. Tail length 1.9-2.6 anal body widths. The phasmids open at $52-69 \%$ of tail length.

Holotype: Female on slide WT 1180. Paratypes: 27 females (two with end-on view of head) on slides WT 1181-1196; six females deposited with Dr. Morgan Golden, Beltsville, Maryland, U.S.A.

Type habitat and locality: Sample 70. This species is very widespread on Spitzbergen; it was found also in samples $1,2,3,4,5,6,8,17,18,19,23,30$, $37,60,62,66$ and 67.

Discussion.- Thorne (1925) described, among several Chiloplacus (Acrobeles) species, one with five lateral lines, viz. C.quadricarinatus. Since then repeatedly Chiloplacus specimens with five lateral lines have been found, and identified on the basis of this character as C.quadricarinatus (van Rossen \& Loof, 1962; Loof, 1964). Critical evaluation has now shown that these specimens are not all conspecific.

Twelve females of C.quadricarinatus from Thorne's collection were available, collected May, 1933 from shadscale soil, Mosida, Utah, U.S.A. (topotypes) and July, 1925 from dead alfalfa, Fort Collins, Colorado, U.S.A. (types?). Dimensions: $\mathrm{L}=0.94-1.16 \mathrm{~mm} ; \mathrm{a}=19-28 ; \mathrm{b}=3.2-4.3 ; \mathrm{c}=17-22 ; \mathrm{V}=63-$ 68; \mathbf{G} prevulvar $=12-19 ;$ G postvulvar $=14-22 ; \mathrm{G}_{2}=3-5 ;$ T/ABW $=$ 1.5-2.4. The deirids lie at $53-72 \%$ of neck length from head end, always distinctly anterior to the corpus-isthmus junction (in most specimens the oesophagus is coiled, index ' b ' corrected to length of outstretched oesophagus). Hemizonid far anterior to corpus-isthmus junction, two annules long. Excretory pore opens through anterior hemizonid annule or immediately anterior to hemizonid. The corpus is five to six times as long as the isthmus. Length of isthmus $=32-36 \mu$. The body is contracted ventrally behind the vulva. Vulva lips large and protruding, the posterior one rounded, with cuticle not thicker than on adjacent parts of body. The double postvulvar flexure in the gonad is mostly absent. Tail tapering, somewhat convex-conoid, terminus more rounded than in C.saccatus. Tail annules $16-18$. The rudimentary second gonad measures about $40-50 \mu$ (See Fig. 3, H-I).
C.quadricarinatus apud van Rossen \& Loof (1962) is identical with C. saccatus: the deirids lie behind the corpus-isthmus junction and the rudimentary second gonad is very long (87μ or 33% of the vulva-anus distance).
C.quadricarinatus apud Loof (1964) from Venezuela differs from both C.quadricarinatus of Thorne and C.saccatus by the smaller and slenderer body; by the shape of the vulva lips, by the lower and more rounded edges of the lips, the more truncate tail, and in that males are numerous. (Fig. 3, D-E). The deirids lie at $63-77 \%$ of neck length from the head end, anterior to the corpus-isthmus junction. The corpus is six to seven times as long as the isthmus. The rudimentary second gonad, visible in only one female, is very short, less than one body width
and measuring 9% of vulva-anus distance. The vulva does not protrude, the vulva lips are more symmetrical and the vagina is curved; the body is not contracted behind the vulva. This all might suggest specific distinctness from C. quadricarinatus. However, in a population from Nigeria I found most of the females agreeing in vulvar characters with those from Venezuela, but a few had protruding vulva lips agreeing in every detail with those of quadricarinatus. Males from Nigeria agreed wholly to those from Venezuela in shape and size of spicules and gubernaculum and distribution of papillae. The protrusion of the vulva lips and the contraction of the body behind the vulva may depend on the age of the individual (cf. Anderson, 1968) so this is not a reliable character. As the Venezuelan material generally is not in too good a condition, I hesitate to consider the small difference in lip shape as decisive; also there are no data upon variation in length of the second rudimentary gonad. Remains only the absence of males in Thorne's populations. This, too, does not appear decisive. So I regard the populations from Venezuela and Nigeria as the true quadricarinatus. It is conceivable that during development of the adult female the shape of the tail is modified by the thickening of the body (cf. Pratylenchus neglectus, Loof, 1960).

Van Rossen \& Loof (1962) remarked that their specimens of 'quadricarinatus' from Sweden showed several characters reminiscent of C.contractus (Thorne, 1925) and it seemed worth while to examine this species too. Ten females were available, on the same slides and from the same localities as the quadricarinatus specimens, from Thorne's collection. Dimensions: $\mathbf{L}=0.72-0.88 \mathrm{~mm}$; $\mathrm{a}=$ $14-22 ; \mathrm{b}=4.2-4.9 ; \mathrm{c}=16-21 ; \mathrm{V}=66-68 ; \mathrm{G}$ prevulvar $=17-31$; G postvulvar $=11-21 ; \mathrm{G}_{2}=4-7$; T/ABW $=1.4-1.9$. In general body shape and through the distinctly protruding and large vulva lips this species strongly resembles C.quadricarinatus, from which it can be distinguished by the narrower lateral field with three longitudinal lines; smaller body; much shorter oesophagus, the index'b' being even higher than in C.quadricarinatus despite the lesser body length; less convex tail; presence of a double flexure in the postvulvar part of the gonad; and by the less regularly rounded posterior vulva lip, the cuticle of which is much thicker than that of the adjacent body (Fig. 3, F-G). Hemizonid and excretory pore near corpus-isthmus junction. Deirids not visible because the specimens are strongly flattened. Dimensions of three intra-uterine eggs: $61-67 \times 30-36 \mu$.

Commonly C.contractus is regarded a junior synonym of C.propinquus (de Man, 1921) Thorne, 1937, but the description of this species is insufficient and the drawing of the vulva indicates that it is not identical with C.contractus. It is best regarded species inquirenda. Acrobeles bonus Kirjanova, 1951, synonymized with C.propinquus and C.contractus by Meyl (1961) is different from the latter as testified by the shape of the vulva.

Heterocephalobus elongatus (de Man, 1880) Andrássy, 1967.
Dimensions of ten females: $L=0.61-0.82 \mathrm{~mm} ; \mathrm{a}=27-33 ; \mathrm{b}=3.7-4.2$; $\mathrm{c}=12-16 ; \mathrm{V}=62-64 ; \mathrm{G}_{1-1}=11-16 ; \mathrm{G}_{1-2}=11-17 ; \mathrm{G}_{2}=4-5$.

Two males: $\mathrm{L}=0.64-0.85 \mathrm{~mm} ; \mathrm{a}=32-35 ; \mathrm{b}=3.5-4.4 ; \mathrm{c}=16-18 ; \mathrm{T}=$ $41+9-56+10$.

Annulation of cuticle shallow and rather indistinct, measuring 1.7μ in middle of body. Lateral field with two wings (three lateral lines). In the female the posterior uterus seems to bear some gonad tissue; the total length of the posterior gonad is about 1.3 body widths. The postvulval part of the anterior gonad occupies $31-56 \%$ of vulva-anus distance. The postanal pulvillus is conspicuous. The rectum is widened anteriorly. Tail length equal to 3.1-4.6 anal body diameters.

Male: Spicules 24μ long. Two pre-anal subventral papillae, 1.4 and 4 anal body widths from the anus. A pair of adanal papillae; a subventral pair nearly halfway the tail ($37-40 \%$); a lateral papilla at the same level (phasmid?); a subventral pair (in one specimen perhaps two) just before the terminus; a lateral pair at nearly the same level, and a lateral pair midway between the two mentioned.

Nerve ring and excretory pore opposite posterior end of corpus, at $63-68 \%$ of neck length. Directly behind the excretory pore there is a narrow but distinct hemizonid.

Samples 3, 5, 7, 8, 10, 20, 21, 23, 25, 27, 31, 33, 37, 39, 44, 48, 52, 55, and 62.
Eucephalobus arcticus n.sp. (Fig. 4).
Dimensions:
Females $(\mathrm{n}=17): \mathrm{L}=0.68-1.00 \mathrm{~mm} ; \mathbf{a}=22-29$ (36 in one specimen); $b=3.6-4.5 ; c=12-16 ; V=61-64 ; G_{1-1}=10-19 ; G_{1-2}=12-19 ; G_{2}=3-6$.

Males $(\mathrm{n}=2): \mathrm{L}=0.76-0.91 \mathrm{~mm} ; \mathrm{a}=24-26 ; \mathrm{b}=3.7-4.4 ; \mathrm{c}=16-17$; $\mathrm{T}=49+11-54+10$.

Female, holotype: $\mathrm{L}=0.93 \mathrm{~mm} ; \mathrm{a}=26 ; \mathrm{b}=4.2 ; \mathrm{c}=15 ; \mathrm{V}=62 ; \mathrm{G}_{1-1}=$ $18 ; \mathrm{G}_{1-2}=19 ; \mathrm{G}_{2}=4$.

Body rather stout, curved slightly to ventral side in death. Cuticle thick, 3μ on middle of body. Transverse striation shallow, very coarse ($2.5-3 \mu$). Lateral field one-fifth to one-sixth of body width, with two wings (three lateral lines).

Six lips, each with one large, well offset, forward pointing papilla. Mouth cavity cephaloboid, $1 / 15$ of neck length. Corpus of oesophagus cylindrical, nearly four times as long as isthmus, from which it is offset by a sharp alteration in tissue. Isthmus slightly thinner than corpus. The nerve ring surrounds the oesophagus just before the base of the corpus. Opposite it is a distinct hemizonid, immediately before which lies the excretory pore. Deirid distinct, located at level of junction of corpus and isthmus, at 71% of neck length from head end. The terminal bulb occupies three-fifths of the corresponding body width, measuring $23 \times 18 \mu$ and possesses a well developed valve.

Female.- Gonad cephaloboid, with double flexure behind the vulva; the postvulvar part occupying $37-64 \%$ of the vulva-anus distance. The uterus is symmetrical, very spacious; the posterior one does not bear any gonad tissue and measures $26-40 \mu$ or about 1.2 body widths. Dimensions of an intra-uterine egg: $69 \times 26 \mu$. Rectum a little longer than anal body width, slightly widened

Fig. 4. Eucephalobus arcticus n.sp. A-C: female. A: neck region; B: gonad; C: tail. D: male tail.
anteriorly. Postanal pulvillus conspicuous. Tail three anal body widths long ($2.6-3.5$; in one specimen 3.9); conoid, tapering regularly to the rounded terminus which bears a large, triangular, slightly ventrally directed, mucro which in some specimens on the dorsal side is not offset. The tail tip is slightly knobbed ventrally.

Male.- Posterior end curved about 90° to ventral side. Spicules measuring 24μ, gubernaculum 13μ; both of normal cephaloboid shape. Two pairs of preanal subventral papillae, located 1.2 and 3.2 anal body widths from the anus. Adanal and postanal papillae as in Heterocephalobus elongatus, the anterior subventral caudal papillae lying slightly more anterior (31%). Testis single, reflexed. Terminus with mucro.

Holotype: Female on slide WT 1132. Paratypes: Sixteen females and two males on slides WT 1133-1141.

Type habitat and locality: Sample 5. Paratypes also in samples 3, 4, 23, 41, 44 and 55 . Found furthermore in samples $40,42,53$ and 54.

This species resembles E.strandi-cornutus (Allgén, 1934), from which it differs by the shallow body annulation and the regularly conoid shape of the female tail. It also resembles Heterocephalobus elongatus. but is much plumper, the uteri are symmetrical and more spacious. From E.paracornutus de Coninck, 1943 it differs by the plump, regularly conoid tail, as well as by larger body size and much coarser annulation.

Family Panagrolaimidae
 Panagrolaimus papillosus n.sp. (Fig. 5).

Dimensions:
Females $(\mathrm{n}=40): \mathrm{L}=0.59 \mathrm{~mm}(0.51-0.69) ; \mathrm{a}=22(20-25) ; \mathrm{b}=3.9$ (3.4-4.5); $c=19(17-21) ; V=64(62-66) ; G_{1-1}=22(17-29) ; G_{1-2}=22$ (13-25); $\mathrm{G}_{2}=4(3-5)$.

Female, holotype: $\mathrm{L}=0.59 \mathrm{~mm} ; \mathrm{a}=20 ; \mathrm{b}=4.1 ; \mathrm{c}=19 ; \mathrm{V}=64 ; \mathrm{G}_{1-1}=$ $20 ; G_{1-2}=20 ; G_{2}=3$.

Male not found.
Body stout, slightly bent to ventral side in death; tapering towards both extremities. Cuticle very thin, transverse striation hardly perceptible on the outside of the cuticle. Lateral field with two wings (three longitudinal lines). Lip region one-quarter as wide as body at base of oesophagus; with six rounded lips, each bearing a large, forward pointing papilla. Mouth cavity panagrolaimoid; length of cheilorhabdions 2.5μ, of prorhabdions about $3-3.5 \mu$, of mesorhabdions about 2μ. Corpus of oesophagus cylindroid, thrice as wide and twice as long as isthmus. Terminal bulb measuring $16 \times 24 \mu$, its width equal to three-fifths of the corresponding body diameter. The nerve ring lies in, or slightly posterior to, the middle of the isthmus. Hemizonid and excretory pore at level of nerve ring or slightly behind it. Deirids conspicuous, located at about the same level as excretory pore.

Vulva lips strongly protruding. Vagina with sclerotization in the form of two thick dots on optical section. Uterus symmetrical. The ventrosublateral walls

\qquad

Fig. 5. Panagrolaimus papillosus n.sp., female. A: neck region; B: vulva; C: tail.
of the posterior chamber are thickened; in ventral view this chamber appears indented terminally. No further gonad tissue is attached to this posterior uterus. The anterior uterus bears a normal panagrolaimid gonad, in which no sperm was found; at the flexure there is a large empty spermatheca. The postvulval part of this gonad occupies usually $65-75 \%$ of the vulva-anus distance. Rectum about as long as anal body width. Tail plump, convex-conoid to acute terminus, about two anal body diameters long. Posterior anal lip large: behind it the tail is constricted ventrally. Dimensions of four intra-uterine eggs (one per female): $50-62 \times 20-23 \mu$; one female bears two eggs, size $36 \times 18 \mu$ and $46 \times 19 \mu$.

Holotype: Female on slide WT 1101. Paratypes: 44 females (five with end-on view of head) on slides WT 1102-1125.

Type habitat and locality: Sample 50. Found also in samples 59 and 60.

This species resembles P.subelongatus (Cobb, 1914), from which it differs by the strongly protruding labial papillae, longer isthmus, plumper tail and absence of males. The structure of the posterior uterus of P.subelongatus is not known. From P.heterocheilus Steiner, 1935, which species also possesses protruding labial papillae, P.papillosus differs by the lateral lips being not lower than the submedian ones, by the symmetrical uterus (in P.heterocheilus the anterior chamber is much longer than the posterior one), by the strongly protruding vulva lips and probably by less conspicuous body annulation.

Family Teratocephalidae

Teratocephalus decarinus Anderson, 1969 (Fig. 6, A-C)
Dimensions of ten females: $L=0.52-0.56 \mathrm{~mm} ; \mathrm{a}=23-24 ; \mathrm{b}=3.7-3.9$; $c=4.8-5.7 ; V={ }^{13-18} 54-58$. First two annules behind lip region small and compressed; the next four to six are directed anteriad. Vulva depressed; a short postvulval sac is present. The tail measures 9-11 anal body diameters; vulvaanus distance is $138-145 \%$ of tail length.

Samples 62, 66 and 67.
The distinction between this species and T.costatus Andrássy, 1958 is somewhat problematical. A population from New Galloway, Scotland, is clearly T. costatus because of the shape of the neck annules, but the cervical expansion characteristic of that species is absent, as in T.decarinus. Specimens from the island of Terschelling, The Netherlands, have the characters of T.decarinus, but a juvenile has the neck annules shaped as in T. costatus. Clear differences in tail tip and shape of body annules could not be found between all these populations. So for the moment the only established difference is the shape of the neck annules: directed anteriad in decarinus, not so in costatus. Whether this difference is really of specific importance remains to be seen. T. decarinus is now known from northern Canada, Spitzbergen, Sweden (Flommen) and Scotland; T.costatus from Bulgaria and the Netherlands. The species has also been reported from Paraguay (Andrássy, 1968).

Teratocephalus lirellus Anderson, 1969 (Fig. 6 F)
Dimensions of 30 females: $\mathrm{L}=0.37-0.54 \mathrm{~mm} ; \mathrm{a}=31-43 ; \mathrm{b}=4.1-5.6 ; \mathrm{c}=$ $2.3-3.5 ; \mathrm{V}={ }^{9-18} 39-50$.

Body slender, curved ventrad in death, most strongly in the anal region, whereas the distal part of the tail in many specimens curves to dorsal side. Transverse striae of cuticle 1.3-1.4 μ apart. Lateral field distinctly demarcated, ending at level of intestine-rectum junction. Lip region offset by constriction, about 8μ wide and 5μ high; width of neck immediately behind it about 6μ. Cheilorhabdions rather long and thin. Oesophagus of uniform thickness till the oval terminal bulb which occupies one-eighth to one-ninth of its length. Nerve ring and excretory pore about middle of neck. Gonad with only few oocytes; no sperm; a structure resembling an empty spermatheca is present at the flexure. Rectum twice anal body width long. Tail filiform, distally curved into half a circle or more, usually dorsolaterad; its length equal to 19-35 anal body dia-

Fig. 6. A-C: Teratocephalus decarinus Anderson, female. A: neck region; B: gonad; C: tail. D-E T.terrestris (Bütschli), female. D: neck region; E: tail. F: T.lirellus Anderson, female, entire specimen.
meters. Vulva inconspicuous; a short postvulval sac is present.
This species is extremely widespread on Spitzbergen; it was found in samples $2,3,6,8,11,15,16,17,20,21,23,24,25,27,28,29,31,33,35,37,39,40,41$, $43,44,46,47,48,49,53,54,55,56,57 / 58,60,61,62,64,65$ and 66.

The very long tail and pre-equatorial vulva immediately distinguish this species from T.terrestris (Bütschli, 1873), (cf. Fig. 6 D-E).

Euteratocephalus crassidens (de Man, 1880) Andrássy, 1958 (Fig. 7)
Dimensions of seven females: $\mathrm{L}=0.42-0.48 \mathrm{~mm} ; \mathrm{a}=20-22 ; \mathrm{b}=4.0-4.4$; $\mathrm{c}=7.1-8.1 ; \mathrm{V}={ }^{9-13} 53-54^{9-13}$. Amphids 5μ in diameter or 40% of the corresponding body width, located at $18-20 \%$ of neck length from head end or about $1.6 \times$ width of lip region. These specimens differ from those described by Andrássy (1958) through larger size and through the lip region being definitely broader than the adjacent body. The edges of the lips are very conspicuously sclerotized. Phasmids are definitely present, one anal body width or less behind the anus. The Spitzbergen specimens differ from de Man's types from the Netherlands in having a longer tail, five to six anal body widths against five. The tail is curved strongly to the dorsal side.

An interesting point is the location of the nerve ring. According to de Man it is very broad, located at level of posterior part of isthmus. Andrássy (1958), however, states that the nerve ring lies about halfway the neck. The excretory pore in the Spitzbergen specimens lies as indicated by de Man and Andrássy. The nerve ring undoubtedly lies anterior to the excretory pore, in accordance with the observations of Andrássy; however, there is a definite structure around the isthmusagreeinginlocation and shape with what de Man described as the nerve ring. This structure is rather transparant and its nature is unknown. It is also present in specimens from Scotland and the Netherlands. Opposite the excretory pore is a small but distinct hemizonid.

Samples 8 and 41 .

Family Tylenchidae

Tylenchus davainei Bastian, 1865.
Dimensions:
Females $(\mathrm{n}=15): \mathrm{L}=0.78-1.00 \mathrm{~mm} ; \mathrm{a}=28-37 ; \mathrm{b}=6.1-7.4 ; \mathrm{c}=5.1-6.4$; $\mathrm{V}={ }^{22-42} 59-63^{1-3}$.

Males $(\mathrm{n}=15): \mathrm{L}=0.77-1.00 \mathrm{~mm} ; \mathrm{a}=30-50 ; \mathrm{b}=5.6-7.8 ; \mathrm{c}=5.2-6.4$; $\mathrm{T}=43-57$.

Spear length $=15-18 \mu$. Spicule length $21-27 \mu$, gubernaculum $7-8 \mu$. Tail length is equal to $8-11$ anal body widths in both females and males. Dimensions of two intra-uterine eggs: 61-73 $\times 20-22 \mu$. The median bulb lies at 42-46\% of neck length from the head end. The Spitzbergen specimens have conspicuously longer tails than those described by Andrássy (1954) from Hungary. In connection with this the vulva is located more anteriorly.

Whether this species is the true davainei of Bastian is more than doubtful: Bastian gives vulva position as 68%, the tail is straight conoid, Ditylenchus-like,

Fig. 7. Euteratocephalus crassidens (de Man), female. A: neck region; B: tail; C: entire specimen.
and the bursa occupies one-third of the tail. Andrássy's (1954) neotype is invalid, being collected in Hungary.

This species is very widespread on Spitzbergen. Found in samples 1, 15, 16, $18,19,20,21,24,27,28,34,37,39,40,42,46,48,50,52,54,55,57 / 58,61,62$, $63,67,68$ and 69.

Tylenchus costatus de Man, 1921.
Dimensions of 28 females: $L=0.46-0.75 \mathrm{~mm} ; \mathrm{a}=26-36 ; b=5.1-7.1$; $c=5.0-5.9 ; V={ }^{18-37} 63-68$. Spear length $=11-13 \mu$. Males were not found. The median bulb lies at $46-49 \%$ of neck length from head end. On the whole the Spitzbergen specimens tend to be somewhat larger than those from more southern countries.

This species, too, is common on Spitzbergen. Found in samples 16, 20, 21, $28,36,38,52,56,61,63,65,66$ and 67.

Tylenchus bryophilus Steiner, 1914.
Dimensions:
Females $(\mathrm{n}=16): \mathrm{L}=0.37-0.45 \mathrm{~mm} ; \mathrm{a}=21-27 ; \mathrm{b}=4.9-5.5 ; \mathrm{c}=3.9-4.8$; $V={ }^{26-36} 61-66$; spear $=10-11 \mu$.

Males $(\mathrm{n}=5): \mathrm{L}=0.41-0.44 \mathrm{~mm} ; \mathrm{a}=28-30 ; \mathrm{b}=4.9-5.7 ; \mathrm{c}=3.7-4.0$; $\mathrm{T}=39-46$; spear $=10 \mu$; spicule length $=14-15 \mu$.

The median oesophageal bulb lies at $47-51 \%$ of neck length from head end. The body annulation is very conspicuous; it is not coarse but deep. Lateral field with two longitudinal lines. Excretory pore and hemizonid opposite anterior part of terminal bulb. Tail length equal to 9-12 anal body widths in the female, 11-14 in the male.

This species is more locally distributed. Samples 61, 62 and 66.
Tylenchus thornei Andrássy, 1954 (Fig. 8, D-E).
Tylenchus specimens resembling T.thornei were found in the majority of the samples. They evidently represent more than one species, but as generally the spear knobs have become indistinct through processing, proper evaluation was not possible. As the true thornei I regard the species which is described as follows: Females $(\mathrm{n}=50): \mathrm{L}=0.78 \mathrm{~mm}(0.63-0.94) ; \mathrm{a}=38(32-47) ; \mathrm{b}=6.1(5.4-6.8)$; $\mathrm{c}=4.5(4.1-5.0) ; \mathrm{V}=60(58-62) ; \mathrm{G}_{1}=26(22-46)$.
One male: $\mathrm{L}=0.70 \mathrm{~mm} ; \mathrm{a}=36 ; \mathrm{b}=6.1 ; \mathrm{c}=4.1$.
Lip region broad, resembling that of T.davainei; lips rather distinct. Spear heavy with large round knobs; its length rather variable, usually $14-17 \mu$, but sometimes $11-13 \mu$. Median bulb located at $40-44 \%$ of neck length from head end. Annulation of cuticle fine but distinct. Four lateral lines. Female tail 170μ long (141-195), its length equal to 13 (11-16) anal body widths; tail tapering to acute, sometimes slightly mucronate terminus, not filiform. Male tail 171μ long or 16 anal body widths. Length of spicules 17μ.

This species was very numerous in samples 9,10 and 11 . The specimens in samples $3,17,25,30,32,34,44,53,54,56,57 / 58,60,61,62,67$ and 69 probably also represent this species.

Fig. 8. A-C: Basiria dolichura n.sp., female. A: neck region; B: vulva region; C: tail. D-E: Tylenchus thornei Andrássy, female. D: neck region; E: tail.

Tylenchus leptosoma de Man, 1880.
Females $(\mathrm{n}=30): \mathrm{L}=0.61 \mathrm{~mm}(0.46-0.75) ; \mathrm{a}=52(38-64) ; b=6.1$ (5.4-7.4); $\mathrm{c}=2.6(2.2-3.0) ; \mathrm{V}=47$ (43-52).

Males $(\mathrm{n}=2): \mathrm{L}=0.59-0.74 \mathrm{~mm} ; \mathrm{a}=70-75 ; \mathrm{b}=5.5-5.8 ; \mathrm{c}=2.7$.
Body annulation extremely fine, perceptible only in anterior part of neck. Lip region smooth, nearly semiglobular. Spear very indistinct. Median bulb of oesophagus located at $38-45 \%$ of neck length from head end. Isthmus very long and thin. A distinct hemizonid is present just behind middle of isthmus. Vulva tranverse; vaginal walls not thickened. No posterior uterine branch. Vagina directed obliquely anteriad. Dimensions of an intra-uterine egg: $79 \times 9 \mu$. Anus indistinct, very difficult to detect in specimens that do not lie exactly in lateral position. The tail measures 22-41 anal body widths in the female, 30-35 in the male.

This species too is very common and widespread on Spitzbergen. Found in samples $3,7,8,10,15,20,21,23,24,25,26,27,28,29,30,31,33,34,35,36$, $37,38,39,40,41,43,44,46,47,48,49,52,53,54,55,61,62,63,64,68,66$ and 69.

Basiria dolichura n.sp. (Fig. 8, A-C).

Dimensions:

Females $(\mathrm{n}=6): \mathrm{L}=0.82-0.93 \mathrm{~mm} ; \mathrm{a}=37-48 ; \mathrm{b}=6.4-7.2 ; \mathrm{c}=3.1-4.0$; $V={ }^{13-27} 52-57^{1-2}$.

Female, holotype: $\mathrm{L}=0.93 \mathrm{~mm} ; \mathrm{a}=48 ; \mathrm{b}=7.1 ; \mathrm{c}=3.6 ; \mathrm{V}={ }^{14} 55^{2}$.
Male not found.
Body slender, nearly straight in death, tail in some specimens curved to ventral side. Cuticular annulation 1μ wide, distinct. Lateral field one-quarter as wide as body, with four longitudinal lines. Lip region narrowed, conoid, with distinct slit-like amphid apertures. Spear about 11μ long, with narrow lumen and very small basal knobs. Dorsal oesophageal gland orifice 3.5μ behind base of spear. Median oesophageal bulb ovate, located at $40-42 \%$ of neck length from head end. Isthmus very long and thin, terminal bulb pyriform. Nerve ring anterior to middle of isthmus. Excretory pore at about three-quarter of isthmus. Hemizonid narrow, two annules long, located one to three annules anterior to excretory pore. Tail tapering proximally, filiform distally, its length $220-276 \mu$ or 16-23 anal body widths. Vulva transverse, vagina one-half of body width deep. Rudiment of posterior gonad about one body width long. Anterior gonad outstretched, uterus long and thin, spermatheca oval to rectangular, empty.

Holotype: Female on slide WT 1215. Paratypes: Five females on slides WT 1216-1218.

Type habitat and locality: Sample 8. Paratypes from samples 7, 40 and 57/58.
This species shares the anterior location of the median bulb with B.tumida (Colbran, 1960), B.duplexa (Hagemeyer \& Allen, 1952) and B. flandriensis Geraert, 1968 (see key of Geraert, 1968). From B. tumida it differs by the filiform tail, from B.duplexa by much longer tail (T/ABW being 12 in duplexa), anterior vulva position (against 64-73\%) and empty spermatheca and absence of males; from B.flandriensis by larger and slenderer body, anterior vulva (against $63-71 \%$) and much longer tail (T/ABW being 10 in flandriensis).

Tetylenchus joctus Thorne, 1949 (Fig. 9).
Females $(\mathrm{n}=11): \mathrm{L}=0.52-0.62 \mathrm{~mm} ; \mathrm{a}=28-37 ; \mathrm{b}=5.1-6.1 ; \mathrm{c}=8.5-10.2$; $V={ }^{23-35} 50-55^{24-29}$.
One male: $\mathbf{L}=0.50 \mathrm{~mm} ; \mathbf{a}=33 ; \mathbf{b}=5.0 ; \mathbf{c}=7.7 ; \mathbf{T}=47$; spicule $=22 \mu$.
The identity of these specimens is not wholly sure, chiefly because the spear, although very indistinct, appears to be only $9-10 \mu$ long or $1.6 \times$ width of lip region. Cuticular annulation fine but conspicuous. Lip region continuous, very low. Valves of median bulb located at $44-47 \%$ of neck length from head end. Tail length 4.3-5.2 anal body widths. In some specimens the distal part of the tail is curved slightly ventrad. Occasionally the striation continues till the terminus which may appear slightly mucronate; this is in accordance with the description of Ferris \& Ferris (1967). Ovaries consisting of single row of oocytes except in the multiplication zone; certainly there is no rhachis.

Numerous in sample 21; found also in sample 34.
In sample 21 also one female was found, conspicuously larger than the others,

Fig. 9. A-C: Tetylenchus joctus Thorne. A: neck region; B: female tail; C: male tail. D-E: T, spec., female. D: neck region; E: tail.
with much higher lip region offset by slight constriction. Tail curved to ventral side. Dimensions: $\mathrm{L}=0.78 \mathrm{~mm} ; \mathrm{a}=36 ; \mathrm{b}=5.9 ; \mathrm{c}=10.1 ; \mathrm{V}={ }^{35} 52^{34}$; spear length $=12 \mu$ (Fig. 9, D-E).

Tylenchorhynchus leptus Allen, 1955.
Dimensions of 30 females: $\mathrm{L}=0.79 \mathrm{~mm}(0.64-0.91) ; \mathrm{a}=28(25-31) ; \mathrm{b}=5.5$ (5.0-6.2); $\mathrm{c}=11.6(10.4-12.8) ; \mathrm{V}=54(51-58) ; \mathrm{G}_{1}=27(24-31) ; \mathrm{G}_{2}=26$ (23-30); spear $=26 \mu(24-28)$.

These specimens agree well in length with the types from Colorado, but they are smaller and especially stouter than those described from Sweden by van Rossen \& Loof (1962); in accordance with this the tail measures only 3.5 (3.2-3.9) anal body widths against $4-5$ in the Swedish specimens. The empty spermatheca is conspicuous here too. In most specimens the ovaries have a small digitiform process at the blind ends. The median bulb lies at 55% (52-58) of neck length from head end; the phasmids lie at $36 \%(24-46)$ of tail length from the anus.

This species is common and widespread on Spitzbergen. Found in samples 1, $3,4,18,21,23,24,25,26,27,28,43,44,50,52,53,55$ and 56 . It is widely distributed in Europe: apart from Sweden and Spitzbergen it has been found in Switzerland (Brienz, Furkastrasse, Dischmatal, Airolo), Austria (Lechtal, Gneis) and Italy (Dolomites).

Tylenchorhynchus microdorus Geraert, 1966.
Dimensions:
Females $(\mathrm{n}=25): \mathrm{L}=0.62 \mathrm{~mm}(0.58-0.71) ; \mathrm{a}=24(22-26) ; \mathrm{b}=5.0$ (4.5-5.7); c $=12.3(10.6-14.8) ; V=56(54-59) ; \mathrm{G}_{1}=34(27-38) ; \mathrm{G}_{2}=30$ (25-36); spear $=13 \mu(12-15)$.

Males $(\mathrm{n}=25): \mathrm{L}=0.61 \mathrm{~mm}(0.52-0.73) ; \mathrm{a}=27(23-31) ; \mathrm{b}=5.1(4.3-5.7)$; $\mathrm{c}=10.7(9.5-11.4) ; \mathrm{T}=55(47-62) ;$ spear $=14 \mu(12-15) ;$ spicules $=23 \mu$ (21-26).

This species strongly resembles T.nanus Allen, 1955. It is, on the average, longer and less slender, the spear in the male is distinctly longer, and the phasmids lie more posterior, in the Spitzbergen females at 49% (41-60) of tail length. Moreover the tail is relatively shorter; in the Spitzbergen females it measures 2.8 (2.5-3.5) anal body widths, in the males 3.6 (2.9-4.8). The lateral field shows the punctation described as differentiating character by Geraert, but it should be noted that occasionally this may be found in isolated specimens of other nematode species as well. It is difficult to say whether in the Spitzbergen females the tail tip is striated or not; at any rate it is not so conspicuously smooth as in T.brevidens, but distinct annules were not visible either. The median bulb lies just anterior to the middle of the oesophagus (47 (43-49) \%). This species seems further to differ from T. nanus by the lower lip region with less than seven annules; in fact, the lip region is conspicuously low, more so than in T.nanus judging after Allen's illustration.

Samples 30 (one specimen), 53 and 54 (dominant in both).

Fig. 10. Tylenchorhynchus magnicauda (Thorne), female. A: neck region; B: tail.

In sample 17 one female was found agreeing generally with T.microdorus, but with a spear length of 17μ, which might suggest that it belongs to T.nothus Allen, 1955. Dimensions: $\mathrm{L}=0.69 \mathrm{~mm} ; \mathrm{a}=28 ; \mathrm{b}=5.7 ; \mathrm{c}=13 ; \mathrm{V}={ }^{27} 52^{29}$; median bulb at 48% of neck length; $\mathrm{T} / \mathrm{ABW}=3.2$. The only difference is the anterior position of the phasmids (35% of tail length) which is different from both nothus and microdorus.

Tylenchorhynchus magnicauda (Thorne, 1935) Filipjev, 1936 (Fig. 10).
Dimensions of nine females: $L=0.68-0.92 \mathrm{~mm} ; \mathrm{a}=25-30 ; \mathrm{b}=4.0-4.7$; $\mathrm{c}=15-18 ; \mathrm{V}={ }^{19-2757-61^{21-28}} ;$ spear $=25-28 \mu$.

These specimens differ in some minor details from the original description. The excretory pore lies more anterior, viz. opposite the posterior part of the isthmus. The phasmids lie also more anterior, $43 \%(38-55)$ of tail length from the anus. Contrary to Allen's (1955) illustration the cuticle of the terminus is strongly thickened.

Tail 2.1-2.8 anal body widths long, with 34-42 annules. Median bulb located at $46-48 \%$ of neck length from head end. Terminal bulb very long, slightly overlapping. The large dorsal gland nucleus lies close to the base of the bulb. Vulva a transverse slit 11μ long. Male not found, female gonads without sperm. Body straight in death.

This species is strongly reminiscent of the genus Pratylenchoides through shape of lip region, stout spear with very heavy basal knobs, posterior position of vulva, and cylindroid tail with broadly rounded, annulated terminus. So far it has been known only from the Rocky Mountains, U.S.A.

Samples 18, 26, 56 and 66.
Tylenchorhynchus arcticus Mulvey, 1969 (Fig. 11).
Dimensions:
Females $(\mathrm{n}=14): \mathrm{L}=0.99-1.25 \mathrm{~mm} ; \mathrm{a}=31-38 ; \mathrm{b}=5.9-7.6 ; \mathrm{c}=13-21$; $\mathrm{V}={ }^{21-35} 48-55^{22-33}$; spear $=34-37 \mu$.

Males $(\mathrm{n}=11): \mathrm{L}=0.88-1.22 \mathrm{~mm} ; \mathrm{a}=35-45 ; \mathrm{b}=5.7-7.9 ; \mathrm{c}=14-16$; T=42-49; spear $=32-35 \mu$.

Body nearly straight in death, only male tail curved slightly to ventral side. Cuticle with peculiar punctation which may be a fixation artefact; composed of two well-demarcated layers. Annulation very fine (1μ, on tail occasionally even less) but distinct. Lateral field with six longitudinal lines, the inner ones originating about level of base of oesophagus. The lateral field is very indistinct owing to the punctation. Deirids not visible. No longitudinal striation outside the lateral field.

Lip region offset, knob-shaped, with six to seven annules; offset by a deep constriction. Perioral disc slightly raised, not refractive. Internal sclerotization of lips moderately developed, cheilorhabdions more distinct than in many other species of this genus. Spear very thin, with basal knobs directed posteriad. Orifice of dorsal oesophageal gland about 3μ behind base of spear. Median bulb large, broadly oval, in the male slightly narrower; measuring 17-20 \times

Fig. 11. Tylenchorhynchus arcticus Mulvey. A: neck region; B: vulva region; C-D: male tails; E: female tail.
$12-16 \mu$ in the female, $16-20 \times 10-12 \mu$ in the male. Valves central, distinct, located at $51-55 \%$ of oesophagus length from head end. Isthmus very long and thin. Terminal bulb large, saccate, slightly overlapping the mid-intestine. The nerve ring surrounds the middle of the isthmus. Hemizonid located slightly anterior to the end of the isthmus; the excretory pore lies 5-10 annules behind the hemizonid.

Female. Vulva transverse. Gonads with round spermathecas filled with sperm. No eggs. Tail conoid with round, almost smooth terminus, its length equal to 2.3-3.3 anal body widths; with 54-74 annules. Phasmids located at 33-48\% of tail length.

Male. Testis outstretched. Spicules tylenchoid, 26-29 μ long. Gubernaculum curved, 9μ long. Bursa with crenate edge, enveloping tail. Just before the terminus the tail is constricted distinctly on the ventral side, slightly so on the dorsal side, thus resembling the tail of Pratylenchoides; its length equal to 3.5-4.7 anal body widths.

Samples 3, 11, 18, 25, 40, 48, 52, 64 and 66.
These specimens differ from the Canadian type specimens by the much stronger constriction of the male tail and by the higher number of tail annules in the female, Mulvey's illustration giving 46; however, five paratypes had 60-70. From Geocenamus this species differs by the absence of a refractive perioral disc.

Family Hoplolaimidae
Pratylenchoides crenicauda Winslow, 1958.
Females $(\mathrm{n}=2): \mathrm{L}=0.60-0.63 \mathrm{~mm} ; \mathrm{a}=27-33 ; \mathrm{b}=4.2-4.7 ; \mathrm{c}=14-16$; $\mathrm{V}={ }^{24-25} 57-58^{22-27}$; spear $=20 \mu$.

Male $(\mathrm{n}=1): \mathrm{L}=0.69 \mathrm{~mm} ; \mathrm{a}=29 ; \mathrm{b}=5.3 ; \mathrm{c}=17 ; \mathrm{T}=43$; spear $=$ 20μ; spicules $=23 \mu$. The outline of the oesophageal gland lobe in this species rather resembles that of Tylenchorhynchus magnicauda, but the ventrosublateral gland nuclei lie more anterior.

Sample 56.
Helicotylenchus spitsbergensis n.sp. (Fig. 12).
Dimensions:
Females $(\mathrm{n}=8$): $\mathrm{L}=0.79-1.08 \mathrm{~mm} ; \mathrm{a}=28-38 ; \mathrm{b}=6.5-8.1 ; \mathrm{c}=36-42$; $\mathrm{V}={ }^{21-29} 56-68^{18-24}$.
Female, holotype: $\mathrm{L}=0.91 \mathrm{~mm} ; \mathrm{a}=38 ; \mathrm{b}=7.3 ; \mathrm{c}=42 ; \mathrm{V}={ }^{23} \mathbf{6 2}^{24}$. Male not found.

Body usually coiled into more than one convolution. Transverse striation distinct, about 1.5μ apart on middle of body. Lateral field one-third as wide as body, with four longitudinal lines. Lip region continuous, hemispheroid, composed of four to five rather indistinct annules. Spear length $27-31 \mu$ (holotype 28μ), the two parts of almost equal length- Spear knobs indented anteriorly. The dorsal oesophageal gland orifice lies $8-9 \mu$ behind the base of the spear. The median bulb lies at $64-71 \%$ of total oesophagus length from head end (measured till junction of lumen with mid-intestine). The oesophageal glands overlap the mid-intestine on all sides over fair distance, the ventrosublateral glands generally sligthly farther than the dorsal one. The excretory pore lies about six annules anterior to the oesophago-intestinal junction; the hemizonid is two annules long and lies one to two annules anterior to the excretory pore.

Vulva transverse. Vagina one-half of body width deep, with conspicuously cuticularized walls. Gonads paired, opposed and outstretched, each with an

Fig. 12. Helicotylenchus spitsbergensis n.sp., female. A: neck region; B: part of reproductive system; C: tail.
empty spermatheca which lies within the gonad, not dorsally of it. No eggs. Tail trapezoid to conoid, 1.3-1.4 anal body widths long, the posterior margin usually truncate; there are about 13 annules between anus and ventral terminal angle. Posterior margin distinctly, sometimes irregularly, striated. Tail slightly curved to ventral side. The cuticle is composed of two well-demarcated layers. Phasmids distinct, located from two annules before to three behind the anus.

Holotype: Female on slide WT 1126. Paratypes: Seven females on slides WT 1127-1131 and 1139.

Type habitat and locality: Sample 40. Paratypes also from samples 23, 25, 43 and 44. Juveniles found in sample 18.

This species is very close to H.platyurus Perry, 1959, from which it is distinguished by the spermatheca not being offset. From H.cavenessi Sher, 1966 (Nigeria) it differs by the same character and by being much longer and having a longer spear. From H.serenus Siddiqi, 1963 (India) it differs by larger body size, relatively shorter oesophagus and truncate tail.

Family Criconematidae
Criconemoides hemisphaericaudatus Wu, 1965 (Fig. 13, A-B).
One female. Dimensions: $\mathrm{L}=0.51 \mathrm{~mm} ; \mathrm{a}=13 ; \mathrm{b}=3.4 ; \mathrm{c}=28 ; \mathrm{V}={ }^{54} 93$. Spear length $=84 \mu$. Rex $=36 ; R V=10 ; \operatorname{Ran}=6 ; R=116$. Tail very bluntly rounded, posterior end of body tapering hardly, almost cylindroid. The annules $98-115$ show lateral indentations. There are occasional anastomoses, one to three together. Head end rounded, submedian lobes very small. The posterior margin of the annules is very finely crenate. Vulva apparently slightly open; the vagina runs almost transversely in its distal part. The posterior edge of the prevulvar annule is modified slightly, suggesting a small ornamentation on the anterior vulva lip in agreement with Wu's fig. 14.

Two very small juveniles ($L-2$ or $L-3$), one damaged. $L=0.23 \mathrm{~mm}$; spear $=$ $37-40 \mu$; gonad primordium $=11 \mu$; Rex $=42, \mathbf{R}=127(\mathrm{n}=1)$. Annules crenate with rather many anastomoses.

This species is very close to C.morgensis (Hofmänner \& Menzel, 1914) with which it was considered identical by de Grisse, 1968. However, I prefer to keep it apart because of the shape of the posterior body end (in morgensis tapering, truncate) and the appearance of the vulva: in morgensis it is distinctly closed in lateral view, situated on the middle of the annule; in hemisphaericaudatus it appears slightly open in lateral view (ventral view shows it to be closed really) and lies between two annules. In morgensis the vagina runs obliquely to the vulva, in hemisphaericaudatus almost transversely. Finally the crenation of the posterior margins of the annules appears more coarse in morgensis than in hemisphaericaudatus.

Whether C.annulatus Taylor, 1936 is identical with morgensis or with hemisphaericaudatus cannot be decided for the moment: vagina direction suggests the former, tail shape the latter (Cf. Raski \& Golden, 1966, fig. 4 D-E).

Female in sample 26; juveniles in 26 and 62.
Criconema? spec. (Fig. 13 C).
Two juveniles. Dimensions: $\mathrm{L}=0.16-0.19 \mathrm{~mm} ; \mathrm{a}=8-10 ; \mathrm{b}=2.5-2.6$; $\mathrm{R}=70-71$; spear $=33-38 \mu$. Annules with eight alternating rows of broad, rounded scales. This would point rather to the genus Hemicriconemoides (see de Grisse \& Loof, 1965) but this is a mainly tropical genus and in the Spitzbergen specimens head shape is more reminiscent of Criconema and Nothocriconema. Tail tapering, acute.

Sample 27.

Fig. 13. A-B: Criconemoides hemisphaericaudatus Wu, female. A: neck region; B: posterior part of body. C: Criconema(?) spec., juvenile.

Family Plectidae
Plectus parietinus Bastian, 1865.
Two females. Dimensions: $\mathrm{L}=1.12-1.29 \mathrm{~mm} ; \mathrm{a}=18-22 ; \mathrm{b}=4.8-5.3 ; \mathrm{c}=$ $10-11 ; \mathrm{V}={ }^{11-13} 45-47^{10-17}$.

This cosmopolitan species, easy to recognize, is apparently less common on Spitzbergen than several other species of this genus. Depth of stoma 28μ. Amphids located just anterior to middle of stoma, their diameter 2.5μ or oneeighth of corresponding body width. Excretory pore located at 56% of neck length from head end. Hemizonid immediately anterior to excretory pore. Tail length equal to 3.1-3.4 anal body diameters.

Samples 4 and 63; juveniles in samples 1, 23 and 51.

Plectus assimilis Bütschli, 1873 (Fig. 14).
Dimensions of five females: $\mathrm{L}=0.61-0.73 \mathrm{~mm} ; \mathrm{a}=14-15 ; \mathrm{b}=4.0-4.7$; $c=10-12 ; V={ }^{8-12} 46-51^{8-13}$.

This rather aberrant species can be recognized easily by its very plump body, tapering hardly towards the head end, strongly so towards tail end. Amphids 2.5μ wide or 15% of corresponding body width; located only 0.4 head widths from anterior end. Depth of stoma $22-25 \mu$. Corpus and isthmus of oesophagus very broad. Cephalic setae 4μ long, directed anteriad. Vulva transverse, vagina only about one-quarter of body width deep. Tail length $3.6-4.0$ anal body widths; tail almost straight.

Samples 3, 4, 64 and 67. Juveniles in 27, 39 and 65.
Plectus inquirendus Andrássy, 1958 (Fig. 15, A-B).
One female. Dimensions: $L=0.62 \mathrm{~mm} ; \mathrm{a}=30 ; \mathrm{b}=3.8 ; \mathrm{c}=4.7 ; \mathrm{V}={ }^{8} 44^{9}$. Amphids cryptospiral, measuring 35% of corresponding body width; located 16μ or two lip region widths from head end, behind middle of mouth cavity, which is 23μ deep, tapering in cheilostome, then narrow, tubular. Cephalic setae 4μ long, directed anteriad, located rather far backward (7μ from head end). Lip region somewhat conoid. Cardia long, the posterior part of peculiar structure. This species is conspicuous for its slender body, very narrow stoma, by the corpus of the oesophagus being thicker than the isthmus, and by its very slender tail, measuring 12.2 anal body widths in the Spitzbergen specimen. Known so far only from Bulgaria.

Sample 37.
Plectus longicaudatus Bütschli, 1873.
Dimensions of 14 females: $L=0.56-0.71 \mathrm{~mm} ; \mathrm{a}=25-31 ; \mathrm{b}=3.9-4.4$; $\mathrm{c}=4.9-5.8 ; \mathrm{V}={ }^{7-11} 44-47^{6-10}$.

The amphid measures $2.4-3.6 \mu$ or $22-31 \%$ of corresponding body width. The tail measures $8.6-10.9$ anal body widths. One intra-uterine egg: $47 \times 19 \mu$. This species is sometimes difficult to separate from long-tailed specimens of P.rhizophilus.

Samples 15, 16, 21 and 65.
Plectus acuminatus Bastian, 1865.
Dimensions of 16 females: $L=0.58-0.75 \mathrm{~mm} ; a=19-26 ; b=3.9-4.3$; $\mathrm{c}=7.4-9.2 ; \mathrm{V}={ }^{9-12} 47-50^{4-13}$.

The amphids measure 2.5μ or $20-25 \%$ of corresponding body diameter. The tail measures 4.6-5.7 anal body widths. The body is curved strongly to the ventral side in death, sometimes into half a circle or more. By this feature this species can be distinguished from large specimens of P.parvus.

Samples 3, 4, 16, 19, 25, 38, 40, 57/58 and 67.
Plectus parvus Bastian, 1865.
Dimensions of five females: $\mathrm{L}=0.39-0.50 \mathrm{~mm} ; \mathrm{a}=17-24 ; \mathrm{b}=3.5-3.9$; $\mathrm{c}=7.7-9.4 ; \mathrm{V}={ }^{10-1451-53^{8-12}}$.

Fig. 14. Plectus assimilis Bütschli, female. A: neck region; B: tail; C: entire specimen.

Fig. 15. A-B: Plectus inquirendus Andrássy, female. A: neck region; B: entire specimen. C-D: P.geophilus de Man, female. C: neck region; D: tail.

This species is recognized easily by its straight posture in death, except the tail which is bent to the ventral side; tail length is equal to $4.3-5.7$ anal body widths. The post-equatorial vulva position is also characteristic.

Samples 7, 18, 19, 25, 31, 32, 43, 53, 55, 57/58, 62, 64, 65, 67 and 70.
In sample 4 a population was found, brought provisionally to P.parvus, but the body is larger and the vulva lies equatorial. The amphids measure $20-23 \%$ of corresponding body width; tail length is equal to $4.0-5.3$ anal body widths. Dimensions of 16 females: $L=0.49-0.66 \mathrm{~mm} ; \mathrm{a}=20-24 ; \mathrm{b}=3.6-4.2$; $\mathrm{c}=9.1-11.8 ; \mathrm{V}={ }^{7-11} 49-51^{6-12}$.

Plectus geophilus de Man, 1880 (Fig. 15, C-D).
Two females. Dimensions: $L=0.37-0.42 \mathrm{~mm} ; \mathrm{a}=29-31 ; \mathrm{b}=3.6 ; \mathrm{c}=$ $10.2-11.1 ; \mathrm{V}={ }^{10-1353-54^{10-12} \text {. }}$

This species generally resembles P.parvus, with which it shares the postequatorial vulva position. It is, however, easily distinguished by the much slenderer body and the curved posture in death. Lips round, appearing slightly inflated. Amphids measuring 1.5μ or 17% of corresponding body diameter, located 10μ behind head end. Cephalic setae 2μ long, directed laterad. Tail length 4.8-5.0 anal body widths.

Samples 19 and 62.
Plectus cornus Maggenti, 1961.
Dimensions of seven females: $L=0.49-0.55 \mathrm{~mm} ; \mathrm{a}=26-31 ; \mathrm{b}=3.6-4.0 ; \mathrm{c}=$ $7.7-8.6 ; V={ }^{7-8} 48-50^{7-8}$.

Body curved generally throughout, though less strongly than in P.acuminatus. Cephalic setae 6μ long, i.e. as long as width of lip region; directed anteriad, the tip bent outward. Lip region somewhat truncate, lips distinct. Ampids questionmark shaped, $1.9-2.4 \mu$ in diameter or $20-25 \%$ of corresponding body width; located about halfway the mouth cavity. The latter is cylindrical throughout, prostom not widened; $18-19 \mu$ long. Cuticular annulation distinct and rather deep, especially on the tail. Tail length is equal to five or six anal body widths; the tail is bent ventrad in the proximal half, almost straight in the posterior half. These specimens, apart from being smaller, correspond well to the type specimens from Sweden.

Sample 44.
Plectus cf. armatus Bütschli, 1873.
Two females. Dimensions: $\mathrm{L}=0.52-0.61 \mathrm{~mm} ; \mathrm{a}=18-19 ; \mathrm{b}=4.1-4.3$; $\mathrm{c}=8.5-10.0 ; \mathrm{V}={ }^{8-12} 50^{8-10}$.

Through small body size, value of ' a ' and by the normal location of the amphids these specimens differ from P.assimilis, which they resemble in the general body shape and the short, conoid tail. They resemble P.armatus, but the cephalic setae do not have the typical shape and direction of that species as redescribed by Maggenti (1961): they are directed obliquely sideward and are not thickened at the base.

Sample 33, 42 and 67.

Plectus rhizophilus de Man, 1880.
Dimensions of 20 females: $L=0.60-1.10 \mathrm{~mm} ; \mathrm{a}=20-27 ; b=4.0-5.0$; $\mathrm{c}=6.3-8.6 ; \mathrm{V}={ }^{9-13} 46-50^{7-15}$.

The amphids measure $20-35 \%$ of the corresponding body diameter. Tail length is equal to five to seven anal body widths. One intra-uterine egg measures $56 \times 24 \mu$. Body rather large and slender, curved ventrad in death.

Samples 5 and 19.
Several populations were found which share characters of P.rhizophilus and P.longicaudatus. Generally these specimens have the body measurements and proportions of longicaudatus, but large amphids as found in rhizophilus. Samples $1,7,8,10,48,68$ and 69.

Finally, several Plectus specimens were found which could not be assigned with certainty to any described species, nor did they clearly represent undescribed ones. Samples 10, 19, 40, 46 and 67.

Anaplectus granulosus (Bastian, 1865) de Coninck \& Schuurmans Stekhoven, 1933.

Dimensions:
Females $(\mathrm{n}=4): \mathrm{L}=1.22-1.28 \mathrm{~mm} ; \mathrm{a}=28-34 ; \mathrm{b}=4.5-5.0 ; \mathrm{c}=15-16$; $V={ }^{14-16} 51-53^{12-17}$.

Males $(\mathrm{n}=2): \mathrm{L}=0.83-1.14 \mathrm{~mm} ; \mathrm{a}=29-35 ; \mathrm{b}=5.3-5.5 ; \mathrm{c}=14$.
Length of tail equal to $3.0-3.7$ anal body widths in the female, 2.3-2.5 in the male. Both males with three supplements, the distance between the two anterior ones distinctly longer than that between the second and third; the anterior supplement lies 1.1-1.4 tail lengths from the anus. The spicules measure $36-40 \mu$ (along axis), the head is knobbed, distinctly wider than the following part. In spite of all these characteristics, the identity of these specimens is not wholly sure, because the lip region is not offset by constriction; it is low, continuous, composed of two annules, the anterior one narrower than the second (cf. Allen \& Noffsinger, 1968).

Samples 2, 4, 64 and 65.
Anaplectus porosus Allen \& Noffsinger, 1968.
Dimensions:
Females $(\mathrm{n}=5): \mathrm{L}=1.17-1.46 \mathrm{~mm} ; \mathrm{a}=22-30 ; \mathrm{b}=4.9-5.3 ; \mathrm{c}=14-16$; $V={ }^{15-1849-5 I^{16-18} .}$

Males $(n=2): L=1.14-1.22 \mathrm{~mm} ; a=29 ; b=4.9-5.2 ; c=14$.
Length of tail equal to 2.5-3.3 anal body widths in the female, 2.4 in the male. One male with four, the other with five supplements; distances from anus 0.1 -$0.4-1.0-1.7$ and $0.1-0.5-1.0-1.2-1.9$ tail lengths, respectively. Length of spicules along axis $48-50 \mu$. Shape of spicules and gubernaculum as described by Allen \& Noffsinger. Number of median cervical pores rather variable: in the females there are 4-10 dorsal and 4-9 ventral pores; in the males 9 dorsal and 5-7 ventral ones.

Samples 53 and 60.

Ereptonema arcticum n.sp. (Fig. 16).
Dimensions of 44 females: $L=0.28-0.34 \mathrm{~mm} ; a=16-18 ; b=3.4-3.8$; $\mathrm{c}=7.0-8.9 ; \mathrm{V}={ }^{7-15} 48-53^{6-10}$.

Female, holotype: $\mathrm{L}=0.30 \mathrm{~mm} ; \mathrm{a}=16 ; \mathrm{b}=3.7 ; \mathrm{c}=8.1 ; \mathrm{V}={ }^{11} 50^{10}$. Male not found.
Body straight in death except the tail being curved to ventral side. Anteriorly the body is subcylindroid till the anterior third of the neck, then convex to just anterior to the base of the cervical expansions; anterior to this point the outline of the inner tissues becomes concave. Transverse striae very fine, 0.8μ apart, except on the ventral side of the tail where they are 1.2μ apart .Lateral field with
two distinct longitudinal lines. The structure of the cephalic ornamentations appears much similar to that of E.fimbriatum Anderson, 1966, but the fringe along the anterior margins is shorter and the expansions bear cornua much longer than the fringe. Cuticular expansions with coarse annulation. Stoma expanded somewhat anteriorly, but not globular. Depth of stoma 11μ. Amphids round, 1.5μ in diameter, located anterior to the base of the expansions. Isthmus of oesophagus as thick as corpus. The nerve ring surrounds the oesophagus just before its middle. Deirids conspicuous, behind nerve ring. Tail 3.6-4.6 anal body diameters long; its cuticle thickened dorsally as in E.fimbriatum. A pair of subventral setae halfway the tail, a subdorsal pair just before the terminus.

Holotype: Female on slide WT 1144. Paratypes: 31 females (three with endon view of head) on slides WT 1145-1164; nine females deposited with Dr. A. Morgan Golden, Beltsville, Maryland, U.S.A.; six females with Dr. R. V. Anderson, Ottawa, Canada.

Type habitat and locality: Sample 70; the species is dominant here. Found also in samples $16,17,19,21,34,53,54,55,60,62,65$ and 69.

This species is close to E.fimbriatum, the only other species of the genus. It differs by the cornua protruding distinctly beyond the fringe, by the shorter fringe, by the shape of the anterior part of the mouth cavity and by the presence of only two pairs of caudal setae (four in E. fimbriatum).

Rhabdolaimus terrestris de Man, 1880.
Dimensions of nine females: $L=0.34-0.40 \mathrm{~mm} ; \mathrm{a}=24-37 ; b=5.3-5.7$; $\mathrm{c}=2.4-3.0 ; \mathrm{V}={ }^{6-9} 37-41^{6-11}$.

Amphids invisible. Stoma tubular. Cuticle with fine transverse striae. Details of gonads not visible. Two intra-uterine eggs measure $40-59 \times 10-11 \mu$. Spinneret tube 6-10 μ long. These specimens differ from those described by Goodey (1951) in being smaller and slenderer, in having a shorter oesophagus and a longer tail, viz. 11-20 anal body widths against 9.5 . The vulva lies more anterior, but its position falls within the range given by W. Schneider (1939).

Samples 61, 62 and 66.
Family Cyatholaimidae
Odontolaimus chlorurus de Man, 1880.
One female. Dimensions: $\mathrm{L}=0.67 \mathrm{~mm} ; \mathrm{a}=34 ; \mathrm{b}=5.3 ; \mathrm{c}=4.5 ; \mathrm{V}={ }^{13} 49^{18}$. Cuticle with distinct transverse striae 1.2μ apart. Head rounded. Amphids crypto-spiral, 3.6μ in diameter or one-third of corresponding body width; located 15μ or 1.5 head width from anterior end. Vulva inconspicuous; gonads paired, each with a full-grown oocyte. Tail length equal to 12 anal body widths; the tail does not show the typical colour which gave the species its name. A ventral seta 4μ long at 10μ behind the anus.

Sample 61.
Achromadora cf. semiarmata Altherr, 1952 (Fig. 17, A-B).
Dimensions of seven females: $\mathrm{L}=0.38-0.51 \mathrm{~mm} ; \mathrm{a}=23-26 ; \mathrm{b}=5.2-6.0$; $\mathrm{c}=5.5-8.2 ; \mathrm{V}=42-45$.

A

C
\qquad
,

Fig. 17. A-B: Achromadora semiarmata Altherr, female. A: neck region; B: tail. C-D: A.tenax (de Man), female. C: neck region; D: tail. E-F: A.ruricola (de Man), female. E: neck region; F: tail.

These specimens differ from Altherr's description in that the rectum measures three instead of two anal body diameters. From A.ruricola (de Man, 1880), which they resemble in general dimensions and in the structure of the mouth cavity, they differ by the amphids containing 1.5 convolution against 2.5 ; by the long rectum, the anterior half of which is strongly inflated, the lumen remaining distinct; shorter cephalic setae; and by the tail being bent laterad or laterodorsad in its distal part. (Cf. Fig. 17, E-F).

Samples 1, 27, 28, 33, 34, 37, 66 and 68.
Achromadora tenax (de Man, 1876) Micoletzky, 1925 (Fig. 17, C-D).
Dimensions of 15 females: $L=0.38-0.42 \mathrm{~mm} ; \mathrm{a}=23-27 ; \mathrm{b}=5.7-6.3 ; \mathrm{c}=$ $6.1-7.3$; $V=46-48$.

Head end more rounded, less obviously truncated than in most other species of this genus. Mouth cavity weakly sclerotized, its details indistinct. Amphids rather inconspicuous, spiral; located about 14μ (more than two head widths) from anterior end. Cuticular annulation resolvable into dots. Terminal bulb of oesophagus strongly developed. Vulva lips somewhat protruding. Cephalic setae very short and inconspicuous, directed almost laterad. Tail bent strongly ventrad, often 180°; its length equal to $5.5-7.3$ anal body widths. Rectum 2.3-3.1 anal body widths long, its anterior half strongly inflated. Spinneret tube tapering, about 2μ long.

Samples 3, 7, 8, 10, 21, 26, 27, 29, 30, 31, 32, 37, 38, 40, 41, 55, 62, 66 and 69.
Generally A.tenax is regarded a synonym of A.dubia (Bütschli, 1873). However, the identity of the latter is wholly uncertain, because the original description is totally inadequate. Bütschli did not give any dimensions; he only gave an illustration of the head end, showing a transversely oval amphid with central spot; and rather long cephalic setae, directed obliquely anteriad. Transverse striation of cuticle strongly developed. I regard this species as species dubia. Micoletzky's redescription (1925) states that the mouth cavity possesses three teeth, the amphids are apparently round, but really spiral. Cephalic setae short and fragile. It is better to call this species by the next available synonym, tenax (de Man, 1876). The Spitzbergen specimens conform rather well to de Man's description except that the head end is less truncate.

Family Monhysteridae

Monhystera villosa Bütschli, 1873.
Dimensions of eleven females: $L=0.78-1.18 \mathrm{~mm} ; \mathrm{a}=38-51 ; \mathrm{b}=4.5-5.7$; $\mathrm{c}=6.5-7.8 ; \mathrm{V}={ }^{29-37} 78-81$.

All specimens possess long submedian body setae and thus belong to the typical form. These setae reach a length of 7μ in mid-body, or nearly one-third of the corresponding body width. The head end bears six distinct lips. The cephalic setae, directed anteriad, measure 2.5μ; the longer subcephalic setae 10μ or 0.8 head widths; the shorter subcephalic ones are 6μ long. Diameter of amphids $4-6 \mu$ or one-third of corresponding body width. The distance from the amphids to the head end is $21-28 \mu$ or $1.5-1.9$ head widths. The posterior
third of the oesophagus is sligthly thicker than the remainder. The rectum is two anal body widths long, the anterior half is inflated. Bütschli (1873) and de Man, (1921, illustration) already noted the long rectum. The anal lips are slightly protruding, rounded. The tail measures $8-10$ anal body widths. The vaginal walls are thickened. Oocytes in single row. The vulva-anus distance is $35-42 \%$ of tail length.

Samples 1, 3, 4, 21 and 27.
Monhystera cf. dispar Bastian, 1865.
Two females. Dimensions: $\mathrm{L}=0.57-0.61 \mathrm{~mm} ; \mathrm{a}=22-25 ; \mathrm{b}=5.2-5.9$; $\mathrm{c}=5.6-5.9 ; \mathrm{V}={ }^{33-36} 59-60$.

The amphids measure 2.5μ or $20-25 \%$ of the corresponding body diameter; they are located $1.6-2.0$ head widths from the anterior end. Cephalic setae very short. Width of head slightly more than one-third of body width at base of oesophagus. The head is devoid of lips. The oesophagus is widened slightly distally. The tail measures 5.8-6.5 anal body widths; it is conoid in the anterior half, cylindroid in the posterior. Anus and vulva inconspicuous, the lips not protruding. Rectum two-thirds of anal body width. Vulva-anus distance equal to $121-142 \%$ of tail length. In the anterior part of the gonad the oocytes are arranged into multiple rows. The identity of these specimens is not quite certain: the head is not conspicuously broad, the amphids lie too far backward. Amphid size is controversial in this species: 13% of corresponding body width after de Man (1884), 40-50\% after Wieser (1956).

Sample 22.
Monhystera stagnalis Bastian, 1865.
Two females. Dimensions: $L=1.14-1.24 \mathrm{~mm} ; a=28 ; b=5.1-5.5 ; c=$ $5.3-5.7 ; \mathrm{V}={ }^{32-33} 60-62$.

Body stout, tapering hardly anteriorly, the head end very broadly truncate. Cuticle smooth. Length of subcephalic setae $6-7 \mu$ or not quite one-third of corresponding body width. Body diameter at base of oesophagus $1.5 \times$ width of lip region. Head end without distinct lips. Body with four rows of submedian setae measuring about one-sixth of body width. Diameter of amphids 6μ; they are slightly wider than long and located 24μ or 0.9 head width behind the anterior end. Oesophagus very thick, the posterior part slightly expanded, though not bulbiform; the posterior part filled with large branched glands. Width of amphids equal to one-quarter of corresponding body width. Distance from vulva to anus equal to $100-125 \%$ of tail length. Tail 8-9 anal body widths long, tapering in anterior half, cylindroid in posterior. Rectum measuring about 90% of anal body width, Spinneret present. Vulva lips somewhat protruding; body contracted ventrally behind vulva. Oocytes arranged into multiple rows anteriorly.

Sample 5.
Monhystera vulgaris de Man, 1880.
Many representatives were found of the filiformis-vulgaris complex. These
two species are difficult to separate; Wieser in his list of species (1956) does not mention M. vulgaris; Micoletzky (1925) suggests that these species may be variants of a single species. The Spitzbergen material falls into two groups. The first has the amphids 1.0-1.6 head widths from the anterior body end and is here regarded as M.vulgaris. Dimensions of 23 females: $\mathrm{L}=0.33-0.64 \mathrm{~mm}$; $\mathrm{a}=$ $19-27 ; b=4.7-6.9 ; c=3.4-4.3 ; \mathrm{V}={ }^{23-33} 56-61$. Diameter of amphids $2.0-2.5 \mu$ or $18-20 \%$ of the corresponding body width. The tail measures $8-10$ anal body diameters. Vulva-anus distance is $48-65 \%$ of tail length. Dimensions of two intra-uterine eggs: 38-42 $\times 14-16 \mu$.

Samples 5, 8, 27 and 65.
Monhystera filiformis Bütschli, 1873.
The second group of specimens has the amphids $1.4-2.7$ head widths from the anterior end and is here regarded M.filiformis. Dimensions of 14 females: $\mathrm{L}=0.29-0.50 \mathrm{~mm} ; \mathrm{a}=27-37 ; \mathrm{b}=4.1-5.4 ; \mathrm{c}=3.5-4.7 ; \mathrm{V}={ }^{14-21} 52-59$. Diameter of amphids $1.2-2.5 \mu$ or $25-40 \%$ of corresponding body width. This form is slenderer than M. vulgaris. Length of tail equal to $9-14$ anal body widths. The vulva-anus distance is $59-91 \%$ of tail length. The oesophagus in this form is relatively longer; the vulva on the average lies more anterior, contrary to the findings of Micoletzky (1914). A difference in development of lips between vulgaris and filiformis could not be observed.

Samples 16, 24, 26, 30, 31, 33, 34, 57, 60, 61, 65 and 66.
Monhystera spec.
One female. Dimensions: $\mathrm{L}=0.37 \mathrm{~mm} ; \mathrm{a}=44 ; \mathrm{b}=4.4 ; \mathrm{c}=3.7 ; \mathrm{V}={ }^{17} 56$. This female also stands close to the filiformis-vulgaris group, but differs chiefly by its very slender body. The amphids measure 2μ or 27% of corresponding body width; they lie 2.4 head widths from the anterior end. The vulva-anus distance is 64% of tail length. The tail measures 17 anal body widths. It was not possible to identify this specimen with any described species; the position of the amphids might point to M.similis Bütschli, 1873. Sample 23.

Family Onchulidae
Prismatolaimus dolichurus de Man, 1880.
Dimensions of 20 females: $\mathrm{L}=1.03-1.31 \mathrm{~mm} ; \mathrm{a}=42-56 ; \mathrm{b}=4.1-5.1$; $\mathrm{c}=2.7-3.0 ; \mathrm{V}={ }^{5-9} 41-44^{3-7}$.

Cuticular annulation broad, 1.8μ on middle of body, but shallow and mostly indistinct; the cuticle may even appear smooth over large stretches of the body. Amphids opening through transverse slits 4μ long, located at $32-38 \mu$ or 2.5-3.0 head widths from the anterior end. Mouth cavity 11-15 μ deep. Length of the longer cephalic setae $8-11 \mu$. Cardia very large. Vulva inconspicuous, vagina with sclerotization resembling that of Trichodorus primitivus. Dimensions of an intra-uterine egg: $75 \times 19 \mu$. Gonads paired, opposed. I never found developing eggs in both gonads simultaneously; usually the gonad containing one is larger and more distinct than the other; thus the gonads are in most

Fig. 18. Prismatolaimus primitivus n.sp., female, entire specimen.
specimens asymmetrically developed. Vulva a transverse slit. Tail measuring $22-29$ anal body widths, with spinneret tube 1.2μ long. Scattered submedian setae are present all over the body.

Very numerous and dominant in sample 36 . Found also in samples 7, 8, 11, $21,31,37,41,57 / 58$ and 69.

Prismatolaimus intermedius (Bütschli, 1873) de Man, 1880.
Dimensions of 20 females: $L=0.48-0.84 \mathrm{~mm}$; $a=42-54 ; b=3.4-4.1$; $\mathrm{c}=3.0-3.8 ; \mathrm{V}={ }^{9-18} 52-58^{1-4}$.

Two females with exceptionally long tails $(\mathrm{c}=2.5-2.8)$ had the vulva anterior to middle ($46-49 \%$). In this species the body annulation is usually coarser than in the preceding one, and more distinct. Contrary to older statements (de Man, Micoletzky and others) this species has also ten cephalic setae. Depth of mouth cavity $7-12 \mu$. The amphids open at $24-33 \mu$ from the anterior end. Length of cephalic setae $5-6 \mu$. The rudimentary posterior gonad varies in length from $8-32 \mu$. Dimensions of an intra-uterine egg: $53 \times 14 \mu$. Tail length 16-28 anal body width. This species is very variable in size. Small specimens can be distinguished from P.parvus Milne, 1963 by the absence of the peculiar annulation on the tail characteristic for the latter species.

Samples 1, 3, 5, 6, 21, 26, 27, 28, 29, 38, 44, 52, 55, 64, 66 and 68.
Prismatolaimus primitivus n.sp. (Fig. 18).
Dimensions:
Females $(\mathrm{n}=5): \mathrm{L}=0.51-0.74 \mathrm{~mm} ; \mathrm{a}=42-51 ; \mathrm{b}=3.6-4.4 ; \mathrm{c}=3.0-4.0$; $V={ }^{4-9} 43-44^{6-9}$.

Female, holotype: $L=0.53 \mathrm{~mm} ; \mathrm{a}=46 ; \mathrm{b}=3.9 ; \mathrm{c}=3.3 ; \mathrm{V}={ }^{7} 43^{6}$.
Cuticular annulation not very conspicuous, best visible on the proximal part of the tail. Width of head at level of middle of stoma $6-7 \mu$. Body width at base of oesophagus $1.4-1.6 \times$ width of head. The amphids open through a transverse slit located $23-28 \mu$ or $3.3-3.8$ head widths from the anterior end. Buccal cavity 7μ deep, slightly more than twice as deep as wide. Around the vestibule there are six cephalic setae measuring $3.0-3.6 \mu$. Four slender subcephalic setae are placed distinctly behind the cephalic ones (2μ behind them, at level of middle of stoma). Vulva transverse, inconspicuous. Gonads paired, opposed, generally asymmetrically developed. Dimensions of two itra-uterine eggs: $48 \times 10 \mu$ and $74 \times 13 \mu$. Length of tail equal to $15-25$ anal body widths.

Holotype: Female on slide WT 1165. Paratypes: Four females on slides WT 1166-1168.

Type habitat and locality: Sample 8 . Found also in samples 9,34 and 41.
This species is conspicuous for the position of the four subcephalic setae, which have not jointed the six cephalic ones to form a circle of ten, and thus show a primitive arrangement. In other respects it is a minor edition of P. dolichurus.

Prismatolaimus stenolaimoides n.sp. (Fig. 19).

Dimensions:
Females $(\mathrm{n}=4): \mathrm{L}=0.37-0.39 \mathrm{~mm} ; \mathrm{a}=32-41 ; \mathrm{b}=3.8-4.1 ; \mathrm{c}=3.3-3.5$; $V={ }^{6-1244-46^{5-7} \text {. }}$

Female, holotype: $\mathrm{L}=0.37 \mathrm{~mm} ; \mathrm{a}=39 ; \mathrm{b}=3.8 ; \mathrm{c}=3.3 ; \mathrm{V}={ }^{6} 46^{7}$.
Buccal cavity 4μ long, 1.2μ wide, relatively very narrow. Head end somewhat rounded; width of head 5μ. Amphids opening 20μ. behind the head end.

Fig. 19. Prismatolaimus stenolaimoides n.sp., female, entire specimen.

Cephalic setae arranged into a circle of ten; about 4μ long. Gonads paired, opposed, usually asymmetrical. Tail length equal to 15-18 anal body widths.

Holotype: Female on slide WT 1169. Paratypes: Three females on slides WT 1170-1171.

Type habitat and locality: Sample 34.
This species shares the very narrow mouth cavity with P.stenolaimus de Man, 1921. This species is insufficiently known, because de Man did not give any
indications about vulva position or number of gonads. P.stenolaimus is much longer (0.67 mm) and slenderer $(a=70)$, with relatively shorter oesophagus $(b=4.5-4.6)$ and longer tail $(c=2.5-2.75)$.

Family Alaimidae
Alaimus parvus Thorne, 1939.
Dimensions of five females: $\mathrm{L}=0.51-0.57 \mathrm{~mm} ; \mathrm{a}=30-44 ; \mathrm{b}=3.5-4.1$; $c=8.3-8.8 ; \mathrm{V}=41-45^{12-20}$.

Length of tail equal to $7-8$ anal body widths. Tail curved strongly to ventral side; terminus narrowly rounded.

Samples 26 and 27.
Alaimus depressus n.sp. (Fig. 20).

Dimensions:

Female, holotype: $\mathrm{L}=0.86 \mathrm{~mm} ; \mathrm{a}=44 ; \mathrm{b}=3.9 ; \mathrm{c}=12 ; \mathrm{V}=43^{16}$.
Female, paratype: $\mathrm{L}=0.94 \mathrm{~mm} ; \mathrm{a}=46 ; \mathrm{b}=4.3 ; \mathrm{c}=13 ; \mathrm{V}=43^{13}$.
Body coiled into spiral shape in death. Excretory pore 11μ from head end. Amphidial sensillae located $51-56 \mu$ behind head end, or $65-70 \%$ of the distance from head end to nerve ring. Cuticle smooth, 1μ thick. Oesophagus widened in posterior seventh. The nerve ring surrounds the oesophagus at $36-37 \%$ of its length from head end. Gonad single, posterior. Vagina perpendicular to body axis. The outstanding feature of this species is the peculiar depression of the ventral cuticle immediately behind the vulva. Tail 7 anal body widths long, curved ventrad, terminus subdigitate. Walls of rectum heavily cuticularized.

Holotype: Female on slide WT 1219. Paratype: One female (broken) on slide WT 1220.

Type habitat and locality: Sample 63.

Alaimus arcuatus Thorne, 1939.

One female. Dimensions: $\mathrm{L}=1.02 \mathrm{~mm} ; \mathrm{a}=35 ; \mathrm{b}=4.9 ; \mathrm{c}=18 ; \mathrm{V}=38^{21}$. Tail length equal to four anal body widths; anus very indistinct. Tail tapering strongly over the proximal two-thirds; distal part curved strongly to ventral side; terminus narrowly rounded. Body tapering markedly from middle to both ends. An intra-uterine egg measures $76 \times 28 \mu$.

Sample 26.

Family Tripylidae

Tripyla papillata Bütschli, 1873.
Two females and two juveniles. Dimensions of females: $L=1.87-1.98 \mathrm{~mm}$; $a=36-39 ; b=6.5-6.6 ; c=6.7-7.3 ; V={ }^{11-13} 55-56^{14-16}$.

Width of annules in mid-body $3.0-3.6 \mu$. Amphid aperture 6μ or nearly onequarter of corresponding body width, located $13-15 \mu$ from head end, well anterior to the dorsal tooth which lies $21-22 \mu$ or 0.8 head widths from the head end. Cardia large, globoid. Vagina slightly less than one-half the corresponding body diameter deep, strongly sclerotized. Length of rectum 0.9 anal body widths,

Fig. 20. Alaimus depressus n.sp., female. A: neck region; B: entire specimen; C: tail: D-E: vulva.

Fig. 21. Enchodelus conicaudatus (Ditlevsen), female. A: head end; B: part of reproductive system; C: tail.
of tail 7.4-8.9. The papillae of the second circle are slightly larger than in the specimens from de Man's collection (Loof, 1961).

Sample 5.
Family Dorylaimidae (sensu lato)
Enchodelus conicaudatus (Ditlevsen, 1927) Thorne, 1939 (Fig. 21; Diagram 1). Dimensions:
Females $(\mathrm{n}=6): \mathrm{L}=1.80-2.15 \mathrm{~mm}: \mathrm{a}=33-42 ; \mathrm{b}=6.0-7.8 ; \mathrm{c}=52-67$; $V={ }^{14-17} 41-47^{15-20}$.
Fourth-stage juveniles $(n=5): L=1.33-1.55 \mathrm{~mm} ; \mathrm{a}=33-35 ; b=6.5-7.3$; $\mathrm{c}=43-58 ; \mathrm{V}=43-48$.

One female has $V=53$.
Lip region offset by depression. Cuticle 4μ thick, increasing to 6μ on tail. Outer layer sharply demarcated. Lateral chord one-fourth to one-fifth of body width in mid-body. Length of odontostyle $18-19 \mu$ in adults; the L-4 have an odontostyle of $15-17 \mu$ and a spare one of $18-19 \mu$. Posterior portion of spear 24μ long in adults. Oesophagus anteriorly with distinct, somewhat muscular swelling.

Oesophageal characters (four females). The oesophagus begins to widen at $59-61 \%$ and attains its full width at $68-69 \%$ of its length from head end. DO lies a short distance anterior to the latter level, the distance DO-DN is $12-14 \mu$. $S_{1} \mathrm{~N}$ rather indistinct, located about halfway between DN and $\mathrm{S}_{2} \mathrm{~N}$; the $\mathrm{S}_{2} \mathrm{~N}$ are well developed. Locations:

DO 65-67\%; $\quad S_{1} N 78-80 \% ; \quad S_{2} N 89-91 \% ;$
DN $70-71 \% ; \quad S_{1} \mathrm{O} 78-80 \% ; \quad S_{2} \mathrm{O} 90-92 \%$;
DO-DN 4.0-4.8 \%;
Vulva transverse, vagina more than one-half body width deep, with distinct sclerotization. Uterus very spacious. Oviduct with distinct sphincter. No sperm. On the ventral side the tail contains 'saccate bodies' which may extend to one anal body width anterior to the anus. Tail 1.1-1.2 anal body widths long. Rectum 1.0-1.2 anal body widths long, prerectum two to three times as long as rectum. Body tapering markedly anteriorly, the diameter at the base of the

1. Enchodelus conicaudatus q

oesophagus being almost four times the width of the lip region. Dimensions of three intra-uterine eggs: $85-90 \times 34-38 \mu$.

The specimens agree well with Ditlevsen's description. As he gives a body length of 2.0 mm and a tail length of 33μ, the value of ' c ' is 61 , not 30 as stated in the text.

Females in samples 1,46 and 68 ; juveniles in samples 3, 7, 27, 29, 31, 34, 37, $39,49,52,66$ and 69.

Enchodelus analatus (Ditlevsen, 1927) Thorne, 1939 (Fig. 22; Diagram 2). Dimensions:

Females $(\mathrm{n}=7): \mathrm{L}=1.11-1.44 \mathrm{~mm} ; \mathrm{a}=20-26 ; \mathrm{b}=4.3-5.2 ; \mathrm{c}=40-44$; $V={ }^{18-23} 47-57^{15-25}$.

Fourth-stage juveniles $(\mathrm{n}=3): \mathrm{L}=0.93-1.13 \mathrm{~mm} ; \mathrm{a}=21-26 ; b=4.1-5.1$; $\mathrm{c}=36-39 ; \mathrm{V}=50-52$.

Body much stouter than in the preceding species, which it much resembles in other respects. Lip region offset by depression, walls of stomatal cavity very thick. Length of adult odontostyle $30-34 \mu$, of basal portion $42-46 \mu$; the L-4 has an odontostyle length of $20-22 \mu$, and a spare odontostyle of $30-32 \mu$. Basal part of spear sclerotized, but not flanged.

Oesophageal characters (three females): The oesophagus begins to widen at $66-67 \%$, very abruptly, and attains its full width at $70-73 \%$ of its length from head end; the posterior part is very wide. DO lies at, or slightly anterior to, the latter level, the distance DO-DN is $12-13 \mu$. Both $S_{1} N$ extremely indistinct, located about halfway between DN and $\mathrm{S}_{2} \mathrm{~N}$; the $\mathrm{S}_{1} \mathrm{O}$ are also less conspicuous than in most other dorylaims. The $\mathrm{S}_{2} \mathrm{~N}$ are well developed. Locations:

DO $70-71 \% ;$	$\mathrm{S}_{1} \mathrm{~N} 82-83 \% ;$	$\mathrm{S}_{2} \mathrm{~N} 88-89 \% ;$
DN $74-76 \% ;$	$\mathrm{S}_{1} \mathrm{O} 82-83 \% ;$	$\mathrm{S}_{2} \mathrm{O} 90-91 \% ;$
DO-DN $4.2-4.9 \% ;$		

Vulva transverse, vagina one-half body width deep. Oviduct long, with distinct sphincter. No sperm. Dimensions of three intra-uterine eggs: 54-89 \times 33-34 μ. Tail broadly convex-conoid, with saccate bodies ventrally; its length $0.8-1.1$ anal body widths. Rectum 1.0-1.3 anal body widths, prerectum two to four times as long as rectum.

Samples 17, 19, 21, 25, 28, 29, 33, 34, 36, 63, 68 and 69.
These specimens differ from Ditlevsen's description in being smaller (against
2. Enchodelus analatus 9

Fig. 22. Enchodelus analatus (Ditlevsen), female. A: neck region; B: part of reproductive system; C: tail.
$1.8 \mathrm{~mm})$ and having a relatively longer tail $(\mathrm{c}=55)$. Ditlevsen did not mention the saccate bodies in the tail, but neither did he in the description of E.conicaudatus, so this does not amount to much. The shorter spear and more posterior vulva distinguish this species from E. macrodorus (de Man, 1880); the smaller body (against 2.5 mm), posterior vulva and non-flanged basal part of the spear from E.groenlandicus (Ditlevsen, 1927).

Enchodelus parvus n.sp. (Fig. 23; Diagram 3).
Dimensions:
Females $(\mathrm{n}=5): \mathrm{L}=0.59-0.79 \mathrm{~mm} ; \mathrm{a}=18-22 ; \mathrm{b}=3.9-4.7 ; \mathrm{c}=37-45$; $V={ }^{12-1752-544^{14-19}}$.

Female, holotype: $\mathrm{L}=0.70 \mathrm{~mm} ; \mathrm{a}=22 ; \mathrm{b}=4.0 ; \mathrm{c}=41 ; \mathrm{V}={ }^{16} 54^{15}$.
Body curved ventrad about 90° in death. Cuticle consisting of two sharply demarcated layers of equal thickness; total thickness 1.5μ, increasing to 2μ in neck region and to 3.5μ (chiefly through thickening of the inner layer) on the tail. Outer layer with fine but distinct transverse striation. Lateral chord onequarter of body width. Lip region slightly offset by a shallow constriction: lips somewhat separate, the papillae protruding slightly. Walls of buccal cavity not conspicuously thick. Length of odontostyle $8-10 \mu$, of basal portion $9-11 \mu$; aperture short. Length of odontostyle about equal to width of lip region. Basal portion linear, weakly sclerotized. The nerve ring surrounds the oesophagus at 43% of its length from head end. Cardia small.

Oesophageal characters (one female): The oesophagus begins to widen at 66% and attains its full width at 74% of its length from head end, DO lies anterior to the latter level; the distance DO-DN is 7μ. The $S_{1} N$ are invisible, but the $\mathrm{S}_{1} \mathrm{O}$ are distinct, located halfway between DN and $\mathrm{S}_{2} N$. The latter are well developed. Locations:

DO $72 \% ; \quad \mathrm{S}_{1} \mathrm{O} 82 \% ; \quad \mathrm{S}_{2} \mathrm{~N} 98 \%$;
DN 76%; $\quad \mathrm{S}_{2} \mathrm{O} 92 \%$.
DO-DN 4.1%;
Vulva depressed, probably not quite transverse. Vagina slightly sclerotized, one-half body width deep. Gonads two, opposed, reflexed; uteri without sperm. A distinct sphincter is present. An intra-uterine egg measures $78 \times 27 \mu$. Ovaries with few oocytes. Tail elongate-hemispheroid, as long as anal body width, with a few saccate bodies. Rectum as long as anal body width, prerectum about twice as long.

Holotype: Female on slide WT 1229; paratypes: Four females on slides WT 1230-1231.

Type habitat and locality: Sample 28. Paratypes also from samples 16 and 63.
This species resembles E.vesuvianus (Cobb, 1893), from which it differs by the longer tail, shorter odontostyle and posterior vulva.
3. Enchodelus parvus 9

Fig. 23. Enchodelus parvus n.sp., female. A: neck region; B: part of reproductive system; C: tail.

Enchodelus macrodorus (de Man, 1880) Thorne, 1939.
One female. Dimensions: $\mathrm{L}=2.00 \mathrm{~mm} ; \mathrm{a}=28 ; \mathrm{b}=5.3 ; \mathrm{c}=69 ; \mathrm{V}={ }^{9} 42^{10}$; odontostyle $=48 \mu$; basal portion $=55 \mu$.

Four moulting fourth-stage juveniles: $\mathrm{L}=1.54-1.63 \mathrm{~mm}$; a $=25-26$; $\mathrm{b}=5.0-5.3 ; \mathrm{c}=46-66 ; \mathrm{V}=42-44 ;$ odontostyle $=39-40 \mu$; spare odontostyle $=45-48 \mu$.

Female prerectum very long, 279μ or five times rectum.
Sample 55.
Enchodelus cf. macrodoroides (Steiner, 1914) Thorne, 1939.
Dimensions:
Females $(\mathrm{n}=3): \mathrm{L}=1.42-1.47 \mathrm{~mm} ; \mathrm{a}=24-28 ; \mathrm{b}=5.2-5.6 ; \mathrm{c}=24-29$; $\mathrm{V}={ }^{20-2149-53^{17-22}}$; odontostyle $=23-24 \mu$; basal portion $=30-31 \mu$.

Odontostyle tength equal to $1.6-1.8 \times$ width of lip region. The latter is offset by a shallow constriction. Tail length equal to $1.8-2.0$ anal body widths. Rectum as long as anal body width, prerectum about four times as long. Gonads with sperm. A male, still within the juvenile cuticle, has seven supplements.

Samples 17, 18, 26, 27, 34, 40 and 42.
E. macrodoroides is species inquirenda (Jairajpuri \& Loof, 1968). The present specimens resemble the tropical species E.constrictus Jairajpuri \& Loof, 1968, but apart from the improbability that this species should occur in the arctics, the higher supplement number makes me keep them apart from that species.

Eudorylaimus subjunctus n.sp. (Fig. 24; Diagram 4)

Dimensions:

Females $(\mathrm{n}=10): \mathbf{L}=1.01-1.19 \mathrm{~mm} ; \mathrm{a}=26-28 ; \mathrm{b}=2.8-3.6 ; \mathrm{c}=21-25$; $\mathrm{V}={ }^{10-15} 55-60^{10-14}$.

Female, holotype: $\mathrm{L}=1.12 \mathrm{~mm} ; \mathrm{a}=27 ; \mathrm{b}=3.1 ; \mathrm{c}=23 ; \mathrm{V}={ }^{11} 58^{10}$.
Male unknown.
Body curved slightly in death, tail bent more strongly, to ventral side. Cuticle 2μ thick, increasing to 3μ on tail; distinctly layered, the outer layer with fine but distinct transverse striation. Lateral chord one-sixth of body width. Lip region offset by constriction, its width 40% of body diameter at base of oesophagus, its height 40% of its width; lips well developed, separate, somewhat

Fig. 24. Eudorylaimus subjunctus n.sp., female. A: head end; B: oesophagus base; C: vuiva; D: tail; E: entire specimen.
angular, the papillae not protruding. Amphids half the corresponding body width. Odontostyle $15-18 \mu$ long or 1.0-1.3 \times width of lip region, the aperture occupying one-third of its length. Basal portion $24-26 \mu$ long, linear. Guiding ring 'single'. The nerve ring surrounds the oesophagus at about two-fifths of its length from head end. Hemizonid not seen. Cardia bulky, ovoid, 25μ long.

Oesophageal characters (three females): The oesophagus begins to widen at $52-55 \%$ and attains its full width at $60-63 \%$ of its length from head end. DO lies at the latter level, the distance DO-DN is $13-22 \mu$. The $S_{1} N$ lie a small distance apart, far behind the middle of the distance $\mathrm{DN}-\mathrm{S}_{2} \mathrm{~N}$; the anterior one is smaller. The $\mathrm{S}_{2} \mathrm{~N}$ are well developed. DN measures $10 \times 4 \mu$, nucleolus 3μ; $\mathrm{S}_{1} \mathrm{~N}_{1} 4 \times 1.5 \mu$, nucleolus $1 \mu ; \mathrm{S}_{1} \mathrm{~N}_{2} 7 \times 3 \mu$, nucleolus $2.5 \mu ; \mathrm{S}_{2} \mathrm{~N} 5 \mu$, nucleolus 2.5μ. Locations:

DO 61-62\%;	$\mathrm{S}_{1} \mathrm{~N}_{1} 77 \% ;$	$\mathrm{S}_{2} \mathrm{~N} 88-90 \% ;$	$\mathrm{K}=71-78 ;$
DN $67 \% ;$	$\mathrm{S}_{1} \mathrm{~N}_{2} 78-82 \% ;$	$\mathrm{S}_{2} \mathrm{O} 89-92 \% ;$	$\mathrm{K}^{\prime}=78-87$.
DO-DN $4.4-6.4 \% ;$	dist. $0.8-3.8 \% ;$		

Vulva of the transverse type, vagina distinctly sclerotized, less than half body width deep. Gonads two, opposed, reflexed, with a distinct sphincter in the oviduct. No sperm. Tail conoid with blunt tip; slightly bent to ventral side, $2.1-2.4$ anal body widths long. Rectum slightly longer than anal body diameter, prerectum 1.5-2.5 \times as long as rectum.

Holotype: Female on slide WT 1172. Paratypes: Nine females on slides WT 1173-1179.

Type habitat and locality: Sample 64. Paratypes also from samples 34,37, 48 and 52. Found furthermore in samples $9,10,11,42$ and 46 . The population from sample 9 has slightly different dimensions: it is slenderer and the vulva lies more anterior. Dimensions of three females: $L=1.10-1.30 \mathrm{~mm}$; $a=29-37$; $\mathrm{b}=3.4-3.9 ; \mathrm{c}=25-35 ; \mathrm{V}={ }^{9-11} 50-52^{9-12}$.

Through the blunt, conoid-arcuate tail this species resembles E.junctus (Thorne \& Swanger, 1936) Andrássy, 1959. It differs from that species by the much shorter odontostyle (against 23μ), longer aperture, post-equatorial vulva, and more distinct lips. From E.santosi (Meyl, 1957) it differs by the striated cuticle and blunt terminus, from E.nodus (Thorne \& Swanger, 1936) by the well separate lips and more anteriorly expanded oesophagus; from E.allgéni (Andrássy, 1958), of which only the male is known, by the longer tail (T/ABW = 1 in allgéni).

Eudorylaimus circulifer Loof, 1961.
Syn. Dorylaimus intermedius apud Thorne \& Swanger, 1936 nec de Man, 1880. Two females. Dimensions: $\mathrm{L}=1.16-1.22 \mathrm{~mm} ; \mathrm{a}=28-31 ; \mathrm{b}=4.0 ; \mathrm{c}=53-67$;
 the aperture occupying almost one-half of its length. Lip region continuous. Tail hemispheroid, shorter than anal body width, with saccate bodies. Rectum as long as anal body width, prerectum $1.4 \times$ as long. These specimens are smaller and stouter than those described by Thorne \& Swanger. They differ from E.
paracirculifer Brzeski, 1962 by the shorter odontostyle with longer aperture, and by the presence of saccate bodies in the tail.

Sample 63.
Eudorylaimus agilis (de Man, 1880) Loof, 1969. Syn. Dorylaimus lugdunensis apud Steiner, 1916 nec de Man, 1880.

Dimensions of four females: $\mathrm{L}=1.38-1.56 \mathrm{~mm} ; \mathrm{a}=28-32 ; \mathrm{b}=4.1-4.6$; $\mathrm{c}=11-15 ; \mathrm{V}={ }^{12-13} 44-47^{10-13}$. Lip region offset by a deep constriction, lips well developed with conspicuously protruding papillae. Length of odontostyle 17μ or $1.2 \times$ width of lip region, the aperture occupying about two-fifths of its length. Distance DO-DN $4.8-5.0 \%$ of oesophagus length. Vulva longitudinal. Tail curved to ventral side, its length $3.6-5.0$ anal body widths. Rectum $1.0-1.6 \mathrm{x}$ anal body width, prerectum $1.3-2.4 \times$ as long as rectum. This species is easily distinguished from E.lugdunensis (de Man, 1880) by its larger size and stouter body.

Samples 1, 29, 37 and 55.
Eudorylaimus lugdunensis (de Man, 1880) Andrássy, 1959.
Six females. Dimensions: $\mathrm{L}=0.71-0.94 \mathrm{~mm} ; \mathrm{a}=25-34 ; \mathrm{b}=3.7-4.3$; $\mathrm{c}=7.8-8.5 ; \mathrm{V}={ }^{7-10} 44-47^{8-12}$. Body tapering but little anteriorly, the diameter at the base of the oesophagus being just over twice the width of the lip region. The latter is offset by constriction; lips well developed. Length of odontostyle $=9-11 \mu$. Oesophagus expanded distinctly behind its middle. Vulva transverse. Tail curved strongly to ventral side, over more than 180°; its length equal to $7-9$ anal body widths. Rectum 1.0-1.5 anal body widths long, prerectum $1.5-3.5 \times$ as long as rectum. The specimens agree very well to de Man's 1884 illustration. This species differs from E.agilis not only by its smaller size, but also by the shorter odontostyle which measures $0.9-1.1$ lip region widths; by the body tapering much less anteriorly and by the much slenderer and more strongly curved tail.

Samples 1, 25, 27 and 61.
Eudorylaimus parvus (de Man, 1880) Andrássy, 1959.
Six females. Dimensions: $\mathrm{L}=0.69-0.83 \mathrm{~mm} ; \mathrm{a}=28-33 ; b=3.5-3.8$; $\mathrm{c}=15-19 ; \mathrm{V}={ }^{9-11} 53-57^{11-13} ;$ odontostyle $=11-12 \mu$.

One male: $\mathrm{L}=1.00 \mathrm{~mm} ; \mathrm{a}=32 ; \mathrm{b}=3.7 ; \mathrm{c}=27 ; \mathrm{VD}={ }^{15} 41^{13}$; odontostyle $=13 \mu$; spicules $=32 \mu$; supplements $=4$.

Lip region offset by a shallow constriction. Length of spear slightly more than width of lip region. Oesophagus expanded about halfway. Body diameter at base of oesophagus about $2.5 \times$ width of lip region. Vulva transverse. Tail length 3.2-3.6 anal body widths in the female, 1.7 in the male. Rectum slightly longer than anal body width, prerectum in the female $1.5-2.0 \times$ rectum.

Sample 17.

Eudorylaimus megodon n.sp. (Fig. 25; Diagram 5).
Dimensions:
Females $(\mathrm{n}=4): \mathrm{L}=2.01-2.64 \mathrm{~mm} ; \mathrm{a}=24-30 ; \mathrm{b}=3.9-4.0 ; \mathrm{c}=27-41$; $V={ }^{6-11} 45-51^{13-16}$.

Female, holotype: $\mathrm{L}=2.64 \mathrm{~mm} ; \mathrm{a}=25 ; \mathrm{b}=4.0 ; \mathrm{c}=34 ; \mathrm{V}={ }^{6} 49^{16}$.
Male not found.
Body very robust, large, curved to ventral side, especially in the posterior part. Cuticle very thick: 7μ in neck, 8μ in mid-body, $10-12 \mu$ on base of tail; with thin, sharply demarcated outer layer. About ten ventral and three dorsal pores in oesophageal region; two more ventral ones opposite anterior part of mid-gut. Lateral chords one-sixth of body diameter.

Lip region offset by a shallow constriction, its width about one-quarter of body diameter at base of oesophagus. Lips with amalgamated bases; the papillae of the inner circle protrude distinctly. Amphids nearly two-thirds of corresponding body width.

Odontostyle large and robust, 31-38 μ long; in five fourth-stage juveniles the adult odontostyle measures $28-39 \mu$. The length of the odontostyle is $1.2-1.7 \times$ width of lip region. The aperture occupies about one-third of its length. Basal portion linear, 48-63 μ long. Guiding ring 'single'.

Oesophageal characters (one female): The oesophagus begins to widen at 47% and attains its full width at 59% of its length from head end. DO lies about the latter level, the distance $\mathrm{DO}-\mathrm{DN}$ is 30μ. The $\mathrm{S}_{1} \mathrm{~N}$ lie a small distance apart, distinctly behind the middle of the distance $\mathrm{DN}-\mathrm{S}_{2} \mathrm{~N}$; both are distinct, the anterior one somewhat smaller. $\mathrm{S}_{2} \mathrm{~N}$ well developed. Locations:

DO $59 \% ;$	$\mathrm{S}_{1} \mathrm{~N}_{1} 77 \% ;$	$\mathrm{S}_{2} \mathrm{~N} 88 \% ;$	$\mathrm{K}=85 ;$
DN $63 \% ;$	$\mathrm{S}_{1} \mathrm{~N}_{2} 79 \% ;$	$\mathrm{S}_{2} \mathrm{O} 90 \% ;$	$\mathrm{K}^{\prime}=87$.
DO-DN $4.4 \% ;$	dist. $2.4 \% ;$		

Cardia conoid, 48μ long, 20μ wide at base.
Vulva of the transverse type, vagina heavily sclerotized. Gonads two, opposed, reflexed, without sperm; in the holotype the anterior gonad is reflexed to past the vulva. Dimensions of two intra-uterine eggs: $82-93 \times 43 \mu$. Tail ventrally arcuate, with blunt tip, the distal part usually slightly finger-shaped; tail length 1.2-1.8 anal body widths. Cuticle on tail with fine transverse striae. Distinct saccate bodies ventrally in the tail. Papillae: two pre-anal subdorsal pairs; one lateral post-anal pair. Tail in some specimens with distinct terminal core. Rectum as long as anal body width, prerectum twice to thrice as long.

Holotype: Female on slide WT 1225. Paratypes: Three females on slides WT 1226-1228.

Type habitat and locality: Sample 1. Paratypes from samples 42 and 62. Juveniles found also in samples 3, 5, 11, 15, 25, 41, 54 and 67.

Fig. 25. Eudorylaimus megodon n.sp., female. A: head end; B: oesophagus base; C-D: vulva; E: entire specimen; F: tail.

Discussion. - This is one of the group of large Eudorylaimus species recorded chiefly from mountainous or arctic regions, comprising E.uniformis (Thorne, 1929), E.acuticauda apud Steiner, 1916; E.vestibulifer (Micoletzky, 1922); E.vestibulifer apud Thorne \& Swanger, 1936 and E.alleni Brzeski, 1962. See Fig. 26.
E. uniformis was described from the Rocky Mountains and has been repeatedly reported from Northern Europe (Filipjev, vide Thorne \& Swanger, 1936;

Fig. 26. A-F: Eudorylaimus megodon n.sp., female. A-C: head end; D-F: tail. G-H: E.?megodon, female. G: head end; H: tail. I-N: E. uniformis (Thorne), female type specimens. I-K: head end; L-N: tail. O-P: E. vestibulifer (Micoletzky), male type specimens, head end. Q-R: E. alleni Brzeski, female. Q: head end; R: tail.
van Rossen \& Loof, 1962.) Thirteen type specimens were available for study. Dimensions:

Females $(\mathrm{n}=8): \mathrm{L}=2.41-2.79 \mathrm{~mm} ; \mathrm{a}=23-31 ; \mathrm{b}=4.3-5.2 ; \mathrm{c}=31-46$; $V={ }^{18-21} 48-52^{16-20}$; odontostyle $=23-26 \mu$; basal portion $=37-41 \mu$.

Males ($\mathrm{n}=5$): $\mathrm{L}=2.27-2.66 \mathrm{~mm} ; \mathrm{a}=22-28 ; \mathrm{b}=4.0-4.5$; $\mathrm{c}=25-38$; spicules $=90-109 \mu$; odontostyle $=23-27 \mu$; supplements $=12-16$.

Odontostyle 1.1-1.3 \times width of lip region. This species resembles E.megodon, but differs clearly in some details, especially the much thinner cuticle (3-4 μ in neck and mid-body, 6-7 μ on base of tail), the shorter odontostyle and basal portion. Furthermore the labial papillae of the second circle protrude more strongly; the tail never has distinct saccate bodies, at most there are some small ones laterally or subventrally; and the tail is curved regularly to the terminus, the distal part never being offset finger-like.
E. uniformis apud van Rossen \& Loof has a thick cuticle, slightly finger-shaped distal part of the tail and an odontostyle of 29μ and thus must be regarded E. megodon.
E. acuticauda apud Steiner, 1916, described from Novaya Zemlya, was identi-
fied with E. uniformis by Thorne \& Swanger (1936). As odontostyle length is 26μ, this may be correct.
E.vestibulifer was described from the Austrian Alps. Two male type specimens were available. Dimensions: $L=2.38-2.42 \mathrm{~mm} ; \mathrm{a}=27-.29 ; b=5.9-$ $6.2 ; \mathrm{c}=40-46$; spicules $=94-99 \mu$; supplements $=21-22$. This species is distinguished clearly by the narrow, cap-like lip region, offset by a deep constriction and narrower than the adjoining neck; by the relatively very short oesophagus; and by the short odontostyle: 15μ or $0.8 \times$ width of lip region.
E.vestibulifer apud Thorne \& Swanger, 1936, described from the Rocky Mountains, U.S.A., clearly differs from E. vestibulifer by the long odontostyle: 24μ. This species is herewith renamed E.coloradensis nom. nov.
E.alleni was described from Spitzbergen. Distinguished by an odontostyle length of 21μ (a paratype had 22μ) or 0.9 lip region widths; the tail is curved very strongly and the vulva appears longitudinal.

These five species can be distinguished as follows:

1. Lip region narrow, cap-like; odontostyle length 15μ
Lip region not cap-like, odontostyle longer. \quad 2.

In sample 28 a female was found coming close to E.megodon, but differing by larger size, posterior vulva and the presence of sperm in the gonads. Dimensions: $\mathrm{L}=3.12 \mathrm{~mm} ; \mathrm{a}=31 ; \mathrm{b}=4.3 ; \mathrm{c}=45 ; \mathrm{V}={ }^{15} 54^{20}$; odontostyle $=33 \mu$. Tail with saccate bodies, curved very weakly (Fig. 26, G-H).

Eudorylaimus alleni Brzeski, 1962. (Fig. 26, Q-R).
Two females. Dimensions: $L=2.09-2.12 \mathrm{~mm} ; \mathrm{a}=25-27 ; \mathrm{b}=4.0-4.3$; $\mathrm{c}=26-46 ; \mathrm{V}={ }^{15} 49^{17}$; odontostyle length $22-23 \mu$. In addition to the differences listed above, this species has a much shorter cardia than E.megodon (20μ).

Samples 4 and 65.
Eudorylaimus vanrosseni n.sp. (Fig. 27; Diagram 6).
Dimensions:
Females $(\mathrm{n}=8): \mathbf{L}=1.03-1.25 \mathrm{~mm} ; \mathrm{a}=23-29 ; \mathrm{b}=3.5-4.3 ; \mathrm{c}=35-40$; $V={ }^{13-18} 54-57^{13-18}$.

Female, holotype: $\mathrm{L}=1.05 \mathrm{~mm} ; \mathrm{a}=27 ; \mathrm{b}=3.6 ; \mathrm{c}=38 ; \mathrm{V}={ }^{13} 56^{15}$.
Male unknown.
Body rather stout, curved ventrad slightly in death. Cuticle 2.5-3.0 μ thick. increasing to 6μ on ventral side of tail; with thin, sharply demarcated outer layer which shows fine but distinct transverse striae. Lateral chord about 30%
of body width. Lip region offset by a shallow constriction; lips separate, angular. Amphid aperture about 60% of corresponding body width. Length of odontostyle $16-17 \mu$, i.e. slightly more than width of lip region, the aperture occupying about one-third of its length. Basal portion about 25μ long. Guiding ring 'single'. The nerve ring surrounds the oesophagus at about 35% of its length from head end. Cardia conspicuous, subglobular, variable in size (12-20×15$27 \mu$).

Oesophageal characters (two females): The oesophagus begins to widen at $51-53 \%$ and attains its full width at $57-60 \%$ of its length from head end. DO lies at, or just anterior to the latter level, the distance DO-DN is $13-14 \mu$. The $\mathrm{S}_{1} \mathrm{~N}$ lie a small distance apart, behind the middle of the distance $\mathrm{DN}-\mathrm{S}_{2} \mathrm{~N}$; the anterior one is small and indistinct, the posterior one large and conspicuous. The $\mathrm{S}_{2} \mathrm{~N}$ are well developed and lie rather close to the base of the oesophagus. Locations:

DO $57-59 \% ; \quad S_{1} \mathrm{~N}_{1} 77-78 \% ; \quad \mathrm{S}_{2} \mathrm{~N} 90-93 \% ; \quad \mathrm{K}=85-93 ;$
DN 62-63\%;
$\mathrm{S}_{1} \mathrm{~N}_{2} 79-80 \% ; \quad \mathrm{S}_{2} \mathrm{O} 92-93 \% ; \quad \mathrm{K}^{\prime}=94$.
DO-DN 4.6\%;
dist. $1.6-2.7 \%$;
Vulva of the transverse type, vagina wide, half body width deep. Gonads two, opposed, reflexed, without sperm; with constriction between uterus and oviduct. Tail shaped as in E.monohystera: convex-conoid, indented dorsally, tip rounded; its length $1.0-1.3$ anal body widths. Rectum 1.2-1.3 anal body widths long, prerectum one to two times as long as rectum. Tail with a row of (usually 6) small ventral saccate bodies.

Holotype: Female on slide WT 1134. Paratypes: Seven females on slides WT 1221-1224.

Type habitat and locality: Sample 55. Paratypes also from sample 53.
Diagnosis: This species resembles E.pratensis (de Man, 1880) in tail shape, but this species has a much longer and thinner odontostyle. From E.nitidus (Thorne \& Swanger, 1936) it differs by the well-developed, separate lips; from E.obesus (Thorne \& Swanger, 1936) by the distal part of the tail ventrally not being offset, and by the shorter odontostyle (against 22μ) with shorter aperture; from E.albionensis (van der Linde, 1938) by the non-sinuate ventral tail contour, lower lip region, post-equatorial vulva and lower ratio odontostyle/lip region (1.5 in albionensis).

Eudorylaimus maksymovi Altherr, 1963 (Fig. 28; Diagram 7).
Two females. Dimensions: $L=1.69-1.83 \mathrm{~mm} ; \mathrm{a}=36-40 ; \mathrm{b}=4.1-4.3$; $\mathrm{c}=17-19 ; \mathrm{V}={ }^{9} 44-46^{9}$.

Fig. 27. Eudorylaimus vanrosseni n.sp., female. A: head end; B: oesophagus base; C: vulva; D: tail; E: entire specimen.

Cuticle thin, 2.5-3.0 μ; transverse striation very fine. Outer layer thin, sharply demarcated. Lip region offset by a shallow depression; the inner circle of papillae located rather far outward. Length of odontostyle 20μ or $1.3 \times$ width of lip region, the aperture occupying one-third of its length.

Oesophageal characters: The oesophagus begins to widen at 48% and attains its full width at $58-60 \%$ of its length from head end. DO lies slightly behind the latter level, the distance DO-DN is 20μ. The $S_{1} N$ lie a small distance apart; the anterior one is small and indistinct. $\mathrm{S}_{2} \mathrm{~N}$ well developed. Locations:

DO $60-61 \% ;$	$\mathrm{S}_{1} \mathrm{~N}_{1} 78-79 \% ;$	$\mathrm{S}_{2} \mathrm{~N} 89-91 \% ;$	$\mathrm{K}=78-86 ;$
DN $65-66 \% ;$	$\mathrm{S}_{1} \mathrm{~N}_{2} 81-82 \% ;$	$\mathrm{S}_{2} \mathrm{O} 91-92 \% ;$	$\mathrm{K}^{\prime}=83-89$.
DO-DN $4.9-5.0 \% ;$	dist. $2.3-3.5 \% ;$		

Cardia conoid, 18μ long. In both specimens there is an elongate organ in the posterior part of the neck, extending to just past the end of the oesophagus; located laterally on the right side. Anteriad the organ soon becomes indistinct; it might be connected with the lateral chord.
Vulva depressed, transverse; vagina distinctly sclerotized. Gonads two, opposed, reflexed, with sphincter. No sperm. Tail length equal to 3.7-3.8 anal body widths; tail conoid the distal half curved to ventral side; in the proximal half there are some saccate bodies in the cuticle ventrally and subventrally. Rectum 1.2-1.3 anal body widths long, prerectum 1.3-1.8 as long as rectum.
Sample 69.
These specimens correspond well to Altherr's description. The species resembles E. consobrinus (de Man, 1917) but differs from it by the transverse vulva, the longer odontostyle (against 15-16 μ) and the slightly offset lip region (continuous in the type specimen of consobrinus in de Man's collection).

Longidorella magna n.sp. (Fig. 29; Diagram 8).
Dimensions:
Female, holotype: $\mathrm{L}=1.05 \mathrm{~mm} ; \mathrm{a}=21 ; \mathrm{b}=3.5 ; \mathrm{c}=21 ; \mathrm{V}={ }^{15} 56^{14}$; odontostyle $=30 \mu$.
Female, paratype: $\mathrm{L}=1.13 \mathrm{~mm} ; \mathrm{a}=20 ; \mathrm{b}=3.5 ; \mathrm{c}=24 ; \mathrm{V}={ }^{17} 58^{18}$; odontostyle $=35 \mu$.
Male not found.
Body stout, slightly curved ventrad in death. Cuticle 5μ thick ventrally, 3μ dorsally; with thin, sharply demarcated outer layer; transverse striation imperceptible. Lateral chord one-third of body width. Body tapering strongly anteriorly, the width at base of oesophagus being $4.5 \times$ width of lip region; the shape of the anterior part reminiscent of Paraxonchium. Lip region offset by constriction; angular, but the papillae do not protrude. Amphid aperture half corresponding body width. Odontostyle thrice as long as width of lip region, the tip bent somewhat dorsad, with very small aperture. Basal portion not sclerotized, $20-24 \mu$ long. The nerve ring surrounds the oesophagus just anterior to its middle. Cardia more or less round, one-quarter of body width long.
In the oesophageal region there are 9-12 ventral body pores; furthermore there are $4-5$ between oesophagus base and vulva and 3-4 between vulva and

Fig. 28. Eudorylaimus maksymovi Altherr, female. A: head end; B: oesophagus base; C: vulva; D: tail.

Fig. 29. Longidorella magna n.sp., female. A: neck region; B: part of reproductive system; C: tail; D: entire specimen.

anus. Total number on one body side $16-21$. In the anterior half of the neck there are 5-6 dorsal pores.

Oesophageal characters: The oesophagus begins to widen at 59% and attains its full width at $64-66 \%$ of its length from head end. DO lies slightly anterior to the latter level, the distance DO-DN is $16-18 \mu$. The $\mathrm{S}_{1} \mathrm{~N}$ lie a small distance apart, about halfway between $D N$ and $S_{2} N$; the anterior one is very indistinct.
Locations:
DO 63-65\%; $\quad S_{1} N_{1} 78-79 \% ; \quad S_{2} N 89-93 \% ; \quad K=67-82 ;$
DN $68-70 \% ; \quad S_{1} N_{2} 81-82 \% ; \quad S_{2} \mathrm{O} 91-95 \% ; \quad K^{\prime}=76-91$.
DO-DN 4.8-5.8\%; dist. 2.2-3.9\%;
Vulva probably not quite transverse, vagina one-half body width deep. Gonads two, opposed, reflexed, without sperm; a sphincter appears to be present. No eggs. Tail conoid-digitate, 1.7 anal body widths long. Rectum $1.0-1.4$ anal body widths long, prerectum twice as long as rectum.

Holotype: Female on slide WT 1143. Paratype: Female on slide WT 1142.
Type habitat and locality: Sample 66. Juveniles in samples 17, 27 and 44.
The large body size distinguishes this species from all others.
Family Leptonchidae (sensu lato)
Tylencholaimus proximus Thorne, 1939 (Fig. 30).
Dimensions:
Females ($\mathrm{n}=22$): $\mathrm{L}=0.59 \mathrm{~mm}(0.45-0.71) ; \mathrm{a}=18-24 ; \mathrm{b}=3.1-4.4$; $\mathrm{c}=23-31 ; \mathrm{V}={ }^{11-26} 63-68$.

Male ($\mathrm{n}=1$) : $\mathrm{L}=0.56 \mathrm{~mm} ; \mathrm{a}=24 ; \mathrm{b}=3.2 ; \mathrm{c}=27 ; \mathrm{VD}={ }^{10} 36^{11}$.
Body nearly straight in death. Lip region offset by constriction, cap-like, the inner papillae protruding distinctly. Outer layer of cuticle smooth, inner with fine transverse striae and in mounted specimens somewhat irregularly wrinkled and loosened from outer layer. Oesophagus widened gradually at about 60% of its length from head end. Length of odontostyle $6-7 \mu$, of basal portion $8-10 \mu$. In some females a very short posterior uterine sac appears to be present. Tail symmetrically conoid in the female, with broadly rounded tip: its length 0.9-1.3 anal body widths. Rectum about as long as anal body width, prerectum thrice as long. No sperm in gonad.

Male body curved ventrad in posterior third. Testes two, dorylaimid, but possibly non-functional, as no sperm is present. Spicules dorylaimid, 28μ long (along axis). Apart from the adanal pair there is a series of two ventromedian supplements, spaced 13μ apart, the posterior one 42μ or two tail lengths from

Fig. 30. Tylencholaimus proximus Thorne, male tail.
the anus. Tail dorsally conoid, tip round, less blunt than in the female. Lateral guiding pieces not seen.

Samples $17,18,25,26,38,52$ and 62 ; the male in sample 18.
Tylencholaimus teres Thorne, 1939.
Two females. Dimensions: $L=0.83-0.98 \mathrm{~mm} ; a=26-31 ; b=3.9-4.1$; $\mathrm{c}=57-67 ; \mathrm{V}={ }^{15} 59^{13-14}$.

Body slightly curved ventrad in death. Cuticle with conspicuous radial striae. Outer layer of cuticle smooth, inner with irrelugar transverse striae and in mounted specimens wrinkled, loosened irregularly from outer layer. Lateral chord broad, smooth, with a few marginal pores. Lip region cap-like with somewhat convex sides, offset by a shallow constriction; the inner papillae hardly protruding. Length of odontostyle 6μ, i.e. about four-fifths of width of lip region, the aperture occupying one-third of its length. Basal portion $8.0-8.5 \mu$ long, knobbed. Amphids relatively narrow. Oesophagus slender in its anterior part, expanding gradually at about $55-60 \%$ of its length; the posterior part is three-fifths as wide as body and $5-6 \times$ as long as wide. The dorsal gland empties into the lumen anterior to the level where the oesophagus attains its full width, the distance DO-DN is 6μ or $2.6-2.8 \%$ of neck length. Vulva transverse, vagina not sclerotized, nearly half body width deep. Gonads two, opposed, reflexed less than halfway; no sperm; in one specimen a constriction between oviduct and uterus is visible. Tail shorter than anal body diameter, broadly rounded. Rectum slightly longer than anal body width, prerectum twice as long as rectum.

Samples 56 and 66.

6. Ecological and geographical remarks

At the family level we note the complete absence of Rhabditidae, Diplogastridae, Aphelenchidae, Paraphelenchidae, Hemicycliophoridae, Mononchidae, Aporcelaimidae, Belondiridae (sensu lato), Diptherophoridae and Trichodoridae.

Genera commonly found in temperate Europe but not represented in these samples include Rotylenchus (curiously Helicotylenchus is represented), Pratylenchus, Paratylenchus, Macroposthonia, Nothocriconema, Seinura, Tobrilus, Dorylaimus and Mesodorylaimus. On the other hand several genera are much more dominating on Spitzbergen than in temperate regions: Tylenchus, Teratocephalus, Cervidellus, Plectus, Ereptonema and Prismatolaimus.

Generally there is not much diversity between these 65 samples. The pool sample 5 yields some typical freshwater species: Monhystera stagnalis and Tripyla papillata. Helicotylenchus spitsbergensis was found only in sites with vegetation of Phanerogamae. Noteworthy is the distribution of Tylenchorhynchus microdorus: apart from one odd specimen this species was found only on the small islands of Eskjeret and Juttahl, and in two of the four samples it was the dominant species (31% in sample $53,32 \%$ in 54).

One gets the impression that on this remote and little accessible island accident plays a great part in the nematode distribution. In three of the four Fardalen samples Tylenchus thornei dominated to a very high extent: $88 \%, 92 \%$ and 96% respectively. On the Longyearbyen slope T. Ieptosoma was most often dominant, in vegetation samples ($25: 44 \% ; 29: 59 \% ; 33: 54 \% ; 35: 97 \% ; 37$: 59%) as well in bare soil sites ($26: 28 \%$). But now and then other species dominate: T. thornei in $34(66 \%)$, T. davainei in $39(72 \%)$ and Prismatolaimus dolichurus in $36(73 \%)$. The dominance of the latter species in bare sand at 350 m altitude testifies to the moist condition of the soil. Spasmodically other species dominate: Ereptonema arcticum in $70(49 \%)$, Cervidellus serratus in $18(38 \%)$ and $44(45 \%)$, Panagrolaimus papillosus in $50(84 \%)$, Teratocephalus lirellus in $57 / 58(72 \%)$, and in $55(28 \%)$ together with Rhabdolaimus terrestris (30%); in 66 the latter species dominates (29%). In sample 19 a Monhystera species of the filiformis-vulgaris group dominates (45%).

In 1916 Steiner published a paper on the nematode fauna of a moss sample on Novaya Zemlya. The species composition is rather like that of Spitzbergen: four Plectus species (incl. Anaplectus); two Teratocephalus (Steiner's female nr. 3 evidently is either T.costatus or T.decarinus), two Achromadora species, three Tylenchus, three Monhystera; further Euteratocephalus, Bastiania, Alaimus, Eudorylaimus, Enchodelus, Bunonema, Aphelenchoides and Prismatolaimus; most of the species being the same as those found on Spitzbergen. Steiner found three genera not represented in the Spitzbergen material: Prionchulus, Mylonchulus and Mesodorylaimus.

Marked affinities exist also to the nematode fauna of northern Canada, explored recently by Anderson (1969), Mulvey (1969-a, 1969-b) and Wu (1969-a, 1969-b). Common species are Criconemoides hemisphaericaudatus, TeratocephaIus lirellus, T. decarinus, Tylenchorhynchus arcticus and T. leptus. The lastmentioned species has a wide distribution: it is known now from the U.S.A., Canada, Spitzbergen, Sweden, Switzerland, Austria and northern Italy. Probably it will be found on Iceland and Greenland too.

Of the 22 species reported from Greenland by Ditlevsen (1927) eight were found on Spitzbergen: Tripyla papillata, Prismatolaimus dolichurus, Enchodelus
analatus, E.conicaudatus, Eudorylaimus lugdunensis, Anaplectus granulosus, Tylenchus davainei and Monhystera filiformis ($=$ pseudobulbosa). Because of the large, stout body and tail shape Dorylaimus acuticauda of Ditlevsen might really be Eudorylaimus megodon.

The finding of Tylenchorhynchus magnicauda, known so far only from the Rocky Mountains, indicates that this species probably is widely distributed on northern mountainous regions.

Acknowledgements

For loan of comparison material the writer is indebted to Dr. M. W. Brzeski, Skierniewice, Poland; Dr. A. Morgan Golden, Beltsville, U.S.A.; Dr. G. Hartwich, Berlin, Germany and Dr. R. H. Mulvey, Ottawa, Canada.

References

Allen, M. W. (1955). A review of the nematode genus Tylenchorhynchus. Univ. Calif. Publ. Zool. 61, 129-166.
Anderson, R. V. (1968). Variation in taxonomic characters of a species of Acrobeloides (Cobb, 1924) Steiner \& Buhrer, 1933. Can. J. Zool. 46, 309-320.

Anderson, R. V. (1969). Comparative morphology and descriptions of three new species of Teratocephalus from Canada. Ibid. 47, 829-840.
Andrássy, I. (1954). Revision der Gattung Tylenchus Bastian. Acta zool. Acad. Sci. Hung. 1, 5-42.
Andrássy, I. (1958). Erd- und Süsswassernematoden aus Bulgarien. Ibid. 4, 1-88.
Andrássy, I. (1968). Fauna Paraguayensis 2. Nematoden aus den Galeriewäldern des AcarayFlusses. Opusc. zool. Budap. 8 (2), 167-315.
Brzeski, M. W. (1962). Eudorylaimus alleni n.sp. (Nematoda, Dorylaimidae). Ibid. 4 (2-4), 67-68.
Bütschli, O. (1873). Beiträge zur Kenntnis der freilebenden Nematoden. Nova Acta LeopoldCar. 36, 1-144.
Ditlevsen, H. (1927). Free-living nematodes from Greenland, land and freshwater. Medd. Gronl. 23, Suppl., 159-198.
Ferris, V. R. \& Ferris, J. M. (1967). Morphological variant of Tetylenchus joctus (Nemata: Tylenchida) associated with cultivated blueberries in Indiana. Proc. helminth. Soc. Wash. 34, 30-32.
Geraert, E. (1968). The genus Basiria (Nematoda - Tylenchina). Nematologica 14, 459-481.
Goodey, T. (1951). Soil and freshwater nematodes. London, Methuen, 390 pp.
Grisse, A, de (1968). Bijdrage tot de morfologie en de systematiek van Criconematidae (Taylor, 1936) Thorne, 1949 (Nematoda). Diss., Gent, 141 pp.

Grisse, A. de \& Loof, P. A. A. (1965). Revision of the genus Criconemoides (Nematoda). Meded. LandbHogesch. Opzoekstns Gent 30, 577-603.
Jairajpuri, M. S. \& Loof, P. A. A. (1968). On some species of Enchodelus Thorne, 1939 from India (Nematoda: Dorylaimidae). Nematologica 13, 501-508.
Loof, P. A. A. (1961). The nematode collection of Dr. J. G. de Man I. Beaufortia 8, 169-254.
LOof, P. A. A. (1964). Free-living and plant-parasitic nematodes from Venezuela. Nematologica 10, 201-300.
Maggenti, A. R. (1961). Revision of the genus Plectus (Nematoda: Plectidae). Proc. helminth. Soc. Wash. 28, 139-166.

Man, J. G. de (1884). Die frei in der reinen Erde und im süssen Wasser lebenden Nematoden der niederländischen Fauna. Leiden, Brill, 206 pp.
MAN, J. G. de (1921). Nouvelles recherches sur les nématodes libres terricoles de la Hollande. Capita zool. 1 (1), 1-62.
Meyl, A. H. (1961). Freilebende Nematoden. Tierwelt Mitteleuropas I (5a), 164 pp.
Micoletzky, H. (1922). Die freilebenden Erd-Nematoden. Arch. Naturgesch. A 87, 1-650.
Micoletzky, H. (1925). Die freilebenden Süsswasser- und Moornematoden Dänemarks. K. Dansk. Vidensk. Selsk. Skr. 8 (10), 55-310.

Mulvey, R. H. (1969-a). Nematodes of the genus Tylenchorhynchus (Tylenchoidea: Nematoda) from the Canadian high Arctic. Can. J. Zool. 47, 1245-1248.
Mulvey, R. H. (1969-b). Nematodes of the family Neotylenchidae (Tylenchida: Nematoda) from the Canadian high Arctic. Ibid. 47, 1261-1268.
Raski, D. J. \& Golden, A. M. (1966). Studies on the genus Criconemoides Taylor, 1936 with descriptions of eleven new species and Bakernema variabile n.sp. (Criconematidae: Ne matoda). Nematologica 11, 501-565.
Rossen, H. van \& Loof, P. A. A. (1962). Notities over het voorkomen van enkele aaltjessoorten in Zweden. Versl. Meded. PlZiekt. Dienst 136, 185-192.
Schneider, W. (1939). Würmer II: Fadenwürmer oder Nematoden I: Freilebende und pflanzenparasitische Nematoden. Tierwelt Deutschlands 36, 260 pp.
Steiner, G. (1916). Freilebende Nematoden von Nowaja-Semlja. Zool. Anz. 47, 50-74.
Thorne, G. (1925). The genus Acrobeles von Linstow 1887 (sic). Trans. Amer, micr. Soc. 44, 171-210.
Thorne, G. (1929). Nematodes from the summit of Long's Peak, Colorado. Ibid, 48, 181-195.
Thorne, G. \& Swanger, H. H. (1936). A monograph of the nematode genera Dorylaimus Dujardin, Aporcelaimus n.g., Dorylaimoides n.g. and Pungentus n.g. Capita zool. 6(4), 1-223.
WIESER, W. (1956). Free-living marine nematodes III. Axonolaimoidea and Monhysteroidea. Acta Univ. lund. N.F. avd. 2, 52, 115 pp.
Wu, L. Y. (1969-a). Dactylotylenchinae, a new subfamily (Tylenchidae: Nematoda). Can. J. Zool. 47, 909-911.
Wu, L. Y. (1969-b). Five new species of Tylenchus Bastian, 1865 (Nematoda: Tylenchidae) from the Canadian high Arctic. Ibid. 47, 1005-1010.

[^0]: ${ }^{1}$ Syn. S.incisa apud Loof, 1964.

