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Summary 

Volunteer potatoes are one of the most important weeds in the cultivation of sugar beets. Having these 

volunteer potato plants can be a nest of diseases and harm the crop rotation. Therefore these plants 

should be removed, but for this no sophisticated method is available. In Nieuwenhuizen (2009) a 

machine was described that is able to automatically detect and control volunteer potato plants in a 

sugar beet crop. The accuracy of this machine was to low and improvements were needed. The current 

classification algorithm is only based on colour features. It was expected that adding new features 

would improve the classification accuracy. Therefore in this research the potential of the regular plant 

pattern of a sugar beet crop as classification feature was investigated.  

The objective of this research was to estimate the position of the upcoming beet plant in the future beet 

row. The main question of this research was if by using the regular plant pattern, 68% of the next beet 

positions can be estimated with an accuracy of at most 3 cm. To estimate the position of the upcoming 

beet plant, the pattern in which the beets occur must be revealed from the previous underlying beet 

row. From the research of Nieuwenhuizen (2009) multiple image datasets where available. But 

because of the poor regularity of the plant pattern in these datasets, also simulated datasets were used. 

Attempts with use of linear regression were stopped, since the exact positions of the individual beet 

plants in the previous beet row were needed. This appeared to be a problem to determine exactly. A 

more appropriate method was found to be the Fast Fourier Transformation. From this transformation 

the frequency and phase of a cosine wave can be deduced. The frequency was bounded to be 

determined from an a priori set interval corresponding to a possible range of sowing distances ranging 

from 15 to 25 cm. When overlaying the cosine wave to the original signal the peaks of it should 

correspond to the position of individual beets. The peaks of the extrapolated cosine wave correspond 

to the estimated position of the next beets in the future beet row.  

Equally to Nieuwenhuizen a step size of 20 cm was used, meaning that every 20 cm the position(s) of 

the next beet plants in the future beet row were estimated. The positive part of the extrapolated cosine 

wave with an amplitude of 1 acted as probability distribution. The current frequency was smoothed by 

taking a weighted average of the current and previous determined frequencies. The accuracy of the 

estimate was determined in terms of a deviation between the estimated and actual beet position ( ) and 

in terms of the probability from the probability distribution at the actual beet position (   ), which 

were only determined when the actual beet was classified as found. 

For the image datasets on average 70.5% of the actual next beets were found. For the simulated 

datasets this was 96.2%. The position of these found beets was estimated in the image datasets with an 

accuracy of on average 0.0 3.7 cm. For the simulated datasets this was 0.1 2.4 cm. Missing beet 

plants and volunteer potatoes in the previous underlying beet row both negatively influence the ability 

of this algorithm to estimate the next beet position.  

Drawback of the algorithm was that no feedback was available that determined if the cosine wave 

corresponded to the original beet row signal. Therefore it occurred that the next beet positions were 

estimated on basis of a non-corresponding beet pattern. 

To improve the current algorithm, first priority is to add a measure that determines the degree of 

similarity between the original intensity graph and the corresponding cosine wave. This can degree can 

judge the relevance of the provided next beet position estimate. Eventually this method can be added 

to the current colour based classification algorithm.  
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1 Introduction 

1.1 General 

Sugar beets are one of the major arable farming crops in The Netherlands. In 2012 an area of 72,724 

hectares was cultivated with sugar beets (CBS, 2012). When growing a sugar beet crop, volunteer 

potato plants are an important weed. These volunteer potato plants are sprouted from tubers leftover 

from previous cropping seasons. Because no selective herbicides are available to remove the volunteer 

potato plants from a sugar beet field, the volunteer potato plants can become a nest of diseases and 

pests towards neighbouring potato fields. Also the crop rotation on the field is disturbed, when large 

amounts of volunteer potato plants are present. 

Volunteer potato plants can appear when potatoes are present in the crop rotation. At harvest of this 

crop, small tubers will be sieved out and remain on the field. These small tubers can survive multiple 

seasons in the top soil layer, dependent on the species and weather conditions, and will sprout in a 

subsequent cropping season when conditions are favourable. Prevention against volunteer potatoes can 

be to minimize harvest losses, give tubers the opportunity to freeze in winter or plant potatoes species 

with low germination power (Veerman, 2003).  

Currently the most effective method is to manually remove the volunteer potato plants from the crop, 

for instance by dipping the plant with glyphosate or pulling it out of the soil. Mechanised methods are 

available but are less effective, like spraying glyphosate with crop covers or dipping the volunteer 

potato plants with glyphosate by a pass of a roll on the basis of their greater height as compared to the 

crop. These removal actions are best carried out when the volunteer potato plants have a diameter of 

10 cm (Campen, 2009). Each stem of the volunteer potato plant has to be handled with glyphosate to 

destroy it completely. 

Sugar beets are planted with a precision drill with a standard row distance of 50 cm. A standard in-row 

plant distance is about 20 cm resulting in on average 100,000 beets per hectare. However, the 

optimum number of beet plants which will result in the maximum sugar yield and financial revenue, is 

about 80,000 plants per hectare (Figure 1). This actual lower plant number is common practise, 

because of missing plants due to non-germination, diseases or pests. Only when plant numbers per 

hectare drop below 60,000 plants, yield and revenue decrease substantially. 
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Figure 1: Influence of number of plants per hectare on ratios of sugar yield, financial revenue and balance. Balance 

indicates financial revenue minus the cost of  seeds. Vertical lines indicate the optimum plant number for the three 

measures each. Translated from IRS (2000). 

The current methods to remove volunteer potatoes are all labour consuming and/or not effective 

enough. Therefore a PhD research was carried out by Nieuwenhuizen (2009) to come up with a 

machine that is able to automatically detect and remove volunteer potato plants. This machine was 

able to control up to 83% of the volunteer potatoes, with 1.4% of unwanted controlled sugar beet 

plants. 

1.2 Problem description 

 Current situation 

Nieuwenhuizen (2009) did research to design and implement a solution to automatically detect and 

control volunteer potato plants in a sugar beet crop, but the control rate of 83% did not reach the 

requirement of 95% control of volunteer potato plants. Nieuwenhuizen only used colour features to 

make a distinction between volunteer potato and sugar beet plants. Other classification features as 

texture and planting distance were not investigated in this research. 

In 2012 the Agrobot project proceeded the research of Nieuwenhuizen. The aim of the Agrobot project 

is to develop multisensory robots for agriculture, to offer a solution for current problems like the 

shortage of proper employment and soil compaction due to large machinery. The Agrobot project, in 

turn, is a part of the Smartbot project. This is a collaboration between 24 different partners from the 

Netherlands and Germany. One of the five demos that is developed in the Agrobot project, is a robot 

to detect and control volunteer potato plants in a sugar beet field. For this demo a Husky Robot is 

available, a sketch is shown in Figure 2. This robot will be equipped with a camera on the front and an 

actuator on the back, allowing to handle one crop row at a time. 

Number of plants per hectare (x 10,000) 

Sugar yield Financial revenue Balance 
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Figure 2: Side view of the Husky robot (ClearpathRobotics, 2013). 

Vollebregt (2013) did research to enhance the classification by adding texture parameters. The 

improvements of this enhancement were little and further research is needed to use this classification 

feature. Jager (2013) has researched how natural light conditions can be normalized in an image, such 

that protection against natural light by using a cover would not be needed anymore. In this thesis a 

method is developed that adjusts colour images such that these are less dependent on variations in 

natural lighting conditions. 

Summarized the current method needs improvements in the quality of detecting the volunteer potatoes 

and the Agrobot project requires a solution to implement the method on a small robot, in order to 

provide a practical solution to automatically detect and control volunteer potatoes in a sugar beet crop. 

 Desired situation 

This thesis is part of the Agrobot project, for which the desired situation is to come up with an 

autonomous vehicle that is able to detect and control volunteer potatoes in a sugar beet crop. 

Classification is based on colour features supported with plant position and texture features. The robot 

handles one crop row at a time and adapts its speed to the frequency of present volunteer potato plants. 

Also the robot can deal with changing natural light conditions, such that a light cover is not required. 

The robot is able to control  up to 95% of the volunteer potato plants and maximal 5% unwanted 

controlled sugar beet plants. 

For this thesis the desired situation is that it is proven that the regularity of the plant pattern is an 

appropriate feature to add in the vision based classification between volunteer potato and sugar beet 

plants. The exact planting distance is not as a priori information needed, since the algorithm is able to 

determine this by itself. This is a desired requirement, since the plant distance does not necessarily 

correspond with the setting of the sowing machine or the plant distance can simply be forgotten. 

 Problem definition 

It is unknown if the regular sowing pattern is an appropriate feature to make an improvement to the 

classification between volunteer potato and sugar beet plants. 

1.3 Objective 

The objective of this research is to investigate the characteristics of the regular plant pattern of a sugar 

beet crop, in order to provide an estimate of the beet positions in the future beet row. This is called the 

next beet position estimate. To make this estimate, the regular beet pattern has to be extended from the 
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detected pattern in the current and previous area. The method is accepted to be sufficiently accurate if 

68% of the next beet position estimates (         is within 3 cm of the true beet center point. 

If the next beet estimation method is accepted, it could be added to the existing classification 

algorithm which is only based on colour features. A complete control of volunteer potato plants is 

desired before this method is applicable in practise. Therefore the objective is to improve the true 

negative classification, which indicates the percentage of correctly classified volunteer potato plants. 

This may be at the expense of a somewhat lower true positive classification, indicating the correctly 

classified sugar beets. But regarding Figure 1 the production and financial revenue of the cultivation of 

a sugar beet crop will in most cases not decline substantially when some sugar beet plants were 

controlled. 

1.4 Research questions 

The main research question is: 

Can the regular sowing pattern of a sugar beet crop provide an estimate of the future beet position, in 

which 68% of the future beet position estimates is within 3 cm of the true beet center point?   

 Sub questions 

 How regular is the plant pattern in a crop row?  

 What methods can be used to detect a pattern in a crop row? 

 To what extent can the algorithm handle an unknown sowing distance? 

 What is the effect of missing beet plants on the next beet position estimate? 

 What is the effect of plants that are not in the pattern on the next beet position estimate? 

1.5 Demarcation 

For this research only image datasets shall be used originating from the research by Nieuwenhuizen. 

These datasets contain top view images of three adjacent sugar beet crop rows with a random 

appearance of volunteer potato plants. These datasets originate from the years 2007 and 2008. So 

during this research no more image data is gathered in practise. 

1.6 Report structure 

After this introduction in Chapter 2 an overview is given of relevant work that was done in other 

researches before. In Chapter 3 two possible methods were described that are able to determine the 

pattern of the sugar beet plants. First the linear regression method is described. As it appeared that this 

method was not suitable, a switch was made to use the Fast Fourier Transformation. The results of 

using this method are shown in Chapter 4. Subsequently these results are discussed in Chapter 5 and 

the conclusions are drawn in Chapter 6. Some recommendations for future research are presented in 

Chapter 7.  
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2 Literature 

In this chapter the outcome of a literature study is presented. Below an overview is given of the work 

of a number of researchers who did research in the same field as this research. 

 Nieuwenhuizen 

The research by Nieuwenhuizen (2009) was part of his PhD thesis entitled ‘Automated detection and 

control of volunteer potato plants’. This thesis reports about the research done to develop an 

automated discrimination between volunteer potato plants in a sugar beet crop. It was found that with 

colour features a proper distinction could be made between the two different plants species. Under 

artificial light conditions an unsupervised adaptive Bayesian classifier was used, which was trained to 

adapt to different field conditions. At the end the machine was able to control 75 to 100% of the 

volunteer potato plants, improving with decreased travelling speed. On average this resulted in 1.4% 

unwanted controlled sugar beet plants. In Figure 3 an image and sketch of the machine is seen. 

  

Figure 3: Image of machine attached to a tractor (left) and a schematic overview of the machine components (right). 

Cameras (RGB and NIR), artificial lighting (XE) and an ultrasonic height sensor (US) are mounted under the blue 

shed. Wheel encoder (WE) and micro sprayer (MS) as well as the computer are placed behind the shed. 

 

In Table 1 the classification performances of the algorithm by Nieuwenhuizen are given. From the 

table it is seen that classification accuracy is varying considerably between the different datasets. This 

classification accuracy is determined as 
     

           
. Special attention has to be given to the varying 

TN percentages, since this represents the volunteer potato plants that were classified as such. This 

classification is of importance, since it determines the amount of correctly controlled volunteer potato 

plants. 
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Table 1: Various datasets with classification results achieved by Nieuwenhuizen et al. (2009). 

Dataset name Ground truth Result VP Result SB Classification accuracy 

 VP TN FP  

SB FN TP 

2008-05-28 

Clay soil 

VP 82.1 17.9 94.6 

SB 4.0 96.0 

2008-05-30 

Clay soil 

VP 90.8 9.2 92.4 

SB 7.4 92.6 

2008-06-02 

Clay soil 

VP 78.2 21.8 79.9 

SB 19.8 80.2 

2008-05-28 

Sand soil 

VP 19.7 80.3 71.2 

SB 25.3 74.7 

2008-05-30 

Sand soil 

VP 4.0 96.0 60.7 

SB 37.9 62.1 

 

 Bontsema 

In Bontsema et al. (1991) a method is described to identify individual crop plants in a row crop. For 

this the regular pattern of the crop is used. The appearance of weeds is assumed to be random. The 

Fourier analysis is considered to a be useful tool, since it is able to filter out a periodicity in a signal. If 

the crop plants are positioned in a regular pattern, as can be reached with a precision seeder or a 

planting machine, crop plants will appear in a single frequency in the crop row. So if plants can be 

detected, the frequency of the crop plants can be filtered out.  

Measurements were performed on a real row of sugar beet plants with a sensor mounted in front of a 

tractor (Figure 4). The sensor consists of three pairs of sensors that were mounted at different heights 

besides the crop row. On one side of the crop row infrared lights and on the other side photoelectric 

cells were placed. These cells do or do not catch infrared light, indicating the presence of a plant at 

that certain position. The result of a measurement are shown in Figure 5. 

 

Figure 4: Tractor with sensor mounted on the front used to perform the measurements. (Bontsema et al., 1991).  
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Figure 5: Measured data of a row of sugar beets. Dots indicate the position of individual beet plants. No weeds were 

present. (Bontsema et al., 1991).  

To perform Fourier analysis the Fast Fourier Transformation (FFT) is used. This resulted in a 

frequency domain spectrum of the signal from Figure 5, shown in Figure 6.  
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Figure 6: Frequency spectrum of measured data from Figure 5. (Bontsema et al., 1991). 

From this spectrum all frequencies larger than 0.3 cm
-1

 were set to zero. Taking the inverse FFT of this 

spectrum resulted in the graph in Figure 7. It is clear that the peaks correspond to the position of the 

individual beet plants (dots), thus it is possible by this method to locate individual beet plants. 
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Figure 7: Transformed data using FFT of the measured data from Figure 5. (Bontsema et al., 1991). 
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This method seems to work properly, but no weeds were present in the measured section. These weeds 

will lead to more peaks when transforming the spectrum. However, from a subsequent research by 

Bontsema et al. (1998) it appeared that the peaks of sugar beet plants had a higher amplitude as peaks 

that are present due to weeds. In this report it is also stated that the mutual distances of the sugar beet 

plants do not have to be exactly constant to let the FFT method work properly.   

 Hemming 

Hemming et al. (2011) reported about an intrarow weeder which makes use of the method described 

by Bontsema. Opposed to Bontsema, this intrarow weeder makes use of image processing such that 

more complete information about the situation is available. With an excessive green operation, 

vegetation was distinguished from the soil. The binarized image indicates vegetation or soil pixels 

(Figure 8a). To detect the position of the crop row, all pixel values were added parallel to the row 

direction. A Gaussian Bell fit was used on the pixel summation to determine the centre of the crop row 

position (green line, Figure 8a). A search corridor with a width of two times the expected plant 

diameter was overlaid symmetrically with the expected row position line (white lines). In this search 

corridor all pixel values were summed up perpendicular to the crop row per image column. This 

resulted in the intensity graph in Figure 8b in which the individual crop plants can be distinguished.  

(a) 

  

(b) 

 
 

Figure 8: (a): Search corridor for the detection of plant positions in the row. Plants (red), determined row position 

(green centre line), border of search area (white lines). (b): associated intensity graph. (Hemming et al., 2011). 

Transforming the intensity graph with FFT to the frequency domain resulted in a Fourier spectrum 

with the contribution of the crop plants accumulated in one frequency band. Only this band was 

retained and transformed back to reveal the position of the crop plants. It is however not reported how 

this band was filtered and which band was transformed back. Also nothing was said about how this 

information was used to control the actuators. 

 Nørremark 

Nørremark et al. (2008) reported about an intrarow weeder making use of geo-referenced crop plants. 

This means that at sowing of the crop, the exact position obtained by RTK-GPS was logged for each 
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individual seed. These exact positions were used during hoeing to avoid collision between the hoe and 

the crop plant. It was found that 95% of the crop plants appeared in 37.3 mm distance from its seed 

location. Due to GPS drift and measured deviations between seed location and plant location, a 

minimum RMS error of 15.6 mm can be expected in both longitudinal and latitudinal direction. 

Midtiby (2012) made the striking remark about this method that in the meantime between sowing and 

hoeing, data about the seed position can be disturbed, for instance by a pass with a tractor or, on larger 

scale, an earthquake, such that the actual position of the crop shifts from the logged position of the 

seeds. Also data can simply be lost. Both result in that hoeing with this method becomes impossible.  

 Midtiby 

Midtiby et al. (2012) did research on finding the plant stem emerging point (PSEP) of a sugar beet 

plant in early growth stage by image processing. This was done by extracting the position and 

orientation of single leaves of the beet plant. PSEP estimates based on a single leaf had an average 

error of about 3 mm. When multiple leaves were detected per plant, the average error decreased to less 

than 2 mm. It has to be remarked that with this method the leaves should not overlap each other and 

leaves must have a regular shape. 

 Shrestha 

Shrestha et al. (2004) did research on a method that compared the machine vision detected maize plant 

position with the manually determined position. The maize plant positions were found by summing up 

the pixel values in the binarized plant pixel image perpendicular to the row direction. The mean 

absolute error of the machine vision detection was 57 mm. This high number was mainly due to maize 

plants that were not found by the vision based algorithm.  

 Tang and Tian 

Tang and Tian (2008) developed an algorithm to automatically measure maize plant spacing at early 

growth stages with use of image data. Plant material was separated from soil by an excessive green 

operation. Maize plants were differentiated from weeds by two shape parameters: area and 

compactness. The plant emerging point was determined by a method from Steward and Tian (1999). 

When compared with manual plant distance measurements, the system estimated plant spacing with an 

error (RMSE) of 1.7 cm or 8.3% of the mean spacing for V3 growth stage corn plants.  
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3 Materials and methods 

3.1 Datasets 

For this research datasets from Nieuwenhuizen (2009) containing images (RGB, NIR, ground truth 

and result images) of three adjacent rows of beet crop were available (Figure 9). Ground truth images 

contain human inserted information about which region in the image contains sugar beet plants, 

volunteer potato plants or soil. Result images contain the decision made with the algorithm of 

Nieuwenhuizen where to spray the glyphosate. The images contain a top view of three adjacent crop 

rows. Every 20 cm, the camera was triggered to make an image. This resulted in images with a size of 

1628 by 202 pixels. 

 

 

 

 
Figure 9: RGB, NIR, ground truth and result image of same region.  

In Table 1 the datasets are shown that were available for this research, which are a selection of the 

datasets used by Nieuwenhuizen (2009). 

3.2 Image processing 

All image processing, calculation and programming was performed using LabVIEW (National 

Instruments, version 2010). 

 Calibration 

The images could be calibrated to a metric scale using the ratio: 

 1 pixel  0.99       meter (1) 

 

This calibration was based on the length of one image in the crop row direction. According to 

Nieuwenhuizen one image covered a distance of 20 cm. Because the image consist of square pixels, 

this calibration also holds in the direction perpendicular on the crop row direction. 
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 Merge images 

Since the length of an image in the row direction corresponded with the triggering distance of the 

camera, adjacent images could be merged by simply connecting them on the long edge. Depending on 

the amount of images  , the size of the merged image becomes      by       pixels. 

 Excessive green 

To distinguish vegetation from soil in an image, an excessive green operation is commonly used.  

            (2) 

 

Where R, G and B stand for the pixel colour values. This operation is first described by Woebbecke et 

al. (1995). Using a threshold makes that the image is binarized to vegetation and non-vegetation 

pixels. This threshold is not fixed, but depends on the circumstances of the image, like light, 

background colour, etc. In the article multiple formulas are examined to come up with the most 

suitable one to distinguish vegetation from soil pixels. It is stated in the article that the green chromatic 

coordinate was significantly higher for a plant than for other surfaces. Therefore the contribution of 

the double green pixel value relative to red and blue was used, since it raised the relative presence of 

green in a pixel. 

3.3 Accuracy determination of plant distance 

To make use of the regular plant pattern in a crop row as classification feature, it was examined how 

regular this pattern is in practise. Therefore plant distance histograms of two different types of datasets 

were made, as described below. 

3.3.1 Image datasets 

From two datasets originating from Nieuwenhuizen (2009) a section of consecutive RGB images was 

taken (Table 2). In these images the centre point of every appearing beet plant was marked as accurate 

as possible by hand, with use of the program Paint. These marks have the shape of red squares with a 

size of 8*8 pixels. The result for one image is shown in Figure 10, in which the red square dots 

represent the marked sugar beet centre points. Such an image was called a centre point ground truth 

image (CPGT image). 

Table 2: Image datasets from which sections centre point ground truth (CPGT) images have been made. Second 

column denotes the number of images that were included in the dataset. The last three columns denote information 

about the content of the datasets. 

Dataset # of images # of beet plants # of plant 

distances 

Distance covered 

[m] 

2008-06-02 

Clay soil 

66 131 128 13.2 

2008-05-28 

Clay soil 

100 211 208 20.0 
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Figure 10: Example of a centre point ground truth (CPGT) image, in which the red squares represent the marked 

position of the sugar beet centre point. 

The CPGT images were filtered by a colour filter resulting in binarized images with only the marked 

beet centre points remaining. No excessive green operation was used. By obtaining the centre of mass 

in x- and y-direction of the red square marks, the position in terms of an x- and y-coordinate was 

obtained. The beet positions were collected per row using the x-coordinate (Equation (3)). This is 

needed since every beet row has to be handled separately.  

 {

                         

                                
                        

 (3) 

 

The plant distances were obtained by subtracting the y-coordinate of the next beet with the previous 

beet, such that the spacing was calculated. So from   beet positions per row,     plant distances 

could be calculated. All plant distances were collected per dataset. 

3.3.2 Measurement datasets 

In addition to the imaged datasets, two other datasets were used. Measurement datasets contain data 

about the position of a sequence of beet plants measured from a base point in the crop row. One set 

was obtained from the Stichting IRS. The second set was obtained from measurements in the field. 

The field data were measured on 29 April 2013 in a sugar beet field near Oudelande in province 

Zeeland. Figure 11 shows the method used to collect the positions of the beet plants. With a tape-

measure the position of the centre point of each single beet plant was noted with a precision of 1 cm. 

The beam in the left image was placed perpendicular on the crop row to ensure a fixed base point for 

three adjacent crop rows that were measured. The measurements were ended just beyond ten meters 

from the base point. Beets were sown with a standard exterior filling precision drill.  

  
Figure 11: Overview of measurement method to collect positions of beet plants measured from a base location in the 

crop row (left image). Detail of tape-measure with three beet plants, indicated by arrows (right image).  
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The measurement dataset from the IRS was measured on a parcel in Munnekezijl, province Friesland 

on 7 June 2006. This data file contains four adjacent crop rows, covering a distance of ten meters. No 

report was available about the measurement method, but in all probability this was equal to the above 

described method, since the layout of the data is equal. The complete datasets are in Appendix A.  

Table 3: Overview of available measurement datasets. Columns 2 to 5 indicate qualitative information about the 

datasets. 

Dataset # of beet plants # of plant distances # of rows Distance covered [m] 

Munnekezijl 207 203 4 10.0 

Oudelande 139 136 3 10.5 

 

3.3.3 Plant distance histograms 

To visualise the determined plant distances of the four datasets, histograms were made with a class 

width of 2.5 cm. The result is shown in Figure 12.  

  

  
Figure 12: Plant distance histograms of datasets Munnekezijl (top left), Oudelande (top right), 2008-06-02 Clay soil 

(bottom left) and 2008-05-28 Clay soil (bottom right). In the text boxes the mean and standard deviation is given of the 

plant distance. 

All histograms show a peak at the expected sowing distance. At twice the expected sowing distance a 

second peak is seen. This is due to missing beet plants, since the distance between the two adjacent 

plants is about doubled. The accuracy of the planting distance in each histogram was determined by 

the mean and standard deviation of the plant distances. It was assumed that plant distances in the range 

from 30 to 60 cm were due to missing beets, so these plant distances were halved. 

From the histograms it is seen that the accuracy of the plant distance deviates a lot between the 

datasets. The measured datasets from Munnekezijl and Oudelande show a much more regular plant 

distance distribution as the image data files do. This indicates that the constant sowing pattern in the 

20.3   2.2 cm 18.2   1.6 cm 

20.6   4.6 cm 20.1   5.4 cm 
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image data files is more worse as in the measurement data files. In practise, a plant distance 

distribution of the measurement files is more likely than the distribution of the image data files. As 

indicated in the objective no extra image data files were made for this research. Therefore this research 

has to deal with a poorer regular pattern, which is common in all image data files available for this 

research (Table 1). This is probable of negative influence for the utility of the plant pattern as 

classification criterion as described in this report. 

3.4 Linear regression method to estimate future beet positions 

This chapter contains theory about linear regression and thereafter a method was introduced to use the 

linear regression in an online application. This method makes use of the datasets with CPGT data only, 

since this algorithm does not include the possibility of detecting individual beets in an image. 

3.4.1 Theory 

Since the sugar beet crop was sown by a precision seeder, the seed distance should be theoretically 

equal everywhere. From this the seeds should have a linear relationship with the row distance 

according to the relationship in equation (4). 

           (4) 

 

Where:  

     is the position of beet number   measured from the origin [cm]; 

  is the beet place number.  =0,1,2,.., ; 

  represents the sowing distance [cm]; 

  represents the modelled position of the origin [cm]. 

In Figure 13 a trend line was added to a series of data points that represent the position of nine beet 

plants with a sowing distance of 20 cm (Original data in Appendix B). This trend line was established 

with usage of a least squares fit and represents the linear relationship between these data points. The 

formula in the figure corresponds to the formula in equation (4). Besides that the position of most beet 

plants shows a certain deviation from its intended position, the slope of the trend line corresponds to 

the intended plant distance in the crop row. 

 

Figure 13: Model of the position of nine sugar beet plants with a sowing distance of 20 cm, with a trend line 

established by a least square fit.     

The beet place number is related to the procedure of the seed disc in a precision seeder. The beet 

number is an ascending number from a decided starting point, equal to the amount of seeds that have 
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been sown by the precision seeder. To assign a beet number to a beet plant, the sowing distance and 

the starting point have to be known. These are equal to the parameters   and   from equation (4). The 

beet number is not automatically equal to the amount of beet plants, since missing beet plants and 

double germinates will occur. When a beet plant was missing, its beet number was skipped. When a 

double germinate occurred, both plants were having the same beet number, because both originate 

from the same seed. This is illustrated in Figure 14. 

 

Figure 14: Image illustrating the effect of missing beet plants and double germinates on the beet number. 

The linear relationship between beet number and beet position was used in the linear regression model, 

which determines the parameters   and   by least squares estimation to come up with the optimal 

linear fit. The least squares method was used, because the noise in      is Gaussian distributed. This 

was shown in the plant distance histograms in paragraph 3.3.3. By extrapolating the linear fit, the 

possibility exist to estimate the position of future beet plants. In the next paragraph this possibility was 

further investigated in an online application. 

3.4.2 Linear regression method in an online application 

In this section explanation will follow how to use the linear regression method in an online 

application. 

 Initial determination of sowing distance 

From the research questions of this thesis it was stated that the sowing distance will be unknown on 

forehand. From the AgroBot requirements it was known that the classification has to be performed 

online, since the robot will drive in the field and has to act instantly to a passing volunteer potato 

plant. Since the sowing distance is needed to assign a beet number to a beet plant, it was not possible 

to start directly with the linear regression method. To initialize it was chosen that the first nine meters 

of a field were used to filter the most common plant distance, which will be a measure for the sowing 

distance. This nine meter row distance was relative to an expected sowing distance between 15 and 25 

cm assumed to be appropriate to determine the sowing distance. 

When all plant distances were determined in the initialization area, it was not possible to simply take 

the average of all plant distances. This is because missing plants and dual germinates will occur. 

Therefore a method had to be found that searches for the most frequent plant distance. For this the 

plant distance histogram can be used very well, since it counts the amount of times a measurement 

occurs in a certain range. The classes were chosen to have a width of 2.5 centimetres, equal to the 

histograms in paragraph 3.3.3. As after nine meters the initialization was finished, the class with the 

highest peak was selected and from the measurements assigned in this range the mean was calculated. 

This value will be the measure for the sowing distance, denoted by the parameter   [cm]. 

However, it was possible that when the initialization was finished, two or more peaks had the same 

count. This could be due to (1) the possible sowing distance was on the edge of two classes or (2) 

because of a large scatter of plant distances in the initialization area, no clear peak would arise. The 
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first problem was captured by adding a second histogram which has overlapping classes with the first 

histogram. In Table 4 the class borders for the first histogram and the second shifted histogram are 

shown. 

Table 4: Calculation of class borders for the histogram and the shifted histogram. In which   is class width [cm],   is 

an integer on interval           representing the number of classes.  

 Class lower border Class upper border 

Histogram             

Shifted histogram 
    

 

 
          

 

 
  

 

The second problem is solved by continuation of the initialization as long as the highest peak of one of 

the two histograms does not contain three or more measurements more than the second highest peak in 

the same histogram. This results in a longer initialization area.  

In Figure 15 the two histograms are shown at the end of an initialization area of the CPGT images of 

dataset 2008-06-02 Clay soil. Since the highest peak in the non-shifted histogram has three more 

measurements than the second highest peak, the initialization stopped. So the sowing distance was in 

this case determined from the mean of all plant distances in the range 20 - 22.5 cm.  

In the shifted histogram it is seen that the measurements were more scattered over the classes. No clear 

peak has raised in this histogram, so it is probable that the sowing distance was around 21.3 cm, which 

was on the edge of two classes in the shifted histogram.        

 

Figure 15: Non-shifted (left) and shifted histogram (right) at the end of the same initialization area. The sowing 

distance is determined to be in the range 20 - 22.5 cm, as it is the highest peak in the non-shifted histogram. The 

initialization is stopped at this moment, since the highest peak has three measurements more than the second highest 

peak. 

 Determination of next beet position 

After the initialization, the estimation of the future beet positions starts. First, for each beet plant that 

was recognized, a beet place number was assigned. The beet number was determined by equation (5). 

             [
           

 
] (5) 
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Where:  

     is the beet number assigned to the current beet,      ϵ ℤ*
; 

       is the beet number of previous beet,        ϵ ℤ*
; 

     is the beet position [cm]; 

       is the beet position of previous beet [cm]; 

  is the sowing distance from initialization [cm]. 

  is the count of detected beets,   = 1,2,.., ; 

     = 0; 

     = 0 [cm]. 

The square brackets indicate that the quotient has to be rounded to the nearest integer. To be sure that 

the linear fit and thus the estimate of the future beet plants was representative for the current section, 

the nearby beets must be weighted more heavily in the linear regression function than the beets on a 

further distance. For now only the last ten beet plants were input for the linear regression model with 

the same weight. This was done to be sure that the estimate was based only on actual data and to 

prevent that errors from the past, that were not applicable anymore, remain in the estimation.  

Because of the dispersion in beet positions it was not very accurate to determine the beet number only 

from the difference between the current beet position and the previous beet position. It was plausible 

that one of the two, or both, were out of the pattern. Therefore it was more accurate to replace 

       by the estimate of it provided by the linear regression  ̂       

         ̂      (6) 

 

The estimated positions of the future beets in the row were calculated by extrapolating the linear 

regression function. The estimates of the beet position were denoted by the parameter  . 

                                 (7) 

 

The accuracy of the linear fit was given in terms of a mean squared error (MSE). The MSE is 

calculated with equation (8). 

     
 

 
∑   ̂      

 

      

       (8) 

 

in which  ̂  represents the vector of estimated beet positions of the vector    with the measured beet 

positions in it, given by the linear regression model. The square root of the     represents the 

standard deviation. 

3.4.3 Probability distribution in beet row 

When the position of the future beet plants is estimated and the accuracy of the linear fit is determined, 

these variables have to be combined to determine from each position in the beet row the probability of 

presence of a beet plant. For this a Gaussian distribution function is used. 

       
 

      

    

 
(9) 
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Where: 

     is the probability of position   of presence of a sugar beet plant.         ; 

  is the position in the beet row [cm]; 

     is the estimated beet position [cm]; 

  is the standard deviation of the estimate   [cm]. 

With this function the probability has a maximum of 1 when   is equal to  .  

The width of the distribution depends on the regularity of the plant distance in the crop row, since this 

is determined by the MSE (equation (8)). By setting a threshold value on     , areas can be classified 

as beet location or non-beet location. With a good regular plant distance, the graph becomes smaller, 

indicating that the position of the next plant is predicted within a small range. Vice versa holds for a 

poor regular plant distance. The probability      can act as one of the measures to make a 

classification between sugar beet and volunteer potato plants. 

3.4.4 Consideration about the linear regression method 

At this point the further research to the linear regression method was stopped. The major problem was 

that an accurate determination of the individual beet position was needed. With an online method no 

human marked beet center points would be available, so these should be automatically detected. Tang 

and Tian (2008) used a method to determine the plant stem emerging point of maize plants, which was 

in most of the cases successful. This was because the shape and size of maize plants  makes it well 

possible to distinguish on area and compactness. Since sugar beets have a more broadleaved shape it 

was assumed that this method would not work to distinguish beet plants. Although this was not proven 

by this research. In Midtiby et al. (2012) a method was explained that estimates the plant stem 

emerging point (PSEP) of small, non-overlapping beet plants. If at least one leaf per plant was 

detected, 90% of the PSEP were detected within 20 mm. Compared with the standard seeding distance 

of 20 cm, this would be a deviation of at maximum 10%. Nevertheless no usage was made of this 

method, since overlapping leaves and leaves with irregular shapes were often not detected. These 

leaves will be common in a sugar beet crop, especially if the crop would be more mature. Also weeds 

would be probably detected as sugar beets. These factors would often lead to incomplete or incorrect 

detections of single beet plants. 

Hence a method has to be found that is based on finding a pattern in a section of the crop row, instead 

of putting much effort in determining the exact position of a single beet plant. 

3.5 Theory of  the Fast Fourier transform 

 

3.5.1 Theory 

The Fast Fourier Transformation (FFT) is a fast method to calculate the Discrete Fourier 

Transformation (DFT). In below section some key characteristics of the DFT were listed that were 

important for this research. These characteristics were derived from the book ‘ Digital image 

processing’ by Gonzalez and Woods (2008). 
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The one dimensional Fourier transform is determined by the function: 

      ∑           
  
 

 

   

   

 [-] (10) 

The inverse of equation (10) is defined as: 

  ̅    
 

 
∑          

  
 

 

   

   

 [pix] (11) 

 

The Fourier (or frequency) spectrum is given by a real and imaginary part, since the Fourier Transform 

is a complex value: 

 |    |               
 
  [-] (12) 

 

The phase angle is described as: 

            [
    

    
] [ ] (13) 

 

Finally, the power spectrum is defined as: 

                  [-] (14) 

 

An extensive version of this theory can be found in Appendix G. 

3.5.2 Filter mask 

From a signal, discrete frequencies can be filtered out by retaining the desired frequency bands and 

transforming it back to the time domain, using equation (11). This operation is called inverse FFT 

(IFFT). A filter mask was used, in which the retained frequency bands are put to one and the omitted 

bands are put to zero. The filter mask was defined as a binary one dimensional array that has to be 

multiplied by     . From each retained band also its symmetrical duplicate has to be kept. This means 

the same band number counted backwards from end of the signal. If the symmetrical duplicate is kept 

out, the IFFT signal has the same shape but its amplitude is half of the original. The dc term 

(frequency band 0) was always excluded. In Figure 16 shows how a signal with a certain frequency 

can be filtered out of a signal with multiple frequencies, using a filter mask that retained only band 

number 2 and 62. 
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Figure 16: Example of the filter mask. A time signal      with two summed sine waves, the first having a frequency of 

2; the second having a frequency of 6 (upper graph). This time signal was transformed to the frequency domain by 

FFT (    ). The real part of      is shown in the middle graph, resulting in peaks on frequency bands 2, 6, 58 and 

62. The last two bands represent the symmetric duplicate of the first two frequency bands. The bottom graph shows 

the usage of a filter mask that retains bands 2 and 62, resulting in the original sine wave with frequency 2.  

In case of the crop row with sugar beet plants, it was wanted to filter out the frequency band in which 

the beet plants appear in the signal. Which frequency band to be filtered, depends on the size of the 

signal and the sowing distance. Since the usage of FFT restricts that the signal has to have a size of a 

power of 2 (see Appendix G), it was chosen that the images have a length of 2048 pixels. Regarding 

the calibration (equation (1)), this image size corresponds to a crop row distance of 202.8 cm. With a 

standard in row sowing distance of about 20 cm about ten beet plants will appear in an image, which is 

decided to be enough to detect the plant pattern.  

It was required that the sowing distance is not needed as a priori information. Therefore the method 

has to determine by itself what the sowing distance is and therefore which frequency band(s) had to be 

filtered out. The majority of the frequency bands provided by a Fast Fourier Transformation will not 

have a relation with the plant pattern of the sugar beets. As said before a standard sowing distance of 

sugar beets is 20 cm, such that the a number of 100,000 seeds were sown per hectare. However, in 

practise the seeding distance is adapted by the farmer to anticipate on conditions like an earlier sowing 

moment, soil conditions or weed pressure causing a changing predicted percentage of seeds that 

germinate (IRS, 2011). In this research a priori information was added that specifies that the sowing 

distance must be in the range of 15 and 25 cm. These sowing distances were translated into the 

frequency in which the specific sowing distance would appear in the image. This was done by dividing 

the image distance with the sowing distance. This resulted in a frequency of 13.5 for a sowing distance 

of 15 cm and 8.1 for a sowing distance of 25 cm. These frequencies are not integers. Since it is only 
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possible to filter out discrete frequencies, the actual frequency range was extended by increasing the 

maximum frequency to 14 and decreasing the lowest frequency to 8. By setting this range the 

frequency bands in which the pattern of the sugar beets must contribute in the image has to be 

searched in the range between 8 and 14. In Table 5 these discrete frequency bands are shown, with 

corresponding sowing distance. The symmetric duplicate of a frequency band was from here on no 

longer included, since it does not influence the shape of the inversed signal in the crop row direction. 

Table 5: All discrete frequency bands that are present in the sowing distance range between 15 and 25 cm, with 

corresponding sowing distance. 

Discrete frequency Sowing distance [cm] 

8 25.3 

9 22.5 

10 20.3 

11 18.4 

12 16.9 

13 15.6 

14 14.5 

 

Since it is only possible to filter out a discrete frequency with the filter mask, only the sowing 

distances from Table 5 would be available to filter out. In practise however beets will be sown in 

intermediate sowing distances. Therefore the next paragraph discusses how to handle non-discrete 

frequencies. 

3.5.3 Non-discrete frequencies 

From the FFT signal bands can be retained to filter out a specific frequency from the signal. Since the 

Fourier transform is discrete, it is only possible to filter out discrete frequencies. If a certain frequency 

of interest in the signal is not discrete, it is unknown what the behaviour of the spectrum is. It might be 

that (1) the contribution of the non-discrete frequency is included in the two nearby discrete frequency 

bands or (2) that the contribution of it is spread out over a large range of discrete frequency bands. If 

the first case holds the problem is limited, since the two frequency bands can be filtered out and the 

contribution of unwanted frequencies in the inverse transformation is small. If the second case applies, 

this would result in a major problem, since it is unwanted to filter out a large range of frequencies. 

This is because it is only wanted to filter out the frequency of the beet plants. If multiple frequencies 

were filtered, it is likely that also noise frequencies are retained, which is unwanted.   

To investigate the behaviour of non-discrete frequencies as described above, a theoretical study was 

performed. Therefore a sine wave was used containing 2048 samples and having an amplitude of 1. 

For four different frequencies (10.0; 10.2; 10.5 and 10.8) the sine wave was transformed to the 

frequency domain using FFT. In Figure 17 the percentage contribution of the total contribution in the 

range from frequency band 8 to 14 is shown. This figure only includes the real part of the spectrum. 

The imaginary part shows a comparable distribution. 
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Figure 17: Percentage contribution to each frequency band per sine wave frequency of the real part of     . 

When the frequency of the sine wave was discrete, all contribution was gathered in the corresponding 

frequency band, as seen for a frequency of 10. With a slightly higher frequency of 10.2 only about 

55% of the contribution was placed in frequency band 10. About 15% was placed in frequency band 

11, the remained contribution was spread out over a range of frequency bands. With a frequency of 

10.5, which is in the centre between two discrete frequencies, the contribution in frequency bands 10 

and 11 was about equal. These contributions summed gave a total of somewhat more than 60%. The 

remained contribution was also spread out over the range of frequency bands. The sine wave 

frequency of 10.8 shows an equal distribution as 10.2, but symmetrically.  

Since it was preferable that most of the contribution was gathered into the neighbouring discrete 

frequency bands, it was thought that the power spectrum      (equation (14)) might be useful. This 

was because      is the square from     . Therefore it increased the larger contributions more than 

the smaller contributions, resulting in larger percentage contributions in the neighbouring discrete 

frequency bands. In Figure 18 the percentage contribution of      is shown for the same frequencies 

as in Figure 17. It is shown that more of the contribution was placed in the neighbouring discrete 

frequency bands. 

 

Figure 18: Percentage contribution to each frequency band per sine wave frequency of P   . 
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3.6 Determination of sine wave frequency and phase 

FFT enhances the possibility to filter out a certain periodic signal of interest. In this paragraph a 

manner was found to determine the frequency and phase of this periodic signal which would 

correspond to the position of individual beets.  

3.6.1 Simplified crop row simulation 

Instead of making use of sine waves, a simplified dataset was made that resembles an intensity graph 

of a row of sugar beet plants. The objects in it were a simplification of the intensity graph of a sugar 

beet plant. In Figure 19 one triangular shaped object is shown, having a length of 70 pixels. 

 

Figure 19: A single triangular shaped intensity graph, used as simplification for the intensity of an individual sugar 

beet plant. The distance is measured parallel over the crop row. 

The simplified crop row was build up by putting multiple of these triangular shaped object on a fixed 

mutual pixel distance from each other. This pixel distance was measured between the peaks of the 

triangles. A random shift could be set on the position of the individual triangles, in order to make a 

crop row that is not exactly equally spaced. This provided a more realistic simplification of the crop 

row. Also the total simplified crop row could be horizontally shifted. 

 
                        

 

[pix] (15) 

Where: 

   is the position of the left corner of the triangular shape [pix]; 

  is the mutual triangular distance [pix]; 

           represents the uniform distributed random number in the range -1 to 1; 

   is the set point for the maximum shift of the individual triangle [pix]; 

   is the horizontal shift of the total simplified crop row [pix]; 

  is the iteration number.        ; 

In Figure 20 shows an example of a simplified crop after eleven iterations.

 

Figure 20: Intensity graph of  a simplified crop row after eleven iterations, with settings   = 204 pix,    = 30 pix and 

   = 80 pix. 
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The distance variable on the horizontal axis of Figure 20 represents the distance from a certain starting 

point. The future crop row is located beyond the maximum distance. To use the latest information 

about the crop row pattern, the 2048 pixels before the maximum distance were used to determine 

    . 

3.6.2 Determine frequency 

As from Table 5 seen, the frequency has to be detected in a demarcated range. Therefore only a 

demarcated range of discrete frequencies has to be considered from     . To detect the frequency in 

which the objects appear in the dataset, it was needed to determine the non-discrete frequency from 

    . From the theoretical part in 3.5.3 it was seen that when dealing with a non-discrete frequency, 

the largest part of the contribution was placed in the neighbouring discrete frequency bands. Therefore 

it was examined if the ratio between the amplitudes of the two discrete frequency bands is a measure 

for the frequency. For this the power spectrum      was used, since the majority of the contribution is 

placed in the neighbouring discrete frequency bands. Additional benefit is that      combines the real 

and imaginary part of the frequency spectrum. 

From      the frequency band with largest amplitude was picked, which was called     . When the 

dataset would contain a non-discrete frequency, part of the contribution would be placed in a 

frequency band adjacent to     . Therefore the adjacent frequency band to      with largest 

amplitude was also taken out. The relative size of this amplitude to      was then calculated as the 

amplitude ratio (  ). An overview of the steps to calculate the amplitude ratio is given below: 

1. Determine     ; 

2. Determine         {                   };  

3. Calculate    
   {                   }

       
. 

With a sine wave with phase is 0 and an amplitude of 1,    was calculated over the interval from 

frequencies between 8 and 14. This was done with a small step size of 0.001 in order to connect the 

amplitude ratio to the frequency. The graph in Figure 21 depicts the relationship between    and the 

sine wave frequency.  

 

Figure 21: Amplitude ratio plotted against the sine wave frequency. This relationship was stored in a lookup table, 

which was used to enhance the possibility to determine the frequency at a known amplitude ratio. 

The results were stored in a lookup table. This enhances the possibility to determine the frequency of a 

signal when    is known. The decision trajectory for finding the frequency (    estimated 

frequency) continued from the steps above:  
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4. Select interval of    in the lookup table {
                            
                            

}; 

5. Determine    at the index for which holds    {        
 }.  

The steps 1 to 5 are clarified with an example in Appendix H. 

3.6.3 Determine phase 

After determination of the frequency, the next step was to determine the phase of the sine wave that 

has to be overlaid over the original intensity graph. Therefore      from equation (13) was calculated 

which makes use of the real and imaginary part of     . Since the frequency will be in most cases a 

non-discrete value, the phase must be calculated using the two adjacent discrete frequency bands from 

    . It has been found that the ratio (  ) in which      and        have to be included, has a 

linear relationship with the decimal number of the non-discrete frequency. 

 
             ⌊  ⌋  

 
 

(16) 

 
            ⌊  ⌋ 

 
 

(17) 

Where: 

       is the ratio in which      was counted; 

         is the ratio in which        was counted; 

⌊  ⌋ is the estimated frequency rounded to integer towards minus infinity. 

 
                             

 

    (18) 

Where: 

   is the estimated phase angle    .  

But it has been found that equation (18) has to be constrained by equations (19) and (20). 

 
        

 

[   (19) 

 
               [   (20) 

Since the phase is a modulo value over a range of 0 to 360 , it holds that            in which k 

is an integer. Therefore the above constraints can always be met by adapting    or     .  

The estimated phase angle    correspond to the phase angle of a cosine wave. 

In Appendix I the above findings are clarified with an example. In Figure 22 it is shown that this 

method was able to correctly determine the corresponding cosine wave to the original simplified crop 

row, because the peaks of the cosine wave do correspond to the peaks of the original signal. It has to 

be noticed that the amplitude of the cosine wave was irrelevant to the position of the peak, therefore it 

was free to choose. 
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Figure 22: Original signal (blue line) for which the corresponding cosine wave was determined with use of FFT. This 

cosine wave having the properties frequency  
 

      , phase angle  
 

         and amplitude of 100 (red line).  

3.7 Application of next beet position estimation method on a crop 

row 

 

3.7.1 Create intensity graph 

To create an intensity graph of the beet row from the image datasets, a method was used based on 

Hemming et al. (2011). This method was also used by Shrestha et al. (2004). In this method binarized 

pixel values were summed up perpendicular on the crop row. These binarized pixels were acquired 

with an excessive green operation on the original image. The summation was bounded by a left and 

right border of the row area. These borders were available from Nieuwenhuizen (2009), that made use 

of a Kalman filter to determine the position of the crop row in an image.  

As already mentioned in paragraph 3.3.3 and as shown in Figure 12, the regular pattern in the 

available image datasets was rather poor. It was expected that finding the right pattern would be 

difficult with the method described in paragraph 3.6. Since it was desired to test the method on a more 

regular pattern as in practise most common occurs, the measurement datasets were used to provide a 

simulated crop row with a realistic plant pattern. Below it is described how a simulated crop row was 

build up from these datasets.  

Ten individual, random, non-overlapping beet plants were selected from image dataset 2008-05-28 

Clay soil. From the images of these selected beet plants, the intensity graphs were acquired. 

   
Figure 23: Original RGB image of one of the ten beets (left), binarized image resulting from an excessive green 

operation (middle) and intensity graph obtained a summation of the pixel values per row, bordered by the yellow lines 

from the binarized image (right). 
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These intensity graphs were used to build up a simulated crop row. The positions of the individual 

beets were based on the measurement datasets ‘Oudelande’ and ‘Munnekezijl’. The rows in these 

datasets were merged to one row. On every single beet position an intensity graph was centered, that 

was each time randomly chosen out of the ten available intensity graphs. With this three simulations 

were made for each dataset that were numbered as simulation 1 to 3. 

3.7.2 Estimate next beet position 

As seen in Figure 22 the ability exists to deduce the objects pattern from a simple intensity graph. This  

method was examined on the artificial datasets. From here on the aim was to make an estimate of the 

position of the upcoming beet plant. This was done by extrapolating the periodic cosine wave that 

corresponded to the directly underlying passed beet row. This method was named the next beet 

position estimate (NBPE). Equally to Nieuwenhuizen (2009) every iteration has a step size of 20 cm, 

indicating that the next beet position(s) were estimated over a length of 20 cm ahead. The calibration 

from cm to pix is equal to equation (1). 

The NBPE method operates when:  

 
  ⌈

         

    
⌉ 

 

 (21) 

Where: 

  is the iteration number (1,2,..,n); 

     is the step size [pix]; 

          is the size of the original signal [pix]. 

The brackets indicate that the quotient has to be rounded to infinity. 

 Frequency smoothing 

It can be expected that the plant distance in the beet row does not change instantly. Therefore the 

determined frequency and phase should be interconnected between the current and prior iterations. In 

the determination of the current frequency, prior determined frequencies were included with a certain 

weight. This was called the estimated weighted frequency     It has to be noticed that the previous 

frequencies are not the frequencies determined from the weighted average, but from the previous 

directly determined frequencies   . In Table 6 two cases are described that determine the current 

frequency by a weighted average. The standard case was to apply smoothing. Hereby it was examined 

if smoothing provides a more accurate NBPE. 

Table 6: Two cases describing the weight of current and prior determined frequencies (  ) in the determination of the 

current frequency with a weighted average.  

 Weight of    
Iteration                       

With smoothing 0.2 0.2 0.1 0.1 0.05 0.05 

Without smoothing 1 0 0 0 0 0 

 

 Phase smoothing 

Smoothing the phase angle cannot be done equally as the frequency with a weighted average. This is 

because the phase does depend on the frequency and is hence different at each iteration. Therefore 
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only a check was invented that compares the outgoing phase after one step of the previous iteration, 

with the ingoing phase of the current iteration (Figure 24). With exactly interconnected consecutive 

cosine waves these phase angles will be equal to each other. So a smaller (absolute) difference 

indicates a larger agreement between the consecutive cosine waves. 

 

Figure 24: Two cosine waves belonging to subsequent iterations having a frequency of 10.5 and an amplitude of 1. To 

be interconnected, the (ingoing) phase of the current cosine wave should be equal to the outgoing phase of the 

previous cosine wave after one step. The step size in this example was 202 pix.  

This indicator has not been used further, because it was unknown how to use it and whether it was 

justified to adjust the determined phase in the current iteration with the previous iteration. 

 Probability distribution    

In Figure 25, a random iteration of a simulation is shown. It is seen that the cosine wave fits on the 

intensity graph and was extended with one step that serves the next beet position estimate.  

 

Figure 25: Original signal in the range from 0-2048 pix (white line) and associated cosine wave (red line), which was 

extended by one step to represent the future beet position estimate. The amplitude of the cosine wave was increased to 

50 for better visibility. 

For the next beet position estimate a probability distribution has to be made that represents the 

estimated probability of the position of the sugar beet plant in the next step. This could have been done 

on several manners like a normal distribution or a simple triangle shape. But for now the positive part 

of the cosine wave was taken, with an amplitude of one causing a probability ranging from 0 to 1. The 

probability distribution ( ) of the next beet position estimate from Figure 25 is shown in Figure 26. 

From this it can be extracted that the centre point of the next beet plant would be most probably 

positioned on 2291 pix. 
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Figure 26: Probability distribution   of the next beet position estimate from Figure 25, using the positive part of the 

cosine wave with an amplitude of 1. 

3.7.3 Accuracy determination 

Two different measures were performed to determine the accuracy of the NBPE method. The first was 

based on the difference between the position of the peak of the probability distribution (     
) and the 

beet position (   ). These beet positions were known from the measured beet positions in the 

measurement datasets and the determined beet positions in the CPGT image datasets. For every beet 

position   [pix] was determined, which was obtained by the following steps: 

1. Determine the search area by     
         

   
;  

2. Centre the search area over    ; 

3. Determine      
 from the search area; 

4.      
 is accepted if         , otherwise this beet position was classified as not found; 

5.        
             

 was accepted. 

To limit the search area by half of the (determined) plant distance (step 1), it was ensured that the 

probability distribution corresponds to the particular beet. This value of 0.5 was chosen to be adequate. 

The determination of   is further clarified with Figure 27.  

 

Figure 27: Explanation of the determination of   for the middle beet. A search area (yellow line) as wide as half the 

determined plant distance was centered over the beet position     (blue dot). In this area the maximum of the 

probability distribution has to be taken. If         ,   was determined as      
    . 

The numbers of found and non-found beets were summed up. From   the mean and standard deviation 

were determined.   was calibrated from pix to cm by equation (1), allowing to determine the accuracy 

of the next beet position estimate in a metric unit. 

The second accuracy measure was based on the probability   at the beet position    , which was 

called    . The determination of this measure is clarified in Figure 28.     is plotted against the beet 
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position, allowing to explore the performance of the next beet position estimate over the simulated 

crop row. The row distance variable was calibrated to a metric scale.  

 

Figure 28: Explanation of the determination of    . At the beet position    (blue dot)   was determined (intersects in 

yellow circle) for every particular beet. 

3.7.4 Effect of missing beet plants 

Since in a normal beet row often missing beet plants will occur, it was examined how these missing 

beet plants do influence the quality of the NBPE. A random section was taken from one of the 

simulations, that did not contain a missing beet. The next beet position estimate of this section was 

determined and it was decided that this matched the true beet position. So     cm and        . 

This next beet position estimate was determined for this signal separately, so without frequency 

smoothing. Subsequently the next beet position was estimated whereby in every iteration one 

individual beet was randomly deleted, until one beet was left. At every iteration the next beet position 

estimate was determined and from comparison with the base situation   and     were calculated. This 

method was repeated 500 times, in order to examine multiple different sequences of beet plants. 

3.7.5 Effect of volunteer potato plant 

The behaviour of the NBPE method was checked when a volunteer potato is present in the crop row. 

A random volunteer potato was taken from an image dataset. This potato with corresponding intensity 

graph is shown in Figure 29.    

  
Figure 29: Volunteer potato with corresponding intensity graph. Arrow indicates the direction of the distance variable 

in the intensity graph. 

A random iteration of one of the simulations was taken that served as base. For this part the next beet 

position estimate was determined without frequency smoothing, which served to compare with the 

signals with volunteer potato in it. These were created by inserting the intensity graph of the volunteer 

potato at a random position to the existing intensity graph. It was assumed that a volunteer potato in 

the crop row overgrows the present beets, so no beets were seen in the intensity graph at the position 

of the volunteer potato. With the above described methods     and   were determined and compared 

with the base situation. To have sufficient samples, 500 iterations were performed. 
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4 Results 

4.1 Image datasets 

In Figure 30 and Figure 31 two examples are shown of a section of the intensity graph of an image 

dataset. The corresponding cosine wave determined by the algorithm is shown, as well as the intensity 

graph of the next step. In Appendix C multiple examples are shown.  

Figure 30 shows a section of an intensity graph of an image dataset having a proper regular plant 

pattern. It can be seen that this pattern was detected reasonably correctly, since the determined cosine 

wave corresponds to original signal. Contrary Figure 31 shows a section of an intensity graph from 

which the determined cosine wave corresponds less well to the original signal.  

 

Figure 30: Random original signal from dataset 2008-05-28 Clay Soil (white line), corresponding cosine wave with 

properties    = 9.74 and    = 15  (red line) and next iteration intensity graph (green line).   

 

Figure 31: Random original signal from dataset 2008-05-28 Sand Soil (white line), corresponding cosine wave with 

properties    = 10.09 and    = 33  (red line) and actual next iteration intensity graph (green line). 

4.2 Metric accuracy 

In Table 7 the results are shown that determine the accuracy of the NBPE for the simulations of the 

datasets ‘Oudelande’ and ‘Munnekezijl’. Also the percentage of found and non-found beets were 

provided to enable mutual comparison between the simulations and datasets. It should be noted that 
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the nine beets from the initialization area that were never been found, were not included in the non-

found beets.  

Table 7: Results with frequency smoothing (Table 6), indicating the number of beet plants found and not found by the 

algorithm per simulation of datasets ‘Oudelande’ and ‘Munnekezijl’. From the found beets, the mean and standard 

deviation of   were determined. 

Simulation # of found beets 

(% of total) 

# of non-found 

beets (% of total) 

  mean 

[cm] 

  standard deviation 

[cm] 

Oudelande 1 124 (97) 4 (3) -0.5 2.7 

Oudelande 2 126 (98) 2 (2) -0.3 2.5 

Oudelande 3 124 (97) 4 (3) -0.3 2.5 

Munnekezijl 1 187 (96) 8 (4) 0.4 2.3 

Munnekezijl 2 184 (94) 11 (6) 0.6 2.2 

Munnekezijl 3 185 (95) 10 (5) 0.9 2.1 
 

Table 8 shows the results without frequency smoothing (Table 6). A two sided independent T-Test has 

found no significant difference between the case with frequency smoothing and the case without 

frequency smoothing. The outcomes of the T-Tests are shown in Appendix D. 

Table 8: Same as Table 7, but without frequency smoothing (Table 6). 

Simulation # of found beets 

(% of total) 

# of non-found 

beets (% of total) 

  mean 

[cm] 

  standard deviation 

[cm] 

Oudelande 1 125 (98) 3 (2) -0.6 2.8 

Oudelande 2 126 (98) 2 (2) -0.3 2.8 

Oudelande 3 128 (100) 0 (0) -0.2 2.9 

Munnekezijl 1 182 (93) 13 (7) 0.5 2.4 

Munnekezijl 2 186 (95) 9 (5) 0.8 2.4 

Munnekezijl 3 186 (95) 9 (5) 0.9 2.1 

 

The performance of the NBPE  was also tested on the image datasets with CPGT (Table 2). The 

results are shown per crop row in Table 9 and Table 10. Only the case with frequency smoothing was 

tested, since no difference was expected regarding the previous results. 

Table 9: Results for image dataset 2008-05-28 Clay Soil, with frequency smoothing 

Simulation # of found beets 

(% of total) 

# of non-found 

beets (% of total) 

  mean 

[cm] 

  standard deviation 

[cm] 

Left Row 45 (61) 29 (39) -0.3 3.7 

Middle Row 51 (71) 21 (29) 0.1 3.7 

Right Row 52 (78) 15 (22) 0.3 3.7 

 

Table 10: Results for image dataset 2008-06-02 Clay Soil, with frequency smoothing 

Simulation # of found beets 

(% of total) 

# of non-found 

beets (% of total) 

  mean 

[cm] 

  standard deviation 

[cm] 

Left Row 29 (67) 14 (33) 0.2 3.9 

Middle Row 32 (74) 11 (26) 0.8 3.1 

Right Row 31 (72) 12 (28) -1.2 4.0 
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4.3 Accuracy determination over the crop row 

In Figure 32 the results for simulation 1 of dataset ‘Oudelande’ are shown. Simulations 2 and 3 are in 

Appendix E. In these graphs all beet positions are plotted against their determined probability  . On 

the horizontal axis it can be seen that the length of the dataset is just over 3000 cm. Every single beet 

position is represented by a blue dot. The larger   is, the better the particular beet position was 

estimated. Because all three simulations were based on the same dataset, the positions of all dots on 

the horizontal axis are equal. 

 

Figure 32: Determined probabilities   by the next beet estimation at the beet positions     from dataset ‘Oudelande’ 

for simulation 1 (blue points). Red line represents the moving average of   with    . 

A striking observation is in the interval roughly between 1600 and 1800 cm. In simulation 1 some beet 

positions in this interval were badly estimated, regarding the two valleys in the moving average line. 

In simulations 2 and 3 these valleys were not seen at all. 

In Figure 33 the result is shown for simulation 1 of dataset ‘Munnekezijl’. Simulations 2 and 3 are 

shown in Appendix E. 

 

Figure 33: Determined probabilities   by the next beet estimation at the beet positions     from dataset 

‘Munnekezijl’ for simulation 1 (blue points). Red line represents the moving average of   with    . 

Similar to the simulations of dataset ‘Oudelande’, also in these simulations differences can be seen at 

the same locations. For instance around 2100 pix in simulation 2 a valley is seen, contrary to 

simulations 1 and 3 where the moving average remained high. On the other hand, at about 2800 pix all 

simulations show a valley, possibly indicating that some beets in this region will not be in the pattern.  
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Also for the image datasets with CPGT the probabilities   at the beet positions     were determined. 

In Figure 34 and Figure 35 both the left row is shown for the two datasets. The middle and right rows 

of both datasets are shown in Appendix E. 

 

Figure 34: Determined probabilities   by the next beet estimation at the beet positions     from dataset ‘2008-05-28 

Clay Soil’ for the left row (blue points). Red line represents the moving average of   with    . 

 

Figure 35: Determined probabilities   by the next beet estimation at the beet positions     from dataset ‘2008-06-02 

Clay Soil’ for the left row (blue points). Red line represents the moving average of   with    . 

4.4 Effect of missing beet plants 

In Figure 36 the base signal without missing beet plants is shown, originating from dataset 

‘Oudelande’ simulation 3. The next beet in this signal was estimated on position 5023 pix. Two 

striking signals were taken out. In Figure 37 a signal is shown containing only four beets, but with a 

reasonable correct next beet position estimate. In Figure 38 an example of a signal is shown having 

three missing beet plants, in which the next beet position was estimated incorrect. 

 

Figure 36: Base signal without missing beet plants originating from dataset ‘Oudelande’ simulation 3, in the range 

2850 to 4898 pix. Next beet was estimated at 5023 pix. 
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Figure 37: Iteration containing only four beets, but with an accurate estimation of the next beet position.  

 

Figure 38: Iteration containing seven beets, but with a false estimation of the next beet position. 

Table 11 shows the results of 500 simulations with missing beet plants. These results are presented as 

the mean and standard deviation of  , per number of beets left in the intensity graph. Next to this the 

number and percentage of found beets are given, since   was only determined from these found beets. 

The table also shows the count and percentage within the bounded ranges of | |    cm and     

    . It is seen that the two measures often show equal counts. This can be ascribed to change, because 

it was a coincidence that at this particular frequency an offset of 3 cm from the peak of the cosine 

wave corresponded to a probability of 0.7. In the cases with less beets left the counts correspond less 

often, because the frequencies could be determined less accurate.  

Table 11: Accuracy results of missing beet plants in the intensity graph. Results were presented per number beets left 

from the base intensity graph of Figure 36. The first two columns show the mean and standard deviation of  , 

together with the number and percentage of found beets. In the columns beside the count and percentage within the 

bounded ranges of | | and     were given. 

# of beets left   mean [cm]   st. dev. [cm] # of found 
beets             

(% of total) 

Count  
| |     cm   
(% of total) 

Count 
           

(% of total) 

10 0.0 0.0 500 (100) 500 (100) 500 (100) 

9 -0.5 1.7 500 (100) 453 (91) 453 (91) 

8 -0.3 1.6 430 (86) 373 (75) 373 (75) 

7 -0.3 2.0 424 (85) 331 (66) 329 (66) 

6 0.0 2.4 408 (82) 265 (53) 263 (53) 

5 0.4 2.4 399 (80) 249 (50) 247 (49) 

4 0.5 2.8 360 (72) 197 (40) 215 (43) 

3 0.7 2.8 299 (60) 197 (40) 194 (40) 

2 0.4 2.5 250 (50) 212 (42) 180 (36) 

1 -0.5 2.0 259 (52) 216 (43) 216 (43) 



Results 

 

 

   
38 

 
  

4.5 Effect of volunteer potato plant 

In Figure 39 the base signal is shown, originating from dataset ‘Oudelande’ simulation 2. In Figure 40 

a random example is shown where the intensity graph of the volunteer potato is added. It can be 

noticed that the cosine waves of Figure 39 and Figure 40 do still correspond to each other and the next 

beet position estimate was little influenced by the presence of the volunteer potato in the intensity 

graph. Contrary Figure 41 shows an example of an iteration in which the presence of the volunteer 

potato caused a false next beet position estimation.  

 

Figure 39: Base signal (white line) without volunteer potato originating from dataset ‘Oudelande’ simulation 2, in the 

range 4012 to 6059 pix. Next beet was estimated at 6206 pix. 

 

Figure 40: Random iteration with an accurate estimation of the next beet position, despite the presence of a volunteer 

potato in the intensity graph.  

 

Figure 41: Random iteration with a false estimation of the next beet position, due to the presence of a volunteer potato 

in the intensity graph. 

In Table 12 the results for   and     are shown. These results are presented as the count within a given 

range of the parameter. From this count the percentage of the total was calculated. In Appendix F the 

original data is shown. The accuracy for   was           cm, but it has to be noticed that this was 

only determined from the found beets. 370 of the 500 next beet positions were determined to be found. 
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Table 12: Count within the bounded ranges of the absolute value of   and     for 500 iterations with a volunteer 

potato in the intensity graph. The percentage was determined by dividing the count with the amount of iterations. 

| | [cm] Count  % of total 

≤ 0.5 158 32 

≤ 1.0 238 48 

≤ 1.5 281 56 

≤ 2.0 316 63 

≤ 2.5 336 67 

≤ 3.0 357 71 
 

    Count  % of total 

≥ 0.9 235 47 

≥ 0.8 300 60 

≥ 0.7 340 68 

≥ 0.6 359 72 

≥ 0.5 365 73 
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5 Discussion 

The method of estimating the position of the future crop plant with use of the determined crop pattern 

of the foregoing area is a method where no explicit research had been done to yet. Therefore it is hard 

to compare the results of this research with results of others. Other research in this segment was 

mainly based on the determination of the exact plant position, instead of using the overall plant pattern 

to estimate the position of a single plant. 

5.1 Literature 

The objective for Bontsema et al. (1991) to use FFT on a crop row signal differs from the objective for 

this research. Bontsema was interested in revealing the exact positions of the crop plants, while this 

research focusses on determining the correct pattern of the crop plants. The disadvantage of 

Bontsema’s method is that the crop plants had to be much larger than the other plants, otherwise these 

other plants were also detected as crop plants. 

It was expected that also Hemming et al. (2011) was interested in revealing the exact crop plant 

positions like Bontsema did. Unfortunately no exact information was provided about detection of these 

crop plants and about the discrimination of the weed plants. 

5.2 Materials and methods 

 Datasets 

Because of a poor regular pattern in the image datasets it was needed to create simulated crop rows to 

test the algorithm on. The hand measured plant distances in a real sugar beet field made that these 

simulated datasets match a real beet row with missing beet plants at a growth stage just before leaf 

overlap. A disadvantage of the simulated crop rows was that it was always assumed that the position 

of the leaf area center corresponds to the plant stem emerging point. This made that the intensity 

graphs were in fact more regular. Another disadvantage of the simulated crop rows was that these 

contain no irregularities like (parts of) volunteer potatoes or weeds, opposed to the image datasets. 

 Fast Fourier transform 

To detect the pattern of the beet plants in a row of sugar beet crop, usage was made of the Fast Fourier 

Transform. Both the frequency and phase of the cosine wave were determined by using ratios between 

the amplitudes of two adjacent frequency bands of the FFT. By the tests using sine waves and 

simplified objects it has proven that this is a valid method. However, this is because the amplitudes in 

the Fourier spectra only contained the contribution of the concerned pattern. If other frequencies occur 

in the spectrum, as in the spectrum of a beet row will be, this amplitude ratio can be disturbed. From 

paragraph 3.5.3 about non-discrete frequencies, it can be deduced that when another periodic signal 

with non-discrete frequency is present in the beet signal, the contribution of it is spread out over a 

broad range of frequency bands. When some of these contribution ends up in the neighbouring 

frequency bands that represent the pattern of the beet plants, the ratio of amplitudes is disturbed.   

The lookup table that was used to determine the frequency was obtained by using      of neat sine 

waves. A shortage of this lookup table is that it has difficulty with determining the correct frequency if 

the frequency of the beets in the signal is discrete. This is because    has to be zero is this case. Since 

the signal of a real beet row is less neat than the signal of a sine wave, it would contain multiple (non-
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discrete) frequencies apart from the frequency of the beet pattern. Therefore most frequency bands in 

     are non-zero. A determined    of zero is therefore exceptional.  

Since the total leaf area may not be sprayed with glyphosate, it is of more importance to detect the 

complete leaf area correctly than detecting the plant stem emerging point. This method determines the 

beet pattern from full information about the position of the plant leaves perpendicular to the crop row. 

In fact it estimates the center of the next leaf area, instead of the position of the next plant stem 

emerging point. This method is therefore better able to determine the position of the leaf area of an 

individual crop plant as methods that search for the plant stem emerging point or methods that use the 

geo referential coordinate of the seed that had been recorded during sowing. If for example multiple 

consecutive beets in a row have grown crooked due to hard winds or a pass of a machine, the leaf area 

is shifted. With above methods this might result that parts of the leaves are outside the zone which is 

determined to be beet area, and thus might be sprayed. 

In addition to what is stated above, the method to determine the accuracy measures   and     in the 

image datasets could cause errors. This was because the determined beet position     was not always 

equal to the center of the leaf area, since     was determined by appointing the plant stem emerging 

point in the image (see paragraph 3.3.1). As stated above this was not the desired beet position that 

was wanted to know. In the simulated datasets     was always on the center of the leaf area, so if in 

the these datasets   = 0 cm occurs, it was sure that the probability distribution was centered over the 

concerning beet leaf area. 

 Detection of plant distance 

As a priori information it was added that the seeding distance of the sugar beets will be in the range 

between 15 and 25 cm. This indicated that the algorithm has to determine the correct frequency from 

the search area between frequencies of 8 and 14. This limited range was not only needed to send the 

algorithm in the right direction, but also to prevent that the determined frequency was a plural of the 

real frequency. This is because in      of a beet row signal, besides the peak of the correct frequency, 

also peaks can occur at a plural of this frequency. After all these frequencies also correspond to the 

concerned signal. The frequency range between 8 and 14 was hence a suitable range, since it does not 

contain any of the plurals of a frequency in the range. This property made it essential to add a limited 

search area and to ensure that the search area does not contain plurals. 
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5.3 Results 

 Accuracy of results 

To use the plant pattern as feature to improve the current classification between volunteer potato and 

sugar beet plants, the regularity of it is of vital importance. Regarding the results it was commonly 

observed that the next beet position estimation method functioned better for the simulated crop rows 

from the measurement datasets than for the image datasets. This was for the most part due to the 

poorer regular plant pattern in the image datasets than in the measurement datasets, as already deduced 

from the plant distance histograms in Figure 12. From dataset ‘Oudelande’ it was known with 

certainty that the sugar beets were sown with a precision drill of at least twenty years old. This 

indicates that a regularity at least comparable to this dataset must be generally feasible. 

Figure 30 and Figure 31 respectively show a corresponding and a non-corresponding pattern of the 

original signal. Both of these iterations provide a next beet position estimate, which both were 

determined to be correct. Since the beet pattern was not determined correctly in Figure 31, the next 

beet estimate was based on a non-existing pattern. A drawback of this algorithm is therefore that there 

is no feedback that approves the presence of the determined beet pattern. With this feedback the 

relevance of the next beet position estimate could have been determined.  

In all simulations like in Figure 32 and Figure 33 it is seen that wrong estimations occur. This could 

apart from an incorrectly determined plant pattern also be due to an out of pattern next beet. A next 

beet that is out of pattern cannot be seen in advance. This indicates that it occurred that the pattern was 

determined correctly, but because the concerned next beet was out of pattern, it was not rated as an 

accurate estimate. No further investigation was done to quantify the amount of wrong estimates due to 

an out of pattern next beet or an incorrectly determined plant pattern.  

The method to determine if a beet was found or non-found by the algorithm makes that the results for 

  look more accurate than they are, because only the found beets were taken into account. With 

hindsight the determination of found and non-found beets should not have been added, since a large 

amount of non-found beets would became clear with a higher standard deviation of  . 

After all the number of datasets used was limited. All datasets have about the same plant distance, 

whereby it is unknown how the algorithm performs on a different plant distance. In practical situations 

often weeds will appear in the crop row. The datasets contained few weeds, the simulated datasets 

even no weeds. The robustness of the algorithm to determine the correct pattern was not examined 

when having weeds in the intensity graph. 

 Frequency smoothing 

Frequency smoothing was used to avoid that the frequency would suddenly change from one iteration 

to the next. Taking the weighted mean of the current and previous determined frequencies might not 

be the correct method, since an incorrectly determined frequency continues to be taken into account. 

Better options would be to take the median or delete the outlying frequencies.   

 Effect of missing beet plants and an out of pattern object 

To determine the effect of missing beet plants and an out of pattern object, just the intensity graph of 

one iteration was used. This made that the given results were just an indication of the effect of 

multiple missing plants and out of pattern objects.  



Discussion 
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With only one beet left in the intensity graph, it is by definition impossible to determine a pattern from 

a single iteration. But still 43% of the next beet positions were estimated correctly. Most of these 

estimates however were based on coincidence. The algorithm was set to always determine a pattern 

with frequency between 8 and 14. Therefore it is likely that close to the next beet position, the next 

beet was estimated. With only one beet in the intensity graph the algorithm should give no next beet 

position estimate, or it should extrapolate the last determined pattern of a previous iteration into the 

current iteration.  

The addition of a volunteer potato to the intensity graph was in sense useful, since it is a large 

disturbance to the beet pattern and therefore it was made more difficult for the algorithm to determine 

it. The assumption that the volunteer potato overgrows the beet plants is valid, since a potato plant 

grows faster and higher than a beet plant and widen its leaves. 

In the experiments with a missing beet plant and a volunteer potato, no usage was made of frequency 

smoothing. If this was applied, information would be available from previous iterations in which the 

pattern might be detected correctly. This might have a positive effect of the number of correctly 

estimated next beet positions.   
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6 Conclusions 

How regular is the plant pattern in a crop row? 

The regularity of the plant pattern differs per dataset. An accuracy of 20.3   2.2 cm is feasible with a 

common precision sowing machine. 

What methods can be used to detect a pattern in a crop row? 

The Fast Fourier Transform is found to be a method which is able to detect the pattern of the beet 

plants in a beet row. This method is able to reveal the frequency and phase of the most present 

periodicity in the beet row signal. From this frequency and phase a cosine wave could be formed that 

was overlapped on the original signal of the beet row. The cosine wave can be extrapolated to reveal 

the estimated next beet positions in the future beet row. 

To what extent can the algorithm handle an unknown sowing distance? 

When using the Fast Fourier Transformation the algorithm is able to handle an unknown sowing 

distance, as long as a search area of sowing distances was established. The restriction for the upper 

(  ) and lower bound (  ) for the search area is that:        . This is because no plurals of the 

frequency bands in the Fourier spectrum may be considered. 

What is the effect of missing beet plants on the next beet position estimate? 

Until three missing beet plants the algorithm was able to estimate 66% of the next beet positions 

within 3 cm of the real beet position. Since the results were based on experiments on only a single 

intensity graph, this result is just an indication.  

What is the effect of plants that are not in the pattern on the next beet position estimate? 

With one volunteer potato plant in the intensity graph the algorithm was able to estimate 71% of the 

next beet positions within 3 cm of the real beet position. Since in all tests the same intensity graph for 

the volunteer potato was used and only one intensity graph was used for the whole crop row, this 

result is just an indication. 

Can the regular sowing pattern of a sugar beet crop provide an estimate of the future beet 

position, in which 68% of the future beet position estimates is within 3 cm of the true beet center 

point?  

For the image datasets on average 70.5% of the actual next beets were found. The position of these 

found beets was estimated with an average accuracy of 0.0 3.7 cm. Over the six simulated datasets on 

average 96.2% of the next beets were found. The position of these found beets was estimated with an 

average accuracy of 0.1 2.4 cm. So when the accuracy measure   is assumed to be normally 

distributed, by using the simulated datasets it was possible to estimate at least 68% of the future beet 

positions within 3 cm. For the image datasets this was not possible. 
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7 Recommendations 

 Create new image datasets 

The new detection and control unit will be mounted on the Husky robot which operates only on one 

beet row per pass. Therefore first new image datasets should be made containing one crop row. The 

image datasets should be made on a field having a normal regular beet pattern. Also these images 

should be made on plots with different sowing distances, weed pressure and growth stage. From these 

diverse datasets the robustness of the algorithm has to be checked. 

Especially when the leaves of consecutive beet plants are overlapping each other, it is hard to 

distinguish individual beets from a top view image. At this growth stage it might be better to 

distinguish individual beets when images are made of the side view of the crop row. Possibly a 

mechanism is needed to lift up the leaves. This enhance the possibility to look under the leaves, having 

a better visibility on the plant stem emerging point.   

 Combine with colour features classification 

The next beet position estimate has to be added to the current colour-base classification algorithm as a 

probability of each gridcell (square region of 11 by 11 pix) to contain beet leaves. The current colour-

based classification algorithm is able to provide in most cases the correct classification. Therefore the 

plant position estimate would be especially useful in making a decision if the colour-based 

classification has not found a clear distinction. 

 Adapt intensity graph 

As seen in Table 12 the presence of a volunteer potato disturbs the intensity graph to such an extent 

that the beet pattern is often not correctly determined. As the classification algorithm is able to detect a 

volunteer potato, it is recommended to remove this volunteer potato from the intensity graph, in order 

to better determine the beet pattern. Also when a missing beet plant is detected, it might be useful to 

place an object in the intensity graph on this position, such that in subsequent iterations the beet 

pattern can be determined better. 

 Probability distribution 

The probability distribution has to correspond to the shape of a beet plant. This is because none of the 

leaves of the beet plant may be sprayed. Therefore a larger distance should have a probability of 1, that 

corresponds to the size of the beet plants. It has to be investigated if the size of the beet plant can be 

automatically determined or it has to be added as a priori knowledge.  

 

Figure 42: Recommended shape of the probability distribution.  
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 Measure for quality 

A quality measure should be added that automatically determines the degree of similarity between the 

original intensity graph and the corresponding cosine wave. This could be done by determining the 

percentage of pixels of the original intensity graph which is within the domain where the cosine wave 

is positive. This percentage must be transformed to act as the degree of similarity, that determines the 

accuracy of the next beet position estimate. With a low accuracy the probability distribution from 

Figure 42 must be made wider. This eventually results in that at a certain low accuracy, the total future 

beet row in the next step is determined to be the possible position of the beet. This method by adapting 

the width of the probability distribution to the accuracy of the estimate has been described before in 

paragraph 3.4.3.  

 Other crops than sugar beets 

Besides the usage in a sugar beet crop, this method can be tested in other precision drilled crops. For 

instance the cultivation of chicory, in which the weed pressure is typically higher than in sugar beets. 

In this crop it will also be over a longer period possible to determine the plant pattern with this 

method. It takes longer for the leaves of consecutive chicory plants to overgrow each other, since the 

crop grows much slower than sugar beets.  
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Appendix A 

Table 13: Measurement data of dataset ‘Munnekezijl’ containing positions of beet plants measured from the first beet 

plant in the row.  

Test field: Munnekezijl  date:        07-06-2006   

Plant number row 1  (cm) row 2 (cm) row 3 (cm) row 4 (cm) 

1 0 0 0 0 

2 12 15 17 18 

3 32 32 33 36 

4 48 51 53 55 

5 67 69 71 72 

6 85 89 91 91 

7 102 104 108 108 

8 121 124 128 129 

9 140 142 144 145 

10 158 160 180 164 

11 175 181 198 182 

12 194 200 218 201 

13 211 216 254 219 

14 228 234 288 237 

15 247 252 308 258 

16 265 271 326 291 

17 282 289 362 310 

18 303 308 382 328 

19 320 326 418 348 

20 337 343 438 365 

21 356 362 454 402 

22 374 380 471 420 

23 392 400 490 439 

24 413 418 509 455 

25 429 437 526 474 

26 446 452 544 494 

27 464 472 564 512 

28 485 491 598 528 

29 520 509 616 548 

30 539 528 635 567 

31 555 547 651 584 

32 574 565 671 599 

33 610 582 689 619 

34 627 601 711 638 

35 646 620 725 678 

36 665 638 744 692 

37 683 654 761 730 

38 699 671 781 748 

39 719 692 798 768 

40 737 709 818 784 

41 753 727 835 802 

42 773 748 851 822 

43 791 763 873 839 

44 809 784 888 858 

45 826 801 907 875 

46 846 820 925 891 

47 864 839 943 911 

48 882 875 962 930 

49 900 894 999 965 

50 917 914   984 

51 935 931     

52 953 950     

53 973 966     

54 990 988     
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Table 14: Measurement data of dataset ‘Oudelande’ containing positions of beet plants measured from a base 

position. 

Location: Oudelande   

Date: 29-04-2013     

Plant number 

row 1 [cm] row 2 [cm] row 3  [cm] 

1 4 0 28 

2 22 17 91 

3 44 38 109 

4 86 57 129 

5 108 80 151 

6 126 99 192 

7 166 119 212 

8 187 142 231 

9 209 162 253 

10 250 183 272 

11 269 221 293 

12 290 242 315 

13 310 263 334 

14 329 285 354 

15 354 303 373 

16 375 325 415 

17 393 346 436 

18 412 365 457 

19 435 383 476 

20 455 407 497 

21 474 428 517 

22 496 448 541 

23 515 466 557 

24 537 489 578 

25 557 511 596 

26 573 529 616 

27 595 551 658 

28 615 571 697 

29 637 591 719 

30 675 609 736 

31 695 631 759 

32 736 650 796 

33 756 672 817 

34 797 686 840 

35 819 711 857 

36 858 730 879 

37 879 750 899 

38 900 767 922 

39 940 790 937 

40 958 809 963 

41 980 830 986 

42 1000 850 1003 

43 1019 870 1023 

44 1042 892 1042 

45   911   

46   930   

47   954   

48   970   

49   996   

50   1010   

51   1036   
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Appendix B 

Table 15: A random series of data points, representing the position of nine beet plants. 

Beet place number Beet plant position [cm] 

0 0 

1 18 

2 44 

3 60 

4 83 

5 104 

6 117 

7 147 

8 161 
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Appendix C 

 

Figure 43: Random original signal from dataset 2008-05-28 Clay Soil (white line), corresponding cosine wave with 

properties    = 9.67 and    = 208 (red line) and next iteration intensity graph (green line).   

 

Figure 44: Random original signal from dataset 2008-05-28 Clay Soil (white line), corresponding cosine wave with 

properties    = 9.74 and    = 285  (red line) and next iteration intensity graph (green line). 

 

Figure 45: Random original signal from dataset 2008-05-28 Clay Soil (white line), corresponding cosine wave with 

properties    = 10.38 and    = 272  (red line) and next iteration intensity graph (green line). 
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Figure 46: Random original signal from dataset 2008-05-28 Clay Soil (white line), corresponding cosine wave with 

properties    = 9.44 and    = 174  (red line) and next iteration intensity graph (green line). 

 

Figure 47: Random original signal from dataset 2008-05-28 Clay Soil (white line), corresponding cosine wave with 

properties    = 9.69 and    = 79  (red line) and next iteration intensity graph (green line). 

 

Figure 48: Random original signal from dataset 2008-05-28 Sand Soil (white line), corresponding cosine wave with 

properties    = 9.78 and    = 250  (red line) and next iteration intensity graph (green line). 
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Figure 49: Random original signal from dataset 2008-05-28 Sand Soil (white line), corresponding cosine wave with 

properties    = 10.96 and    = 87  (red line) and next iteration intensity graph (green line). 

 

Figure 50: Random original signal from dataset 2008-05-28 Sand Soil (white line), corresponding cosine wave with 

properties    = 10.09 and    = 303 (red line) and next iteration intensity graph (green line). 

 

Figure 51: Random original signal from dataset 2008-05-28 Sand Soil (white line), corresponding cosine wave with 

properties    = 9.42 and    = 8  (red line) and next iteration intensity graph (green line). 
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Figure 52: Random original signal from dataset 2008-06-02 Clay Soil (white line), corresponding cosine wave with 

properties    = 9.60 and    = 142  (red line) and next iteration intensity graph (green line). 

 

Figure 53: Random original signal from dataset 2008-06-02 Clay Soil (white line), corresponding cosine wave with 

properties    = 9.90 and    = 263  (red line) and next iteration intensity graph (green line). 

 

Figure 54: Random original signal from dataset 2008-06-02 Sand Soil (white line), corresponding cosine wave with 

properties    = 10.83 and    = 56  (red line) and next iteration intensity graph (green line). This iteration contained a 

lot of overlapping beets. 
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Appendix D 

Table 16: Independent samples T-Test on   between case with and without frequency smoothing for simulation 1 of 

dataset ‘Oudelande’.   

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Difference Equal variances 

assumed 

.431 .512 -.319 247 .750 -.11059 .34676 -.79357 .57238 

Equal variances 

not assumed 

  
-.319 246.546 .750 -.11059 .34668 -.79343 .57225 

 
Table 17: Independent samples T-Test on   between case with and without frequency smoothing for simulation 2 of 

dataset ‘Oudelande’.  

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Difference Equal variances 

assumed 

3.011 .084 -.100 250 .920 -.03300 .32980 -.68253 .61653 

Equal variances 

not assumed 

  
-.100 246.215 .920 -.03300 .32980 -.68258 .61658 
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Table 18: Independent samples T-Test on   between case with and without frequency smoothing for simulation 3 of 

dataset ‘Oudelande’. 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Difference Equal variances 

assumed 

4.243 .040 .141 250 .888 .04835 .34320 -.62759 .72429 

Equal variances 

not assumed 

  
.141 246.899 .888 .04835 .34242 -.62608 .72279 

 
Table 19: Independent samples T-Test on   between case with and without frequency smoothing for simulation 1 of 

dataset ‘Munnekezijl’. 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Difference Equal variances 

assumed 

.457 .499 .238 367 .812 .05805 .24410 -.42196 .53805 

Equal variances 

not assumed 

  
.238 366.011 .812 .05805 .24418 -.42212 .53821 

 
Table 20: Independent samples T-Test on   between case with and without frequency smoothing for simulation 2 of 

dataset ‘Munnekezijl’. 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Difference Equal variances 

assumed 

3.122 .078 .762 368 .447 .18034 .23681 -.28533 .64601 

Equal variances 

not assumed 

  
.762 366.503 .447 .18034 .23671 -.28515 .64583 
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Table 21: Independent samples T-Test on   between case with and without frequency smoothing for simulation 3 of 

dataset ‘Munnekezijl’. 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Difference Equal variances 

assumed 

1.238 .267 .064 369 .949 .01408 .21837 -.41533 .44349 

Equal variances 

not assumed 

  
.064 368.739 .949 .01408 .21835 -.41530 .44345 
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Appendix E 

 

Figure 55: Determined probabilities   by the next beet estimation at the beet positions     from dataset ‘Oudelande’ 

for simulation 2 (blue points). Red line represents the moving average of   with    . 

 

 

Figure 56: Determined probabilities   by the next beet estimation at the beet positions     from dataset ‘Oudelande’ 

for simulation 3 (blue points). Red line represents the moving average of   with    . 

 

 

Figure 57: Determined probabilities   by the next beet estimation at the beet positions     from dataset 

‘Munnekezijl’ for simulation 2 (blue points). Red line represents the moving average of   with    . 
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Figure 58: Determined probabilities   by the next beet estimation at the beet positions     from dataset 

‘Munnekezijl’ for simulation 3 (blue points). Red line represents the moving average of   with    . 

 

 

Figure 59: Determined probabilities   by the next beet estimation at the beet positions     from dataset ‘2008-05-28 

Clay Soil’ for the middle row (blue points). Red line represents the moving average of   with    . 

 

 

Figure 60: Determined probabilities   by the next beet estimation at the beet positions     from dataset ‘2008-05-28 

Clay Soil’ for the right row (blue points). Red line represents the moving average of   with    . 
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Figure 61: Determined probabilities   by the next beet estimation at the beet positions     from dataset ‘2008-06-02 

Clay Soil’ for the middle row (blue points). Red line represents the moving average of   with    . 

 

 

Figure 62: Determined probabilities   by the next beet estimation at the beet positions     from dataset ‘2008-06-02 

Clay Soil’ for the right row (blue points). Red line represents the moving average of   with    . 
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Appendix F 

Table 22: Counts in the ranges of   and     for the intensity graphs with volunteer potato. 

  Count 

[-6.0;-5.5> 0 
[-5.5;-5.0> 0 
[-5.0;-4.5> 0 
[-4.5;-4.0> 0 
[-4.0;-3.5> 0 
[-3.5;-3.0> 0 
[-3.0;-2.5> 0 
[-2.5;-2.0> 13 
[-2.0;-1.5> 27 
[-1.5;-1.0> 32 
[-1.0;-0.5> 63 
[-0.5;0.0> 99 
<0.0;0.5] 59 
<0.5;1.0] 17 
<1.0;1.5] 11 
<1.5;2.0] 8 
<2.0;2.5] 7 
<2.5;3.0] 21 
<3.0;3.5] 1 
<3.5;4.0] 7 
<4.0;4.5] 0 
<4.5;5.0] 5 
<5.0;5.5] 5 
<5.5;6.0] 0 

 

    Count 

<0.0;0.1] 2 
<0.1;0.2] 4 
<0.2;0.3] 6 
<0.3;0.4] 0 
<0.4;0.5] 0 
<0.5;0.6] 6 
<0.6;0.7] 19 
<0.7;0.8] 40 
<0.8;0.9] 65 
<0.9;1.0] 235 
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Appendix G 

The Fast Fourier Transformation (FFT) is a fast method to calculate the Discrete Fourier 

Transformation (DFT). The number of calculations is reduced from N
2
 to N log2N. Especially at large 

N, this results in a major decrease of computational load. However, using FFT restricts that the input 

vector has to have a size of a power of 2 (Gonzalez and Woods, 2008). The algorithm was developed 

by James Cooley and John Tukey in 1965. The bottom line is that the transformation is split such that 

two recursive calculations appear, that both make a smart use of the periodicity and symmetry in the 

sine/cosine functions. Eventually the FFT results in the same outcome as the DFT. 

In below section some key characteristics of the DFT were listed that were important for this research. 

These characteristics were derived from the book ‘ Digital image processing’ by Gonzalez & Woods 

(2008). 

The one dimensional Fourier transform is determined by the function: 

      ∑           
  
 

 

   

   

 [-] (22) 

 

In which      is the original function and   is the length of the signal. The Fourier spectrum of a 

signal has the same size as the original signal. So the length of the spatial value   is equal to the length 

of the frequency-domain variable  . A large amplitude in the spectrum implies a greater prominence 

of a sinusoid of that certain frequency. The inverse of equation (10) is defined as: 

  ̅    
 

 
∑          

  
 

 

   

   

 [pix] (23) 

 

The Fourier (or frequency) spectrum is given by a real and imaginary part, since the Fourier Transform 

is a complex value: 

 |    |               
 
  [-] (24) 

 

In which   and   stand for the real and imaginary parts of the Fourier transform, respectively. The 

phase angle contains shape information of the signal. It is described as: 

            [
    

    
] [ ] (25) 

 

The four-quadrant arctangent has to be used to calculate the phase angle. Finally, the power spectrum 

is defined as: 

                  [-] (26) 

 

     can be used to eliminate the imaginary part. The Fourier transform exhibits conjugate symmetry. 

The spectrum is even symmetric about the origin: 
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 |    |  |     | [-] (27) 

 

Contrary, the phase angle exhibits odd symmetry about the origin: 

             [ ] (28) 

 

Regarding equation (10) the zero frequency term is proportional to the average value of the signal 

    , since      ∑        
   . This results in the sum of all function values. The average  ̅    is 

obtained by dividing      with  . In formula:        ̅   . It is also called the dc term. 

The Fourier transform and also the inverse are both periodic according to below equations: 

              [-] (29) 

 

 
 ̅     ̅       

 
[pix] (30) 

In which   is an integer (          ). 
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Appendix H 

Below an example was elaborated that clarifies the steps to determine the frequency from a given 

power spectrum as seen in Figure 63. 

 

Figure 63: Random power spectrum of a signal, used to determine frequency of the original signal with the method 

described in this paragraph. 

1.        , since it is the highest amplitude in     . 

2.         {           };         {            }; So            . 

3.    
      

      
      . 

4.                  , so from the lookup table the interval           has to be selected.  

5. From the lookup table it followed that    = 10.700. This is depicted in Figure 64. 

 

Figure 64: Interval between 10.5 and 11.0 of the amplitude ratio plotted against the sine wave frequency (red line). 

The blue line indicates that at an    of 0.190 corresponds to a frequency of 10.7 
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Appendix I 

Below it was clarified how the phase angle was determined from an intensity graph. In Figure 65 a 

random intensity graph is seen, with       pix and         pix. The graph was transformed 

using FFT to      (Figure 66). The frequency of the original signal was estimated to be 10.47 

(determined using the steps to determine the frequency).  

               and          

 

Figure 65: A random simplified crop row with       pix and         pix having an unknown phase. The 

estimated frequency is 10.47. 

 

Figure 66:      (above graph) and      (below graph) of the intensity graph from Figure 65. 

First      and        were determined. 

            [
     

     
]           

            [
      

    
]          
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A sine with frequency         , phase angle          and amplitude of 100 was overlaid over 

the original intensity graph (Figure 67). 

 

Figure 67: Original intensity graph from Figure 65 (blue line) overlaid with a sine wave having frequency  
 

 

     , phase angle  
 

       and amplitude of 100 (red line). 

From Figure 67 it can be seen that the peaks of the sine wave does not correspond to the peaks of the 

original signal. It was found that    must be increased by 90  to match the peaks of the wave and the 

original signal. Since equation (31) holds, it was revealed that the phase angle does apply for a cosine 

wave instead of a sine wave. This is shown in Figure 68. 

 
                 

 

 (31) 

 

Figure 68: Signals from Figure 67, making use of a cosine wave instead of a sine wave (red line). 

It can be seen from Figure 68 that    and    were estimated correctly in order that the cosine wave 

does correspond to the original intensity graph. Since the original signal does not contain variation, 

only rounding errors caused that the peaks of the cosine wave should not correspond exactly to the 

peaks of the original intensity graph.  

However, it was noticed that when      was smaller than       , the phase angle was not 

determined correctly anymore. When considering     , this behaviour was also seen for     . As an 

example the intensity graph of Figure 65 was used again, but with     60 pix. This horizontal shift 
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ensures that the phase angle of the cosine wave changes. From the lower graph it is seen that       is 

smaller than      .  

 

Figure 69:      (above graph) and      (below graph) of the intensity graph similar to Figure 65, but with a 

horizontal shift of the objects of 60 pixels to the right. 

Calculating the resulted phase angle (    would have resulted in a non-corresponding cosine wave, 

which is demonstrated by the equations: 

            [
     

     
]          

            [
    

      
]          

                                 

The resulting graph is shown in Figure 70. It is clear that in this graph the cosine wave and the original 

signal does not correspond. 

 

Figure 70: Original intensity graph from Figure 65 (blue line) overlaid with a cosine wave having frequency  
 

 

     , phase angle  
 

        and amplitude of 100 (red line). 
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Since the phase angle is a modulo value it is allowed to add up 360  to      until      is larger than 

      . Figure 71 shows that           made that the cosine wave corresponds to the original 

signal. 

                                        

 

Figure 71: Original intensity graph from Figure 65 (blue line) overlaid with a cosine wave having frequency  
 

 

     , phase angle  
 

         and amplitude of 100 (red line). 
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