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I. I N T R O D U C T I O N 

1. OBJECT AND SURVEY OF DATA 

Decisions in water management are often based on rainfall series. From 
historical data it is possible to get some insight into problems about the amount 
of water available. The historic series can also be routed through a rainfall-
runoff relation to obtain a streamflow series which can be used for planning 
water system projects. Working in this way gives a solution which is based on 
one realization of the rainfall process only. But what would be the solution if 
another series with the same properties as the historic series was used? Or more 
generally, how reliable is the solution? To answer these questions one must 
know the stochastic process underlying the sequence of rainfall data. This 
process, however, is very complicated ; for instance, it usually exhibits seasonal 
variation and, when working within small time-increments, one encounters the 
problem of serial correlation and complicated marginal distributions. It is, 
therefore, often impossible to obtain direct analytical solutions for hydro-
logical problems. For a better insight into a particular problem, one is usually 
forced to generate synthetic sequences based on a stochastic model for the rain­
fall process ; and even that is often difficult. 

The aim of this study is to construct a stochastic model for daily rainfall 
sequences. The time-increment of a day is chosen because rainfall is mostly 
recorded once a day and because a day seems a suitable choice for solving many 
problems in hydrology. It is necessary that the model is such that statistical 
simulation of synthetic sequences can easily be done. 

Daily rainfall sequences are usually characterized by serial correlation and 
many observations with zero rainfall amount. It is the combination of these 
two facts which makes the generation of daily rainfall sequences complicated. 
When dealing with serial correlation only, one can apply, for instance, auto-
regressive models. But these models become very cumbersome if one is dealing 
with non-negative variables with a lot of zero values. It is also possible to fit 
theoretical distributions to daily data. For the Netherlands the fit of many 
distributions to daily rainfall data has been discussed by VAN MONTFORT (1968), 
but it is very hard to make a model with serial correlation and one of the 
marginal distributions, proposed by this author. 

A widely used technique for handling daily rainfall series is to analyse first 
the occurrence of rain and non-rain days separately. In a second stage the be­
haviour of the non-zero rainfall amounts is studied. This technique will also 
be used here. 

The process of rainfall occurrence can be taken in continuous time or in 
discrete time. Processes in continuous time have been discussed by GREEN 

(1964), TODOROVIC and YEVJEVICH (1969), QUÉLENNEC (1973) and KAVVAS and 
DELLEUR (1975). Working with processes in continuous time may have some 
drawbacks, namely : 
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a. The main body of rainfall data is given in units of one day. When a wet day 
is observed there can be more than one rainy period during such a day. 

Therefore, observing rainfall amounts for discrete time units can lead to quite 
another process. Moreover, when a model in continuous time is proposed it is 
often difficult to derive the statistical properties of daily rainfall amounts. 
This derivation is essential since estimates of the parameters should be based 
on the observed daily data. 
b. There might be a daily cycle in the rainfall process. For instance, in some 

parts of the world rainfall only occurs during some fixed hours. To obtain 
a sound model such a diurnal variation should be incorporated. 

Because of these disadvantages a rainfall process in discrete time is preferred 
here. 

A great deal of this study deals with rainfall data from the Netherlands and 
the adjacent Belgian and German areas. The various rainfall stations which are 
taken into consideration are mentioned in Table 1.1. The geographical position 

TABLE 1.1. Survey of Belgian, German and Dutch stations used in this study. The abbre­
viations between brackets are used in Figure 1.1. 

Belgian stations: 
Ghent (Gt) Moerbeke-Waas (MW) Sint Andries-Brugge (SAB) 

German stations: 
Ahaus (As) 
Bracht (Brt) 
Dersum (Dm) 
Düren (Dn) 
Herzogenrath (Hh) 
Jülich (Jh) 
Kleve (Ke) 

Laar (Lar) 
Lathen (Lan) 
Leer (Ler) 
Lingen (Len) 
Norden (Non) 
Norderney (Ny) 
Rheine (Re) 

Ringenberg (Rg) 
Schöppingen (Sen) 
Schüttorf (Sf) 
Venhaus (Ves) 
Weener (Wer) 
Widdelswehr (Wir) 

Dutch stations : 
Aalten (Aan) 
Almelo (Ao) 
Almen (Ain) 
Axel (Al) 
Biervliet (Bit) 
Borculo (Bo) 
Cadzand (Cd) 
Castricum (Cm) 
De Bilt (DB) 
Delfzijl (Dl) 
Denekamp (Dp) 
Den Helder (DH) 
Deventer (Dr) 
Dirksland (Dd) 
Emmen (En) 
Enschede (Ee) 
Finsterwolde (Fe) 
Gouda (Ga) 

Groede (Ge) 
Groningen (Gn) 
Haarlem (Hm) 
Heino (Hno) 
Hellendoorn (Hn) 
Hengelo (Hlo) 
Hoofddorp (Hp) 
Leiduin (Lin) 
Lettele (Le) 
Leyden (Lyn) 
Lijnden (Ljn) 
Lochern (Lm) 
Nieuw-Beerta (NB) 
Nijmegen (Nin) 
Oldenzaal (Ol) 
Rekken (Rn) 
Roermond (Rd) 

Roggel (Rel) 
Roodeschool (Rol) 
Schaesberg (Srg) 
Scheveningen (Sen) 
Schiermonnikoog (Sog) 
Sint-Kruis (SK) 
Stein (Stn) 
Ter Apel (TA) 
Terneuzen (Tn) 
Twente (Te) 
Vaals (Vas) 
Valkenburg (Vg) 
Vroomshoop (Vp) 
Warffum (Wm) 
Winschoten (Wn) 
Winterswijk (Wk) 
Zwanenburg (Zg) 
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FIG. 1.1. Geographical position of Belgian, German and Dutch rainfall stations used in this 
study. The full names of the stations are given in Table 1.1. 

of these stations is denoted in Figure 1.1. Attention will also be paid to some 
rainfall stations from other climatic regions, namely : 
a. From India: Bangalore (12°58'N, 77°35'E), Calcutta (Alipore, 22°32' 

N, 88°20' E) and New Delhi (28°35' N, 77°12' E). 
b. From Indonesia: Jakarta-27 (6°11'S, 106°50'E), Pasar Minggu (15 km 

south of Jakarta-27). 
c. From Surinam: Paramaribo (5°51'N, 55°10'W), Domburg (5°42'N, 

55°05' W). 
d. From Sudan : Khartoum (15°37' N, 32°33' E). 
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e. From Egypt: Alexandria (Kóm el Nadûra, 32°12' N, 29°53' E). 
Daily rainfall observations are usually given in tenths of millimeters. Two 

exceptions are : 
a. Indonesian data. These are given in millimeters. 
b. Indian data before 1958. These are given in hundredths of inches, but are 

converted to tenths of millimeters. 
The source of the data is given in the last chapter (Chapter VI). This chapter 

also summarizes supplements of missing data. 

When analysing rainfall series for a considerable number of years one must 
be aware that the recorded rainfall amounts have not always been obtained in 
the same way. There can be large differences in the mean rainfall amount due to 
changes in the way of measuring. If one neglects such non-homogeneities one 
gets a stochastic process which is not representative for the present situation 
but for a mixture of the many different situations in the past. Moreover, non-
homogeneity can lead to a serious bias in estimates of parameters. Therefore, 
the problem of non-homogeneity is discussed in detail in Chapter II. In 
Chapter III the analysis of daily observations of Winterswijk, Hoofddorp and 
Hengelo is described. A stochastic model is developed and features of this 
model are compared with those of the historic series. Theoretical considerations 
about this model, based on the theory of stochastic processes, are given in 
Chapter IV. In this chapter formulas for the calculation of correlograms, 
variance-time curves and the cumulative distribution of &-day totals are 
derived. The application of the model to other climatic regions is presented 
in Chapter V. 

2. NOTATION AND ABBREVIATIONS 

Each chapter usually contains a number of sections. Formulas, tables and 
figures are numbered within these sections. For instance, (5.1) means Equation 
(1) of Section 5. Some chapters contain one or more appendices. These appen­
dices are numbered within the chapter to which they belong; equations are 
numbered within appendices. That is (A3.2) means Equation (2) of Appendix 
A3. When reference is made to a formula, table or figure of another chapter, 
the number of this chapter is included. For instance, IV, (4.10) means Equation 
(10) of Section 4 of Chapter IV and II, (A4.3) means Equation (3) of Appendix 
A4 of Chapter II. 

The rth moment about zero is denoted by n',; the rth central moment by /ir 
and the rth factorial moment by /*[,]. For the mean {pi[) usually the symbol \i is 
used only and the variance (ji2) is often denoted by a2. 

An estimate of a particular parameter is denoted by placing a caret above the 
parameter. So d?2 means an estimate of <x2. However, estimates of correlation 
coefficients (p) are denoted by r and estimates of the variance (a2) are usually 
denoted by s2. 
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Random variables are underlined;x~i means that x and v are identically 
distributed. Logarithms are assumed to be to the base e (natural logarithms) 
and are denoted by log. 

The major abbreviations are : 

ML maximum likelihood. 
AML approximate maximum likelihood. 
LR likelihood ratio. 
OLS ordinary least squares. 
CL critical level. 

cdf cumulative distribution function. 
gf generating function. 
pgf probability generating function. 
sec serial correlation coefficient. 
Rel. freq. relative frequency. 
iid independently and identically distributed. 
NBD negative binomial distribution. 
SNBD shifted negative binomial distribution. 
TNBD truncated negative binomial distribution. 
GD geometric distribution. 
LSD logarithmic series distribution. 
LDF 'loi des fuites'. 
SGD shifted gamma distribution. 

A, B method of analysis in which a wet or dry spell is assigned to the 
period in which it begins (A) or ends (B). The capitals A and B are 
usually followed by the height (in tenths of millimeters) of the 
threshold defining a wet day (see III, 2). 

WD, DW method of analysis by wet-dry cycles (WD) or dry-wet cycles (DW). 
The capitals WD and DW are usually followed by the height (in 
tenths of millimeters) of the threshold defining a wet day (see III, 2). 

Sd dry season. 
Sw wet season. 
Sdw transition period from the dry to the wet season. 
Swd transition period from the wet to the dry season. 

KNMI Royal Netherlands Meteorological Institute 
(Koninklijk Nederlands Meteorologisch Instituut). 
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II. H O M O G E N E I T Y OF D U T C H R A I N F A L L SERIES 

1. INTRODUCTION 

In this chapter the homogeneity of Dutch rainfall series is discussed. A rain­
fall series is called homogeneous if for each year rainfall on a particular calen­
dar day or month is a realization of the same random variable. A homo­
geneous rainfall series is not necessarily a realization of a stationary stochastic 
process because it may exhibit seasonal variation. In fact the definition of a 
homogeneous series concerns the whole probability distribution of rainfall 
amounts. In practice, however, homogeneity of the mean is considered only, 
since departures from homogeneity in higher order moments can hardly be 
detected because of large sample variations. 

Non-homogeneity can be a consequence of a gradual change in the meteoro­
logical situation, but can also be purely man-made, e.g. due to changes of site, 
or to changes in instructions to observers. Here it is assumed that departures 
from homogeneity are man-made and therefore non-homogeneities in the 
mean usually consist of jumps. 

Tests for homogeneity were done with annual or monthly totals. Methods 
for testing homogeneity often make assumptions about the distribution of the 
rainfall data. Therefore the distribution of annual and monthly totals is 
discussed in Sections 2 and 3. 

The probability of success in detecting jumps in the mean of a given rainfall 
series depends on the situation of neighbouring rainfall stations. For instance, 
when some station changes its way of measuring, the best way to study the 
effect of such a change is to compare the rainfall series with that of another 
station in the direct neighbourhood with no changes. Even small departures 
from homogeneity can be detected if the two stations are close together. An 
example of how a jump is determined by comparing altered rainfall stations 
with unaltered rainfall stations is given in Section 4. The problem discussed in 
that section is a possible jump in the mean of Dutch rainfall series due to a 
change in height of the rain gauge, during the period 1946-1954. The signifi­
cance of a jump is tested by comparing rainfall series in the Netherlands with 
those of neighbouring countries. 

It often happens, however, that the homogeneity of rainfall series of neigh­
bouring stations is also doubtful or that there is no neighbouring rainfall 
station at all. Then only use can be made of a single rainfall series and many 
possible jumps will be passed unnoticed. An analysis of homogeneity making 
use of only one rainfall series is described in Section 5, where homogeneity of 
the Zwanenburg-Hoofddorp series is investigated. 

When using a separate process for the occurrence of wet and dry days the 
homogeneity of the sequence of wet and dry days is also important. Statistical 
methods for detecting jumps in such a situation are given in Section 6. 
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2. THE DISTRIBUTION OF ANNUAL TOTALS 

When rainfall is recorded within small time increments (a day or shorter), 
the marginal distribution of the rainfall amounts is markedly skew, because 
zero values and some very large values occur with relatively large probability. 
Rainfall amounts over longer periods are less skew because of the effect of the 
central limit theorem and it is well known that the skewness of annual totals 
is so small that they can be assumed to be approximately Gaussian (cf. DE 
BOER (1956, 1958)). Here a statistical support for this assumption is given on 
the basis of annual data of some Dutch and German rainfall series. Though 
many tests for normality exist only a few of them are considered here, namely 
a test on the coefficient of skewness, the Shapiro-Wilk test, the Kolmogorov-
Smirnov test and the Kuiper test. 

The coefficient of skewness y is defined by : 

(2.1) y = ßjfil'i. 

An estimate of y can be obtained by replacing the central moments in the right 
side of (2.1) by unbiased sample estimates (cf. VEN TE CHOW (1964), 8-I-IIC3): 

' N 

Z (Xi-X)2 

(2'2) 7=^2--f^ W*=—ÏÏ^^ 

with N : the number of data, 
3c: the sample mean. 

For a one-sided test the upper and lower 5 and 1 per cent critical values of f 
can be obtained from the corresponding percentage points of the ^fb1 statistic, 
given by PEARSON and HARTLEY (1962, Table 34B). One can also use the normal 
approximation of the y/^ statistic given by D'AGOSTINO (1970). 

The test based on y is only sensitive to skewed alternatives ; the other tests 
given here are sensitive to many different kind of alternatives (so called omnibus 
tests). 

The Shapiro-Wilk test is based on the ratio of the best linear unbiased esti­
mate of the standard deviation calculated from an ordered sample to the sample 
standard deviation (SHAPIRO and WILK (1965)). 

Let x denote the vector of ordered observations 

X(D < X(2) < • • • ^ X(jv) and let m = (mx, m2, • • •, WJV)' 

denote the vector of expected values of standard normal order statistics. For 
the Shapiro-Wilk test one starts with the regression equation : 
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(2.3) X(i) = j " + öTO(i) + agi i = 1 , . . . , N 

where n and a are unknown parameters for location and scale respectively. 
The error terms g; are assumed to have mean zero and covariance matrix V. 

The method of generalized least squares gives as an estimate of a: 

(2.4) â = 
in'V-1!!! 

which is the best linear unbiased estimate of a based on the ordered sample. 
Equation (2.4) can be written as: 

(2.5) <T = y/Vb a'x 

with b = 

and 

m 'V^m 

(m'V-iV-im)112 

The test statistic is : 

(2.6) W 
(a'x)2 

E xf- £ xi) IN 
N N 

Exf- I 

For normal samples fF is close to its maximum value 1 ; for non-normal 
samples W tends to smaller values. 

The elements of the vector a in (2.5) and (2.6) depend on first and second 
moments of standard normal order statistics. The expectations can be ob­
tained from HARTER (1961), but variances and covariances (the elements of V) 
are more difficult to obtain, especially for large TV. Therefore, SHAPIRO and 
FRANCIA (1972) proposed to base the numerator of (2.6) on the ordinary least 
squares (OLS) estimate of a, that is one has to substitute the identity matrix I 
for the matrix V in (2.4). They gave percentage points of the null distribution 
of the modified statistic W' for N = 35, 50, 51(2)99. The lengths of most annual 
rainfall series under investigation lie in this range. The table by SHAPIRO and 
FRANCIA (1972) has been extrapolated for series which are a bit longer than 
99 years. 

The Kolmogorov-Smirnov test and the Kuiper test are based on differences 
between the empirical and the theoretical distribution function. The empirical 
distribution function FN(x) is defined as: 

number of observations < x 
(2.7) FN(x) 

N 
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where Af is the sample size. 
Denote the cumulative distribution function by F0(x) and define: 

(2.8a) D+ = sup (FN(x) - F0(x)) = maxJ - - F0(x(i))\ 

i-1 

À 

(2.8b) D- = sup (F0(x)-FN(x)) = max \F0(x{i)) 
- 0 0 < X < 0 0 l « i 4 J V { 

where x(i> denotes, as before, the rth order statistic of the sample. 
The Kolmogorov-Smirnov statistic D is defined by : 

(2.9) D = max(D+,D~) 

and the Kuiper statistic K is defined by : 

(2.10) K=D++D~. 

N 

TABLE 2.1. Mean, standard deviation and realizations of test statistics for tests for normality 
of annual data of some Dutch and German rainfall series. Realizations of test statistics 
which are significant at the 5 per cent level are denoted by an asterisk. 

Rainfall station 

Norderney 
Leer 
Weener 
Laar 

Lingen 
Rheine 
Ahaus 
Ringenberg 

Kleve 
Jülich 
Herzogenrath 
Delfzijl 

Warffum 
Ter Apel 
Finsterwolde 
Winschoten 

Enschede 
Hengelo 
Winterswijk 
Valkenburg 

Roermond 
Schaesberg 

Period 

1881-1973 
1891-1970 
1897-1970 
1903-1970 

1855-1973 
1891-1970 
1891-1970 
1893-1970 

1851-1972 
1894-1970 
1894-1970 
1872-1970 

1893-1970 
1892-1972 
1892-1972 
1923-1972 

1881-1972 
1887-1972 
1880-1972 
1904-1972 

1869-1972 
1909-1972 

Mean 
(mm) 

701 
744 
735 
710 

743 
746 
789 
743 

779 
636 
782 
721 

723 
711 
687 
751 

751 
748 
761 
773 

657 
754 

Standard 
deviation 

(mm) 

113 
106 
108 
123 

123 
128 
128 
132 

131 
119 
150 
107 

117 
123 
117 
110 

122 
134 
127 
130 

117 
123 

f 

-0.015 
-0.840 
-0.326 
-0.050 

0.075 
-0.149 
-0.051 
-0.114 

-0.120 
0.147 
1.085* 

-0.231 

-0.140 
0.337 
0.150 

-0.554 

0.332 
0.390 
0.098 
0.383 

0.116 
-0.084 

W' 

0.992 
0.948* 
0.982 
0.992 

0.990 
0.994 
0.988 
0.986 

0.985 
0.982 
0.934* 
0.989 

0.991 
0.962* 
0.984 
0.973 

0.964* 
0.975 
0.969* 
0.982 

0.992 
0.975 

Dy/N 

0.554 
0.851 
0.605 
0.401 

0.622 
0.379 
0.615 
0.582 

0.532 
0.723 
0.951* 
0.529 

0.579 
0.504 
0.695 
0.588 

0.883 
0.544 
0.895* 
0.636 

0.588 
0.477 

KjN 

1.139 
1.388 
1.202 
0.915 

1.258 
0.843 
1.196 
1.071 

1.147 
1.447 
1.415 
0.998 

1.129 
1.093 
1.317 
1.108 

1.632* 
0.930 
1.806* 
1.068 

1.216 
1.027 
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FIG. 2.1. Normal probability plots of annual totals of Leer, Herzogenrath and Winterswijk. 

The tabulated percentage points of the null distribution of these statistics are 
only applicable if F0 (x) is completely specified, which is not so here because 
mean and variance have to be estimated from the sample. Then percentage 
points, obtained by Monte Carlo simulation, are given by LILLIEFORS (1967) 
for the statistic D and by LOUTER and KOERTS (1970) for the statistic K. Per­
centage points for D and K are also given in Table 54 (Case 2) of PEARSON and 
HARTLEY (1972). For large values of N the critical value at the 5 per cent level 
is approximately 0.886/ JN for the Kolmogorov-Smirnov statistic and 
1.450/ y/N for the Kuiper statistic which is about 65 and 85 per cent, respective­
ly, of the commonly tabulated values in the situation of known parameters. 

Table 2.1 shows realizations of the statistics y, W', D^jNand Ky/N for rain­
fall series which will be used again for the analysis of homogeneity in Section 4. 
The denominator of the estimator of the standard deviation is N-1 in Table 2.1, 
because tables of percentage points of the statistics D and K are also based on 
this estimator. Realizations of the test statistic which are significant at the 
5 per cent level are denoted by an asterisk. The test based on the coefficient of 
skewness is one-sided (test on positive skewness) ; annual totals of the station 
of Leer have a negative coefficient of skewness with a critical level of more than 
0.99 and hence a negative coefficient of skewness seems to be possible. In 
general there is no evidence for departures from normality. Normal probability 
plots of annual totals of Leer, Herzogenrath and Winterswijk (see Figure 2.1) 
show that departures from normality are caused by extremely high values 
(Herzogenrath, Winterswijk) or extremely low values (Leer). 

It is well-known that the Shapiro-Wilk test is more powerful than tests based 
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on differences between the empirical and the theoretical distribution function. 
This is illustrated in Table 2.1, the Shapiro-Wilk test giving the larger number 
of significant values. 

3. THE DISTRIBUTION OF MONTHLY TOTALS 

Figure 3.1 shows estimates of the monthly mean and standard deviation for 
a number of stations with observations over a long period. The monthly mean 
reaches its minimum in February, March or April and its maximum in July or 
August, though stations near the west coast (Hoofddorp) also have a high 
October mean. Another feature of the monthly mean is the comparatively low 
September value. Stations remote from the coast (Enschede, Winterswijk, 
Roermond) are characterized by high standard deviations in February, July 
and August. The high February standard deviation is mainly caused by the 
high monthly total of February 1946. For coastal stations there is a nearly 
sinusoidal change of the standard deviation. The coefficient of variation is 
nearly constant (about 0.5) during the year. 

In Section 3.1 a possible serial correlation of monthly totals is investigated. 
The marginal distribution of monthly totals is discussed in Section 3.2. 

3.1. Serial correlation of monthly totals 
Because there is a seasonal change in mean and standard deviation, the 

original totals x were standardized to u, with the formula : 

X-12 l + m~ Xm 
W-l) u\2l+m = 

e2 

with m : index of the month (1, . . . , 12), 
/ : index of the year ( 0 , . . . , «-1), n being the number of years, 

mean rainfall amount of month m, 
traditional (unbiased) estimate of the variance of the rainfall 
amount of month m. 

A test for serial correlation can be based on the serial correlation coefficient 
(sec). The lag k sec was estimated by 

N-k 

L (Ui-Ü)(ui+k-ü) 
(3.2) rk = ^ — 

; = i 

where N = 12 x n, the number of observations, 
u : mean of the N w;s. 

N 

Using û = 0 and £ (ui-u)2 = N- 12, Equation (3.2) becomes 
i = l 
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Groningen 1853-1970 
Standard deviation (mm) 

J F M A M J J A S O N D J F M A M J J A S O N D 

Mean (mm) 

100-

Hoofddorp 1861-1972 
Standard deviation Imm) 

50-

J F M A M J J A S O N D J F M A M J J A S O N D 

Enschede 1880-1970 
Standard deviation (mm) 

40-

J F M A M J J A S O N D J F M A M J J A S O N D 

Winterswijk 1880-1970 
Standard deviation (mm) 

40-

J F M A M J J A S O N D 

Roermond 1869-1970 
Standard deviation (mm) 

40-

J F M A M J J A S O N D J F M A M J J A S O N D 

FIG. 3.1. Estimates of the mean and standard deviation of monthly totals of some long-
term Dutch rainfall series. Values denoted by an open dot are proportional values 
for a 30-day period. 
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(3.3) rk =
 i=1 

N-k 

N-12 

For sufficiently large N(N about 75) the distribution ofr* JTV is approximate­
ly standard normal if the observations are independent and normally distributed 
(cf. JENKINS and WATTS (1969), 5.3.5). Moreover, then the différentes are 
approximately uncorrelated. Therefore, a rough test for serial correlation can 
be based on the statistic : 

V 

(3.4) X2 = N I r\ 
4=1 

which is approximately a #2-variable (chi-square with v degrees of freedom) 
under the null hypothesis. 

What should one do when dealing with non-normal data, as is the case here 
(see 3.2). BARTLETT (1946) pointed out that the asymptotic variances and co-
variances of the nts do not depend on the marginal distribution. Moreover, the 
joint distribution of the rk s for normal data seems often to be a good approxima­
tion when dealing with non-normal variables (cf. YEVJEVICH (1972), Section 
2.2). However, one should be very careful in applying the test to non-normal 
data because the convergence of the test statistic to its asymptotic distribution 
can be very slow. It is, therefore, advisable to repeat the test with a normalizing 
transformation on the data. 

One can also base the test on r1 alone or equivalently on the Von Neumann's 
ratio, which is defined as : 

(3.5) 

From (3.2) and (3.5) it is verified that: 

(3.6) dK\-rx 

(cf. SNEYERS (1957)). 
Realizations of the test statistics mentioned above and their corresponding 

critical levels are given in Table 3.1 for the Hoofddorp and Winterswijk series. 
The test based on the statistic X2 has been repeated with the square roots of the 
monthly totals which are approximately normally distributed (see Section 3.2). 
There is no evidence for serial correlation at the 5 per cent level either for 
transformed or untransformed data (the critical levels are always larger than 
0.05). Taking the values 3,6 or 12 for v in (3.4) leads to the same conclusions. 
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TABLE 3.1. Realizations of test statistics and their corresponding critical level (C.L.) for tests 
on serial correlation of monthly totals. The statistic X2 in (3.4) is based on v = 36. 

Rainfall series 

Winterswijk 1880-1970 
Hoofddorp 1861-1972 

d 

0.971 
0.962 

Original data 

C.L. X2 

0.141 22.70 
0.105 40.44 

C.L. 

0.959 
0.280 

Transformed data 

X2 C.L. 

28.73 0.800 
41.76 0.235 

3.2. The marginal distribution of monthly totals 
In contrast with annual totals monthly totals have a markedly skew dis­

tribution. The monthly mean of the coefficient of skewness is 0.774 for the 
Winterswijk series and 0.562 for the Hoofddorp series and it can be shown from 
Table 34B of PEARSON and HARTLEY (1962) that these values show evidence for 
a positive skewness at the 5 per cent level. 

There are many distributions which are positively skewed. Two of them will 
be examined in more detail, namely the gamma distribution and a distribution 
which will be denoted as 'loi des fuites' (LDF). 

The gamma variable y(X, v) is defined by its probability density : 

X"x"~1e~*x 

(3.7) fx) = - _. . x > 0 , A > 0 , v > 0 
T(v) 

where T stands for the gamma function. The parameter X is a scale parameter 
and the parameter v is a shape parameter. 

If v > 1 it follows by differentiation of (3.7) that there is a mode at (v- l)/X. 
If v < 1 the density is J-shaped and is infinite at the origin. For v = 1 one gets 
the exponential distribution, which has probability density : 

(3.8) f{x) = ke-". 

Another special case of the gamma variable is the 1 £-variable, namely: 

(3.9) Xl^HUn). 

Moments of the gamma variable are : 

(3.10a) ni = v/X 

(3.10b) th = v/X2 

(3.10c) n3 = 2v/X3 

(3.10d) n4 = (6v + 3v2)M* 

(3.10e) C = y/Jh/vî — 1/VV (Cis the coefficient of variation) 

(3.100 V=2 /Vv . 
From (3.10e and f) it follows that the quotient y/C is always 2, irrespective 

of the parameters of the distribution. 
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A normalizing transform of the gamma variable is the Wilson-Hilferty 
transform (cf. KENDALL and STUART (1969), 16.7): 

which is asymptotically standard normal. The third central moment of the 
transformed variable is of order v ~3 ; so the Wilson-Hilferty transform may give 
a good normal approximation when the shape parameter is large. 

Estimates of v and X can be obtained, for example, by the method of moments 
or the method of maximum likelihood (ML). The moment estimates are: 

(3.12a) 1 = x/s2 

(3.12b) v = x2/s2 

where x and s2 are the sample mean and variance (unbiased version), respec­
tively. 

The ML estimate v of the parameter v follows from (cf. THOM (1958)): 
JV 

(3.13a) \ji(v) - log v = - .X log Xi - log x 

where N is the number of observations and ij/ stands for the digamma function, 
which is the first derivative of the logarithm of the gamma function. The iterative 
solution of (3.13a) was described by CHOI and WETTE (1969). An initial estimate 
of v can be based on the moment estimate or an approximative solution of 
(3.13a), e.g. the one given by THOM (1958) or the one given by GREENWOOD 

and DURAND (1960). The initial estimate given by CHOI and WETTE (1969) is 
only a simplified form of Thorn's estimate. 

After a solution of (3.13a) has been found, the ML estimate of the scale para­
meter can be obtained from : 

(3.13b) X = v/x. 

As a measure for the efficiency of a moment estimator with respect to a ML 
estimator one can take the ratio of the large-sample variances of the ML and 
the moment estimator. Because for large samples there is no other estimator 
with smaller variance than the ML estimator, this ratio is called the asymptotic 
efficiency of the moment estimator. Expressions for the large-sample variances 
of moment and ML estimators of the parameters of the gamma distribution 
are given in Appendix Al . The asymptotic efficiencies of the moment estimators 
of X and v are given in Table 3.2. Notice from that table that the asymptotic 
efficiency only depends on v. For small values of v (skew distributions) the 
method of moments gives very inefficient estimates. 

A general measure for the asymptotic efficiency of the method of moments 
is the ratio of the determinants of the large-sample covariance matrices of the 
ML and moment estimators. For the gamma distribution this ratio equals the 
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TABLE 3.2. Asymptotic efficiency of the moment estimators of the gamma distribution as a 
function of the shape parameter. 

V 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

Estimator of 

X 

0.347 
0.363 
0.382 
0.401 
0.420 
0.440 
0.458 
0.476 
0.494 

V 

0.050 
0.098 
0.144 
0.187 
0.227 
0.264 
0.299 
0.331 
0.360 

V 

2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 

Estimator of 

X 

0.636 
0.712 
0.763 
0.798 
0.825 
0.845 
0.861 
0.874 
0.885 

V 

0.575 
0.676 
0.739 
0.782 
0.812 
0.835 
0.853 
0.868 
0.880 

1.0 0.510 0.388 100.0 0.987 0.987 

asymptotic efficiency of v, which follows from the formulas for the large-
sample variances and covariances in Appendix Al . 

The second probability distribution which is considered here can be described 
as follows. Suppose that rainfall occurs in instantaneous showers according to 
a Poisson process with mean intensity or rate l//z, that is the number of showers 
in a time interval with length / is Poisson distributed with mean tj^i. Rainfall 
amounts of single showers are assumed to be : 
a. Independent of the process of occurrence. 
b. Mutually independent. 
c. Exponentially distributed with mean l/p. 

The process described here was suggested as a model for rainfall over arid 
regions by FISHER and CORNISH (1960). BERNIER and FANDEUX (1970) applied 
this process successfully to fit the distribution of monthly totals of French 
rainfall series and because it was used earlier to describe the distribution of 
escape flows of gas conduits they called the distribution of a Poisson distributed 
sum of iid exponential variables the 'loi des fuites' (iid stands for independently 
and identically distributed). This name will also be used here and will be ab­
breviated as LDF. 

DE BOER (1956, 1957, 1958) applied a slight modification of the LDF to 
describe the distribution of rainfall totals over a period of at least 30 days by 
taking a constant rainfall amount for each shower instead of exponentially 
distributed rainfall amounts. 

Let Xt be the total rainfall amount in a period of length t. The probability 
distribution of xt is derived in Appendix A2. For the derivation of the moments 
of xt use can be made of the moment generating function (cf. Cox (1962), 
Equation (8.3.4)): 
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(3.14) fis) = £(*-*') = e~öexp B^IPO 
\p + s 

with 6 = t/fi. From (3.14) it follows: 

(3.15) log/fe) = e (-1 + — ! — \ = 0 £ ( - l)m( |)m-

On the other hand : 
CO o m 

(3.16) log f (s) = I (-1)"*«-, 
m = l m -

where xm is, by definition, the wth cumulant of xt. So xm satisfies the relation : 

(3.17) xm = 

(cf. FISHER and CORNISH (I960)). 

From (3.17) expressions for moments and central moments can be obtained: 

(3.18a) (JL[ = xx = 6/p 

(3.18b) fi2=x2 = 261p2 

(3.18c) fi3 = x3 = 66/p3 

(3.18d) p.4 = x4 + 3^§ = (240 + 1202)/p4 

(3.18e) C = ^2/0 

(3.18f) 7 = 3 /^20. 
From (3.18e and f) it follows that the quotient y/C is always 1.5, irrespective of 
the parameters of the distribution. 

A normalizing transform of the LDF is : 

(3.19) JTp{^t~Jd/p-} 

which is asymptotically standard normal. It can be shown that the third central 
moment of the transformed variable is of order 1/03, so the transformation may 
give a good normal approximation when 0 is large. For monthly totals of 
French rainfall series the approximation (3.19) works quite well (cf. BERNIER 

and FANDEUX (1970)). 

The moment estimates of the parameters p and 0 follow from the equations : 

(3.20a) p = 2x/s2 ( = 2Â) 

(3.20b) 0 = 2x2/s2 ( = 2v). 

So the moment estimates of the parameters of the LDF differ only a factor 
from those of the gamma distribution. 

Meded. Landbouwhogeschool Wageningen 77-3 (1977) 17 



Estimation of the parameters of the LDF by the ML method is complicated. 
The likelihood equations and their solution are given in Appendix A3. 

Table 3.3 gives estimates of the parameters of the gamma distribution and of 
the LDF. The estimate Ijfi of the LDF was obtained from 0 by assuming t to 
be equal to the number of days of the month (for February t was set equal to 
28.2). The magnitude of the estimated parameters changes considerably from 
month to month, which is partly due to their large standard deviations. For 
instance, for the Winterswijk series the monthly mean of the standard deviation 
of moment estimates of p and l/p. is 0.020 mm"x and 0.040 days - 1 , respectively, 
which can be obtained from (A1.6a and b). ML estimates of p and \jn have a 
somewhat smaller standard deviation, namely 0.018 m m - 1 and 0.037 days - 1 , 

TABLE 3.3. Estimates of the parameters of the gamma distribution and the LDF. 

Winterswijk (1880-1970) 

Month 

January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

Gamma distribution 

V 

Moments 

3.84 
2.26 
4.20 
3.37 
3.61 
5.57 
4.65 
4.18 
3.35 
3.71 
3.97 
3.85 

4.07 
2.90 
4.42 
3.94 
4.02 
3.94 
3.60 
4.73 
3.92 
3.32 
4.04 
5.35 

ML 

3.12 
2.28 
3.96 
2.90 
3.53 
5.29 
4.20 
3.39 
3.02 
3.00 
3.95 
3.25 

3.93 
2.37 
4.22 
3.28 
3.98 
3.47 
3.00 
3.88 
3.06 
2.44 
4.11 
3.88 

X (mm-1) 

Moments 

0.064 
0.044 
0.084 
0.069 
0.066 
0.086 
0.054 
0.053 
0.052 
0.053 
0.062 
0.056 

ML 

0.052 
0.045 
0.079 
0.059 
0.065 
0.081 
0.049 
0.043 
0.047 
0.043 
0.062 
0.047 

Hoofddorp (1861-

0.072 
0.068 
0.096 
0.093 
0.088 
0.071 
0.049 
0.052 
0.048 
0.037 
0.054 
0.078 

0.069 
0.055 
0.092 
0.077 
0.087 
0.062 
0.041 
0.043 
0.038 
0.027 
0.055 
0.057 

LDF 

l/Z^days-1) 

Moments 

0.248 
0.160 
0.271 
0.225 
0.233 
0.372 
0.300 
0.270 
0.223 
0.240 
0.265 
0.248 

-1972) 

0.263 
0.206 
0.285 
0.262 
0.260 
0.262 
0.232 
0.305 
0.262 
0.214 
0.270 
0.345 

ML 

0.233 
0.190 
0.278 
0.228 
0.248 
0.375 
0.301 
0.257 
0.230 
0.227 
0.282 
0.248 

0.273 
0.203 
0.293 
0.256 
0.275 
0.260 
0.222 
0.286 
0.241 
0.194 
0.292 
0.299 

p (mm4) 

Moments 

0.128 
0.089 
0.168 
0.138 
0.132 
0.171 
0.108 
0.105 
0.103 
0.106 
0.124 
0.112 

0.144 
0.135 
0.193 
0.186 
0.176 
0.142 
0.099 
0.104 
0.096 
0.074 
0.108 
0.156 

ML 

0.121 
0.105 
0.173 
0.140 
0.141 
0.173 
0.109 
0.100 
0.106 
0.101 
0.132 
0.112 

0.150 
0.133 
0.198 
0.181 
0.187 
0.140 
0.095 
0.098 
0.089 
0.067 
0.118 
0.135 
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respectively. The method for obtaining standard deviations of moment and ML 
estimates is given in Appendix Al. 

The monthly mean of the ratio of the determinants of the estimated covariance matrices 
of the ML and moment estimators is 0.80 for both the Winterswijk and Hoofddorp series. 
For the gamma distribution this ratio is 0.71. 

For the gamma distribution a honest comparison of the estimates of different 
months is not possible because these estimates are not corrected for the fact 
that different months can have different lengths. Another disadvantage of the 
gamma distribution is that its tail is too long for monthly data. This fact can 
be shown by computing moment estimates of the ratio y/C, which has to be 1.5 
for the LDF and 2 for the gamma distribution. The monthly mean of the 
estimate of this ratio is 1.46 for Winterswijk and 1.11 for Hoofddorp; only for 
the month of February of Winterswijk is this ratio larger than 2, namely 2.80. 
Perhaps this result explains why for the gamma distribution the ML estimate 
of the variance (obtained by substituting ML estimates in the right side of 
(3.10b)) tends to be larger than the moment estimate. This is seen from Table 3.4 
where moment and ML estimates of the standard deviation are compared. The 
estimates of the standard deviation of the annual totals were obtained from the 
summation of monthly variance estimates. There is a good correspondence 
between moment estimates and ML estimates, when a LDF is assumed, but the 
ML estimate under assumption of a gamma distribution is larger in nearly 
all cases. 

Cumulative frequencies of monthly totals and theoretical values, based on 
fitted distributions (gamma distribution, LDF), are compared in Figure 3.2. 

TABLE 3.4. Comparison of different estimates of the standard deviation (in mm) of monthly 
totals. 

Month 

January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

Year 

Meded. Landbo 

Winterswijk 1880-1970 

Moments ML gamma 

30.5 
33.8 
24.3 
26.7 
28.7 
27.6 
39.8 
38.9 
35.4 
36.2 
32.1 
34.9 

113.4 

uwhogeschool 

distribution 

33.9 
33.7 
25.0 
28.9 
29.0 
28.3 
41.8 
43.2 
37.3 
40.3 
32.2 
38.0 

120.4 

ML 
LDF 

31.4 
31.1 
24.0 
26.5 
27.8 
27.5 
39.7 
39.9 
34.9 
37.2 
31.1 
34.9 

112.8 

Wageningen 77-3 (1977) 

Hoofddorp 1861 

Moments ML gamma 

28.0 
25.2 
21.8 
21.4 
22.7 
28.0 
38.4 
41.8 
41.0 
49.1 
37.0 
29.6 

115.4 

distribution 

28.5 
27.9 
22.3 
23.4 
22.8 
29.9 
42.0 
46.2 
46.5 
57.2 
36.8 
34.8 

126.3 

1972 

ML 
LDF 

27.5 
25.4 
21.5 
21.6 
22.1 
28.2 
39.2 
43.2 
42.8 
51.6 
35.6 
31.8 

117.4 

19 



Rel f req. 

FIG. 3.2. Cumulative frequencies of monthly totals of Winterswijk (1880-1970) and Hoofd­
dorp (1861-1972) and theoretical cumulative distribution functions. 

20 Meded. Landbouwhogeschool Wageningen 77-3 (1977) 



TABLE 3.5. Critical levels of the A-2-test of goodness of 
fit for the LDF fitted to monthly totals. 

Winterswijk Hoofddorp 
Month 1880-1970 1861-1972 

January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

0.216 
0.346 
0.765 
0.416 
0.117 
0.573 
0.601 
0.249 
0.148 
0.519 
0.249 
0.601 

0.158 
0.137 
0.374 
0.316 
0.481 
0.983 
0.551 
0.076 
0.299 
0.095 
0.016 
0.394 

The theoretical curves are based on ML estimates. The difference between the 
cumulative distribution functions of the gamma distribution and of the LDF 
is usually small, except for Hoofddorp, October. For this month the LDF gives 
a slightly better fit. 

So the LDF could be preferred to the gamma distribution for fitting the 
distribution of monthly totals. 

The critical levels (C.L.) of the A^-test of goodness of fit for the LDF are 
given in Table 3.5. 

For application of the test, the carrier of the distribution of the monthly totals was divided 
into classes in such a way that the expected cell frequency was the same for all classes and was 
as small as possible but at least 7. The expected cell frequencies were calculated with ML 
estimates based on the actual data instead of ML estimates based on observed cell frequencies ; 
therefore the approximation of X2 at H0 by X2 with parameter equal to the number of classes 
minus 3 gives a somewhat progressive test (cf. WATSON (1958) and HERMANS (1969)). 

From the tabulated critical levels it is seen that the LDF fits the data well. 

An attractive property of the LDF is that it can easily fit data with a high 
fraction of zeroes and therefore application of the LDF to monthly totals of 
stations with an arid or monsoon climate gives no special problems. An 
example is given in Figure 3.3 where the LDF is fitted to monthly totals of 
Bangalore (1879-1970). 

The critical levels of the A^-test of goodness of fit are 0.238, 0.002 and 0.414 for February, 
April and July, respectively; the ratio f/C is 1.31, 1.23 and 1.89 for these months. The poor 
fit for the month of April is caused by the strange shape of the empirical distribution function. 
It may be assumed that most commonly used probability distributions do not fit these data 
well. 

The LDF can be generalized in several ways. For instance, one can take gam-
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Bangalore, February 

FIG. 3.3. Cumulative frequencies 
of monthly totals of Bangalore 
( 1879-1970) and theoretical values 
based on the 'loi des fuites' (LDF). 

ma distributed showers instead of exponential ones. Then the moment generat­
ing function of x, is 

(3.21) f(s) = E(e~*t) = e-° exp 
p + s) J 

where v and p are the shape and scale parameter, respectively, of the gamma 
distribution for the showers. Taking logarithms in (3.21) and expanding log 
f(s) in powers of sjp gives for the rath cumulant of xt : 

(3.22) xm = (-1)" v\ m\ 
m p'" 

From (3.22) it can be deduced that: 

1 

— n ( v+ j - i ) . 
pm ;=i 

(3.23) y/c = l + v + l 

Since v > 0 the ratio y/C can take values in the range [1,2). 

When A,v-»oo so that v/A->/i one gets the distribution which was proposed by DE BOER 
(1956, 1957, 1958) for rainfall totals over a period of at least 30 days. For this distribution the 
ratio y/C equals 1. 
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4. NON-HOMOGENEITIES DUE TO A CHANGE IN HEIGHT OF THE RAIN GAUGE 

In the beginning of this century the rim of rain gauges of the Royal Nether­
lands Meteorological Institute (KNMI) was at 1.50 m above the ground; 
during the period 1946-1954 rain gauges were lowered to 0.40 m above the 
ground. This was done after research of BRAAK (1945) who compared rain 
gauges with different heights at various sites in the Netherlands. Some results 
of his research for rain gauges with their rim at 1.50 or 0.40 m are summarized 
in Table 4.1. This table shows marked differences between rainfall amounts 
from rain gauges at different heights. These differences are caused by the rain 
gauge influencing the air movement so that a part of the rainfall, which should 
be recorded, is blown over the gauge. The largest differences occur at Dirksland, 
which is an unsheltered coastal station. Differences are smaller at coastal 
stations, which are more or less sheltered (Leiduin and Castricum) and at 
stations remote from the coast (De Bilt). 

A drawback of Braak's research is that the rain gauges were only compared 
for a few years. Therefore, in this section the influence of the lowering of rain 
gauges is studied over a longer period of observation. Because the height of all 
rain gauges has been lowered in the Netherlands, a comparison between chang­
ed and unchanged rain gauges can only be based on rainfall data of neigh­
bouring countries with no changes of height in the same period. For rainfall 
records of neighbouring countries one has the following possibilities : 
a. Rainfall observations of the German Meteorological Institute. The ob­

servations are very suitable for this research, because near the Dutch border 
no change in height or type of rain gauge has occurred since 1883. 

TABLE 4.1. Comparison of rain gauges at two different heights for various sites, after BRAAK 
(1945). The height of the rim of rain gauge R l is 1.50 m; for rain gauge R2 this height is 
0.40 m for the sites Castricum, Leiduin and De Bilt, and 0.35 m for the site Dirksland. (The 
rainfall amount of rain gauge R2 of Dirksland is assumed to be 37.2 mm in May 1940.) 

Number of months 

Monthly mean (mm) Rl 
R2 

Monthly standard 
deviation (mm) Rl 

R2 

Correlation coefficient 
(see (A4.1)) of Rl and R2 data 

Number of times that the 
monthly total of Rl > R2 

Rl = R2 
Rl <R2 

Dirksland 

41 

52.5 
57.8 

36.1 
39.0 

0.9984 

0 
0 

41 

Castricum 

42 

64.9 
65.8 

45.5 
46.3 

0.9998 

6 
1 

35 

Leiduin 

34 

60.6 
63.2 

42.8 
44.6 

0.9992 

2 
0 

32 

De Bilt 

23 

57.8 
58.8 

43.5 
43.9 

0.9999 

1 
1 

21 
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b. Rainfall observations of the Belgian Royal Meteorological Institute. A 
drawback of these observations is that the type of rain gauge was changed 

about 1950. Besides, it is only since 1951 that measurement of rainfall in Bel­
gium, has been well organized. 
c. Rainfall observations at the Observatory of Ghent University. In the period 

1921-1972 no change in height took place. 
The detection of jumps in the mean, using annual totals, is discussed in 

Section 4.1. In Section 4.2 a seasonal change of jumps is investigated with 
monthly totals. 

4.1 Detection of jumps using annual totals 
The probability of success in detecting jumps strongly depends on the 

quality of the rainfall data at different sites. It is possible to get an idea about 
the quality of the data by comparing cross correlation coefficients of annual 
totals (see Section 4.1.1). The estimating and testing of jumps with a multi­
variate regression model for point rainfall data is discussed in Section 4.1.2. 
An analysis with partial sums of differences of averages of point rainfall data 
is described in Section 4.1.3. Section 4.1.4 deals with regression models using 
averages of point rainfall data and finally, in Section 4.1.5, the results of this 
research are compared with Braak's results. 

4.1.1. Cross correlation coefficients of annual totals 
Let pxy be the correlation coefficient of two stations X and Y and rxy the 

sample correlation coefficient (to be defined in Appendix A4). If there are N 
simultaneous observations at the two stations, it can be shown that for the 
sample correlation coefficient : 

(4.1a) E(rXy)xpxy 

and 

(I-Ph)2 

(4.1b) var fey) s N ' 

The expressions only hold for homogeneous series. For the validity of 
(4.1b) also normality and absence of serial correlation have to be assumed (cf. 
KENDALL and STUART (1969), 10.9). These assumptions seem reasonable for 
annual totals on the basis of the results in previous sections. 

In the case of non-homogeneous rainfall series the sample correlation 
coefficient can be strongly biased. The bias of the sample correlation coeffi­
cient is investigated in Appendix A4 for one jump in the mean in one of the two 
series. The numerical examples given in this appendix show that only very large 
jumps can lead to a serious underestimation of the theoretical correlation 
coefficient. 

For 23 stations, correlation coefficients of annual totals were estimated for 
the period 1894-1970. Figure 4.1 shows the relation between the estimated 
correlation coefficients and the distances between the stations. Distances were 
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FIG. 4.1. Estimated correlation coefficients (rxy) of annual totals for the period 1891-1970. 
The stations considered are : 
- Biervliet, Groede, St. Kruis (Dutch-Flanders (DF)), 
- Norderney, Norden, Leer, Warffum, Delfzijl, Finsterwolde (Northern Coastal 

area (NC)), 
- Lingen, Rheine, Ahaus, Kleve, Ringenberg, Enschede, Hengelo, Winterswijk 

(Overijssel, Gelderland and adjacent German area (OG)), 
- Jülich, Herzogenrath, Düren, Roermond (Limburg and adjacent German area 

(L)), 
- Lathen, Ter Apel. 
Correlation coefficients are only given for distances less than 150 km. 

obtained from a list of coordinates. It is somewhat surprising that for small 
distances there is a considerable variation in the values of rxy, which is much 
larger than could be expected from (4.1b). This large variation can be due to 
non-homogeneity or anisotropy of the considered area. Large differences can 
also be caused by changes in the rain gauge installation which usually give rise 
to a (negative) bias in correlation estimates (see Appendix A4). Not only the 
reduction in height of rain gauges in the Netherlands is important, but also the 
frequent changes of site. Changes of site can cause serious departures from 
homogeneity in the coastal area (local differences of the wind effect) and the 
southern part of the Netherlands (orographic effect). It is seen from Figure 4.1 
that low values for rxy are mainly found for stations in the northern coastal 
area and for Limburg and adjacent German area. 
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FIG. 4.2. Annual totals of Fjnsterwolde and Leer for three different periods. 

Figure 4.2 compares annual totals of Finsterwolde and Leer for the periods 
1894-1925, 1926-1946 and 1953-1970. The estimated correlation coefficients 
for these periods are 0.704, 0.794 and 0.913, respectively. A test on equality of 
correlation coefficients can be based on Fisher's z-transform: 

(4.2) Zxy = i lOg 
1+/V 

\-rxy 

which is the inverse of the hyperbolic tangent of the sample correlation coeffi­
cient. 

Under the assumption of normality the mean and variance of zxy are ap­
proximately (cf. KENDALL and STUART (1969), 16.33): 

(4.3a) E(Zxy) i l o g ( — U 
2(JV-1) 

(4.3b) var(z*j,) « 
1 -Ply 

N-l 2(N~l)2 

The z-transform has an advantage because its distribution tends much faster 
to normality than the distribution of the sample correlation coefficient. Under 
the assumption of equal correlation for two different periods, the difference of 
the z-transforms is approximately normally distributed with mean zero (cf. 
KENDALL and STUART (1973), 26.19). The standard deviation of this difference 
follows from (4.3b) and is about 0.35 when both series have a length of 20 years. 

The z-transforms for the three periods in Figure 4.2 are 0.704, 0.794 and 
1.545, respectively; thus, there is some evidence for a better correlation in the 
most recent period. 

The poor correspondence between simultaneous annual totals during the period 1894-1925 
is partly because from 1911 up to 1924 the rain gauge of Finsterwolde was surrounded by 
huge elm-trees. 
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FIG. 4.3. Estimated correlation coefficients 
(rxy) of annual totals of rainfall stations in 
Belgium and Dutch-Flanders for the period 
1931-1972. 

Figure 4.3 shows correlation coefficients of annual totals of rainfall stations 
in Belgium and Dutch-Flanders for the period 1931-1972. This figure reveals 
the following facts : 
a. There is a strong correlation between annual totals from different stations 

in Dutch-Flanders. The estimated correlation coefficients are in general 
larger than correlation coefficients between rainfall stations in the northern 
coastal area, which is also seen from Figure 4.1. 
b. There is a reasonable correlation between annual totals of Ghent University 

and those of stations in Dutch-Flanders. 
c. There is a poor correspondence between rainfall totals of stations of the 

Belgian and Dutch national networks. 
For annual totals of rainfall stations in this area Table 4.2 gives estimated 

correlation coefficients and their z-transforms for two different periods. The 

TABLE 4.2. Correlation coefficients (rxy) and their z-transforms (zxy) of annual totals of some 
Belgian and Dutch stations for two different periods. 

Station X 

St. Andries-Brugge 
Moerbeke-Waas 
Cadzand 
Ghent 
Ghent 
St. Kruis 

Station Y 

St. Kruis 
St. Kruis 
St. Kruis 
St. Kruis 
Axel 
Axel 

r 
1931-1946 

0.636 
0.378 
0.836 
0.739 
0.814 
0.723 

xy 

1952-1972 

0.905 
0.851 
0.940 
0.867 
0.891 
0.939 

Zx 

1931-1946 

0.752 
0.406 
1.208 
0.948 
1.139 
0.914 

>• 
1952-1972 

1.501 
1.259 
1.740 
1.321 
1.427 
1.730 
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poor correspondence between rainfall data of the Belgian and Dutch national 
networks is due to a poor correspondence in the period before 1950. For all 
pairs of stations given in Table 4.2 correlation coefficients of the first period 
are smaller than those of the second period. 

Because of the poor correspondence with rain gauges of the Dutch national 
network the rain gauges of the Belgian Meteorological Institute will not be 
considered. 

4.1.2. A multivariate regression model 
The effect of a reduction in height of rain gauges depends on the wind ex­

posure and because the degree of sheltering against the wind differs from 
station to station possible jumps in the mean need not be the same for all 
stations. Therefore, in the first instance use is made of a multivariate regression 
model for estimating and testing jumps at various Dutch stations. A model 
could be : 

(4.4) 

IkJ = £ ßiJ xki+ßoj+ekJ k=l,...,n;j=ï,...,q 
i=l 

p 

ïkj = £ ßijXki + ß0j + ôj +ekj k = n+l,...,N;j=\,,.,q 

with p : number of foreign (Belgian, German) stations, 
q : number of Dutch stations, 
Xkt : rainfall amount in the fcth year of the rth foreign station, 
ykj • rainfall amount in the A:th year of they'th Dutch station. 

During the first n years (period 1) the height of Dutch rain gauges is 1.50 m ; 
during the last N-n years (period 2) this height is 0.40 m. The error terms 
eij,---,êNj are assumed to be iid for every ƒ The marginal distribution is 
assumed to be Gaussian with mean zero. 

The use of this model underlies the assumption that only a change in height 
can cause a jump in the mean. The facts that there are changes of site and that 
in 1962 a new type of rain gauge was introduced in the Netherlands are not 
considered. Therefore care is needed in the interpretation of the results of the 
regression analysis. 

Estimates of the regression coefficients can be obtained by applying the 
method of least squares for each Dutch station separately (cf. RAO (1973), 
8c. 1 and8c.2). 

Figure 4.4 shows estimates of the jump ôj, which were obtained by applying 
the regression model for four different regions. The periods for which the 
regression model was applied are given in Table 4.3. The largest values for the 
ójS belong to coastal stations. Jumps of more than 10 per cent are found in the 
northern coastal area (Warffum, Schiermonnikoog, Roodeschool), but they 
are in general much smaller for stations in the south-western coastal area. 
Possible explanations for this phenomenon are given in Section 4.1.3. The 
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FIG. 4.4. Estimates of jumps Sj (see Equation (4.4)) for different regions (in mm). Stations 
for which the jump differs significantly from zero are denoted by an asterisk. 

TABLE 4.3. Realizations of the {/-statistic (Equation (4.5)) for testing significance of jumps 
<5; in the regression model (4.4). The different regions are given in Figure 4.4. 

Region Period Period 2 U Critical level 

1926-1946 
1926-1945 
1926-1945 
1931-1946 

1953-1970 
1953-1970 
1955-1970 
1952-1972 

0.27 
0.79 
0.69 
0.63 

0.002 
0.405 
0.094 
0.029 
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height of estimated jumps rapidly decreases, as the distance to the coast in­
creases. There are, however, some stations for which the height of the estimated 
jump strongly deviates from jumps of adjacent stations (Nieuw Beerta, Ter 
Apel, Valkenburg, Groede). This deviation can be due to changes in the 
instrument or changes of site. 

Whether or not the jump of a particular Dutch rainfall station differs from 
zero can be tested with a Student test. The test is one-sided, because it may be 
assumed that reduction of height of rain gauges leads to an increase in the 
recorded rainfall amounts. Stations for which a significant value is found at 
the 5 per cent level are denoted by an asterisk in Figure 4.4. 

For a particular region one can also look at all stations simultaneously and 
test the hypotheses : 
- H0 : all ôfi are equal to zero, and 
- Hx : not all ôjs are equal to zero. 

The test statistic, which has to be used in this case is (cf. RAO (1973), 8c.4) 

| C i | 
(45) ""ie; , 
with | Co | : determinant of the sample covariance matrix under H0, 

|Ci | : determinant of the sample covariance matrix under H^ 
Under H0 the test statistic is close to its maximum value 1 ; values much 

smaller than 1 lead to rejection of H0. For the null distribution of the statistic 
U holds (cf. RAO (1973), Table 8c.5ß): 

1-1/ q 
(4.6) -=- ~ — ^ — - F(q,N-p-q-l) 

U N-p~q-\ 

where F stands for Snedecor's F-variable. 
Realizations of the [/-statistic and their critical levels are given in Table 4.3. 

At the 5 per cent level H0 is rejected for the coastal regions 1 and 4. For region 4 
this is somewhat surprising, because most jumps are small in this region and 
due to some negative values the average jump does not differ very much from 
the average jump of region 2. However, not only the height of jumps is im­
portant for the power of the [/-statistic, but also the structure of the covariance 
matrix. 

4.1.3. Analysis with partial sums 
For the detection and quantification of jumps cumulative sum techniques 

can also be used. This section deals with partial sums of differences of annual 
averages of Dutch and foreign stations. 

The z'th partial sum St of a sequence of numbers {ak}k f : is defined as : 

[S0 = 0 

Si = É ak i=l,...,N. (4.7) 
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FIG. 4.5. Partial sums of differences of annual aver­
ages from two different countries. For region 4 the 
curve 4' is based on the stations Ghent, Axel and Bier­
vliet, whereas the curve 4" is based on the stations 
Ghent, Axel, Biervliet, St. Kruis and Terneuzen. 

When dealing with differences of annual averages from two different coun­
tries, ak is assumed to be : 

(4.8) ak = y k - xk 

with xk : average of annual totals of some foreign rainfall stations for the kih 
year, 

yk : average of annual totals of some Dutch rainfall stations for the kth 
year. 

The index i is chosen such that i = 1 corresponds to the first year of period 1 
and i = N corresponds to the last year of period 2. 

Figure 4.5 shows the relation between i and Si for four different regions, 
which are denoted in Figure 4.4. The direction of the curves is not the same. 
The curve goes upwards when the mean of Dutch stations is larger than the 
mean of foreign stations ; a downward curve occurs when the opposite is true. 
During the period in which Dutch rain gauges were lowered there is a visible 
change in slope of the curves. This change is most evident for the stations in 
region 1A and is less obvious for stations in regions 2 and 3, because of the 
small wind effect in these regions. A remarkable fact is the large difference 
between stations in region 1A and those in region 4. Possible explanations for 
this phenomenon are : 
a. The average wind velocity is somewhat smaller for region 4. 
b. Stations in region 4 may be more sheltered against the wind. The importance 

of the degree of protection was shown in Table 4.1 and was also demon­
strated by BRAZIER (1927). 
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c. Other departures from homogeneity can be important. For regions 1A and 4 
the quality of the foreign stations is very important, because their number 

is small. The curves of region 4 show a change in slope during the early thirties, 
which is an indication of other non-homogeneities. Doubtful is also the fact 
that after 1960 the curve of region 1A is nearly flat. 

The estimated correlation coefficient between averages of annual totals of 
Dutch and foreign stations is 0.870 for region 1A, 0.977 for region 2, 0.939 for 
region 3, 0.867 for region 4, using the stations Ghent, Axel and Biervliet only, 
and 0.889 for region 4, when the stations Ghent, Axel, Biervliet, St. Kruis and 
Terneuzen are used. If one compares these correlation coefficients with correla­
tion coefficients of annual totals of point rainfall data, which are given in Fig­
ures 4.1 and 4.3, it turns out that they are larger for regions 1A, 2 and 3. 
Some caution is needed for this conclusion, because the correlation coefficients 
do not refer to the same period. 

Two explanations can be given for this phenomenon : 
a. A jump in the mean due to a change of site causes a negative bias in the correlation esti­

mator, but this jump is much smaller when averaging over other stations and consequently, 
it follows from the considerations in Appendix A4 that the negative bias in the correlation 
estimator is small. 
b. Assume that in a particular region there are three rainfall stations in each country, 

denoted as X,, X2, X3 and Y„ Y2, Y3, respectively. Further it will be assumed that the 
stations in each country lie in an equilateral triangle. When the triangles of the two different 
countries are congruent and the distance between stations of the same country is small in 
comparison with the distance between stations of different countries, a reasonable variance-
covariance structure is : 

(4.9a) varx; = var ^ = <r2 for all i 

(4.9b) cov(x,-, ij) = pba
2 for all/ and j 

(4.9c) cov(x;,Xj) = cov(^j, ij) = p^G1 for all /andy'with / #7' 

where xi and £,• are the annual totals at the sites X; and Y;, respectively. 
Usually pb will be smaller than p„, because the correlation coefficient is in general decreasing 

with the distance. From (4.9) it can be concluded that the variances and covariances of the 
averages are : 

(4.10a) var x = var y = , (1 + 2pw)c2 

(4.10b) cov(x, J)= Pb"2 

and so for the correlation coefficient of the averages 

which is larger than pb for pv < 1. 

4.1.4. Regression models based on averages of point rainfall observations 
In Section 4.1.2 jumps in the mean were estimated for rainfall stations in 

different regions of the Netherlands and use was made of the [/-statistic to test 
the significance of jumps. For regions 1A, 2 and 3 it was shown that correlation 
coefficients of averages were larger than correlation coefficients of individual 
stations and therefore, a more powerful test for significance of jumps for a 
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