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abstract: How much of its resources should an individual invest
in a costly immune system? In this article, we apply an evolutionarily
stable strategy analysis to an epidemic model to answer this question.
On the one hand, an investment in immune function confers pro-
tection to infectious agents by reducing host susceptibility, pathogen
virulence, or the length of the infectious period. On the other hand,
an immune system is costly since it absorbs resources that otherwise
might be invested in increasing the host’s fertility or longevity. In
addition, an active immune system may be able to clear pathogens
efficiently but at the same time may result in immunopathology. By
means of a reproductive value approach, we show how to compare
the costs and benefits of an immune system systematically and how
to derive the evolutionarily stable level of immune function. We then
apply these methods to various plausible scenarios. The analysis re-
veals that the relationship between the life span of an organism and
the optimal level of investment in immune function is less straight-
forward than one might expect. First, the prevalence of infection is
reduced to the lowest possible level only under special circumstances.
Second, members of a long-lived species do not necessarily have to
invest more in immune function than those of a short-lived species.
In fact, the opposite may be true. Third, the outcome of evolution
can be contingent on the initial conditions. Depending on its initial
investment strategy, a population may evolve to a state where very
much or almost nothing is invested in a costly immune system.

Keywords: epidemic model, density dependence, stable class distri-
bution, reproductive value, evolutionary stability, trade-off.

How much of its resources should an individual allocate
to a costly immune system? Is it true that individuals of
a long-lived species should invest more in immune func-
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tion than do those of a short-lived species? Does it matter
whether the cost of resistance is paid by infected individ-
uals only or by all individuals irrespective of immune
status? It is known that the ability to resist invasion and
colonization by pathogens or to clear pathogens after col-
onization varies widely between individuals. Variation in
the susceptibility or resistance to infectious disease often
has a genetic basis (Mims et al. 1995; Hill and Motulsky
1999). Hence, on an evolutionary timescale, there are am-
ple opportunities for selection to mold the level of immune
function (for recent reviews, see Schmid-Hempel and
Ebert 2002; Zuk and Stoehr 2002; Schmid-Hempel 2003).

The answers to the questions mentioned above are not
obvious. Consider, for instance, a highly virulent pathogen
that can rapidly kill the host. It seems plausible that the
host should invest substantially in immune function when
faced with such a pathogen. However, the very fact that
infected individuals die quickly could imply that the prev-
alence of infection and hence the infection pressure are
rather low. But if the infection pressure is low, it may not
pay to invest much in an immune apparatus (for similar
arguments, see van Baalen and Sabelis 1995).

As a second example, consider a short-lived species. One
could argue that for an individual of such a species, it
does not pay to invest much in an immune system since
it will die quickly anyway (e.g., Medzhitov and Janeway
1997; Rinkevich 1999; Zuk and Stoehr 2002). However,
the fact that individuals of the species are short-lived im-
plies that the rate of demographic turnover is high. If
newborn individuals enter the population being suscep-
tible to infection, a high rate of demographic turnover
implies that the rate at which susceptible individuals enter
the population is also high. Since susceptible individuals
are the fuel that keep transmission of the pathogen going,
one might just as well argue that especially short-lived
species should invest heavily in immune function.

In this article, we investigate how the optimal level of
immunity depends on the life-history characteristics of the
host and on the trade-off between life-history character-
istics and immune function. To this end, we apply an
evolutionarily stable strategy (ESS) analysis to a suscep-
tible-infected-recovered (SIR) epidemic model. Through-
out, an investment in immune function is assumed to
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reduce the susceptibility of the host to infection, to increase
the ability of the host to clear the pathogen, or to reduce
the amount of infection-induced mortality (i.e., virulence).
However, an investment in immune function is costly in
that it reduces the reproductive output of the host. Hence,
there is a trade-off between immune function and fertility.
Using a reproductive value approach (e.g., Taylor and
Frank 1996), we show how the fitness costs and benefits
of immunity can be compared systematically and how this
evolutionary cost-benefit analysis allows us to derive the
evolutionarily stable investment in immunity. We illustrate
this general method by considering various plausible cost-
benefit scenarios. Taking life span of the host as the life-
history parameter of interest, we ask how, in evolutionary
equilibrium, host longevity affects the characteristics of its
immune system and the resulting prevalence of infection.

The article is structured as follows. First, we introduce
an epidemic model describing the dynamics of a genetically
homogeneous population with a fixed investment x in
immunity. Assuming that population size is kept constant
because of density-dependent factors, we derive basic ep-
idemic parameters of this resident population, such as the
reproduction ratio of the pathogen and the prevalence of
infection (i.e., the relative frequency of infected individ-
uals). Then, we introduce genetic variation in the model,
thus allowing us to study the invasion prospects of a rare
mutant with a slightly different investment strategy y. We
are mainly interested in evolutionarily stable strategies

, that is, in a resident population that cannot be invaded∗x
by any rare mutant strategy y. We show how to derive
such ESSs by means of a cost-benefit analysis.

Next, we consider three scenarios for the potential ben-
efits of immune function: reduced susceptibility, virulence,
and infectious period. Similarly, we consider three different
cost scenarios corresponding to a constitutive immune
function that is costly irrespective of immune status, a
memory-based immune function that is costly only after
the pathogen has been encountered, and an acute immune
function that is costly only if the individual is infected.
After having derived an ESS criterion for each scenario,
we finally consider three examples in more detail. The
analysis will reveal that the properties of an evolutionarily
stable investment in immune function are less obvious
than one might expect intuitively.

Epidemic Model

Model Structure

A discrete time susceptible-infected-recovered model in
which individuals are either susceptible (S), infected and
infectious (I), or recovered and immune (R) forms the
basis of our analysis (see app. B for a corresponding con-

tinuous time model). The dynamics of the model is de-
termined by the recurrence equations , where the′n p An
population state vector gives the num-Tn p (n , n , n )S I R

bers of susceptible, infected, and recovered individuals,
while the elements of the state transition matrix A rep-aij

resent the per capita contribution of individuals in class
j to class i in the next time step ( ). Through-i, j � {S, I, R}
out, we consider a transition matrix of the form

P(1 � h) � yF yF yFS I R 
A p Ph Pj(1 � r) 0 , (1) 

0 Pjr P 

corresponding to the following assumptions: P denotes the
probability that an individual survives in the absence of
infection-induced mortality ( ). Accordingly, the0 ! P ! 1
expected life span of the host in the absence of infection
is given by . The probability of infection or in-1/(1 � P)
fection pressure is given by h ( ), while the prob-0 ≤ h ≤ 1
ability of recovery is given by r ( ). Hence, the0 ! r ! 1
expected length of the infectious period in the absence of
deaths is . The probability that an infected individual1/r
does not die from the infection in a single time step is
represented by j ( ). Hence, corresponds0 ! j ≤ 1 1 � j

to virulence as it is usually defined in theoretical studies.
Notice that this particular definition of virulence differs
from the definition routinely employed in empirical stud-
ies, which tends to focus on the probability of death over
the whole infectious period (Day 2002). The terms yFj

represent the per capita production of surviving offspring
of individuals in class j. All newborn individuals enter the
population in the susceptible class. As explicated in more
detail below, net fecundity is affected by two processes:
offspring production (which is dependent on the in-Fj

vestment in immune function) and offspring survival y

(which is dependent on external factors, such as popu-
lation density).

To close the model formulation, we now introduce two
feedback loops that will later play a crucial role: first, a
demographic feedback loop ensuring that the population
is, in the long run, regulated to a constant size, and second,
an infection feedback loop reflecting the fact that the in-
fection pressure on susceptible individuals is closely related
to the frequency of infectious individuals.

Population Regulation

In the long run, the population will grow by a factor l

per time step, where l is the dominant eigenvalue of the
state transition matrix A (e.g., Caswell 2000). Indefinite
population growth is, of course, unrealistic. In reality,
density-dependent factors will regulate population size,
implying in a longer-term perspective. As derivedl p 1
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in appendix A, the condition corresponds to thel p 1
requirement

Ph Pjr
1 � P(1 � h) p y F � F � F , (2)S I R[ ( )]1 � Pj(1 � r) 1 � P

meaning that the rate at which the susceptible class is left
because of death or infection (the left-hand side of eq.
[2]) is exactly balanced by the rate of offspring production
(the right-hand side of eq. [2]). Here we assume that den-
sity dependence acts through decreased juvenile survival
y. Fortunately, for our purposes, it is not necessary to
model the details of this process. Instead, we view equation
(2) as a consistency requirement, and we assume that, in
demographic equilibrium, juvenile survival y adapts to the
other model parameters in such a way that equation (2)
is satisfied.

Of course, it depends on the population or species under
consideration whether the form of density dependence
considered here is realistic. If, for example, density were
regulated through adult survival, then the parameter P
should be split into an “internal” and an “external” com-
ponent. We refer to Mylius and Diekmann (1995) for a
discussion of the consequences of the precise mechanism
of density dependence for evolutionary predictions (for a
concrete example, see Pen and Weissing 2000). Epidemic
models that explicitly take into account density depen-
dence are analyzed in Diekmann and Kretzschmar (1991).

Infection Feedback Loop

In a realistic model, the infection pressure h cannot be
considered constant but should reflect the prevalence of
infection (where denotes to-u p n /n n p n � n � nI I S I R

tal population size; see Begon et al. 2002). Here we assume
that each individual encounters c individuals per time step
( ) and that the probability of transmission of infectionc 1 0
in an encounter between a susceptible and infected in-
dividual is given by the product of the infectiousness f of
the infected individual and the susceptibility g of the sus-
ceptible individual ( , ). These assumptions are0 ≤ f g ≤ 1
reflected by the following expression for the infection
probability h:

c1 � h p (1 � fgu ) . (3)I

If the product fg is small, it is reasonable to approximate
equation (3) by

h p cfgu . (4)I

In the examples considered below, we have chosen c p
, in which case equation (4) applies exactly. Notice that1

the contact number c, infectiousness f, and susceptibility
g enter equation (4) only through the product

b p cfg, (5)

which we shall call the infection potential.

Stable Class Distribution

Under the above assumptions, the relative frequency dis-
tribution of the individuals over the three classes converges
to a vector that can be determined fromu p (u , u , u )S I R

the equation (see app. A). A simple calculationu p Au
shows that the prevalence of infection can be expresseduI

in terms of the relative frequency of susceptibles asuS

follows:

Ph
u p u (6)I S1 � Pj(1 � r)

(where, for the moment, we have suppressed the depen-
dence of h on u). In words, equation (6) states that the
frequency of infected individuals is proportional to the
inflow of freshly infected individuals, , and to thePhuS

expected duration of infection, . In the1/[1 � Pj(1 � r)]
same manner, can be expressed in terms of :u uR I

Pjr
u p u , (7)R I1 � P

implying that is proportional to the inflow of individ-uR

uals into the recovered compartment, , and to thePjruI

life expectancy of recovered individuals, . An ex-1/(1 � P)
plicit expression for the prevalence of infection in terms
of the model parameters is given in appendix A (eq. [A4]).

Persistence and the Prevalence of Infection

We are now in the position to investigate whether or not
the pathogen can persist stably and to explore how the
prevalence of infection depends on the life span of the
host, in a nonevolving host population. In a population
consisting of susceptible individuals only, the pathogen will
successfully invade if the reproduction ratio of the path-
ogen, , exceeds 1. The reproduction ratio is given byR 0

the number of surviving new infections caused by a single
infected individual in one time step in a population of
susceptible individuals, , times the length of the infec-bP
tious period, :1/[1 � Pj(1 � r)]

bP
R p . (8)0 1 � Pj(1 � r)
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Figure 1: Reproduction ratio (top; eq. [8]) and prevalence of infectionR0

(bottom; eq. [A4]) as a function of the life span of the host (u 1/[1 �I

) in a nonevolving population. The infectious period ( ) is variedP] 1/r
from 10 to 100 time steps. Other parameters are andb p 0.2 1 � j p

. Notice that the prevalence of infection is maximal at an intermediate0.05
life span.

Notice that persistence of the pathogen is guaranteed
whenever , that is, whenever one infectious indi-bP 1 1
vidual already infects more than one surviving susceptible
individual in a single time step in a population consisting
entirely of susceptible individuals.

Figure 1 shows the reproduction ratio (top) and theR 0

endemic prevalence of infection (bottom) as a functionuI

of life span of the host. The figure shows that the repro-
duction ratio increases monotonically with increasing life
span of the host, while the prevalence of infection is max-
imal for an intermediate life expectancy. This can be un-
derstood as follows. If the life span of the host is long, the
rate of demographic turnover is small. Since a constant
supply of susceptible individuals is needed to keep the
infection chain going, the endemic level of prevalence de-
creases as the rate of demographic turnover becomes
smaller. However, a very short life span implies that the
rate of demographic turnover is high and, as a conse-
quence, that infected individuals are quickly removed from
the population. If the rate of demographic turnover is very
high, the pathogen cannot even persist.

Evolutionary Stability

Up to here, we considered a nonevolving population with
fixed epidemic and life-history parameters. Now we
change perspective by assuming that some of these pa-
rameters reflect the population-specific investment x in
immune function. More specifically, we assume that a
higher investment in immunity reduces the susceptibility
to infection g, and/or increases the probability to survive
infection j, and/or enhances the recovery rate r. In other
words, is viewed as a nonincreasing function ofg p g(x)
x, while and are nondecreasing func-j p j(x) r p r(x)
tions of x.

However, immunity does not come for free. There is a
trade-off since resources spent on immune function can-
not be invested in growth and reproduction. Moreover, a
highly active immune system may be able to clear path-
ogens efficiently but, in comparison with a less active im-
mune system, is also more likely to result in immuno-
pathology. Here we assume that one or several of the
fecundity parameters are negatively affected by a higher
investment in immunity. In other words, ,F p F (x)S S

, and are viewed as nonincreasingF p F(x) F p F (x)I I R R

functions of x.
For simplicity, the model parameters P, c, and f are

viewed as independent of x. In contrast, the parameter y

reflecting density-dependent juvenile survival is related to
the other model parameters by equation (2) and, hence,
is indirectly dependent on x : . Similarly, the prev-y p y(x)
alence of infection is determined by the investment in
immune function: . Finally, the infection po-u p u (x)I I

tential and the infection pressure are also closely related
to x : and .b(x) p cfg(x) h(x) p b(x)u (x)I

Mutant and Resident Dynamics

To perform an ESS analysis, we consider a genetically ho-
mogeneous resident population with investment strategy
x and a rare mutant strategy . The question isy ( x
whether the frequency of the y strategists will increase
when rare. The mutant is confronted with an environment
set by the resident, that is, with a juvenile survival rate

and a prevalence of infection . As ay p y(x) u p u (x)I I

consequence, the mutant’s infection pressure depends not
only on its own investment y but also on the immune
investment x of the resident: . Puttingh(y, x) p b(y)u (x)I

it all together, we find that the dynamics of the mutant
subpopulation is determined by the transition matrix
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A(y, x) p

P[1 � h(y, x)] � y(x)F (y) y(x)F(y) y(x)F (y)S I R 
Ph(y, x) Pj(y)[1 � r(y)] 0 . 

0 Pj(y)r(y) P 

(9)

It is well known (e.g., Caswell 2000) that, in the long
run, the growth rate of the mutant population is given by
the dominant eigenvalue of the transition matrixl(y, x)

. The mutant strategy y will spread in the populationA(y, x)
if its asymptotic growth rate exceeds that of the resident
(which is 1 because of density dependence), that is, if

. If, however, , the mutantl(y, x) 1 l(x, x) p 1 l(y, x) ! 1
strategy is ousted from the population.

Fitness and Reproductive Values

The above considerations imply that the asymptotic
growth rate is a fitness measure (called invasionl(y, x)
fitness; see Metz et al. 1992) allowing one to derive evo-
lutionary predictions. In fact, the resident strategy x p

is evolutionarily stable if no alternative strategy y can∗x
spread when rare, that is, if for all∗ ∗ ∗l(y, x ) ! l(x , x )

. In other words, for to be an ESS, the function∗ ∗y ( x x
has to attain a maximum in y at .∗ ∗l(y, x ) y p x

In principle, the method outlined above allows one to
characterize all evolutionarily stable strategies. In practical
applications, however, this method is of limited impor-
tance for two reasons. First, eigenvalues are difficult to
calculate. Second, the analytical expressions for these ei-
genvalues are typically so complicated that they inspire
little insight (for a worked example, see Pen and Weissing
2002).

Fortunately, an intuitively more appealing method is
available, which is based on the concept of reproductive
value (Fisher 1930; Williams 1966; Goodman 1982; Frank
1998; Gandon et al. 2000). In the resident population, the
reproductive values , , andv p v (x) v p v (x) v pS S I I R

quantify the relative contribution of a susceptible,v (x)R

an infected, and a recovered individual to the gene pool
of future generations. In a sense, reproductive values allow
one to compare individuals in the various classes as to
their evolutionary importance. Such a comparison makes
it possible to frame evolutionary considerations in terms
of a systematic cost-benefit analysis.

Reproductive values are readily calculated. In fact, the
reproductive value of an infected individual, , can bevI

expressed in terms of the reproductive values andv vS R

(see app. A):

yF v � PjrvI S Rv p , (10)I 1 � Pj(1 � r)

where , , and so on. The interpretationy p y(x) j p j(x)
is as follows. The reproductive value of an infected indi-
vidual is proportional to the time spent in the infected
class, , and to the contribution to the1/[1 � Pj(1 � r)]
population per time step. Contributions are made by births
( ) and by recovery events ( ) and are weighted byyF PjrI

the reproductive values of the individuals produced (vS

and ). Likewise, the reproductive value of recovered in-vR

dividuals can be expressed as

yF vR Sv p . (11)R 1 � P

Hence, the reproductive value of a recovered individual is
proportional to its life expectancy, , and to the1/(1 � P)
offspring produced weighted by the reproductive value of
the offspring, .yF vR S

Cost-Benefit Analysis

As shown in appendix A, an ESS can be calculated on∗x
the basis of the criterion

∗�a (y, x )ij∗ ∗v u p 0, (12)� ji F
∗�yi, j ypx

where and are the reproductive∗ ∗ ∗ ∗v p v (x ) u p u (x )i ii i

values and the relative frequencies of the three classes in
the resident population, while the differential describes
how the stage transitions are affected by an increased in-
vestment in immunity. In practice, equation (12) boils
down to a balance equation for the positive and negative
consequences of a slight increase in the strategic parameter
y.

Inserting the elements of the transition matrix (9) into
equation (12), we arrive at the following condition for an
evolutionarily stable investment in immune function:

�h �j �jr∗ ∗ ∗ ∗ ∗∗ ∗ ∗P (v � v )u � v u � (v � v )u pS I II R I R IF F F[ ]∗ ∗ ∗�y �y �yx x x

dF dF dFS I R∗∗ ∗ ∗ ∗�y v u � u � u , (13)S I RS F F F[ ]∗ ∗ ∗dy dy dyx x x

where the notation indicates that all components are eval-
uated at the ESS . The left-hand side of equation (13)∗x
summarizes the evolutionary benefits of an increased in-
vestment in immunity due to a reduced susceptibility (i.e.,
a smaller infection pressure h), a higher probability j to
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survive an infection, and a higher recovery rate r. The
right-hand side summarizes the evolutionary costs of an
increased investment in terms of a reduced fecundity.

Scenarios

We will now show how the balance equation (13) can be
used to derive the evolutionarily stable level of immune
function. To simplify the analysis, we fasten attention on
a number of specific scenarios. First, we only consider
situations where an investment in immunity affects sus-
ceptibility, the recovery rate, or the probability to survive
the infection but not several of these aspects simulta-
neously. As a consequence, the left-hand side of the balance
equation (13) boils down to a single term. Second, we
focus on three cost scenarios, thereby simplifying the right-
hand side of equation (13). To this end, let us assume that
F is maximal fecundity (in the absence of immune in-
vestment) and that investment in immune function y is
parameterized in such a way that y corresponds to the
fraction of fecundity lost because of this investment.

Our first cost scenario considers a constitutive immune
system that is active and costly irrespective of the infection
status:

F (y) p F(y) p F (y) p (1 � y)F. (14)S I R

In this scenario, one might, for example, think of genet-
ically determined differences in the number of circulating
lymphocytes, which are costly to produce. In our second
cost scenario, we consider a memory-based immune sys-
tem that only starts to become active (and costly) once
an infection has been encountered:

F (y) p F,S

F(y) p F (y) p (1 � y)F. (15)I R

Here one might, for instance, think of the maintenance
of costly immune memory. Finally, we consider an acute
immune system that is only active (and costly) during the
infection:

F (y) p F (y) p F,S R

F(y) p (1 � y)F. (16)I

This may apply to immune responses that are set in action
on recognition of the pathogen and that are active during
infection only (e.g., inducible immune responses in
vertebrates).

Below we consider a specific example in more detail
where an investment in immunity affects the recovery rate
(but not susceptibility and the probability to survive an

infection), while the costs of immunity are paid only when
infected (scenario [16]). In this case, the balance equation
(13) boils down to

∗∗dr y F vSp . (17)∗ ∗F
∗dy Pj(v � v )x R I

Notice that this example is analogous to the studies of van
Baalen (1998) and Day and Burns (2003), where the hosts
also evolved by adjustment of the recovery rate. If we insert

(obtained from eq. [2]) and the reproductive values∗y

into equation (17), we get an equation in terms of the
basic parameters:

∗dr (1 � P)[1 � Pj(1 � r )]
p . (18)F ∗

∗dy Pj[P(1 � j) � x (1 � P)]x

For each specific function r, the evolutionarily stable in-
vestment is readily calculated with the help of equation∗x
(18). Notice that equation (18) does not depend on F, the
base number of offspring produced. It is straightforward
to derive similar ESS criteria for all other cost-benefit sce-
narios (see tables 1, 2).

Examples

With the above analysis at hand, we are in the position
to investigate how the evolutionarily stable investment in
immune function depends on life-history characteristics
of the host. We focus on three examples. First, we consider
the case where an investment in immune function reduces
the infectious period and is costly for infected individuals
only (acute cost scenario). Second, we analyze an example
where an investment in immunity reduces virulence. In
this scenario, an investment in immune function is costly
irrespective of infection status (constitutive cost scenario).
Finally, in our third example, an investment in immune
function reduces the susceptibility of the host to infection,
while the cost of immune function is paid only during
infection (acute cost scenario).

Example 1: Investment for Enhanced Recovery

Consider the situation where the recovery rate is positively
affected by an investment in immune function, while the
costs of immunity are restricted to the infectious period
(scenario [16]). To arrive at numerical results, we assume
that the recovery rate is related to the investment in im-
mune function through the three-parameter equation

qr(x) p r � (r � r )x , (19)0 1 0
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Table 1: Evolutionarily stable strategy (ESS) criteria in terms of the stable class
distribution and reproductive values

Constitutive Memory based Acute

dr
pF

∗dx x

∗v FS
∗ ∗(v � v )PjuIR I

∗ ∗ ∗v F(u � u )I RS
∗ ∗ ∗(v � v )PjuIR I

∗v FS
∗ ∗(v � v )PjR I

dj
pF

∗dx x

∗v FS
∗ ∗ ∗[v (1 � r) � v r]PuII R

∗ ∗ ∗v F(u � u )I RS
∗ ∗ ∗[v (1 � r) � v r]PuII R

∗v FS
∗ ∗[v (1 � r) � v r]PI R

dh
pF

∗dx x

∗v FS� ∗ ∗ ∗(v � v )PuSS I

∗ ∗ ∗v F(u � u )I RS� ∗ ∗ ∗(v � v )PuSS I

∗ ∗v FuIS� ∗ ∗ ∗(v � v )PuSS I

Note: The three cost scenarios (constitutive, memory based, and acute) are described in the

main text (eqq. [14]–[16]).

where and are the recovery rates in case of zero andr r0 1

maximal investment in immune function, respectively
( ), and determines the shape of the functionr ! r q 1 00 1

r.
Taking the derivative of equation (19) and equating it

with the right-hand side of equation (18) allow one to
determine the ESS . Figure 2 shows the results for a∗x
scenario where returns on investment decrease with x (i.e.,

). The figure gives the stable class distribution0 ! q ! 1
(top), reproductive values (middle), and the derivative of
equation (19) together with the right-hand side of equa-
tion (18) (bottom) as a function of the investment in im-
mune function. The life span of the host is set at 50 time
steps ( ).P p .98

If the investment in immune function is minimal
( ), the infection pressure and the prevalence of in-x p 0
fection are relatively high ( ). In this particular ex-u 1 0.4I

ample, a slight increase in the investment in immune func-
tion is accompanied by a considerable increase in the
recovery probability. As a consequence, the infection pres-
sure and prevalence of infection rapidly decrease as the
investment in immune function increases. If the invest-
ment in immune function is increased further, the returns
on an increase in x become smaller. As a consequence, the
prevalence of infection decreases more slowly if the in-
vestment in immune function x is high.

Furthermore, a slight increase in x strongly increases
the reproductive value of susceptible and infected indi-
viduals relative to the reproductive value of recovered in-
dividuals (fig. 2, middle). Again, the reason is that an in-
crease in x strongly increases r, so the infection pressure
is considerably decreased. As a consequence, a susceptible
individual is less likely to become infected, and if it is
infected, it pays the price of being infected (virulence) for
a much shorter time. As the investment in immune func-
tion increases, the reproductive value of susceptible in-
dividuals gradually approaches the reproductive value of
recovered individuals. This is due to the fact that the prob-

ability that a susceptible individual will ever be infected
becomes increasingly small and that the cost of an in-
vestment in immune function is paid by infected individ-
uals only.

The bottom panel of figure 2 shows the marginal effect
of investment in recovery (the derivative of eq. [19] and
the right-hand side of the ESS criterion [18]), where a
balance between costs and benefits is achieved. The point
of intersection of the two curves gives the evolutionarily
stable (ES) investment in immune function . Notice that∗x

does not reduce the prevalence of infection to the∗ ∗x uI

lowest possible level.
Figure 3 shows the results of a systematic investigation

of the relation between host longevity and the ES invest-
ment in immunity. The top panel gives the evolutionarily
stable investment in immune function and correspond-∗x
ing infectious period as a function of the life span of∗1/r
the host. The panel shows that the ES investment in im-
mune function increases steadily as the life span of the
host increases. This is due to the fact that a long life span
of the host implies that the rate of demographic turnover
is small. As a consequence, individuals of a long-lived
species should value their own lives higher in comparison
with their offspring than those of a short-lived species (see
“Discussion”).

The bottom panel of figure 3 gives the prevalence of
infection corresponding to the ES investment in immune
function. The panel should be compared with figure 1,
where the host population did not evolve. If the life span
of the host is short, the ES investment in immune function
is small, and the corresponding infectious period is long.
Nevertheless, the prevalence of infection is relatively low
because of the high rate of demographic turnover. As the
life span of the host increases, the ES investment in im-
mune function increases, and the associated infectious pe-
riod decreases. However, the rate of demographic turnover
decreases as the life span of the host increases. The balance
between these factors makes the ES prevalence of infection
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Table 2: Evolutionarily stable strategy (ESS) criteria in terms of the parameters of the model

Constitutive Memory based Acute

dr
pF

∗dx x

∗ ∗b[1 � Pj(1 � r )][1 � P(1 � jr )]
∗ ∗Pj(1 � j){P[b � j(1 � r )] � 1}(1 � x )

∗ ∗[1 � Pj(1 � r )][1 � P(1 � jr )]
2 ∗P j(1 � j)(1 � x )

∗(1 � P)[1 � Pj(1 � r )]
∗Pj[x (1 � P) � P(1 � j)]

dj
pF

∗dx x

∗ ∗b[1 � Pj (1 � r)][1 � P(1 � j r)]
∗ ∗[1 � P(1 � r)]{P[b � j (1 � r)] � 1}(1 � x )

∗ ∗[1 � Pj (1 � r)][1 � P(1 � j r)]
∗P[1 � P(1 � r)](1 � x )

∗(1 � P)[1 � Pj (1 � r)]
∗ ∗P[1 � P(1 � r)(1 � x ) � x (1 � r)]

dg
pF

∗dx x

∗ 2 ∗cf(g ) P(cfg � j � 1)
� ∗ ∗(1 � j){P[cfg � j(1 � r)] � 1}(1 � x )

∗ ∗g P(cfg � j � 1)
� ∗P(1 � j) � x [1 � P(1 � jr)]

∗ ∗g P(1 � P)(cfg � j � 1)
� ∗[1 � P(1 � jr)][x (1 � P) � P(1 � j)]

Note: An investment in immune function decreases the infectious period ( ), virulence ( ), or the host’s susceptibility to infection (g). Further,1/r 1 � j

for the acute and memory-based cost scenario, the ESS criteria do not depend on the infection potential b if an investment in immune function

affects virulence or the infectious period.

depend on the life-history characteristics of the host in a
fairly complicated manner. In this particular example, the
ES prevalence of infection is highest if the life span of the
host is 17 time steps, while the investment in immune
function is maximal ( ) if the life span of the host∗x p 1
is 58 time steps or more.

Example 2: Investment for Reduced Virulence

We now consider an example where an investment in im-
mune function decreases virulence instead of the infectious
period. Furthermore, we assume that an investment in
immune function is costly irrespective of immune status
(constitutive cost scenario; eq. [14]). This example serves
to illustrate that the ES investment in immune function
may depend crucially on the initial investment strategy.

The analysis runs along the same lines as in example 1.
The balance equation (13) simplifies to

∗ ∗dj b[1 � Pj (1 � r)][1 � P(1 � j r)]
pF ∗ ∗

∗dx [1 � P(1 � r)]{P[b � j (1 � r)] � 1}(1 � x )x

(20)

(see table 2). In analogy with example 1, we assume that
there is a trade-off between the investment in immune
function x and the probability to survive the infection j

given by the equation

qj(x) p j � (j � j )x (21)0 1 0

( , ). Together, equations (20) and (21) deter-j 1 j q 1 01 0

mine the location of the ESSs.
Figure 4 shows the results for a scenario with dimin-

ishing returns on investment ( ). The top panel0 ! q ! 1
shows the candidate ES investment in immune function
as a function of the life span of the host, while the bottom
panel shows the corresponding prevalences of infection.

The bold lines refer to fitness maxima and correspond to
ESSs, while the thin line represents a fitness minimum.

The top panel shows that if the life span of the host is
short (here !186), it does not pay to invest in immune
function at all. At the ESS, the investment in immunity is
minimal ( ), while virulence is maximal (∗x p 0 1 �

). As a consequence of its very high virulence,j(0) p 1
the pathogen has difficulty in persisting. In fact, the pop-
ulation evolves to a state where the reproduction ratio of
the pathogen is smaller than 1 ( ), and the path-R (x, P) ! 10

ogen succumbs to its high virulence.
If life span of the host is higher than 186 time steps,

bistability occurs, and there is an ESS with positive in-
vestment in immune function in addition to the ESS with
zero investment in immunity. In this case, the population
evolves to a state where either a minimal or a large amount
of resources is directed to immune function, depending
on the initial population strategy. This finding is corrob-
orated by simulations based on equations (9) and (21).

The intuitive explanation for this phenomenon is as
follows. If the initial investment in immune function is
initially not too low, the host population evolves to a state
where an intermediate amount of resources is invested in
immune function, corresponding to the bold upper
branches of the lines in figure 4. Moreover, the evolu-
tionarily stable investment in immune function of this
branch increases with increasing life span (for similar rea-
sons as in example 1). In this state where hosts invest
considerably in immune function, virulence is low enough
to allow persistence of the pathogen. In fact, the pathogen
may reach a considerable prevalence in the population.

If, however, the population investment in immunity is
initially low, the prevalence of infection will also be low
(infected individuals die quickly). As a consequence, the
probability of infection is so low that it pays to reduce the
investment in immune function further. Ultimately, the
population evolves to a state where nothing is invested in
immune function but where the pathogen cannot persist
because it kills the host almost instantly.
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Figure 2: Stable class distribution (top), reproductive values (middle),
and equations (18) and (19) (bottom) as a function of the investment in
immune function. The evolutionarily stable level of immunity is at the
intersection of the two curves (bottom). Parameter values are ,P p .98

, , , , and .b p 0.2 1 � j p 0.05 r p 0.01 r p 0.1 q p 0.50 1

Figure 3: Evolutionarily stable (ES) investment in immune function and
corresponding infectious period (top), and the ES prevalence of infection
(bottom) as a function of the life span of the host. Parameter values are
as in figure 2.

Although this state where the host invests nothing in
immune function is, from the point of view of the host
population, the most desirable outcome, it is not at all
certain that the dynamics of selection will favor this ESS.
In fact, only if the initial investment strategy is already

very low will the population evolve to a state where ul-
timately nothing is invested in immunity. The far more
likely outcome is that the population evolves to the state
where hosts defend themselves heavily but nevertheless
suffer considerably.

Example 3: Investment for Reduced Susceptibility

Our final example considers the case where an investment
in immune function decreases the susceptibility of the host
to infection (g), while the costs are paid only by infected
individuals (acute cost scenario; eq. [16]). This example
will exemplify that the ES investment in immune function
does not necessarily increase as the life span of the host
increases.

The ESS equation corresponding to this scenario reads

∗ ∗dg g P(1 � P)(cfg � j � 1)
p � (22)F ∗

∗dx [1 � P(1 � jr)][x (1 � P) � P(1 � j)]x
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Figure 4: Evolutionarily stable investment in immune function (top) and
the corresponding prevalence of infection (bottom) as a function of the
life span of the host. In contrast to figure 3, an investment in immune
function is costly irrespective of infection status (constitutive cost sce-
nario), and it reduces virulence instead of the infectious period. The
pathogen is driven to extinction below the line . ParameterR (x, P) p 10

values are , , , , and .b p 1 r p 0.1 1 � j p 1 1 � j p 0 q p 0.750 1

Figure 5: Evolutionarily stable (ES) investment in immune function and
corresponding reproduction ratio (top), and the ES prevalence of infec-
tion (bottom) as a function of the life span of the host. An investment
in immune function reduces susceptibility of the host to infection and
is costly during infection only (acute cost scenario). Parameter values are

, , , , , , and .c p 1 f p 1 r p 0.1 1 � j p 0.1 g p 1 g p 0.5 q p 10 1

(see table 2). To arrive at numerical results, we assume
that the trade-off function takes the by now familiar form

qg(x) p g � (g � g )x (23)0 1 0

( , ). Figure 5 summarizes the results for a sce-g 1 g q 1 00 1

nario with constant returns on investment (i.e., ).q p 1
If the life span of the host is very short, the pathogen has
difficulty in persisting because of the high rate of demo-
graphic turnover. In fact, in a nonevolving population with
maximal susceptibility ( ), the pathogen cannot per-g p 1
sist if host life span is shorter than 2.3 time steps, while
it reaches a maximal prevalence of if life spanu p 0.42I

is 6.2 time steps. If the susceptibility of the host is halved
to , the pathogen cannot persist if life span isg p 0.5
shorter than 4.3 time steps, and it reaches a maximal prev-
alence of if life span is 11.0 time steps.u p 0.22I

If the host population is allowed to evolve between these
two extremes ( and ), we find that, as theg p 1 g p 0.50 1

life span of the host increases, the investment in immune
function first increases to a maximal value of if∗x p 1
life expectancy is 7.7 time steps or more. If the life span
of the host exceeds 17.6 time steps, the ES investment in
immunity starts to decrease monotonically with increasing
life span. If the life span of the host is 189.8 time steps
or more, the host should invest nothing in immunity.

Intuitively, the observation that the investment in im-
mune function may decrease as life span increases can be
understood as follows. In a long-lived host population, the
rate of demographic turnover is small, and, as a conse-
quence, the supply of susceptibles into the population will
be low. This implies that the infection pressure in the
population is mainly determined by the demographic pro-
cess of the host population and much less by the char-
acteristics of the host-pathogen interaction (infectiousness,
susceptibility, infectious period, and, to a lesser extent,
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virulence). Figure 5 illustrates this point. If life expectancy
of the host is short, such as 10 time steps, halving sus-
ceptibility of the host also halves the infection pressure
and the prevalence of infection. If, however, life expectancy
is high, such as 150 time steps, halving the susceptibility
of the host (from to ) has only a marginalg p 1 g p 0.5
impact on the infection pressure and the prevalence of
infection. As a result, for members of a long-lived species,
it does not pay to invest much in immune function since
the benefits in terms of a lowered probability of infection
are small. Accordingly, the benefits of investment are much
smaller in long-lived species than in short-lived species,
and it is therefore not too surprising that the evolutionarily
stable investment decreases with life expectancy.

Discussion

Life History and Immune Function

The study of adaptive variation in immune responses be-
tween populations or species resulting from differences in
life-history characteristics and environmental conditions
is, for good reasons, currently a topic receiving consid-
erable attention (see the reviews by Williams and Nesse
1991; Schmid-Hempel and Ebert 2002; Zuk and Stoehr
2002; Schmid-Hempel 2003). Usually, in these studies a
verbal argument is given of how population density, mate
numbers, feeding conditions, stress factors, longevity of
the host, or other factors will affect the evolutionarily op-
timal level of immune investment. However, verbal ar-
guments can be highly misleading in the context of host-
pathogen interactions, because life-history characteristics
of host and pathogen, population dynamics, and immu-
nology are closely intertwined. In fact, the life-history
characteristics of host and pathogens determine the pop-
ulation dynamics of pathogens and host, which in turn
determines the optimal investment in defense against path-
ogens and so affects the life history of the host and path-
ogens (Frank 1996, 2002; van Baalen 1998; Day and Burns
2003).

In this article, we have focused on the question of how
the evolutionarily optimal investment in immune function
is molded by longevity of the host. An increase in the
longevity of the host decreases the level of demographic
turnover. As a result, individuals of a long-lived species
should value their own lives higher in comparison with
their offspring than those of a short-lived species (newborn
individuals of a long-lived species are less likely to make
it to the adult stage than those of a short-lived species).
Hence, one could expect that the investment in immune
function would increase with increasing life span of the
host. However, a decrease in the rate of demographic turn-
over reduces the number of susceptibles that enter the

population (assuming that immunity is lifelong) and so
may decrease the prevalence of infection. Hence, one could
just as well argue that an increase in longevity would result
in a decrease in immune function as the risk of infection
decreases.

Our results show that both scenarios may occur. If im-
mune function is costly for infected individuals only and
decreases the infectious period, the intuitive expectation
that the evolutionarily stable investment in immune func-
tion should increase as life span increases still holds (ex-
ample 1; fig. 3). However, for other scenarios, the optimal
investment in immunity may just as well decrease as the
life span of the host increases (example 3; fig. 5), and it
is even possible that the outcome of selection is contingent
on the initial investment in immune function (example 2;
fig. 4).

A perhaps irritating message of our study is that no
broad patterns valid over a wide range of scenarios have
emerged. In fact, we have shown that the optimal invest-
ment in immune function can be highly dependent on (1)
the parameters that are affected by an investment in im-
mune function (susceptibility, infectious period, or viru-
lence), (2) the type of individuals that pay the cost of an
investment in immune function (e.g., infected individuals
only or all individuals irrespective of immune status), and
(3) the relation between the investment in immune func-
tion and the ability to cope with pathogens. In addition,
we will argue that the optimal investment in immune func-
tion may also depend on (4) whether the infection induces
permanent immunity in the host or not and (5) the mech-
anism of density dependence in the host population.

The Reproductive Value Approach

In addition to analyzing specific scenarios, our article
serves a more general purpose to demonstrate how the
complexity of an epidemic model can be overcome to allow
an evolutionary analysis of the optimal level of host de-
fense to infectious diseases. In particular, we have shown
how two essential feedback loops (population regulation
of the host population and the transmission feedback loop)
can be incorporated in an epidemic model while still al-
lowing a formal analysis.

The most direct way to study the evolution of host
resistance in a theoretical framework would be to write
down equations for the dynamics of a rare mutant host
type and then determine the initial growth rate (the dom-
inant eigenvalue) of all conceivable mutants in a popu-
lation where a resident type is present. Those resident
strategies that cannot be invaded by any mutant strategy
are then considered evolutionarily stable.

Although this method is, in principle, straightforward,
it has severe limitations in practical applications. In fact,
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calculation of dominant eigenvalues as a function of one
or several strategic variables is feasible only in very simple
systems. It is therefore not surprising that, until now, a
combined epidemiological and evolutionary analysis has
only been applied to very simple epidemic models (e.g.,
the essentially one-dimensional models of van Baalen
[1998] and Day and Burns [2003]).

Here we have shown that the inherent complexity of
realistic epidemiological interactions can, to a certain ex-
tent, be overcome by using the potent reproductive value
approach (Fisher 1930; Williams 1966; Goodman 1982;
Taylor and Frank 1996; Frank 1998). This approach is
appealing to intuition, since it is based on a systematic
analysis of the evolutionary costs and benefits of a strategic
decision. In fact, the use of reproductive values enabled
us to express the various costs and benefits of an invest-
ment in immune function in terms of a single common
currency.

From a mathematical point of view, the reproductive
value approach has the advantage that it circumvents the
determination of the dominant eigenvalue for all conceiv-
able mutant strategies (which is difficult). All that is required
for deriving a candidate ESS are the characteristics of the
resident population (dominant eigenvalue, stable stage dis-
tribution, and reproductive values), which are much easier
to determine. As shown in appendix A, second-order con-
ditions (determining, for example, whether a candidate ESS
does indeed correspond to a fitness maximum) can also be
checked on the basis of the properties of the resident
population.

Throughout, we have illustrated the reproductive value
approach by means of an SIR-type epidemic model. How-
ever, we hope that it is clear to the reader that the methods
are generally applicable and can easily be applied to other
or more complex epidemic models (e.g., SI, SIS, SIRS,
SEIRS models, extension to models with more infectious
classes) or to more complex life histories of the host (e.g.,
aging in the host population, models with separate sexes
for sexually transmitted diseases).

Model Assumptions

Although the reproductive value method employed in this
article is generally applicable, it is good to realize that the
specific results of the relation between longevity and im-
mune function depend on a number of key assumptions.
For instance, whether or not the ES level of immune in-
vestment increases with increasing life span may well de-
pend on whether or not the pathogen induces long-lived
immunity in the host. In our model, individuals that have
cleared the infection cannot be infected anymore. As a
consequence, the supply of susceptible individuals into the
population depends crucially on demographic turnover.

This is not so anymore if immunity after infection is tem-
porary. Such scenarios have been considered by van Baalen
(1998) and Day and Burns (2003). In fact, these authors
considered SIS-type epidemic models where, on recovery,
individuals are immediately susceptible again.

Van Baalen (1998) focused in detail on the evolution
of the host recovery rate if immune function is costly
regardless of immune status cost (constitutive costs). The
main conclusion of van Baalen was that the host popu-
lation will evolve to a state where the recovery rate is such
that it maximizes the force of infection (the rate at which
susceptible individuals are infected). This result was in-
terpreted as an instance of a “pessimization principle”
where only the host type that is able to persist under the
worst conditions will ultimately prevail. In our model, we
did not find such a simple pessimization principle. In fact,
in none of our examples was the infection pressure max-
imized at the ESS. This difference between our model and
the model of van Baalen is probably due to the fact that
there is a very simple relation between the force of infec-
tion and the number of susceptibles at equilibrium in the
one-dimensional model of van Baalen (the number of sus-
ceptibles decreases monotonically with increasing force of
infection), while in our two-dimensional model, this re-
lation is more intricate. We refer to Mylius and Metz
(2004) for an insightful discussion of the relation between
the (dimensions of the) environmental feedback loop and
the existence of optimization principles.

Day and Burns (2003) also focused on the evolution of
the host recovery rate in an SIS model. In contrast to the
study of van Baalen, the costs of immune function were
paid only by infected individuals in this study (acute cost
scenario), corresponding to our first example (fig. 3).
These authors showed that the ES recovery rate decreases
with increasing host life span. This also contrasts with our
study where the recovery rate could increase or decrease
with increasing background mortality. Most likely, the dif-
ference is due to the fact that demographic turnover plays
a central role in our model, while it is almost irrelevant
in the model of Day and Burns.

Both studies mentioned above used a continuous time
rather than a discrete time epidemic model. To show that
the differences in the results of our study and the studies
mentioned above are unlikely to be due to this fact, we
demonstrate in appendix B that, with a few simplifying
assumptions, our discrete time epidemic model is easily
translated in a conventional continuous time model. We
further show in appendix B that the reproductive value
approach applies essentially unchanged in the context of
continuous time models.

Throughout this article, we have assumed that there is
a trade-off between immune function and fertility arising
from the argument that the host has a limited amount of
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resources that it can only invest once. There are, however,
other types of cost of immune function and other plausible
trade-offs between immune function and life-history char-
acteristics (Schmid-Hempel and Ebert 2002; Zuk and
Stoehr 2002; Schmid-Hempel 2003). For instance, a highly
active immune system may be able to clear pathogens
efficiently but at the same time result in considerable tissue
damage (immunopathology). In fact, our third example
was inspired by this idea: the advantage of an immune
system is through a general upregulation of immune func-
tion that, on the one hand, makes it less likely that sus-
ceptible hosts are infected but, on the other hand, makes
it more likely that the unborn offspring of infected hosts
die before delivery (e.g., Mellor and Munn 2000). How-
ever, in a more realistic model incorporating immuno-
pathology, probably not only fecundity F but also host
survival P should be made explicitly dependent on in-
vestment in immune function.

The mechanism of density dependence in the host pop-
ulation can also have important consequences for evolu-
tionary predictions (Mylius and Diekmann 1995; Mylius
and Metz 2004). In our model, the size of the host pop-
ulation is kept constant through density-dependent ju-
venile survival. From an evolutionary point of view, this
implies that the value of one’s own life relative to offspring
depends on the juvenile survival probability y. Since we
assume a stationary population, a longer life expectancy
of the host is automatically reflected in a lower fraction
of juveniles surviving to adulthood. As a result, the value
of one’s own life relative to offspring increases with in-
creasing life span. As a consequence, in our model, mem-
bers of a long-lived species are inherently more likely to
invest more in immune function than those of a short-
lived species. Still, this general effect may be dominated
by the infection feedback loop, which makes it possible
that the returns on an investment in immune function
decrease quite strongly with increasing life span (example
3). How our results would be affected if the host popu-
lation were regulated by other factors (e.g., density-
dependent survival, solely by pathogen-induced mortality)
remains an open question. On the basis of the above ar-
guments, however, one would expect that scenarios where
the investment in immune function decreases with in-
creasing life span are most difficult to find if density de-
pendence operates through variable survival of offspring.

Finally, in this article, we have focused in detail on the
question of how a host population will evolve when faced
with a harmful pathogen with fixed characteristics. It is,
however, plausible that the characteristics of the pathogen
are molded by adaptation to the life history of the host.
Consequently, it is conceivable that the relation between
the host’s life-history characteristics and its evolutionarily
stable investment in immune function can change con-

siderably if the coevolution of host and pathogen is taken
into account. For simple epidemic models, the joint study
of the coevolution of host resistance and pathogen viru-
lence has been undertaken in a number of recent studies
(van Baalen 1998; Gandon et al. 2002; Day and Burns
2003). In principle, it would not be difficult to extend our
model along similar lines. In view of the results derived
in this article, we consider it unlikely that simple and
general patterns will emerge when the adaptations of path-
ogens to an evolving host population are taken into ac-
count. Instead, it is far more likely that the outcome of
coevolution depends crucially on the details of the inter-
action between host and pathogen.
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APPENDIX A

Evolutionary Stability

Resident Dynamics

Two feedback processes hamper the analysis of the resident
population: population regulation through density-depen-
dent juvenile survival and the infection feedback loop
through the infection pressure. Here we show how these
feedback loops can be incorporated while still allowing a
formal analysis.

In the absence of the feedback loops, the analysis would
be straightforward, since the dynamics would be given by
the set of linear recurrence equations , with a′n p An
nonnegative transition matrix A. In such a situation, the
process converges to a fixed distribution u p (u , u , u )S I R

of the individuals over the three infectious classes. Once
the stable class distribution is reached, each class and the
population as a whole will grow with a constant factor l

per time step: . Formally, u is a right ei-′u p Au p lu
genvector with respect to the dominant eigenvalue l.

In our model, the condition corresponds toAu p lu
the system of equations

lu p P(1 � h)u � y(F u � Fu � F u ),S S S S I I R R

lu p Phu � Pj(1 � r)u , (A1)I S I

lu p Pju � Pu ,R I R
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which is readily solved for l and u. The last two equations
imply that the stable class distribution, which is deter-
mined up to a constant factor, is of the form

l � Pj(1 � r) Phr
u : u : u p : 1 : . (A2)S I R Ph l � P

However, the situation is complicated by the fact that
the transition matrix A is not constant but depends on
the population state n. First, juvenile survival is assumed
to be density dependent: . Second, the infectiony p y(n)
pressure is assumed to be a function of the prevalence of
infection: . Hence, the resident dynamics ish p h(n /n)I

characterized by a set of nonlinear recurrence equations
, where the notation indicates the dependence′n p A nn

of the transition matrix on the population state. Through-
out, we make the assumption that the resident dynamics
converges to a stable rest point . This is given by ′u u p

and, hence, corresponds to a right eigenvectorA u p uu

of the matrix with respect to the eigenvalue . AsA l p 1u

a consequence, equations (A1) and (A2) still apply, with
the reservation that , , and . In-y p y(u) h p h(u) l p 1
serting equation (A2) into the first equation of (A1) im-
mediately yields requirement (2) on juvenile survival at
demographic equilibrium.

It is useful to normalize the stable class distribution (that
is given by eq. [A2]) such that , sinceu � u � u p 1S I R

with this normalization, directly corresponds to theuI

prevalence of infection at demographic equilibrium. A
straightforward calculation shows that, with this normal-
ization, is given byuI

Ph
u p , (A3)I 1 � Pj(1 � r) � Ph[1 � Pjr/(1 � P)]

where . Inserting and solving equationh p h(u ) h p buI I

(A3) for yields an explicit expression for the equilibriumuI

prevalence of infection:

(1 � P){P[b � j(1 � r)] � 1}
u p . (A4)I

bP[1 � P(1 � jr)]

Mutant Dynamics

Let us now consider a mutant with strategy y in a resident
population with strategy and stable class distribution∗x

. The mutant dynamics is characterized by the set of∗u
recurrence equations , where the transi-′ ∗m p A(y, x )m
tion matrix is given by equation (9). Notice that the tran-
sition matrix depends on y, x, and but not on the∗u
mutant class distribution . As a consequence, the mutantm
dynamics is linear, which simplifies the analysis consid-

erably. In particular, the asymptotic growth rate of the
mutant population is given by , the dominant ei-∗l(y, x )
genvalue of the transition matrix . The mutant will∗A(y, x )
spread in the resident population if , and it∗l(y, x ) 1 1
will be ousted from the population if .∗l(y, x ) ! 1

The resident strategy is evolutionarily stable if no∗x
mutant strategy can spread, that is, if ∗l(y, x ) !

for all mutant strategies y in a neighborhood∗ ∗l(x , x ) p 1
of . In other words, should attain a local max-∗ ∗x l (y, x )
imum at . At such a maximum, the selection gra-∗y p x
dient is equal to 0:

∗�l(y, x )
p 0, (A5)F

∗�y ypx

which is a standard criterion for locating a candidate ESS
. With the help of the second-order condition∗x

2 ∗� l(y, x )
! 0, (A6)

2 F
∗�y ypx

it can be checked whether does indeed correspond to∗x
a fitness maximum (rather than a fitness minimum) and,
hence, whether is indeed evolutionarily stable. The∗x
second-order condition

2 ∗ 2� l(y, x ) � l(y, x)
� ! 0 (A7)

2 F F
∗ ∗�y �x�yypx xpypx

is also relevant, since it allows one to judge whether a
candidate ESS is “convergence stable,” that is, whether it
can be reached by a series of strategy substitution events
(Eshel 1983; Taylor 1996).

Reproductive Values

It is well known from linear algebra (e.g., Caswell 2000)
that an eigenvalue of a matrix∗l p l(y, x ) A p

, as well as its derivative with respect to y, can be∗A(y, x )
expressed in terms of right and left eigenvectors u p

and :∗ ∗u(y, x ) v p v(y, x )

vAu
l p ,

vu

�l v(�A/�y)u
p . (A8)

�y vu

As a consequence, condition (A5) for a candidate ESS
corresponds to



Evolutionary Economics of Immunity 291

∗�A(y, x )∗ ∗v u p 0, (A9)F
∗�y x

where and are dominant left and right eigenvectors,∗ ∗v u
respectively, of the transition matrix . Equa-∗ ∗ ∗A p A(x , x )
tion (A9) is identical to the ESS criterion (12) given in
the main text.

The right eigenvector , which is given by∗ ∗u u p
, corresponds to the stable class distribution of the∗Au

resident population that has been calculated above. The
left eigenvector corresponds to the vector of reproduc-∗v
tive values of the three infectious classes in the resident
population. It is given by the equation , which∗ ∗v p v A
determines the reproductive values up to a constant factor.
For our model, a straightforward calculation yields

1 � P(1 � h) � yF yFS R∗ ∗ ∗v : v : v p 1 : : . (A10)S I R Ph 1 � P

Second-Order Conditions

From a technical point of view, the ESS criterion (A9) has
the advantage that it does not require the calculation of
the invasion fitness for all conceivable mutant∗l(y, x )
strategies y. All that is required is the calculation of the
dominant left and right eigenvectors of the transition ma-
trix characterizing the resident population. Fortunately,
the second-order conditions (A6) and (A7) can also be
checked on the basis of the characteristics of . For sim-∗A
plicity, let us assume that all left and right eigenvectors
are normalized such that . Then, equation (A8)vu p 1
implies that

2 2� l � A �v �A �A �u∗ ∗∗ ∗p v u � u � v , (A11)F F F F F F2 2∗ ∗ ∗ ∗ ∗ ∗�y �y �y �y �y �yx x x x x x

2 2� l � A �v �A �A �u∗ ∗∗ ∗p v u � u � v , (A12)F F F F F F
∗ ∗ ∗ ∗ ∗ ∗�x�y �x�y �x �y �y �xx x x x x x

where the notation indicates that all derivatives are eval-
uated at . The first terms on the right-hand∗x p y p x
side of equations (A11) and (A12) can easily be evaluated,
but the other terms seem to require the calculation of the
dominant eigenvectors and as a function ofv(y, x) u(y, x)
y and/or x.

However, this calculation can be avoided. As shown in
Caswell (2000, chap. 9.4), the derivatives of and u canv
be expressed in terms of the eigenvalues of the resident
matrix :∗A

∗ ∗v (�A/�y)F u∗�v x j ∗p v ,� jF ∗
∗�y 1 � ljx j

∗ ∗v (�A/�y)F u∗�u xj ∗p u , (A13)� jF ∗
∗�y 1 � ljx j

and

∗ ∗v (�A/�x)F u∗�v x j ∗p v ,� jF ∗
∗�x 1 � ljx j

∗ ∗v (�A/�x)F u∗�u xj ∗p u , (A14)� jF ∗
∗�x 1 � ljx j

where ( , …, n) denote the subdominant∗l j p 2 n � 1j

eigenvalues of , and and denote the corresponding∗∗ ∗A u vj j

left and right eigenvectors (normalized such that vu pjj

). Hence, knowledge of all eigenvalues and eigenvectors of1
the resident matrix suffices to evaluate the second-order∗A
conditions (A6) and (A7) by inserting equations (A13) and
(A14) into equations (A11) and (A12), respectively.

Proceeding this way, we could check, for example, which
of the candidate ESSs in figure 4 is actually evolutionarily
stable and which is not. In all cases, the analysis based on
reproductive values was corroborated by simulations based
on equations (9) and (21). We would like to add that, in
practical applications, only few elements of are un-�A/�y
equal to 0 and that, as a consequence, only a few com-
ponents of the vectors in equations (A13) and (A14) have
to be calculated explicitly.

APPENDIX B

Continuous versus Discrete Time Models

In this article, we employed a discrete time epidemic model
rather than a more conventional continuous time model.
In practical applications, the time structure of the host-
pathogen interaction will determine which modeling ap-
proach is more adequate. In the case of general theory
development, the choice of model formalism is largely a
matter of taste. As exemplified below, continuous time
models are typically derived from discrete time models,
thereby implicitly making a number of additional as-
sumptions on time limits and interdependency of events.
Accordingly, discrete time models are conceptually more
transparent. This is a significant advantage when jointly
modeling epidemiological, population dynamical, and
evolutionary processes. However, continuous time models
tend to be simpler than discrete time models, mainly be-
cause higher-order terms can be neglected. Moreover, the
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analysis of a continuous time model usually is less involved
technically than that of a comparable discrete time model.
As a service to the reader, we will show here how our
discrete time model can be translated into a continuous
time model and how continuous time models can be an-
alyzed by means of the reproductive value approach (see
also Gandon et al. 2000).

A Continuous Time SIR Model

On the basis of the model in the body of the text, we first
derive recurrence equations for the dynamics of residents
and mutants for a small time interval . For a mutant y,Dt
this is of the form

∗n(t � Dt) p A (y, x )n(t), (B1)Dt

where is the transition matrix for a small discrete timeADt

step . To obtain from equation (9), we focus on theDt ADt

basic events in the model (birth, death, infection, recov-
ery), assuming that all these events occur at a rate pro-
portional to . To streamline the equations, we will inDt
the following use the shorthand notation ,m p 1 � P

, and ( ). Now the proba-n p 1 � j b p yF i � {S, I, R}i i

bility of death by causes unrelated to infection is , themDt
probability of death due to the pathogen is , the prob-nDt
ability of infection is , the probability of recovery ishDt

, and the number of offspring produced by an indi-rDt
vidual of type i is . Replacing P, j, h, r, and inb Dt yFi i

equation (9) by these new terms and neglecting all second-
order and higher-order terms in , we arrive at the tran-Dt
sition matrix

1 � (m � h)Dt � b Dt b Dt b DtS I R 
A p hDt 1 � (m � n � r)Dt 0 . (B2) Dt

0 rDt 1 � mDt 

It is now standard to translate equation (B1) into a con-
tinuous time process (e.g., May 1974):

dn ∗p B(y, x )n, (B3)
dt

where is obtained from by subtracting∗ ∗B(y, x ) A (y, x )Dt

1 from the main diagonal, dividing the result by , andDt
letting shrink to 0, that is, byDt

1∗ ∗B(y, x ) p lim 7 [A (y, x ) � Id], (B4)Dt
DtDt r0

where Id denotes the identity matrix. In our case, the
matrix characterizing the continuous time process∗B(y, x )
(B3) is of the form

�m � h � b b bS I R 
B p h �m � n � r 0 . (B5) 

0 r �m 

Evolutionary Stability

The dynamics (B3) of a mutant population is governed
by the eigenvalue of with the largest real part.∗B(y, x )
Consider the dominant eigenvalue of ,∗ ∗l (y, x ) A (y, x )Dt Dt

that is, the eigenvalue that is largest in absolute value. This
eigenvalue is nonnegative, since the matrix is∗A (y, x )Dt

nonnegative (e.g., Caswell 2000). In view of equation (B4),
this fact implies that

1∗ ∗k(y, x ) p lim 7 [l (y, x ) � 1] (B6)Dt
DtDt r0

is the eigenvalue of with the largest real part. No-∗k(y, x )
tice that is a real number. Moreover, the same left∗k(y, x )
and right eigenvectors are associated with with∗k(y, x )
respect to as there are with with respect∗ ∗B(y, x ) l (y, x )Dt

to .∗A (y, x )Dt

In view of our assumption of population regulation,
the resident population is stationary, implying ∗k p

. A mutant y will spread in the resident pop-∗ ∗k(x , x ) p 0
ulation if , and it will be ousted if .∗ ∗k(y, x ) 1 0 k(y, x ) ! 0
The resident strategy is evolutionarily stable if no mutant∗x
strategy can spread, that is, if for∗ ∗ ∗k(y, x ) ! k(x , x ) p 0
all . Hence, analogously to the discrete time model,y ( x

is an ESS if attains a local maximum in y at∗ ∗x k(y, x )
.∗y p x

Reproductive Values

In view of equation (B6), maximization of k corresponds
to maximization of (for sufficiently small ). In ap-l DtDt

pendix A, we have seen how maximization of the dominant
eigenvalue of the discrete time process (B1) can be trans-
lated into the reproductive value criterion (A9) involving
the dominant eigenvectors and of∗ ∗ ∗v u A pDt

. As indicated above, and are also eigen-∗∗ ∗ ∗A (x , x ) v uDt

vectors of , corresponding to the eigenvalue∗ ∗ ∗B p B(x , x )
. As a consequence, all considerations on repro-∗k p 0

ductive values in discrete time are directly applicable to
the continuous time model (B3). In particular, an ESS

of equation (B3) has to satisfy the condition∗x

∗�B(y, x )∗ ∗v u p 0, (B7)F
∗�y x

where and are a left and a right eigenvector of the∗ ∗v u
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matrix with respect to the eigenvalue . Again,∗ ∗B k p 0
and correspond to the vector of reproductive values∗ ∗v u

and the stable state distribution, respectively.
As a consequence, by replacing the matrix in equationA

(9) by the matrix in equation (B5), the analysis in theB
body of the article directly extends to the continuous time
model (B3). Doing this slightly simplifies the analysis
(since eq. [B5] is simpler than eq. [1]) but does not lead
to qualitatively different results. In fact, ESS criteria of the
continuous model (B5) corresponding to the ESS criteria
in table 2 of the discrete model are readily calculated, and
the patterns found in our three examples can also be found
in continuous time (results not shown).
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