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Chapter 1. Introduction

1.1 Motivation

On May 9, 2013 the daily mean atmospheric CO2 concentration at the Mauna Loa
observatory in Hawaii reached 400 ppm for the first time since the start of recordings
(National Oceanic and Atmospheric Administration, 2013). This event marked a
symbolic milestone in the increasing perturbation of the global carbon cycle, caused
mainly by emissions from fossil fuel combustion and land-use change. That the
rising levels of CO2 and other greenhouse gasses have potentially major effects on
the global climate is now virtually undisputed in the scientific community (Arblaster
et al., 2013). However, the precise impacts remain highly uncertain, due to limited
understanding of the earth as a system. An important source of this uncertainty are
potential feedbacks between the climate system and the global carbon cycle (Jones
et al., 2006).

Carbon is a key element in the earth system, being a constituent of the two most
important greenhouse gasses, CO2 and CH4, and a fundamental building block of
organisms. It is continually exchanged between the atmosphere and other com-
partments of the earth system: the hydrosphere, the geosphere, and the biosphere
(Schlesinger, 1997). The latter three spheres each store much larger amounts of
carbon than what is currently present in the atmosphere. Since the dynamics of
these carbon pools are determined by very small differences between large losses
and gains, small relative changes in these fluxes have the potential to mitigate or
enhance climate change. Hence, large efforts are made to improve understanding
of carbon fluxes in each of these spheres and transfer this knowledge to numerical
models. This study deals with a large and potentially vulnerable pool of carbon in
the terrestrial biosphere: soil organic matter.

Soils are estimated to store between 1220 and 1576 petagram (Pg, 1× 1015 g) of
carbon as organic matter globally in the top meter (Eswaran et al., 1993; Sombroek
et al., 1993; Batjes, 1996; Jobbagy and Jackson, 2000), roughly twice the amount cur-
rently present in the atmosphere. The flow of carbon from soils to the atmosphere
through heterotrophic respiration is estimated at around 55 Pg per year, an order of
magnitude higher than the current fossil fuel emissions (Prentice et al., 2001). Rising
atmospheric CO2 concentrations are expected to lead to increased soil carbon in-
put due to increased vegetation productivity and litter fluxes (Schimel, 1995; Norby
et al., 2005). Conversely, rising global temperature will accelerate carbon loss by
heterotrophic respiration (Davidson and Janssens, 2006). Global simulations sug-
gest that the net effect on the soil carbon balance will initially be positive, but will
decrease and possibly become negative during the next 50–100 yr (Sitch et al., 2008).

Traditionally, research into soil carbon dynamics has focused mainly on the sur-
face organic layer and the topsoil (0–30 cm), where organic carbon occurs in highest
concentrations, is most directly influenced by climate and vegetation, and has high-
est turnover rates (Trumbore, 2009). Lately, attention is starting to extend to greater
soil depths, partially due to accumulating evidence that “deep” organic matter may
not be as stable as previously believed (Baisden and Parfitt, 2007; Koarashi et al.,
2012). The mechanisms that protect organic matter from decomposition may vary
over the profile due to the strong vertical gradients of physical, chemical, and bio-
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1.2. Background

logical properties that typically occur in soils (Rumpel et al., 2012). Several of these
mechanisms are sensitive to changes in environmental conditions. Furthermore, sev-
eral studies have shown that significant amounts of organic carbon are stored below
1 m depth (Jobbagy and Jackson, 2000; Tarnocai et al., 2009). Finally, the vertical dis-
tribution and form of organic matter influences soil physical properties, such as bulk
density, and soil moisture and heat transport parameters (Rawls, 1983; Rawls et al.,
2003; Koven et al., 2009).

Thus, ecosystem models will benefit from vertically a explicit representation of
soil carbon, both to facilitate future extension with new process descriptions, as well
as to improve existing parameterizations. Growing awareness of this need is demon-
strated by recent efforts to add the vertical dimension to existing soil carbon mod-
els (Jenkinson and Coleman, 2008; Koven et al., 2013). However, the mechanisms
controlling the vertical soil organic matter distribution have been little investigated.
This hinders the determination of the rates and proper mathematical formulations
of processes, particularly for models intended for large spatial scales.

1.2 Background

1.2.1 Soil organic matter

Soil organic matter (SOM) is defined as all dead organic compounds in soil, in all
forms and states of decay, derived from plant, animal, and microbial biomass1 (Trum-
bore and Torn, 2005). Most SOM is ultimately derived from plants, which produce
organic products from carbon dioxide and water through the process of photosyn-
thesis. The majority of the net production of photosynthates eventually enters the
litter layer and soil through senescence, plant death, and excretion of exudates by
roots. Once present in the soil, SOM is processed by the soil foodweb, during which
a part is incorporated into decomposer biomass and another part is lost as CO2
due to respiration. Finally, a small fraction is transformed into recalcitrant organic
compounds, collectively called “humus”, which comprises approximately 90% of
all SOM (van Breemen and Buurman, 1997). Overall, SOM is an extremely hetero-
geneous mixture of organic compounds of all decomposition stages, with different
chemical structures, turning over at different rates ranging from days to millennia.

The decomposition process is essential for the stabilization of organic carbon. On
the other hand, through heterotrophic respiration, decomposition is the main mech-
anism for carbon loss from soils. Hence, decomposers are key agents in the terrestrial
carbon cycle, despite the fact that their biomass constitutes only a small fraction of
all organic matter in soils (1–2 %; Xu et al. (2013)). The main organisms involved
in decomposition are fungi, bacteria, and soil fauna. Mineralization of organic mat-
ter is mainly carried out by bacteria and fungi who release exoenzymes that break
down and mobilize organic molecules. The resulting substrates diffuse to the mi-
crobes and are absorbed and incorporated into biomass (Chapin et al., 2002). Soil

1In this discussion, “soil organic matter” also refers to material in organic layers on top of the mineral
soil, although this not considered SOM in the strict sense.
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Chapter 1. Introduction

fauna includes microfauna (nematodes, protozoans), mesofauna (mites, springtails),
and macrofauna (earthworms, arthropods) (Brussaard et al., 1997). They play an im-
portant role by fragmenting, transforming, and mixing organic matter, as well as by
grazing on bacteria and fungi (Chapin et al., 2002; van Delft et al., 2006).

Organic matter decomposition rates are influenced by a range of factors. In the
early stages, decomposition is determined mainly by substrate quality, temperature,
and moisture. Substrate quality is a general term that refers to the susceptibility
of organic matter to decomposition under standard conditions. It is determined by
chemical properties (molecular structure, nutrient concentration) and generally neg-
atively correlated to litter C:N or lignin:N ratio (Chapin et al., 2002). Decomposition
is positively correlated to temperature due to stimulation of microbial activity and
substrate diffusion. Moisture availability promotes decomposer activity, as long as
conditions remain aerobic. Very high moisture contents limit oxygen diffusion which
slows decomposition, and may ultimately lead to anaerobic respiration and methane
(CH4) production.

As organic matter becomes more decomposed and mixed with minerals, several
mechanisms may lead to protection from further breakdown (van Breemen and Bu-
urman, 1997; von Lützow et al., 2006; Schmidt et al., 2011). For well drained soils
these include: (i) adsorption of organic matter onto mineral surfaces; (ii) forma-
tion of water repellent organic structures; (iii) high levels of aluminium and/or iron
which are toxic to microbes; (iv) physical disconnection from decomposers due to
low concentrations or occlusion in aggregates; (v) energy or nutrient limitation of
microbes. These mechanisms all contribute to long term SOM stabilization, but their
relative importance is poorly known and varies strongly between soils (von Lützow
et al., 2006). Organic matter may become destabilized when environmental and bio-
logical factors that control these mechanisms are altered due to changes in land use
or vegetation structure.

1.2.2 The vertical soil organic matter profile

Since the biological activity required for organic matter production occurs at or near
the soil surface, SOM concentrations in the mineral soil are generally highest in the
topsoil and decrease with depth (Jenny, 1980). Exceptions are peat soils (histosols)
which have very high organic matter concentrations, potentially up to great depths
(Driessen and Dudal, 1991), and podzols (spodosoils), which can have locally in-
creasing SOM concentrations due to eluviation and illuviation of mobile SOM frac-
tions (van Breemen and Buurman, 1997). Additionally, natural formation of the
SOM profile may be disturbed due to erosion and deposition, or anthropogenic in-
fluences, such as ploughing and plaggen cultivation (Blume and Leinweber, 2004).
However, in most natural and undisturbed soils SOM concentrations monotonically
decrease with depth. Generally, the profile is concave—i.e. the gradient decreases
with depth—and, if bedrock is sufficiently deep, asymptotically approaches zero. A
range of depth functions has been proposed to model the SOM profile, including
exponential (Minasny et al., 2006), power (Jobbagy and Jackson, 2000), polynomial
(Arrouays and Pelissier, 1994) and Langmuir-derived (Johnson et al., 2011). Addi-
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tionally, soil-type specific, piecewise functions have been used to model disturbed
and human-influenced soils (Kempen et al., 2011).

The vertical SOM profile differs markedly between soils, ecosystems, and climate
regions (Batjes, 1996; Jobbagy and Jackson, 2000, Figure 1.1). Jobbagy and Jackson
(2000) analysed a global database of soil organic carbon profiles, and the relationship
of the soil carbon distribution with environmental factors. They concluded that the
vertical distribution of SOM differs significantly between vegetation types, with the
proportion of organic carbon in the top 20 cm relative to the total in the first meter
ranging between 29 % for cold arid shrublands to 57 % in cold humid forests. These
differences are mainly related to the varying root distributions and root/shoot ratios
of these vegetation types. The amount of organic carbon in the top 20 cm was found
to be most strongly correlated with climate, whereas the clay fraction is more im-
portant in deeper layers. Globally, it is estimated that approximately 36 % of organic
matter occurs below 1 m depth (Jobbagy and Jackson, 2000). However, due to the
small number of published deep SOM stocks this figure is presumably quite uncer-
tain. Very deep SOM profiles, with significant stocks below 5 m depth, have been
observed in tropical forests (Trumbore et al., 1995; Telles et al., 2003) and permafrost
regions (Zimov et al., 2006; Tarnocai et al., 2009).

1.2.3 The surface organic layer
In ecosystems with significant aboveground litter production and little biological
mixing organic matter tends to accumulate at the surface in the form of a organic
layer, also termed “ectorganic horizon2”. In dryland soils such layers are mainly
found in forests, where a large part of the litter input occurs aboveground. They
may also occur in shrublands. In grasslands a layer with high organic matter con-
centration may form due to accumulation of root litter (“endorganic horizon”) but
such layers are usually considered part of the mineral soil (van Delft et al., 2006). The
humus in surface organic layers is generally classified as mor or moder. Mor humus
occurs when conditions are most unfavourable and decomposition occurs largely by
fungi. Under somewhat more favorable conditions the humus may be partially pro-
cessed by mesofauna and consist of moder: fecal pellets, mainly from arthropoda
(van Breemen and Buurman, 1997; van Delft et al., 2006).

The thickness of the organic layer varies greatly between ecosystems and is deter-
mined by the balance between litter deposition versus decomposition and biological
mixing (Olson, 1963). In ecosystems with active soil fauna and fast decomposition
the organic layer may be (almost) absent, whereas under unfavorable conditions the
organic layer can accumulate to great thickness (van Delft et al., 2006). A typical
example are peat soils, where decomposition is slowed by anaerobic conditions due
to a high water table. But also in well drained soils very thick (> 1m) organic layers
have been reported (Berg and McClaugherty, 2008). Roots often grow preferentially
in the organic layer because of the higher nutrient and moisture availability (Schenk
and Jackson, 2002a). This in turn accelerates organic layer buildup by additional
input due to root turnover (Vogt et al., 1983, 1986).

2In the literature the surface organic layer is also referred to as “litter layer” or ”forest floor”
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Figure 1.1: Two examples of the organic matter profile, characterized by strong mixing and
decomposition (left), and accumulation at the surface (right). From van Delft et al. (2006),
reprinted with kind permission of Bas van Delft.

Due to constant deposition of litter at the surface the organic layer is often sharply
delineated from the mineral soil, particularly when biological mixing is low (Jenny,
1980). Consequently, the organic layer is typically not considered part of the SOM
profile and is often excluded from carbon stock estimates (Batjes, 1996).

Horizon classification systems generally distinguish three major horizons in the
surface organic layer of forest soils: (i) The L-horizon: fresh, undecomposed litter,
with discernable plant structures; (ii) The F-horizon: partially decomposed (frag-
mented/fermented) litter; (iii) The H-horizon: strongly decomposed humus without
recognizable plant residues3. In soils with fast decomposition and biological mixing
the F and H horizon may be thin or absent.

Organic matter dynamics in the organic layer differ significantly from the min-
eral soil, due to the absence of minerals. Whereas in the mineral soil organic matter
decomposition is governed by stabilization processes (see section 1.2.1), in the or-
ganic layer decay is mainly determined by litter chemistry, nutrient status, moisture,
and temperature (van Breemen and Buurman, 1997). Furthermore, organic layers
have markedly different physical properties compared to the mineral soil, including
porosity, bulk density, heat conductivity, and hydraulic conductivity (Schaap and
Bouten, 1997; Schaap et al., 1997; Lawrence and Slater, 2008; Rinke et al., 2008).

3The L, F, and H horizon codes are used in the Canadian horizon classification system (Soil Classifi-
cation Working Group, 1998) as well as a recently developed Dutch system for humus form description
(van Delft et al., 2006). They correspond to the Oi, Oe, and Oa horizons, respectively, in the U.S.A. and
FAO classification systems (Soil Survey Division Staff, 1993; IUSS Working Group WRB, 2007)
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1.2.4 Processes related to soil organic matter profile formation

The accumulation of SOM in the vertical profile is an important part of soil forma-
tion (Jenny, 1980; van Breemen and Buurman, 1997), taking place on time scales of
decades to millennia. Overall, SOM dynamics are determined by the gain and loss
due to (above and belowground) litter input and decomposition. When studying the
vertical distribution of SOM, the depth dependence of these processes is relevant, as
well as vertical transport and erosion and deposition.

Vertical SOM transport can have a major effect on the SOM profile and is gen-
erally caused by mixing processes and transport of mobile fractions with the liquid
phase (van Breemen and Buurman, 1997; Rumpel and Kögel-Knabner, 2011). In ter-
restrial soils, mixing of the soil—referred to as “pedoturbation” (Hole, 1961)—can
occur by several processes, including the reworking activity of soil fauna (bioturba-
tion) and freezing and thawing (cryoturbation) (Johnson et al., 1987). Cryoturbation
occurs mainly in permafrost affected soils, which cover large regions at high lati-
tudes. Since these ecosystems are unfavorable to soil fauna, this process forms a
relatively large contribution to organic matter redistribution (Bockheim, 2007). In
the global context however, bioturbation and liquid phase transport are presumably
the most important transport processes. They are discussed in detail below.

In layers with high organic matter concentrations an important additional trans-
port flux occurs that is generally ignored in SOM profile models. Loss of mass due
to decomposition leads to downward shift of material above, while surface litter de-
position continually buries older material. This causes advective downward flow
of material unrelated to mixing or water movement. Kaste et al. (2007) found this
process to be relevant for the vertical distribution of 210Pbex in the organic surface
horizon of a podzol. This may be simulated by tracking “cohorts”: layers of litter
that are deposited within specific time intervals, and thus have similar age. Such
models have been applied to simulate peat accumulation (Heinemeyer et al., 2010).

Bioturbation

Bioturbation is defined as the biological reworking of soils and sediments by dif-
ferent kinds of organisms, including rooting plants, and most importantly, burrow-
ing animals (Meysman et al., 2006). Chapin et al. (2002) noted that in temperate
regions the mixing activity of earthworms represents a force orders of magnitude
larger than other geomorphic processes such as erosion. The potential effects of
bioturbators on their habitat are so severe that they have been called “ecosystem
engineers” (Meysman et al., 2006).

The rate of soil displacement by bioturbating organisms is usually estimated by
measuring deposition of mounds at the soil surface. Paton et al. (1995) reviewed
a range of quantitative estimates for different organisms. They concluded that the
most important animal groups are earthworms, ants, mammals, and termites. Rates
of mounding ranged from 0.0063 to 27 kg m−2 yr−1. These estimates may not be com-
pletely reliable for assessment of rates at regional to global scales since studies tend
to focus on sites with high bioturbation rates, and because not all mixing activity is
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expressed as mounding at the surface.
In the ideal case, mixing has a homogenizing effect on soil properties: it increases

dispersal of particles, reduces concentration gradients, and destroys layering (John-
son et al., 1987). Hence, bioturbation leads to organic matter diffusion and deepen-
ing of the SOM profile. However, at smal spatial scales the effects of bioturbation are
more complex, for several reasons: (i) Certain fractions may be transported prefer-
entially. For example, since mixing by earthworms is mostly related to feeding, it is
more likely to affect (fresh) litter than mineral fractions (Johnson et al., 2005). The
coarsest fractions, including stones, may be completely unaffected by bioturbation.
(ii) Mixing may occur more strongly in one direction than in others (anisotropic mix-
ing). For example termites bring clay particles from considerable depths to the soil
surface to for incorporation into their surface mounds (Paton et al., 1995). (iii) The
distance of particle translocation may be quite large compared to the scale of the
SOM profile (Boudreau, 1986b).

Although the relevance of bioturbation for organic matter redistribution is well
recognized (van Breemen and Buurman, 1997; Chapin et al., 2002; Hoosbeek and
Scarascia-Mugnozza, 2009), very few studies have been performed on its effects on
the SOM profile (Tonneijck and Jongmans, 2008; Yoo et al., 2011), particularly on
long time scales. Based on micromorphological analysis and radiocarbon dating,
Tonneijck and Jongmans (2008) showed that bioturbation is the main mechanism
for SOM input at depth in a volcanic ash soil, more important than liquid phase
transport and root input. On shorter time scales, studies of earthworm invasions
in forests have demonstrated dramatic effects on organic surface layers (Alban and
Berry, 1994; Bohlen et al., 2004). For example, Alban and Berry (1994) found that
increasing earthworm populations in a temperate podzol led to a reduction of forest
floor mass by 85 % and disappearance of the eluviation (E) horizon in 14 years.

Liquid phase transport

A small part of organic matter in soils is dissolved in the liquid phase. Concen-
trations of dissolved organic matter (DOM) are typically so low that total organic
carbon in solution is negligible compared to the immobile fraction (Michalzik et al.,
2001). However, leaching and decomposition fluxes of dissolved organic matter may
be important terms in the soil carbon budget (Kalbitz and Kaiser, 2008; Kindler et al.,
2011). DOM is also highly relevant to the formation of the SOM profile since it is sub-
ject to potentially very fast transport with downward water fluxes and represents a
mechanism of organic matter input at depths well below the zone where bioturba-
tion and root input are relevant (Rumpel et al., 2012). Furthermore, adsorption of
DOM to the mineral phase is one of the main mechanisms for organic carbon stabi-
lization (Kalbitz and Kaiser, 2008).

Similar to SOM, DOM is not chemically defined but consists of a broad spec-
trum of organic substances ranging from small molecules to complex humic acids
(Kalbitz et al., 2000; Michalzik et al., 2001). The biodegradability of these substances
ranges over several orders of magnitude (Kalbitz et al., 2000), with more resistant
compounds generally increasing with depth (Kalbitz et al., 2000; Sanderman et al.,
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2008).

DOM may originate from several sources, of which the relative contribution are
not fully clear (Kalbitz et al., 2000). Leaching of fresh litter contributes strongly to
DOM production in the surface organic layer (L horizon). However, for most plant
species litter leachate is relatively labile, and thus may not contribute strongly to
DOM in the mineral soil (Neff and Asner, 2001). More complex and recalcitrant
dissolved organic substances are formed as a byproduct of decomposition. These
presumably contribute more to DOM in the mineral soil. DOM is also input by
throughfall (Michalzik et al., 2001), and root exudation (Neff and Asner, 2001)

DOM is removed from the soil solution by uptake and decomposition by mi-
crobes. A considerable part of DOM is easily degradable, but this fraction decreases
with depth (Kalbitz et al., 2000). Another important mechanism for DOM removal
is immobilization due to interactions with the solid phase and (co-)precipitation.
Through a range of chemical mechanisms DOM is adsorbed to surfaces of miner-
als (particularly Al and Fe hydroxides and clay) and to lesser extent solid organic
matter (Neff and Asner, 2001). These interactions are highly variable and depend
on the chemical properties of DOM, the sorbent, and the soil solution. Furthermore,
in acid soils DOM may (co-)precipitate with Al and Fe ions, which is an important
process for the formation of the illuviation horizon in podzols (van Breemen and
Buurman, 1997). As a result of these interactions, vertical transport of DOM is sig-
nificantly lower than that of water, and DOM concentrations are often much lower in
the deep soil than near the surface. Furthermore, the fact that certain compounds are
more susceptible to adsorption than others leads to changes of DOM chemistry along
the profile (“chromatographic effect”). Since immobilization of DOM dramatically
reduces its susceptibility to decomposition, it is considered to be a highly relevant
mechanism of soil carbon stabilization (Kaiser and Guggenberger, 2000), particularly
in the deep soil (Rumpel et al., 2012). However, the adsorption capacity of minerals
is not unlimited, which restricts the capacity for soil layers to store carbon by this
mechanism (Hassink, 1997).

The relevance of DOM transport for the SOM profile is often discussed in the con-
text of podzolization (van Breemen and Buurman, 1997). However, it is presumably
an important mechanism for SOM transport in all soils where significant downward
water fluxes occur (Rumpel and Kögel-Knabner, 2011). DOM movement has been
found to be more important in forest soils, particular those with acidic conditions.
Nevertheless, very little research has been performed on the effects of liquid phase
transport on SOM profile formation on long time scales. DOM dynamics are a very
poorly understood part of SOM cycling, as shown by several review studies (Kalb-
itz et al., 2000; Michalzik et al., 2001; Neff and Asner, 2001). Production, ad- and
desorption, and mineralization of DOM all occur by a range of mechanisms that are
sensitive to physical, chemical, and biological factors. As a result, laboratory ex-
periments are usually not representative for field conditions, while in field studies
effects on various mechanisms are highly confounded, often resulting in conflicting
findings. Furthermore, DOM transport occurs for a large part during short storm
events and with macropore flow (Kalbitz et al., 2000).
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Depth dependence of organic matter input

Only in growing ecosystems does a small fraction of the net primary production
(NPP) of vegetation lead to long term biomass increase. In the absence of grazing,
most fixed carbon is ultimately delivered to the soil (Schlesinger, 1997). Litter in-
put can be divided into an aboveground fraction: leaves/needles, stems, branches,
and fruits; and a belowground fraction, also referred to as rhizodeposition4: root
turnover, sloughing off of root tissue, and secretion of mucilage and root exudates
(Nguyen, 2003). The relative distribution of the litter input over these two fractions,
as well as the vertical distribution of the belowground input is highly relevant for the
SOM profile. Jobbagy and Jackson (2000) found a significant relationship between
vertical SOM distribution and plant functional type, which is partially explained by
root/shoot ratio and root biomass distribution.

Since NPP is the source of litter input, its distribution over above- and below-
ground biomass is a good predictor of the relative proportions of aboveground litter
fall and rhizodeposition (Raich and Nadelhoffer, 1989). Herbaceous vegetation types
and shrubs allocate the highest fraction of NPP belowground, and forests the low-
est fraction (Chapin et al., 2002). Saugier et al. (2001) compiled NPP estimates and
concluded that on average 67 % and 57 % of NPP is allocated belowground for grass-
lands and arctic tundra, respectively, whereas for temperate and boreal forests this
fraction is 39 % and 44 %. Root to shoot biomass ratios follow a similar pattern (Jack-
son et al., 1996). Due to the difficulty of measuring NPP, particularly belowground,
these figures should be considered indications only (Clark et al., 2001). Furthermore,
plants may change their allocation pattern and rooting profile when changes in nu-
trient and water availability and other environmental factors occur (Jackson et al.,
2000).

Decomposition dynamics of above and belowground litter differ substantially
due to differences in chemical composition and environmental factors at the deposi-
tion site—at the surface or directly within the profile. Root litter has repeatedly been
found to be more chemically recalcitrant than aboveground litter due to the presence
of substances such as lignin, cutin, and suberin (Rasse et al., 2005). Furthermore,
since root input occurs predominantly in the mineral soil it is subject to stabilization
mechanisms related to the mineral phase, such as adsorption and occlusion in aggre-
gates (Rasse et al., 2005). Most of the aboveground litter fall is foliar (leaves) which
is generally more degradable. Woody litter (stems, branches) is much more resistant,
being mainly degraded by certain fungi (Berg and McClaugherty, 2008). However,
although woody debris may contribute considerably to the soil carbon stock, woody
litter fall constitutes generally only a small fraction of the aboveground litter flux,
since wood tissue is not subject to senescence (Berg and McClaugherty, 2008).

Rhizodeposition is vertically distributed over the mineral soil profile and organic
surface layers. Jackson et al. (2000) analysed a global data set of root distribution
measurements and found that tundra, boreal forests and temperate grasslands gen-
erally have the shallowest profiles with 80–90 % of the roots occurring the top 30 cm

4There is some debate about the precise definition of “rhizodeposition” (Rasmussen, 2011). Here it is
used to refer to all organic matter input from roots.
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of the soil. Deserts and temperate coniferous forests were found to have the deepest
rooting profiles with only 50 % of the roots in the top 30 cm. Independent of vege-
tation type, root distribution seems to be mostly determined by soil hydrology, as
demonstrated by significant relationships between annual potential evapotranspira-
tion, precipitation, and soil texture (Schenk and Jackson, 2002a). In more water lim-
ited ecosystems plants tend to have deeper root profiles to maximize water uptake
(Schenk and Jackson, 2002b). Roots may also preferentially grow in the organic sur-
face layer, if present, due to the high nutrient and moisture availability there (Schenk
and Jackson, 2002a).

Although rhizodeposition and root biomass are strongly related, they may not
have exactly the same profile, since not all roots contribute equally to organic matter
input. Fine roots have higher mortality rates and excrete more exudates since they
play a greater role in water and nutrient uptake (Anderson et al., 2003). Hence, it
is likely that organic matter input by roots is more closely related to the fine root
profile, which is more shallow than the overall distribution of roots. Furthermore,
radiocarbon analysis shows that also within the fine root fraction turnover rates de-
crease with depth (Gaudinski et al., 2010).

Depth dependence of soil organic matter properties and dynamics

The chemical properties of SOM change along the vertical profile (Rumpel and Kögel-
Knabner, 2011; Vancampenhout et al., 2012). Most well-known are the decrease of
C/N ratio, and the enrichment of 13C and 15N (Ehleringer et al., 2000; Nadelhoffer
and Fry, 1988; Högberg, 1997). These gradients indicate a change from plant derived
to more decomposed and microbial derived organic matter with depth (Rumpel
et al., 2002; Rumpel and Kögel-Knabner, 2011; Baisden et al., 2002). It has been sug-
gested that microbial residues are more effectively stabilized by organo-mineral in-
teractions, which have been found to be an important mechanism in the deep soil
(Rumpel et al., 2012).

A distinct property of most soils is the decrease of radiocarbon (14C) activity with
depth, indicating a higher average age of carbon since uptake from the atmosphere.
Near the surface average radiocarbon age is typically in the range of 1 to 100 yr,
whereas in the deep soil ages of 10 000 yr or more are no exception (Rumpel and
Kögel-Knabner, 2011). Presumably, this age gradient is partially explained by slow
downward transport of carbon fractions that are either very recalcitrant, or contin-
ually recycled by microbes (Elzein and Balesdent, 1995; Kaiser and Kalbitz, 2012).
However, a more important cause may be decreasing average turnover rates along
the profile (Persson et al., 2000). The reason for this gradient is not fully understood
yet. It may be caused by the selective preservation of recalcitrant compounds com-
bined with downward transport (Elzein and Balesdent, 1995). Also, the dominant
source of organic matter in deep soils is root input, which is chemically more recal-
citrant than aboveground litter (Rasse et al., 2005).

Another cause of the decreasing turnover rates with depth is the increased occur-
rence of certain stabilization mechanisms. Several studies have found that organic
matter in subsoils is predominantly associated with minerals (Rumpel and Kögel-
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Knabner, 2011; Eusterhues et al., 2003) or occluded within aggregates (Moni et al.,
2010). A further cause of stabilization in deep soil is physical disconnection be-
tween microbes and substrates. Most microbial activity in deep soils is located in
so-called hot spots: root and earthworm channels and preferential water flow paths
(e.g. cracks). Organic matter outside of these zones may be stabilized due spatial
separation from decomposers (Chabbi et al., 2009). Finally, (Fontaine et al., 2007)
found that energy limitation of microbes caused by lack of fresh organic matter in-
put may be an important mechanism in subsoils.

1.2.5 Models of soil organic matter decomposition

Numerical modelling is an important part of soil carbon research. In a comprehen-
sive review Manzoni and Porporato (2009) recently listed some 250 models that were
developed in the last 80 years. They showed that the number of models is growing
exponentially. These models are applied at a variety of spatial and temporal scales,
ranging from centimeters to the globe, and hours to hundreds of years, respectively.
The mathematical structure of models also varies widely, but Manzoni and Porpo-
rato (2009) found that most models are based on similar kinetic laws.

A critical part of a soil carbon model is the formulation of breakdown of organic
matter by decomposers. The most widely used and possibly simplest formulation is
first order kinetics. This approach does not explicitly account for microbial biomass
and activity, but assumes that decomposer community is in equilibrium with the
substrate, resulting in a simple linear differential equation (Wutzler and Reichstein,
2008). Since decomposition is mainly a catalytic process, it may be represented more
realistically by the Michaelis-Menten formulation, which accounts for the limitation
of decomposition by enzyme availability (Blagodatsky and Richter, 1998). Models
in which decomposition is linked to an explicitly simulated microbial pool have also
been proposed (Fontaine and Barot, 2005; Wutzler and Reichstein, 2008).

Studies using radiocarbon analysis have shown that the heterogeneous nature of
SOM in terms of turnover rate needs to be considered in order to correctly reproduce
dynamics at different time scales (Trumbore and Torn, 2005). Models have been pro-
posed that describe SOM as a continuous distribution along a quality axis that relates
to decomposability (e.g. Bosatta and Ågren, 1985). However, the majority of mod-
els describe SOM as several discrete pools or compartments with different kinetic
parameters (Manzoni and Porporato, 2009; Schimel et al., 1994; Jenkinson, 1990). Ef-
fective turnover rates of these pools range from days, for the most labile substrates,
to millennia, for stabilized SOM. Whether SOM pools in models correspond to ac-
tual existing fractions or should be seen as artificial constructs is a subject of debate
(Christensen, 1996; Smith et al., 2002). In recent publications it has been suggested
that chemical recalcitrance of organic matter molecules is of minor importance for
SOM decomposition (Kleber, 2010; Schmidt et al., 2011). These authors have called
for explicit representation of SOM stabilization mechanisms in soil carbon models.
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1.2.6 Soil organic matter profile models

While the overwhelming majority of soil carbon models represent SOM zero-dimen-
sionally, a number of schemes have been published that in some way account for the
vertical SOM profile. For example, some models vertically distribute simulated to-
tal soil organic carbon or extrapolate topsoil carbon downwards using a predefined
depth-function, in order to determine lateral soil carbon transport due to erosion
(Rosenbloom et al., 2001; Hilinski, 2001). Several models represent carbon pools in
predefined soil layers that differ with respect to physical and chemical parameters,
as well as temperature, moisture, and root input. (van Veen and Paul, 1981; Grant
et al., 1993). In some cases heat or water transport between layers is included to ac-
count for the effects of temperature and moisture on decomposition, or to simulate
leaching of mineral nitrogen (Hansen et al., 1991; Li et al., 1992). However, these
models do not consider vertical transfer of organic matter between layers.

A number of models of dissolved organic matter (DOM) dynamics have been
proposed (Michalzik et al., 2003; Neff and Asner, 2001; Gjettermann et al., 2008;
Brovelli et al., 2012). These models account explicitly for production and mineral-
ization of DOM, as well as vertical transport with water flow and ad- and desorp-
tion. Transport is usually represented as advection, based on measured or simulated
water fluxes. These schemes are mainly developed to reproduce DOM fluxes and
concentrations at small scales, and usually require site level calibration or detailed
information on soil texture.

The effects of bioturbation in terrestrial soils have been modeled in relation to
transport of radionuclides (e.g. Müller-Lemans and van Dorp, 1996; Kaste et al.,
2007; Bunzl, 2002) and soil formation (Kirkby, 1977; Salvador-Blanes et al., 2007).
More literature exists on modelling of benthic bioturbation and its effects on chem-
ical species in sediments at the bottom of oceans and lakes (e.g. Boudreau, 1986b;
Meysman et al., 2005, 2010). Bioturbation is usually modeled as a diffusive pro-
cess, although it has been shown that this approach is not generally valid (Meysman
et al., 2003, 2010). Several alternative schemes have been proposed, both determin-
istic (Boudreau, 1986a, 1989) and stochastic (Bunzl, 2002; Choi et al., 2002; Meysman
et al., 2008).

Perhaps the first model truly aimed at dynamically simulating the SOM profile
was developed by Kirkby (1977), as part of a soil formation model. Since then, a
number of models have been developed that combine decomposition with vertical
transport, represented either as diffusion (O’Brien and Stout, 1978; van Dam et al.,
1997; Koven et al., 2009), advection (Nakane and Shinozaki, 1978; Dörr and Münnich,
1989; Bosatta and Ågren, 1996; Feng et al., 1999; Baisden et al., 2002; Jenkinson and
Coleman, 2008), or both (Elzein and Balesdent, 1995; Bruun et al., 2007; Freier et al.,
2010; Guenet et al., 2013; Koven et al., 2013). Most of these models were developed to
explain measurements of SOM and tracer profiles. Fewer were intended for (predic-
tive) simulation of soil carbon cycling (Jenkinson and Coleman, 2008; Koven et al.,
2013). Furthermore, little attempt has been made to relate transport mechanisms to
bioturbation and liquid phase transport. With some exceptions (Chertov and Ko-

21



Chapter 1. Introduction

marov, 1997; Chertov et al., 2001; Bottcher and Springob, 2001) most models do not
explicitly simulate organic matter in the surface organic layer.

1.2.7 Calibration of soil organic matter models
In mathematical modelling, model parameters may be defined as quantities that
specify constant, inherent properties of the system (Bard, 1974). Typical examples
of parameters in soil organic matter models include decomposition rate constants,
flux partitioning coefficients, and parameters that define responses to environmen-
tal factors. A SOM profile model also includes organic matter transport coefficients
and shape parameters to define the vertical distribution of root input. Calibration
involves the adjustment of parameters intended to improve model predictions com-
pared to observations. For dynamical models also forcing data and initial conditions
of the model state variables may be included in calibration (Raupach et al., 2005). In
addition to parameter estimates, calibration procedures usually provide estimates of
errors on the parameters which can be used to quantify uncertainty of model predic-
tions.

Parameter estimation requires specification of a cost function J(θ) (also known
as “misfit” or “objective” function) which quantifies the mismatch between model
predictions M(θ), based on parameters θ, and observations O in a single number
(Raupach et al., 2005). The most common choice is the sum of squared deviations
between model predictions and observations (Omlin and Reichert, 1999):

J(θ) =
N∑
n=1

(On −Mn(θ))2

σ2
n

(1.1)

for N uncorrelated observations with known variances σ2
n. When residuals are nor-

mally distributed, this formulation is related to the likelihood function L(θ) of the
parameters, according to:

L(θ) = exp(−1
2J(θ)) (1.2)

The likelihood is equal to the probability of the observed values given the parameters
(P (O|θ)). Thus, for Gaussian residuals the parameter set for which J(θ) is minimal
(also known as the least-squares estimate) is equal to the maximum-likelihood es-
timate. Various alternative cost functions exists for when model-data residuals are
not normally distributed (see e.g. Tarantola, 2005). However, when the distribution
does not deviate too much from normal, the least-squares estimate is often a good
approximation (Press et al., 1996, ch. 15).

An increasingly used method for parameter estimation for ecological models is
Bayesian calibration (van Oijen et al., 2005). This approach is grounded in a wholly
different view of model parameters: While the classical (frequentist) approach de-
fines parameters as fixed quantities which are to be estimated, in the Bayesian view
parameters are seen as random variables whose probability distributions reflect “de-
grees of belief” based on the current state of knowledge. The process of updating the
state of knowledge based on new information is achieved by conditioning the prior
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distribution P (θ)—representing the knowledge prior to the calibration—on obser-
vations in order to obtain the posterior distribution P (θ|O). This is done according
to Bayes’ rule:

p(θ|O) = c p(θ) p(O|θ), (1.3)

where p(O|θ) is the likelihood function, as used in classical inference, and c is a con-
stant. The incorporation of prior knowledge in the calibration can be highly benefi-
cial for ecological models, where the parameters are often poorly constrained by the
observations alone (Omlin and Reichert, 1999). Bayesian calibration is also increas-
ingly applied for SOM models (Yeluripati et al., 2009; Scharnagl et al., 2010; Guenet
et al., 2013).

For non-linear models the parameter estimates and their uncertainty must usu-
ally be derived using an iterative method. Many of such algorithms exist (Press
et al., 1996, ch. 9). Gradient search approaches such as Levenberg-Marquardt or
quasi-Newton are aimed at finding the minimum of the cost function and its local
gradient. The latter can be used to estimate the uncertainty of the parameters (Om-
lin and Reichert, 1999). In Bayesian calibration often an approximation of the full
posterior distribution is desired. This can be obtained by random sampling using
Monte Carlo approaches, such as the Metropolis algorithm (Mosegaard and Sam-
bridge, 2002).

1.3 This study

1.3.1 Research gaps

Despite the existence previous models discussed in section 1.2.6, there are several
distinct gaps in research related to SOM profile modelling:

• Most SOM profile models were intended to complement measurements in or-
der to explain observed concentration profiles of soil organic carbon, radiocar-
bon, or other constituents. As such they typically do not account for effects of
soil temperature and moisture.

• None of the SOM profile models represents both the organic layer and the min-
eral soil profile.

• Typically all vertical SOM transport is lumped into one transport term, diffu-
sion or advection. Several models do include both formulations but generally
no effort is made to relate them to specific processes in the field such as biotur-
bation and liquid phase transport.

• Very few of the published studies present thorough assessment of parameter
uncertainty and its effect on the reliability of model predictions. Furthermore,
the value of different observations to estimate parameters is not discussed.
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1.3.2 Aims & methodology
This study aims to address the above-mentioned research gaps by development of
a dynamic and process-oriented description of the vertical soil organic matter pro-
file. Specific attention is given to vertical organic matter transport processes and
representation of the surface organic layer, since these represent the most important
innovations compared to existing soil carbon models.

While no global simulations studies are presented here, the main intended ap-
plication of this work is prognostic simulation at large spatial scales, such as in
dynamic global vegetation models or earth system models. This poses a number
of constraints on the model formulation and implementation. Most importantly, it
means the model will be run for unvisited locations, hence its input must be de-
rived from information in gridded data sets of soil properties, or supplied by other
models. An additional consideration is the potential combination of the SOM profile
model with other process descriptions, such as moisture and heat transport and new
formulations of SOM decomposition.

Since few quantitative estimates of the relevant processes are available, a large
part of this study focuses on parameter estimation. A Bayesian calibration system
is presented which allows incorporation of prior knowledge and quantification of
parameter uncertainty arising from measurement errors and the convolution of pro-
cesses that cannot be observed directly.

1.3.3 Outline
Including the introduction, this thesis comprises five chapters. The model structure
and the underlying rationale, as well as analysis of sensitivity to the transport pa-
rameters are presented in chapter 2.

In chapter 3 a Bayesian calibration framework is developed, and used to esti-
mate the model parameters for two temperate forests with contrasting conditions
and SOM profiles: a coniferous forest in the Netherlands (Loobos) and a deciduous
forest in Germany (Hainich). Furthermore, the value of the isotope lead-210 as a
tracer for SOM transport is investigated. The parameter distributions are used to
gain insight into the relevance of the different processes.

Chapter 4 presents further study on the Hainich site. Specifically, the value of
observed radiocarbon activity of both SOM and heterotrophic respiration for con-
straining the parameters is investigated. Additionally, the potential behavior of the
SOM profile under conditions of increasing global CO2 and temperatures is stud-
ied. A prognostic simulation for the Hainich site is performed, based on litter fluxes
and soil temperatures predicted by an ecosystem model under the assumption of
moderate to strong greenhouse gas emissions.

Finally, chapter 5 summarizes the main findings of this study and presents a re-
flection of the model structure and the calibration approach. Furthermore, several
recommendations for potential improvements to the model structure and calibration
approach, as well as for future large scale applications, are made.
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Chapter 2
SOMPROF: a vertically explicit soil organic matter

model

Most current soil organic matter (SOM) models represent the soil as a bulk without specifica-
tion of the vertical distribution of SOM in the soil profile. However, the vertical SOM profile
may be of great importance for soil carbon cycling, both on short (hours to years) time scale,
due to interactions with the soil temperature and moisture profile, as well as on long (years
to centuries) time scale because of depth-specific stabilization mechanisms of organic matter.
It is likely that a representation of the SOM profile and surface organic layers in SOM models
can improve predictions of the response of land surface fluxes to climate and environmen-
tal variability. Although models capable of simulating the vertical SOM profile exist, these
were generally not developed for large scale predictive simulations and do not adequately
represent surface organic horizons. We present SOMPROF, a vertically explicit SOM model,
designed for implementation into large scale ecosystem and land surface models. The model
dynamically simulates the vertical SOM profile and organic layer stocks based on mechanistic
representations of bioturbation, liquid phase transport of organic matter, and vertical distri-
bution of root litter input. We tested the model based on data from an old growth deciduous
forest (Hainich) in Germany, and performed a sensitivity analysis of the transport parame-
ters, and the effects of the vertical SOM distribution on temporal variation of heterotrophic
respiration. Model results compare well with measured organic carbon profiles and stocks.
SOMPROF is able to simulate a wide range of SOM profiles, using parameter values that are
realistic compared to those found in previous studies. Results of the sensitivity analysis show
that the vertical SOM distribution strongly affects temporal variation of heterotrophic respi-
ration due to interactions with the soil temperature and moisture profile.

Based on: M. C. Braakhekke, C. Beer, M. R. Hoosbeek, M. Reichstein, B. Kruijt,
M. Schrumpf, and P. Kabat

Ecological Modelling 222 (2011): 1712–1730



Chapter 2. SOMPROF: a vertically explicit soil organic matter model

2.1 Introduction

Because soils globally store a huge amount of carbon, the response of soil carbon cy-
cling to future climate change is currently subject to great attention (Trumbore and
Czimczik, 2008; Heimann and Reichstein, 2008). Increasing temperatures will lead
to accelerated heterotrophic respiration (Davidson and Janssens, 2006), while con-
currently the increasing atmospheric CO2 concentration is expected to cause higher
vegetation productivity (Norby et al., 2005), resulting in greater soil carbon input.
The present uncertainty with respect to the magnitude of these two mechanisms is
demonstrated by the large disagreement of ecosystem models on future land surface
CO2 fluxes (Jones et al., 2003, 2005; Friedlingstein et al., 2006).

The focus of studies of soil carbon dynamics has classically been on the upper 20
to 50 cm of the soil (e.g., Jenkinson and Rayner, 1977; Gregorich et al., 1996). This
layer (from hereon referred to as the “topsoil”) is most directly influenced by cli-
mate, vegetation and land use, and generally contains much higher organic matter
concentrations than the subsoil. Furthermore, the subsoil is below the rooting zone
of most crops, while its organic matter appears to be stable on the time scale of an-
thropogenic climate change (Scharpenseel et al., 1989; Trumbore, 2000). Therefore,
application of soil organic matter (SOM) models has focused on a bulk description
of the organic matter in the topsoil, without specification of the vertical distribution.
(Parton et al., 1987; Schimel et al., 1994).

Recently, interest in organic matter at greater soil depths has grown, mainly for
two reasons. First, several recent studies have shown that the deep soil stores a con-
siderable amount of carbon, which had previously not been included into estimates
of global stocks (Batjes, 1996; Jobbagy and Jackson, 2000; Tarnocai et al., 2009).

Second, accumulating evidence contests the assumption that deep soil carbon is
intrinsically stable. SOM can be stabilized by a myriad of mechanisms, many of
which are reversible (von Lützow et al., 2006). Usually, different stabilization mech-
anisms are operating at different depths within a single soil profile. For example,
Fontaine et al. (2007) found that energy limitation of microbes is more important as
a stabilization mechanism in the subsoil than in topsoil, although these results were
contradicted by Salomé et al. (2010) who found the reverse. Conversely, stabiliza-
tion due to organo-mineral interactions is occurring in most of the soil profile, but
increases in relative importance with depth (Rumpel et al., 2002).

Recent studies suggest that deep soil carbon may become destabilized under
changing conditions, depending on the specific stabilization mechanism. For exam-
ple, increased root exudation and root litter production, occurring under elevated
CO2 levels (Philips et al., 2006; Iversen, 2010) can lead to decomposition of old SOM
due to priming of microbial activity (Drigo et al., 2008; Fontaine et al., 2007). Fur-
thermore, it has been suggested that chemically recalcitrant SOM fractions are more
sensitive to temperature increase (Conant et al., 2008; Davidson et al., 2006; Knorr
et al., 2005), although this is under dispute (Fang et al., 2005; Reichstein et al., 2005).
At the same time, physically protected SOM is likely less sensitive to warming, but
more vulnerable to physical disturbance (Diochon and Kellman, 2009). Efforts are
being made to include different stabilization mechanisms explicitly in SOM models
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in order to improve predictions of soil carbon cycling at decadal to centennial time
scales (Wutzler and Reichstein, 2008; von Lützow et al., 2008; Manzoni and Porpo-
rato, 2009).

But also on short (hourly to annually) time scales the vertical distribution of or-
ganic matter plays an important role for soil carbon cycling. Soil properties usually
show a strong depth gradient, with strongest temporal variations occurring near the
surface. Respiration in surface layers usually responds more strongly to weather
fluctuations, whereas subsoil respiration shows less temporal variation (Fierer et al.,
2005; Hashimoto et al., 2007; Davidson et al., 2006). Hence, a soil with a deep organic
matter distribution is likely to respond differently to short term weather fluctuations
than a soil where most organic matter is stored near the surface. Because many fac-
tors are simultaneously, and often non-linearly, influencing decomposition rates, ag-
gregating respiration over the profile in models may lead to incorrect results (Subke
and Bahn, 2010).

Thus, an explicit representation of the vertical SOM distribution in biogeochem-
ical models could significantly improve predictions of carbon cycling, as well as fa-
cilitate addition of new process descriptions. Such a model should include explicit
representation of the processes leading to organic matter input at depth: root litter
production and downward transport of organic matter. These models (referred to
as “SOM profile models” from hereon) have already been proposed more than three
decades ago (O’Brien and Stout, 1978; Nakane and Shinozaki, 1978). O’Brien and
Stout (1978) applied a diffusion model of downward organic matter transport to ex-
plain carbon isotope profiles. Since then, various researchers have applied similar
models, including diffusion or advection or both (Dörr and Münnich, 1989; Elzein
and Balesdent, 1995; Baisden et al., 2002; Bosatta and Ågren, 1996; Bruun et al., 2007;
Jenkinson and Coleman, 2008; Freier et al., 2010).

Most of these models, however, were developed to explain organic carbon and
tracer profiles, not for predictive simulations of soil carbon cycling, and as such do
not account for the influence of soil temperature and moisture on decomposition.
A notable exception is the work of Jenkinson and Coleman (2008) who developed a
vertically explicit version of the well-known SOM model RothC (Jenkinson, 1990),
by adding two parameters: one that moves SOM down the profile in an advection-
like manner, and another that slows decomposition with depth. Though innovative,
their scheme was in fact a downward extrapolation of the original model, and is
difficult to transfer to a different SOM model.

Furthermore, none of the published models include a representation of the sur-
face organic layer. Consisting mostly of organic material, the organic layer has
markedly different properties than the mineral soil, and behaves differently in terms
of soil hydrology and heat transport. An explicit representation of this layer in the
model would therefore be particularly valuable in the land surface scheme of a global
climate model.

Despite past efforts to develop SOM profile models, the development of a general
understanding of SOM profile formation has been slow, in part caused by the high
complexity and the extremely slow rates of the relevant processes. An additional
problem is posed by the lack of a standardized approach to determine transport rates
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with inverse modelling. The assumptions inherent to the model structure used in
parameter estimation strongly influence the final parameter estimates (Bruun et al.,
2007). For example, failure to include a relevant mechanism for subsoil organic mat-
ter input will inevitably lead to under- or overestimation of the importance of other
processes. The diversity of the models in the published studies is such that the use-
fulness of direct comparison of transport rates is questionable.

Taken that the ultimate aim is to develop a SOM profile model that can be applied
for global simulations, there is a need for a standardized and mechanistic scheme for
modelling SOM transport to allow transfer of parameters between models. On the
other hand, such a scheme should be parsimonious enough to allow development of
a large scale parameter set. The model presented here, SOMPROF, has been devel-
oped with these considerations in mind. SOMPROF is based on earlier SOM profile
models, with several important additions, including explicit representation of sur-
face organic horizons and the effects of soil temperature and moisture on decom-
position. Rather than lumping all SOM transport processes into either a diffusion
or an advection term, explicit distinction is made between bioturbation and liquid
phase transport. In this paper we present the model and its underlying rationale.
Furthermore, we test the sensitivity to the input parameters, and study the effects of
the vertical SOM distribution on predicted heterotrophic respiration.

2.2 Theory and model description

We will not give an exhaustive description of SOMPROF here, but instead focus
on the parts that are innovative compared to existing SOM models and discuss the
rationale behind the model structure. Particular attention is given to the reasoning
behind the implementation of the transport processes. A full description, including
all model equations, can be found in Appendix 2.A.

In the following description, depth is denoted with z (m) and time with t (yr).
Depth is assumed positive downwards and z = 0 is set at the top of the mineral soil.
Organic matter (OM) quantity C is simulated in the mineral soil as concentrations
(kg m−3), and in the organic horizons (L, F and H) as stocks (kg m−2).

2.2.1 General structure

A mechanistic model of the vertical soil organic matter profile must consider the
vertical distribution of root litter input and downward organic matter transport pro-
cesses (Lorenz and Lal, 2005). The mathematical description of vertical transport
processes usually comprises terms for diffusion, advection, or both. However, such
a scheme is unsuitable for the organic layer. Transport models typically simulate con-
centrations as unit mass per unit volume. This concentration is only a valid quantity
in the context of a mixture consisting of several materials. In the mineral soil, where
organic matter is mixed with minerals material, this approach is justified, but in the
organic layer, where the organic matter concentration far exceeds the mineral con-
centration, the organic matter itself forms the bulk and the organic matter concentra-

28



2.2. Theory and model description

R
oo

t l
itt

er

Fl
ux

es

(R
oo

t) 
lit

te
r i

np
ut

D
ec

om
po

si
tio

n

H
et

er
ot

ro
ph

ic
 re

sp
ira

tio
n

D
iff

us
io

n 
/ b

io
tu

rb
at

io
n

A
dv

ec
tio

n 
/ l

iq
ui

d 
ph

as
e 

tra
ns

po
rt

H
 h

or
iz

on

M
in

er
al

 s
oi

l

L 
ho

riz
on

F  
ho

riz
on

R
oo

t l
itt

er

A
bo

ve
gr

ou
nd

 
lit

te
r

R
oo

t l
itt

er

Fr
ag

m
en

te
d

lit
te

r

Fr
ag

m
en

te
d

lit
te

r

Fr
ag

m
en

te
d

lit
te

r

N
on

-le
ac

ha
bl

e 
sl

ow
 O

M

Le
ac

ha
bl

e 
sl

ow
 O

M
N

on
-le

ac
ha

bl
e 

sl
ow

 O
M

Fi
gu

re
2.

1:
O

ve
rv

ie
w

of
th

e
SO

M
PR

O
F

m
od

el
.

29
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tion becomes an undefined quantity. The vertical distribution of properties such as
organic matter quality and element concentrations is therefore dominated by organic
matter input and loss due to litter deposition and decomposition, and cannot be ex-
plained by vertical mixing alone. This problem was demonstrated by Kaste et al.
(2007) who found that a transport model could well explain the vertical profile of
the radioactive lead isotope 210Pb in the mineral soil but not in a thick organic layer.
Instead, a model that ignored vertical transport due to mixing and accounted for the
effects of litter accumulation and decomposition proved more able to reproduce the
observed 210Pb profile.

Hence, in SOMPROF the diffusion-advection model is not applied to the organic
layer. The organic layer is explicitly split into three layers: the L, F and H horizon1

(Figure 2.1). The organic horizons are simulated as separate, homogenous reservoirs
of organic matter. When organic matter in one layer is transformed to more decom-
posed material, it flows to the underlying layer. This represents the process of con-
tinuous burial and decomposition that occurs in the organic layer and leads to the
formation of a vertical gradient of decomposition stage that is typically observed in
the field (van Delft et al., 2006). Bioturbation reduces this gradient by causing down-
ward flow from the F to the H horizon and from the H horizon to the mineral soil.
Because we assume that the material in the L horizon is not transported, this horizon
is always present if above ground litter input occurs. On the other hand, the F and H
horizon may be absent if the bioturbation rate exceeds the input of material. Liquid
phase transport (advection) within the organic layer is not explicitly considered; we
assume that all material that can be transported with the liquid phase immediately
flows to the mineral soil.

In the mineral soil, the organic carbon concentration as a function of depth is
simulated using a transport model including diffusion, representing bioturbation,
and advection, representing liquid phase transport. Currently, the model does not
account for the presence of stones in the mineral soil matrix.

2.2.2 Organic matter pools

SOMPROF follows the classical organic matter pool approach with five types of or-
ganic matter (Table 2.1). The organic matter pools are chosen to represent function-
ally different types of organic matter that differ with respect to decomposition rate
and transport behavior. The pools have a serial arrangement: upon decomposition
material flows from less to more decomposed pools. This setup was chosen rather
than parallel pool arrangement to be able to represent the change of transport be-
havior when organic matter is transformed.

Above ground litter Above ground litter (AGL) is material accumulating at the
surface and is easily decomposable. Since this is typically coarse material, we assume
that it is not transported and is therefore only present in the L horizon. No distinction

1These horizon codes are used to designate organic horizons in several soil classification systems (Soil
Classification Working Group, 1998; van Delft et al., 2006) and approximately correspond the Oi, Oe and
Oa horizons in the U.S. (Soil Survey Division Staff, 1993) and FAO (IUSS Working Group WRB, 2007)
systems.
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Table 2.1: The organic matter pools in SOMPROF

Pool Decomposition
rate Source Diffusion Advection

Above ground litter
(AGL)

High External input into L
horizon No No

Fragmented litter (FL) Intermediate Formed from Above
ground litter Yes No

Root litter (RL) High External input into F, H and
mineral soil Yes No

Non-leachable slow
OM (NLS)

Low Formed from fragmented
and root litter Yes No

Leachable slow OM
(LS)

Low Formed from fragmented
and root litter Yes Yes

is made between different types of litter (e.g. leaves, woody debris).
Fragmented litter In the first decomposition step, above ground litter is trans-

formed to fragmented litter (FL) which flows immediately to the F horizon, thus
forming the most important organic matter fraction of this layer. This transformation
represents early litter decomposition during which material is fragmented. Frag-
mented litter is assumed to be chemically similar to above ground litter and has a
relatively high decomposition rate. However, contrary to above ground litter, frag-
mented litter can be transported by bioturbation, which thus acts as a mechanism
for the introduction of easily degradable material in the H horizon and mineral soil.

Root litter Root turnover provides input for the root litter (RL) pool in the mineral
soil and the F and H horizon. We assume root growth, and thus root turnover, to be
negligible in the L horizon. Since root litter is largely produced by the turnover of
fine roots, we assume that it is chemically similar to above ground litter. But, con-
trary to above ground litter, it can be transported by bioturbation. The total root litter
production rate is specified as model input and vertically distributed according to an
exponentially decreasing function of depth, which starts at the top of the F horizon.
The root litter input into a given layer is obtained by integrating the distribution
function over the layer thickness.

Non-leachable slow organic matter Part of the decomposition products of the frag-
mented litter and root litter pools flow into the non-leachable slow (NLS) organic
matter pool. Non-leachable slow OM comprises chemically stabilized particulate or-
ganic matter and forms the basis of the H horizon. It is formed in the organic layer
and in the mineral soil and can be transported by bioturbation. Non-leachable slow
OM formed from litter in the in the F horizon flows immediately into the H horizon,
while NLS-OM formed in the H horizon stays there, although it may subsequently
be transported into the mineral soil by bioturbation.

Leachable slow organic matter The leachable slow (LS) organic matter pool repre-
sents organic matter adsorbed to the mineral phase. Since this material can enter the
liquid phase through desorption, it is transported by advection as well as bioturba-
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tion. Hence, liquid phase transport is included in SOMPROF, even though dissolved
organic matter is not explicitly represented. The rationale behind this approach is
discussed in section 2.2.4. Organic matter adsorption onto the mineral phase is typ-
ically very strong and protects organic matter against decomposition, hence the LS
organic matter pool is presumably the most stabilized type of organic matter in the
model.

2.2.3 Organic matter decomposition

Decomposition of organic matter is simulated according to first order kinetics using a
base decomposition rate which is corrected for soil temperature and moisture using
response factors (Appendix 2.A.1). A first order decomposition rate k at reference
temperature (10 ◦C) and optimal soil moisture is specified for each organic matter
pool as part of the model input. For the response of decomposition to soil tempera-
ture we use the modified Arrhenius function from Lloyd and Taylor (1994), in which
the temperature sensitivity decreases with increasing temperature. Response to soil
moisture is defined according to a sigmoid function from Subke et al. (2003). Mea-
sured or modelled depth profiles of temperature and moisture are input, hence the
decomposition response factors are depth dependent. If necessary, the profiles are
interpolated to the midpoint depths of the organic horizons and the soil layers used
for numeral solution (section 2.2.6).

As discussed in section 2.2.2, several pools are transformed to other pools dur-
ing decomposition. The transformation fluxes are determined by a transformation
factor α (−) that specifies how much of the decomposition flux of donor pool flows
to the receiving pool. The material that does not flow to another pool (1−

∑
j αi→j)

is assumed to be lost as CO2, representing heterotrophic respiration. Note that all
transformation factors other than those for the decomposition of the above ground
litter, root litter and fragmented litter are zero.

Contrary to some other models, the decomposition rates are not explicitly re-
duced with depth in SOMPROF. Elzein and Balesdent (1995) showed that with a
multi-pool organic matter model, the assumption of explicitly decreasing turnover
rates with depth is not required to reproduce 14C profiles because the change of ap-
parent turnover time with depth emerges from the change of relative distribution of
the organic matter pools. Depth specific stabilization mechanisms are currently not
yet fully understood, hence, in view of parsimony we do not include these processes
at this stage of model development.

2.2.4 Organic matter transport

SOMPROF includes two organic matter transport processes: bioturbation and liquid
phase transport. Other transport processes are known to occur in certain soils, such
as mixing due to freezing and thawing (cryoturbation) and mixing due to shrinking
and swelling. Although locally these processes may be very important, they occur
only under specific conditions. In general bioturbation and liquid phase transport
can be assumed to be the dominant transport mechanisms in most soils, hence other
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transport processes are not explicitly considered (although they may be implicitly
included, depending on how the transport parameters are estimated).

Except for the influence of bulk density on the diffusivity (see below), the trans-
port rates are kept constant with depth. In reality this is probably not the case since
the soil fauna biomass decreases with depth, and water fluxes and adsorption of
dissolved organic matter are likely depth dependent as well. However, past stud-
ies have shown that SOM and tracer profiles can be well reproduced using constant
transport rates (Dörr and Münnich, 1989; Elzein and Balesdent, 1995; Bruun et al.,
2007; Jenkinson and Coleman, 2008). On the other hand, making the transport pa-
rameters depth dependent introduces additional degrees of freedom which compli-
cates parameter estimation based on measurements.

Bioturbation

Bioturbation refers to the reworking of soil by soil animals and to a lesser degree
by plants (Meysman et al., 2006). The activities of these organisms mix the soil ma-
trix, representing an important mechanism for organic matter flow within the or-
ganic layer and mineral soil (Hoosbeek and Scarascia-Mugnozza, 2009; Tonneijck
and Jongmans, 2008). Estimates of soil fauna mixing activity are typically expressed
as reworking rates, the amount of material moved per unit surface area (Wilkinson
et al., 2009). For example, earthworm activity at the population level is often esti-
mated by measuring rates of surface cast deposition. (See Paton et al., 1995, for
a comprehensive overview of many bioturbation rate esimates for different animal
species and plants.)

In general, bioturbation causes homogenization of soil properties, i.e. net trans-
port of soil constituents inversely proportional to the concentration gradient. There-
fore, the effects of bioturbation on the distribution of soil properties has often been
modelled using Ficks diffusion equation (Elzein and Balesdent, 1995; van Dam et al.,
1997; Kaste et al., 2007). Using mixing length theory developed for turbulent mixing
in gasses and fluids, it can be shown that bioturbation can indeed lead to diffusive
behavior of soil constituents (Boudreau, 1986b, Appendix 2.B). However, the valid-
ity of the diffusion model for stochastic mixing processes such as bioturbation is not
self-evident but depends on several criteria. (These have been thoroughly discussed
in the context of benthic bioturbation: Boudreau, 1986b; Meysman et al., 2003). Most
important, (i) the time between mixing events must be short compared to other pro-
cesses that influence the concentration profile; (ii) the length scale of the mixing (the
distance over which soil particles are moved) must be small compared the scale of
the concentration profile and; (iii) the mixing should be isotropic, i.e. equal in both
up and down direction.

At small spatial scales (∼1 m−2) bioturbation cannot be expected to meet these
criteria. Mixing of soil particles occurs as sudden jumps followed by long periods
of rest, hence the local instantaneous concentration of any soil constituent depends
strongly on whether or not a mixing event has recently occurred, particularly if mix-
ing is done by larger organisms (e.g. burrowing mammals, uprooted trees).

However, for describing the average transport of many mixing events the diffu-
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sion model can be assumed to be valid. Such averaging may be over time, if the
mixing is stationary, or over space if the mixing is homogenous (Hinze, 1975, p.5).
The latter suggests that at sufficiently large spatial scales within a single ecosystem,
the assumption of diffusive behavior is reasonable. Hence, we assume that the diffu-
sion approach is valid at ecosystem scale, for which SOMPROF is designed. Vertical
transport due to bioturbation in the mineral soil is defined as:

∂Ci
∂t

∣∣∣∣
BT

= DBT
∂2Ci
∂z2 , (2.1)

where Ci is the organic matter concentration of pool i (kg m−3) and DBT is the dif-
fusivity due to bioturbation (m2 yr−1). All organic matter pools are assumed to be
transported equally according to (2.1), except for the above ground litter pool, which
is not transported (section 2.2.2). At the top of the mineral soil, a flux prescribed
boundary condition is used, which is determined by the bioturbation rate (see be-
low). At the bottom of the soil profile, a zero-gradient boundary condition is used,
which means that no material is transported by bioturbation over the lower bound-
ary.

Since the diffusive behavior of organic matter is the direct result of the mixing
activity of the soil fauna, there must be a unique relationship between the diffusivity
DBT and the bioturbation rate B (kg m−2 yr−1). Continuing the mixing length anal-
ogy, it can be shown that the diffusivity is composed of the time-averaged correlation
between the fluctuation of the vertical advection rate of transported material and the
distance over which the material is moved (Boudreau, 1986b, Appendix 2.B). The
fluctuation of the vertical advection rate is directly related to the bioturbation rate
via the bulk density ρMS (kg m−3). Furthermore, we assume that there exists a typ-
ical distance over which material is moved by the soil fauna, the mixing length lm
(m) which must be determined later. The diffusion can then be estimated from the
bioturbation rate as follows:

DBT = 1
2
B

ρMS
lm . (2.2)

Note that B refers only the vertical component of the mixing. If the bioturbation
rate is estimated from ingestion rates of earthworms, it must be multiplied by an
additional factor of 0.5 to obtain the mixing rate in the vertical direction (Wheatcroft
et al., 1990). Measurements of earthworm cast formation can be assumed to represent
vertical mixing only. As said, the diffusion model represents the effective transport
behavior of SOM averaged over long time scales and large areas. As such, equations
(2.1) and (2.2) should not be viewed as a mechanistic description of the mixing activ-
ity of the soil fauna, nor is the mixing length parameter a physical quantity that can
be measured. Rather, mixing length theory provides justification for a simple lin-
ear empirical relationship between the diffusivity and the soil fauna activity. More
specifically, in SOMPROF lm is used as a tuning parameter that links the bioturba-
tion fluxes within the organic layer (see below) to the transport within the mineral
soil.

The bulk density ρMS can either be specified or estimated (section 2.2.5). From
(2.2) it follows that the diffusivity due to bioturbation is inversely proportional to
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bulk density. This is consistent with our rationale: the diffusivity is limited only by
the capacity of the soil fauna to displace a certain amount of mass per unit time,
not by the volume over which this mass is distributed. Hence, the diffusion coeffi-
cient must increase with decreasing bulk density to maintain the same rate of mass
transport.

For reasons discussed in section 2.2.1, the diffusion model is not applied to the
organic surface horizons. Instead, we assume that the total net flux of organic matter
from F to H and from H to the mineral soil is equal to the bioturbation rate B (Ap-
pendix 2.A.4). We do not consider upward transport of mineral material from the
mineral soil to the organic layer. If the mass of a layer is zero, the flux is set to the
total input minus the loss from decomposition in this layer, to avoid that the mass
becomes negative. The flux from H to mineral soil serves as the upper boundary flux
for the transport scheme of the mineral soil.

Liquid phase transport

Liquid phase transport refers to the combined effects of formation, transport, and ad-
and desorption of dissolved organic matter (DOM). Although DOM concentrations
are usually very small compared to immobile organic matter, transport in the liq-
uid phase represents a major contribution to downward organic matter movement,
particularly in soils with little biological activity (Kalbitz and Kaiser, 2008). DOM,
once formed, flows down with infiltrating water and may be reversibly adsorbed to
mineral particles upon which it becomes immobile (Kalbitz et al., 2000).

Models of short time scale DOM dynamics have been applied with some suc-
cess at site scale (e.g. Neff and Asner, 2001; Michalzik et al., 2003). However, DOM
fluxes in the field are notoriously difficult to predict due to spatial heterogeneity
of mineral composition and DOM chemistry—which determine DOM adsorption
behavior—and water infiltration, which is often dominated by macropore flow and
storm events (Kalbitz et al., 2000). Consequently, simulation of long time scale SOM
profile evolution based on a mechanistic description of DOM transport and adsorp-
tion is not feasible. Furthermore, simulation of DOM transport requires accurate
simulation of water fluxes at short (sub-daily) time scales, while SOMPROF is de-
signed to be run with daily or longer time steps.

Therefore, downward movement of organic matter as DOM is not modelled ex-
plicitly. We define a pool that can potentially enter the liquid phase and be trans-
ported downward advectively: leachable slow (LS) organic matter, which is equiva-
lent to the reactive soil pool, introduced by Nodvin et al. (1986). Downward move-
ment with the liquid phase is simulated by defining an effective advection rate v
(m yr−1):

∂CLS

∂t

∣∣∣∣
adv

= −v ∂CLS

∂z
. (2.3)

This scheme is similar to the retardation factor approach, which has been suc-
cessfully applied in studies of transport of tracers and pollutants in soils (e.g. Huang
et al., 1995). This method simulates both the adsorbed and dissolved fraction as one
pool by correcting the transport rate of the dissolved fraction with the retardation
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factor, which accounts for interactions with the solid phase. The underlying assump-
tions of the retardation factor approach are that the adsorption isotherm is linear, and
that the dissolved and adsorbed fraction are locally in equilibrium with each other.
When these conditions hold, the relative distribution of the studied compound over
the dissolved and adsorbed fraction is fixed and independent of the concentration in
the liquid phase.

In SOMPROF, the retardation factor concept is expanded to organic matter de-
composition: the breakdown of organic matter is retarded by adsorption to the min-
eral phase. Hence, the decomposition rate of LS organic matter is also an effective
parameter for both fractions. However, in practice the influence of the dissolved
fraction on the effective decomposition rate and total carbon concentration will be
negligible since adsorbed organic matter is present in much higher quantities than
DOM. Hence, we do not consider the dissolved fraction when comparing with mea-
surements. Note that the LS-OM pool is also transported by bioturbation. The upper
boundary condition of (2.3) is comprised of the combined production of LS-OM in
the organic layer.

SOMPROF differs from other SOM profile models (e.g. Elzein and Balesdent,
1995) in that only a specific pool is moved advectively, rather than all organic matter.
Although this introduces additional model parameters, it is clearly closer to reality
since not all organic matter can be transported with the liquid phase. Furthermore,
the fraction of organic matter that is potentially mobile presumably increases with
depth, since liquid phase transport reaches greater depths than bioturbation and root
litter input.

Contrary to bioturbation, liquid phase transport may lead to a loss of organic
matter from the system. For a given soil, this depends on the depth at which the
lower boundary is set. If it is set shallow enough that the bottom LS-OM concentra-
tion is significantly higher than zero, organic matter is lost and is not included in the
calculation of organic matter stocks and heterotrophic respiration.

In the organic layer the adsorptive capacity of the solid phase is negligible com-
pared to that in the mineral soil, due to the absence of the mineral material. There-
fore, we assume that all LS-OM produced in the organic layer immediately flows
into the mineral soil and that the concentration of LS-OM in the organic layer is zero.

2.2.5 Bulk density

The thickness of the organic horizons is estimated from their mass using the bulk
density, which is specified as model input separately for the L, F and H horizons
(ρL, ρF, ρH). The bulk density in the mineral soil ρMS is required to convert the mass-
based bioturbation rate to the volume-based diffusivity (section 2.2.4). Furthermore,
the bulk density profile affects the shape of the organic matter profile. Bulk density
is usually strongly correlated with soil organic matter content. If measurements are
not available, SOMPROF estimates bulk density from the soil organic matter fraction
using an equation proposed by Federer et al. (1993). These authors proposed that the
soil is a hypothetical mixture of pure mineral material and pure organic material, that
both have a bulk density. Assuming that their bulk densities mix linearly, the bulk
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density of the mixture is estimated as:

ρMS = ρMρO

fMS
O ρM + (1− fMS

O ) ρO
, (2.4)

where ρM and ρO are the bulk densities of the mineral and organic fractions, respec-
tively (kg m−3), and fO is the organic matter fraction (−). ρO is set equal to the bulk
density of the H horizon.

2.2.6 Model solution and simulation setup

SOMPROF is solved for discrete time steps using standard finite differencing tech-
niques. The model compartments are solved in order from top to bottom: L, F, H,
mineral soil. For the organic horizons, first the pools are updated for input and de-
composition, using an explicit scheme. Next it is determined whether the maximum
bioturbation flux can be met, and if necessary it is adjusted downward. Then the
mineral soil is updated using a fully implicit scheme with upwind differencing for
advection. To this end, the soil is split into compartments of variable thickness. The
compartment thicknesses as well as the depth of the lower boundary can be chosen
freely, depending on the available computational resources and the desired resolu-
tion of the model output. For the simulations discussed in section 2.3, we used 11
compartments, with thicknesses increasing from 0.5 cm at the surface to 50 cm at the
bottom of the profile.

Near the soil surface, the concentration of organic matter may be high enough
that its mass is no longer negligible compared to that of the matrix. Therefore, the
compartment thicknesses are corrected for change of mass at every time step, once
the new concentrations of organic matter are known (Appendix 2.A.4).

To avoid aggregation errors due to the non-linearity of the soil temperature and
moisture response function (Appendix 2.A.1), the response factors are calculated be-
fore the model run, at the temporal resolution at which they are available (typically
at half hourly intervals). These response factors are then averaged to the time step
length of the model and used as input. Since the compartments thicknesses change
during the simulation, the response factors as well as measured bulk densities (if
available) are interpolated at every time step using piecewise cubic Hermite inter-
polation to obtain values at the midpoint depths of the compartments and organic
horizons.

A typical model run consists of two stages: (i) a spin-up stage, starting from
bare ground, i.e. without organic matter, during which the model is run with an av-
erage annual cycle of soil moisture, soil temperature and litter fall; and (ii) the actual
simulation for which measurements of soil temperature, moisture and litter fall are
available. The purpose of the spin-up stage is to obtain the initial conditions used
for the second stage. The length of the spin-up period can be chosen freely and, in
principle, should be the time since the start of the development of the organic matter
profile. For many soils it may be acceptable to run the model in spin-up until the
slowest carbon pools and the vertical distribution are in equilibrium (∼1000 years).
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Table 2.2: List of model input required to run SOMPROF and values used for the reference
simulation.

Parameter Symbol Units and value in
reference simulation

Litter input
Aboveground litter inputa IL

AGL 0.314 kgC m−2 yr−1 b

Total annual root litter inputa Itot
RL 0.178 kgC m−2 yr−1 b

Root litter distribution parameter β 0.07 m−1

Decomposition
Aboveground litter decomposition rate kAGL 0.5 yr−1

Root litter decomposition rate kRL 0.5 yr−1

Fragmented litter decomposition rate kFL 0.2 yr−1

Non-leachable slow OM decomposition rate kNLS 0.05 yr−1

Leachable slow OM decomposition rate kLS 0.005 yr−1

Aboveground litter - fragmented litter
transformation factor

αAGL→FL 0.8

Fragmented litter - NLS transformation factor αFL→NLS 0.15
Fragmented litter - LS transformation factor αFL→LS 0.15
Root litter - NLS transformation factor αRL→NLS 0.15
Root litter - LS transformation factor αRL→LS 0.15
Soil temperature response parameter Ea 308.56 K
Soil moisture response parameter a 1
Soil moisture response parameter b 20
Soil temperaturea T K
Relative soil moisture contenta M -

Organic matter transport
Bioturbation rate B 0.4 kg m−2 yr−1

Mixing length lm 0.3 m
Advection rate v 0.002 m yr−1

Bulk density
Bulk density L layer ρL 50 kg m−3

Bulk density F layer ρF 100 kg m−3

Bulk density H layerc ρH 150 kg m−3

Bulk density mineral soila ρMS kg m−3

Mineral bulk density§ ρM kg m−3

Other input
Spin-up length - 1000 yr
Depth of bottom boundary L 0.7 m
a Time and/or depth dependent
b Average annual value for the spin-up
c ρH is also used as the organic bulk density ρO for determining ρMS (section 2.2.5).
§ Not required if ρMS is specified
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2.2.7 Model input

Almost all input data required to run SOMPROF (Table 2.2) depends strongly on soil
and ecosystem type. Several of these quantities can be measured directly in the field,
including the aboveground and belowground litter production, the soil temperature
and moisture and the root (litter input) distribution profile. In a biogeochemical
model, these parameters can be supplied by other submodels (e.g. vegetation or
land surface models), or derived from the vegetation and soil type.

Decomposition parameters

The parameters of the decomposition submodel include the decomposition rates k at
reference temperature (10 ◦C) and the transformation factors α. The three litter pools
(aboveground litter, fragmented litter and root litter) are chemically similar in the
sense that they have a relatively high decomposition rate. Typical values range from
0.1 to 1 yr−1 (Paustian et al., 1997; Berg and McClaugherty, 2008). The non-leachable
and leachable slow organic matter pools represent stabilized fractions. It is likely that
the LS-OM pool is the more recalcitrant of the two, since this pool consists largely of
organic matter adsorbed to the mineral phase, which is thought to be very stable (von
Lützow et al., 2006; Kaiser and Guggenberger, 2000). Since the LS-OM pool reaches
deeper layers than the other pools, the decomposition rate of this fraction should
correspond to organic carbon ages and turnover times found in the deep soil, i.e.
10−3 to 10−2 yr−1. The non-leachable slow pool represents organic matter stabilized
by other mechanisms (e.g. chemical recalcitrance or spatial inaccessibility), and is
assumed to have a decomposition rate between 10−1 and 10−2 yr−1.

The transformation factors determine the flow between the organic matter pools
and lie between 0 and 1 . Since these parameters are rather abstract, they are more
difficult to predict a priori, but we can gain some insight from parameterizations of
other decomposition models with a similar structure (e.g. van Dam et al., 1997; Elzein
and Balesdent, 1995). In these models, the efficiency of the decomposition usually
increases with successive decomposition steps, meaning that a greater fraction of the
organic matter is metabolized. It is likely that little material is lost during the trans-
formation of aboveground litter to fragmented litter, hence we expect αAGL→FL to be
in the higher end of the range, 0.6 to 0.9 . The transformation factors for produc-
tion of leachable and non-leachable slow OM (αFL→NLS, αFL→LS, αRL→NLS, αRL→LS) are
presumably closer to zero: 0.05 to 0.4 .

The parameters of the temperature and moisture response factors can be found in
literature if local measurements are not available (e.g. Lloyd and Taylor, 1994; Subke
et al., 2003).

Transport parameters

Compared to decomposition, relatively little research has been done with respect to
organic matter transport. The bioturbation rate B is determined by the soil fauna
biomass and activity, which in turn strongly depends on soil and vegetation type
and climate. Under inhospitable conditions for soil animals the mixing rate may be
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virtually zero, whereas very high mixing rates can be found for e.g. tropical soils.
Paton et al. (1995) compiled an extensive list of estimates of reworking rates for dif-
ferent types of organisms and climates and found that earthworms are generally the
most important organisms for bioturbation. Reported reworking rates ranged from
0.0063 to 27 kg m−2 yr−1, with two thirds of the rates between 0 and 5 kg m−2 yr−1.
Since most of these estimates were rates of surface cast formation, they noted that
these numbers are probably underestimations, since not all species deposit casts at
the surface.

The mixing length lm should ideally represent the typical distance over which
soil particles are displaced. However, as discussed in section 2.2.4, in SOMPROF
this parameter is of a more empirical nature. Nevertheless, we can expect the mixing
length to be roughly in the order of magnitude of the body size of the soil fauna, i.e.
0.01 to 0.5 m. Ideally, this parameter should be relatively constant over different
ecosystems.

The advection rate v is determined both by downward water fluxes and adsorp-
tion of DOM to mineral surfaces. Since SOMPROF differs from most other models in
the sense that only part of the organic matter is transported advectively, little a priori
information on this parameter is available. Sanderman et al. (2008) estimated effec-
tive DOM advection rates for the total organic matter fraction as a function of depth,
based on field concentration measurements and modelled water fluxes. Assuming
that in the deep soil most organic material is potentially mobile, their estimate of
the effective advection rate for this fraction is approximately 0.2 mm yr−1. Bruun
et al. (2007) estimated transport rates from 14C profile, and found an advection rate
of 2.3 mm yr−1 for a fraction of 24 % of the total organic matter. Based on profiles of
short-lived isotopes (137Ce and 241Am) produced by nuclear weapon testing, Kaste
et al. (2007) reported advection rates ranging from 0.7 to 2 mm yr−1, for different
soils.

Bulk density

The bulk densities of the organic layers (ρL, ρF and ρH) are not usually measured in
field studies. Since they are needed only to calculate the thickness of the organic
layers in order to distribute the root litter input and soil temperature and moisture
profiles, their influence on the carbon stocks and distribution is relatively small. For
soil carbon cycling simulations they may be set to fixed but reasonable values (Ta-
ble 2.2). However, for energy and water exchange the bulk density of the organic
horizons is more important, due to the effects of the organic layer on soil heat and
moisture transport.

If the bulk density of the mineral soil (ρMS) is not available, it is estimated accord-
ing to equation (2.4). In this equation, the organic bulk density ρO is set equal to the
H horizon bulk density. The mineral bulk density depends on the mineral composi-
tion, and should be approximately equal to the bulk density at the deep soil, where
the organic matter fraction approaches zero.
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Figure 2.2: Measured relative soil moisture content at Hainich for the period 2001–2003 . Mea-
surement depths were 8, 16, 32 cm.

2.3 Simulation preparation

To test the model, a simulation was made using data from Hainich, a deciduous
forest in Germany. Predicted soil carbon fractions and stocks are compared to mea-
surements made at the site. However, we did not perform calibration the model
parameters to these measurements, which, due to the complexity of the model, is
outside of the scope of this paper. The organic carbon measurements are presented
for reference, but we do not present any statistics on model performance.

To study the model behavior we prepared several additional simulations for
which one or more parameters were changed. This section describes the prepara-
tion of the reference simulation. For each additional simulation, the changes with
respect to the reference simulation are described in section 2.4.

2.3.1 Site description

Hainich (51°4′45.36′′N; 10°27′7.20′′E) is an old growth deciduous forest in Central
Germany which has been unmanaged for several decades. The climate is temperate
suboceanic/subcontinental with an average annual precipitation of 800 mm and an
average temperature of 7 to 8 ◦C. The forest is dominated by beech (Fagus Sylvatica,
65 %) and ash (Fraxinus excelsior, 25 %), with a wide range of age classes, up to 250
years. The understorey consists of herbaceous vegetation (Allium ursinum, Mercuri-
alis perennis, Anemone nemorosa) which seasonally completely covers the forest floor
(Kutsch et al., 2010).

The soil is classified as Luvisol or Cambisol (IUSS Working Group WRB, 2007;
Kutsch et al., 2010) and consists of weathered limestone overlain by a Pleistocene
loess layer of varying thickness (10–50 cm). The mineral soil is characterized by
a high clay content (60 %) and a pH-H2O of 6.0 to 7.8 (Søe and Buchmann, 2005).
About 90 % of the root biomass occurs above 40 cm depth. The pH and litter quality
of deciduous trees in Hainich support a high soil biological activity, demonstrated
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by a thin organic layer and a well developed A horizon of 10 to 15 cm (Søe and
Buchmann, 2005). Cesarz et al. (2007) reported earthworm populations of up to 500
individuals per m2 for the Hainich forest.

The high clay content and shallow bedrock at Hainich obstruct drainage, which
causes the deep soil to be relatively moist throughout the year (Figure 2.2).

2.3.2 Measurements and data processing

10 soil cores to a maximum depth of 70 cm were extracted in March 2004. Organic
carbon fraction, root biomass and bulk density of the fine soil fraction were deter-
mined for 7 depth increments (0–5 cm; 5–10 cm; 10–20 cm; 20–30 cm; 30–40 cm; 50–
60 cm; 60–70 cm). Organic carbon stocks were measured for L and F/H horizons
(the individual F and H horizons could not be identified). The mineral soil organic
carbon stocks were derived from the organic carbon fraction using the fine soil bulk
density. The sampling and measurement procedures are described in Schrumpf et al.
(2011).

Soil temperature and moisture were continuously measured at half-hourly in-
tervals for the period 2001 to 2008. Gaps were filled with piecewise Hermite inter-
polation. Soil temperature was measured for two profiles at 5 depths (2, 5, 15, 30,
50 cm). The average of the two soil temperature profiles was used for model in-
put. Soil moisture was measured for one profile (8, 16, 32 cm; Figure 2.2). The soil
moisture volume fraction was converted to relative content by calculating the rela-
tive value between the minimum value and the maximum value of the time series for
each depth. Next, the half-hourly temperature and relative soil moisture content val-
ues were converted to response factors based on the response equations (Appendix
2.A.1), and were subsequently averaged to daily values for the second stage of the
simulation. Also, an average annual cycle of monthly values was derived for the
spin-up.

Total annual litter fall and root litter production rate was measured for the period
2000 to 2007 (Kutsch et al., 2010). Average values for this period were used for the
spin-up.

2.3.3 Simulation setup

For the reference simulation, the decomposition and transport parameters (Table 2.2)
were manually tuned based on a priori knowledge of the parameters (section 2.2.7)
and model behavior.

During the spin-up phase, the model was run for a period of time to achieve the
initial conditions for the second stage of the simulation. Although the oldest trees
at Hainich are about 250 years old, development of the soil organic matter profile
presumably started much earlier. Therefore, we used a spin-up length of 1000 years,
during which the soil effectively reached an equilibrium. During the spin-up, the
model was run at a monthly time step, and driven by an average annual cycle of
soil temperature and moisture response factors, derived from the available measure-
ments. Also, average annual values for aboveground litter fall and root litter pro-

42



2.4. Results

duction were used during the spin-up (but the aboveground litter fall is distributed
over the year, see below).

During the second stage of the simulation, SOMPROF was run at a daily time step
for the period 2001 to 2007, and driven by local measurements of soil temperature,
moisture and above and belowground litter production. Since no local estimates
of the soil moisture and temperature sensitivity are available, the parameter values
from Lloyd and Taylor (1994) were used for the temperature response function. The
parameters of the soil moisture response were chosen such that respiration starts
to decrease sharply when relative soil moisture drops below 20 %. To account for
seasonal variations, the annual total aboveground litter fall was distributed over the
year (for the spin-up as well as the second phase of the simulation) according to
a distribution function based on data for a similar forest, taken from Lebret et al.
(2001). Since no information about the seasonal cycle of root litter production was
available, it was kept at a constant rate throughout the year. An exponential function
was fitted to the vertical root biomass profile to determine the vertical distribution
of root litter input.

The subsoil at Hainich has a high stone content which increases towards the
bedrock. Since SOMPROF does not account for stones, the fine soil density (mass
of grains smaller than 2 mm per unit total volume) was used as bulk density for the
simulations, up to a depth of 40 cm. Since the stoniness increases with depth below
this level, the bulk density was kept at the 30–40 cm level below 40 cm. The bulk
density for the L, F and H horizons were set to typical values observed in the field.
The bottom depth of the soil profile was set at 70 cm.

2.4 Results

2.4.1 Organic carbon stocks and mass fraction profile

Modelled organic carbon stocks and concentration profile for the reference simula-
tion are shown together with measured values in figures 2.3 and 2.4 (center graphs).
The modelled results are values from the last year of the spin-up, from a month near
the sampling date, to reduce differences with measurements due to seasonal fluctu-
ations.

The predicted stocks and concentrations generally compare well with measure-
ments. However, the organic carbon stock in the F+H horizon is strongly overesti-
mated with respect to the measurements. This may be caused by a too low biotur-
bation rate or too low decomposition rates of the organic carbon pools. The carbon
stocks in the topsoil are underestimated while the subsoil stocks are overestimated.
Presumably, a higher bioturbation rate and a lower advection rate would lead to a
better fit to the measurements, but without additional data and more thorough cal-
ibration the precise reason cannot be determined. Furthermore, the possibility of a
bias in the model results is higher for the deep soil, due to the presence of stones,
which are not accounted for in SOMPROF.

Although leachable slow (LS) organic matter is absent in the organic layer, it is the
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Figure 2.7: Development of the organic carbon stocks for the reference simulation.

largest organic matter pool (11.0 kgC m−2 of 15.4 kgC m−2 in total) due to its predicted
abundance in the complete mineral soil profile. The importance of the LS pool is not
surprising, given that it has the lowest decomposition rate of all pools. Fragmented
litter dominates the upper 5 cm of the mineral soil, but decreases rapidly with depth,
becoming negligible below 10 cm. The root litter and non-leachable slow (NLS) pool
reach deeper levels because of direct local input and, in the case of NLS-OM, the
relatively low decomposition rate.

2.4.2 Development of the organic carbon stocks

Figure 2.7 shows the development of the carbon pools for the reference simulation.
Initially all material produced in the L horizon flows immediately into the mineral
soil, preventing buildup of an F or H horizon. When the flux from the L layer exceeds
the bioturbation rate, the F and H horizon start to form. In this case this occurs after
approximately 50 years.

Under certain conditions, the organic carbon stock of the mineral soil initially in-
creases, peaks, and then decreases again (Figure 2.8). This is caused by a positive
feedback in the formation of the F and H horizon due to the fact that root litter input
of a layer is indirectly proportional to its mass (via its thickness, section 2.2.2). Ini-
tially, in absence of an F or H horizon, all root litter (and its decomposition products)
flows into the mineral soil. As the organic layer develops, root litter input gradu-
ally shifts to the F and H horizon, leading to reduced organic matter input into the
mineral soil.
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Figure 2.8: Development of the organic carbon stocks for a scenario with high and shallow
root litter input and low bioturbation. Input parameters are as follows: kNLS = 0.02 yr−1;
kLS = 0.02 yr−1; αAGL→FL = 0.7; αFL→NLS = 0.1; αFL→LS = 0.05; αRL→NLS = 0.2; αRL→LS =
0.05; B = 0.1 kg m−2 yr−1; β = 0.4 m−1; IRL = 0.8 kgC m−2 yr−1; all other parameters as listed
in Table 2.2.

2.4.3 Organic matter transport fluxes

Figure 2.9 depicts the different transport fluxes in the mineral soil. The advective
flux is clearly the main transport mechanism in virtually all of the soil profile. Only
in the top 2 to 3 cm, is diffusion more important due to the high concentration gra-
dient of fragmented litter there. The relative importance of advection for organic
matter transport is caused mainly by the fact that leachable slow organic matter is
the largest organic matter pool, due to its low decomposition rate. Interestingly, the
diffusive transport rate of LS-OM near the surface is negative, indicating upward
transport. This is because the LS-OM concentration peaks at around 5 cm depth,
which indicates that the largest input of LS-OM due to root litter and fragmented
litter decomposition is around this depth. Presumably, this is a modelling artifact
and does not occur in reality.

2.4.4 Sensitivity to transport parameters

Bioturbation rate

The bioturbation rate B controls both the flow of organic matter from the organic
horizons, as well as the diffusivity determining the transport within the mineral soil.
The effects of a 50 % reduction and a 100 % increase of the bioturbation rate on the
organic carbon stocks and organic carbon profile in the mineral soil are shown in
figures 2.3 and 2.4, respectively. Increasing the bioturbation rate causes a shift of ma-
terial from the organic layer to the mineral soil, leading to complete disappearance
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Figure 2.9: Organic carbon transport fluxes in the mineral soil for the reference simulation.
Downward fluxes are positive.

of the F and H horizon in the high bioturbation scenario.
The effects of bioturbation are mostly limited to the fragmented litter and non-

leachable slow pools. These pools are dependent on bioturbation for downward
flow, whereas root litter and leachable slow organic matter are also influenced by di-
rect input and advection, respectively. The change of bioturbation rate has virtually
no influence on the carbon stocks below 50 cm.

Advection rate

Figures 2.5 and 2.6 show the organic carbon stocks for the control, a 50 % decrease
and a 100 % increase of the advection rate. As would be expected, the advection
rate has no influence on the stocks in the organic layers since it does not affect the
flow into the mineral soil. The mineral soil stock of leachable slow organic matter
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strongly decreases with increasing advection rate, particularly in the topsoil. This
is explained by the increased loss of organic carbon over the lower boundary. In-
terestingly, the organic matter concentration below 50 cm is slightly lower both for
the scenario with increased advection and with decreased advection, with respect to
the reference simulation. The reason for this is that for the low advection scenario
less LS-OM reaches the subsoil, while for the high advection scenario more LS-OM
flows out of the system over the lower boundary, both cases leading to lower organic
matter concentrations.

The amount of carbon lost at the lower boundary is also strongly dependent on
the advection rate: 9.36 gC m−2 yr−1 for the low advection scenario, 22.6 gC m−2 yr−1

for the reference and 34.7 gC m−2 yr−1 for the high advection scenario.

2.4.5 Influence of the SOM profile on heterotrophic respiration
To study the effects of the vertical SOM distribution on heterotrophic respiration, we
set up three SOMPROF simulations with different vertical organic matter distribu-
tions, by varying the transport rates and the vertical distribution of root litter input
(Figure 2.10). The lower boundary of the mineral soil was set to 3 m to assure that
virtually all SOM is accounted for in the simulations, and differences in predicted
respiration are not due to differences in total carbon stock. Since soil moisture mea-
surements were available only up to a depth of 32 cm, the soil moisture is estimated
by non-linear extrapolation up to a depth of 70 cm. Below 70 cm, the soil moisture
was held at a constant value.

Figure 2.11 shows the relative contribution of the three organic horizons and the
mineral soil to the total heterotrophic respiration, for the three scenarios. The verti-
cal organic matter distribution strongly influences the location of the CO2 production
within the profile. Aside from short time scale fluctuations, this vertical partitioning
is quite constant, showing little seasonal variability. A notable exception is the sum-
mer of 2003, which was an exceptionally dry and hot period in Europe. During this
time, soil moisture decreased severely at Hainich, with lowest values in the organic
layer and in the topsoil (Figure 2.2). The vertical partitioning of the heterotrophic
respiration changes dramatically during the drought: the mineral soil becomes the
dominating source of CO2 in all three scenarios. These marked differences demon-
strate the severity of the drought.

The vertical organic matter distribution also has a significant effect on the tempo-
ral variation of total heterotrophic respiration, as shown in Figure 2.12. The ampli-
tude of the fluctuations decreases with deeper organic matter distribution: the deep
organic matter scenario has lower respiration rates in summer and higher rates in
winter, compared to the other scenarios. Also the response to the 2003 drought (Fig-
ure 2.12, inset) is less pronounced for the deep organic matter scenario, although the
differences are relatively small because ultimately the whole profile was affected by
the drought.
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Respiration (μmol m-2 s-1)
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2.5 Discussion

2.5.1 Organic carbon stocks and profile

The results depicted in figures 2.3-2.6 show that SOMPROF is able to produce or-
ganic carbon stocks and profiles that are realistic compared to measurements. Fur-
thermore, it does so based on input parameter values that lie within ranges sug-
gested by a priori knowledge (section 2.2.7), which is encouraging. It must be noted,
however, that the model is over-parameterized with respect to the available mea-
surements. This is clear, for example, from the fact that the profile and stocks are
roughly equally well reproduced in the high bioturbation scenario (figures 2.3 and
2.4, right graphs) and the low advection scenario (figures 2.5 and 2.6 left graphs),
which have distinctly different parameter sets.

In spite of this problem, the results offer some insight into the structure of the
mineral SOM profile (figures 2.4 and 2.6). The profile can be divided into a zone
near the surface with relatively fast decay of organic matter content with depth, and
a zone with a smaller depth gradient in the subsoil. The model results suggest that
the two zones are characterized by different organic matter deposition mechanisms:
bioturbation in the topsoil and liquid phase transport in the subsoil. The low depth
gradient in the subsoil causes a long, downward “tail” of organic matter, which is
also often observed in the field. Because of this tail, a power function of depth of-
ten yields a better fit to the vertical SOM profile than a one-term exponential decay
function (Jobbagy and Jackson, 2000).

In the model results, the leachable slow organic matter pool is dominant through-
out most of the profile. This can fully be ascribed to our choice for model parame-
ters: its decomposition rate is lowest of all pools, while it is formed at the same rate
as non-leachable slow OM. Nevertheless, measurements at Hainich (Schrumpf, un-
published) show that most organic matter is located in the heavy fraction. Since the
heavy fraction can be assumed to be mineral associated organic matter, this corrob-
orates our results.

The positive feedback in the development of the F and H horizon (section 2.4.2)
leads, under certain conditions, to interesting behavior in which the mineral soil
carbon stock initially increases and later decreases again (Figure 2.8). Although the
F/H horizon feedback always occurs if these layers are present, the peaking behavior
of the mineral soil stock is observed only in situations where root litter input is the
dominant source of organic matter, while being shallowly distributed in the profile.
Furthermore, vertical transport of organic matter should play a small role, which
means that the mineral soil is mostly dependent on root litter for its soil carbon input.
Such conditions may occur, for example, in a forest on a poor soil (i.e. with little soil
biological activity) with a productive herbaceous understorey. Although it does not
seem unlikely that the predicted behavior could occur for such a site, we did not find
chronosequence studies that confirm this, since soil carbon buildup usually involves
a succession of vegetation types, accompanied by changes in (root) litter production.
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2.5.2 Soil organic matter transport

In our simulations, liquid phase transport of organic matter is the dominant mech-
anism for SOM movement in most of the profile, due to the abundance of LS-OM
(Figure 2.9). Thorough parameter estimation should reveal if this is truly the case for
Hainich. However, even if advection dominates, bioturbation should not be ignored
as a mechanism for organic matter transport. The bioturbation rate strongly controls
the organic carbon stocks in the F and H horizons and determines the amount of
easily decomposable material in the topsoil.

SOMPROF behaves differently with respect to bioturbation than existing models
that include this process: for a small increase of bioturbation, the increased input
of organic matter into the mineral soil is not fully compensated by the increased
diffusion rate, leading to higher concentrations in the topsoil. Only in absence of an
F and H horizon, will an increase of bioturbation rate lead to reduced organic matter
concentrations due to faster diffusion. In this respect SOMPROF is more realistic
than SOM profile models that ignore the organic layer. This is corroborated by results
of Alban and Berry (1994) who found a significant increase of topsoil organic carbon
content together with a decrease of organic layer mass for a forest soil which was
invaded by earthworms.

Predicted organic carbon loss over the lower boundary due to advection (sec-
tion 2.4.4) is strongly overestimated compared to in situ measurements at Hainich
by Kindler et al. (2011), who found fluxes of 1.9–2.6 gC m−2 yr−1 from the subsoil.
The advective loss rates are also relatively high compared to typically observed esti-
mates at other sites (Michalzik et al., 2001). This points to a too high advection rate
in the deep soil, which may also partly explain the overestimation of the deep soil
organic matter concentration. It is likely that the advection rate of the deep soil is in
reality lower than that of the topsoil, since average water infiltration rates decrease
with depth (Sanderman et al., 2008). At Hainich this is particularly likely due to the
high clay content which obstructs water drainage and adsorbs organic matter. The
predicted advective loss of organic matter also depends on the depth at which the
lower boundary is set in the model. Leached organic matter can be accounted for
simply by lowering the soil depth (compare figures 2.3 and 2.4 with figure 2.10, mid-
dle graphs). This raises the question whether leached organic carbon in the field can
really be considered lost or if it is retained by adsorption at depths below the lowest
measurement depth, in which case it may still contribute to respiration.

2.5.3 Significance of the SOM profile for carbon cycling

The results in section 2.4.5 demonstrate that the vertical SOM distribution can signif-
icantly affect soil carbon cycling at short time scales. Since temporal fluctuations of
soil moisture and temperature decrease with depth in soil, a deeper distribution of
organic matter causes reduced variability of heterotrophic respiration. This suggests
that a soil with a deep SOM distribution is less sensitive to short time scale climatic
fluctuations than a soil with a shallow distribution. However, since no measure-
ments of soil moisture and temperature were available below 32 and 50 cm respec-
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tively, we needed to make assumptions regarding these quantities in the deep soil.
A more thorough modelling study is needed to evaluate these effects.

Whether these interactions affect the average long term soil carbon balance is
unsure, since, in this case, the vertical SOM distribution affects mostly the amplitude
and less the average of the variations. In general, the long term effects depend on the
non-linearity of the of the response functions and the average vertical gradients of
the temperature moisture profiles. This suggests that the variability of soil moisture
would play a greater role on the long time scale, since its response function is less
linear and it generally displays stronger depth gradients than soil temperature. More
simulation studies, for different conditions and at larger spatial scales (possibly as
part of a dynamic global vegetation model) should reveal if these effects truly play a
significant role for soil carbon cycling.

A large part of the merit of a vertically explicit SOM model lies in synergies with
other processes that are not yet implemented in SOMPROF. For example, the verti-
cal SOM profile (particularly the presence of an organic surface layer) strongly in-
fluences soil heat and moisture transport (Koven et al., 2009; Lawrence and Slater,
2008), which ultimately feed back to soil carbon cycling. Also microbial dynamics
may be of importance on long time scales (Fontaine et al., 2007; Allison et al., 2010).
Fontaine et al. (2007) showed that deep soil organic carbon can be stabilized due to
the absence of fresh organic matter for microbial decomposers. A decomposition
model that includes such effects, as part of a vertically explicit scheme, is likely to
find markedly different results for deep soil carbon storage.

2.5.4 Model limitations

SOMPROF cannot be applied under all conditions. The organic layer structure cor-
responds to the humus profile observed in forests. For grassland soils it may not
be possible to make the distinction between an organic layer and the mineral soil,
since organic matter accumulation occurs mostly in the topsoil due to root turnover.
Furthermore, SOMPROF is not suitable for soils where the vertical SOM profile is
significantly influenced by processes that are not represented, including ploughing,
cryoturbation, erosion and podzolization.

Currently, SOMPROF does not account for stones in the mineral soil matrix. To
include these effects the mass balance equations would need to be corrected for the
amount of fine soil that is involved with carbon storage and bioturbation. Since the
high stone content at Hainich is limited to the deep soil where organic carbon frac-
tions are low, presumably the error in the predicted carbon stocks are small. How-
ever, many soils have a high stoniness throughout the profile, which significantly
affects the vertical SOM distribution.

Future model development will address several of the issues discussed above to
improve the large scale applicability of the model.
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2.5.5 Outlook
For further application of SOMPROF, parameter estimation is required to obtain in-
sight into the model parameters, particularly those related to SOM transport, since
they are relatively unknown. A problem is posed by equifinality: the ability of the
model to produce similar results using significantly different parameter sets. The
fact that the different mathematical terms in SOMPROF relate to specific processes
somewhat alleviates this problem because it allows a priori rough estimates of pa-
rameter values to be obtained. Nevertheless, future model testing should investigate
whether the model may be simplified in order to facilitate parameter estimation.
Furthermore, observational data used for optimization should include additional
high-resolution profile data, such as 14C and 13C measurements and respiration rates.
Also, since small scale spatial heterogeneity can significantly affect local stocks and
profiles, multiple replicate samplings at different locations within one ecosystem or
soil type are required.

Application of the model at large spatial scales requires sets of parameters for dif-
ferent ecosystems and soils, or empirical functions relating the parameters to infor-
mation in available data sets. Bioturbation is strongly linked to climate, litter quality
and soil properties such as pH and base saturation. Since conditions that support
a high vegetation productivity and litter quality tend to have a large and active soil
fauna community as well, vegetation type and productivity may be a good proxy for
the bioturbation rate. The advection rate is related to physical and chemical factors,
such as water infiltration rates, soil texture, and pH.

It is likely that the spatial variability of the transport parameters is comparable to
that of the decomposition parameters since both groups are influenced by the same
environmental factors. Therefore, we do not expect that the introduction of a vertical
scheme in SOM models as such calls for better representation of spatial heterogeneity
compared to current models.

Many existing SOM models can be made vertically explicit by adopting the
scheme of SOMPROF. This modification would mainly involve separation of the soil
into the mineral soil with a concentration profile, and the organic layer, possibly
further subdivided into different horizons. The pool structure of the model to be
adjusted must support the change of transport behavior during the decomposition
process. Hence, a serial arrangement of pools (with one type of material being trans-
formed to another) is preferable. Furthermore, a specific pool must be defined that is
transported advectively, to represent liquid phase mediated transport. Finally, there
must be an explicit distinction between aboveground litter and root litter, since these
two types represent different input mechanisms.

2.6 Conclusions

SOMPROF is able to reproduce organic carbon stocks and concentration profiles that
compare well to measurements, using input parameters that are reasonable com-
pared to prior knowledge. Furthermore, the model is able to produce widely differ-
ent organic matter profiles, making it applicable to a range of soil types, provided
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that the natural process of soil formation has not been disturbed. The model can pro-
vide insight into several processes that cannot be addressed with bulk models, such
as soil formation, organic matter origin, loss of organic carbon through leaching, and
interactions between the SOM profile, heterotrophic respiration and soil temperature
and moisture.

Appendix 2.A Full description of SOMPROF

Here a complete description of SOMPROF is given, including all equations. Addi-
tional explanation is given in the main text of this paper. Table 2.3 gives complete
overview of all symbols used in the equations. Depth (z) is assumed positive down-
wards and z = 0 is set at the top of the mineral soil. In general, subscripts suffixed to
model variables denote an organic matter pool, while superscripts denote a location
in the vertical profile.

2.A.1 Decomposition
Organic matter decomposition is modelled according to first order kinetics corrected
for local soil temperature and moisture. For any organic matter pool i in model
compartment p, decomposition is defined as:

Lpi = f (T ) g (W ) ki Cpi , (2.5)

where f(T ) and g(W ) are response functions for soil temperature and moisture. f(T )
is defined according to Lloyd and Taylor (1994):

f (T ) = exp
(
Ea

(
1

T0 − Tref
− 1
T − Tref

))
, (2.6)

where T is the soil temperature (K), Tref (283.15 K) and T0 (227.13 K) are reference
temperatures, and Ea (K) determines the temperature sensitivity. g(W ) is defined
according to a modified sigmoid model (Subke et al., 2003):

g (W ) = exp (− exp (a− bW )) , (2.7)

where W is the fraction of the porosity filled with water (−) and a and b (−) are
parameters determining the shape of the soil moisture response.

For several pools, part of the decomposition flux flows into to secondary pools.
This is determined by the transformation factor α. The flux from pool i to pool j in
model compartment p is defined as:

F pi→j = αi→jL
p
i . (2.8)

Thus, the total formation of the secondary pools in any compartment p, is defined as
follows:

F pFL = αAGL→FLL
p
AGL , (2.9)

F pNLS = αFL→NLSL
p
FL + αRL→NLSL

p
RL , (2.10)

F pLS = αFL→LSL
p
FL + αRL→LSL

p
RL . (2.11)
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Table 2.3: List of symbols and abbreviations.

Symbol Description Units

State variables and fluxes (Organic layer / Mineral soil)
Cp

i Content of pool i in model compartment pa,b kg m−2 / kg m−3

Ip
i Input of pool i in model compartment pa,b,c kg m−2 yr−1 / kg m−3 yr−1

F p
i→j Transformation of pool i to pool j in model

compartment pa,b
kg m−2 yr−1 / kg m−3 yr−1

F p
i Total formation of pool i in model compartment pa,b kg m−2 yr−1 / kg m−3 yr−1

Lp
i Loss of pool i by decomposition in model

compartment pa,b
kg m−2 yr−1 / kg m−3 yr−1

Jp→q
i Bioturbation flux of pool i from model compartment p

to q a,b,d
kg m−2 yr−1

Model input
ki Decomposition rate of pool ic yr−1

T Soil temperaturea,b,c K
Ea Soil temperature response parameterc K
W Relative soil moisture contenta,b,c −
a Soil moisture response parameterc −
b Soil moisture response parameterc −
αi→j Factor for transformation of pool i to pool jc −
Itot

RL Total root litter input in the soil profileb,c kg m−2 yr−1

β Root litter distribution parameterc m−1

B Bioturbation ratec kg m−2 yr−1

lm Mixing lengthc m
DBT Diffusion coefficient due to bioturbationa,b m2 yr−1

v Advection ratec,d m yr−1

ρp Bulk density in model compartment pa,b,c kg m−3

ρM, ρO Pure mineral and pure organic bulk densityc kg m−3

Other variables
z Deptha,d m
t Timeb yr
fp

i Mass fraction of organic matter pool i in model
compartment pa,b

−

L Depth of the lower boundaryc m

Model compartments (superscripts)
L L horizon N/A
F F horizon N/A
H H horizon N/A
MS Mineral soil N/A

Organic matter pools (subscripts)
AGL Aboveground litter N/A
FL Fragmented litter N/A
RL Root litter N/A
NLS Non-leachable slow OM N/A
LS Leachable slow OM N/A
O Organic matter, sum of all pools N/A
a Depth and/or model compartment dependent
b Time dependent
c Input parameter
d Positive downward
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2.A.2 Litter input

External input of organic matter occurs for the aboveground litter pool IL
AGL and for

the root litter pool Itot
RL . The total root litter input is distributed over the soil profile

according to an exponential function of depth which starts at the top of the F horizon:

IRL(z) = Itot
RL β exp (−β (z + ∆zF + ∆zH)) , (2.12)

where Itot
RL is the total root litter production (kg m−2 yr−1), β (m−1) is a shape parame-

ter, and ∆zF and ∆zH are the thickness (m) of the F and H horizon, respectively, and
are determined from the total mass of each layer and its bulk density:

∆zF = CF
O

ρF
= CF

FL + CF
RL

ρF
, (2.13)

∆zH = CH
O

ρH
= CH

FL + CH
RL + CH

NLS

ρH
. (2.14)

The root litter input into the F and H horizon is obtained by integrating (2.12) over
the horizon thickness:

IF
RL =

∫ −∆zH

−∆zH−∆zF
IRL(z) dz , (2.15)

IH
RL =

∫ 0

−∆zH
IRL(z) dz . (2.16)

2.A.3 Bulk density

If mineral soil bulk density is unknown it is estimated according to a function from
Federer et al. (1993):

ρMS = ρMρO

fMS
O ρM + (1− fMS

O ) ρO
, (2.17)

where ρM and ρO are bulk densities for hypothetical pure mineral and pure organic
soil and fO is the mass fraction organic matter:

fO = CMS
O

ρMS
= CMS

FL + CMS
RL + CMS

NLS + CMS
LS

ρMS
. (2.18)

Substituting (2.18) into (2.17) and rearranging yields:

fMS
O = CMS

O ρO

ρMS
O (CMS

O + ρMS
M )− ρMS

M CMS
O

, (2.19)

and:

ρMS = ρMS
O (CMS

O + ρMS
M )− ρMS

M CMS
O

ρMS
O

. (2.20)
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2.A.4 Organic matter transport

Fluxes between the organic horizons are determined by the bioturbation rate B. In
case the stock in an organic horizon is zero, the bioturbation fluxes from that organic
horizon are adjusted downward to the total input, if necessary, to avoid negative
stocks. Thus, the bioturbation fluxes in the organic layer are defined as follows:

JF→H
FL =

{
fF

FL B if CF
FL > 0

min [(F L
AGL→FL − LF

FL) , fF
FL B] if CF

FL = 0 , (2.21)

JF→H
RL =

{
fF

RL B if CF
RL > 0

min [(IF
RL − LF

RL) , fF
RL B] if CF

RL = 0 , (2.22)

JH→MS
FL =

{
fH

FL B if CH
FL > 0

min [(JF→H
FL − LH

FL) , fH
FL B] if CH

FL = 0 , (2.23)

JH→MS
RL =

{
fH

RL B if CH
RL > 0

min [(IH
RL + JF→H

RL − LH
RL) , fH

RL B] if CH
RL = 0 , (2.24)

JH→MS
NLS =

{
fH

NLS B if CH
NLS > 0

min [(F F
NLS + FH

NLS − LH
NLS) , fH

NLS B] if CH
NLS = 0 , (2.25)

where fpi is the mass fraction of pool i in compartment p:

fpi = Cpi
CpO

= Cpi
CpFL + CpRL + CpNLS + CpLS

. (2.26)

Note that CpLS is zero for the organic horizons. In the mineral soil, transport by bio-
turbation is modelled according to the diffusion equation. The transport due to bio-
turbation for any pool i (except aboveground litter) is defined as:

∂Ci
∂t

∣∣∣∣
BT

= DBT
∂2Ci
∂z2 , (2.27)

where the diffusion coefficient DBT is defined according to:

DBT = 1
2
B

ρMS
lm . (2.28)

Advective transport of the LS pool in the mineral is modelled according to:

∂CLS

∂t

∣∣∣∣
adv

= −v ∂CLS

∂z
. (2.29)
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2.A.5 Governing equations

Organic layer

The complete mass balance equations for the organic matter pools in the organic
layer are as follows:

∂CL
AGL

∂t
= IL

AGL − LL
AGL , (2.30)

∂CF
FL

∂t
= F L

FL − LF
FL − JF→H

FL , (2.31)

∂CF
RL

∂t
= IF

RL − LF
RL − JF→H

RL , (2.32)

∂CH
FL

∂t
= JF→H

FL − LH
FL − JH→MS

FL , (2.33)

∂CH
RL

∂t
= IH

RL + JF→H
RL − LH

RL − JH→MS
RL , (2.34)

∂CH
NLS

∂t
= F F

NLS + FH
NLS − LH

NLS − JH→MS
NLS . (2.35)

Mineral soil

The complete mass balance equations for the organic matter pools in the mineral soil
are as follows:

∂CMS
FL

∂t
= DBT

∂2CMS
FL

∂z2 − LMS
FL , (2.36)

∂CMS
RL

∂t
= DBT

∂2CMS
RL

∂z2 + IMS
RL − LMS

RL , (2.37)

∂CMS
NLS

∂t
= DBT

∂2CMS
NLS

∂z2 + FMS
NLS − LMS

NLS , (2.38)

∂CMS
LS

∂t
= DBT

∂2CMS
LS

∂z2 − v ∂C
MS
LS

∂z
+ FMS

LS − LMS
LS . (2.39)

2.A.6 Boundary conditions

Upper boundary

The upper boundary conditions for the organic matter pools in the mineral soil are
determined by the flux from the organic layer:[

−DBT
∂CMS

FL

∂z

]
z=0

= JH→MS
FL , (2.40)
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[
−DBT

∂CMS
RL

∂z

]
z=0

= JH→MS
RL , (2.41)

[
−DBT

∂CMS
NLS

∂z

]
z=0

= JH→MS
NLS . (2.42)

Since LS-OM formed in the organic layer is assumed to flow immediately into
the mineral soil, the upper boundary condition for this pool is defined as the total
production in the organic layer:[

−DBT
∂CMS

LS

∂z
+ vCMS

LS

]
z=0

= F F
LS + FH

LS . (2.43)

Lower boundary

For all organic matter pools a zero flux boundary condition is used at depth L:[
∂CMS

FL

∂z

]
z=L

= 0 , (2.44)

[
∂CMS

RL

∂z

]
z=L

= 0 , (2.45)

[
∂CMS

NLS

∂z

]
z=L

= 0 , (2.46)

[
∂CMS

LS

∂z

]
z=L

= 0 . (2.47)

2.A.7 Numerical solution
Equations (2.30–2.39) with boundary conditions (2.40–2.47) are solved numerically
using finite differencing, in the order as they are listed above. The organic matter
pools in the organic layer are updated using an explicit scheme, while for the mineral
soil an implicit scheme, with upwind differencing for the advection term, is used.

At the end of each time step, the thickness of the mineral soil layers are updated
for change of mass. For any compartment n the layer thickness updated according
to:

∆zn,new = ∆zn,oldM
n,new
tot

Mn,old
tot

, (2.48)

where Mn,new
tot and Mn,old

tot are the total compartment mass (kg m−2; mineral plus or-
ganic) for the previous and current time step, respectively. Next, the concentrations
of the fractions are recalculated to assure conservation of mass:

Cn,new
i = Mn,new

i

∆zn,new . (2.49)
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Appendix 2.B Derivation of the diffusion equation for
bioturbation

Here we derive Fick’s diffusion equation from the underlying principles mixing in
soils, following mixing length theory. Our derivation is based on Boudreau (1986b)
and Hinze (1975, ch. 1 and 5). It must be noted that the derivation is only valid under
certain conditions, which are discussed in the main text of this paper, and more ex-
tensively in Boudreau (1986b) and Meysman et al. (2003). Alternatively, bioturbation
may be pictured as a random walk process (Meysman et al., 2003). This representa-
tion is analogous to the turbulent mixing picture presented here and also leads to the
diffusion equation in the limiting case.

Bioturbation is the average effect of many short term mixing events—displace-
ments of mass elements of the soil matrix. These mixing events are stochastic in the
sense that they occur at random times and depths in the profile. Ignoring bulk den-
sity changes, we assume that the average mass displacement is isotropic, i.e. equal
in all directions. Here we focus only on the vertical component of the mixing. Since a
soil constituent is moved together with the soil matrix, its concentration is a stochas-
tic variable as well. For a single mixing event, the transport of a soil constituent will
be of an advective nature (not to be confused the advection caused by liquid phase
transport). Material is moved at a certain rate w over a certain distance l. Hence a
constituent with local concentration c is will be transported according to:

J = wc . (2.50)

Since w and c are stochastic variables, we can apply Reynolds decomposition to split
them into smooth, time-averaged components, w and c, and random fluctuating
components, w′ and c′.

w = w + w′

c = c+ c′ . (2.51)

Substituting equation (2.51) into (2.50) yields:

J = (w c+ w′c+ wc′ + w′c′) . (2.52)

To obtain the average flux as a result of many stochastic mixing events we use time-
averaging, to which applies: pq′ = 0, for any two stochastic variables p and q. Fur-
thermore, since the bioturbation process is isotropic, there is on average no net trans-
port in any direction, i.e. w = 0. Hence, the time-averaged flux is:

J = w′c′ . (2.53)

If the mixing distance l (which is also a stochastic quantity) is small with respect to
the concentration gradient, we can approximate the fluctuation of the concentration
with the first order depth derivative of c:

c′ ≈ −1
2 l
′ ∂c

∂z
. (2.54)
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Substituting (2.54) into (2.53) yields:

J ≈ 1
2w
′l′
∂c

∂z
. (2.55)

Thus, the average transport of a soil constituent is controlled by its concentration
gradient and the relationship between w′ and l′. In turbulent flow, w′l′ specifies the
combined transport by eddies of all length scales. In bioturbation, this term specifies
the combined effect of mixing events over all distances. The critical assumption in
mixing length theory is that most of the mixing occurs over a typical distance, the
mixing length lm, and that mixing over other distances is negligible. In that case, w′l′
can be rewritten as:

w′l′ ≈ |w′|lm , (2.56)

where |w′| represents the average transport rate, independent of direction. |w′| is
presumably directly related to the soil fauna activity If we convert the soil reworking
activity B (mass area−1 time−1) to units of volume (volume area−1 time−1), we obtain
a units of speed (length time−1). Hence we propose that |w′| can be approximated by:

|w′| ≈ B

ρ
, (2.57)

where ρ is the bulk density of the soil matrix. Taking the divergence of (2.55) and
defining a diffusion coefficient as:

D ≡ 1
2
B

ρ
lm , (2.58)

we obtain the diffusion equation:

∂c

∂t
≈ ∂

∂z

[
D
∂c

∂z

]
. (2.59)
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Chapter 3
Modelling the vertical soil organic matter profile using

Bayesian parameter estimation

The vertical distribution of soil organic matter (SOM) in the profile may constitute an impor-
tant factor for soil carbon cycling. However, the formation of the SOM profile is currently
poorly understood due to equifinality, caused by the entanglement of several processes: in-
put from roots, mixing due to bioturbation, and organic matter leaching. In this study we
quantified the contribution of these three processes using Bayesian parameter estimation for
the mechanistic SOM profile model SOMPROF. Based on organic carbon measurements, 13
parameters related to decomposition and transport of organic matter were estimated for two
temperate forest soils: an Arenosol with a mor humus form (Loobos, The Netherlands), and
a Cambisol with mull type humus (Hainich, Germany). Furthermore, the use of the radioiso-
tope 210Pbex as tracer for vertical SOM transport was studied. For Loobos the calibration re-
sults demonstrate the importance of organic matter transport with the liquid phase for shap-
ing the vertical SOM profile, while the effects of bioturbation are generally negligible. These
results are in good agreement with expectations given in situ conditions. For Hainich the cal-
ibration offered three distinct explanations for the observations (three modes in the posterior
distribution). With the addition of 210Pbex data and prior knowledge, as well as additional
information about in situ conditions, we were able to identify the most likely explanation,
which indicated that root litter input is a dominant process for the SOM profile. For both sites
the organic matter appears to comprise mainly adsorbed but potentially leachable material,
pointing to the importance of organo-mineral interactions. Furthermore, organic matter in the
mineral soil appears to be mainly derived from root litter, supporting previous studies that
highlighted the importance of root input for soil carbon sequestration. The 210Pbex measure-
ments added only slight additional constraint on the estimated parameters. However, with
sufficient replicate measurements and possibly in combination with other tracers, this isotope
may still hold value as tracer for SOM transport.

Based on: M. C. Braakhekke, T. Wutzler, C. Beer, J. Kattge, M. Schrumpf, B. Ahrens,
I. Schöning, M. R. Hoosbeek, B. Kruijt, P. Kabat, and M. Reichstein

Biogeosciences 10 (2013): 399–420



Chapter 3. Modelling the SOM profile using Bayesian inversion

3.1 Introduction

The current lack of understanding of the soil system forms an important contribution
to the uncertainty of terrestrial carbon cycle predictions (Heimann and Reichstein,
2008; Trumbore, 2009). To improve simulation of soil carbon cycling, it is neces-
sary to move beyond the simple description of organic matter decomposition that
is currently being applied in most large scale models (Reichstein and Beer, 2008).
Increasing evidence indicates that decomposition and stabilization are controlled by
a range of mechanisms that depend on physical, chemical, and biological factors
(von Lützow et al., 2006). These factors vary laterally at landscape scale in relation
to climate, vegetation, and soil type. In the vertical dimension, however, they change
on a scale of centimeters to meters, since most drivers (e.g. wetting, heating, organic
matter input) are exerted on the soil at or near the surface, propagating downwards.
Consequently, the conditions that determine soil carbon cycling are highly depth-
dependent and different mechanisms may be operating in different layers within one
profile (Rumpel et al., 2002; Salomé et al., 2010; Rumpel and Kögel-Knabner, 2011).
Therefore, aggregation of processes and soil properties over the profile, or down-
ward extrapolation of topsoil organic carbon, as used in many SOM models (e.g.
Parton et al., 1987; Tuomi et al., 2009), is likely an oversimplification, inadequate to
support new parameterizations of relevant processes.

Awareness of this problem has spurred recent efforts to develop models that pre-
dict the vertical distribution of SOM, based on explicit descriptions of carbon de-
position processes in the profile (Jenkinson and Coleman, 2008; Koven et al., 2009,
chapter 2). In most soils there are three mechanisms by which organic carbon can be
input at any given depth: (i) Organic matter may be deposited in situ by root exuda-
tion, sloughing off of root tissue, and root turnover. (ii) Organic matter is transferred
within the profile due to movement with the liquid phase. This type of transport is
of an advective nature and affects only fractions that are potentially mobile: mainly
dissolved and to a lesser degree colloidal organic matter. (iii) Downward disper-
sal of organic matter occurs due to mixing of the soil matrix. Soil mixing is mostly
caused by bioturbation – the reworking activity of soil animals and plant roots – and
its effects on organic matter may be simulated mathematically as diffusion, provided
the time and space scale of the model are sufficiently large (Boudreau, 1986b, section
2.2.4).

The processes involved in SOM deposition in the profile – root input, liquid phase
transport, and bioturbation – are fundamentally different, not only in a physical
and mathematical sense, but also in terms of their relationship with environmen-
tal factors. Therefore, in order for a SOM profile model to be robust over different
ecosystems and soil types, and over changing environmental conditions, the relevant
processes should be explicitly represented. Furthermore, the distribution of organic
matter over particulate and potentially mobile fractions needs to be accounted for.

Unfortunately, the different processes have been poorly quantified to this date.
Published results are inconsistent and past studies have generally focused on a single
mechanism, rather than comparing all three (Rasse et al., 2005; Kaiser and Guggen-
berger, 2000; Tonneijck and Jongmans, 2008). Their extremely low rates, as well
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as practical problems impede direct measurements of these processes in the field.
Furthermore, the fact that the mechanisms are acting simultaneously complicates
inference from SOM profile measurements. Diffusion and advection of decaying
compounds such as organic matter, can produce very similar concentration profiles,
despite the different natures of these processes. Moreover, root input closely fol-
lows the root biomass distribution, which often strongly resembles the SOM profile.
Hence, it is generally not possible to derive the rate of each process from the organic
carbon profile alone, unless strong assumptions are made. A model that includes all
relevant processes may be able to explain an observed soil carbon profile by several
different mechanisms – a problem referred to as equifinality (Beven and Freer, 2001).

Thus, additional information is required in order to parameterize dynamic SOM
profile models. In past studies, 13C and 14C have been used as tracers to this purpose
(Elzein and Balesdent, 1995; Freier et al., 2010; Baisden et al., 2002). Although these
isotopes are particularly useful for constraining organic matter turnover times and
carbon pathways, their precise information content with respect to the processes in-
volved in SOM profile formation is less clear, since root input leads to direct input of
13C and 14C at depth. In this context, fallout radio-isotopes (e.g. 137Cs, 134Cs, 210Pbex,
7Be) may be more effective. Such tracers have two major advantages over carbon
isotopes: (i) loss occurs only due to radioactive decay, which is constant and ex-
actly known; and (ii) input occurs only at the soil surface – direct input at depth
is negligible. These points imply that the vertical transport rate of such isotopes
can be directly inferred from their concentration profiles (Kaste et al., 2007; He and
Walling, 1997). Since many radio-isotopes sorb strongly to organic matter molecules,
they offer an effective alternative or complement to carbon isotopes for inferring or-
ganic matter transport rates in soils (Dörr and Münnich, 1989, 1991). Particularly
210Pbex (210Pb in excess of the in situ produced fraction) is a valuable tracer due to its
strong adsorption to soil particles, and relatively constant fallout rate (Walling and
He, 1999). Past studies have mostly used radio-isotopes for determining erosion and
deposition rates (Mabit et al., 2009; Wakiyama et al., 2010), while their use for infer-
ring vertical transport at stable sites has received little attention (Dörr and Münnich,
1989; Kaste et al., 2007; Arai and Tokuchi, 2010; Yoo et al., 2011).

The aim of this study is to examine SOM profile formation with model inversion.
We used 210Pbex concentration profiles, in addition to soil carbon measurements, to
calibrate the model SOMPROF (chapter 2) for two forest sites with contrasting SOM
profiles. SOMPROF is a vertically explicit SOM model that simulates the distribu-
tion of organic matter over the mineral soil profile and surface organic layers. The
aim of the model is to represent SOM profile formation over time scales of years to
centuries. It includes simple but explicit representations of the relevant processes:
bioturbation, liquid phase transport, root litter input, and decomposition. SOM-
PROF was developed with large scale application in an earth system model in mind.
It was shown to be able to produce SOM profiles that compare well to observations
(chapter 2), but parameter sets for different soils and ecosystems have hitherto not
been derived.

For both sites, 13 SOMPROF parameters were estimated. We focussed on un-
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measurable parameters such as decomposition rate coefficients and organic matter
transport rates. The model inversion was performed in a Bayesian framework, al-
lowing prior knowledge of the model parameters to be included and to estimate
their posterior uncertainty. In view of the limited understanding of the SOM profile,
the aim of this study went beyond simply reducing the uncertainty ranges of the pa-
rameters. We also sought to gain qualitative understanding of the model’s behavior,
specifically its potential ability to explain observations by different mechanisms, and
the value of 210Pbex data and prior knowledge to improve parameter identification.
This work also represents a first step towards testing the validity of SOMPROF for
different soils and ecosystems.

We aim to answer the following questions: (i) What is the relative importance of
the different processes involved in SOM profile formation? (ii) How much organic
matter is present as material potentially transportable with the liquid phase, as com-
pared to immobile particulate material? And, (iii) Are 210Pbex profile measurements
useful for constraining the model parameters?

3.2 Methods

3.2.1 The SOMPROF model

Here a brief overview of the SOMPROF model is presented. We focus specifically on
the model equations in which the estimated parameters are applied, and the 210Pbex
module. A more exhaustive description and the rationale behind the model structure
is presented in chapter 2.

In SOMPROF the soil profile is divided into the mineral soil and the surface or-
ganic layer, which is assumed to contain no mineral material and is further sub-
divided into three horizons: L, F and H (Figure 3.1). These organic horizons are
simulated as homogeneous connected reservoirs of organic matter (OM). Decompo-
sition products of litter generally flow from the L to the F horizon and from the F
to the H horizon. Additionally, material may be transported downward between
the organic horizons and into the mineral soil by bioturbation. For the mineral soil,
which comprises both organic matter and mineral material, the model simulates the
vertical distribution of the organic matter pools with a diffusion-advection model.

In view of the low rates of the relevant processes and lack of knowledge of initial
conditions at the sites, the SOMPROF simulations in this study covered the complete
period of SOM profile formation, starting without any organic carbon in the profile.
The model was run with a time step length of one month (1/12 yr), for a specified
maximum number of years, depending on the age and history of the site, and was
driven by repeated annual cycles of measured or estimated soil temperature, mois-
ture and (root) litter production. The main reason for considering temperature and
moisture was to remove effects of local climate from the estimated decomposition
rate coefficients, which thus are more intrinsic quantities, influenced mostly by lo-
cal soil and vegetation properties. Furthermore, seasonal fluctuations of the forcing
variables were accounted for since the timing of oscillations may have effects on long
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Chapter 3. Modelling the SOM profile using Bayesian inversion

time scales due to non-linear interactions in the model. We limited the forcing cy-
cle to one year because inter-annual variability is expected to be small compared to
seasonal fluctuations and the available measurements were not sufficient to derive
longer cycles.

Organic matter pools and decomposition

Organic matter simulated in SOMPROF comprises five pools (Figure 3.1), represent-
ing fractions that differ with respect to decomposability, transport behavior, and
mechanism of input: aboveground litter (AGL), fragmented litter (FL), root litter
(RL), non-leachable slow organic matter (NLS), and leachable slow organic matter
(LS). Aboveground and root litter receive external input; fragmented litter and leach-
able and non-leachable slow OM are formed by decomposition. LS is absent in the
organic horizons since the adsorptive capacity there is assumed to be negligible com-
pared to that of the mineral soil.

Organic matter decomposition is simulated as a first-order decay flux, corrected
for soil temperature and moisture. For any organic matter pool i the decomposition
flux Li is defined as:

Li = f (T ) g (W ) ki Ci , (3.1)

where Ci is the concentration (kg m−3, for the mineral soil) or the stock (kg m−2, for
the organic horizons), ki is the decomposition rate coefficient (yr−1) at 10 °C and op-
timal soil moisture, and f(T ) and g(W ) are response functions for soil temperature
and moisture (see section 2.2.3). To avoid errors due to smoothing of the tempera-
ture and moisture data to monthly values, the response factors were calculated for
the unsmoothed, daily measurements. These response factors were subsequently
averaged to monthly values and several years of data were averaged to an average
annual cycle, which was used to calculate the decomposition fluxes.

The formation of fragmented litter, non-leachable, and leachable slow OM is de-
fined according to a transformation fraction (αi→j) which determines the decompo-
sition flux Fi→j from donor pool i to the receiving pool j:

Fi→j = αi→jLi. (3.2)

The organic matter that does not flow to other pools is assumed to be lost as CO2.
For the calibration measured organic carbon amounts were always compared to

total simulated organic carbon, summed over all pools. Mass fraction in the min-
eral soil layers was calculated as the organic carbon mass divided by the total mass
(mineral plus organic) in each layer. Effective decomposition rate coefficients were
determined by dividing the total simulated heterotrophic respiration by the total or-
ganic matter stock of the respective layers.

Organic matter transport

All organic matter pools except aboveground litter are transported by bioturbation
at equal rate. Conversely, only the leachable slow organic matter pool is transported
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by liquid phase transport. All transport parameters are assumed constant and inde-
pendent of depth, although the diffusivity of organic matter may vary with depth
due to bulk density variations (see Equation 3.4).

For the organic layer, organic matter transport due to bioturbation is determined
by the bioturbation rate B (kg m−2 yr−1), which represents the mixing activity of the
soil fauna, i.e. the amount of material being displaced per unit area and unit time.
B is the maximum flux of organic matter that can be moved to the next horizon. In
case the potential bioturbation flux for one time step exceeds the amount of organic
matter in a horizon, it is adjusted downward. For the mineral soil, a diffusion model
is applied to simulate transport due to bioturbation:

∂Ci
∂t

∣∣∣∣
BT

= DBT
∂2Ci
∂z2 , (3.3)

where Ci is the local concentration of organic matter pool i (kg m−3), z is depth in
the mineral soil (m, positive downward; z = 0 at the top of the mineral soil), and t is
time (yr). DBT is the diffusivity (m2 yr−1) which is derived from the bioturbation rate
according to mixing length theory, as follows (section 2.2.4):

DBT = 1
2
B

ρMS lm, (3.4)

where is ρMS is the local bulk density (kg m−3), which is depth dependent and can
either be set to measured values or calculated by the model. lm is the mixing length
(m) which links the bioturbation rate to the diffusivity. The upper boundary condi-
tion, at the top of the mineral soil, is determined by the flux of material coming from
the H horizon.

Dissolved organic matter is not explicitly represented in SOMPROF. Instead, the
combined effects of ad- and desorption and water flow on the concentration profile
of the leachable slow organic matter pool are simulated as an effective advection
process:

∂CLS

∂t

∣∣∣∣
LPT

= −v ∂CLS

∂z
, (3.5)

where v is the effective organic matter advection rate (m yr−1). Note that the LS
pool represents potentially leachable material; the bulk of this organic matter is in
fact immobile due to adsorption to the mineral phase. Hence, the LS pool is also
transportable by bioturbation. The upper boundary condition for LS is determined
by the total production in the organic layer.

For all pools a zero-gradient condition is used for the lower boundary. Hence
only advection of LS can lead to a loss of organic matter by transport.

210Pbex simulation

210Pb is a radiogenic isotope that is input into the soil due to both atmospheric de-
position and in situ formation within the profile. The fallout fraction (210Pbex) is
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typically estimated as the difference between the total 210Pb activity and the activity
of 226Ra, one of its precursors (Appleby and Oldfield, 1978).

A module has been added to SOMPROF in order to use measurements of 210Pbex

as a tracer for SOM transport (Figure 3.1). The modelled 210Pbex concentration pro-
file is controlled by atmospheric input, radioactive decay, and organic matter in-
put, decomposition and transport. The 210Pbex module is based on the following
assumptions: (i) variations in time of the atmospheric 210Pbex input are negligible;
(ii) 210Pbex is input only into the L horizon; (iii) once in the soil, 210Pbex binds imme-
diately and irreversibly to any organic matter pool; (iv) 210Pbex “follows” the organic
matter to which it is bound through the decomposition and transport processes; and
(v) aside from transport, 210Pbex is lost only due to radioactive decay, at a fixed rate
of 0.0311 yr−1.

Since 210Pbex is only input into the L horizon, which contains no root litter, no
210Pbex is associated with this pool. Furthermore, external input of organic matter as
litter has a diluting effect on 210Pbex, while loss of organic matter as CO2 leads to an
increase of mass fraction. For the organic horizons, the 210Pbex fluxes due to organic
matter flow (either by transport or transformation to another pool) are calculated by
multiplying the flux from a pool by its 210Pbex mass fraction. For the mineral soil
the transport equations are solved separately for 210Pbex associated with the FL, NLS
and LS pools.

Since the atmospheric deposition rate of 210Pbex is not generally known, the 210Pbex
fractions were normalized relative to the fractions at the mineral soil surface for
comparison with observations (see section 3.2.3). Thus, the exact input rate is triv-
ial, and was set to 1. Mineral soil 210Pbex mass fractions, used for comparing with
measurements, were calculated as the total 210Pbex amount, summed over all organic
matter pools, divided by the total mass (mineral plus organic).

3.2.2 Site descriptions

Loobos

Loobos is a Scots pine (Pinus sylvestris) forest on a well drained, sandy soil in the
Netherlands (52°10′0′′N; 5°44′38′′ E). The climate is temperate/oceanic with an av-
erage annual precipitation of 966 mm and an average temperature of 10 °C (WUR,
Alterra, 2011). The area, which was originally covered by shifting sands, was planted
with pine trees in the early twentieth century. Currently, the forest floor is covered
with a dense understorey of wavy hair grass (Deschampsia flexuosa) that roots pri-
marily in the organic layer. Due to its young age, the soil is classified as Cambic
or Haplic Arenosol (IUSS Working Group WRB, 2007; Smit, 1999), but shows clear
signs of the onset of podzolization. Because of the high content of quartzitic sand
(> 94 %) the soil is very poor, which is reflected by a low pH (3–4) and nutrient con-
centrations, and a virtual absence of soil fauna (Emmer, 1995; Smit, 1999). Organic
matter is comprised mostly of mor humus in a thick organic layer of circa 11 cm, and
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organic carbon fractions in the mineral soil are very low.
Half-hourly measurements of soil moisture and temperature were performed

continuously at five depths (5, 13, 30, 60, 110 cm). Data for the period 1 May 2005
to 31 December 2008 was used to derive an average annual cycle of soil temperature
and moisture which was used for the simulations. Additionally, aboveground litter
fall measurements on a two to four weeks basis for the period 2000 to 2008 were used
to derive an average annual cycle for aboveground litter input. Since the carbon con-
tent of the litter was not determined, we used a fixed C fraction of 50 %. Bulk density
was calculated by the model according to a function from Federer et al. (1993), based
on hypothetical bulk densities of pure mineral and pure organic soil (set to 1400 and
150 kg m−3, respectively).

Annual root litter input for the understorey was taken from Smit and Kooijman
(2001) (Table 3.1), who estimated root turnover in the same forest using root in-
growth cores. To account for seasonal fluctuations of the grass layer, the annual
input of both above and belowground grass litter was distributed over the year us-
ing a function based on data taken from Veresoglou and Fitter (1984), which peaks
around early June. The vertical distribution of understorey root litter input was set
such that approximately 95 % occurs in the organic layer (Figure 3.C.1), which cor-
responds to in situ observations of root biomass (A. Smit, personal communication,
2009). For the root litter input from the pine trees (Table 3.1) we used data from a for-
est in Belgium (Brasschaat) with a similar vegetation composition, soil type, and age
(Janssens et al., 2002). The root litter input for Loobos was derived by scaling the
estimate from the Janssens et al. (2002) study according to net primary productivity
estimates of both sites, which were taken from Luyssaert et al. (2007). The root litter
input from the canopy vegetation was held constant throughout the simulation. Its
vertical distribution was also derived from information from Janssens et al. (2002),
as well as personal communication from J. Elbers and I. Janssens (2009). At both the
Brasschaat and Loobos sites it is observed that the root biomass starts at the top of
the H horizon and peaks at the mineral soil surface. Therefore, we chose a distri-
bution function that increases linearly with depth from the top to the bottom of the
H horizon. From there it decreases with depth according to a two-term exponential
function: f(z) = exp(−20.00 z) + 0.0384 exp(−0.886 z) (Figure 3.C.1). By this func-
tion we accounted for deep soil input from pine roots which may be important for
the vertical SOM profile Since the thickness of the H horizon is variable, the total
distribution function was normalized at every time step.

The simulation length was set to 95 yr, which is the approximate time between
the forest plantation and the sampling date. To account for the time needed for
vegetation to develop, litter input was reduced in the initial stage, by multiplying
with a function linearly increasing from 0, at the start of the simulation, to 1, after
60 yr (Emmer, 1995).

Hainich

This site is located in the Hainich national park in Central Germany, (51°4′45.36′′N;
10°27′7.20′′ E). The forest, which has been unmanaged for the last 60–70 yr, is domi-
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nated by beech (Fagus Sylvatica, 65 %) and ash (Fraxinus excelsior, 25 %) (Kutsch et al.,
2010). The forest floor is covered by herbaceous vegetation (Allium ursinum, Mer-
curialis perennis, Anemone nemorosa) which peaks before canopy budbreak. The cli-
mate is temperate suboceanic/subcontinental with an average annual precipitation
of 800 mm and an average temperature of 7–8 °C.

The soil is classified as Luvisol or Cambisol (IUSS Working Group WRB, 2007;
Kutsch et al., 2010). It has formed in limestone overlain by a layer of loess, and is
characterized by a high clay content (60 %) and a pH-H2O of 5.9 to 7.8 (T. Persson,
personal communication, 2011). The favorable soil properties support a high bio-
logical activity (Cesarz et al., 2007), corroborated by a thin organic layer and a well
developed A horizon. About 90 % of the root biomass occurs above 40 cm depth. A
similar distribution was used for the root litter input (Figure 3.C.1).

The oldest trees at Hainich are approximately 250 years old, but presumably the
site has been covered by similar vegetation for much longer. Thus, we assumed that
the soil is close to steady state, hence a 1000 yr simulation was used. For further
information on the setup of the Hainich simulation we refer to the description of the
reference simulation in section 2.3. The model inputs that were not included in the
calibration are listed in Table 3.1.

3.2.3 Observations used for the calibration

Organic carbon measurements

For Loobos, measured carbon stocks in the L, F and H horizons and the mineral
soil, and carbon mass fractions at 3 depths in the mineral profile were used in the
calibration. Several profiles were affected by wind erosion; when this was the case,
the affected measurements were omitted. In 2005 the soil was sampled in a reg-
ular quadratic grid at 25 points spaced 40 m apart. Organic layers were removed
with a square metal frame with a side length of 25 cm. The mineral soil was sam-
pled horizon-wise with a Pürckhauer auger, 2–3 cm wide and 1 m long. Soil samples
were sieved to < 2 mm and ground. Carbon stocks in the organic layers were an-
alyzed with a CN analyser Vario EL (Elementar Analysensysteme GmbH, Hanau,
Germany); carbon fractions in the mineral soil were measured with a CN Analyser
VarioMax (Elementar Analysensysteme GmbH, Hanau, Germany).

For Hainich measured stocks in the L and F/H horizon (the individual F and
H horizons could not be identified), and in the mineral soil were used, as well as
mass fraction measurements at 8 depths in the mineral profile. In addition, we used
measured effective decomposition rate coefficients at 15 °C and soil moisture at 60 %
of water holding capacity in the L and F/H horizon, and at 7 depths in the mineral
profile. The sampling procedure and organic carbon measurements are described
in Schrumpf et al. (2011). The decomposition rate coefficients were calculated from
measurements of respiration rates measured during lab incubation of soil samples,
which is described in Kutsch et al. (2010). By dividing the average respiration rate of
each sample by its organic carbon content, we obtained effective decomposition rate
coefficients. All measurements are listed in Table 3.C.1.
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Table 3.1: Model driving data and not-estimated parameters.

Variable/Parameter Loobos Hainich Units

Annual aboveground litter input 0.310 0.314b kg C m−2 yr−1

Canopy 0.255 0.277b

Understory 0.055c 0.037b

Total annual root litter input 0.543 0.178b kg C m−2 yr−1

Canopy 0.118 0.148b

Understory 0.425c 0.03b

Root litter distribution parameter see text 7 m−1

Soil temperature response parameter 308.56d 308.56d K
Soil moisture response parameter ae 1 1 −
Soil moisture response parameter be 20 20 −
Soil temperature a a K
Relative soil moisture content a a −
Bulk density L layer 50 50 kg m−3

Bulk density F layer 100 100 kg m−3

Bulk density H layer 150 150 kg m−3

Bulk density mineral soil 1400 a kg m−3

Simulation period 95 1000 yr
Depth of bottom boundary 2 0.7 m
a Variable in depth and/or time.
b Kutsch et al. (2010); W. Kutsch (personal communication, 2009).
c Smit and Kooijman (2001).
d Lloyd and Taylor (1994).
e Soil moisture response function: g (W ) = exp (− exp (a− bW )).

Simulated organic carbon fractions and effective decomposition rate coefficients
were interpolated to the measurement depths for comparing with measurements us-
ing piecewise Hermitian interpolation (Burden, 2004). Because organic carbon stocks
and mass fractions cannot be less than zero and typically have large spatial variance,
the measurements from replicate samplings can be assumed to have right-skewed
distributions. We assumed that this is also the case for the effective decomposition
rate measurements. Therefore, all measurements (and their corresponding model
results) were log transformed for the calibration to bring the distributions closer to
normal. This also reduced heteroscedasticity for the mineral soil organic carbon frac-
tions.

210Pbex measurements

Since local 210Pbex measurements were not available for Loobos, we used two activity
profiles from Kaste et al. (2007), for a site in the Hubbard Brook Experimental Forest,
New Hampshire, USA. This site has conditions similar to those at Loobos in terms
of vegetation, soil texture, soil pH, and soil biological activity (Bormann and Likens,
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Figure 3.2: Measured 210Pbex concentrations used for the calibration. Concentrations are rela-
tive to the values at the surface. Note that the 210Pbex measurements for Loobos are taken from
an equivalent site (Kaste et al., 2007).

1994). Furthermore, pedological processes related to podzol formation are occurring
at both sites. The two sites differ with respect to age, since the Loobos soil is very
young. However, in view of the relatively fast decay rate of 210Pb, and the shallow
distribution of the 210Pbex profile (Figure 3.2), we assume that it is close to steady
state at both sites.

Local 210Pbex measurements at Hainich were performed for a study by Fujiyoshi
and Sawamura (2004, R. Fujiyoshi, personal communication, 2008). Although these
measurements were corrected for in situ formed 210Pb by subtracting the 226Ra ac-
tivity (R. Fujiyoshi, personal communication, 2008), the activity profile did not ap-
proach zero with depth, hence this method did presumably not account for all sup-
ported 210Pb. Therefore, we assumed that the 210Pbex concentration is zero from ap-
proximately 12.5 cm downwards. The supported 210Pb activity was estimated as the
average below this depth, and all data was corrected by subtracting this average.
(Note that in several cases this produced negative concentrations.)

Only mineral soil 210Pbex measurements were used in the calibration (Figure 3.2
and Table 3.C.1). The profiles of both sites, as well as those predicted by the model,
were normalized by dividing them by the 210Pbex activity at the surface of the min-
eral soil, which was estimated using piecewise Hermitian extrapolation. Simulated

78



3.2. Methods

Table 3.2: The model parameters estimated in the calibration. Note that the prior distributions
were only used for calibration setup 3. The lower bound for all parameters is zero; the upper
bound is given in the table.

Parameter Symbol Units Prior distribution in
calibr. setup 3 Upper bound

Decomposition rate coefficients at 10°C and optimal soil moisture

Aboveground litter kAGL yr−1 Log−N (−0.23, 0.74) 3
Root litter kRL yr−1 Log−N (−0.23, 0.74) 3
Fragmented litter kFL yr−1 Log−N (−0.23, 0.74) 3
Non-leachable slow

organic matter
kNLS yr−1 Log−N (−2.23, 1.00) 3

Leachable slow organic
matter

kLS yr−1 Log−N (−2.23, 1.00) 3

Transformation fractions

Aboveground
litter–fragmented litter

αAGL→FL – Logit−N (0.43, 0.95) 1

Fragmented
litter–non-leachable slow

αFL→NLS – Logit−N (−0.93, 0.98) 1, (1− αFL→LS)

Fragmented
litter–leachable slow

αFL→LS – Logit−N (−0.93, 0.98) 1, (1− αFL→NLS)

Root litter–non-leachable
slow

αRL→NLS – Logit−N (−0.93, 0.98) 1, (1− αRL→LS)

Root litter–leachable slow αRL→LS – Logit−N (−0.93, 0.98) 1, (1− αRL→NLS)

Transport parameters

Bioturbation rate B kg m−2 yr−1 uniform 3
Mixing length lm m uniform 3
Liquid phase transport

(advection) rate
v m yr−1 uniform 0.1

210Pbex fractions and effective decomposition rate coefficients were interpolated to
the measurement depths also using Hermitian interpolation, for comparing with
measurements. Because of the negative observed values for Hainich, no log-trans-
formations was used for the 210Pbex data.

3.2.4 Bayesian calibration

We performed Bayesian estimation of 13 model parameters: five decomposition
rate coefficients, five transformation fractions, and three transport parameters (Ta-
ble 3.2). Bayesian calibration is aimed at deriving the posterior probability distribu-
tion p(θ|O) of the model parameters θ based on the misfit between the model results
and the observations O, and the a priori probability distribution of the parameters
(Mosegaard and Sambridge, 2002). According to Bayes’ theorem, the posterior dis-
tribution is defined as:

p(θ|O) = c p(θ) p(O|θ), (3.6)

79



Chapter 3. Modelling the SOM profile using Bayesian inversion

where p(θ) is the prior probability distribution, expressing our knowledge of the
parameters prior to the calibration, and c is a normalization constant, ensuring that
the integral over the distribution equals 1. p(O|θ) is a likelihood function which
expresses the probability of the observations O, given the parameters θ (Gelman
et al., 2004, Chap. 1).

The calibrations were performed in three setups, in which 210Pbex data and prior
knowledge were stepwise added, in order to investigate the information content of
each source of information. For both sites, we ran calibrations in the following se-
tups:

1. excluding 210Pbex data and with weak priors;

2. including 210Pbex data and with weak priors;

3. including 210Pbex data and with strong priors.

Calibration setup 3 represents our best estimate of the model parameters.

Likelihood function

As discussed in section 3.2.3, different types of observed variables were used in the
calibration, referred to as “data streams”. For any data stream i the observations Oi
may be seen as the sum of the model predictionMi(θ) plus a stochastic residual term
εi:

Oi = Mi(θ) + εi, i = 1, 2 . . . I (3.7)

Note that for all data streams except 210Pbex the model prediction and measurements
were log-transformed. We assumed that the residuals are normally distributed with
variance σi, which may be different for each data stream. The conditional likelihood
function for a given σi is defined by the joint distribution of the residuals of all data
streams:

p(O|θ,σ2) ∝
I∏
i=1

σ−Ni
i exp

(
− 1

2σ2
i

SSi(θ)
)
. (3.8)

Note that we did not consider correlations between the different variables. SSi(θ) is
the sum of squared residuals for data stream i over all Ni data points:

SSi(θ) =
Ni∑
n=1

(Oi,n −Mi,n(θ))2. (3.9)

Multiple replicate measurements, if available, were all individually included in Si(θ),
meaning a single model prediction was compared to multiple observations. For the
mineral soil profile measurements from all depth levels were considered to be part of
the same data stream, i.e. the residuals were assumed to have the same distribution.

The variance of the residuals σ2
i is usually determined by both model related

errors (deficiencies in the model structure, errors in forcing data) as well as observa-
tional uncertainty (spatial heterogeneity, measurement errors). In some cases it may
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Figure 3.3: Prior probability distributions of the model parameters used for calibration setup
3. See Table 3.2 for the parameters of the distribution functions. All distributions are bounded
at zero and an upper bound which are given in Table 3.2.

be estimated a priori based on knowledge of the model and the measurement uncer-
tainty (Knorr et al., 2005; Rayner et al., 2005; van Oijen et al., 2005), but in general it
must be considered unknown. For certain prior distributions σi can be analytically
integrated out of the joint likelihood function p(O,σ2|θ), yielding the marginal dis-
tribution p(O|θ) (Kavetski et al., 2006; Box and Tiao, 1992). We use the uninformative
prior p(σi) ∝ 1/σi, which yields the following formulation of the likelihood function:

p(O|θ) ∝
I∏
i=1

SSi(θ)−Ni/2. (3.10)

Prior parameter distributions

We performed calibration with both strong and with weak prior distributions. For
the runs with weak priors, the prior probability P (θ) was simply omitted from the
posterior probability definition (Equation 4.2), which resulted in a multivariate uni-
form distribution, within the sampling region.

For the runs with strong priors, the distributions were based on knowledge from
previously published studies (section 2.2.7). The same distributions were used for
both sites. Since decomposition rate coefficients cannot be negative or zero, we chose
a log-normal distribution. For the litter pools (kAGL, kRL and kFL) we used the same
distributions (mode at 0.46 yr−1; Figure 3.3a). It is likely that the decomposition rate
coefficient of leachable slow organic matter (kLS) is lower than that of non-leachable
slow organic matter (kNLS), since the former is comprised mostly of material ad-
sorbed to the mineral phase. Nevertheless, since we aimed to test this hypothesis
with the measurements, we used the same prior distributions for the decomposition
rate coefficient of both pools (mode at 0.04 yr−1; Figure 3.3b).

We used logit-normal prior distributions for the transformation fractions. This
distribution is similar to the beta distribution and is bounded between 0 and 1 (Mead,
1965). For αAGL→FL a distribution with the mode at 0.68 was used (Figure 3.3c), while
for the other conversion fractions (αRL→NLS, αRL→LS, αFL→NLS, and αFL→LS) the same
prior was used with the mode at 0.18 (Figure 3.3d). Since relatively little a priori
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information about the SOM transport parameters (B, lm, and v) is available, we used
uniform priors for all calibrations (Figure 3.3e).

For all calibration setups, the sampling was constrained to a bounded region
in parameter space. This constraint was included since preliminary runs showed
that some parameters may be unconstrained at the upper bound by the data, due
to over-parameterization. The lower bounds for all parameters were set to zero; the
upper bounds are listed in Table 3.2. Additionally, since decomposition must not
lead to a net formation of material, the sum of transformation fraction for root litter
(αRL→NLS +αRL→LS) and fragmented litter (αFL→NLS +αFL→LS) pools was bounded to
1.

Monte Carlo simulations

The complexity of SOMPROF precludes analytical model inversion or expression of
the normalizing constant in Equation (3.6). Therefore, we approximated the poste-
rior distribution using a Markov Chain Monte Carlo algorithm. Such algorithms ob-
tain a sample of the posterior distribution by performing a random walk through pa-
rameter space. They are increasingly used for calibrating ecosystem models against
eddy-covariance measurements and satellite data (Knorr et al., 2005; Fox et al., 2009)
and have been applied to calibrate soil carbon models as well (Yeluripati et al., 2009;
Scharnagl et al., 2010; de Bruijn and Butterbach-Bahl, 2010). We used the Metropo-
lis algorithm DREAM(ZS) (Laloy and Vrugt, 2012), a successor to DREAM (Vrugt
et al., 2009), which has been shown to perform well for complex, multimodal dis-
tributions. Further information concerning the calibration setup can be found in
Appendix 3.A.1.

Additionally, we performed forward Monte Carlo simulations based on the pos-
terior distributions. 5000 simulations were made with parameter sets selected at
regular intervals from the posterior sample. For these simulations the non-leachable
slow (NLS) and leachable slow (LS) organic matter pools were split into fractions
originating from fragmented litter (FL) and root litter (RL), in order to trace the
source of organic matter. Otherwise, the setup of the simulations was the same as
those made for the calibration runs.

To study the importance of root litter input, bioturbation, and liquid phase trans-
port for the formation of the SOM profile, the contribution of these processes was
quantified. We estimated the amount of organic carbon that would be derived from
these three processes for the steady state, giving an indication of their importance
for long time scales. Note that the organic carbon derived from root litter input also
includes material that is transformed from root litter to the slow pools, NLS and LS.
Furthermore, bioturbation and liquid phase transport can lead to a net loss of or-
ganic matter at a given depth, as opposed to root litter input which only leads to
gain. Thus, the amount of organic carbon derived from the transport processes may
be negative for certain depths. However, the sum of three organic carbon fractions
must be positive. Further description of these calculations is given in Appendix 3.B.
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Figure 3.4: Posterior distributions for the three setups for Loobos. The “violins” depict the
marginal distribution for each parameter. The three vertical lines inside the violins indicate
the median and the 95 % confidence bounds. The parameters are normalized to the sampling
ranges (see Table 3.2).
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Figure 3.5: Organic carbon measurements and corresponding model results of forward Monte
Carlo simulations for Loobos, based on posterior distribution of calibration setup 3. a. stocks
and fractions of the model pools; b. above vs belowground derived organic matter. L, F,
and H refer to the organic horizons (see section 3.2.1); topsoil: 0–30 cm; subsoil: > 30 cm;
OM: organic matter. All model results are averages over the Monte Carlo ensemble; errorbars
denote one standard error of the mean for the measurements and one standard deviation (SD)
for the model results.

3.3 Results

3.3.1 Loobos

Figure 3.4 depicts the marginal posterior distributions for the three calibrations for
Loobos (see also Table 3.C.2). For calibration setups 1 and 2 several parameters have
wide distributions compared to the sampling range, which shows they are poorly
constrained by the observations. Furthermore, for some of the parameters (kRL,
αFL→LS, αRL→NLS, lm, and v) the highest density point appears to lie at or near the
upper or lower bound. Adding 210Pbex improved the constraint of the bioturbation
related parameters (B and lm) but had otherwise no major effect on the marginal
distributions. Inclusion of prior knowledge reduced uncertainty, particularly for the
parameters that are poorly constrained by the data.

The results of the forward simulations (Figure 3.5a, additional results shown in
Figure 3.C.5) indicate that leachable slow organic matter (LS) is the most abundant
pool, followed by non-leachable slow organic matter (NLS). LS particularly domi-
nates the mineral soil, being virtually the only pool below 20 cm. Figure 3.5b shows
that most organic matter in the mineral soil is derived from root litter, but above-
ground derived SOM is present up to great depths, due to fast downward migration
by liquid phase transport. Figure 3.6a shows the organic matter transport fluxes in
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Figure 3.6: Simulated organic carbon fluxes from forward Monte Carlo simulations for Loo-
bos, based on posterior distribution of calibration setup 3 (note the different scales on the y
axes). All quantities are averages over the last simulation year and the Monte Carlo ensem-
ble. a. organic carbon transport fluxes and measured dissolved organic carbon (DOC) fluxes
(Kindler et al., 2011; not used in the calibration). Note the indistinct bioturbation flux in the
upper left corner. b. Contributions of the different processes to soil organic matter profile in
mineral soil (see section 3.2.4).

the mineral soil. Clearly, transport due to bioturbation plays almost no role; virtually
all transport occurs by movement with the liquid phase. Figure 3.6b, which depicts
the amount of organic carbon in the steady state derived from the three processes,
corroborates the importance of liquid phase transport. The negative concentrations
for this process indicate it causes organic matter from near the surface – mainly root
litter derived – to be moved downward to greater depths, where it is the dominant
mechanism of input.

3.3.2 Hainich

For Hainich the posterior distribution is multimodal for all calibration setups, com-
prising three distinct optima. For analysis the modes were sampled individually in
separate calibration runs. An additional calibration run was performed in which
all modes were sampled simultaneously to assure that the multimodality is not an
artifact of the sampling (see Figure 3.C.4). The marginal distributions for all calibra-
tion setups and all modes are depicted in Figure 3.7 (see also Table 3.C.2). While
the distributions of most parameters differ between the modes, the most prominent
differences can be seen for the decomposition rate coefficients of root litter (kRL),
non-leachable slow (kNLS), and leachable slow (kLS) organic matter. For each of the
modes, one of these three parameters is tightly constrained at the lower end of the

85



Chapter 3. Modelling the SOM profile using Bayesian inversion

1. Without 210Pbex, weak priors
kAGL

kFL

kRL

kNLS

kLS

αAGL→FL

αFL→NLS

αFL→LS

αRL→NLS

αRL→LS

B
lm
v

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

kRL

kNLS

kLS

v

0 0.005 0.01 0.015 0.02 0.025 0.03

2. With 210Pbex, weak priors
kAGL

kFL

kRL

kNLS

kLS

αAGL→FL

αFL→NLS

αFL→LS

αRL→NLS

αRL→LS

B
lm
v

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

kRL

kNLS

kLS

v

0 0.005 0.01 0.015 0.02 0.025 0.03

Parameter value (rescaled)

3. With 210Pbex, strong priors
kAGL

kFL

kRL

kNLS

kLS

αAGL→FL

αFL→NLS

αFL→LS

αRL→NLS

αRL→LS

B
lm
v

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

kRL

kNLS

kLS

v

0 0.005 0.01 0.015 0.02 0.025 0.03

Mode A Mode B Mode C
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Table 3.3: Minimum misfit value (see Equation 3.11) in the posterior sample for each of the
modes for Hainich for the three calibration setups. Note that the misfit values of calibration
setup 2 are lower than those of calibration setup 1. This is caused by the fact that the misfit
values for the 210Pbex are negative due to the small number of data points (cf Equation 3.10).

Calibration setup Mode A Mode B Mode C

1: Excl. 210Pbex; weak priors 140.14 140.31 141.87
2: Incl. 210Pbex; weak priors 131.27 129.43 135.04
3: Incl. 210Pbex; strong priors 146.56 142.9 157.57

range, while the other two have wide distributions at higher values.
Addition of 210Pbex to the observations caused shifts and reduction of uncertainty

for some parameters (e.g. v for mode A, lm for mode B), but had in general no major
effects on the posterior. Changing from weak to strong priors reduced uncertainty
for parameters that are poorly constrained by the observations.

The comparative probability of the modes cannot be inferred from Figure 3.7,
since the distributions are scaled to the same height. To compare the modes we
introduce the “misfit” S(θ) as the negative logarithm of the unnormalized posterior
density (Mosegaard and Sambridge, 2002):

S(θ) = − ln(p(θ) p(O|θ)) = − ln(p(θ))−
I∑
i=1

ln
(
SSi(θ)−Ni/2

)
, (3.11)

where SSi(θ) is defined according to Equation (9). A lower misfit indicates a higher
posterior density and a better fit to the observations and priors. Note that the con-
tribution of a single data stream to S(θ) may be negative for a high fit and/or small
Ni. The modes are compared according to the lowest misfit in the calibration sam-
ples (Table 3.3). This shows that the three calibrations setups differ notably in terms
of the comparative probability of the modes. In calibration 1 the three modes have
similar misfit. Introduction of 210Pbex and prior information to the calibration caused
the misfit of mode C to increase markedly compared to A and B, which is explained
by a somewhat poorer fit to the 210Pbex measurements (results not shown), as well
as the very low root litter decomposition rate coefficient, which conflicts with prior
knowledge.

Figure 3.8a depicts the simulated organic matter stocks and fractions of the three
modes for calibration setup 3 (additional results are shown in Figures 3.C.5 and
3.C.6). The different parameter values for the three modes give rise to quite dif-
ferent model results, despite the fact that the quantities of total organic matter are
very similar and match the observations well. In each of the three modes, a different
pool dominates the total stocks: non-leachable slow OM for mode A; leachable slow
OM for mode B, and root litter for mode C. These contrasts are mainly explained by
the differing decomposition rate coefficients of these three pools. Figure 3.8b shows
that modes A and B have very similar contributions of above and belowground lit-
ter, whereas for mode C the root litter derived organic carbon is considerably larger.
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Figure 3.8: Organic carbon measurements and corresponding model results of forward Monte
Carlo simulations for Hainich, based on the three posterior modes of calibration setup 3. a.
stocks and fractions of the model pools; b. above vs belowground derived organic matter. L,
F, and H refer to the organic horizons (see section 3.2.1); topsoil: 0–30 cm; subsoil: > 30 cm;
OM: organic matter. All model results are averages over the Monte Carlo ensemble; errorbars
denote one standard error of the mean for the measurements and one standard deviation (SD)
for the model results.
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(a) Soil organic carbon transport
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(b) Contribution of processes to soil organic carbon
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Figure 3.9: Simulated organic carbon fluxes from forward Monte Carlo simulations for
Hainich, based on the three modes of the posterior distribution of calibration setup 3 (note
the different scales on the y axes). All quantities are averages over the last simulation year
and the Monte Carlo ensemble. a. organic carbon transport fluxes and measured dissolved
organic carbon (DOC) fluxes (Kindler et al., 2011; not used in the calibration); b. contribution
of the different processes to soil organic matter profile in mineral soil (see section 3.2.4).
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The differences between the modes are further demonstrated by the different organic
matter transport fluxes (Figure 3.9a). Interestingly, modes A and C, which have the
lowest amounts of the leachable slow organic matter pool, show the highest liquid
phase transport fluxes, which is explained by the high advection rates. Figure 3.9b
shows that for all modes root litter input is an important process for long term or-
ganic matter storage. For modes A and B most organic carbon is present as the slow
pools NLS and LS derived from root litter, while for mode C RL itself is stable. The
effects of the transport processes are generally smaller than those of root litter input.
However, they represent an important mechanism for moving organic matter from
shallow levels to deeper layers, as indicated by the negative values near the surface.

3.4 Discussion

3.4.1 Loobos

The calibration results for Loobos suggest that leachable slow (LS) OM is the most
abundant organic matter fraction. Its transport with the liquid phase, representing
dissolved organic matter leaching, is largely responsible for downward SOM move-
ment and formation of the vertical SOM profile in general. Although the decomposi-
tion rate coefficient of this pool (kLS) is the lowest, its distribution tends to quite high
values (optimum approximately 0.189 yr−1 in calibration setup 3; Figure 3.4-3; Table
3.C.2). Particularly considering that LS is the only pool in the deep soil, where de-
composition is slow, we would expect a lower value for kLS. The prior distribution of
this parameter used in calibration setup 3, which tends to lower values, caused only
a slight downward shift in the posterior. Due to its large variance, the posterior dis-
tribution of kLS does allow for somewhat lower, more realistic values. Furthermore,
there are quite strong correlations between parameters related to the LS pool (Figure
3.C.7), which indicate that a decrease of the formation of LS (determined by αFL→LS
and αRL→LS) can be compensated by a decrease of the liquid phase transport rate v
or the decomposition rate coefficient kLS, both controlling the loss of this pool.

Although SOMPROF was not developed to simulate dissolved organic matter
transport, the modelled liquid phase transport fluxes should represent the average
movement of dissolved organic carbon (DOC) over long timescales1. Figure 3.6a
shows that simulated liquid phase transport fluxes are an order of magnitude higher
than DOC fluxes measured by Kindler et al. (2011), which points to a too high value
of the advection rate v. However, the high uncertainty of both the rate and fluxes of
liquid phase transport shows that the observations used in the calibration can also
be explained with somewhat lower values. A lower value for v would be accom-
panied by a lower decomposition rate coefficient of LS, since the two parameters
are strongly correlated (Figure 3.C.7). Thus, it is likely that additional observations
constraining the deep soil decomposition rate coefficient, such as radiocarbon mea-
surements, would lead to a more realistic estimate of liquid phase transport rate.

1While the LS pool represents mostly material adsorbed to the mineral phase, the transport of this pool
occurs only by the small fraction that is mobile and thus corresponds to DOC fluxes.
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Notwithstanding the over-estimated liquid phase transport fluxes, the relative
importance of organic matter leaching over bioturbation is in good agreement with
the soil conditions and humus form at Loobos. Soil fauna is virtually absent, and the
high concentration of sand supports fast water infiltration and has a low adsorptive
capacity, thus allowing high dissolved organic matter fluxes.

3.4.2 Hainich

The presence of multiple modes in the posterior distributions for Hainich is illus-
trative of the equifinality problem discussed in the introduction. Since the modes
represent separate isolated regions in parameter space, they may be seen as distinct
explanations for the observations, in terms of the processes represented in the model.
In calibration setup 1 the three modes have similar misfit (Table 3.3). The addition
of 210Pbex to the calibration led to a shift in the comparative misfit, causing mode B
to become dominant. Switching to strong priors further increased these differences.
Based on these results we can discard mode C with some certainty. The difference
between modes A and B, however, is relatively small, hence in view of unconsidered
uncertainties (see section 3.4.6) we cannot fully ignore mode A as possible explana-
tion for the observations.

Figure 3.9a shows that for all modes the modelled advective flux is substantially
larger than the DOC fluxes measured by Kindler et al. (2011). However, for mode B
the overestimation is less pronounced, particularly in the subsoil. For modes A and
C modelled advective flux as well as its uncertainty are very high. Contrastingly, the
contribution of advection to input in the profile is very small and well constrained
for both modes (Figure 3.9b). The reason is that the advective fluxes have relatively
small vertical gradients. This also explains the high uncertainty of the advective flow
(and the advection rate v) for these modes: as long as its gradient does not change,
the actual flux can vary relatively freely.

The abundance of LS and the low rate of liquid phase transport for mode B agrees
well with expectations based on the soil texture at Hainich. The high clay content im-
pedes water infiltration, while favoring adsorption of organic matter, slowing down
both dissolved organic matter leaching and decomposition of organic matter. This
is corroborated by organic matter density fractionation measurements at the site
(M. Schrumpf, unpublished data, 2011). These indicate that 81–93 % of the organic
matter is present in the heavy fraction, which is known to comprise mostly mate-
rial in organo-mineral complexes (Golchin et al., 1994). Although the model pools
can presumably not be compared directly to the measured density fractions, this is
clearly in support of mode B, since leachable slow OM represents mostly material
adsorbed to the mineral phase (sections 3.2.1 and 2.2.4). Based on these arguments
we conclude that mode B represents the most likely explanation for the observations
at Hainich.

The results of the forward simulations for mode B (Figures 3.8 and 3.9) suggest
that root input is the most important process at Hainich. Although root litter itself
represents only a small fraction, its decomposition products (mainly LS) constitute
the bulk of the total SOM. The effects of the transport processes are generally small
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compared to material derived from root litter input. However, particularly advec-
tion causes loss of material near the surface, and input into deeper layers. The rel-
ative importance of root derived SOM agrees well with recent findings by Tefs and
Gleixner (2012), who found, based on 14C profile measurements, that soil organic
carbon dynamics at Hainich are mainly determined by root input.

3.4.3 Comparison between sites

It is difficult to explain why the posterior distributions for Loobos do not display
multimodality, like the distributions for Hainich. One possible explanation is the
fact that the observed mineral soil C profile for Loobos clearly consists of two zones:
one with a fast decrease with depth between 0 and 10 cm, and one below this, with
a much slower decrease. It is conceivable that such a profile can only be explained
by a situation where diffusion (bioturbation) operates only near the surface, while
advection (liquid phase transport) acts in the complete profile. For Hainich, on the
other hand, the C profile is smoother, thus allowing it to be explained by different
mechanisms.

In the following discussion we will only consider mode B for Hainich. When
comparing the marginal parameter distributions for both sites (see Figure 3.C.3) it
is apparent that the decomposition rates of the AGL and FL pools are higher for
Hainich than for Loobos, while the reverse is true for RL, NLS, and LS. This agrees
well with expectations: the low pH of the coniferous litter at Loobos may slow de-
composition in the organic layer, hence we can expect the pools that are important
there to have low decomposition rates. On the other hand, the high clay content
at Hainich likely stabilizes organic matter in the mineral soil, leading to lower de-
composition rates of the pools that dominate there. Comparison further shows that
the decomposition rate coefficient of the main pool LS is markedly lower for Hainich,
and much less uncertain. This is presumably explained by the observations of the ef-
fective decomposition rate coefficients. For the deep soil this data directly constrains
the decomposition rate coefficient of LS since this is virtually the only pool there (see
also Figure 3.C.6). In view of the considerable effort involved with such measure-
ments, a study into the value of such data for inferring SOMPROF parameters would
be valuable. However, in general care must be taken when using lab measurements
to infer parameters for field conditions. Furthermore, for the decomposition rate co-
efficients of the slow pools, very long incubation times may be required (Scharnagl
et al., 2010).

The two sites differ strongly with respect to the organic matter transport param-
eters, with Hainich having a higher bioturbation rate, and Loobos having a higher
liquid phase transport rate. This is in good agreement with the differences between
the two sites in terms of biological activity and soil texture.

3.4.4 Implications for soil organic matter cycling

The fact that leachable slow organic matter pool constitutes the bulk of SOM for both
sites emphasizes the importance of organo-mineral interactions for soil carbon cy-
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cling. However, this interpretation relies on the assumption that mineral-associated
organic matter is correctly represented by the LS pool. Mathematically, the only dif-
ference between the NLS and LS pools lies in the transport behavior: diffusion-only
versus diffusion and advection. The question is whether this distinction correctly
represents the differences between stable particulate and adsorbed organic matter in
reality. The good agreement of our results with density fractionation measurements
at Hainich, as well as the environmental conditions at both sites suggests that an
explanation where LS dominates might indeed be appropriate. Furthermore, many
studies have demonstrated the importance of mineral associations for long-term car-
bon preservation (Eusterhues et al., 2003; Mikutta et al., 2006; Kögel-Knabner et al.,
2008; Kalbitz and Kaiser, 2008). In contrast, others have indicated the presence of
root-derived particulate material in podzol B horizons, and questioned the relevance
of mineral associated material for mineral soil organic matter fractions (Nierop, 1998;
Nierop and Buurman, 1999; Buurman and Jongmans, 2005).

The predominance of root derived material predicted for both sites (Figures 3.5b
and 3.8b, mode B) underlines the importance of roots for organic matter input in the
mineral soil, which is in agreement with previous studies (Kong and Six, 2010; Rasse
et al., 2005). For Hainich the root input also strongly determines the vertical distribu-
tion of SOM (Figure 3.9), whereas for Loobos also redistribution of organic material
by liquid phase transport is a major factor (Figure 3.6). Based on analysis of a large
database of SOM profiles, Jobbagy and Jackson (2000) found that root/shoot alloca-
tion, together with the root biomass distribution, explains the vertical SOM profile
in the upper part of the soil while clay content was found to be more important at
greater depths. The effects of texture are not considered in this study, but Figures
3.6b and 3.9b show that the relative importance of liquid phase transport becomes
greater with depth. This supports the findings of Jobbagy and Jackson (2000) since
this mechanism is likely strongly controlled by soil texture.

3.4.5 The use of 210Pbex measurements

The addition of 210Pbex to the calibration had no major effects on the posterior dis-
tributions. For Loobos, the 210Pbex measurements improved the constraint of the
parameters related to bioturbation, while for Hainich they improved constraint of
the mixing length for mode B, and caused an increase of the misfit of mode B and C
relative to mode A. The fact that the 210Pbex data influenced only parameters related
to bioturbation may be explained by the fact that the profiles used here are quite shal-
low, due to the relatively fast decay rate of the isotope (cf Figure 3.2). These measure-
ments are therefore presumably most informative for the topsoil, where bioturbation
is more important.

For both sites, the measured 210Pbex profile was already well matched by the
model in calibration setup 1, in which these measurements were not included. This
indicates that these observations can be explained well in conjunction with the or-
ganic carbon measurements, which supports the model structure. It also suggests
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that the 210Pbex data from Kaste et al. (2007) is consistent with the conditions at Loo-
bos.

The use of 210Pbex as a tracer for SOM transport relies on the assumption that Pb
adsorbs strongly to organic matter, both particulate and in solution. Based on 210Pbex

and 14C profiles, Dörr and Münnich (1989) found that transport rates of 210Pbex were
very close to those of organic matter, suggesting that the two are indeed strongly
linked. Although Pb is known to occur also in association with the mineral phase
and inorganic complexes (Schroth et al., 2008), the affinity of Pb to particulate or-
ganic matter is well established, in view of its strong retention in organic layers and
topsoils over short timescales (Kaste et al., 2003; Kylander et al., 2008; Schroth et al.,
2008), as well as by adsorption studies (Logan et al., 1997; Sauve et al., 2000). The
effect of DOM movement on Pb migration is less clear, because it is difficult to pre-
dict the behavior of Pb adsorbed to the organic matter that is transformed to the
dissolved fraction. Several researchers have indicated the importance of DOM and
colloidal organic matter for Pb movement in soil (Miller and Friedland, 1994; Wang
and Benoit, 1997; Urban et al., 1990; Friedland et al., 1992). Furthermore, adsorp-
tion studies have found that Pb adsorbs readily to humic and fulvic acids (Logan
et al., 1997; Turner et al., 1986), while movement of dissolved Pb2+ was found to be
unimportant (Wang and Benoit, 1997).

In summary, further study on this topic is needed, but we believe that use of
210Pbex as a tracer for SOM transport is well defendable. Despite the limited con-
straint gained in this study, this isotope can be useful as a tracer for SOM transport,
provided that more replicate measurements are available to reduce uncertainty. Par-
ticularly in combination with other tracers, such as 14C or 137Cs, 210Pbex may be quite
informative.

3.4.6 Methodological constraints and model validity

For both sites, many strong correlations exist between different combinations of
model parameters (Figure 3.C.7) which indicates that the model is over-parameterized
with respect to the available data. Furthermore, for all calibration setups there is at
least one decomposition rate coefficient for which high values are not constrained
by the observations (Figures 3.4 and 3.7). Since the predicted stock of a pool is in-
versely proportional to its decomposition rate coefficient, these pools are present in
very small amounts, which shows that SOMPROF has at least one redundant or-
ganic matter pool, given the available data. This is further demonstrated by a strong
negative correlation between decomposition rate coefficient of FL and RL for Loobos
(Figure 3.C.7), indicating that these pools are essentially “competing” as explanation
for the observed carbon stocks and fractions. In order to obtain better constraint,
additional observations are needed. Obvious candidates for such data are carbon
isotopes (13C or 14C) measurements, of both organic matter and heterotrophic respi-
ration.

There are numerous uncertainties that were not considered in the calibration. In
view of practical limitations on the number of parameters that can be estimated si-
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multaneously, we focused on the inherently unmeasurable parameters, on which
little prior information was available. Many other model inputs, with varying de-
grees of uncertainty, were held fixed, including the temperature and moisture data,
the litter input rates, and the temperature and moisture response parameters. An-
other source of uncertainty is associated with site history. The sites included in this
study were selected for having a relatively well-known and constant history, but par-
ticularly for Hainich there have undoubtedly been past fluctuations in the forcing
that were not considered. Finally, considerable uncertainty is related to the model
structure, specifically to the simple representations of organic matter decomposition
and transport in SOMPROF, as well as the behavior of 210Pbex. These unconsidered
variabilities call for care when interpreting the results. Further, it may be advisable
to inflate the variance of the posterior distributions when using them as priors for
a follow-up study, or for predictive simulations. Nevertheless, we believe that the
parameters that were estimated constitute the most important uncertainties.

The good fit to the observations indicates that SOMPROF is able to reproduce
widely different SOM profiles, based on realistic parameter values. Furthermore,
the consistency of the results with site conditions and the good fit to the 210Pbex
measurements (even when they are not included in the calibration) are encourag-
ing and support the validity of SOMPROF for temperate forests. The validity for
other ecosystems such as grasslands and tropical and boreal forests is yet to be estab-
lished. Also, comparison to other types of measurements is needed, both to improve
constraint of the processes, and to further evaluate the model. Examples of such
data include carbon isotopes, heterotrophic respiration rates, and chronosequence
measurements. The strong overestimation of the advective flux compared measured
DOC flux rates suggests the need for modifications to the transport scheme. Ad-
dition of the DOC measurements to the calibration should reveal if the model can
reproduce this data with acceptable loss of fit for the other observations. If not, it
may be necessary to introduce depth dependence of the advection rate, for example
by linking to average water fluxes and soil texture. Finally, further study should
explore whether simplification of the model by removal of organic matter pools is
warranted. If so, a possible modification would involve merging the root litter and
fragmented litter pools, which are functionally very similar.

3.5 Concluding remarks

In order to study the processes involved in SOM profile formation we performed
Bayesian estimation of SOMPROF model parameters for Loobos and Hainich, based
on organic carbon and 210Pbex measurements as well as prior knowledge. The final
calibration yielded a multimodal posterior distribution for Hainich, with two dom-
inant modes corresponding to two distinct explanations for the observations. One
mode was found to be most realistic in the light of ancillary measurements, and in
situ soil conditions. For Loobos the posterior distribution is unimodal.

For both Loobos and the most probable mode for Hainich, most of the organic
matter is comprised of the leachable slow organic matter pool, which represents ma-
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terial that is mostly adsorbed, but potentially leachable. The results further indicate
that for both sites most organic matter in the mineral soil is derived from root inputs.
For Hainich root input also determines the vertical distribution of SOM, whereas for
Loobos downward advective movement of SOM, representing liquid phase trans-
port, represents a major control. These results agree well with other measurements
and in situ conditions.

The 210Pbex measurements improved constraint of the parameters related to bio-
turbation and reduced the probability of one of the modes for Hainich, but had oth-
erwise no major influence on the posterior distributions. Nevertheless, since the
210Pbex observations could be reproduced well together with the organic carbon mea-
surements, we believe this isotope holds value as a SOM tracer.

Our study illustrates the difficulties with explaining the vertical SOM profile
caused by the convolution of several mechanisms. Soil carbon profile measurements
are necessary but in general not sufficient for resolving the processes. Ancillary mea-
surements such as respiration rates or tracers are needed and even then the model
may remain over-parameterized. Bayesian calibration using Markov Chain Monte
Carlo, is an invaluable tool for such problems since it helps to identify (non-linear)
parameter correlations and the existence of multiple modes, which with traditional
calibration tools could easily have gone unnoticed. Furthermore, inclusion of prior
knowledge mitigates the adverse effects of over-parameterization.

For future large scale application of SOMPROF sets of characteristic parameter
values for different soils and ecosystems are required. With results of the current
study and future calibrations progressively stronger prior distributions can be de-
rived, which can be used for sites where fewer observations are available.

Appendix 3.A Markov chain Monte Carlo scheme

3.A.1 The Metropolis algorithm
The Metropolis algorithm (Metropolis et al., 1953) samples the posterior distribu-
tion by means of a Markov chain which performs a random walk in parameter
space. At each iteration i proposals of the parameters θ∗ are generated by taking
a (semi-)random step from the current position θi. The model is run with the pro-
posed parameter set and the unnormalized posterior probability density (p(θ)p(O|θ))
of the proposal is evaluated. The proposal is subsequently accepted or rejected ac-
cording to the Metropolis rule, which defines the chance for acceptance as:

s = min
{
p(O|θ∗)p(θ∗)λ(θ∗)
p(O|θi)p(θi)λ(θi) , 1

}
, (3.A.1)

where λ(θ) is a factor which may be included to remove the effects of sampling
in transformed parameter space (see section 3.A.2). The decision for acceptance or
rejection is made using a random number from a uniform distribution on the unit
interval. In case of acceptance, the chain moves to the position of the proposal; in
case of rejection the chain stays at the current position, which is thus sampled again.
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We used the DREAM(ZS) algorithm (Laloy and Vrugt, 2012), an adaptation of the
DREAM (DiffeRential Evolution Adaptive Metropolis) algorithm which uses multi-
ple chains in parallel and automatically adapts the scale and orientation of the pro-
posal distribution.

3.A.2 Parameter transformations
Since calibration algorithms generally perform better for distributions that are close
to Gaussian, the random walk performed was in transformed parameter space for
all calibration setups. For the decomposition rate coefficients (ki) and transport rates
(B, lm, v) a log transformation was applied:

θ′ = ln(θ), (3.A.2)

and for the transformation fractions αi→j a logit transformation was used:

θ′ = logit(θ) = ln
(

θ

1− θ

)
, (3.A.3)

where θ′ is the transformed parameter value and θ is the untransformed parameter
value, used as input for SOMPROF.

From the rules for change of variables for probability density functions it follows
that performing the random walk in transformed space affects the sampled distribu-
tion. Suppose we apply Monte Carlo sampling according to some density function
f(θ) and our samples θ′ are generated in transformed space according to θ′ = g(θ).
Then our sampled target distribution will be:

τ(θ) ∝
∣∣∣∣ ddθ g(θ)

∣∣∣∣ f(θ). (3.A.4)

The factor in vertical bars is the Jacobian of the transformation; or inverse trans-
formation, depending on what is the scale of interest (see e.g. Box and Cox, 1964).
This effect was removed by multiplying the posterior density by the reciprocal of the
Jacobian, which is the factor λ(θ) in Equation 3.A.1. For a log transformation:

λ(θ) = θ, (3.A.5)

and for a logit transformation:
λ(θ) = θ − θ2. (3.A.6)

3.A.3 Calibration setup
For each calibration first an exploratory run was performed, intended to search for
different posterior modes. For this run, at least 20 chains were run in parallel, with
starting points widely dispersed in the sampling region using Latin hypercube sam-
pling. Furthermore, the posterior cost was reduced using a cost-reduction factor of
0.1, multiplied with the log posterior density. This effectively “flattens” the posterior,
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allowing the chains to escape from local modes and to take bigger steps, thus cov-
ering more area. After all modes of interest were identified in the exploratory run,
secondary runs without cost reduction were performed with eight chains, started
near each mode.

The convergence of the chains was evaluated using the Gelman-Rubin index
(Gelman et al., 2004, Chap. 11), which is proportional to the ratio of the between-
chain variance and the within-chain variance, and declines to 1 when different chains
converge on the same distribution. All chains were run until the convergence index
was ≤ 1.01 for all parameters, with at least 100 000 iterations per chain.

After the secondary runs, a variable number of iterations was removed from the
start of each chain (the burn-in). Next, the remaining chains for each mode were
merged and thinned to 10 000 iterations for analysis by selecting iterations in regular
intervals. The continuous posterior distributions depicted in the Figures 3.4 and 3.7
were derived using kernel density estimation.

Appendix 3.B Calculation of process contributions to the
SOM profile

In SOMPROF there are five processes that cause input or redistribution of the organic
matter pools in the mineral soil: root litter input (RLI), formation due to fragmented
litter decomposition (FLdec), formation due to root litter decomposition (RLdec),
bioturbation (BT), and liquid phase transport (LPT). Obviously, not every organic
matter pool is influenced by each process. The average fluxes (in kg C m−3 yr−1) over
the last simulation year of these processes are calculated by SOMPROF in the for-
ward Monte Carlo runs, yielding the following flux rates: F BT

FL , FRLI
RL , F BT

RL , F FLdec
NLS ,

FRLdec
NLS , F BT

NLS, F FLdec
LS , FRLdec

LS , F BT
LS , and F LPT

LS . Note that the net input/output of or-
ganic matter due to bioturbation/diffusion and liquid phase transport/advection
are not equal to the flux rates of these processes (as depicted in Figure 3.6-1 and 3.9-
1), but are defined as the vertical derivative of the transport fluxes. For a system
with discrete layers, this means the difference between the flux at the top and at the
bottom of a layer. The relative importance of each of these fluxes for long term SOM
storage, may be estimated by dividing them by the decomposition rate coefficient
of the respective pools, yielding an organic carbon concentration for the steady state
(kg C m−3):

Cji = F ji
ki

, (3.B.1)

for any pool i and process j. Since root litter at any depth may come from either root
litter input or bioturbation, also the decomposition products of root litter (NLS and
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LS) may be split into fractions that come from these two sources:

CRLdec,RLI
NLS = CRLI

RL

CRLI
RL + CBT

RL
CRLdec

NLS , (3.B.2a)

CRLdec,BT
NLS = CBT

RL

CRLI
RL + CBT

RL
CRLdec

NLS , (3.B.2b)

CRLdec,RLI
LS = CRLI

RL

CRLI
RL + CBT

RL
CRLdec

LS , (3.B.2c)

CRLdec,BT
LS = CBT

RL

CRLI
RL + CBT

RL
CRLdec

LS . (3.B.2d)

The calculations above yields 12 carbon concentrations: CBT
FL , CRLI

RL , CBT
RL , CFLdec

NLS ,
CRLdec,RLI

NLS , CRLdec,BT
NLS , CBT

NLS, CFLdec
LS , CRLdec,RLI

LS CRLdec,BT
LS , CBT

LS , and CLPT
LS . Note that the

sum of these concentrations is not necessarily equal to the simulated total concen-
tration because (i) the simulated SOM profile may not be in steady state, and (ii) the
effects of soil temperature and moisture are not accounted for when estimating the
steady state concentration. However, since all the pools respond equally to soil tem-
perature and moisture, the relative distribution of the organic matter over the pools
is correct for the steady state.

To quantify the importance of the three processes root litter input, bioturbation
and liquid phase transport, the organic carbon concentrations are summed as fol-
lows:

CRLI = CRLI
RL + CRLdec,RLI

NLS + CRLdec,RLI
LS , (3.B.3a)

CBT = CBT
FL + CBT

RL + CBT
NLS + CFLdec

NLS + CRLdec,BT
NLS + CRLdec,BT

LS + CFLdec
LS + CBT

LS , (3.B.3b)

CLPT = CLPT
LS . (3.B.3c)

Since the transport processes may also cause loss of organic matter at a given
depth, their contributions to the total organic carbon may also be negative. How-
ever, the sum over all contributions must be positive, and equal to the total steady
state organic carbon concentration for a simulation with temperature and moisture
constant at 15 °C and 1, respectively.
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Figure 3.C.1: Vertical distribution of the root litter input for Loobos and Hainich used in the
simulations. For Loobos different distribution functions were used for the canopy and under-
storey. The canopy distribution function consists of two parts: a linearly increasing function
from zero to 1.0384 from the top to the bottom of H horizon for the organic layer; and a two-
term exponential function for the mineral soil: f(z) = exp(−20.00 z) + 0.0384 exp(−0.886 z)
(with z the depth in the mineral soil in m). For the understorey at Loobos, and all root input
at Hainich, a single-term exponential function starting at the top of the F horizon was used
(f(z) = exp(−40 z) for Loobos; f(z) = exp(−7 z) for Hainich). All curves are normalized so
that the integral equals 1.
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Figure 3.C.3: Marginal posterior distributions for Loobos and Hainich (mode B), calibration
setup 3. The “violins” depict the marginal distribution for each parameter. The three vertical
lines inside the violins indicate the median and the 95% confidence bounds.
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Table 3.C.1: Observations used in the calibrations. Numbers are means and standard devia-
tions of replicate samplings. Depth is relative to mineral soil surface. 210Pbex fractions have
been preprocessed and are relative to surface fraction (see section 3.2.3).

Description Depth (cm) Mean s.d. N

Loobos

L horizon C stock (kg C m−2) n.a. 1.08 0.619 24
F horizon C stock (kg C m−2) n.a. 1.65 0.729 24
H horizon C stock (kg C m−2) n.a. 1.56 0.979 24
Mineral soil C stock (kg C m−2) n.a. 2.07 0.417 21

Mineral soil C fraction (%)
0.5 1.11 0.312 21
3 0.550 0.153 21

42.5 0.138 0.0413 21

Mineral soil 210Pbex fraction (−),
profile 1

1.25 0.623 - 1
3.75 0.100 - 1

6 0 - 1
9 0.042 - 1
13 0 - 1

Mineral soil 210Pbex fraction (−),
profile 2

1 0.614 - 1
3 0.059 - 1
5 0.028 - 1
7 0 - 1

Hainich

L horizon C stock (kg C m−2) n.a. 0.432 0.188 10
F/H horizon C stock (kg C m−2) n.a. 0.283 0.115 10
Mineral soil C stock (kg C m−2) n.a. 12.5 1.65 10

Mineral soil C fraction (%)

2.5 6.63 1.50 9
7.5 4.20 1.35 10
15 2.400 0.0584 10
25 1.58 0.0196 10
35 1.06 0.0253 10
45 0.791 0.0337 10
55 0.0597 0.0298 9
65 0.0355 0.007 4

L horizon eff. decomp. rate coeff. (yr−1) n.a. 0.685 0.0929 10
F/H horizon eff. decomp. rate coeff. (yr−1) n.a. 0.459 0.0942 10

Mineral soil effective decomposition rate coeff. (yr−1)

2.5 0.0886 0.0150 10
7.5 0.0580 0.00960 10
15 0.0338 0.00992 10
25 0.0229 0.00424 10
35 0.0287 0.00774 10
45 0.0323 0.0156 10
55 0.0333 0.0206 9

Mineral soil 210Pbex fraction (−)

2.5 0.681 - 1
7.5 0.185 - 1
12.5 -0.0949 - 1
17.5 0.0324 - 1
22.5 0.0776 - 1
27.5 0.0590 - 1
32.5 -0.0740 - 1
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Chapter 4
The use of radiocarbon to constrain current and future

soil organic matter turnover and transport in a
temperate forest

We investigated the merits of radiocarbon measurements for estimating soil organic matter
(SOM) turnover and vertical transport for a temperate deciduous forest. Eleven parameters
defining decomposition and transport in the soil carbon model SOMPROF were estimated
using a Bayesian approach, based on organic carbon stocks and mass fractions, and radiocar-
bon concentration of SOM and heterotrophic respiration. The addition of radiocarbon data
had strong effects on the parameter distribution, most importantly causing a reduction of the
decomposition and production rate of the slowest SOM pool by an order of magnitude, and
a similar reduction in SOM transport with the liquid phase. The modified parameters led to
changes in the partitioning of SOM over the different model pools and a strong reduction of
advective fluxes. The calibration results were subsequently used to perform transient soil car-
bon projections for the period 1901–2100. These projections show an increase of soil carbon
in the topsoil and a decrease in the subsoil, adding to a net gain overall. Near the end of
the 21st century total carbon stocks stabilize and—for the radiocarbon-constrained model—
start to decrease. However, the changes over time were small compared to the total stocks.
The predictions based on the calibrations with and without radiocarbon were in general quite
similar, but the former showed a significantly higher heterotrophic respiration flux, which is
explained by lower losses of carbon with the liquid phase. The uncertainty of the predicted
total soil carbon stock was only slightly decreased and was increased for individual depth
compartments.

Based on: M. C. Braakhekke, C. Beer, M. Schrumpf, A. Ekici, B. Ahrens, M.R.
Hoosbeek, B. Kruijt, P. Kabat, and M. Reichstein

Accepted on condition of minor revision for Journal of Geophysical Research:
Biogeosciences



Chapter 4. Using 14C to constrain SOM turnover and transport

4.1 Introduction

Recent studies have called attention to the soil as an important source of uncertainty
in the prediction of terrestrial carbon cycling (Jones and Falloon, 2009; Sitch et al.,
2008; Arora and Matthews, 2009). For example, based on a reanalysis of results from
Friedlingstein et al. (2006), Jones and Falloon (2009) concluded that the spread of fu-
ture predicted land carbon storage by earth system models is explained for a large
part by varying responses of global soil carbon stocks. A similar result was found by
Sitch et al. (2008) in an intercomparison study of dynamic global vegetation models.
Because of the large amount of carbon stored globally in soils, uncertainty in repre-
sentation of soil carbon cycling in earth system models can propagate to considerable
variation in predicted atmospheric CO2 and climate change.

In the context of climate change, the main purpose of a soil carbon model is to
predict carbon storage in, and fluxes from, the soil in response to environmental
factors. Therefore, soil carbon models applied at large scale have typically been cali-
brated to reproduce observed, or at least reasonable, carbon stocks and heterotrophic
respiration fluxes. Since soil organic matter (SOM) comprises a mixture of materials
with different turnover times, it is usually modelled as several pools or compart-
ments with different decomposition rates. The number of pools varies widely but
most models include at least three SOM fractions in order to adequately represent
the spectrum of turnover rates observed in reality (Manzoni and Porporato, 2009).
Since each pool requires one or more parameters to characterize its behavior, the de-
grees of freedom of a soil carbon model increase rapidly with each additional pool.
Consequently, measured carbon stocks and fluxes alone are in general not sufficient
to estimate all parameters of a multi-pool soil carbon model. Depending on the
number of pools, one or more additional sources of information characterizing the
organic matter turnover are required. In absence of such data, a clear best parame-
ter set may not exist. Instead, there may be one or more large regions in parameter
space that yield optimal, or almost optimal, fit to observations (chapter 3). Select-
ing a single parameter set in such a region may result in a model that is right for the
wrong reason and gives biased predictions when extrapolated to different conditions
(Beven, 2006).

The cosmogenic carbon isotope 14C, generally referred to as radiocarbon, has
proven to be an ideal tool for quantifying SOM turnover (Gaudinski et al., 2000;
Trumbore, 2009). Because of its relatively constant natural formation rate, the avail-
ability of accurate past records of atmospheric concentrations, and its long half-life of
5,730 years, it can represent the decomposition rates of the most stable organic mat-
ter fractions. Furthermore, the large increase of the atmospheric radiocarbon frac-
tion due to nuclear weapons testing in the 1960s allows it to be used for quantifying
decadal turnover rates as well. Hence, it has been used extensively for calibrating
and evaluating soil carbon models (Jenkinson and Coleman, 1994; Michalzik et al.,
2003; Petersen et al., 2005; Jenkinson and Coleman, 2008).

Studies in which radiocarbon was measured at multiple levels in the soil profile
have shown that SOM generally becomes older with depth (Trumbore et al., 1995;
Rumpel et al., 2002; Schrumpf et al., 2013). It has been suggested that certain mech-
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anisms that cause stabilization of organic matter are comparatively more important
in the subsoil (Rumpel et al., 2012). Examples of such mechanisms include: sorption
to minerals; oxygen, energy, or nutrient limitation of microbes; and spatial inacces-
sibility of SOM. Conversely, the vertical radiocarbon gradient can also be explained
by transport of SOM. Since effective transport rates are generally quite low, the time
needed for material to reach deeper levels will cause a vertical age gradient (Kaiser
and Kalbitz, 2012). Furthermore, downward migration leads to vertical segregation
of organic matter, causing slower fractions to become more prominent with depth
(Elzein and Balesdent, 1995). Indeed, when combined with vertical transport, a
multi-pool soil carbon model will inevitably show decrease of average turnover rates
with depth. This suggests that profile measurements of SOM and radiocarbon may
provide additional constraint on turnover rates, if combined with a vertical transport
model. On the other hand, since SOM transport rates are poorly known, they need
to be estimated in addition, which partially negates the improved constraint on the
decomposition parameters.

We aimed to study the merits of radiocarbon measurements for characterizing
SOM turnover and vertical transport in a temperate deciduous forest in Germany.
To this end, radiocarbon activity of soil organic matter and heterotrophic respira-
tion were used together with organic carbon measurements to estimate parameters
of the soil carbon model SOMPROF with a Bayesian calibration approach. SOM-
PROF (chapter 2) is a vertically explicit SOM model that simulates the distribution
of organic matter over the mineral soil profile and surface organic layers. It is based
on simple but explicit representations of bioturbation (mixing by the soil fauna), liq-
uid phase transport, (root) litter input, and decomposition. A previous calibration
study for the same site without radiocarbon indicated that the vertical SOM profile
can be explained in several ways (chapter 3). Here, we used a reduced version of
the model and studied how the addition of radiocarbon data affects the parameters
by performing calibrations with and without these observations. The calibrations
were performed in a Bayesian framework with Monte Carlo inversion, allowing full
characterization of parameter distributions and inclusion of prior knowledge. Fur-
thermore, it was studied how the updated parameters and their uncertainty affect
predictions of future soil carbon cycling under conditions of climate change. Based
on the results of the calibrations an ensemble of forward simulations until 2100 were
run, using litter fluxes and soil climate predicted by the land surface model JSBACH
(Raddatz et al., 2007).

4.2 Methods

4.2.1 Model description and simulation setup

The SOMPROF model and simulation setup have previously been described else-
where (chapters 2 and 3). Hence, we only provide a general description of the model
here, and focus on the changes with respect to these texts.

SOMPROF simulates organic carbon stocks and mass fractions in the mineral
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Figure 4.1: Structure of the SOMPROF model.
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soil and three surface organic horizons: L, F and H (Figure 4.1). The model accounts
for organic matter (OM) input by roots and aboveground litter fall, decomposition,
and two mechanisms for vertical OM transport: bioturbation (mixing of the soil by
the soil fauna) and movement with the liquid phase. The model further includes a
module simulating the profile of excess lead-210 (210Pbex), a radiogenic isotope which
can be used as a tracer for SOM transport.

The version of SOMPROF used in this study contains four OM pools: above-
ground litter (AGL), non-leachable fast organic matter (NLF), non-leachable slow
organic matter (NLS), and leachable slow organic matter (LS). Decomposition of the
OM pools is simulated as first order kinetics, controlled by the decomposition rate
k (yr−1). The decomposition rate is corrected for soil temperature and moisture pro-
files, but otherwise independent of depth. The decomposition flux is partitioned by
transformation fractions α (−) into a part that flows to more decomposed pools and
a part that is lost as CO2 (heterotrophic respiration). Previously, the NLF pool was
split into two pools: fragmented litter, which represented fresh litter transformed
in a first decomposition step, and root litter, representing organic matter input by
roots. In a calibration study (chapter 3) it was found that the observations could
constrain the decomposition rate coefficient for only one of these two pools, which
suggests that one of them is redundant. Since the two pools are very similar in terms
of quality and transport behavior, we chose to merge them into the NLF pool since
this removes three parameters.

Organic matter input occurs as aboveground litter in the L horizon, and over
the whole profile due to input from roots as non-leachable fast OM. Root input is
vertically distributed according to a function of depth, starting at the top of the F
horizon and exponentially declining, determined by a shape parameter β (m−1).

Vertical transport due to bioturbation in the organic layer is represented by a
fixed downward flux to the underlying horizon, or into the mineral soil. This flux is
defined by the bioturbation rate B (kg m−2 yr−1), and is distributed over the organic
matter pools. Aboveground litter is the only pool not moved by bioturbation, and
as such is only present in the L horizon. In the mineral soil bioturbation is simulated
as a diffusion process, with the diffusivity DBT determined by the bioturbation rate
and the mixing length lm (m) according to:

DBT = 1
2
B

ρ
lm , (4.1)

where ρ is the bulk density, which may vary with depth. In the simulations for the
calibrations ρwas based on local measurements, while for the projection simulations
(section 4.2.5) it was determined from the local organic matter fraction using a pe-
dotransfer function from Federer et al. (1993). Transport of organic matter with the
liquid phase is only considered for the mineral soil and may lead to loss of organic
matter over the lower boundary. It is simulated as an advection process, controlled
by the advection rate v (m yr−1). Only the leachable slow organic matter pool is sub-
ject to advection. The parameters controlling vertical transport, B, lm, and v, are all
assumed to be constant with depth, although diffusivity may be variable due to bulk
density differences.
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The simulations for the calibrations covered the period 1810–2009, with monthly
time steps. The model was forced by repeated average annual cycles of litter fluxes
and soil temperature and moisture, which were derived from in situ measurements
(section 2.3.2). Lead-210 input was held constant at 1; the absolute values were not
required since both the modelled and measured 210Pbex profile were normalized with
respect to the value at the soil surface (section 3.2.3). Additional model input is
presented in Table 4.B.1. The forcing for the radiocarbon model is discussed below.

In view of the high age of the Hainich forest and the absence of any known ma-
jor land-use changes in the past (see section 4.2.2), it was assumed that the soil is in
steady state at the start of the simulation, for average constant forcing. A Newton-
Raphson root-finding algorithm (Press et al., 1996, Ch. 9) was used to directly esti-
mate the steady state for given parameter values.

Radiocarbon simulation

Radiocarbon (14C) is a cosmogenic radioisotope formed in the upper atmosphere
by interactions between cosmic radiation and atmospheric nitrogen. Additionally,
above-ground nuclear weapons testing, mostly during the 1960s, produced a large
amount of radiocarbon, roughly doubling the atmospheric activity in less than 10
years (the “bomb-peak”). The 14C/12C ratio of carbon incorporated in organic tissue
is determined by the atmospheric ratio at the time of fixation, as well as fractionation
effects due to the mass difference between the isotopes. Since the exchange with the
atmosphere ceases after uptake, the radiocarbon activity of fixed carbon is influenced
only by radioactive decay and mixing with other organic carbon sources. This allows
radiocarbon to be used as a tracer to quantify carbon flows and average turnover
rates. Particularly valuable in the context of soil carbon cycling is the combined use
of radiocarbon of SOM and of heterotrophic respiration. These two variables contain
information on turnover rates of slow and fast fractions, respectively (Sierra et al.,
2012).

Radiocarbon measurements are generally reported in one of two units: percent
modern and ∆14C (Trumbore, 2009). Both quantities compare the radiocarbon activ-
ity of the sample to that of a generally accepted standard. Furthermore, both units
are corrected for isotope fractionation due to biochemical processes by normalization
based on the 13C activity.

SOMPROF was extended with a module simulating radiocarbon cycling in soil
organic matter (Figure 4.1). The radiocarbon calculations were based on units of
percent modern, corrected for the decay of the standard since 1950. This quantity
is directly proportional to the true radiocarbon activity. Input of radiocarbon into
the soil profile was determined as the product of the litter flux and the atmospheric
radiocarbon fraction at the simulation time minus a fixed lag period. This lag time
accounts for the time spent by the carbon in the vegetation. The lag time for root
litter was estimated at 8 years, based on literature (Gaudinski et al., 2000) and local
radiocarbon measurements of roots (data not shown). For aboveground litter a lag
time of 1 year was used. Several records of atmospheric ∆14C were combined to
construct a time series for the radiocarbon fraction of the litter input (Stuiver et al.,
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1998; Reimer et al., 2004; Levin and Kromer, 2004; Hua and Barbetti, 2004, I. Levin,
personal communication, 2011). The initial conditions at the start of the simulation
were calculated based on a fixed input equal to the average of the last 5,000 years
before the simulation ( ∆14C =10.02h). For the simulation period (1810–2009) a
time series of variable atmospheric radiocarbon content was used (Figure 4.B.1).

Once present in the soil, radiocarbon follows all flows of organic carbon rep-
resented in the model: decomposition, heterotrophic respiration, bioturbation, and
liquid phase transport. Additionally, radiocarbon is lost by radioactive decay at a
rate of 1.21× 10−4 yr−1. For the organic layer all radiocarbon flows were determined
simply by multiplying the organic carbon fluxes from a given pool by its radiocarbon
fraction. For the mineral soil separate partial differential equations were composed
for each pool which account for all relevant processes. These equations were solved
numerically using the same techniques as used for organic carbon.

4.2.2 Site description

The study site is located in a deciduous old-growth forest in the Hainich national
park in Germany (51◦4′45.36′′N; 10◦27′7.20′′ E). The climate is temperate subconti-
nental with an average annual precipitation of 800 mm and average temperature of
7–8 ◦C. The main tree species are beech (Fagus sylvatica) and ash (Fraxinus excelsior),
and the soil is covered by herbaceous vegetation (Allium ursinum, Mercurialis peren-
nis, Anemone nemorosa) from April to October (Knohl et al., 2003). The main soil type
is Cambisol (IUSS Working Group WRB, 2007), formed in loess on limestone bedrock
with a depth of 50-70 cm. The soils are fertile, with a high clay content and pH. A
thin mull-type organic layer of 3–5 cm, and a well developed A horizon of 5–10 cm,
indicate a high biological activity and fast decomposition. Prior to the establishment
of the national park in 1997, the forest was used by the military for approximately
60 years. Hence, the site has been unmanaged for at least 70 years. In the preceding
centuries the forest was used extensively as coppice. Currently, the ages of the trees
cover a wide range of up to 250 years. Large amounts of standing dead wood and
woody debris on the forest floor attest to the forest’s unmanaged character.

4.2.3 Observations used in the calibration

Measurements of seven variables were used in the calibration (Table 4.1). For several
variables multiple values were included, representing different replicates, depths, or
points in time. Model-data fit was calculated for model predictions at the sampling
time of the corresponding measurements. Most observations can be expected to have
right-skewed distributions since they have a theoretical lower bound at zero and
large spatial variance. Therefore, all measurement variables, except lead-210, were
log-transformed for the calibration, in order to bring their distributions closer to
normal. Since the lead-210 data used here is the fraction in excess to the amount
that was formed in situ, this quantity may also be negative (see section 3.2.3); hence
it was not log transformed.
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Table 4.1: Measured variables used in the calibration. Depth increments refer both to layers in
the mineral soil as well as organic horizons. Total no. of data points represents the sum over
all years, depth increments, and replicates. Note that the radiocarbon measurements were
only included for calibration wC14.

Name No. of depth
increments

Measurement
year(s)

No. of data
points

C stock 3a 2004, 2009 60
C fractionb 7 2004, 2007 136
Effective decomposition rate

coefficientc 9 2004 89

Lead-210 activityb 7 2001 7
Total heterotrophic respiration 1 2000–2007 8

Radiocarbon of SOMa up to 9 2001, 2004,
2009 112

Radiocarbon of heterotrophic
respirationb,c 4 2001 4

a L, F/H, and total mineral soil.
b Only for the mineral soil.
c Based on lab incubations.

C stocks and mass fractions were measured in 2004 and 2009 for up to 7 depth
levels and 10 replicates (Schrumpf et al., 2011). Effective decomposition rate coeffi-
cients were determined from respired CO2 during lab incubations of samples taken
in 2004 (Kutsch et al., 2010). Measurements of lead-210 activity were taken from Fu-
jiyoshi and Sawamura (2004), and were normalized and corrected for in situ formed
lead-210, as described in section 3.2.3. Total average heterotrophic respiration for
the years 2000–2007 was taken from Kutsch et al. (2010) who estimated it using field
measurements of soil respiration and a model for autotrophic respiration. Radiocar-
bon measurements of both SOM and heterotrophic respiration in 2001 were taken
from Hahn and Buchmann (2004). Additionally, measurements of radiocarbon of
SOM for 2004 and 2009 were included (Schrumpf et al., in prep.).

4.2.4 Bayesian calibration

We performed calibration runs in two setups: without radiocarbon observations
(woC14) and with radiocarbon observations (wC14). The parameter estimation was
performed with a Bayesian approach. Bayesian calibration is aimed at deriving the
posterior distribution, which is the distribution of the parameters conditional on
prior knowledge, the model structure, and the observations. It is defined (up to a
constant) as the product of prior distribution p(θ), which expresses knowledge about
the model parameters θ prior to the calibration, and the likelihood function p(O|θ),
which defines the probability of the measurements O, given model parameters θ
(Gelman et al., 2004):

114



4.2. Methods

Ta
bl

e
4.

2:
Th

e
m

od
el

pa
ra

m
et

er
s

es
ti

m
at

ed
in

th
e

ca
lib

ra
ti

on
.

Th
e

lo
w

er
bo

un
d

fo
r

al
lp

ar
am

et
er

s
is

ze
ro

;t
he

up
pe

r
bo

un
d

is
gi

ve
n

in
th

e
ta

bl
e.

Pa
ra

m
et

er
Sy

m
bo

l
U

ni
ts

Pr
io

r
di

st
ri

bu
ti

on
U

pp
er

bo
un

d

D
ec

om
po

si
ti

on
ra

te
co

ef
fic

ie
nt

s
at

10
°C

an
d

op
ti

m
al

so
il

m
oi

st
ur

e

A
bo

ve
gr

ou
nd

lit
te

r
k

A
G

L
yr

−1
Lo

g−
N

(−
0.

23
,0
.7

4)
3

N
on

-l
ea

ch
ab

le
fa

st
O

M
k

N
L

F
yr

−1
Lo

g−
N

(−
0.

23
,0
.7

4)
3

N
on

-l
ea

ch
ab

le
sl

ow
O

M
k

N
L

S
yr

−1
Lo

g−
N

(−
2.

23
,1
.0

0)
3

Le
ac

ha
bl

e
sl

ow
O

M
k

LS
yr

−1
Lo

g−
N

(−
2.

23
,1
.0

0)
3

Tr
an

sf
or

m
at

io
n

fr
ac

ti
on

s

A
bo

ve
gr

ou
nd

lit
te

r–
N

on
-l

ea
ch

ab
le

fa
st

O
M

α
A

G
L
→

N
L

F
–

Lo
gi

t−
N

(0
.4

3,
0.

95
)

1
N

on
-l

ea
ch

ab
le

fa
st

O
M

–n
on

-l
ea

ch
ab

le
sl

ow
O

M
α

N
L

F
→

N
L

S
–

Lo
gi

t−
N

(−
0.

93
,0
.9

8)
1,

(1
−
α

N
L

F
→

L
S
)

N
on

-l
ea

ch
ab

le
fa

st
O

M
–l

ea
ch

ab
le

sl
ow

α
N

L
F
→

L
S

–
Lo

gi
t−
N

(−
0.

93
,0
.9

8)
1,

(1
−
α

N
L

F
→

N
L

S
)

Tr
an

sp
or

tp
ar

am
et

er
s

Bi
ot

ur
ba

ti
on

ra
te

B
kg

m
−2

yr
−1

un
if

or
m

3
M

ix
in

g
le

ng
th

l m
m

un
if

or
m

3
Li

qu
id

ph
as

e
tr

an
sp

or
t(

ad
ve

ct
io

n)
ra

te
v

m
yr

−1
un

if
or

m
0.

1

Sh
ap

e
pa

ra
m

et
er

fo
r

ro
ot

lit
te

r
in

pu
tp

ro
fil

e
β

m
−1

N
(7
,1
.2

)
14

115



Chapter 4. Using 14C to constrain SOM turnover and transport

p(θ|O) ∝ p(θ) p(O|θ). (4.2)

In the current study the observations comprised several “data streams”, i.e. vari-
ables for which the distribution of the model-data residuals is expected to be dif-
ferent. Measurements at different horizons and depth levels were considered part
of the same data stream, while measurements at different time points were treated
as separate data streams. The overall likelihood was defined as the product of the
likelihoods for all individual data streams:

p(θ|O) =
I∏
i=1

pi(Oi|θ), (4.3)

where I is the total number of data streams. As implied by equation (4.3), corre-
lations between data streams were not considered. For all data streams a Gaussian
likelihood function was used. For a data stream iwithNi data points, the conditional
likelihood function for given θ and standard deviation σi is defined as:

p(Oi|θ, σi) ∝ σ−Ni
i exp

(
− 1

2σ2
i

SSi(θ,Oi)
)
. (4.4)

SSi(θ,Oi) is the sum of squared residuals for data stream i:

SSi(θ,Oi) =
Ni∑
n=1

(Oi,n −Mi(θ))2, (4.5)

where Oi,n is the measured value for replicate n and Mi(θ) is the model predic-
tion for parameters θ. Replicate measurements, when available, were all included
individually in SSi(θ), which means that single model predictions were compared
to several observed quantities. The standard deviation of the model–data residuals
σi depends on both measurement– and modelling–related errors and is usually not
known a priori. It may be estimated as an additional parameter during the calibra-
tion (Gelman et al., 2004), but since we are not particularly interested in σi, an ex-
pedient approach is to remove it from the likelihood function by integration (Kavet-
ski et al., 2006). The resulting likelihood function represents the distribution of the
residuals marginalized over all values of σi. For all data streams we chose the unin-
formative Jeffreys prior for σi (p(σi) ∝ 1/σi). This yields the following formulation
for the marginal likelihood function:

p(Oi|θ) = SSi(θ,Oi)−
Ni/2. (4.6)

Eleven model parameters were estimated: seven parameters related to decom-
position, three parameters related to transport, and one parameter quantifying the
vertical distribution of root litter input (Table 4.2). Prior distributions for all param-
eters were the same as used in chapter 3, except for the shape parameter for root
litter input. Log-normal prior distributions were used for the decomposition rates
and transport parameters. For the transformation fractions logit-normal priors were
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used, which is similar to the beta distribution and bounded between zero and one.
Finally, for the shape parameter for root litter input a normal distribution was used
with the mean at 7 m−1, which is the approximate value for the profile of the root
biomass at Hainich. The priors are depicted together with the posterior distribu-
tions in Figure 4.2.

The posterior distributions were approximated with a Markov Chain Monte Carlo
approach using the DREAM(ZS) algorithm (Laloy and Vrugt, 2012). Additional in-
formation about the calibration can be found in the appendix.

4.2.5 Projection simulations

In order to study soil carbon cycling under conditions of climate change, we per-
formed model projections for the period 1901–2100 based on the calibration results.
The parameter sets of the posterior distributions for both calibrations obtained with
Monte Carlo sampling were used to run an ensemble of 500 model simulations. The
setup of these simulations was identical to those made for the calibrations, with the
exception that the mineral soil bulk density was calculated based on the modelled
organic matter fraction, instead of measurements.

The forcing variables for the simulation projections (above/belowground litter
flux, soil moisture, and soil temperature) were obtained from a simulation run with
the ecosystem model JSBACH. Part of the MPI earth system model, JSBACH simu-
lates land-atmosphere exchange of energy, water and carbon dioxide (Raddatz et al.,
2007; Brovkin et al., 2009). Its representation of canopy processes such as photosyn-
thesis, respiration, and transpiration is based on the BETHY model (Knorr, 2000),
with several extensions to represent phenology and carbon cycling (Raddatz et al.,
2007), and soil freeze-thaw processes (Ekici et al., 2013).

Vegetation carbon pools were brought to equilibrium by a 1000-year spin-up
procedure using 1901–1930 climate and atmospheric carbon dioxide concentration
for 1901 (296 ppm). Next, the model was run with transient climate and CO2 for
the period 1901–2100. The global atmospheric carbon dioxide concentration fol-
lowed the CMIP5 protocol (Meinshausen et al., 2011). The 1901–2100 climate data
set consisted of WATCH forcing data (Weedon et al., 2010) for the period 1901–1978,
bias-corrected ERA-Interim data (Dee et al., 2011) for the period 1979–2010, and a
bias-corrected outputs from the regional climate model KNMI-RACMO for the pe-
riod 2011–2100. KNMI-RACMO results came from the ENSEMBLES multi-model
scenario experiment (Christensen et al., 2008, http://www.ensembles-eu.org/). For
this experiment the model was driven by lateral boundary conditions derived by the
ECHAM5 model, based on the SRES A1B greenhouse gas and aerosol scenario. Bias
correction was applied to the ERA-Interim and RACMO results based on the over-
lapping time period (1979–2010), according to Piani et al. (2010), in order to ensure a
consistent time series (Beer et al., subm.).
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4.3 Results

4.3.1 Calibration

Posterior distribution

Both the calibration setup without radiocarbon (woC14) and with radiocarbon (wC14)
yielded a multimodal posterior distribution with two relevant optima. One of the
two modes scored clearly better in terms of the maximum posterior density. We fo-
cus on this mode for discussing the results. The posterior distribution and model
predictions for the sub-dominant mode are presented in Figures 4.B.7–4.B.12. Figure
4.2 shows the marginal distributions for the prior and the posterior of both calibra-
tion setups. Compared to the prior the uncertainty of all parameters was reduced,
already without including radiocarbon data. Adding radiocarbon led to further con-
straint for most of the parameters, with the exception of kAGL, αAGL→NLF, αNLF→LS,
and B. Particularly strong changes are observed for parameters related to the non-
leachable slow (NLS) organic matter pool. The mean decomposition rate coefficient
(kNLS) is reduced from 5.7× 10−3 yr−1 to 4.4× 10−4 yr−1 (Table 4.B.2), corresponding
an increase of turnover time from roughly 150 yr to 2000 yr. Additionally, the flow
from non-leachable fast (NLF) organic matter to NLS, as determined by αNLF→NLS, is
strongly reduced. Hence, NLS is formed at a lower rate, but it is also more stable.
Also the variance of kNLS and αNLF→NLS is an order of magnitude lower when radio-
carbon is included. However, the width of these distributions should be considered
relative to the mean, since the two are likely correlated over different calibrations.
Hence, it is more appropriate to compare the coefficient of variation (standard devi-
ation relative to the mean) which shows a reduction by a factor of around 2 for the
two parameters.

A further prominent difference between the two calibrations is apparent for the
advection rate v. When radiocarbon is omitted v has a wide distribution with the
marginal mode at the upper bound, whereas with radiocarbon data v is strongly
constrained at the lower end of the range.

Model results

Figure 4.3 shows modelled and measured soil carbon stocks and profiles in March
2009. In both calibration setups the total simulated C stocks and mass fractions are
well constrained, having less spread than the observations. Addition of radiocar-
bon led to a decreased fit to observed carbon stocks and mass fractions. The verti-
cal organic carbon distribution became shallower, with overestimated stocks in the
organic layer and topsoil and underestimated stocks in the subsoil. Further, the dis-
tribution over the different model pools in the topsoil changed, with leachable slow
(LS) organic matter becoming more prominent.

Strong differences between the two calibrations are also apparent for the mod-
elled organic matter transport fluxes by bioturbation (diffusion) and liquid phase
transport (advection) (Figure 4.4). Addition of radiocarbon led to a reduction of the
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Figure 4.2: Violin plots of the marginal prior and posterior distributions. The three vertical
lines inside the violins indicate the median and the 95% confidence bounds.
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Figure 4.3: Organic carbon measurements and corresponding model results. L, F, and H refer
to the organic horizons (see section 4.2.1); topsoil: 0–30 cm; subsoil: > 30cm; OM: organic
matter. All model results are ensemble means; errorbars denote one standard error of the
mean for the measurements and one standard deviation (s.d.) for the model results.

flux rates of both mechanisms, which can be attributed to the reduced values of B,
lm, and v. We additionally plotted in situ measured dissolved organic carbon (DOC)
fluxes from Kindler et al. (2011). These measurements were not included in the cal-
ibration, since the representation of liquid phase transport flow in SOMPROF was
not intended for simulation of DOC. However, the simulated advective flux should
roughly correspond to DOC transport. Although the advective flux is still overesti-
mated compared to the observations, the strong reduction in flow due to radiocarbon
addition is a clear improvement.

Figure 4.5 shows the measured and modelled radiocarbon activities for both or-
ganic matter and heterotrophic respiration. Measured ∆14C of SOM in the mineral
soil shows a clear negative gradient, indicating that SOM age increases with depth.
The model results show a similar profile, but underestimate the radiocarbon activ-
ity in the deep soil. Measured ∆14C of heterotrophic respiration is always higher
than that of SOM, which shows that respired carbon is younger than the average
total organic matter. Similar to SOM, ∆14C of respired CO2 decreases with depth.
Modelled ∆14C of heterotrophic respiration generally agrees with the observations,
although the peak at 10 cm in the modelled vertical profile is not present for the
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Figure 4.4: Simulated and measured organic carbon transport fluxes. Model results are en-
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calibration) were taken from Kindler et al. (2011).

measurements.
Figure 4.5 further shows strong differences between the ∆14C profiles of the or-

ganic matter pools. These differences are mostly explained by the decomposition
rates of the pools, as well as their transport behavior. NLS has markedly lower ∆14C
values than the other two pools in the mineral soil, indicating it contains on aver-
age much older carbon. The profile of LS shows a clear maximum around 8 cm
depth, which is caused by the bomb peak travelling downwards through the profile.
Contrary to the other pools, non-leachable fast (NLF) organic matter shows almost
no vertical gradient in the mineral soil, since it originates mostly from root input,
which has the same radiocarbon signal everywhere. Since NLS and LS are the most
abundant pools in the mineral soil, they determine the ∆14C signature there, with
the importance of NLS increasing with depth. In contrast, the ∆14C of heterotrophic
respiration is determined mostly by the LS pool and, near the surface, by NLF.

4.3.2 Projection simulations

The JSBACH ecosystem model predicts both increasing litter fluxes and soil temper-
atures (Figure 4.6). However, while temperatures keep rising throughout the simula-
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Figure 4.6: Annual total litter fluxes (above- + belowground) and average soil temperature at
8 cm depth at Hainich between 1901 and 2100, simulated by the JSBACH land surface model.

tion, litter fluxes stabilize near the end of the century. Average soil moisture did not
change notably during the simulation period. Already at the start of the simulation
in 1901, the litter fluxes calculated by JSBACH are markedly higher than the in situ
measurements used in the calibration (cf Table 4.B.1). As a result, also the predicted
soil carbon stocks based on the JSBACH forcing are higher than observations (Fig-
ure 4.B.6). However, for reasons discussed in section 4.4.2, we did not correct the
JSBACH litter fluxes. Rather than the absolute quantities, we focus on the relative
change of simulated carbon stocks over time.

Since the strongest changes in temperature and litter fluxes occur between 1980
and 2100, we limit the discussion of the results to this period. For both calibrations,
the simulated organic carbon stocks for the complete profile grow initially but level
off during the second half of the 21st century, and for calibration wC14, start to de-
crease (Figure 4.7A–B). However, the overall soil carbon gain is mainly caused by
the topsoil; in the subsoil stocks are in fact decreasing. The simulated total C stock
for the two calibration setups diverge over time, with calibration woC14 showing a
stronger increase. Again, these differences are mainly explained by changes in the
topsoil. The relative predictive uncertainty of the C stocks is depicted in Figure 4.7C
as the coefficient of variation over the ensemble. Surprisingly, adding radiocarbon
data to the calibration caused an increase of the relative uncertainty for the top- and
subsoil and organic layer, individually. In contrast, the uncertainty for the total soil
C stock is slightly reduced.

Figure 4.8 shows the simulated heterotrophic respiration flux. The average res-
piration became notably higher (approximately 10%) due to the addition of radio-
carbon data. Furthermore, the uncertainty of simulated flux is reduced by roughly
90%.
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4.4 Discussion

4.4.1 Calibration

As mentioned earlier, the posterior distribution for both calibrations has two major
optima. A similar result was obtained previously in chapter 3, where three rele-
vant modes were found1. The modes differ markedly in the distribution of SOM
over the different pools and transport flux rates (Figures 4.B.8–4.B.10). Conversely,
the predicted stocks in the projection simulations are quite similar (Figure 4.B.12).
The mode for which we presented the results in the main text scored consistently
better in both calibrations (log posterior density difference of ∼7 and 10 for calibra-
tion woC14 and wC14, respectively), as well in several other setups that were tried.
However, it is likely that the performance difference is overestimated since a num-
ber of uncertainty sources were not considered, most notably the forcing history and
possible deviations from the steady state. Future efforts should focus on integrating
additional variables that may help to identify the correct mode, such as physical and
chemical SOM fractions.

The remainder of the discussion focusses on the dominant mode. The addition of
radiocarbon data to the calibration caused major changes in the posterior distribu-
tion (Figure 4.2). For several parameters (kNLS, αNLF→NLS, lm and v), there is virtually
no overlap between the marginal distributions of both calibration setups, which indi-
cates that the radiocarbon data is to some extent inconsistent with the other sources
of information. Analysis of the different terms of the likelihood function shows a
reduced fit to the mineral organic carbon mass fractions and the total heterotrophic

1The two modes found here correspond approximately to modes A and B in chapter 3
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respiration for the calibration with radiocarbon data (wC14). This is also apparent
from graphical inspection of these variables (Figures 4.3 and 4.B.8). More impor-
tant, however, is the increased disagreement with the prior distributions for kNLS

and αNLF→NLS. Our prior estimates for these parameters were too high. Interestingly,
for some parameters the marginal distributions became wider. This seems counter
intuitive: additional information leads to more uncertainty. The explanation lies in
the fact that correlations between parameters are stronger for calibration wC14 (Fig-
ure 4.B.4). This demonstrates the importance of considering the correlation structure
when assessing the information gain, and when selecting a parameter set for forward
simulations.

The addition of radiocarbon data to the calibration led to the introduction of a
highly stable organic matter pool, turning over on millennial time scales. Also in
previous studies it was found that a passive pool is required in order to reproduce
measured radiocarbon activity (Perruchoud et al., 1999; Petersen et al., 2005; Gaudin-
ski et al., 2000; Koarashi et al., 2012). For example, the inert organic matter (IOM)
pool in the soil carbon model RothC is included primarily in order to reproduce
observed radiocarbon ages (Falloon et al., 2000). Compared to similar studies with
vertically explicit models (Elzein and Balesdent, 1995; van Dam et al., 1997; Baisden
et al., 2002), our estimate of the slowest turnover rate is somewhat higher but in the
same order of magnitude.

The measured radiocarbon data shows a negative depth gradient in the mineral
soil (Figure 4.5). This gradient need not necessarily be caused by a change in aver-
age turnover rates with depth. Due to the time needed for vertical transport, also a
homogenous SOM pool will show an age—and thus a radiocarbon—gradient with
depth (cf the ∆14C profile of NLS, Figure 4.5). However, apparently this mecha-
nism alone cannot explain the observed profile. Since decomposition rates are not
explicitly reduced with depth, additionally a change in the mixing ratio of the SOM
pools with depth is required. This presumably explains the increased abundance of
the leachable slow (LS) organic matter pool in the topsoil (Figure 4.3) and improved
constraint of the advection rate v, for calibration wC14.

Both the measured and the modelled radiocarbon profile display a maximum be-
low the surface, which is caused by the spike in the atmospheric radiocarbon activity
due to nuclear weapons testing in 1964 (the bomb peak). This peak causes a simi-
lar maximum in the vertical profile which is reduced and travelling downward over
time due to organic matter transport. In the modelled profile the peak is located at
approximately 4cm depth in the mineral soil, while for the measurements the peak
appears to be still in the F/H horizon. This suggests that the vertical organic matter
transport is overestimated by the model. The modelled ∆14C profile of heterotrophic
respiration also displays a peak, located somewhat deeper (∼6cm), indicating that
labile organic matter is transported faster than the slow pools. However, the mea-
sured ∆14C for heterotrophic respiration do not display a peak. This may indicate
that decomposition of root derived material is more important than shown by the
model. On the other hand, no replicates were available for these measurements and
the lab incubations may not be fully representative for in situ conditions (see section
4.4.3).
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4.4.2 Projection simulations

Simulated soil carbon dynamics

As discussed in section 4.3.2, the litter fluxes predicted by JSBACH are markedly
higher than estimates based on in situ measurements (Kutsch et al., 2010), causing a
likewise overestimation of stocks in the soil carbon projections. An additional exper-
iment for which the litter fluxes were corrected, showed more realistic carbon stocks.
However, we chose to show only the original results without correction, for several
reasons. First, more than in absolute quantities we are interested the relative SOM dy-
namics, which change only marginally when litter fluxes are adjusted downwards.
Second, the current study was performed with future large scale gridded simula-
tions in mind in which the two models are coupled. In such applications correction
of fluxes based on local measurements would be infeasible and undesirable, since it
would lead to disappearance of carbon from the system, rendering the net ecosystem
fluxes meaningless.

The JSBACH model predicts both increasing soil temperatures and litter fluxes
for the period 1901–2100 (Figure 4.6), the latter caused by increased vegetation pro-
ductivity due to CO2 fertilization. These two trends affect soil carbon stocks in op-
posite directions. However, while the litter input fluxes level off near the end of
the simulation, the temperatures keep rising. This is reflected by the dynamics of
the total soil carbon projections (Figure 4.7): the net balance decreases in the second
of half of the 21st century and, for calibration wC14, turns negative. Similar future
trajectories with initial carbon uptake, followed by levelling off or carbon loss, have
been predicted in global simulation studies (Cramer et al., 2001; Sitch et al., 2008;
Friedlingstein et al., 2006; Jones and Falloon, 2009).

The results further suggest that the soil at Hainich is currently gaining carbon,
which agrees with previous studies based on repeated inventories (Kutsch et al.,
2010; Tefs and Gleixner, 2012; Schrumpf et al., subm.). Notwithstanding, there are
several unconsidered sources of uncertainty that potentially affect the simulated soil
carbon stocks. First, the version of JSBACH used in this study does not consider
nitrogen cycling. It has been suggested that vegetation models that ignore nitrogen
limitation on productivity may overestimate carbon sequestration due to CO2 fertil-
ization (Hungate et al., 2003). Second, due to insufficient data availability, the tem-
perature sensitivity of decomposition was not included in the calibration, but held
fixed at the value reported by Lloyd and Taylor (1994). There is still little consensus
regarding exact temperature sensitivity (Davidson and Janssens, 2006), which causes
considerable uncertainty of predicted future soil carbon stocks (Jones and Falloon,
2009).

Interestingly, the topsoil and the subsoil show opposite responses to changes in
forcing: topsoil C stocks increase while subsoil C stocks decrease. Clearly, the in-
creased carbon input remains mostly near the surface, while at deeper levels net
losses occur due to accelerated decomposition. Whether this would also occur in re-
ality for the given conditions, is difficult to ascertain. Several mechanisms that may
influence the SOM dynamics as a function of depth are currently not represented in
the model since they are poorly understood. First, all SOM pools in the model have
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the same response function for temperature. In reality the temperature sensitivity of
decomposition may differ among different organic matter fractions, although this is
still uncertain (Conant et al., 2011). Second, it has been shown that increased input
of fresh litter in the subsoil may destabilize old SOM due to priming of microbial ac-
tivity (Fontaine et al., 2007). Third, increased belowground productivity may lead to
deeper root distributions (Iversen, 2010), causing also deeper input of SOM. Never-
theless, this result demonstrates that different parts of the SOM profile can respond
differently to environmental changes. Thus, topsoil carbon dynamics should not be
simply extrapolated downwards in order to derive changes in the subsoil.

Differences between calibrations

An important difference between the two calibrations lies in the predicted loss of
carbon over the lower boundary by advection (Figure 4.4), which is unrealistically
high for calibration woC14, up to 20% of the litter input. The smaller advective flux
rates for wC14 also constitute a strong improvement compared to measured DOC
fluxes. A further consequence is the markedly higher heterotrophic respiration flux
(Figure 4.8) due to the steady state assumption in the calibration. Interestingly, com-
pared to the observations, heterotrophic respiration is overestimated in calibration
wC14 (Figure 4.B.3). This suggests that the steady state assumption is incorrect, and
that the soil is in fact gaining carbon. The relative contributions of advection and
respiration to the total loss is highly relevant for soil carbon dynamics under climate
change, because the latter is sensitive to temperature while the former is not. This
presumably also explains why calibration wC14 shows stronger carbon losses near
the end of the simulation. Parameter sets applied for predictive simulations should
produce realistic advective losses in order to avoid biased results.

An unexpected result is the larger spread for the carbon stocks in the organic
layer, topsoil, and subsoil individually, in calibration wC14 (Figure 4.7C). Remark-
ably, adding information to the calibration led to an increase of predictive uncer-
tainty for these variables. Conversely, for the total profile the uncertainty was slightly
reduced. This indicates that the vertical distribution of SOM became more uncertain.
A further explanation may lie in the fact that the predicted amount of a model pool
is ultimately determined by the ratio of the input rate and the decomposition rate
coefficient. Figure 4.9 shows the distribution of the ratio of αNLF→NLS and kNLS, which
determines the total amount of the NLS pool. The spread for this ratio has become
wider, despite the reduced spread of these parameters individually (Figure 4.2; cf
also Figure 4.B.4). This is presumably caused by disagreement between the organic C
and radiocarbon observations (see Figure 4.3 and section 4.4.1). This conflict means
that for parameter changes in certain directions a reduced fit to the organic C data is
compensated by an improved fit to the radiocarbon data. As a result, parameter sets
that were previously assigned low likelihood due to poor fit to the organic carbon
data may become more probable when the radiocarbon data is included, causing the
predictive uncertainty for organic carbon to increase.
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Figure 4.9: Posterior distribution for the ratio of αNLF→NLS and kNLS for the two calibrations.

4.4.3 Methodological constraints

The effective decomposition rate observations, as well as the radiocarbon activity
of the heterotrophic respiration were derived from measured fluxes from soil sam-
ples incubated in the lab, which may not be fully representative of conditions in the
field. Simulated respiration rates were corrected for temperature and moisture in the
lab incubation, but disturbance of the soil samples may have stimulated respiration,
leading to overestimated decomposition rates, which was not accounted for. The ef-
fective decomposition rates are underestimated for calibration wC14 (Figure 4.B.5),
which suggests this problem is relevant here. Furthermore, disturbance may also
affect the radiocarbon signal of the respired CO2 due to increased decomposition of
old SOM (Fontaine et al., 2007).

For the calibration it was assumed that the average organic carbon stocks are in
steady state, and that radiocarbon is in steady state at the start of the simulation,
in 1800. Furthermore, the uncertainty of the past forcing was not considered. The
Hainich forest has a relatively constant and well known history without major land
use changes (Waeldchen et al., 2013, section 4.2.2). Nevertheless, as discussed in sec-
tion 4.4.2, model results and previous studies point to a positive soil carbon balance
in the present. Furthermore, due to the long turnover times of NLS for calibration
wC14, forcing fluctuations may affect the soil carbon for hundreds of years. Meth-
ods have been proposed to relax the steady state assumption (Wutzler and Reich-
stein, 2007; Yeluripati et al., 2009; Carvalhais et al., 2010), but the available data here
is insufficient to accurately constrain the net soil carbon balance. In view of these
unconsidered uncertainties, it is advisable to inflate the variance of our posterior
distribution for future calibrations.

4.4.4 The use of radiocarbon data for constraining SOM turnover
and transport

When radiocarbon data was omitted from the calibration, the observed C stocks and
profile were well reproduced, but with a strongly overestimated turnover rate for
the slowest SOM pool. This exemplifies the problem of an incorrect model produc-
ing correct results, as discussed in the introduction. The obvious question is: to what
extent does this lead to incorrect predictions and does avoiding these errors warrant
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the considerable cost and labor that comes with radiocarbon measurements? The fu-
ture predictions for the two calibration setups diverge for the transient simulations.
However, in relative terms the differences are quite small (Figure 4.7A).

Nevertheless, we believe that SOM dynamics should be simulated based on ac-
curate turnover rates, for several reasons. First, there is in general no guarantee that
biases in the parameter estimates will be small enough that predictive errors are neg-
ligible. For other studies the overestimation of the turnover rate may be more severe
(cf the Loobos site in chapter 3). Several studies have shown that the partitioning
of total SOM over different turnover fractions is highly relevant for transient pre-
dictions (Telles et al., 2003; Jones et al., 2005). Furthermore, on longer time scales or
in situations with more rapid environmental changes (e.g. land-use change or dis-
turbances) overestimation of the transient response is more likely to occur. Second,
as previously discussed, the response of decomposition to temperature may differ
between SOM fractions (Conant et al., 2011). If this is the case, the distribution of
total SOM over the different fractions is obviously highly relevant under conditions
of climate change. Finally, consensus is emerging that the notion of SOM pools with
fixed, intrinsic decomposition rates is incorrect. Rather, stabilization of SOM is the
result of biological, physical, and chemical processes that may be reversible under
the right conditions (Schmidt et al., 2011). Parameterization of these mechanisms
and their effects on SOM decomposition requires accurate estimation of turnover
rates.

Since C stock observations do not contain information about the dynamic behav-
ior of soil carbon, it is generally advisable to include one or more additional obser-
vations that directly relate to turnover when calibrating soil carbon models. Several
candidate measurements are available, such as heterotrophic respiration rates (either
in situ or in lab incubations), 13C, and observations from chronosequences. How-
ever, in general radiocarbon is one of the best choices, particularly when dynamics
of the slowest organic matter fractions are of interest (Trumbore, 2009). Models that
represent the complete vertical profile, such as SOMPROF, will generally require in-
formation on long time scale dynamics because of the very low turnover rates typical
in the subsoil.

The fact that radiocarbon data led to an increase of predictive uncertainty in this
study does not invalidate its use for constraining SOM transport and turnover. As
discussed above, this is presumably related to the model’s inability to fully fit both
the radiocarbon and C profile data. Hence, the radiocarbon data showed that predic-
tive uncertainty for the C stocks was previously underestimated. It does not mean
that the addition of this data led to a loss of information. Since Bayesian calibration
constitutes conditioning of the model on (new) data, the uncertainty of the combined
distribution of the predictions for all data streams cannot become higher.

4.5 Conclusions

The addition of radiocarbon data to the calibration had large effects on the posterior
parameter distribution. Strongest changes occurred for the parameters controlling
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the formation and decomposition of the slowest organic matter pool, which were
both strongly reduced. Additionally, the advection rate was reduced, resulting in
more realistic predictions of SOM transport with the liquid phase. These results
demonstrate that, without constraint on long time scale turnover rates, the model
may produce correct results based on incorrect parameterization.

Future projections show increasing carbon stocks initially, with levelling off, and—
for the radiocarbon constrained model—carbon losses, near the end of the 21st cen-
tury. The modified parameters had only small relative effects on carbon stock projec-
tions, but led to markedly lower advective carbon losses, and higher heterotrophic
respiration. Radiocarbon data further led to a slight reduction of predictive uncer-
tainty for the total carbon stock and a strong reduction for heterotrophic respiration.

Our results illustrate the risk of obtaining biased parameters, when available ob-
servations hold limited or no information on the dynamic behavior of SOM. Despite
the absence of strong changes of the model predictions we believe that radiocarbon
is a valuable tool for constraining soil carbon models, particularly vertically explicit
models such as SOMPROF.

Appendix 4.A Approximation of the posterior using
Markov Chain Monte Carlo

Since the complexity of the model precludes analytical derivation of the posterior
probability density function, the distribution was approximated with a Metropolis
algorithm. This algorithm samples the posterior distribution by means of a Markov
chain which performs a random walk in parameter space. At each iteration i pro-
posals of the parameters θ∗ are generated by taking a (semi-)random step from the
current position θi. The model is run with the proposed parameter set and the un-
normalized posterior probability density (p(θ)p(O|θ)) of the proposal is evaluated.
The proposal is subsequently accepted or rejected according to the Metropolis rule,
which defines the chance for acceptance as:

s = min
{
p(O|θ∗)p(θ∗)
p(O|θi)p(θi)

, 1
}
. (4.A.1)

The decision for acceptance or rejection is made using a random number from a uni-
form distribution on the unit interval. In case of acceptance, the chain moves to the
position of the proposal; in case of rejection the chain stays at the current position,
which is thus sampled again.

The specific algorithm used here was DREAM(ZS) (Laloy and Vrugt, 2012), an
adaptation of the DREAM (DiffeRential Evolution Adaptive Metropolis) algorithm
which uses multiple chains in parallel and automatically adapts the scale and orien-
tation of the proposal distribution. Eight chains were run for each calibration. The
convergence of the chains was evaluated using the Gelman-Rubin index (Gelman
et al., 2004, Chap. 11), which is proportional to the ratio of the between-chain vari-
ance and the within-chain variance, and declines to 1 when the chains converge on
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the same distribution. All chains were run until the convergence index was ≤ 1.01
for all parameters, with at least 100000 iterations per chain. After the runs, a vari-
able number of iterations was removed from the start of each chain (the “burn-in”).
Next, the remaining samples of all chains were merged and thinned to 10000 iter-
ations for analysis by selecting iterations in regular intervals. Marginal probability
distributions depicted in Figure 4.2 were derived using kernel density estimation
(Bowman and Azzalini, 1997). For the model results depicted in Figures 4.3–4.5 5000
simulations were made based on parameters sets from the Monte Carlo samples.
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Figure 4.B.1: Atmospheric radiocarbon content used in the simulations.
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results. Depicted model results are averages and standard deviations over the Monte Carlo
ensemble. Errorbars for the measurements indicate one standard error of the mean.
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Figure 4.B.6: Organic carbon measurements for 2009 and corresponding model results based
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> 30cm; OM: organic matter. All model results are ensemble means; errorbars denote one
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Table 4.B.1: Model driving data and not-estimated parameters.

Variable/Parameter Value

Annual aboveground litter inputa,b 0.314 kg C m−2 yr−1

Canopy 0.277 kg C m−2 yr−1

Understory 0.037 kg C m−2 yr−1

Total annual root litter inputa,b 0.178 kg C m−2 yr−1

Canopy 0.148 kg C m−2 yr−1

Understory 0.03 kg C m−2 yr−1

Average soil moisturea,c,d 0.361
Average soil temperaturea,c 7.653 ◦C
Soil temperature response parameter 308.56e K
Soil moisture response parameter af 1
Soil moisture response parameter bf 20
Bulk density L horizon 50 kg m−3

Bulk density F horizon 100 kg m−3

Bulk density H horizong 150 kg m−3

Bulk density mineral soila 785.63–1350.3 kg m−3

Bulk density pure mineral soilh 1300 kg m−3

Initial depth of bottom boundary 0.7 m
a Only used in calibration simulations.
b Kutsch et al. (2010); W. Kutsch (personal communication, 2009).
c Average over year and profile.
d Fraction of maximum available water.
e Lloyd and Taylor (1994)
f Soil moisture response function: g (W ) = exp (− exp (a− bW ));
(Subke et al., 2003).

g Also used in projection simulations as bulk density of pure organic
soil.

h Used in projection simulations to determine bulk density using
pedotransfer function (Federer et al., 1993).
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Chapter 5
General discussion and conclusions

5.1 Introduction

The past two decades have seen a huge increase in the number studies on processes
that govern soil carbon cycling. The understanding gained from these studies needs
to be transferred to models so that predictions of future climate change can be im-
proved. However, it is becoming increasingly clear that the zero-dimensional ap-
proach currently applied in most large scale models is too simplistic to accommo-
date new process descriptions. For the next generation of models a representation
of the vertical heterogeneity of soil organic matter (SOM) will need to be developed
in order improve simulation of cycling of carbon and other elements, as well as soil
physical processes.

This chapter reflects on the structure of the SOMPROF model and the calibration
results, and summarizes the main findings regarding the formation of the vertical
SOM profile. Furthermore, several recommendations for potential improvements to
the model structure and calibration approach, as well as future large scale applica-
tions, are made.

5.2 Key results of this study

The SOMPROF model described in chapter 2 is a new, vertically explicit scheme
that simulates soil organic matter dynamics. It represents the vertical distribution
of SOM in the mineral soil profile and surface organic horizons by accounting for
vertical SOM movement by bioturbation and liquid phase transport, and the vertical
distribution of input by roots. Simulations have demonstrated that the model is
able to predict realistic SOM profiles and organic layer masses, based on reasonable
parameter values. Results from sensitivity analyses show that temporal variability
of heterotrophic respiration is influenced by the vertical SOM distribution.

The model was calibrated using a Bayesian approach based on measurements for
two deciduous forest sites with contrasting soil conditions (chapter 3). The results
give insights into the determinants of the SOM profile, highlighting differences be-
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tween the two sites in terms of the relative importance of root input, bioturbation,
and liquid phase transport. Furthermore, for one site the calibration yielded a poste-
rior parameter distribution with several modes, which demonstrated the difficulties
arising from convolution of the different processes. Inclusion of measurements of
210Pbex as a tracer for SOM transport helped to identify the most probable mode, but
did not have major effects on the parameter distributions.

In a subsequent calibration study (chapter 4) the use of radiocarbon (14C) data
was investigated. Including this data in the calibration data strongly reduced the
estimated decomposition rate of the slowest SOM pool, indicating that this parame-
ter was previously overestimated. A prognostic simulation for the period 1910–2100
under conditions of increasing litter input and temperature showed diverging re-
sponses for different parts of the SOM profile. The addition of radiocarbon data
caused minimal reduction of prediction uncertainty but did reveal inconsistency be-
tween the model and different observed variables.

5.3 The SOMPROF model

The development of the SOMPROF model structure was constrained by two con-
siderations: parsimony and fidelity. The parsimony constraint limits the maximum
complexity, so that parameters can be estimated with an acceptable degree of cer-
tainty. Since the number of studies on the vertical SOM distribution and SOM trans-
port processes is relatively small, little prior information is available to determine
parameter values for unvisited sites. Hence parameter estimation based on obser-
vations is required. Since calibration rapidly becomes more difficult with increasing
degrees of freedom (Tarantola, 2005), limiting the number of parameters by choos-
ing simple mathematical formulations is expedient. On the other hand, the need
for fidelity to the natural system limits the degree of simplification. This fidelity is
desirable for several reasons. First, in order to be applied for climate change simula-
tions, the model should capture the dynamic response to changes in litter input and
environmental conditions. A purely empirical description is less likely to correctly
simulate temporal dynamics. Second, parameters that represent real physical quan-
tities are preferred because prior knowledge is less likely to be available for purely
empirical parameters. Furthermore, such physical quantities can be better related to
environmental covariates.

Examples of parsimony motivated choices in SOMPROF are the representation
of liquid phase transport as a simple advection process, and the constancy of pa-
rameters with depth (section 2.2). Conversely, the choice to represent bioturbation
and liquid phase transport by separate formulations (contrary to most models; c.f.
section 1.2.6), is motivated by the need for fidelity.

As discussed in chapter 1, this work is not the first study aimed on modelling
the vertical SOM profile (see references in section 1.2.6). Most notable are the recent
works by Jenkinson and Coleman (2008) and Koven et al. (2013), which represent
significant steps forward in the addition of the vertical dimension to prognostic soil
carbon models. The work by Koven et al. (2013), dealing with an extension of the
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Community Land Model (CLM4), likely represents the first global application of a
dynamic SOM profile model. The structure of this model is quite similar to that of
SOMPROF. Both include a multi-pool decomposition model with first order kinetics,
combined with diffusion and advection. An advantage of SOMPROF is the explicit
representation of the surface organic layer, which will be beneficial for simulation of
soil moisture and heat transport.

The current study also took a more rigorous approach to parameter estimation
compared to earlier works. With one exception (Guenet et al., 2013), none of the pre-
vious studies applied a Bayesian approach, and few discussed parameter identifia-
bility and equifinality. Furthermore, previous studies did not attempt to relate math-
ematical descriptions of SOM transport to specific processes in the field. Although
challenging, individual parameterization of transport mechanisms will likely make
the model robust when applied for different sites and under changing conditions.

Parallel efforts at developing different model representations for the SOM profile
should not be seen as redundant. Scientific development ultimately benefits from
existence of multiple formulations, both to identify superior descriptions, as well as
to assess uncertainty of predictions originating from the model structure.

5.4 Determinants of the soil organic matter profile

Combined with the posterior parameter distributions, SOMPROF can offer valuable
insights into the development of SOM profiles. An approach was developed to es-
timate the amount of organic matter deriving from root input, bioturbation, and
liquid phase transport for the steady state (section 3.2.4 and 3.B). This provides an
estimate of the relative importance of these processes as a function of depth. The
analysis shows that the two sites studied in this study differ considerably in this
respect (Figures 3.6b and 3.9b). At Loobos, a poor sandy Arenosol, liquid phase
transport appears to be a major determinant of the SOM profile, removing organic
matter from near the surface and depositing it in the rest of the profile. For Hainich,
a rich Cambisol with a high clay content, root input and bioturbation are important.
The differences between the two sites agree well with expectations based on site con-
ditions, which is encouraging and supports the validity of the approach. The results
also show that the effects of SOM transport processes can in general not be ignored.
Using the root biomass distribution as an approximation of the SOM profile would
likely lead to a too shallow distribution.

Because of the convolution of the processes, as well as difficulties measuring
them in situ, inversion of a mechanistic model may be the only way to quantify them
simultaneously, particularly on long time scales. At the same time, the entanglement
of processes also constitutes the most important obstacle in this study. It was antici-
pated that the different processes could be separated in the model inversion by rep-
resenting them with different mathematical formulations: diffusion and advection.
Similarly, the choice for a separate SOM pool that is transported by advection was
aimed at separating particulate and potentially mobile SOM fractions (section 2.2.4).
For Hainich this proved challenging, as demonstrated by the existence of multiple
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modes in the parameter distributions, characterized by different relative importance
of the SOM pools and transport mechanisms (sections 3.3.2 and 4.3.1). Furthermore,
changes to the model structure and addition of new calibration data in chapter 4
led to a change of the dominant mode. Clearly the calibration data and prior distri-
butions did not contain sufficient information to fully disentangle the mechanisms.
For Loobos the separation of processes was more successful (section 3.3.1), which
is remarkable, considering that less data was used for this site. It is possible that
the bounds of the prior distribution excluded other potential modes from the poste-
rior. However, as demonstrated by the Hainich results, a model may be right for the
wrong reason, which is not revealed in the calibration. Hence it would be advisable
to verify the Loobos results with additional observations. In particular observations
pertaining to SOM turnover are needed, in view of the overestimated decomposi-
tion rate coefficients of the slowest SOM fraction. Various sources of uncertainty and
convolution of processes are further discussed in section 5.6.2.

5.5 Vertical soil organic matter transport

5.5.1 Bioturbation

In SOMPROF bioturbation in the mineral soil is modelled as a diffusive process (sec-
tion 2.2.4). The validity of diffusion as a mechanistic description of bioturbation
has been questioned by researchers in the field of benthic geochemistry (Boudreau,
1986b; Meysman et al., 2003) because its criteria are generally violated, particularly
at small spatial scales and short time scales. Other, possibly more valid, approaches
have been suggested (Boudreau, 1986a, 1989; Meysman et al., 2008). Nevertheless,
as an empirical approach, the diffusion model has proven to be useful to modelling
bioturbation (Meysman et al., 2003). Since SOMPROF is intended to be applied at
temporal and spatial scales much greater than those of biological mixing, the diffu-
sion model is assumed to be appropriate.

The diffusion equation for soil mixing can be derived from mixing length the-
ory (Boudreau, 1986b, Appendix 2.B), originally developed for turbulent mixing in
gasses. In this approach the diffusivity (m2 yr−1) is assumed to be composed of the
fluctuating component of the vertical advection rate (m3 m−2 yr−1 = m yr−1), and
the mixing length lm (m). The former can be related to the “population level re-
working rate” (Wheatcroft et al., 1990, here referred to as the bioturbation rate B
kg m−2 yr−1), and the latter should represent the typical distance over which bur-
rowing animals displace soil particles (Boudreau, 1986b). The question arises to what
extentB and lm correspond to these quantities in reality. Paton et al. (1995) compiled
a comprehensive list of soil reworking rate estimates for various soil animal groups.
For earthworms, the most important and well-studied bioturbating organism, the
listed rates range between 0.0063 and 26.8 kg m−2 yr−1, with most values between
0.1 and 5 kg m−2 yr−1. For Hainich, where earthworms are presumably responsible
for most of the mixing, the estimates of this study are approximately 0.23 kg m−2yr−1

and 0.27 kg m−2yr−1, for the dominant and sub-dominant modes, respectively (chap-
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ter 4, calibration wC14). Hence, the estimate obtained in this study is in the lower
end of the range, but compares well.

The mixing length lm is more difficult to link to a measurable quantity. Wheatcroft
et al. (1990) suggested using body length of the burrowing organism for bioturbation
in sediments. However, Meysman et al. (2003) pointed out that typical displace-
ment distance is likely larger, because animals move while feeding, and additional
transport occurs due to collapse of burrows. Again, assuming earthworms as the
main agent of mixing, typical body length is in the range of 5–15 cm for the dom-
inant species at Hainich (Aporrectodea caliginosa; Cesarz et al., 2007). The estimates
obtained in this study for Hainich are approximately 34 cm, and 56 cm for the domi-
nant and sub-dominant modes (chapter 4, calibration wC14)—notably higher but in
the right order of magnitude.

Since field estimates of the soil displacement rates are influenced by large un-
certainty from various sources (section 1.2.4), they are only useful as a rough ap-
proximation to B. For the mixing length lm direct measurement may be impossible.
Estimates of B and lm in the SOMPROF inversion are likely also influenced by the
fact that the former is used as the potential flux of material between the organic hori-
zons and into the mineral soil (section 2.2.4). Furthermore, soil mixing due to bio-
turbation is a much more complex process than the picture of turbulent exchange in
mixing length theory (Francois et al., 1997). Hence, the diffusivity should be seen as
an effective parameter, which cannot be directly measured. Soil reworking rate mea-
surements are useful as an environmental covariate that can be empirically linked
to the diffusivity. Mixing length theory suggests that a simple linear relationship is
appropriate.

The bioturbation rateB (and thus the diffusivity) is assumed constant with depth
in SOMPROF. This choice was made for reasons of parsimony and the fact that very
little is known about the depth distribution of mixing intensity. Nevertheless, this is
obviously a simplification since soil fauna biomass and reworking activity are high-
est in the topsoil (Paton et al., 1995). It should be studied if a decreasing bioturbation
rate with depth yields better results. Boudreau (1998) suggested relating the bio-
diffusivity in sediments to the local concentration of labile organic matter since mix-
ing is related to feeding. This approach has the advantage that it does not introduce
additional parameters.

5.5.2 Liquid phase transport

In SOMPROF liquid phase transport is simulated with a one-parameter advection
model for a potentially mobile SOM pool (leachable slow (LS) organic matter), rep-
resenting both dissolved organic matter (DOM) in solution and adsorbed to the solid
phase (section 2.2.4). Several other published SOM profile models also use a simple
advection approach (e.g. Elzein and Balesdent, 1995). The representation in SOM-
PROF is somewhat more detailed compared to these models because of the assump-
tion that only one pool is moved by advection. This means that the concentration
of material that is susceptible to advection can vary with depth independently from
the overall SOM concentration. Furthermore, it means that decomposability and
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susceptibility to advective transport are inherently linked.
The scheme for liquid phase transport in SOMPROF relies on several assump-

tions: (i) The fractions of DOM in solution and adsorbed to the solid phase are
assumed to be in equilibrium. Since the typical time scale of water flow is much
shorter than that of ad- and desorption, this assumption generally does not hold
(Gjettermann et al., 2007). This may lead to both over- and underestimation of sim-
ulated fluxes, hence the errors may average out over long time scales. However, the
precise errors are highly dependent on the specific conditions, and depth in the pro-
file. For soils with fast water fluxes it may lead to underestimation of loss of carbon
over the lower boundary. (ii) The adsorption isotherm is assumed to be linear, with
no saturation effects. This is in general not true since the capacity of minerals for
adsorption decreases with increasing adsorbed organic matter (Hassink, 1997). This
may lead to underestimated advective fluxes particularly for the topsoil. (iii) The
advection rate is assumed constant with depth. Based on measured dissolved or-
ganic carbon fluxes, Sanderman et al. (2008) found decreasing advection rates with
depth. This is to be expected since average downward water fluxes are lower in the
deep soil, due to root water uptake, decreasing hydraulic conductivity with depth,
and the fact that precipitation first leads to increased water storage, when soil is dry.
(iv) Lateral DOM transport is assumed negligible. The rate of lateral water flow is
dependent on the slope but in many soils presumably some lateral DOM flow occurs
(McDowell and Likens, 1988). This represents an additional loss term of soil carbon
that is not considered.

Several more realistic approaches have been published that explicitly simulate
DOM concentrations and fluxes (e.g. Michalzik et al., 2003; Neff and Asner, 2001;
Gjettermann et al., 2008). However, applying these schemes in SOMPROF is difficult
because they require detailed information to parameterize adsorption and simula-
tion of water fluxes at short time scales (≤ 1 d). Furthermore, since DOM in the soil
solution represents only a small fraction compared to the total organic matter it not
of interest for the SOM profile as such.

A potential improvement of the representation of liquid phase transport would
involve replacing the advection rate by a linear function of long term average (simu-
lated) water fluxes as a function of depth. The slope of this function then represents
the retardation factor, accounting for the reduction of dissolved organic matter trans-
port due to interactions with the solid phase, and should thus only be dependent on
sorptive properties of the soil. A further advantage is that this would automatically
reduce advective transport rates with depth.

5.5.3 Comparison of transport parameters with previous estimates

Diffusivities and advection rates of organic matter have been measured in a number
of other studies (section 1.2.6; Table 5.1). In most studies the approach to determine
transport parameters was similar to the method applied here: inversion of a SOM
profile model based on measurements. Many researchers used soil organic carbon
concentration and radiocarbon. In several cases transport rates were based on pro-
files of tracers other than 14C (Kaste et al., 2007; Jarvis et al., 2010; Yoo et al., 2011;

148



5.6. Calibration

Dörr and Münnich, 1991). In one study advection rates were estimated based on
measured dissolved organic carbon fluxes (Sanderman et al., 2008).

Table 5.1 lists previously determined diffusivities and advection rates and the
best estimates derived in this study. The parameters derived here generally compare
well with those of other studies. The studies which included both transport mecha-
nisms generally have somewhat higher diffusivities and lower advection rates. The
latter may be explained by the fact that only part of the organic matter is moved by
advection SOMPROF while in other studies based on SOM measurements, all SOM
was assumed to be transported by this mechanism.

In addition to local environmental factors, parameter estimates are influenced
by the methodology used to infer them. Relevant aspects include: (i) the type of
observations included; (ii) the structure of the transport model, particularly the in-
cluded transport mechanisms: diffusion, advection, or both; (iii) when SOM data
is included, the structure of the decomposition model; (iv) which parameters are
estimated in the calibration. Particularly the choice to include either diffusion, ad-
vection, or both is highly relevant. Since the overall vertical transport is partitioned
between the included formulations, omission of one can be expected to lead to in-
crease of the rate of the other. Moreover, Bruun et al. (2007) found that the advection
rate differed by two orders of magnitude depending on whether or not SOM is split
into fractions that are affected by each mechanism. The included formulations vary
among studies and often clear justification for the choice is lacking. Presumably,
most authors were not interested in separating transport mechanisms and linking
them to specific processes. Most studies include only advection, even though this
formulation is likely incorrect for mixing processes (Boudreau, 1986b). The impor-
tance of the model structure for parameter estimates was demonstrated by Guenet
et al. (2013), who estimated SOM transport and decomposition parameters using
data from a long term bare fallow experiment. They tested various models and
found that the structure of the decomposition model affects the transport parame-
ters.

Hence, parameters are specific to the model structure and should not be trans-
ferred carelessly. In light of this problem it is advisable to develop model structures
that involve physically meaningful parameters which can be estimated using other
approaches, such as the bioturbation rate B in SOMPROF. Furthermore, addition of
observations that pertain to specific processes may improve comparability between
approaches (see section 5.6.3). Finally, in addition to parameter estimates, observa-
tions that were used to derive them should be published.

5.6 Calibration

5.6.1 Convolution of processes

A major challenge in this study is disentangling the processes relevant to SOM pro-
file dynamics: bioturbation, liquid phase transport, rhizodeposition, and decompo-
sition. Since these processes are difficult to observe directly, their rates can often
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only be inferred using model inversion. For each of these mechanisms a mathemati-
cal description requires at least one parameter. The same organic matter profile can
be obtained with several parameter sets, corresponding to different contributions of
the processes. This situation is referred to as “equifinality” (Beven, 2006). The inver-
sion of a model based on data that holds insufficient information will constitute an
ill-posed problem, i.e. it does not have a unique optimal solution. In Bayesian infer-
ence equifinality may lead to an undesirably large region of significant probability
in the posterior distribution. The relevance of this problem for this study is demon-
strated by poorly constrained parameters and the existence of multiple modes (see
chapters 3 and 4).

The multimodality of the posterior distribution for Hainich is a remarkable and
important result of this study (section 3.3.2). Reports in literature of multimodal pa-
rameter distributions for ecological models are scarce (e.g. Rahn et al., 2012). How-
ever, this does not necessarily mean that this is a rare occurrence. Likelihood surfaces
for parameters of non-linear models often have local optima (Tarantola, 2005). The
aim of model inversion is often to derive a single optimal parameter set, hence exis-
tence of multiple acceptable explanations for observations is presumably considered
undesirable (Beven, 2006). It is therefore plausible that sub-dominant modes are
simply discarded in favor of the optimal mode, and not reported.

There are several reasons to be careful with discarding sub-dominant modes.
First, in view of unconsidered sources of uncertainty (see section 5.6.2), the differ-
ence between the maximum posterior probability of the modes is likely to be over-
estimated. Second, as shown in chapters 3 and 4, the addition of new information
to the calibration leads to large shifts in the maximum probability. These shifts can
cause a previously sub-dominant mode to become dominant. This occurred in chap-
ter 4 of this study when the model was modified and additional calibration data was
added.

It must be noted that the possibility that the multimodality is an artifact of the
modelling approach cannot be completely excluded. It has been demonstrated that
errors introduced by the numerical solution of the model can cause irregularities in
the likelihood surface, resulting in apparent multimodality (Schoups et al., 2010).
If this problem were relevant here it would likely not change the fact that different
regions in parameter space give similar fit to the data, but rather that connections be-
tween these regions go unnoticed. Additional study using more accurate numerical
schemes is advisable.

5.6.2 Sources of uncertainty

The posterior parameter distribution in Bayesian calibration derives from the prior
probability density function and the likelihood function. The latter is determined by
the (dis)agreement between model predictions and calibration data. Misfit between
model output and measurements originates from different sources, which are related
to both the model and the measurements (Raupach et al., 2005).
Uncertainty of the calibration measurements. The observations used for the parameter
estimation are affected by several sources of uncertainty including: spatial hetero-
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geneity, heterogeneity of the analyzed soil samples, and errors arising from the treat-
ment and analysis in the lab. Spatial heterogeneity forms likely the largest contri-
bution to these errors. This type of uncertainty can be reduced and quantified by
repeated sampling and measurements.

Errors in the model structure. Biased predictions can result from incorrect or missing
representation of processes and interactions (Gupta et al., 2012). Such misrepresen-
tations may be either deliberate, motivated by limited availability of computational
resources and model input, or unintentional due to a lack of understanding of the
modelled system. For example, in view of the intended large scale application of
SOMPROF, the representation of liquid phase transport of organic matter was de-
liberately kept simple (see section 5.5). Conversely, the correct representation of de-
composition is mainly limited by lack of understanding.

Errors in the uncalibrated model input. Ideally, the uncalibrated model input should be
well known but this is often not the case (Kavetski et al., 2006). For example, the
rate of rhizodeposition is very difficult to measure, and may be more uncertain than
the soil carbon profile itself. Furthermore, soil temperature, moisture and litter input
are needed for the complete duration of the simulation, spanning up to thousands
of years. Since these quantities vary considerably over time, current measurements
may be a quite poor representation of these variables in the past. The model input
was estimated from local measurements and assumed exactly known, hence this
source of errors has not been considered here.

Scale mismatch between model input, calibration data, and model structure. Inconsistency
between the characteristic spatial and temporal scales of the model and observa-
tions used for input and parameter estimation may cause model-data disagreement
(Raupach et al., 2005). For example, the soil temperature and moisture data used
for model forcing, were measured in one or two profiles while the soil carbon mea-
surements were based on many repeated samplings spread out over a large area,
thus representing a larger scale. Ideally, all measurements should be representative
for the spatial and temporal scale for which the model is valid (Reichstein and Beer,
2008) but in practice this is often not feasible.

Ideally, the posterior parameter distribution should reflect all the above men-
tioned error sources, to allow correct assessment of the uncertainty of model pro-
jections. However, in practice this is very difficult. In the calibrations of this study
several uncertainties were ignored, which likely means that the spread of the poste-
rior is underestimated. First, a large ignored source of uncertainty is represented by
the uncalibrated model input. Several recently developed methods may be used to
include these errors in Bayesian calibration (Kavetski et al., 2006; Vrugt et al., 2008).
Second, uncertainty may go unnoticed if the model is right for the wrong reason,
i.e. it reproduces the observations based on an incorrect parameterization. This is
demonstrated by the changes to the posterior distribution caused by the addition of
radiocarbon to the observations, discussed in chapter 4. This problem may be ad-
dressed by also considering model output variables for which no observations are
available. For example, even without local radiocarbon observations for Hainich,
it would be clear that the radiocarbon profile predicted by model woC14 is unre-
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alistic. Such prior knowledge for model results could be applied in the parameter
estimation. Similar to the prior distributions for the model parameters, prior density
functions for model output could be used to improve parameter estimates. Finally,
overoptimistic uncertainty estimates may result from oversimplified representation
of the system motivated by the parsimony principle. If the inclination to avoid over-
parameterization leads one to neglect relevant mechanisms, uncertainty of parame-
ters may be underestimated (Reichert and Omlin, 1997). When the model is extrapo-
lated outside the calibration domain in prognostic simulations, this in turn can cause
to underestimated uncertainty of predictions.

5.6.3 Observations for calibration
The model inversions in this study have shown that SOM profile measurements
alone do not provide adequate constraint on the model parameters, since these ob-
servations are the integrated result of all processes represented in the model. A mul-
tiple constraint approach with several additional information sources is necessary
to capture the individual processes. The complementary data streams used in this
study (see Table 4.1) provided mostly information on SOM turnover at both long
(radiocarbon of SOM) and short (radiocarbon of heterotrophic respiration, effective
decomposition rates) time scales. As discussed in chapter 4, particularly the radio-
carbon data of SOM proved to be very helpful to improve estimates of SOM turnover
rates.

The use of excess lead-210 (210Pbex) as a tracer for SOM transport was studied in
chapter 3. The potential value of this isotope as a tracer lies in the fact that it binds
to the solid phase but is not part of organic molecules, hence its profile is less de-
pendent on decomposition. Furthermore, its loss due to radioactive decay is exactly
known. Nevertheless, this observation added limited additional information to the
model inversion. Compared to the effects of radiocarbon the changes to the poste-
rior distribution by adding 210Pbex were relatively small. A likely cause is that this
tracer is mainly useful for disentangling overall SOM transport from root input, but
this appears to be a less important problem than separating the different transport
mechanisms. A drawback of 210Pbex is that it needs to be separated from the fraction
that is formed from in situ 222Rn decay. Furthermore, it is not fully clear to what ex-
tent this tracer can represent liquid phase transport (see section 3.4.5). Despite these
problems this isotope has potential as a complementary data stream. A study with
high resolution profile measurements of lead-210 and more replicate samplings, to-
gether with other observations and inverse modelling, would be helpful to further
assess the value of this isotope.

There are several other possible radioisotopes similar to lead-210 that can be use-
ful for constraining SOM transport, originating from both natural and anthropogenic
sources. Natural isotopes that are formed due to cosmic radiation or decay of nat-
ural parent isotopes are useful because of their relatively constant formation, which
means the profile is usually in equilibrium. Hence, the input rate can be eliminated
from the equations by normalizing the concentrations relative to the surface value,
as was done for 210Pbex (see section 3.2.3). 7Be is a natural isotope that may be useful
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as a SOM tracer (Kaste et al., 2007). Anthropogenic isotopes are formed by nuclear
weapons testing and nuclear accidents. These isotopes are usually not in steady
state and require time series of their input rates. However, when accurate records
are available they may be very informative. 241Am and 137Cs are potentially use-
ful (Kaste et al., 2007), although there is some indication that the latter may move
independently of organic matter in soils (Dörr and Münnich, 1989, 1991).

Since convolution of bioturbation and liquid phase transport proved to be an im-
portant challenge, observations that pertain specifically to either mechanism would
be advantageous. An obvious candidate is data of dissolved organic matter (DOM)
flux rates (Sanderman et al., 2008; Kindler et al., 2011). Since DOM transport is an
additional pathway of loss from the soil, these fluxes may be also quite useful to con-
strain the total soil carbon balance. However, these measurements may be relatively
costly and labor intensive. Furthermore, fluxes should be measured for a year or
longer, in view of short term variability.

A promising technique for studying bioturbation is optically stimulated lumi-
nescence (OSL). This method measures the time since mineral (quartz and feldspar)
grains were last exposed to sunlight, and has been suggested as a useful approach to
quantify soil mixing as well as erosion and deposition (Wilkinson and Humphreys,
2005). However, OSL would presumably not be useful for soils with a thick organic
layer.

5.7 Recommendations for further development

A range of future developments and applications of SOMPROF can be envisaged.
These are related to: (i) Extensions that may potentially improve predictions of
SOM profile dynamics and extend the validity of the model. Some of these have
already been discussed in section 5.5. (ii) Potential synergies with other process de-
scriptions, such as heat and moisture transport and microbial dynamics. (iii) Large
scale application of SOMPROF in a global ecosystem or earth system model.

5.7.1 Extensions of the model structure

Temperature sensitivity of decomposition. The effect of temperature on decomposition
is considered in the model but was not included in the calibration. Considering
the relevance for feedbacks to climate change the temperature sensitivity should be
included in the calibration if sufficient data is available. Furthermore, it has been
suggested that temperature sensitivity varies between SOM fractions (Conant et al.,
2011). Although this is still uncertain, the effects of various assumptions in relation
to the vertical profile can be studied.
Depth dependence of decomposition rates. In several previously published models de-
composition rates are explicitly reduced with depth to account for less favorable con-
ditions in the subsoil or depth dependent stabilization mechanisms (Jenkinson and
Coleman, 2008; Koven et al., 2013). In inverse parameter estimation this assumption
may help to reduce the disagreement between SOM concentration and radiocarbon
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activity that was found in chapter 4. However, depth dependence of decomposition
can also be achieved by explicitly accounting for certain mechanisms or microbial
dynamics (see next point).
Microbial dynamics and substrate interactions. It has been suggested that energy limita-
tion of decomposers may contribute significantly to soil carbon stabilization (Fontaine
et al., 2007). Several recent publications have presented model structures that sim-
ulate these mechanisms (Fontaine and Barot, 2005; Wutzler and Reichstein, 2007,
2013). Coupling of such a scheme with a vertically explicit representation of SOM has
potentially major effects on predictions of soil carbon cycling (Guenet et al., 2013).
Root distribution. The vertical distribution of roots (and thus rhizodeposition) differs
among vegetation types and depends on other factors, such as moisture and nu-
trient availability. Furthermore, increase of vegetation productivity due to rising
atmospheric CO2 concentration may be associated with deepening of root distribu-
tions (Iversen, 2010). In combination with substrate interactions (see point above)
this may also lead to shifts in decomposition dynamics.
Nitrogen dynamics. Decomposition is partially controlled by soil nitrogen availability.
Nitrogen deposition may cause shifts in microbial activity that lead to stabilization
of SOM (Janssens et al., 2010). Furthermore, plant growth and thus litter input is
strongly influenced by nitrogen availability.
Extension to other soil types and ecosystems. The current structure of SOMPROF with
three organic surface horizons is mainly designed for forests and may not be ap-
propriate for other ecosystems. For example, in grasslands organic matter tends to
accumulate within the mineral soil, rather than on top, when conditions are unfavor-
able for decomposition (van Delft et al., 2006). Furthermore, in certain ecosystems
other mechanisms for organic matter transport are relevant, such as ploughing in
croplands and cryoturbation in permafrost soils.

5.7.2 Coupling to physical soil processes

The effect of soil organic matter concentration on soil hydrological parameters may
be represented by pedotransfer functions (PTFs). PTFs are empirical models that
predict soil properties that are difficult to measure based on more readily available
data, such as texture and organic matter content. Several useful PTFs have been
published (Rawls et al., 2003; Saxton and Rawls, 2006).

In soil hydrological models the surface organic layer is sometimes treated similar
to the mineral soil, by representing it as a separate layer with different properties
(Ashby, 1999). However, in view of the strong differences between these two parts
of the profile, this approach may not be appropriate. Several models have been de-
veloped in which the organic layer is represented by a separate submodel (Schaap
et al., 1997; Ogee and Brunet, 2002; Neto et al., 2012).

Soil thermal properties (thermal conductivity and heat capacity) can be deter-
mined from the fractions of solid and liquid constituents (Farouki, 1981). Soil organic
matter generally acts as an insulator, particularly in the form of a surface organic
layer, which was found to be important in permafrost soils (Harden et al., 2006).
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Several model structures have been published that simulate these effects (Lawrence
and Slater, 2008; Mölders and Romanovsky, 2006).

5.7.3 Large scale parameterization

The need for parameter estimates represents the most important challenge for SOM-
PROF application at large spatial scales. To perform simulations for unvisited sites
relationships between parameters and known or predictable environmental vari-
ables need to be derived. In large scale applications, ecosystem models are typically
run for spatial grids with resolutions ranging from 0.5 degrees latitude and longitude,
for simulations of terrestrial ecosystems only (uncoupled), to 3–5 degrees, in earth
system simulations (coupled) (Stouffer et al., 2011). The vegetation parameters that
describe processes such as photosynthesis are determined from the dominant plant
functional type in each grid cell, which may be prescribed or predicted by a biogeo-
graphical submodel. Parameters for soil hydrology and heat flux are typically based
on local soil properties.

The free SOMPROF parameters include decomposition rate coefficients ki, trans-
formation fractions αi→j , and the transport parameters: the bioturbation rateB, mix-
ing length lm, and advection rate v (section 2.2.7). Most of these can best be linked to
soil properties, rather than vegetation type. However, the choice of covariates is lim-
ited by available data at global scale (FAO et al., 2012). The appropriate covariates
depend on the specific model parameter. The bioturbation rate B is determined by
the biomass and activity of the soil fauna groups relevant to mixing, mainly earth-
worms, ants, and termites. The activity of earthworms can likely best be linked to
base saturation or Ca concentration (Reich et al., 2005), while biogeography of ants
and termites is related to climate and vegetation type (Gotelli and Ellison, 2002).
Ideally, the mixing length lm should be related to the main soil fauna species, but in
practice it may be difficult to determine a clear relationship. It may be reasonable to
use a single global value.

The advection rate v, defining liquid phase transport rates is determined by ver-
tical water fluxes and soil properties influencing adsorption. Average water fluxes
may be estimated by a soil hydrological model. As discussed in section 5.5.2, if ad-
vection rates are linked to water flow, it may be replaced with the retardation factor,
which should mainly depend on adsorption. In dissolved organic matter transport
models adsorption capacity is often linked to Al and Fe content (Moore and Des-
ouza, 1992), but this information is presumably not available at global scale. Clay
content may be a good alternative.

Parameters determining the decomposition of litter are related to the C : N or
lignin : N ratio of the litter (see section 1.2.1) which can be linked to vegetation type
(Berg and McClaugherty, 2008). Parameters of decomposition in the mineral soil are
sometimes linked to clay content (Hassink, 1997), although many models use fixed
global parameters.

Derivation of global parameter sets requires additional model inversions for new
sites. In particular, calibrations are needed for new ecosystems including grasslands,
and tropical and boreal forests. As is evident in chapters 3 and 4, these calibrations

157



Chapter 5. General discussion and conclusions

require a relatively large amount of data, both for model input and to constrain pa-
rameters. It is unlikely that the number of sites for which this data is available is
sufficient to derive a global parameterization. Some variables may be estimated
using other methods, e.g. from model predictions or based on measurements for
comparable ecosystems, but this will add additional uncertainty.

In view of these difficulties the Bayesian approach is highly recommendable since
posterior distributions can be used as priors in subsequent calibrations in order to
reduce uncertainty. Model inversions can be performed first for sites with high data
availability, such as those used in this study, to construct increasingly narrow pa-
rameter distributions. Those distributions can subsequently be used for sites for
which less data is available. In this case, full approximation of the posterior distri-
bution using Markov Chain Monte Carlo sampling may be too time consuming and
computationally demanding. If the posterior distribution is assumed to be normal,
a gradient search algorithm (e.g. quasi-Newton) with a Bayesian cost function can
be applied. A useful approach in this context may be hierarchal modelling. With
this method parameter sets for multiple sites can be estimated simultaneously with
their relationships with environmental covariates. Hierarchical Bayes is the Bayesian
equivalent of this method. It allows the incorporation of prior knowledge on the re-
lationship between the model parameters and covariates, by defining “hyperpriors”:
prior distributions for the parameters that define the priors of parameters at a lower
model level (Clark, 2005).

5.8 Conclusions

In this thesis research I developed a numerical model, SOMPROF, for dynamic sim-
ulation of the vertical soil organic matter (SOM) profile, and estimated parameters
based on measurements. Specific attention was given to explicit description of rele-
vant processes, expected large scale application as a part of ecosystem models, and
assessment of parameter and prediction uncertainty. Based on this work the follow-
ing overarching conclusions can be drawn:

1. In most natural and undisturbed soils the vertical SOM distribution is deter-
mined by the combined effects of bioturbation, liquid phase transport, above-
and belowground litter input, and decomposition. The SOMPROF model struc-
ture, developed in this study, contains simple but realistic parameterizations of
these processes, including diffusion and advection, representing bioturbation
and liquid phase transport, respectively. SOMPROF is able to simulate SOM
profiles that compare well to profiles observed in the field.

2. Estimation of the parameters describing these processes based on measure-
ments in two contrasting forest sites shows that (i) SOM transport can have
a considerable influence on the vertical SOM distribution, and (ii) the relative
importance of root input and the two transport processes differ substantially
between sites.
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3. Convolution of the relevant processes, in particular the two transport mech-
anisms, poses a considerable challenge for quantifying them by model inver-
sion. This problem can lead to poorly constrained model parameters and exis-
tence of multiple adequate parameter sets for the same observations. Bayesian
inference is arguably the best tool for such problems, since it allows uncer-
tainty to be both assessed, by approximation of parameter distributions, and
reduced, by incorporation of prior knowledge obtained in previous studies.

4. Because of the entanglement of processes, inclusion of sufficient and appropri-
ate observations is critical to the parameter estimation. Data on SOM stocks
and fractions alone are in general insufficient. Additional data streams are
required in order to constrain individual mechanisms. Excess lead-210 is a po-
tential candidate for such data, although it did not add significant constraint
in this study. Additionally, observations pertaining to SOM turnover, such as
radiocarbon activity and respiration rates, are important to correctly assess de-
composition rates.

5. Prognostic simulations suggest that the response to changes in litter input and
temperature can vary over the vertical SOM profile. Therefore estimation of
responses of the organic carbon stocks for the total soil based on topsoil dy-
namics alone may lead to biased results.

Mechanistic modelling of the vertical soil organic matter profile is still in its infancy.
While a large body of literature exists on models of organic matter decomposition,
models of processes such as bioturbation and liquid phase transport are relatively
scarce. Fortunately, research into these topics is growing, but there is some need
for haste, since the understanding of the processes is lagging behind the need for a
parameterization for prognostic simulations.

The SOMPROF model developed in this study can be used to asses the relative
importance of different mechanisms that determine the SOM profile and for prog-
nostic simulations as a part of an ecosystem model. But perhaps the most important
part of the value of this study lies in the identification of challenges related to SOM
profile modelling, and the development of methods to deal with them. I hope that
this thesis will stimulate collection of new data by field and lab researchers, and help
modelers to use this data, in order to test and improve SOMPROF and other related
models.
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carbonization of the Biosphere: Ecosystems and the Global Carbon Cycle, pages 445–464. Springer
Netherlands.
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Salomé, C., Nunan, N., Pouteau, V., Lerch, T. Z., and Chenu, C. (2010). Carbon dynamics in
topsoil and in subsoil may be controlled by different regulatory mechanisms. Global Change
Biology, 16(1):416–426.

Salvador-Blanes, S., Minasny, B., and McBratney, A. B. (2007). Modelling long-term in situ soil
profile evolution: application to the genesis of soil profiles containing stone layers. European
Journal of Soil Science, 58(6):1535–1548.

Sanderman, J., Baldock, J. A., and Amundson, R. (2008). Dissolved organic carbon chemistry
and dynamics in contrasting forest and grassland soils. Biogeochemistry, 89(2):181–198.

Saugier, B., Roy, J., and Mooney, H. (2001). Estimations of global terrestrial productivity: Con-
verging toward a single number? In Roy, J. and Saugier, an B Mooney, H., editors, Terrestrial
Global Productivity, A Volume in the Physiological Ecology Series. Academic Press.

Sauve, S., Martinez, C. E., McBride, M., and Hendershot, W. (2000). Adsorption of free lead
Pb2+ by pedogenic oxides, ferrihydrite, and leaf compost. Soil Science Society of America
Journal, 64(2):595–599.

Saxton, K. E. and Rawls, W. J. (2006). Soil water characteristic estimates by texture and organic
matter for hydrologic solutions. Soil Science Society of America Journal, 70(5):1569–1578.

Schaap, M. and Bouten, W. (1997). Forest floor evaporation in a dense Douglas fir stand.
Journal of Hydrology, 193(1-4):97–113.

Schaap, M., Bouten, W., and Verstraten, J. (1997). Forest floor water content dynamics in a
Douglas fir stand. Journal of Hydrology, 201(1-4):367–383.

Scharnagl, B., Vrugt, J. A., Vereecken, H., and Herbst, M. (2010). Information content of in-
cubation experiments for inverse estimation of pools in the Rothamsted carbon model: a
Bayesian perspective. Biogeosciences, 7(2):763–776.

Scharpenseel, H. W., Becker-Heidmann, P., Neue, H. U., and Tsutsuki, K. (1989). Bomb-carbon,
14C-dating and 13C-measurements as tracers of organic matter dynamics as well as of mor-
phogenetic and turbation processes. Science of the Total Environment, 81-82:99–110.

Schenk, H. and Jackson, R. (2002a). The global biogeography of roots. Ecological Monographs,

173



References

72(3):311–328.
Schenk, H. and Jackson, R. (2002b). Rooting depths, lateral root spreads and below-

ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology,
90(3):480–494.

Schimel, d. (1995). Terrestrial ecosystems and the carbon-cycle. Global Change Biology, 1(1):77–
91.

Schimel, D. S., Braswell, B. H., Holland, E. A., McKeown, R., Ojima, D. S., Painter, T. H.,
Parton, W. J., and Townsend, A. R. (1994). Climatic, edaphic, and biotic controls over storage
and turnover of carbon in soils. Global Biogeochemical Cycles, 8(3):279–293.

Schlesinger, W. H. (1997). Biogeochemistry: An Analysis of Global Change. Academic Press,
London, 2nd edition.

Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber,
M., Koegel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner,
S., and Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property.
Nature, 478(7367):49–56.

Schoups, G., Vrugt, J. A., Fenicia, F., and de Giesen, N. C. v. (2010). Corruption of accuracy and
efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementa-
tion of conceptual hydrologic models. Water Resources Research, 46:W10530.

Schroth, A. W., Bostick, B. C., Kaste, J. M., and Friedland, A. J. (2008). Lead sequestration and
species redistribution during soil organic matter decomposition. Environmental Science &
Technology, 42(10):3627–3633.

Schrumpf, M., Kaiser, K., Guggenberger, G., Persson, T., Kögel-Knabner, I., and Schulze, E.-D.
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Summary

Soil organic matter (SOM) plays an important role in the global carbon cycle and
has the potential to enhance or reduce anthropogenic climate change. While mea-
surement and modelling studies of SOM dynamics have traditionally focused on the
topsoil, evidence is growing that deeper soil levels may store significant amounts of
organic carbon. Often different mechanisms related to carbon cycling are relevant at
different depths within the soil profile, due to strong vertical gradients of soil prop-
erties. Furthermore, processes such as heat and moisture transport are influenced by
SOM and its vertical distribution. Therefore, ecosystem models can benefit from an
explicit representation of the vertical distribution of SOM in the profile.

Soil organic matter, defined as all dead organic material in soil, is derived mainly
from plants. Decomposer organisms (soil fauna, bacteria, and fungi) process litter
and SOM, both transforming it to more decomposed compounds and releasing it to
the atmosphere as CO2. In soil, organic matter concentrations are generally highest
near the surface and decrease with depth. In certain ecosystems organic matter may
accumulate at the surface as an organic layer. The SOM profile and organic layer
mass vary strongly between soils and ecosystems and are determined by several
processes. The relative proportions of above- and belowground litter input is rele-
vant to the SOM profile, as well as the vertical distribution of roots. Furthermore,
the vertical SOM profile is influenced by several transport mechanisms. Activity of
soil fauna such as earthworms, ants, and termites causes mixing of the soil (biotur-
bation), leading to deepening of the SOM profile. SOM migration may also occur
by movement of dissolved organic matter with infiltrating water. Vertical transport,
together with microbial processing and stabilization mechanisms causes SOM to be-
come older and more decomposed with depth. SOM turnover rates decrease along
the profile by several orders of magnitude.

Although many numerical SOM models have been developed, only a small num-
ber of these is vertically explicit. These generally represent vertical SOM transport
as diffusion or advection. Most of these models were not intended for (large scale)
prognostic simulation and do not include an explicit formulation of the organic layer.
This thesis focuses on the development of dynamic representation of the vertical
SOM profile and the surface organic layer. The aim is to derive a scheme that in-
cludes the main relevant mechanisms, while being parsimonious enough for param-
eterizations for large spatial scales. Specific attention is given to parameter estima-
tion based on observations.



Summary

Chapter 2 of this thesis presents SOMPROF, a new model that dynamically sim-
ulates soil carbon cycling. In the model the SOM profile is split into the mineral
soil and the surface organic layer, which is further subdivided into three horizons.
Aboveground litter fall leads to input at the surface while root input leads to direct
input within the profile. Organic matter is split into several pools that differ in terms
of decomposability, transport behavior, and mechanism of input. Decomposition
is simulated as a first order decay process corrected for temperature and moisture.
The model considers two SOM transport mechanisms: bioturbation and liquid phase
transport. Bioturbation in the mineral soil is simulated a diffusive process. The diffu-
sivity is determined by the bioturbation rate B and the mixing length lm, according
to mixing length theory. The bioturbation rate is further used to calculate downward
flow between the organic surface horizons and across the mineral soil surface. Liq-
uid phase transport is represented as an advection process and only simulated for
the mineral soil. A specific SOM pool is defined that represents potentially mobile
material. This pool accounts for both dissolved and adsorbed organic matter, thus
obviating the need for explicit representation of ad- and desorption.

A simulation run was performed for a deciduous old growth forest on a Cam-
bisol, located in Hainich, Germany, as well as a sensitivity analysis of the transport
parameters. SOMPROF is able to simulate realistic SOM profiles and organic layer
masses, based on reasonable parameter values. Results further show that temporal
variability of heterotrophic respiration is influenced by the vertical SOM distribu-
tion.

Chapter 3 deals with calibration of SOMPROF. Due to the difficulty with observ-
ing processes such as bioturbation and liquid phase transport in situ, model cali-
bration is required. However, parameter estimation is hindered by equifinality: the
ability of the model to produce similar results based on different parameterization.
Based on organic carbon measurements, 13 parameters related to decomposition
and transport of organic matter were estimated for the Hainich site, as well as for
a coniferous forest on an Arenosol, located in Loobos, The Netherlands. The value
of measurements of 210Pb as a tracer for SOM transport was studied by perform-
ing calibrations with and without this data. The calibration was performed with
a Bayesian approach which merges information contained in the observations with
prior knowledge to derive posterior parameter distributions.

The results highlight the differences between the two sites. For Loobos organic
matter transport with the liquid phase appears to be important for shaping the ver-
tical SOM profile, while the effects of bioturbation are negligible. For Hainich the
calibration yielded a posterior distribution with three modes (optima), correspond-
ing to distinctly different “explanations” for the observations. The addition of 210Pb
data and prior knowledge, led to identification of a favorable mode. This explana-
tion indicates that root litter input is a dominant process for shaping the SOM profile
at Hainich.

Chapter 4 presents further study on SOM profile dynamics at the Hainich site.
Specifically, the value of radiocarbon (14C) measurements of both SOM and het-
erotrophic respiration, for constraining model parameters was investigated. Using
the Bayesian approach developed in the previous chapter, calibrations were run both
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with and without radiocarbon observations. Additionally, the dynamic behavior of
the SOM profile under global warming and increasing litter fluxes was studied. The
parameter distributions obtained by the calibrations were used to perform prognos-
tic simulations for the period 1910–2100 based on litter fluxes and soil temperature
and moisture values predicted by an ecosystem model.

Posterior distributions with two modes were found, corresponding approximately
to two of the three modes discussed in chapter 3. However, here a different mode
was dominant. The addition of radiocarbon data to the calibration had strong effects
on the parameter distribution, most importantly causing a reduction of the decom-
position and production rate of the slowest SOM pool by an order of magnitude. The
prognostic simulations show an increase of soil carbon in the topsoil and a decrease
in the subsoil, adding up to a net gain overall. Near the end of the 21st century
total carbon stocks stabilize and—for the radiocarbon-constrained model—start to
decrease. However, the changes over time are small compared to the total stocks.
The predictions based on the calibrations with and without radiocarbon are similar,
but the former shows a markedly higher heterotrophic respiration flux and lower
advective loss of organic carbon. The uncertainty of the predicted total soil carbon
stock was only slightly decreased by adding radiocarbon data.

Chapter 5 presents a synthesis of the preceding chapters. The SOMPROF model
is discussed in the context of parsimony and fidelity, as well as its value for gaining
insights in the determinants of the SOM profile. Specific attention is given to bio-
turbation and liquid phase transport processes, their mathematical representation,
and the parameter estimates are compared to previous studies. Furthermore, the
difficulties related to calibration and sources of parameter uncertainty are explored.
Model equifinality and resulting lack of parameter constraint and multimodality of
the posterior distribution are an important issue in calibration of SOM profile mod-
els. Several potential observations are possible that may mitigate these problems.

Obvious next steps in the development and application of SOMPROF are its in-
corporation into an ecosystem model and application at large spatial scales for prog-
nostic simulations. In this context several extensions to the model are advisable in
order to improve its validity. A large challenge ahead lies in the derivation of a pa-
rameterization for different soils and ecosystems. Parameters need to be related to
environmental covariates available in gridded data sets in order to apply the model
for unvisited sites.
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Samenvatting

De voorraden aan organische stof die opgeslagen liggen in bodems spelen een be-
langrijke rol in de mondiale koolstofkringloop. Processen die leiden tot af- of toe-
name van deze bodemvoorraden kunnen het broeikaseffect versterken of verzwak-
ken. In het verleden was onderzoek naar deze processen voornamelijk gericht op de
bovenste laag van de bodem. Recente studies hebben echter aangetoond dat ook die-
pere bodemlagen grote hoeveelheden koolstof kunnen bevatten. Doordat de meeste
bodemeigenschappen een sterke verticale gradiënt vertonen, zijn er grote verschillen
tussen bodemlagen in de processen die verantwoordelijk zijn voor opbouw, afbraak
en transport van organische stof. Omgekeerd worden processen als transport van
warmte en vocht sterk beı̈nvloed door de organische stof in de bodem. Het is dan
ook te verwachten dat modellen van de koolstofkringloop in ecosystemen gebaat
zijn bij een expliciete weergave van de verticale verdeling van organische stof in de
bodem en de processen die zich daarin afspelen.

“Bodemorganischestof” is gedefinieerd als al het dode organische materiaal in
de bodem. Dit materiaal is voornamelijk afkomstig van planten. Plantenresten wor-
den verkleind en verteerd door bodemfauna, bacteriën en schimmels. Daarbij komt
een deel van de koolstof vrij als CO2 en een deel wordt omgezet in stabielere verbin-
dingen en al of niet verplaatst naar andere bodemlagen. De uiteindelijke verticale
verdeling van organische stof op en in de bodem verschilt sterk tussen ecosystemen.
Deze verdeling hangt in de eerste plaats af van waar de dode plantenresten wor-
den afgezet—bovengronds of ondergronds—en van de verdeling van de wortels.
Vervolgens wordt de verticale verdeling beı̈nvloed door transportprocessen. Graaf-
activiteiten van bodemfauna, zoals regenwormen, mieren en termieten, vermengen
de bodem (bioturbatie) wat leidt tot verdieping van het organischestofprofiel. Ver-
plaatsing van organische stof gebeurt ook door neerwaarts transport van opgeloste
organische stoffen met wegzijgend bodemvocht (advectie). De combinatie van verti-
caal transport en voortgaande omzetting door micro-organismen heeft tot gevolg dat
de organische stof in diepere bodemlagen gemiddeld ouder en sterker afgebroken is
dan boven in de bodem. Daardoor vermindert met de diepte ook de gemiddelde
afbraaksnelheid van organische stof met enkele orden van grootte.

In de laatste decennia zijn vele dynamische simulatiemodellen ontwikkeld die de
dynamiek van organische stof in de bodem beschrijven. Daarvan is echter slechts een
klein aantal verticaal expliciet. De meeste modellen onderscheiden geen strooisel-
laag. Verticaal transport van organische stof wordt meestal weergegeven als diffusie
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of advectie. Deze modellen zijn doorgaans niet ontwikkeld met het oog op voorspel-
ling van de invloed van bodemprocessen op de mondiale koolstofkringloop.

Het in dit proefschrift beschreven onderzoek beoogt het ontwikkelen van een
nieuw model voor dynamisch simulatie van de verticale verdeling van organische
stof in de bodem en op het bodemoppervlak. Het doel is een model dat alle relevante
processen tijdens de ontwikkeling van bodems beschrijft en toch eenvoudig genoeg
voor toepassing op grote ruimtelijke schaal.

Hoofdstuk 2 geeft een beschrijving van het model SOMPROF dat organische stof
in de bodem en organische laag simuleert. In dit model is het organischestofpro-
fiel gesplitst in de minerale bodem (met een geleidelijk verlopend organischestof-
gehalte) en een organische toplaag, die verdeeld is in drie subhorizonten. De aan-
voer van organisch materiaal vindt plaats door bovengrondse strooiselval en diepte-
afhankelijke aanvoer door wortels. De organische stof wordt verdeeld in fracties die
verschillen qua aanvoermechanisme (boven- of ondergronds), afbraaksnelheid en
transportgedrag. Afbraak wordt weergegeven als een eerste-orde kinetisch proces
en gecorrigeerd voor temperatuur en bodemvocht. Het model bevat twee transport-
mechanismen: bioturbatie en verplaatsing met bodemvocht. Bioturbatie in de mine-
rale bodem wordt gesimuleerd als een diffusieproces. De diffusieconstante hangt af
van de bioturbatiesnelheid (B) en de menglengte (lm), volgens de menglengtetheorie
van turbulente stroming. Voor de organische toplaag wordt de bioturbatiesnelheid
gebruikt om het neerwaarts transport tussen de horizonten te berekenen. Transport
met bodemvocht wordt beschreven als een advectieproces (alleen in de minerale
bodem). Het model beschrijft een aparte fractie potentieel mobiele organische stof
die zowel opgelost als geadsorbeerd organisch materiaal omvat, wat afzonderlijke
simulatie van adsorptie en desorptie van organische stof overbodig maakt.

Het model SOMPROF is gebruikt om de verdeling van organische stof in de bo-
dem te simuleren op basis van meetgegevens afkomstig uit een loofbos op een Cam-
bisol in Hainich (Duitsland). Tevens is een gevoeligheidsanalyse uitgevoerd voor
de transportparameters in SOMPROF. Simulaties op basis van redelijke parameter-
waarden leverden verdelingen op die goed overeenkomen met metingen. De resul-
taten tonen verder aan dat de temporele variatie van de heterotrofe respiratie op
seizoenstijdschaal afhangt van de diepteverdeling van organische stof in de bodem.

Hoofdstuk 3 behandelt de kalibratie van SOMPROF. Processen als bioturbatie en
transport met bodemvocht kunnen moeilijk in het veld worden gemeten. Daarom
moeten de parameters die deze processen beschrijven worden geschat. Dit wordt
echter bemoeilijkt door equifinaliteit: het verschijnsel dat dezelfde modeluitkomst
kan worden bereikt met verschillende parametercombinaties. Op basis van meet-
gegevens uit Hainich is een schatting gemaakt van de waarden van 13 parameters
die nodig zijn voor de beschrijving van afbraak en transport van organische stof.
Hetzelfde is gedaan met meetgegevens uit Loobos, een naaldbos op een Arenosol in
Nederland. De kalibraties zijn uitgevoerd volgens een Bayesiaanse methode. Deze
methode combineert informatie afkomstig uit metingen met bestaande voorkennis
om te komen tot een a posteriori kansverdeling van modelparameters. Tevens is het
nut van metingen van lood-210 (210Pb) als een tracer voor transport van organische
stof onderzocht. Kalibraties zijn uitgevoerd met en zonder metingen van het lood-
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210 gehalte in de bodem.
De resultaten onderstrepen de verschillen tussen de twee onderzoekslocaties.

Voor Loobos blijkt transport met het bodemvocht een belangrijke rol te spelen bij
de uiteindelijke verdeling van organische stof in de bodem, terwijl de rol van biotur-
batie minimaal is. Voor Hainich leverde de kalibratie een parameter verdeling met
drie optima (modi) op, welke corresponderen met verschillende verklaringen voor
de metingen. Door voorkennis en gegevens van lood-210 gehalten bij de kalibratie
te betrekken kon de meest waarschijnlijke modus worden geı̈dentificeerd. De para-
meterwaarden van deze modus tonen aan dat de aanvoer van organische stof door
wortels in belangrijke mate bepalend is voor de uiteindelijke verdeling van organi-
sche stof in de bodem van Hainich.

Hoofdstuk 4 gaat dieper in op de dynamiek van organische stof in de bodem
bij Hainich. Om te onderzoeken of metingen van koolstof-14 (14C) gehalten in de
organische stof en de CO2-emissie gebruikt kunnen worden om de schatting van
modelparameters te verbeteren, zijn nieuwe kalibraties uitgevoerd met en zonder
koolstof-14 data. Hiervoor is een vereenvoudigde versie van het model gebruikt.
Daarnaast is de ontwikkeling van het organischestofprofiel gesimuleerd voor een
toekomstscenario met toenemende bodemtemperatuur en strooiselproductie, zoals
berekend met een ecosysteemmodel voor de periode 1910–2100. Daarbij zijn para-
meterwaarden gebruikt die bij de kalibraties van SOMPROF waren gevonden.

De nieuwe kalibraties, zowel met als zonder koolstof-14 data, leverden een bimo-
dale a posteriori parameterverdeling op. De twee modi komen bij benadering over-
een met twee van de drie modi die in hoofdstuk 3 werden gevonden. Nu was echter
een andere modus dominant door het gebruik van een vereenvoudigde versie van
het model. Toevoeging van koolstof-14 data aan de kalibratie had grote gevolgen
voor de parameterwaarden: de geschatte afbraak- en productiesnelheid van de lang-
zaamste organischestoffractie werd een orde van grootte kleiner om de hoge leeftijd
van organische stof in de diepe bodem, aangegeven door de koolstof-14 data, te kun-
nen reproduceren. De simulaties met het toekomstscenario voorspellen een toename
van organische stof bovenin het profiel en een afname in diepere bodemlagen. De
totale voorraad organische stof in de bodem neemt aanvankelijk toe en vlakt af tegen
het einde van 21ste eeuw. Voor het model gekalibreerd met koolstof-14 data begint
organische stof af te nemen aan het eind van de simulatie.

Zowel de veranderingen in de tijd als de verschillen tussen de simulaties voor
beide kalibraties zijn echter klein in verhouding tot de totale koolstofvoorraden. De
simulaties met medeneming van koolstof-14 data voorspellen grotere koolstofverlie-
zen door heterotrofe respiratie en kleinere verliezen door advectie. De onzekerheid
in de voorspelling van de organischestofvoorraad werd slechts weinig verminderd
door toevoeging van koolstof-14 data aan het model.

Hoofdstuk 5 is een synthese van de voorgaande hoofdstukken. Het model SOM-
PROF wordt besproken in de context van parsimonie en natuurgetrouwheid. Bijzon-
dere aandacht wordt besteed aan de betekenis en wiskundige formulering van bio-
turbatie en transport van organische stof met bodemvocht. De geschatte transport-
snelheden worden vergeleken met waarden die in eerdere studies zijn gevonden.
Ook de moeilijkheden bij het schatten van parameterwaarden worden besproken.
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Het verschijnsel equifinaliteit is een belangrijke bron van onzekerheid bij het kali-
breren van modellen die de dynamiek van organische stof in de bodem beschrijven.
Verschillende aanvullende metingen worden genoemd die deze problemen zouden
kunnen verminderen.

Voordat het model SOMPROF kan worden opgenomen in een ecosysteemmodel
van de mondiale koolstofkringloop zijn aanpassingen en uitbreidingen nodig om
de validiteit van het model te verbeteren. Een grote uitdaging ligt in het toepassen
van SOMPROF voor verschillende bodems en ecosystemen. Daartoe moeten rela-
ties tussen de parameters van het model en omgevingsvariabelen, zoals bodem- en
vegetatietype en klimaat, worden afgeleid.
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