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I INTRODUCTION

1. OBIECT AND SURVEY OF DATA

Decisions in water management are often based on rainfall series. From
historical data it is possible to get some insight into problems about the amount
of water available. The historic series can also be routed through a rainfall-
runoff relation to obtain a streamflow series which can be used for planning
water system projects. Working in this way gives a solution which is based on
one realization of the rainfall process only. But what would be the solution if
another series with the same properties as the historic series was used ? Or more
generally, how reliable is the solution? To answer these questions one must
know the stochastic process underlying the sequence of rainfall data. This
process, however, is very complicated ; for instance, it usually exhibits seasonal
variation and, when working within small time-increments, one encounters the
problem of serial correlation and complicated marginal distributions, It is,
therefore, often impossible to obtain direct analytical solutions for hydro-
logical problems. For a better insight into a particular problem, one is usually
forced to generate synthetic sequences based on a stochastic model for the rain-
fall process; and ¢ven that is often difficult.

The aim of this study is to construct a stochastic model for daily rainfall
sequences. The time-increment of a day is chosen because rainfall is mostly
recorded once a day and because a day seems a suitable choice for solving many
problems in hydrology. It is necessary that the model is such that statistical
simulation of synthetic sequences can easily be done.

Daily rainfall sequences are usnally characterized by serial correlation and
many observations with zero rainfall amount. It is the combination of these
two facts which makes the generation of daily rainfall sequences complicated.
When dealing with serial correlation only, one can apply, for instance, auto-
regressive models. But these models become very cumbersome if one is dealing
with non-negative variables with a lot of zero values. It is also possible to fit
theoretical distributions to daily data. For the Netherlands the fit of many
distributions to daily rainfall data has been discussed by vAN MONTFORT (1968),
but it is very hard to make a model with serial correlation and one of the
marginal distributions, proposed by this author.

A widely used technique for handling daily rainfall series is to analyse first
the occurrence of rain and non-rain days separately. In a second stage the be-
haviour of the non-zero rainfall amounts is studied. This technique will also
be used here.

The process of rainfall occurrence can be taken in continuous time or in
discrete time, Processes in continuous time have been discussed by (GREEN
(1964), Toporovic and YEVIEVICH (1969), QUELENNEC (1973) and Kavvas and
DELLEUR (1975). Working with processes in continuous time may have some
drawbacks, namely:

Meded. Landbouwhogeschool Wageningen 77-3 ( 1977) 1



a. The main body of rainfall data is given in units of one day, When a wet day
is observed there can be more than one rainy period during such a day.
Therefore, observing rainfall amounts for discrete time units can lead to quite
another process. Moreover, when a model in continuous time is proposed it is
often difficult to derive the statistical properties of daily rainfall amounts.
This derivation is essential since estimates of the parameters should be based
on the observed daily data.
b. There might be a daily cycle in the rainfall process. For instance, in some
parts of the world rainfall only occurs during some fixed hours. To obtain
a sound model such a diurnal variation should be incorporated.
Because of these disadvantages a rainfall process in discrete time is preferred
here.

A great deal of this study deals with rainfall data from the Netherlands and
the adjacent Belgian and German areas. The various rainfall stations which are
taken into consideration are mentioned in Table 1.1. The geographical position

TasLE 1.1. Survey of Belgian, German and Dutch stations used in this study. The abbre-
viations between brackets are used in Figure 1.1.

Belgian stations:

Ghent (Gt) Moerbeke-Waas (MW) Sint Andries-Brugge (SAB)
German stations:

Ahaus (As) Laar {Lar) Ringenberg (Rg)
Bracht {Brt) Lathen (Lan) Schoppingen (Scn)
Dersum {Dm) Leer (Ler) Schiittorf (S}
Diiren {Dn) Lingen {Len) Venhaus (Ves)}
Herzogenrath (Hh) Norden (Non) Weener (Wer)
Jidlich (Jh) Norderney (Ny} Widdelswehr (Wir)
Kleve (Ke) Rheine (Re)

Dutch stations:

Aalten (Aan) Groede (Ge) Roggel (Rel)
Almelo (Ao) Groningen (Gn) Roodeschool (Rol)
Almen (Aln} Haarlem (Hm) Schaesberg (Srg)
Axel (Al) Heino (Hno) Scheveningen (Sen)
Biervliet (Bit) Hellendoorn (Hn) Schiermonnikoog (Sog)
Borculo {Bo) Hengelo (Hlo) Sint-Kruis (SK)
Cadzand (Cd) Hoofddorp (Hp) Stein (Stn)
Castricum (Cm) Leiduin (Lin) Ter Apel (TA)

De Bilt (DB) Lettele (Le) Terneuzen {Tn)
Delfzijl (DI) Leyden (Lyn} Twente (Te)
Denekamp (Dp) Lijnden (Ljn) Vaals (Vas)

Den Helder (DH) Lochem (Lm) Vaikenburg (Vg)
Deventer (Dr) Nicuw-Beerta (NB) Vroomshoop (Vp)
Dirksland (Dd) Nijmegen (Nin) Warffum (Wm)
Emmen (En) Oldenzaal (O1) Winschoten (Wn)
Enschede (Ec) Rekken (Rn) Winterswijk (Wk)
Finsterwolde (Fe) Roermond (Rd) Zwanenburg (Zg)
Gouda (Ga)

2 Meded. Landbouwhogeschool Wageningen 77-3 (1977}



Fi1c. 1.1. Geographical position of Belgian, German and Dutch rainfall stations used in this
study. The full names of the stations are given in Table 1.1.

of these stations is denoted in Figure 1.1. Attention will also be paid to some

rainfall stations from other climatic regions, namely:

a. From India: Bangalore (12°58" N, 77°35" E), Calcutta (Alipore, 22°32
N, 88°20" E) and New Delhi (28°35' N, 77°12'E).

b. From Indonesia: Jakarta-27 (6°11’S, 106°50'E), Pasar Minggu (15 km
south of Jakarta-27).

¢. From Surinam: Paramaribo (5°51'N, 55°10° W), Domburg (5°42" N,
55°05" W).

d. From Sudan: Khartoum (15°37" N, 32°33" E}.

Meded. Landbouwhogeschool Wageningen 77-3 (1977) 3



e. From Egypt: Alexandria (Kom el Nadiira, 32°12" N, 29°53' E).
Daily rainfall observations are usually given in tenths of millimeters. Two
exceptions are:
a. Indonesian data. These are given in millimeters.
b. Indian data before 1958. These are given in hundredths of inches, but are
converted to tenths of millimeters,
The source of the data is given in the last chapter (Chapter VI). This chapter
also summarizes supplements of missing data.

When analysing rainfall series for a considerable number of years one must
be aware that the recorded rainfall amounts have not always been obtained in
the same way. There can be large differences in the mean rainfall amount due to
changes in the way of measuring. If one neglects such non-homogeneities one
gets a stochastic process which is not representative for the present situation
but for a mixture of the many different situations in the past. Moreover, non-
homogeneity can lead to a serious bias in estimates of parameters. Therefore,
the problem of non-homogeneity is discussed in detail in Chapter II. In
Chapter III the analysis of daily observations of Winterswijk, Hoofddorp and
Hengelo is described. A stochastic model is developed and features of this
model are compared with those of the historic series. Theoretical considerations
about this model, based on the theory of stochastic processes, are given in
Chapter IV. In this chapter formulas for the calculation of correlograms,
variance-time curves and the cumulative distribution of k-day totals are
derived. The application of the model to other climatic regions is presented
in Chapter V.

2. NOTATION AND ABBREVIATIONS

Each chapter usually contains a number of sections. Formulas, tables and
figures are numbered within these sections. For instance, (5.1) means Equation
(1) of Section 5. Some chapters contain one or more appendices. These appen-
dices are numbered within the chapter to which they belong; equations are
numbered within appendices. That is (A3.2) means Equation (2) of Appendix
A3. When reference is made to a formula, table or figure of another chapter,
the number of this chapter is included. For instance, IV, (4.10) means Equation
{10) of Section 4 of Chapter IV and II, (A4.3) means Equation (3) of Appendix
A4 of Chapter II.

The rth moment about zero is denoted by y7; the rth central moment by u,
and the rth factorial moment by p(). For the mean (1) usually the symbol p is
used only and the variance {u,) is often denoted by 2.

An estimate of a particular parameter is denoted by placing a carct above the
parameter, So d; means an estimalte of ¢>. However, estimates of correlation
coefticients (p) are denoted by » and estimates of the variance (62) are usually
denoted by s2.
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Random variables are underlined; x ~ y means that x and y are identically
distributed. Logarithms are assumed to be to the base ¢ (natural logarithms)
and are denoted by log.

The major abbreviations are:

ML
AML
LR
OLS
CL

cdf

gf

pef
scc
Rel. freq.
iid
NBD
SNBD
TNBD
GD
LSD
LDF
SGD

A, B

WD, DW

Sd
Sw
Sdw
Swd

KNMI

Meded. Landbouwhogeschool Wageningen 77-3 (1977 )

maximum likelihood.
approximate maximum likelihood.
likelihood ratio.

ordinary least squares.

critical level.

cumulative distribution function,
generating function.

probability generating function.

serial correlation coefficient.

relative frequency.

independently and identically distributed.
negative binomial distribution.

shifted negative binomial distribution.
truncated negative binomial distribution.
geometric distribution.

logarithmic series distribution.

*lod des fuites’.

shifted gamma distribution,

method of analysis in which a wet or dry spell is assigned to the
period in which it begins (A) or ends (B). The capitals A and B are
usually followed by the height (in tenths of millimeters) of the
threshold defining a wet day (see I1I, 2).

method of analysis by wet-dry cycles (WD) or dry-wet cycles (DW).
The capitals WD and DW are usually followed by the height (in
tenths of millimeters) of the threshold defining a wet day (see II1, 2).

dry season.
wet season.
transition period from the dry to the wet season.
transition period from the wet to the dry season.

Royal Netherlands Meteorological Institute
(Koninklijk Nederlands Meteorologisch Instituut),



II. HOMOGENEITY OF DUTCH RAINFALL SERIES

1. INTRODUCTION

In this chapter the homogeneity of Dutch rainfall series is discussed. A rain-
fall series is called homogeneous if for each year rainfall on a particular calen-
dar day or month is a realization of the same random variable. A homo-
geneous rainfall series is not necessarily a realization of a stationary stochastic
process because it may exhibit seasonal variation. In fact the definition of a
homogeneous series concerns the whole probability distribution of rainfall
amounts. In practice, however, homogeneity of the mean is considered only,
since departures from homogeneity in higher order moments can hardly be
detected because of large sample variations.

Non-homogeneity can be a consequence of a gradual change in the metcoro-
fogical situation, but can also be purcly man-made, e.g. due to changes of site,
or to changes in instructions to observers. Here it is assumed that departures
from homogeneity are man-made and therefore non-homogeneitics in the
mean usually consist of jumps.

Tests for homogeneity were done with annual or monthly totals. Methods
for testing homogeneity often make assumptions about the distribution of the
rainfall data. Therefore the distribution of annual and monthly totals is
discussed in Sections 2 and 3.

The probability of success in detecting jumps in the mean of a given rainfall
series depends on the situation of neighbouring rainfall stations. For instance,
when some station changes its way of measuring, the best way to study the
effect of such a change is to compare the rainfall series with that of another
station in the direct neighbourhood with no changes. Even small departures
from homogeneity can be detected if the two stations are close together. An
example of how a jump is determined by comparing altered rainfall stations
with unaltered rainfall stations is given in Section 4. The problem discussed in
that section is a possible jump in the mean of Dutch rainfall series dve to a
change in height of the rain gauge, during the period 1946-1954. The signifi-
cance of a jump is tested by comparing rainfall series in the Netherlands with
those of neighbouring countries.

It often happens, however, that the homogeneity of rainfall series of neigh-
bouring stations is also doubtful or that there is no neighbouring rainfall
station at all. Then only use can be made of a single rainfall series and many
possible jumps will be passed unnoticed, An analysis of homogeneity making
use of only one rainfall series is described in Section 5, where homogeneity of
the Zwanenburg-Hoofddorp series is investigated.

When using a separate process for the occurrence of wet and dry days the
homogeneity of the sequence of wet and dry days is also important. Statistical
methods for detecting jumps in such a situation are given in Section 6.

6 Meded. Landbouwhogeschool Wageningen 77-3 (1977}



2. THE DISTRIBUTION OF ANNUAL TOTALS

When rainfall is recorded within small time increments (a day or shorter),
the marginal distribution of the rainfall amounts is markedly skew, because
zero values and some very large values occur with relatively large probability.,
Rainfall amounts over longer periods are less skew because of the effect of the
central limit theorem and it is well known that the skewness of annual totals
is so small that they can be assumed to be approximately Gaussian (cf. DE
Boer (1956, 1958)). Here a statistical support for this assumption is given on
the basis of annual data of some Dutch and German rainfall series. Though
many tests for normality exist only a few of them are considered here, namely
a test on the coefficient of skewness, the Shapiro-Wilk test, the Kolmogorov-
Smirnov test and the Kuiper test.

The coefficient of skewness y is defined by:
(2.1) Y = tafpu3’?

An estimate of y can be obtained by replacing the central moments in the right
side of (2.1} by unbiased sample estimates (cf. VEN TE Cnow (1964), 8-1-11C3):

]

Z (x;i—%)3
o]

with N: the number of data,
X: the sample mean.

For a one-sided test the upper and lower 5 and 1 per cent critical values of §
can be obtained from the corresponding percentage points of the \/E 1 statistic,
given by PEARsON and HARTLEY (1962, Table 34B). One can also use the normal
approximation of the /b, statistic given by D’Acostino (1970).

The test based on # is only sensitive to skewed alternatives; the other tests
given here are sensitive to many different kind of alternatives (so called omnibus
tests).

The Shapiro-Wilk test is based on the ratio of the best linear unbiased esti-
mate of the standard deviation calculated from an ordered sample to the sample
standard deviation (SHAPIRO and WILK (1965)).

Let x denote the vector of ordered observations

Xin € X < ... Sxandletm = (m,, my, ..., my)

denote the vector of expected values of standard normal order statistics. For
the Shapiro-Wilk test one starts with the regression equation:

Meded. Landbouwhogeschool Wageningen 77-3 (1977 7



(2.3) Xw = 4+ omg + og i=1,....N

where p and o are unknown parameters for location and scale respectively.
The error terms ¢; are assurmed 10 have mean zero and covariance matrix V.
The method of generalized least squares gives as an estimate of o:

my-ix

24 ;=
CH = vm

which is the best linear unbiased estimate of ¢ based on the ordered sample.
Equation (2.4) can be written as:

(2.5) d = ,/bbax

-1
with b= V'm
m'vV-im
-1
and a= V-im = b .
(m'V-1V-1)172 /b

The test statistic is:

(2.6) W=

For normal samples W is close to its maximum value 1; for non-normal
samples W tends to smaller values.

The elements of the vector a in (2.5) and (2.6) depend on first and second
moments of standard normal order statistics. The expectations can be ob-
tained from HARTER (1961), but variances and covariances (the elements of V)
are more difficult to obtain, especially for large N. Therefore, SHAPIRO and
Francia (1972) proposed to base the numerator of (2.6) on the ordinary least
squares (OLS) estimate of g, that is one has to substitute the identity matrix I
for the matrix V in (2.4). They gave percentage points of the null distribution
of the modified statistic W for N = 35, 50, 51(2)99. The lengths of most annual
rainfall series under investigation lie in this range. The table by SHAPIRO and
Francia (1972) has been extrapolated for series which are a bit longer than
99 years.

The Kolmogorov-Smirnov test and the Kuiper test are based on differences
between the empirical and the theoretical distribution function. The empirical
distribution function Fx(x) is defined as:

number of observations < x
N

27 Fu(x) =

g Meded. Landbouwhogeschool Wageningen 77-3 (1977



where N is the sample size.
Denote the cumulative distribution function by F,(x) and define:

SISN|N

@) D= w009 F) = max ]y - Foxo)

(280) D = sup (Fo(n)-Fw(x) = max {F obrw) - i;vl}

where x(;; denotes, as before, the ith order statistic of the sample.
The Kolmogorov-Smirnov statistic D is defined by:

2.9 D = max(D*, D)
and the Kuiper statistic K is defined by:
(2.10) K=D"+D"

TaBLE 2.}. Mean, standard deviation and realizations of test statistics for tests for normality
of annual data of some Dutch and German rainfall series. Realizations of test statistics
which are significant at the 5 per cent level are denoted by an asterisk.

Standard
Mean deviation
Rainfall station Period (mm) (mm) $ W D\/ N KJ N
Norderney 1881-1973 701 113 0015  0.992 0.554 1.139
Leer 1891-1970 744 106 -0.840 0.948* 0.851 1.388
Weener 1897-1970 735 108 —0.326 0982 0.605 1.202
Laar 1903-1970 710 123 -0.050 0992 0.401 0915
Lingen 1855-1973 743 123 0.075  0.9% 0.622 1.258
Rheine 1891-1970 746 128 -0.142  0.9%4 0.379 0.843
Ahaus 1891-1970 789 128 -0.051 0.988 0.615 1.196
Ringenberg 1893-1970 743 132 —0.114  0.986 0.582 1.071
Kleve 1851-1972 779 131 -0.120  0.985 0.532 1.147
Jiilich 1894-1970 636 119 0.147 0982 0.723 1.447
Herzogenrath 1894-1970 782 150 1.085% 0.934* 0951* 1415
Delfzijl 1872-1970 721 107 -0.231 0989 0.529 0.998
Warffum 1893-1970 723 117 -0.140  0.991 0.579 1.129
Ter Apel 1892-1972 711 123 0.337 0.962* 0.504 1.093
Finsterwolde 18921972 687 117 0.15¢ 0984 0.695 1.317
Winschoten 1923-1972 751 110 —0.554 0973 0.588 1.108
Enschede 1881-1972 751 122 0.332 0.964* 0.883 1.632*
Hengelo 1887-1972 748 134 0.390 0.975 0.544 0.930
Winterswijk 1880-1972 761 127 0.098 0969* 0.895* 1.806*
Valkenburg 1904-1972 773 130 0.383  0.982 0.636 1.068
Roermond 18691972 657 117 0.116  0.992 0.588 1.216
Schaesberg 1909-1972 754 123 -0.084 0975 0.477 1.027
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F1G. 2.1. Normal probability plots of annual totals of Leer, Herzogenrath and Winterswijk.

The tabulated percentage points of the null distribution of these statistics are
only applicable if Fy(x) is completely specified, which is not so here because
mean and variance have to be estimated from the sample. Then percentage
points, obtained by Monte Carlo simulation, are given by LILLIEFORS (1967)
for the statistic D and by LouTeR and KoErTs (1970) for the statistic K. Per-
centage points for D and X are also given in Table 54 (Case 2) of PEARSON and
HARTLEY (1972). For large values of N the critical value at the 5 per cent level
is approximately 0.886/./N for the Kolmogorov-Smirnov statistic and
1.450/ ./ N for the Kuiper statistic which is about 65 and 85 per cent, respective-
ly, of the commonly tabulated values in the situation of known parameters.

Table 2.1 shows realizations of the statistics 5, W, D \/ Nand K \/ N for rain-
fall series which will be used again for the analysis of homogeneity in Section 4,
The denominator of the estimator of the standard deviation is ¥-1in Table 2.1,
because tables of percentage points of the statistics D and X are also based on
this estimator. Realizations of the test statistic which are significant at the
5 per cent level are denoted by an asterisk. The test based on the coefficient of
skewness is one-sided (test on positive skewness}; annual totals of the station
of Leer have a negative coefficient of skewness with a critical level of more than
0.99 and hence a negative coefficient of skewness seems to be possible. In
general there is no evidence for departures from normality. Normal probability
plots of annual totals of Leer, Herzogenrath and Winterswijk (see Figure 2.1)
show that departures from normality are caused by extremely high values
(Herzogenrath, Winterswijk) or extremely low values (Leer).

It 1s well-known that the Shapiro-Wilk test is more powerful than tests based
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on differences between the empirical and the theoretical distribution function.
This is illustrated in Table 2.1, the Shapiro-Wilk test giving the larger number
of significant values.

3. THE DISTRIBUTION OF MONTHLY TOTALS

Figure 3.1 shows estimates of the monthly mean and standard deviation for
a number of stations with observations over a long period. The monthly mean
reaches its minimum in February, March or April and its maximum in July or
August, though stations near the west coast (Hoofddorp) also have a high
October mean. Another feature of the monthly mean is the comparatively low
September value. Stations remote from the coast (Enschede, Winterswijk,
Roermond) are characterized by high standard deviations in February, July
and August. The high February standard deviation is mainly caused by the
high monthly total of February 1946, For coastal stations there is a nearly
sinusoidal change of the standard deviation. The coefticient of variation is
nearly constant (about 0.5) during the year.

In Section 3.1 a possible serial correlation of monthly totals is investigated.
The marginal distribution of monthly totals is discussed in Section 3.2.

3.1. Serial correlation of monthly totals
Because there is a seasonal change in mean and standard deviation, the
original totals x were standardized to u, with the formula:

X127+m — Xm

(3.1) Uya14m =~
Sm
withm : index of the month (1, ..., 12},
[ : index of the year (0, ..., n—1), n being the number of years,

Xm : mean rainfall amount of month #,
sz ¢ traditional (unbiased) cstimate of the variance of the rainfall
amount of month m.
A test for serial correlation can be based on the serial correlation coefficient
(scc). The lag & scc was estimated by

N-k
Zl (u.- — &) (u;+rﬁ)

3.2) e = =
S (e - 5)?
i=1

where ¥ = 12 x n, the number of observations,
#: mean of the N u;s.

N
Using# = 0and ), (u:—#)? = N - 12, Equation (3.2) becomes

i=1
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N-k
Uilti +x

_ i=1
(3.3) =TT

For sufficiently large N (¥ about 75) the distribution of r, \/ Nisapproximate-
ly standard normal if the observations are independent and normally distributed
(cf. JENKINS and WATTS (1969), 5.3.5). Moreover, then the different #,s are
approximately uncorrelated. Therefore, a rough test for serial correlation can
be based on the statistic:

L4

(3.4) X2 =NY

k=1

which is approximately a y?-variable (chi-square with v degrees of freedom)
under the null hypothesis.

What should one do when dealing with non-normal data, as is the case here
(see 3.2). BARTLETT (1946) pointed out that the asymptotic variances and co-
variances of the rys do not depend on the marginal distribution. Moreover, the
joint distribution of the rys for normal data seems often to be a good approxima-
tion when dealing with non-normal variables (cf. YEVIEVICH (1972), Section
2.2). However, one should be very careful in applying the test to non-normal
data because the convergence of the test statistic to its asymptotic distribution
can be very slow. It is, therefore, advisable to repeat the test with a normalizing
transformation on the data.

One can also base the test on r, alone or equivalently on the Yon Neumann'’s
ratio, which is defined as:

N-1
1 [,;1 iy —1)?
(3.5) d = S B

1=

(ui —w)?

i=1

From (3.2} and (3.5) it is verified that:
(3.6) d=l-r,

(cf. SNEYERS (1957)).

Realizations of the test statistics mentioned above and their corresponding
critical levels are given in Table 3.1 for the Hoofddorp and Winterswijk series.
The test based on the statistic X has been repeated with the square roots of the
monthly totals which are approximately normally distributed (see Section 3.2).
There is no evidence for serial correlation at the 5 per cent level either for
transformed or untransformed data (the critical levels are always larger than
0.05). Taking the values 3,6 or 12 for v in (3.4) leads to the same conclusions.

Meded. Landbouwhogeschool Wageningen 77-3 (1977) 13



TaBLE 3.1. Realizations of test statistics and their corresponding critical level (C.L.) for tests
on serial correlation of monthly totals. The statistic X2 in (3.4) is based on v = 36.

Original data Transformed data
Rainfall series
d CL. X2 C.L. X C.L.
Winterswijk 1880-1970 0.971 0.141 22,70 0.959 28.73 0.800
Hoofddorp 1861-1972 0.962 0.105 40.44 0.280 41.76 0.235

3.2. The marginal distribution of monthly totals

In contrast with annual totals monthly totals have a markedly skew dis-
tribution. The monthly mean of the coefficient of skewness is 0.774 for the
Winterswijk series and 0.562 for the Hoofddorp series and it can be shown from
Tabie 34B of PEaARSON and HARTLEY (1962) that these values show evidence for
a positive skewness at the 5 per cent level.

There are many distributions which are positively skewed. Two of them will
be examined in more detail, namely the gamma distribution and a distribution
which will be denoted as ‘loi des fuites’ (LDF).

The gamma variable y(4,v) is defined by its probability density:
(3.7 X e 0,1>0 0
. = e— >
Six) o x>0,1>0,v>

where I' stands for the gamma function. The parameter A is a scale parameter
and the parameter v is 2 shape parameter.

If v > | it follows by differentiation of (3.7) that there is a mode at (v—1)/4.
If v < 1| the density is J-shaped and is infinite at the origin. For v = 1 one gets
the exponential distribution, which has probability density:

(3.8) fix) = de™.
Another special case of the gamma variable is the X 3-variable, namely:
(B9 B ~y04m).
Moments of the gamma variable are:
(3.10a) Hi = vl
(3.10b) M = v/A?
(3.10c) Hy = 2vjA3
(3.10d) py = (6v 4 3v?)/A%
{3.10e) C= \/,u_z/p{ = 1/ ,/ v {C is the coefTicient of variation)

(3.10) v=2{Jv.
From (3.10c and f) it follows that the quotient y/C is always 2, irrespective
of the parameters of the distribution.
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A normalizing transform of the gamma variable is the Wilson-Hilferty
transform (cf. KENDALL and STUART (1969), 16.7):

AY(A,v) 1/3 1
(3.11) 3 /v {(—v—) -1+ Qv}

which is asymptotically standard normal. The third central moment of the
transformed variable is of order v-3*; so the Wilson-Hilferty transform may give
a good normal approximation when the shape parameter is large.

Estimates of v and 1 can be obtained, for example, by the method of moments
or the method of maximum likelihood (ML), The moment estimates are:

3.12a) 1= x/s2
(3.12b) = x2/s?

where X and 52 are the sample mean and variance (unbiased version), respec-
tively.
The ML estimate ¥ of the parameter v follows from (cf. THOM (1958)):

N
(3.13) Y@ -logd =1 X logx,~logx

1
N
where N is the number of observations and y stands for the digamma function,
which is the first derivative of the logarithm of the gamma function. The iterative
sohution of (3.13a) was described by CHot and WETTE (1969). An initial estimate
of v can be based on the moment estimate or an approximative solution of
(3.13a), e.g. the one given by THOM (1958) or the one given by GREENWOOD
and DURAND (1960). The initial estimate given by CHoi and WETTE (1969) is
only a simplified form of Thom’s estimate.

After a solution of (3.13a) has been found, the ML estimate of the scale para-
meter can be obtamed from:

(3.13b) 1= ¥/%.

As a measure for the efficiency of a moment estimator with respect to a ML
estimator one can take the ratio of the large-sample variances of the ML and
the moment estimator. Because for large samples there is no other estimator
with smaller variance than the ML estimator, this ratio is called the asymptotic
efficiency of the moment estimator. Expressions for the large-sample variances
of moment and ML estimators of the parameters of the gamma distribution
are given in Appendix Al. The asymptotic efficiencies of the moment estimators
of 1 and v are given in Table 3.2. Notice from that table that the asymptotic
efficiency only depends on v. For small values of v (skew distributions) the
method of moments gives very inefficient estimates.

A general measure for the asymptotic efficiency of the method of moments
is the ratio of the determinants of the large-sample covariance matrices of the
ML and moment ¢stimators, For the gamma distribution this ratio equals the
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TaBLE 3.2. Asymptotic efficiency of the moment estimators of the gamma distribution as a
function of the shape parameter.

Estimator of Estimator of
v A v v A v
0.1 0.347 0.050 20 0.636 0.575
0.2 0.363 0.098 3.0 0.712 0.676
0.3 0.382 0.144 4.0 0.763 (.739
0.4 0.401 0.187 5.0 0.798 0.782
0.5 0.420 0.227 6.0 0.825 0.812
0.6 0.440 0.264 7.0 0.845 0.835
0.7 0.458 0.299 8.0 0.861 0.853
0.8 0.476 0.331 9.0 0.874 0.868
0.9 0.494 0.360 10.0 0.885 0.880
1.0 0.510 0.388 100.0 0.987 0.987

asymptotic efficiency of v, which foliows from the formulas for the large-
sample variances and covariances in Appendix Al.

The second probability distribution which is considered here can be described
as follows. Suppose that rainfall occurs in instantaneous showers according to
a Poisson process with mean intensity or rate 1/u, that is the number of showers
in a time interval with length ¢ is Poisson distributed with mean ¢/u. Rainfall
amounts of single showers are assumed to be:

a. Independent of the process of occurrence.
b. Mutually independent.
¢. Exponentially distributed with mean 1/p.

The process described here was suggested as a model for rainfall over arid
regions by FisHER and CorNisH (1960). BERNIER and FANDEUX (1970) applied
this process successfully to fit the distribution of monthly totals of French
rainfall series and because it was used earlier to describe the distribution of
escape flows of gas conduits they called the distribution of a Poisson distributed
sum of iid exponential variables the ‘loi des fuites’ (iid stands for independently
and identically distributed). This name will also be used here and will be ab-
breviated as LDF,

De Boer (1956, 1957, 1958) applied a slight modification of the LDF to
describe the distribution of rainfall totals over a period of at least 30 days by
taking a constant rainfall amount for each shower instead of exponentially
distributed rainfall amounts.

Let x, be the total rainfall amount in a period of length t. The probability
distribution of x, s derived in Appendix A2. For the derivation of the moments
of x, use can be made of the moment generating function (cf. Cox (1962),
Equation (8.3.4)}:
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(3.14) fs) = E(e %) = e Pexp (ﬁg—)
pt+s

with @ = t/u. From (3.14) it follows:

|
1+5/p

(3.15) log fis) = 8 (kl +

On the other hand:

) =63 o

Sm

(3.16)  logf(s) = 2(1)%—

where x,, is, by definition, the mth curnulant of x,. So ., satisfies the relation:

m!e
o
(cf. FisHER and CorNIsH (1960)).
From (3.17) expressions for moments and central moments can be obtained:
(3.18a)  p{ = =0/p
(3.18b)  p, = %, = 28/p?
(3.18¢c) iy = ®y = 68/p°

(8} my =, + 3uF = (240 + 126%))p

(3.18¢) C = /2/8
(.18 y = 3/./20.

From (3.18¢ and f) it follows that the quotient y/C is always 1.5, irrespective of
the parameters of the distribution.
A normalizing transform of the LDF is:

(319) 2 {Jx - JOp}

which is asymptotically standard normal. It can be shown that the third central
moment of the transformed variable is of order 1/63, so the transformation may
give a good normal approximation when @ is large. For monthly totals of
French rainfall series the approximation (3.19) works quite well (cf. BERNIER
and FanpEUx (1970)).

3.17) M =

The moment estimates of the parameters p and # follow from the equations:
(3.20a)  p=2x/s? (= 20)
(3.20b) & = 2%2/52 (= 29).

So the moment estimates of the parameters of the LDF differ only a factor
from those of the gamma distribution.
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Estimation of the parameters of the LDF by the ML method is complicated.
The likelihood equations and their solution are given in Appendix A3.

Table 3.3 gives estimates of the parameters of the gamma distribution and of
the LDF. The estimate 1/ of the LDF was obtained from 6 by assuming ¢ to
be equal to the number of days of the month (for February ¢ was set equal to
28.2). The magnitude of the estimated parameters changes considerably from
month to month, which is partly due to their large standard deviations. For
instance, for the Winterswijk series the monthly mean of the standard deviation
of moment estimates of p and 1/u1s 0.020 mm ™~ and 0. 040 days !, respectively,
which can be obtained from (Al. 6a and b). ML estimates of p and 1/u have a
somewhat smaller standard deviation, namely 0.018 mm~1! and 0.037 days—!,

TanLE 3.3. Estimates of the parameters of the gamma distribution and the LDF.

Winterswijk (1880-1970)

Gamma distribution LDF

v 1 (mm~") 1/ii (days—*) p (mm-1)
Month Moments ML  Moments ML Moments ML Moments ML
January 3.84 3.12 0.064 0.052 0.248 0.233 0.128 0.121
February 2.26 2.28 0.044 0045 0.160  0.190 0.089 0.105
March 4.20 3.96 0.084 0.079 0.271 0.278 0.168 0.173
April 3.37 2.90 0.062 0.059 0.225 0.228 0.138  0.140
May 3.61 3.53 0.066 0.065 0.233  0.248 0132 0.141
June 557 5.29 {L.086  0.081 0.372  0.375 0171 0.173
July 4.65 4.20 0.054 0.049 0.300 0.301 0.108 0.109
August 4.18 3.39 0.053 0.043 0.270  0.257 0.105  0.100
September 3.35 3.02 0.052 0,047 0.223 0230 0.103 0.106
October i 3.00 ¢.053  0.043 0240 0227 0106  0.101
November 3.97 395 0.062 0.062 0.265 0.282 0.124 0132
December 3.85 335 0.056 0047 0248 0.248 0112  0.112

Hoofddorp (1861-1972)

January 4.07 3.93 0.072  0.069 0263 0.273 0.144 0,150
February 2.90 2.37 0.068 0.055 0206 0.203 0.135 0133
March 442 4.22 0.096 0092 0285 0.293 0.193  0.198
April 394 3.28 0093 0.077 0262 0.256 0.186  0.181
May 4.02 398 0.088 0087 0260  0.275 0.176  0.187
June 394 3.47 0071  0.062 0262 0.260 0.142  0.140
July 3.60 3.00 0.049  0.041 0232 0222 0.099  0.095
August 4.73 3.88 0.052 0.043 0305 0.286 0.104 0.098
September 392 3.06 0048 0.038 0262 0241 0.096  0.089
October 3.32 2.44 0037 0027 0214 0.194 0.074  0.067
November 4.04 4.11 0.054  0.055 0270 0292 0.108 0.118
Diecember 5.35 3.88 0078 0.057 0345 0.299 0.156  0.135
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respectively, The method for obtaining standard deviations of moment and ML
estimates is given in Appendix Al.

The monthly mean of the ratio of the determinants of the estimated covariance matrices
of the ML and moment estimators is 0.80 for both the Winterswijk and Hoofddorp series.
For the gamma distribution this ratio is 0.71.

For the gamma distribution a honest comparison of the estimates of different
months is not possible because these estimates are not corrected for the fact
that different months can have different lengths. Another disadvantage of the
gamma distribution is that its tail is too long for monthly data. This fact can
be shown by computing moment estimates of the ratio y/C, which has tobe 1.5
for the LDF and 2 for the gamma distribution. The monthly mean of the
estimate of this ratio is .46 for Winterswijk and 1.11 for Hoofddorp; only for
the month of February of Winterswijk is this ratio larger than 2, namely 2.80.
Perhaps this result explains why for the gamma distribution the ML estimate
of the variance (obtained by substituting ML estimates in the right side of
(3.10b)) tends to be larger than the moment estimate. This is seen from Table 3.4
where moment and ML estimates of the standard deviation are compared. The
estimates of the standard deviation of the annual totals were obtained from the
summation of monthly variance estimates. There is a good correspondence
between moment estimates and ML estimates, when a LDF is assumed, but the
ML estimate under assumption of a gamma distribution is larger in nearly
all cases.

Cumulative frequencies of monthly totals and theoretical values, based on
fitted distributions (gamma distribution, LLDF), are compared in Figure 3.2.

TaBLE 3.4. Comparison of different estimates of the standard deviation (in mm) of monthly
totals.

Winterswijk 1880-1970 Hoofddorp 1861-1972

Moments ML gamma ML Moments ML gamma ML
Month distribution LDF distribution LDF
January 30.5 339 314 28.0 285 27.5
February 138 337 311 252 279 254
March 243 25.0 24.0 21.8 22.3 21.5
April 26.7 28.9 26.5 214 234 21.6
May 287 29.0 27.8 227 22.8 221
June 27.6 28.3 275 28.0 29.9 282
July 398 41.8 39.7 8.4 420 39.2
August 389 432 3199 4]1.8 46.2 432
September 354 373 349 41.0 46.5 42.8
October 36.2 40.3 37.2 49.1 57.2 51.6
November 321 22 311 37.0 36.8 356
December 349 38.0 349 29.6 348 318
Year 113.4 120.4 112.8 115.4 126.3 117.4
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dorp (1861-1972) and theoretical cumulative distribution functions.
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TaeLE 3.5. Critical levels of the X?-test of goodness of
fit for the LDF fitted to monthly totals.

Winterswijk Hoofddorp
Month 1880-1970 1861-1972
January 0.216 0.158
February 0.346 0.137
March 0.765 0.374
April 0.416 0316
May 0.117 0.481
June 0.573 0.983
July 0.601 0.551
August 0.249 0.076
September 0.148 0.299
October 0.519 0.095
November 0.249 0.016
December 0.601 0.394

The theoretical curves are based on ML estimates. The difference between the
cumulative distribution functions of the gamma distribution and of the LDF
is usually small, except for Hoofddorp, October. For this month the LDF gives
a shghtly better fit.

So the LDF could be preferred to the gamma distribution for fitting the
distribution of monthly totals.

The critical levels (C.L.) of the X2-test of goodness of fit for the LDF are
given in Table 3.5.

For application of the test, the carrier of the distribution of the monthly totals was divided
into classes in such a way that the expected cell frequency was the same for all classes and was
as small as possible but at least 7. The expected cell frequencies were calculated with ML
estimates based on the actual data instead of ML estimates based on observed cell frequencies;
therefore the approximation of X2 at H, by X* with parameter equal to the number of classes
minus 3 gives a somewhat progressive test (cf. WATSON (1958). and HERMANS (1969)).

From the tabulated critical levels it is seen that the LDF fits the data well.

An attractive property of the LDF is that it can easily it data with a high
fraction of zeroes and therefore application of the LDF to monthly totals of
stations with an arid or monsoon climate gives no special problems. An
example is given in Figure 3.3 where the LDF is fitted to monthly totals of
Bangalore (1879-1970).

The critical levels of the X?-test of goodness of fit are 0.238, 0.002 and 0.414 for February,
April and July, respectively; the ratio §/C is 1.31, 1.23 and 1.89 for these months. The poor
fit for the month of April is caused by the strange shape of the empirical distribution function.
It may be assumed that most commonly used probability distributions do not fit these data
well,

The LDF can be generalized in several ways. For instance, one can take gam-
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ma distributed showers instead of exponential ones. Then the moment generat-
ing function of x, is

(321 f(s) = E(e~%) = e~ exp {9 (ppﬂ)"}

where v and p are the shape and scale parameter, respectively, of the gamma
distribution for the showers. Taking logarithms in (3.21) and expanding log
fls) in powers of s/p gives for the mth cumulant of x,:

— | m
") '”T'9= hf! M (v4i-1).
mfpm  pti=i

(3.22) “m = (1) (
From (3.22) it can be deduced that:
1

v+l

Since v > 0 the ratio y/C can take values in the range [1,2).

(3.23) VC=1+

When 2,v—o0 5o that v/A— u one gets the distribution which was proposed by pe Bogr
{1956, 1957, 1958) for rainfall totals over a period of at least 30 days. For this distribution the
ratio y/C equals 1.
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4. NON-HOMOGENEITIES DUE TO A CHANGE IN HEIGHT OF THE RAIN GAUGE

In the beginning of this century the rim of rain gauges of the Royal Nether-
lands Meteorological Institute (KNMI) was at 1.50 m above the ground;
during the period 1946-1954 rain gauges were lowered to 0.40 m above the
ground. This was done after research of Braak (1945) who compared rain
gauges with different heights at various sites in the Netherlands. Some results
of his research for rain gauges with their rim at 1.50 or 0.40 m are summarized
in Table 4.1. This table shows marked differences between rainfall amounts
from rain gauges at different heights. These differences are caused by the rain
gauge influencing the air movement so that a part of the rainfall, which should
be recorded, is blown over the gauge. The largest differences occur at Dirksland,
which is an unsheltered coastal station. Differences are smaller at coastal
stations, which are more or less sheltered (Leiduin and Castricum) and at
stations remote from the coast {(De Bilt).

A drawback of Braak’s research is that the rain gauges were only compared
for a few years, Therefore, in this section the influence of the lowering of rain
gauges is studied over a longer period of observation, Because the height of all
rain gauges has been lowered in the Netherlands, a comparison between chang-
ed and unchanged rain gauges can only be based on rainfall data of neigh-
bouring countries with no changes of height in the same period. For rainfall
records of neighbouring countries one has the following possibilities:

a. Rainfali observations of the German Meteorological Institute. The ob-
servations are very suitable for this research, because near the Dutch border
no change in height or type of rain gauge has occurred since 1883,

TasLE 4.1. Comparison of rain gauges at two different heights for various sites, after BRaak
{1945). The height of the rim of rain gauge R1 is 1.50 m; for rain gauge R2 this height is
0.40 m for the sites Castricum, Leiduin and De Bilt, and 0.35% m for the site Dirksland. (The
rainfall amount of rain gauge R2 of Dirksland is assumed to be 37.2 mm in May 1940.)

Dirksland Castricum Leiduin De Bilt
Number of months 41 42 34 23
Monthly mean (mm} R1 352.5 64.9 60.0 57.8
R2 578 65.8 632 58.8
Monthly standard
deviation (mm) R1 36.1 45.5 42.8 43.5
R2 39.0 46.3 44.6 43.9
Correlation coefficient
(see (Ad. 1)) of R1and R2 data 0.9984 0.9998 0.9992 0.9999
Number of times that the
monthly total of R1 > R2 0 6 2 1
R1=R2 0 1 0
Rl < R2 41 35 32 21
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b. Rainfall observations of the Belgian Royal Meteorological Institute. A
drawback of these observations is that the type of rain gauge was changed
about 1950. Besides, it is only since 1951 that measurement of rainfall in Bel-
gium, has been well organized.
¢. Rainfall observations at the Observatory of Ghent University. In the period
1921-1972 no change in height took place.
The detection of jumps in the mean, using annual totals, is discussed in
Section 4.1. In Section 4.2 a seasonal change of jumps is investigated with
monthly totals.

4.1 Detection of jumps using annual totals

The probability of success in detecting jumps strongly depends on the
quality of the rainfall data at different sites. It is possible to get an idea about
the quality of the data by comparing cross correlation coefficients of annual
totals (see Section 4.1.1). The estimating and testing of jumps with a multi-
variate regression model for point rainfall data is discussed in Section 4.1.2.
An analysis with partial sums of differences of averages of point rainfall data
is described in Section 4.1.3. Section 4.1.4 deals with regression models using
averages of point rainfall data and finally, in Section 4.1.5, the results of this
research are compared with Braak’s results.

4.1.1. Cross correlation coefficients of annual totals

Let p., be the correlation coefficient of two stations X and Y and r,y the
sample correlation coefficient (to be defined in Appendix A4). If there are N
simultaneous observations at the two stations, it can be shown that for the
sample correlation coefficient :

(4.1a) E(rsy) & pry

and

(1-p%,)?
—

The expressions only hold for homogeneous series. For the validity of
(4.1b) also normality and absence of serial correlation have to be assumed (cf.
KENDALL and STUART (1969), 10.9). These assumptions seem reasonable for
annual totals on the basis of the results in previous sections.

In the case of non-homogeneous rainfall series the sample correlation
coefficient can be strongly biased. The bias of the sample correlation coeffi-
cient is investigated in Appendix A4 for one jump in the mean in one of the two
series. The numerical examples given in this appendix show that only very large
jumps can lead to a serious underestimation of the theoretical correlation
coefficient.

For 23 stations, correlation coefficients of annual totals were estimated for
the period 1894-1970. Figure 4.1 shows the relation between the estimated
correlation coefficients and the distances between the stations. Distances were

41b)  var (n,) &
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FiG. 4.1. Estimated correlation coefficients {r.,) of annual totals for the period 1891-1970.

The stations considered are:

— Biervliet, Groede, St. Kruis (Dutch-Flanders (DF)),

- Norderney, Norden, Leer, Warffum, Delfzijl, Finsterwolde (Northern Coastal
area (NC)),

- Lingen, Rheine, Ahaus, Kieve, Ringenberg, Enschede, Hengelo, Winterswijk
(Overijssel, Gelderland and adjacent German area (OG)),

- Jilich, Herzogenrath, Diiren, Roermond (Limburg and adjacent German area

Ly,
-— Lathen, Ter Apel.
Correlation coefficients are only given for distances less than 150 km.

obtained from a list of coordinates. It is somewhat surprising that for small
distances there is a considerable variation in the values of ry,, which is much
larger than could be expected from (4.1b). This iarge variation can be due to
non-homogeneity or anisotropy of the considered area. Large differences can
also be caused by changes in the rain gauge installation which usually give rise
to a (negative) bias in correlation estimates (see Appendix A4). Not only the
reduction in height of rain gauges in the Netherlands is important, but also the
frequent changes of site. Changes of site can cause serious departures from
homogeneity in the coastal area (local differences of the wind cffect) and the
southern part of the Netherlands (orographic effect). It is seen from Figure 4.1
that low values for r«, are mainly found for stations in the northern coastal
area and for Limburg and adjacent German area.
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F1G. 4.2. Annual totals of Finsterwolde and Leer for three different periods.

Figure 4.2 compares annual totals of Finsterwolde and Leer for the periods
1894-1925, 1926-1946 and 1953-1970. The estimated correlation coefficients
for these periods are 0.704, 0.794 and 0.913, respectively. A test on equality of
correlation coefficients can be based on Fisher’s z-transform:

]+?'xy
(4.2) Zy = }log ( )

l—#sy

which is the inverse of the hyperbolic tangent of the sample correlation coeffi-
cient.

Under the assumnption of neormality the mean and variance of zy, are ap-
proximately (cf. KENDALL and STUART (1969), 16.33):

{1 +ny) Pxy

(4.3a) Ezsy) = 4log \1 s 2AN-1)

4.3b : ML
@3 G x gt e

The z-transform has an advantage because its distribution tends much faster
to normality than the distribution of the sample correlation coefficient. Under
the assumption of equal correlation for two different periods, the difference of
the z-transforms is approximately normally distributed with mean zero (cf.
KENDALL and STUART (1973), 26.19). The standard deviation of this difference
follows from (4.3b) and is about 0.35 when both series have a length of 20 years,

The z-transforms for the three periods in Figure 4.2 are 0.704, 0.794 and
1.545, respectively; thus, there is some evidence for a better correlation in the
most recent period.

The poor correspondence between simultaneous annual totals during the period 1894-1925
is partly because from 1911 up to 1924 the rain gauge of Finsterwolde was surrounded by
huge elm-trees.
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Figure 4.3 shows correlation coefficients of annual totals of rainfall stations
in Belgium and Dutch-Flanders for the period 1931-1972. This figure reveals
the following facts:

a. There is a strong correlation between annual totals from different stations
in Dutch-Flanders. The estimated correlation coefficients are in general

larger than correlation coefficients between rainfall stations in the northern

coastal area, which is also seen from Figure 4.1.

b. There is a reasonable correlation between annual totals of Ghent University
and those of stations in Dutch-Flanders.

c. There is a poor correspondence between rainfall totals of stations of the
Belgian and Dutch national networks.

For annual totals of rainfall stations in this area Table 4.2 gives estimated
correlation coefficients and their z-transforms for two different periods. The

TabLE 4.2. Correlation coefficients (r,) and their z-transforms (z.,) of annual totals of some
Belgian and Dutch stations for two different periods.

At : Fay Zxy
Station X Station ¥ 1931-1046 1952-1972  1931-1946 1952-1972

St. Andries-Brugge St. Kruis 0.636 0.905 0.752 1.501
Moerbeke-Waas St. Kruis 0.378 0.851 0.406 1.259
Cadzand St. Kruis 0.836 0.940 1.208 1.740
Ghent St. Kruis 0.739 0.867 0.948 1.321
Ghent Axel 0.814 0.891 1.139 1.427
St. Kruis Axel 0.723 0.939 0914 1.730
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poor correspondence between rainfall data of the Belgian and Dutch national
networks is due to a poor correspondence in the period before 1950. For all
pairs of stations given in Table 4.2 correlation coefficients of the first period
are smaller than those of the second period.

Because of the poor correspondence with rain gauges of the Dutch national
network the rain gauges of the Belgian Meteorological Institute will not be
considered.

4.1.2. A multivariate regression model

The effect of a reduction in height of rain gauges depends on the wind ex-
posure and because the degree of sheltering against the wind differs from
station to station possible jumps in the mean need not be the same for all
stations. Therefore, in the first instance use is made of a multivariate regression
model for estimating and testing jumps at various Dutch stations. A model
could be:

P .
Yij = Zﬁuxkﬁrﬁoj_}_% k=1,....n;j=1,....4q
(4.4) et

P
Vi = 2 Bixei+ Boj+ 0 +a k=n+l,... Nij=1,...q

with p : number of foreign (Belgian, German) stations,
g : number of Dutch stations,
xxi: rainfall amount in the kth year of the ith foreign station,
vij: rainfall amount in the kth year of the jth Dutch station.

During the first # years (period 1) the height of Dutch rain gauges is 1.50 m;
during the last N-n years (period 2) this height is (.40 m. The error terms
€1j....en; are assumed to be iid for every j. The marginal distribution is
assumed to be Gaussian with mean zero.

The use of this model underlies the assumption that only a change in height
can cause a jump in the mean. The facts that there are changes of site and that
in 1962 a new type of rain gauge was introduced in the Netherlands are not
considered. Therefore care is needed in the interpretation of the results of the
regression analysis.

Estimates of the regression coefficients can be obtained by applying the
method of least squares for each Dutch station separately (cf. Rao (1973),
8c.1 and 8¢.2).

Figure 4.4 shows estimates of the jump §;, which were obtained by applying
the regression model for four different regions. The periods for which the
regression model was applied are given in Table 4.3. The largest values for the
8 s belong to coastal stations. Jumps of more than 10 per cent are found in the
northern coastal area (Warffum, Schiermonnikoog, Roodeschool), but they
are in general much smaller for stations in the south-western coastal area.
Possible explanations for this phenomenon are given in Section 4.1.3. The
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FiG. 4.4, Estimates of jumps J; (see Equation (4.4)) for different regions (in mm). Stations
for which the jump differs signiftcantly from zero are denoted by an asterisk.

TaBLE 4.3, Realizations of the U-statistic (Equation (4.5)) for testing significance of jumps
4; in the regression model (4.4). The different regions are given in Figure 4.4.

Region Period 1 Period 2 U Critical level
1 1926-1946 1953-1970 0.27 0.002
2 1926-1945 1953-1970 0.79 0.405
3 1926-1945 1955-1970 0.69 0.094
4 1931-1946 1952-1972 0.63 0.029
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height of estimated jumps rapidly decreases, as the distance to the coast in-
creases. There are, however, some stations for which the height of the estimated
jump strongly deviates from jumps of adjacent stations (Nieuw Beerta, Ter
Apel, Valkenburg, Groede). This deviation can be due to changes in the
instrument or changes of site.

Whether or not the jump of a particular Dutch rainfall station differs from
zero can be tested with a Student test. The test is one-sided, because it may be
assumed that reduction of height of rain gauges leads to an increase in the
recorded rainfall amounts. Stations for which a significant value is found at
the 5 per cent level are denoted by an asterisk in Figure 4.4.

For a particular region one can also look at all stations simultaneously and
test the hypotheses:

- H,: all §;5 are equal to zero, and
— H: not all é;s are equal to zero.
The test statistic, which has to be used in this case is (cf. Rao (1973), 8c.4)

ICy)
(4.5} U= —

with |Cgl: determinant of the sample covariance matrix under H,,
|C4]| : determinant of the sample covariance matrix under H,.
Under H, the test statistic is close to its maximum value 1; values much
smaller than 1 lead to rejection of H,. For the null distribution of the statistic
U holds {cf. Rao (1973), Table 8¢.5B):

., 7
U N-p-g-1
where F stands for Snedecor’s F-variable.

Realizations of the [/-statistic and their critical levels are given in Table 4.3.
At the 5 per cent level H,, is rejected for the coastal regions 1 and 4. For region 4
this is somewhat surprising, because most jumps are small in this region and
due to some negative values the average jump does not differ very much from
the average jump of region 2. However, not only the height of jumps is im-
portant for the power of the U-statistic, but also the structure of the covariance
matrix.

(4.6) E(g.N-p-q-1)

4.1.3. Analysis with partial sums

For the detection and quantification of jumps cumulative sum techniques
can also be used. This section deals with partial sums of differences of annual
averages of Dutch and foreign stations.

The ith partial sum S; of a sequence of numbers {a.}, "

is defined as:

k=1
S():O
4.7 lsi= Y a i=1,...,N.
k=1
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When dealing with differences of annual averages from two different coun-
tries, a; is assumed to be:
(4.8) O = Y — Xx
with x,: average of apnual totals of some foreign rainfall stations for the &th
year,
. average of annual totals of some Dutch rainfall stations for the kth
year.

The index i is chosen such that { = | corresponds to the first year of period |
and i = N corresponds to the last year of period 2.

Figure 4.5 shows the relation between i and §; for four different regions,
which are denoted in Figure 4.4. The direction of the curves is not the same.
The curve goes upwards when the mean of Dutch stations is larger than the
mean of foreign stations; a downward curve occurs when the opposite is true,
During the period in which Dutch rain gauges were lowered there is a visible
change in slope of the curves. This change is most evident for the stations in
region 1* and is less obvious for stations in regions 2 and 3, because of the
small wind effect in these regions. A remarkable fact is the large difference
between stations in region 14 and those in region 4. Possible explanations for
this phenomenon are:

a. The average wind velocity is somewhat smaller for region 4.

b. Stations in region 4 may be more sheltered against the wind. The importance
of the degree of protection was shown in Table 4.1 and was also demon-

strated by BRAZIER (1927).
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