










helix formation in the plasmid of interest. Next to a pUC
plasmid, this insertion can be performed in many other
commercially available vectors, which also contain the
targeted region (see Table 1). Further steps are also easy
to implement, making our design a generally applicable
method for plasmid capture.

Short linear target DNA is often used to study DNA–
protein interactions. However, this does not accurately
reflect the natural configuration of DNA because DNA
topology as well as non-target DNA are important
factors contributing to binding affinity. Moreover, DNA
topology has a direct influence on the interaction between
DNA and many DNA–binding proteins, as exemplified by
the supercoiling-dependent DNA binding of Cascade (6).
This is also demonstrated by the binding of DnaA to the
origin of replication (oriC) on the E. coli genome: this
complex is more stable if oriC has an nSC topology
(1,2). In addition, it has been shown that promoters can
be stimulated or inhibited by increased negative supercoil-
ing (3), most likely related to the binding efficiency of the
RNA polymerase complex.

Here, we have selected the E. coli Lac repressor as a
model system because this protein and the three operators
it can bind are well studied (25–27). It has been shown that
supercoiling has an effect on the dissociation of Lac
repressor-operator complexes (28,29) and on Lac repres-
sor-mediated DNA looping (30); however, the proteins
used in these studies were all naturally occurring
tetramers.

Specifically, the interaction of Lac repressor with O1
has been studied in great detail, and remarkably high
association rates have been reported based on equilibrium
methods, spanning the range between 1� 108� 1� 1010/
M/s (31,32). It is, however, more relevant to compare our
results to those obtained in a previous SPR analysis of this
interaction (24), in which the following kinetic parameters
were determined, a ka of 1.8� 106/M/s, a kd of
3.4� 10�4/s and a KD of 0.2 nM. In the latter study, the
dissociation constant was also determined using an elec-
trophoretic mobility shift assay: a KD of 4.2 nM. This
number is well in range with the values we find, using
SPR (3.9 nM and 4.0 nM) and MST (4.5 nM). The major
difference between both studies is that Bondeson et al. (24)
used a wild-type (tetrameric) Lac repressor, which can
bind two operators at the same time, whereas we used a
mutated (dimeric) Lac repressor that can bind only one

Figure 2. SPR data and fits. Double referenced data of replicate injec-
tions (black) and fits to it (red). (A) 1:1 fit to pPAD-�O1�O3, (B) 1:1
fit to pPAD-�O3, (C) 1:1 fit with mass transfer limitation to linear O1
DNA, (D) Heterogeneous fit to pPAD-�O3, assuming fixed values for
ka1 and kd1. Resulting values for the dissociation constants and kinetic
rate constants are summarized in Table 2.

Table 2. Kinetic parameters for the interaction of Lac repressor with the various DNA targets, including those found by Bondeson et al. (24)

Target DNA SPR MST Electrophoretic
mobility
shift assay

Fit model ka1 (�105/M/s) kd1 (�10�2/s) KD1 (nM) ka2 (�104/M/s) kd2 (�10�4/s) KD2 (nM) KD (nM) KD (nM)
Linear O1 DNA 1:1 Mass

transfer
12 0.48 3.9 4.5

pPAD-�O1�O3 1:1 1.55 5.2 337 147
pPAD-�O3 1:1 1.09 1.7 155 188
pPAD-�O3 Heterogeneous 1.55 5.2 337 6.8 2.7 4.0

Linear O1
DNA (24)

n.a. 18 0.034 0.2 4.2

Values in bold refer to interactions with operator DNA, and values in Italics indicate those that were fixed during fitting with the heterogeneous
model.
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operator at the same time. In general, the presence of
multiple binding sites is disadvantageous for SPR
analysis; it could give rise to avidity effects and substantial
rebinding, which results in a higher apparent affinity (33).
This explains why our dissociation rate from the linear O1
DNA (4.8� 10�3/s) is substantially higher, and hence
results in a lower affinity (3.9 nM).

The affinities for interaction with the captured plasmids
are considerably lower when compared with the linear
target DNA, but Lac repressor still binds with nanomolar
affinity to the plasmids. Binding curves of both captured
plasmids were initially fitted to a 1:1 binding model. A
comparison of these 1:1 fits already shows differences
between both plasmids; association rates are in the same
range, but the dissociation from the pPAD-�O3 plasmid
appears to be three times slower. The higher affinity inter-
action with the pPAD-�O3 plasmid is in line with the fact
that a specific binding site (operator 1) is present on this
plasmid. Affinity values obtained using MST are in the
same nanomolar range. They do not follow the trend
that the affinity for pPAD-�O3 is higher than for
pPAD-�O1�O3. For MST to be accurate, it is essential
that the DNA concentrations are precisely known;
however, in the course of this project, it has proven diffi-
cult to accurately measure concentrations of highly
concentrated, and hence viscous DNA preparations. We
believe this to be the origin of the discrepancy between
these values.

Although previously fitted with a 1:1 binding model,
binding of Lac repressor to the pPAD-�O3 plasmid
should actually be considered as a heterogeneous event.
Lac repressor can independently bind to either non-target
DNA or operator DNA. We fitted the pPAD-�O3
binding data with a model for heterogeneous binding to
obtain the kinetic parameters for the secondary, specific,
interaction. To do so, we assumed the kinetic parameters
for the non-target interaction to be similar for both
plasmids and used these as known variables for ka1 and
kd1. As such, we found a KD2 of 4.0 nM for the interaction
between Lac repressor and its plasmid-based operator.
This is remarkably close to the values we found using
SPR (3.9 nM) and MST (4.5 nM) (Table 2).
Interestingly, the actual kinetics are widely different for
the interactions of Lac repressor with the plasmid
operator and linear O1 DNA. Both the association and
dissociation rates are �18 times slower for binding to the
plasmid operator, indicating that the presence of negative
supercoiling and non-target DNA has a considerable
effect on the actual kinetics of binding.

CONCLUSION

In the work presented here, we demonstrate the feasibility
and usefulness of a newly developed plasmid capture
approach, by applying it for the characterization of Lac
repressor binding. To our knowledge, this is the first time
that SPR has been used to determine the affinity and
kinetic parameters of the interaction between a protein
and its specific target sequence that is located on a super-
coiled plasmid. We believe this to be a versatile approach

that could be useful in SPR, single molecule and other
experiments to expand the range of substrates for DNA–
protein interactions beyond the use of short linear target
DNA. In addition, the biotin in TFO2.0 could be replaced
by other functionalities, such as fluorophores and thus will
enable studies requiring plasmid visualization. The use of
padlock-modified plasmids provides a useful addition to
the molecular biology toolbox, and may be used to
uncover properties of supercoiling-dependent proteins,
that could not be studied before.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1 and 2 and Supplementary
Methods.
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