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1.1 Motivation 

Coatings are found everywhere; they are applied to practically all visible and invisible 

surfaces. Their applications range from everyday surfaces, found in your house, car and 

furniture, to high-tech surfaces such as those found in military weapons, stealth aircrafts, 

submarines, airplanes, etc. The reasons for applying coatings also varies widely, ranging 

from very general protection against corrosion, weathering or fouling, to adding or 

removing some specific properties, or can even be just for aesthetic reasons such as to 

provide color or gloss. 

Due to their widespread application, the coating industry is economically significant on 

both local and global markets; in 2012 the market for paints and coatings was valued at 

111.2 billion US dollars, and is projected to grow to 116.9 billion in 2013. The total market 

value is expected to reach 141 billion US dollars in 2018 after increasing at a five-year 

compound annual growth rate of 3.8 %1. 

Coating systems can be categorized into several major segments based on their properties 

and composition: 

 Solvent-borne coatings: the solvent usually is a volatile, apolar organic solvent. 

 Waterborne coatings: the main solvent consists of water. 

 High solids coatings: Higher concentration of solid materials(in organic solvent); this 

helps to reduce the VOC (volatile organic compound) content. 

 Powder coatings: dry power which is applied as a coating and typically annealed with 

a heating process. 

The market segment for waterborne coatings is expected to reach $31.1 billion in 2013 and 

nearly $40.1 billion in 2018; clearly there is a large market share increase for waterborne 

coatings with an expected average annual increase of 5.2% (Figure 1.1). While solvent-

borne coatings still occupy a significant share, there is no doubt that waterborne coating 

systems are still on the rise. Solvent-borne coatings still exhibit better performance than 

waterborne coatings in terms of durability, leveling, gloss and resistivity; however, they 

bring a serious threat to environments and consumers. Large quantities of hazardous 

substances are released into the air during the drying of solvent-based coatings. Industry 

has already made a rapid shift from solvent-based to water-based systems in the decorative 

coating market. However, for high performance coatings, such as those on cars, airplanes, 

buildings and structures, water-borne coatings cannot yet deliver the same durability and 
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properties. Ultimately, the desire is to replace all solvent-borne coatings with other, less 

VOC containing coating technologies. 

 

 
Figure 1.1 The market for paints and coatings in different segments from 2011-20181. 

 

Waterborne coatings are multiphase systems. The two major components are water, the 

dispersing fluid, and the resin which will form the continuous phase in the final film. 

Because the resin is (and must be) insoluble in water, it is dispersed in the continuous 

water phase in the form of colloidal particles or droplets with the help of an emulsifier. 

Pigment particles can be present as a third colloidal phase, dispersed in the water or in the 

resin. When a water-borne paint dries, it should form a homogeneous and smooth resin 

film, in which any pigment particles should be homogeneously embedded. If this criterion 

can be effectively met with waterborne coatings, and thereby become competitive with 

solvent-based coatings in terms of performance, they will most certainly achieve a much 

larger market share. 

To achieve a homogeneous film of the resin, from its initial dispersed state, the paint 

formulation must undergo a phase inversion process during the drying of the paint film. It 

is exactly this process, the phase inversion from a resin-in-water suspension and/or 

emulsion, to a continuous film of resin, without any embedded water, that is the main 

theme of this thesis. In recent years it has become accepted that this process is crucial in 

determining the final film properties; at the same time, it is one of the processes in coating 

science that remains the least understood. The reason for this is the complexity of the 
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problem; a wide variety of chemical and physical aspects come into play during the drying 

and phase inversion of a paint film. This is highlighted in the research map shown in 

Figure 1.2. The large complexity of the problem forces one to simplify the problem to 

begin developing a basic understanding of phase inversion. The aspects we investigated in 

this thesis are highlighted in Figure 1.2. 

 
Figure 1.2 Mind map highlighting the complexity of phase inversion in drying films; highlighted are the areas of 

focus of this thesis. 
 

We started by making some detailed observations of how coalescence occurs in drying 

films, by combining imaging at the particle scale and on macroscopic length scales; this led 

to new insight into phase inversion. We also explored the possibilities to manipulate phase 

inversion and coalescence using responsive surfactants, which change their stabilizing 

properties upon small changes in temperature. By combining a more physical approach to 

understand phase inversion and a material chemistry approach to manipulate it, new 

avenues for getting better grips on this complex problem have been created. 

1.2 Emulsions 

Emulsions are metastable, biphasic, colloidal systems prepared by dispersing one fluid into 

an immiscible second fluid 2. In this entire thesis we consistently use the words “oil”, to 

indicate a hydrophobic liquid, and water which means aqueous solution often containing 
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surfactants to stabilize the emulsions. Depending on which phase forms the continuous 

phase, an emulsion is either an oil-in-water (o/w) emulsion, with water as the continuous 

phase, or a water-in-oil (w/o) emulsion, when oil is the continuous phase (Figure 1.3). 

 
Figure 1.3 Two types of emulsions: oil-in-water and water-in-oil. Blue means water. Yellow means oil. Red 

means surfactant. 
  

Emulsion droplets possess many of the characteristics of other metastable colloidal systems; 

they perform Brownian motion3, 4 and can form amorphous or crystalline packings5-7. This 

makes them a valuable model system to study the properties of colloidal systems. 

Moreover, o/w emulsions are widely used in an extremely large variety of applications 

because of their ability to transport or solubilize hydrophobic substances in a continuous 

water phase. In certain applications, organic solvents can be avoided in solubilizing 

hydrophobic substances into water by using emulsions as transport “vehicle”. When the 

water is evaporated the dispersed phase concentrates and ultimately forms a continuous 

hydrophobic material, e.g.; in painting, paper coating and lubrication. Also, emulsion 

technology drastically increases the pourability of many hydrophobic substances. One well 

known example is bitumen used for road surfacing: the hot bitumen, as a melt, is dispersed 
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as small droplets in water and then remains fluid at room temperature although the droplets 

solidify. Emulsions are also involved in the food (mayonnaise, salad dressing) and 

cosmetics (face creams) industries because of their rheological properties which may vary 

from essentially Newtonian liquids to elastic solids. Moreover, they are efficient drug 

carriers for various types of targets such as medicines, food and pesticides. Many kinds of 

surface treatments take advantage of emulsion technology. 

 

1.3 Emulsification 

Emulsions can be prepared by application of mechanical energy, for example in the form 

of shear forces, on two immiscible liquids. This mechanical energy partly is required to 

provide the extra interfacial free energy of the newly created liquid-liquid interfacial area. 

In practice, the energy consumption is much larger than this as most of the mechanical 

energy input is lost through viscous dissipation. 

There are several widely used methods to prepare emulsions. Here, we highlight a few of 

these, and categorize them based on their capacity. 

 

1.3.1 Large scale emulsion preparation 

There are many emulsification systems that are widely used in industry such as high 

pressure systems, membrane emulsifiers, ultrasonic systems, rotor-stator mixers and porous 

disc mixers, as illustrated in Figure 1.4. 

High-pressure emulsification is one the most common methods used in industry. The 

standard term for these apparatuses is ‘high-pressure homogenizers’. In these set-ups, the 

material to emulsify is forced, with high pressure, through a dispersion unit, which consists 

of either a radial diffuser, counter-jet dispergators, or nozzles to disrupt droplets by shear 

stresses and cavitation8-13. The size of the emulsion droplets so obtained is typically below 

several hundred nanometers in diameter, but with a very wide size distribution. Membrane 

emulsification is a relatively new process14, 15. The dispersed phase is pushed through the 

pores of a membrane into the continuous phase which is flowing along the membrane and 

will carry away the produced droplets. Because of much lower operating pressures and 

stresses as compared to a high-pressure homogenizer, it can be applied to stress-sensitive 

materials. Moreover it allows to achieve narrow size distributions16-21; however, it cannot 
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produce emulsions at the same volumes as large high-pressure systems. Ultrasonic 

emulsification is accomplished by applying ultrasonic waves to a biphasic liquid system, to 

create droplets by cavitation and micro-turbulence. The resulting emulsion droplets can be 

very small and polydisperse due to intensive energy transmission22-24. In rotor-stator mixers, 

turbulence is created to break the dispersed phase into droplets25, 26. The emulsion size 

depends on the shear forces generated in the turbulent zone within the gap between the 

spinning rotor and the stationary stator. The size of these droplets decreases with increasing 

homogenization intensity and duration. The viscosity, total volume size, volume ratio of 

the continuous phase to the dispersed phase, and the rotor/stator design also play a role in 

the emulsification process. Small rotor-stator mixers, colloquially known by their trade 

name Ultra-Turrax, are often used to prepare emulsions in the laboratory. 

 

Figure 1.4 Overview of mechanical emulsification systems adapted from Urban et al.27. 

1.3.2 Microfluidic emulsion preparation 

In recent years, miniaturization efforts have led to the development of a wide variety of 

microfluidic methods to prepare well-defined emulsions by using lithographically designed 

chip reactors. The most common planar microfluidic devices are microfluidic junctions and 
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flow focusing devices28. A T-junction is the simplest microfluidic structure for producing 

and manipulating droplets; as shown in Figure 1.5, the continuous phase is introduced from 

the main channel and the dispersed phase flows through a perpendicular channel29, together 

forming a T-shape. The combination of shear stresses generated by the continuous phase 

and evolution of pressure upstream of the emerging droplet causes the tip of the dispersed 

phase to elongate into the main channel until the neck of the dispersed phase breaks up into 

a droplet 30, 31. A flow focusing device, illustrated in Figure 1.4, operates by generating 

hydrodynamic focusing (extensional) forces close to the exit orifice of the dispersed 

phase32, 33; the dispersed phase (liquid A) flows through the center channel and the 

continuous phase (liquid B) flows through the two outer channels. Both phases are forced 

to flow through a small orifice located downstream of the three channels. The continuous 

phase exerts pressure and shear stress that force the dispersed phase into a narrow thread, 

which breaks either inside or downstream of the orifice. 

 

Figure 1.5 Schematic illustration of basic T junction29 and flow focusing32 microfluidic emulsifiers. 

A wide variety of modifications to these basic designs have been developed to create more 

complex emulsions, such as double, triple and quadruple emulsions 28. In Figure 1.6 we 

highlight a few of these advanced designs, to illustrate the level of sophistication that can 

be achieved using microfluidic emulsification. 
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Figure 1.6 Droplet formation from two dispersed phases in a microfluidic junction34-38 and multiple emulsions in 

axisymmetric glass capillary devices39-43. 

 

1.4 Coalescence 

Once emulsions are produced, their long term fate in terms of droplets size distribution is 

controlled by two main mechanisms. The first mechanism, Ostwald ripening, is mediated 

by the diffusion of the dispersed phase through the continuous phase. This mechanism does 

not involve any film rupture. Instead there is continuous exchange of matter through the 

continuous phase. The reason is that in a polydisperse sample, the Laplace pressure that is 

associated with any curved surface, will be higher in the smaller droplets and lower in the 

larger drops. As a result, dispersed phase will transport continuously from small to big 

droplets, making the bigger drops grow and the smaller droplets vanish; ultimately this 

leads to disproportionation of the droplet population and a reduction in the number of 

droplets. The kinetics of Ostwald ripening are governed by the solubility of the dispersed 

phase in the continuous phase; a higher solubility will lead to faster Ostwald ripening. For 

coating systems, in which the dispersed phase is typically an oligomeric or polymeric fluid, 

with very low water solubility, this Ostwald ripening is practically absent. 
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The other mechanism, called coalescence, is of immense importance to coating systems, 

and most other emulsion formulations. Coalescence is the merging of two drops to form a 

new, larger droplet. Coalescence thus requires the rupture of the thin liquid film of external 

phase that separates the initially individual droplets. Upon approaching two droplets at 

constant pressure, the thin film will drain, at rates set by the film thickness and continuous 

phase viscosity, until the film reaches an equilibrium thickness when surface forces come 

into play (see Figure 1.7). The surface forces give rise to a pressure. This pressure, which 

varies with film thickness, is known as the disjoining pressure Π 44, and can contain a 

variety of interactions, depending on the nature of the surfaces, such as repulsive 

electrostatic forces (Πelec), short-range attractive van der Waals interactions (ΠvdW) and 

short-range repulsive steric forces (Πsteric). For stable emulsions, the disjoining pressure 

increases when droplets come closer together, i.e. when the film thins; however, at some 

critical distance and disjoining pressure, the pressure reaches a maximum, after which it 

starts to coalescence. As a consequence, the stability of the liquid film is lost, it can rupture 

and the droplets can coalesce. This critical disjoining pressure (Πcr) is one of the main 

thermodynamic parameters that determine the stability of emulsions; however, what 

determines this critical disjoining pressure exactly remains unknown. 

 
Figure 1.7 The disjoining pressure (Π) between two droplets stabilizes the film between two droplets; the curves 

show a typical dependence of Π on the film thickness h.. 
 

The merging of two droplets can be separated into two separate events; (i) the film rupture, 

which is caused by thermodynamic instability of the thin liquid film at large enough 

pressures, and (ii) the fluid dynamics process of the merging (i.e. coalescence) of the two 
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droplets. The stability of individual thin liquid films has been accurately characterized, for 

a wide variety of system, using the liquid surface force apparatus (LSFA)45, 46, as well as 

thin-film balance methods47-50. 

The actual coalescence event for simple liquids, which is a fast process, has also been 

studied in detail; especially with the availability of high speed cameras, and new fluidic 

methods to manipulate droplets,  this process has been characterized and theoretically 

described in detail 46, 51-55. For simple liquids of low viscosity, such as water, coalescence 

between two isolated droplets occurs within a few microseconds to milliseconds, as shown 

in the time-sequence in Figure 1.8. For visco-elastic fluids, the situation is much more 

complex, and coalescence can become much slower, or even occur only partially, as shown 

in the right panels of Figure 1.8.  

 
Figure 1.8: left: High speed x-ray imaging time-sequence of the coalescence of two water droplets56, right: partial 

coalescence of droplets prepared from a visco-elastic yield stress fluid57. 
 

1.4. Film formation in drying emulsions  

The formation of a paint film from an initially stable resin (emulsion) occurs in various 

stages 58 as illustrated in Figure 1.9. Initially, as water evaporates, the dispersed droplets 

concentrate59 until they come into contact and form a jammed packing. Further evaporation 

of water creates a capillary pressure that causes the droplets to deform and squeeze 

together. Similar to dry foams, this ultimately leads to faceted droplets separated by thin 

water films. The vertices where these films come together are commonly called ‘Plateau 

borders’; these are the main channels for water transport. Finally, when the pressure 

becomes sufficiently high and exceeds the critical disjoining pressure, individual droplets 

begin to coalesce and phase inversion takes place60. In this final stage, the water films must 

rupture and disappear so that a homogeneous film can be formed.  
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Figure 1.9 A schematic illustration of the stages in the film formation of a drying emulsion. 

 

Film formation in colloidal systems has received a lot of attention in recent decades due to 

its direct influence on the final properties of the film61. A major difficulty in understanding 

film formation is the practical absence of well-separated stages; in reality, drying, 

compaction and coalescence all occur simultaneously at different locations within the 

drying film; as illustrated in Figure 1.10. A dry film at the drying edge is connected to a 

wet dispersion through a boundary region. Solvent and solutes are transported to this 

boundary region due to a drying flux towards the dry end of the sample 62. As drying 

proceeds, the drying front propagates in the direction opposite to that of the water flux. The 

dry film grows in size and the wet dispersion decreases in area. 
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Figure 1.10 Schema representation of drying front in a latex dispersion58. 

Coalescence and film formation in a drying dispersion depend on a wide variety of factors, 

including the plasticity of the particles, evaporation rates, viscosities of dispersed and 

continuous phase, surface tension, colloidal interactions, interactions between colloids and 

solutes (surfactants, polymers), presence of pigments and fillers, film thickness, etc. As a 

result, capturing this behavior in a single model is extremely difficult; several simplified 

models, focusing on only few of these aspects, have emerged in the past years. For 

example, the model proposed by Routh & Russel describes the deformation of soft 

particles under a uniaxial pressure which is governed by the drying of solvent; depending 

on the softness of the particles and the evaporation rate, various regimes have been 

identified, such as regimes of wet sintering, dry sintering, capillary deformation and skin 

formation63-70. 

Figure 1.11 a) Deformation phase diagram from the Routh-Russel model for a high Tg latex, as a function of 
Peclect number Pe and λ, which is the ratio of the time needed for water to drain from the thin films versus the 

typical timescale for water evaporation.  b) Illustration of skin formation in a latex where particle softness is 
sufficient to allow substantial deformation and coalescence to occur in presence of water70. 
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Figure 1.12 Coalescence study on a microfluidic chip. 

 

While these models capture a variety of the observations made in drying practical 

dispersion formulations, they do not give microscopic insight into the mechanisms that act 

at the single particle level, which are ultimately responsible for the observed macroscopic 

behavior.  

Surprisingly, a large variety of methods have been employed to study the details of the 

initial stages of drying films71-79, while the final and crucial stage, during which phase 

inversion occurs and a film is formed, remains relatively ill-understood; this is mostly the 

result of a lack of direct experimental data on the level of individual droplets within the 

drying emulsion2. Some initial steps in this direction have been taken, for example by using 

a microfluidic reactor to collect droplets to create dense 2 dimensional packings (Figure 

1.12), yet many questions remain (despite its immense importance) in understanding water-

borne coatings. These questions include: what are the governing parameters on the 

molecular scale that determine macroscopic coalescence behavior?, how does fluid flow 

through a drying film influence coalescence kinetics?, are there ways to manipulate 

coalescence dynamics externally? And can we predict a-priori how a certain system will 

behave? 

These are the questions that motivated the work presented in this these, where we aimed to 

arrive at a new understanding of phase inversion and coalescence in drying films and we 

explored new routes to manipulate these phenomena using novel responsive polymeric 

materials. These topics are described in the following chapters. 
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1.5 Outline of this thesis 

In Chapter 2 we visualize phase inversion in drying emulsions on the single particle 

level80, 81 by using an optimized confocal fluorescence imaging method50, 51. We used this 

approach to study coalescence in dense o/w emulsions subjected to a unidirectional drying 

stress, to mimic a drying film. Here, we observed two different modes of coalescence: 

coalescence occurs either through a nucleation-and-growth mechanism, where coalesced 

pockets form and grow randomly throughout the sample, or through a coalescence front 

that propagates into the sample from the drying end. We explain these results in terms of 

the theoretically predicted and experimentally measured pressure profiles throughout the 

drying films, and their relation to the critical disjoining pressure. We find that surfactant 

concentration plays a significant role through its effect on the critical disjoining pressure at 

which coalescence occurs. By developing a hydrodynamic model we bridge these length 

scales and arrive at a microscopic understanding of this complex macroscopic 

phenomenon82. 

In chapter 3 we explore the parameter space of our hydrodynamic model, to further 

investigate the key factors involved in film formation. We show that, those two distinct 

coalescence behaviors can be obtained within the same model by varying the critical 

disjoining pressure.  

In chapter 4 we describe the development of a new and well-defined surfactant system to 

facilitate studies of film formation and phase inversion83. The surfactant, which carries a 

thermoresponsive block, synthesized by ATRP, stabilizes emulsions for at least four 

months at room temperature. However, by slightly raising the temperature to above the 

collapse transition of the thermoresponsive block, coalescence between the emulsion 

droplets occurs; this leads to demixing of the sample within several minutes. We reveal the 

mechanism for the temperature-triggered coalescence by measurements of the temperature-

dependent interfacial tension, and by studying the interfacial morphology of surfactant-

covered emulsion droplets. 

In chapter 5 we apply this new surfactant system, developed in chapter 4, in combination 

with a recently developed microcentrifugation method 84-86 to directly study the 

coalescence dynamics in densely packed emulsions, under well-defined conditions. We 

show that, by using a thermoresponsive surfactant8383, 87, we can manipulate in this way the 

mode in which coalescence takes place, by changing the critical disjoining pressure. 



Introduction 
 

16 

In Chapter 6 we summarize our work and discuss it in the perspective of the unanswered 

questions that remain, including some unfinished work within this project.  
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 Understanding coalescence  

in dense emulsions 
 

 
 
 
 
 
 
 
 
 



 

 

 



Chapter 2 

Two modes of phase inversion in a drying 
emulsion 

 

We report two different modes of phase inversion in surfactant-stabilized oil-in-

water emulsions subjected to a unidirectional drying stress. Coalescence occurs 

either through a nucleation-and-growth mechanism, where coalesced pockets form 

and grow randomly throughout the sample, or through a coalescence front that 

propagates into the sample from the drying end. This drying-induced coalescence 

results from the development of a pressure gradient from the drying front into the 

bulk of the sample, established by limited water transport through the Plateau 

borders. Depending on the steepness of this pressure profile, coalescence occurs 

throughout the sample or only at the drying front. Moreover, we find that 

surfactant concentration plays a significant role through its effect on the critical 

disjoining pressure at which coalescence occurs. Very stable emulsions, 

characterized by a high critical pressure, tend to develop steep pressure profiles, 

which favours front-dominated coalescence, while unstable emulsions, with low 

critical pressures develop shallow pressure gradients, favouring nucleation-and-

growth dominated coalescence. These result offer new insight into the microscopic 

mechanisms governing the complex and poorly understood macroscopic 

phenomena during phase inversion of drying emulsions. 

 
 
 
 
This chapter was published as: 
H. Feng, J. Sprakel, D. Ershov, T. Krebs, M. A. C. Stuart and J. van der Gucht, 
Two modes of coalescence in a drying emulison, Soft Matter, 2013, 9, 2810-2815 



Two modes of phase inversion in a drying emulsion 
 

24 

2.1 Introduction 

When a thin layer of an oil-in-water emulsion is dried on a substrate, evaporation of water 

eventually leads to the formation of a film of the dispersed phase. Despite its widespread 

practical importance in the fields of paints, coatings and adhesives, a detailed 

understanding of the complex process of phase inversion in concentrated emulsions is not 

available to date. 

It is known that film formation occurs in a sequence of stages1: (1) as water evaporates, the 

dispersed droplets concentrate2 until they come into contact and form a jammed packing. (2) 

Further evaporation of water creates a capillary pressure that causes the droplets to deform 

and squeeze together. Similar to dry foams, this ultimately leads to faceted droplets 

separated by thin water films.  (3) Finally, when the pressure becomes sufficiently high, the 

individual droplets begin to coalesce and phase inversion takes place3. In this final stage, 

the water films must rupture and disappear so that a homogeneous film can be formed.  

While a large variety of methods have been employed to study the details of the initial 

stages of drying films4-12, the final and crucial stage, during which phase inversion occurs 

and a film is formed, remains incompletely understood; this is mostly the result of a lack of 

direct experimental data on the level of individual droplets within the drying emulsion13. 

In this article we therefore visualize phase inversion in drying emulsions on the single 

particle level 14, 15 and on macroscopic length scales. By developing a hydrodynamic model 

we bridge these length scales and arrive at a microscopic understanding of this complex 

macroscopic phenomenon. 

 

2.2 Materials and methods 

2.2.1 Materials 

Polydimethysiloxane (PDMS) viscosity 100 mPa.s, sodium dodecyl sulfate (99% purity), 

and Nile Red (99% purity) were purchased from Sigma.  

 
2.2.2 Emulsion preparation 

Monodisperse emulsions are produced in a T-junction microfluidic device 2, 16, 17. The 

continuous phase is a 10 mmol/L SDS solution, while the dispersed phase is silicone oil. 
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The cross-flow at the T-junction shears the oil to pinch off droplets of well-defined size 

into the continuous phase, as illustrated in supporting information, Figure A2.1. The 

droplet size can be adjusted by varying the flow speeds of the two phases 2. Here we 

produce droplets of 50μm in diameter, which can be observed readily by both confocal 

and bright-field microscopy.  

 

2.2.3 Confocal Microscopy 

The silicone oil is fluorescently labeled by the solvochromic oil-soluble dye Nile Red. The 

emission of this dye at wavelengths above 560 nm is enhanced for molecules located at the 

oil/water interface with respect to those surrounded by oil only; this enables us to 

selectively highlight the interfaces of the droplets (see supporting information, Figure A2.2) 
15. 

2.2.4 Drying experiments 

The drying experiments are carried out in a shallow glass sample chamber formed by two 

parallel glass slides separated by a spacer of 120 µm. One side is not sealed, but exposed to 

the air; this leads to unidirectional drying, similar to that experienced in drying films. The 

conditions are fixed at 26˚C and 60% relative humidity by placing the samples in a home-

built climate control box. The drying experiments are conducted in emulsions with initial 

concentrations of SDS in the water phase of 10, 30, and 100 mmol/L. For each of these 

concentrations we run 8 samples in parallel to obtain sufficient statistics. The set-up is 

illustrated in Figure 2.1. All emulsions were prepared at approximately the same initial 

volume fraction of 60%. 

 

 
Figure 2.1 Scheme of drying experiment chamber 

 
2.2.5 Centrifugation experiments 

The critical disjoining pressure, at which the film that separates two emulsion droplets 

ruptures and coalescence takes place, is measured using centrifugation. The emulsion 
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samples are centrifuged with a fixed centrifugal force equivalent to 20000g. The 

temperature is fixed at 30℃ to prevent crystallization of the surfactant SDS 18. After an 

initial gradual ramping-up of the gravitational acceleration, we let the samples reach 

mechanical  equilibrate at 20000g for 8 hours. From the relative volumes of the coalesced 

oil phase on top and the remaining compressed emulsion, and knowing the density 

difference between oil and water, we can extract the critical disjoining pressure 19, 20. 

2.3 Results and discussion 

2.3.1 Macro and microscopic observations 

 
Figure 2.2 Confocal microscopy images of drying emulsions at various stages. (a-c) ‘Front’ coalescence at an 

initial SDS concentration of 100 mmol/L. (d-f) ‘Bulk’ coalescence at an initial SDS concentration of10 mmol/L. 

 
The compressed emulsions appear as a honeycomb-like hexagonal packing, due to the 

monodispersity of the emulsion droplets created by microfluidics; see Figure 2.2. Note that 

almost all water films are flat, indicative of a very dense packing of the droplets, well 

above the close packing limit. During the drying of the emulsions, we see two distinct 

types of behaviour, depending on the initial surfactant concentration. At high surfactant 

concentrations coalescence occurs exclusively at the drying end of the sample and 

propagates into the sample as a well-defined front (Figures 2.2 a-c and 2.3a). At low 

surfactant concentrations however, coalescence starts at random positions throughout the 
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sample from which large liquid pockets grow; this is reminiscent of a nucleation-and-

growth process (Figure 2.2 d-f and 2.3a). In the remainder of this paper we will refer to 

these two distinct modes of coalescence as ‘front’ and ‘bulk’ coalescence, respectively. 

Another interesting observation that can be made from these images is that in all samples 

coalescence occurs almost exclusively between oil droplets of different size (or between 

droplets and the macroscopic bulk oil phase), with the exception of the initial nucleation 

events. 

 

Figure 2.3 Images of drying emulsions at various stages. (a) ‘Front’ coalescence occurs at an initial SDS 
concentration of 100 mmol/L. (b) ‘Bulk’ coalescence occurs at an initial SDS concentration of 10mmol/L. 

To quantify the coalescence process, we calculate the fraction, α, of emulsion that has 

coalesced as a function of time. We extract this information from the macroscopic images, 

as shown in Figure 2.3; dark areas, in which there is no more diffuse scattering, represent 

coalesced areas and the light areas represent the not-yet coalesced emulsion. For each 

initial surfactant concentration, we average 8 parallel samples to obtain reliable statistics. 

The trends are very clear: coalescence proceeds more slowly as the SDS concentration 

increases, as shown in Figure 2.4. We can also see that the fluctuations, expressed by the 

variance, shown as error bars in Figure 2.4, decrease with increasing surfactant 

concentration. For low surfactant concentrations, of 10 and 30 mmol/L, there is an initial 

stage where coalescence proceeds slowly. This persists until there is a sudden increase in 

coalescence rate, after approximately 1000 minutes; this fast coalescence mode then 

persists until the entire sample has coalesced and the fraction α approaches 100%. For 

higher surfactant concentrations, i.e. 100 mmol/L SDS, coalescence is very slow and halts 

altogether after approximately 300 minutes. 
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Figure 2.4 Percentage of coalesced emulsion as a function of time from drying experiments for different initial 

surfactant concentrations. 

We see clear differences in the coalescence kinetics between low and high surfactant 

concentrations, suggesting that the initial stability of the emulsion plays an important role. 

This immediately triggers the question, what microscopic mechanisms are at play causing 

these differences in macroscopic behaviour. 

A first insight can be obtained, by separating the contributions of front and bulk 

coalescence in the kinetic plots; for a description of this data analysis we refer to the 

supporting information (Figure A2.3). In all samples, irrespective of the surfactant 

concentration, coalescence starts at the front. At low SDS concentration, the accelerating 

bulk coalescence then takes over; for example for 10 mmol/L SDS concentration this 

occurs after 2000 minutes (Figure 2.5a). After even longer times, coalescence is so wide-

spread that it becomes impossible to distinguish bulk and front coalescence from our 

images; this occurs after approximately 4000 minutes for 10mmol/L SDS (Figure 2.5a). 

The effect of surfactant concentration also emerges clearly from Figure 2.5: the higher the 

SDS concentration, the slower the process, although the overall pattern remains the same. 

At high SDS concentration, bulk coalescence is even entirely suppressed up to 8000 

minutes (~6 days), which is the maximum duration length in our experiment. 
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Figure 2.5 Front and bulk contributions to the coalescence as a function of time for initial SDS concentrations of 

10 (a), 30 (b), and 100 (c) mmol/L. 
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2.3.2 Pressure prolife 

To achieve an understanding of what occurs in these emulsions to cause these two distinct 

modes of coalescence, we first realize that the stability of an emulsion is due to the 

disjoining pressure acting between the surfaces of the dispersed phase. When the actual 

disjoining pressure reaches a critical value, the film can rupture and coalescence can take 

place. It is therefore important to determine the pressures and their critical values as they 

occur in a drying system. To measure the actual capillary pressure profiles, from the drying 

front into the bulk of the sample, and as a function of time, we determine the curvature of 

the Plateau borders throughout the sample. Since we visualize the interfaces, curvatures 

can be measured in the microscopy images as shown in Figure 2.6. The pressure can then 

be evaluated from the Laplace law, P=-γ/r, in which γ is the surface tension and r the radius 

of curvature of the Plateau border. The interfacial tension was measured separately, and 

was found to decrease from 50 to 11mN/m when the SDS concentration increased from 0 

to 10mmol/L, which is close to the CMC of SDS. Then it remains constant at SDS 

concentrations above the CMC (see Supporting information, Figure A2.4). 

 
Figure 2.6 Schematic depiction of a Plateau border. Bright field microscopy image of a jammed emulsion, 

showing the Plateau borders between three droplets and its radius of curvature. 

The results, presented in Figure 2.7, show that the pressure is initially low, but increases in 

time. Moreover, the pressures at the dry end increase faster, so that substantial pressure 

gradients develop (Figure 2.7). This can be easily understood; drying requires the flow of 

water from the bulk to the drying front. Such water flow can only occur if a pressure 

gradient exists and the more the emulsion becomes concentrated, the narrower the Plateau 

borders and the steeper the pressure drop required to drive fluid to the evaporation site. 
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Figure 2.7 Pressure profiles as function of position and time for initial SDS concentrations of 10 (a), 30 (b), and 
100 (c) mmol/L. X=0 corresponds to the bottom of the sample, while the largest X-value in each curve represents 
the drying front of the sample. The images to the right show the corresponding state of the emulsions; their mean 

SDS concentrations, taking into account the evaporated water, are indicated in the legend. 

It should be anticipated that when the pressure at a particular location reaches the critical 

value that exceeds the maximum disjoining pressure (P*), coalescence will occur 21, 22. To 

assess the probability of coalescence at a given location and pressure it is necessary to 

determine this critical disjoining pressure for our system. We obtain P* for the emulsion as 

a function of SDS concentration by centrifugation experiments. The results are shown in 

Figure 2.8. The critical disjoining pressure increases dramatically at low SDS 

concentration before reaching its maximum value around 1000mmol/L. The critical 

disjoining pressures that we find are about a factor of 5 lower than values found by Bibette 

et al23, probably because the droplet size in our experiments is at least an order of 

magnitude larger. Furthermore, we find that the critical pressure keeps on increasing far 

above the CMC, while the surface tension stays constant beyond the CMC; this suggests 

that it is not only the adsorbed amount of surfactant that determines the stability of the 

liquid films. Probably the exchange kinetics of surfactants plays key a role in determining 

the critical disjoining pressure.  

 
Figure 2.8 Critical disjoining pressures as a function of SDS concentration 
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2.3.3 Hydrodynamic mode 

To understand our observations and the development of the steep pressure gradients, we 

use a hydrodynamic model for the flow of water in the drying emulsion in the stages prior 

to coalescence. Water flow is assumed to occur predominantly through the Plateau borders, 

and to be controlled by viscous drag and the pressure gradient. The interfaces of the 

Plateau borders are assumed to be immobile, generating a no-slip boundary condition, 

while the size of the Plateau borders (r) adjusts according to the local pressure, in order to 

satisfy the Laplace law24. As shown in the supporting information, these assumptions, 

together with mass conservation of both water and oil25, can be expressed in the following 

differential equation: 

𝜕𝜀
𝜕𝜏

= 𝜕
𝜕𝜉
�(𝜀1/2 − 𝜀3/2) 𝜕𝜀

𝜕𝜉
�                                                                                                              (1) 

where ε is the volume fraction of water at a certain distance from the bottom of the sample, 

which is related to the size of the Plateau borders:  

 𝜀 = 𝛼 �𝑟
𝑅
�
2
                                                                                                                           (2) 

Here R is the size of the emulsion droplets and α is a geometric constant of order unity. 

The local Laplace pressure is directly related to this by Laplace’s law, 𝑃=𝛾𝛼1/2/𝑅𝜀1/2. In 

equation 1, τ is a dimensionless time, τ =ktγ/αηR, with k a numerical pre-factor of order 

10-3, and ξ=x/R is the dimensionless distance from the bottom of the sample. The pressure 

gradient may have an extra contribution from osmotic gradients, of which mobile 

surfactant is an obvious one. Water moving towards the dry front transports surfactant, 

which then accumulates at the dry end, causing a concentration gradient and a concomitant 

osmotic pressure gradient. For our Ansatz, we first neglect this osmotic pressure gradient, 

which is a reasonable assumption if diffusion is fast enough to level out concentration 

gradients. Surfactant transports towards the drying end may also lead to Marangoni effect 

causing transport in direction perpendicular to x, we also ignore them here. A more 

detailed investigation, taking surfactant accumulation and diffusion into account, will be 

presented elsewhere. 

To solve equation 1 for the water volume fraction profile, and the pressure profile that 

follows from that, we need boundary conditions. At the bottom, where the sample is closed, 
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there is no net flux, so that the gradient must vanish: dε/dξ=0 at ξ=0. The boundary 

condition at the dry end of the sample is determined by the rate of evaporation (see 

supporting information for details): 

𝜀
1
2
𝜕𝜀
𝜕𝜉

= 𝜕𝜉2
𝜕𝜏

  at ξ=ξ1                                                                                                                     (3) 

where ξ1 denotes the position of the emulsion/air interface. The change of the latter 

represents the overall volume change of the sample, so that dξ2/dτ is directly proportional 

to the evaporation rate of water. We solve equation 1 with the appropriate boundary 

conditions numerically, by using a boundary immobilization method to map the moving 

boundary problem onto a fixed domain. 

 
Figure 2.9 Pressure profiles in the drying emulsion from Hydrodynamic model simulation. (while R is 25μm, α

is 0.094) 

Figure 2.9 shows the calculated pressure profiles for various times. Clearly, drying 

increases the pressure throughout the system. Initially, the pressure profile is flat, but as 

drying goes on, the profile becomes steeper.  If the critical disjoining pressure is low, as is 

the case for low surfactant concentrations (lower dashed line in Figure 2.9), the pressure 

cannot reach very high values, because coalescence occurs once the pressure exceeds the 
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critical threshold. As a result, the Plateau borders remain relatively wide and water 

transport towards the dry end can proceed much faster. Pressure gradients are therefore 

leveled out, leading to a rather flat pressure profile. This means that the critical pressure 

can be reached everywhere in the sample, so that bulk coalescence can take over quickly. 

By contrast, if the critical pressure is high, very steep pressure profiles can be reached. This 

is caused by the fact that narrow pores can develop, which induce strong pressure drops, 

because they clog the system from the drying end to the bottom of the sample. In this case, 

the pressure in the bulk never reaches the critical pressure and coalescence can occur only 

at the front. 

 

2.4 Conclusions 

We have observed two distinct modes of coalescence in a drying emulsion; one that 

proceeds as a nucleation and growth process throughout the sample and another where a 

coalescence front propagates into the sample from the dry end. Which mode dominates is 

determined by a balance between the established pressure profile and the local critical 

disjoining pressure in the emulsion. For very stable emulsions, narrow plateau borders can 

develop, leading to steep pressure gradients; the actual pressure only exceeds the critical 

pressure in a narrow zone around the drying front and front coalescence results. The 

opposite occurs for unstable emulsions; only shallow pressure profiles develop before 

coalescence commences throughout the bulk of the sample. Our results offer insight into 

the microscopic mechanisms that underlie the complex phenomena of coalescence in 

concentrated systems. While a lot of water can get trapped in the very stable emulsions in 

which only front coalescence takes place, phase inversion reaches completion much more 

efficiently for unstable emulsions that display bulk coalescence. Complete removal of the 

continuous phase is an essential requirement for the formation of homogeneous films of 

various types of emulsion paints. This poses a contradictory constraint on those systems; 

while stability is important for maintaining an emulsion during storage, this same stability 

inhibits good film formation. 
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Appendix 

Emulsion preparation 

 
 
Figure A2.1. Production of monodisperse emulsions in a T-junction microfluidic device. 

Black long arrow shows the flow direction of the continuous phase (10mmol/L SDS). Red 

short arrow shows the flow direction of the dispersed phase (Nile Red-labelled silicone oil). 

During droplet pinch-off, small satellite droplets are formed due to the high viscosity ratio. 

These small satellite droplets were removed by making use of their very small creaming 

rate: in a sufficiently high container the cream layer that develops consists almost 

exclusively of the large droplets. 

 

Visualization of emulsions with confocal microscopy 

 
 

Figure A2.2. Confocal microscopy images of a silicone oil in water emulsion with 

10mmol/L SDS surfactant, produced by vortexing. (a) Emission between 505 and 530nm 

colored with gray. (b) Emission for wavelengths larger than 560nm colored with red. (c) 
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Overlap of images (a) and (b) (give a reference here to the original Nile Red interface 

visualization paper). 

 

Analysis of images to obtain bulk and front coalescence 

 

 

 
Figure A2.3. Analysis of the images of the drying samples. (a) The grayscale images, 
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presented in Figure 2.3 in the main text, are first converted to binary images using a gray 

level threshold. In these images, the black pixels below the interface with the air (which is 

white) represent coalesced emulsion, while the white pixels denote non-coalesced emulsion. 

(b) From the binary images, we create kymographs (using an ImageJ plugin). In the 

kymographs, the vertical axis indicates time, while the horizontal axis denotes vertical 

position (from top to bottom). The pixel intensity indicates the average intensity along a 

horizontal slice in the binary image. The bright white trace represents the position of the 

drying front, and the dark regions to the right of it represent coalesced regions. (c) An 

intensity profile along the sample at one particular time. The point marked with O 

corresponds to the drying front; the point marked P corresponds to the coalescence front 

(where continuous oil and emulsion meet). The front contribution to the coalescence is 

calculated from the distance between O and P, while the bulk contribution is obtained from 

the average pixel intensity in the region between P and Q.  

 

Measurement of interfacial tension between silicone oil and SDS solution  

 
Figure A2.4. Interfacial tension between PDMS oil and aqueous SDS solution as a function of SDS 

concentration. Measurements were done using a pendant drop tensiometer (Sinterface, PAT1) at 298 

K. 
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Hydrodynamic model for drying emulsions 
 

We present a hydrodynamic model for the water flow in a jammed emulsion, 

subjected to a unidirectional drying stress. Water flows through the Plateau borders 

towards the drying end, driven by gradients in the capillary pressure. Our model 

predicts the pressure gradients that arise, and allows us to explain the different 

modes of coalescence observed experimentally in chapter 2. From these results, we 

estimate the boundaries (critical pressure and evaporation rate) between bulk and 

front coalescence. 
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3.1 Introduction 

Film formation in drying emulsions has been studied intensively in recent decades, both 

experimentally and theoretically. The process occurs in three stages 1: (1) evaporation of 

water, leading to a dense packing of oil droplets; (2) deformation of the droplets; and (3) 

coalescence of the droplets. In our understanding of these stages, there are still many 

questions remaining. In particular, the last stage, that of droplet coalescence, is still poorly 

understood.  

In chapter 2, we have found experimentally that there are two modes of phase inversion in 

surfactant-stabilized oil-in-water emulsions subjected to a unidirectional drying stress2. 

Coalescence occurs either through a nucleation-and-growth mechanism, where coalesced 

pockets form and grow randomly throughout the sample, or through a coalescence front 

that propagates into the sample from the drying end. We argued that which of these two 

modes occurs is determined by the steepness of the pressure profile in the emulsion. In this 

chapter, we present a hydrodynamic model that allows us to predict how the pressure 

profiles in the emulsion develop. We will then relate these calculated pressure profiles to 

our observations of chapter 2. 

3.2 Description of the model 

Our model aims to describe the last stages of film formation, in which the emulsion has 

already formed a jammed packing of deformed, faceted droplets (Figure 3.1). The structure 

of such a jammed emulsion is very similar to that of a dry foam and the equations that 

describe water flow in it are also similar to the equations used for foam drainage3-9. Water 

remains confined in the thin films (of thickness h) that separate two droplets, in the 

network of channels at which three films meet (called the Plateau borders), and in the 

nodes that connect four such channels. The Plateau borders, depicted schematically in 

Figure 3.2, have a length L and a triangular-like cross-section A=cr2, with r the radius of 

curvature of the Plateau channel and c ≈ 0.1616. To simplify the analysis, we assume that 

most of the water is contained within the Plateau borders, so that the volume of the films 

and the nodes can be neglected. This is valid for strongly jammed emulsions with very thin 

films (𝐿 ≫ 𝑟 ≫ ℎ). In this case, the local volume fraction of water ε in the emulsion can be 

written as: 
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𝜀 = 𝛼 �𝑟
𝐿
�
2
          (1) 

where α is a geometrical factor that depends on the geometry of the Plateau channels and 

on the number of channels per droplet. For a regular polyhedral packing of droplets, 

𝛼 ≈ 0.17.6  

Water evaporates at the top of the emulsion (at 𝑧 = 𝑧2, see Figure 3.1), which leads to an 

upward flow of water through the Plateau borders, towards the drying end. The flow 

through a single Plateau channel can be described by Poiseuille’s law, which relates the 

average flow velocity in the channel 𝑣𝑐 to the pressure gradient across the channel: 

𝑣𝑐 = −𝑘 ∇𝑃𝑟2

𝜂
         (2) 

 

 
Figure 3.1 Schematic picture of a jammed emulsion subjected to a unidirectional drying stress, (a) before and (b) 
after coalescence has started to occur at the drying front. The emulsion/continuous oil interface is located at z=z1 

and the oil/air interface at z=z2. 
 

 
Figure 3.2 The geometry of a Plateau border in a jammed emulsion. Each Plateau border has a length L and a 

radius of curvature r. 
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Here, η is the viscosity and k is a numerical prefactor, which depends on the geometry of 

the channel and on the interfacial viscosity of the oil/water interface (which determines the 

slip velocity at the interface). It can be calculated by solving the Stokes equation. Since in 

our 1d model we are interested only in the average z-component of the velocity, we have to 

average over all the different channel orientations in the emulsion. This gives a value of k 

on the order of 10-3.6 The pressure gradient ∇𝑃 in equation 2 includes gradients in the 

capillary pressure (given by Laplace’s law, 𝑃 = −𝑘/𝑟) and – if there is a soluble surfactant 

present in the water phase – also in osmotic pressure (𝑃𝑜𝑠):  
𝜕𝑃
𝜕𝑧

= 𝛾
𝑟2

𝜕𝑟
𝜕𝑧
− 𝜕𝑃𝑜𝑠

𝜕𝑧
= 𝛾𝛼1/2

2𝐿𝜀3/2
𝜕𝜀
𝜕𝑧
− 𝜕𝑃𝑜𝑠

𝜕𝑧
         (3)  

where we have used equation (1) to obtain the second form. Gravitational forces also 

contribute to the pressure gradient, but for thin emulsion layers (or for the horizontal 

experimental set-up of chapter 2) this contribution can be neglected. 

To obtain an equation for the distribution of water in the emulsion layer, we use the 

continuity equation, which describes mass conservation:  
𝜕𝜀
𝜕𝑡

= −𝜕(𝜀𝑣)
𝜕𝑧

           (4) 

Here, v is the net velocity of water in the z-direction. Because the total volume must be 

filled with either water or oil, a net flow of water towards the dry end through the channels 

must lead to a counter-flow of emulsion droplets in the opposite direction. By writing a 

mass balance also for the oil fraction, one obtains that the overall net water velocity is 

smaller than the velocity in the channels3: 

𝑣 = 𝑣𝑐(1 − 𝜀)          (5) 

Substitution of equations 2, 3, and 5 in equation 4 leads to the following partial differential 

equation: 
𝜕𝜀
𝜕𝜏

= 𝜕
𝜕𝜉
�(𝜀1/2 − 𝜀3/2) 𝜕𝜀

𝜕𝜉
� − (𝜀2 − 𝜀3) 𝜕Π

𝜕𝜉
                  (6)  

where we have introduced a dimensionless length scale 𝜉 = 𝑧/𝐿, a dimensionless time 

𝜏 = 𝑡/𝑡0 with 𝑡0 = 2√𝛼𝜂𝐿
𝑘𝛾

 , and a dimensionless osmotic pressure  Π = 𝑃os ∙
2𝐿
√𝛼𝛾

.  

The osmotic pressure depends on the local concentration of dissolved surfactant c and on 

the interactions between surfactant molecules. Here, we will assume that the osmotic 

pressure gradient is negligible compared to the gradient in capillary pressure, so that the 

last term in equation 6 can be neglected. In Appendix 2, we show how inhomogeneous 

surfactant distributions can be included in the model. 
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Equation 6 is a non-linear parabolic partial differential equation. Its solution 𝜀(𝜉, 𝜏) gives 

the water profile as a function of position and time. To find solutions, appropriate initial 

and boundary conditions are needed. We assume that initially, at time zero, the sample is 

completely homogeneous: 

𝜀(𝜉, 0) = 𝜀0                   (7) 

We assume here that the initial volume fraction is close to the random close packing limit, 

𝜀0 ≈ 0.36. It should be noted that the assumption of highly jammed emulsion is not valid 

at this volume fraction, but this is not crucial for the trends that we predict here. 

At the bottom of the layer, at 𝜉 = 0, the emulsion is in contact with an impenetrable 

substrate. This means that the flux must vanish here, so that the first boundary condition is: 
𝜕𝜀
𝜕𝜉

= 0   at  ξ = 0           (8) 

To obtain the boundary condition at the drying end of the sample, we consider the total 

volume of water in the sample, V = A∫ 𝜀𝑑𝑧𝑧1
0 , where A is the cross-sectional area of the 

layer. Any change in the amount of water, 𝑑𝑉/𝑑𝑡, is due to evaporation at the dry end, so 

that: 

𝐴∫ 𝜕𝜀
𝜕𝑡

d𝑧 + 𝜀(𝑧1)𝐴 𝑑𝑧1
𝑑𝑡

= 𝐴 𝑑𝑧2
𝑑𝑡

𝑧1
0         (9) 

Here, the first term corresponds to changes in the water content throughout the film, the 

second term denotes the change in emulsion volume due to movement of the emulsion/oil 

interface (at 𝑧1), and the last term denotes the total volume change of the emulsion, which 

must be accompanied by a change in the oil/air interface, 𝑧2 (because the volume of oil is 

constant). Using equations 6 and 8, equation 9 can be written as 

�(𝜀1/2 − 𝜀3/2) 𝜕𝜀
𝜕𝜉
�
𝜉=𝜉1

+ 𝜀(𝜉1) 𝑑𝜉1
𝑑𝜏

= 𝑑𝜉2
𝑑𝜏

= −�̇�         (10) 

with 𝜉1 = 𝑧1/𝐿 and 𝜉2 = 𝑧2/𝐿. Here, �̇� is the dimensionless evaporation rate. Equation 10 

is a mixed boundary condition at 𝜉 = 𝜉1. We can distinguish two different regimes. At the 

beginning, before coalescence occurs, no continuous oil layer is formed yet. This means 

that 𝜉1  and 𝜉2  coincide, and 𝑑𝜉1
𝑑𝜏

= −�̇� . However, as time progresses the pressure at the 

drying end increases and after some time it becomes so high that the water films rupture 

and the emulsion droplets coalesce. This happens when the pressure locally exceeds the 

critical disjoining pressure for film rupture (see chapter 2). The latter depends on the 

concentration and the type of surfactant used to stabilize the emulsion. In our model, we 
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assume that coalescence occurs instantaneously as soon as the local pressure reaches a 

critical value, or, equivalently, as soon as the local volume fraction decreases below a 

critical value 𝜀𝑐𝑟. As soon as coalescence begins to occur (at the drying end, where the 

pressure is highest), an oil layer develops on top of the sample and 𝜉1 and 𝜉2 no longer 

coincide. In this regime, we assume that the volume fraction at the dry end equals the 

critical value: 

𝜀(𝜉1, 𝜏) = 𝜀𝑐𝑟           (11) 

Equation 10 then describes how the emulsion/oil interface moves. Equation 6, together 

with initial condition 7 and boundary conditions 8 and 10 (or 11), can be solved 

numerically as described in Appendix 1. 

 

3.3 Results 

The dimensionless form of our model leaves a limited number of parameters that determine 

the evolution of the volume fraction profiles. These are the initial volume fraction 𝜀0 and 

sample thickness H, the dimensionless evaporation rate �̇�, and the critical volume fraction 

where coalescence begins to occur, 𝜀𝑐𝑟. Of these, 𝜀𝑐𝑟 has the largest effect on the evolution 

of the profiles. We therefore vary this parameter, and fix the others: 𝜀0 = 0.36, 𝐻 = 100, 

and �̇� = 8 ∗ 10−5 . The effect of varying the evaporation rate will be discussed below. 

Figure 3.3 and 4 show volume fraction profiles calculated for two different critical volume 

fractions. In Figure 3.3, the critical volume fraction is relatively high (corresponding to a 

relatively low critical disjoining pressure): 𝜀𝑐𝑟 = 0.1. It can be seen that the water content 

throughout the emulsion decreases gradually, with only a relatively small gradient. When 𝜀 

drops to 𝜀𝑐𝑟, it can no longer decrease further, because water films rupture below this value. 

Coalescence then leads to the formation of an oil layer on top of the emulsion. The 

emulsion/oil interface moves rapidly towards 𝜉 = 0.  
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Figure 3.3 Calculated water volume fraction profiles for various dimensionless store time (10000τ ) and for a 

critical volume fraction 𝜀𝑐𝑟 = 0.1. The star indicates 𝜉1. The grey dashed line indicates 𝜀𝑐𝑟. 

 
Figure 3.4 Calculated water volume fraction profiles for various dimensionless store time (10000τ ) and for a 

critical volume fraction 𝜀𝑐𝑟 = 0.001. The grey dashed line indicates 𝜀𝑐𝑟. 



Hydrodynamic model for drying emulsions 
 

48 

In Figure 3.4, profiles are shown for a much lower critical volume fraction (corresponding 

to a higher critical disjoining pressure), 𝜀𝑐𝑟 = 0.001. The differences with Figure 3.3 are 

obvious. First, the volume fraction has to decrease to 0.001 before coalescence starts to 

occur. This means that coalescence starts later. Secondly, the profiles become much steeper. 

The reason for this is that the Plateau borders become much thinner in this case, impeding 

the water flows from the bulk of the emulsion towards the drying end. This impediment 

prevents the water concentration profiles to level off: a steep pressure profile must build up. 

3.3.1 Comparison to experiments 

In Figures 3.3 and3. 4, we have presented results using dimensionless quantities. To 

compare these results to experiment, we need to convert these to measurable quantities. 

Here, we will consider conditions that mimic the experimental system of chapter 2. Table 

3.1 shows the parameters that we use.   

Table 3.1 Parameters in the model 

Parameter Meaning Value 
α Geometrical factor for Plateau border 0.17 
k Prefactor in Poiseulle’s law 0.001 
L Plateau border length 25 µm 

η Viscosity 0.01 Pa s 

γ Interfacial tension 0.01 N/m 
𝐻 ∙ 𝐿 Initial sample thickness 2.5 mm  
𝜀0 Initial volume fraction 0.36 

�̇� Dimensionless evaporation rate  8 × 10−5 
𝑡0 Characteristic time scale, 2√𝛼𝜂𝐿/𝑘𝑘 0.02 s 

𝑣2 Velocity of oil/air front 1.2 × 10−7 m/s 
 

Using these parameters, we can convert the volume fraction profiles to pressure profiles, 

using 𝑃 = (𝑘/𝐿)�𝛼/𝜀. This is done in Figure 3.5 a and b, for the curves of Figure 3.3 and 

4, respectively. The critical disjoining pressures for these two figures are 953Pa (for 

𝜀𝑐𝑟 = 0.1) and 5734Pa (for 𝜀𝑐𝑟 = 0.001). It is clear that the pressure profiles remain 

relatively shallow when the critical disjoining pressure is low, while very steep pressure 

gradients arise near the front when the critical disjoining pressure is high. 
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Figure 3.5 Calculated pressure profiles for various time and for critical disjoining pressures of 553Pa (a) and 

5734Pa (b). Different curves correspond to different times, expressed in seconds (for the parameters of Table 1). 
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In chapter 2, we have seen that, depending on the critical disjoining pressure (which 

depends on the surfactant concentration), two modes of coalescence occur. When the 

critical disjoining pressure is low (for low surfactant concentration), coalescence starts at 

the front, but soon occurs throughout the whole emulsion layer. Figure 3.5a explains why: 

the pressure reaches the critical value at the front first, so that coalescence starts there. 

However, after that the pressure profile quickly levels off and P approaches the critical 

value throughout the whole layer. This causes water films to break everywhere in the 

sample. We called this bulk coalescence in chapter 2.  

By contrast, when the critical pressure is high (for high surfactant concentration), the 

pressure gradient becomes much steeper and hardly levels off. This means that only at the 

front the actual pressure is close to the critical pressure so that only there droplets can 

coalesce. 

3.3.2 Thickness of the coalescence zone 

As discussed above the mode of coalescence is determined by the gradient in the pressure 

(or volume fraction) profile. When the pressure profile is shallow, coalescence can occur in 

a larger region than when the profile is steep. We can estimate the thickness of the region 

where coalescence can occur by introducing an extrapolation length 

𝜆 = − 𝜀
𝜕𝜀

𝜕𝜉�
�
𝜉=𝜉1

= 1
𝐿

𝑃
𝜕𝑃

𝜕𝑧�
�
𝑧=𝑧1

       (12) 

which expresses the typical length scale (expressed in units of L) over which the pressure 

increases to its highest value. A small value of 𝜆 indicates that the pressure is close to the 

critical value only near the front, while a large value of 𝜆 means that this is so in a much 

wider region. Figure 3.6 shows the extrapolation length as a function of time for different 

values of 𝜀𝑐𝑟. Figure 3.6b shows λ as a function of the relative position of the front, 𝜉1/𝐻, 

for the same values of 𝜀𝑐𝑟. First, λ decreases gradually, indicating that the pressure profiles 

become steeper. After coalescence begins to occur at the front, λ increases again, because 

the profiles become flatter. For large values of 𝜀𝑐𝑟 (low 𝑃𝑐𝑟), λ increases quickly to very 

large values, so that coalescence can occur in a very wide region (bulk coalescence). For 

small 𝜀𝑐𝑟 (high 𝑃𝑐𝑟), however, coalescence proceeds completely before any increase in λ 

occurs. Here, coalescence can occur only near the front.  
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Figure 3.6 Evolution of the extrapolation length λ, indicating the length scale (expressed in units of L) over which 
the pressure profile decays, as a function of time (a) and as a function of 𝜉1/𝐻 (b), for several values of the critical 

volume fraction. 
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To estimate the boundary between the two modes of coalescence, we consider the value of 

λ right at the moment that coalescence begins (this is where the kink in the curves occurs 

in figures 6a and b). We can estimate this value, which we denote 𝝀∗, from equations 10 

and 11; using 𝜺(𝝃𝟏) = 𝜺𝒄𝒓  and 𝒅𝝃𝟏
𝒅𝒕

= 𝒅𝝃𝟐
𝒅𝒕

= −�̇�, we find: 

𝜆∗ = 𝜀𝑐𝑟
3/2

�̇�
         (13) 

 
Hence, the extrapolation length at the moment where coalescence begins increases as the 

critical volume  fraction for coalescence increases and the evaporation rate decreases. 

When evaporation is slower, pressure gradients have more time to equalize, leading to 

shallower profiles and a larger extrapolation length. It follows that bulk coalescence is 

more likely to occur when the evaporation rate is low. We expect that the boundary 

between bulk and front coalescence occurs for a critical value of  𝜆∗, which we assume to 

be on the order of unity. For 𝜆∗ below this critical value, front coalescence prevails, while 

above it bulk coalescence is more likely. This leads to a ‘state diagram’ of coalescence in 

drying emulsions as shown in Figure 3.7. 

 
Figure 3.7 ‘State diagram’, showing under which conditions (𝜺𝒄𝒓 and �̇�) bulk and front coalescence are expected 

to occur. The line shows the boundary, given by equation 13 with 𝜆𝑏∗ = 1. 
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3.4 Concluding remarks 

We have presented a hydrodynamic model for the water flow in a drying emulsion. Our 

model predicts the pressure profiles that build up and can explain, at least qualitatively, our 

experiments of chapter 2 where we observed two different modes of coalescence. The 

model is still quite primitive, however, and in some ways oversimplified.  

For example, in our calculations we have assumed a constant evaporation rate. In reality, 

the evaporation slows down strongly once coalescence has begun to occur at the front and 

a continuous oil layer forms on top of the emulsion. Our calculations therefore strongly 

overestimate the rate of the drying process. Also the steepness of the pressure profile is 

probably overestimated. A more realistic model should include an evaporation rate that 

depends on the thickness of the oil layer on top of the emulsion. This layer can be 

considered as a diffusive barrier for water transport; the evaporative flux then depends on 

the solubility of water in the oil, on the vapour pressure and on the layer thickness.  

A second simplification, as already mentioned, is that we have neglected osmotic 

contributions to the pressure gradient due to variations in surfactant concentration. The 

water flows in the emulsion constitute an effective flux of dissolved surfactant towards the 

drying end. If this flux is large compared to the diffusive flux, surfactant will accumulate 

near the front and raise the osmotic pressure there. This gradient in osmotic pressure adds 

to the capillary pressure gradient. In the later stages of drying, the surfactant concentration 

can rise to very high values. This leads to a decrease of the chemical potential of water. 

Once the chemical potential of water in the Plateau borders at the front drops to the level of 

that in the vapour phase, evaporation stops altogether. In appendix 2, we show how 

surfactant transport can be included in our model.   
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Appendix 1 Numerical solution method 

Equation 6, together with initial condition 7 and boundary conditions 8 and 10 (or 11), 

must be solved numerically. The problem is a moving boundary problem, because the 

boundary at 𝜉 = 𝜉1  is not stationary, but moves downward as the drying proceeds. We 

therefore employ a boundary-immobilization method, by introducing a reduced spatial 

variable 𝑠 = 𝜉/𝜉1(𝜏). For the partial derivatives, we must employ the chain rule: 
𝜕
𝜕𝜉
→ 1

𝜉1

𝜕
𝜕𝑠

  and 𝜕
𝜕𝜏
→ 𝜕

𝜕𝜏
− 𝑠

𝜉1

𝜕𝜉1
𝜕𝜏

𝜕
𝜕𝑠

            (A1) 

Substitution leads to: 

𝜉12
𝜕𝜀
𝜕𝜏
− 𝑠𝜉1

𝜕𝜉1
𝜕𝜏

𝜕𝜀
𝜕𝑠

= 𝜕
𝜕𝑠
��𝜀

1
2 − 𝜀

3
2� 𝜕𝜀

𝜕𝑠
�           (A2) 

where the osmotic pressure term has been left out. The boundary immobilization method 

has introduced a pseudo-convective term (second term on the left). We use a finite-element 

method to solve this partial differential equation10. First, the weak form of the PDE is 

constructed by multiplying by an arbitrary weighting function 𝑤(𝑠) and integrating over 

the whole domain, 𝑠 ∈ [0,1]. This gives: 

∫ 𝑤 �𝜕𝜀
𝜕𝜏
− 𝑠𝜉1

𝜕𝜉1
𝜕𝜏

𝜕𝜀
𝜕𝑠
− 𝜕

𝜕𝑠
��𝜀

1
2 − 𝜀

3
2� 𝜕𝜀

𝜕𝑠
��1

0 𝑑𝑠 = 0          (A3) 

We perform partial integration on the second term to reduce the order of integration, 

∫ 𝑤 �𝜕𝜀
𝜕𝜏
− 𝑠𝜉1

𝜕𝜉1
𝜕𝜏

𝜕𝜀
𝜕𝑠
�1

0 𝑑𝑠 + ∫ 𝜕𝑤
𝜕𝑠
�𝜀

1
2 − 𝜀

3
2� 𝜕𝜀

𝜕𝑠
1
0 𝑑𝑠 − �𝑤 �𝜀

1
2 − 𝜀

3
2� 𝜕𝜀

𝜕𝑠
� 𝑠=1𝑠=0 = 0       (A4) 

In the last term, we substitute boundary conditions 8 and 10 (after the appropriate 

substitution 𝑠(𝜉)). This gives 

∫ 𝑤 �𝜕𝜀
𝜕𝜏
− 𝑠𝜉1

𝜕𝜉1
𝜕𝜏

𝜕𝜀
𝜕𝑠
�1

0 𝑑𝑠 + ∫ 𝜕𝑤
𝜕𝑠
�𝜀

1
2 − 𝜀

3
2� 𝜕𝜀

𝜕𝑠
1
0 𝑑𝑠 − 𝑤(1) �𝜉1

𝑑𝜉2
𝑑𝜏

− 𝜀(1)𝜉1
𝑑𝜉1
𝑑𝜏
� = 0   (A5) 

To solve this equation, we discretize 𝜀 on a finite element grid consisting of N nodes. The 

solutions are approximated by interpolation between the values at the nodes, 𝜀(𝑠, 𝜏) = 𝐧 ∙

𝐞(𝜏), where 𝐞(𝜏) is a vector that stores the volume fractions at the nodes and 𝐧 is the 

interpolation vector consisting of standard shape functions. We use simple linear 2-node 

elements, both for the volume fractions and the weight functions w(s) (Galerkin method). 

Substitution of the approximated solutions and weighting functions and carrying out the 

integrals in the weak form of the PDE (A5) element-by-element yields a sparse set of N 

non-linear equations for the 𝜀  values at the nodes. These equations are solved using 

Newton’s iteration method. If the pseudo-convective terms in the PDE become large 
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compared to the diffusive terms, spurious oscillations arise in the solution, which make the 

solution method unstable. This is remedied by using a Petrov-Galerkin scheme10 

 
Appendix 2 Concentration gradients 

Equation 6 also contains a contribution of the osmotic pressure to the pressure gradient. 

Osmotic pressure gradients arise if the water phase contains a soluble surfactant (or any 

other soluble ingredient). The flow towards the dry end drags the surfactant along, leading 

to an accumulation at the dry end. This accumulation is counteracted by diffusion. The 

conservation equation for the surfactant is 
∂(εc)
∂t

= − ∂
∂z
�εD ∂c

∂z
− εvc�                (A6) 

where c is the surfactant concentration, D the diffusion coefficient of the surfactant, and v 

is the net water velocity. Here, we have neglected the contribution of adsorbed surfactant. 

Using equation 6, this can also be written as 
∂(εc)
∂t

= ∂
∂ξ
�εD� ∂C

∂ξ
+ C �ε

1
2 − ε

3
2� ∂ε

∂ξ
− C(ε2 − ε3) ∂Π

∂C
∂C
∂ξ
�              (A7) 

where we have introduced a reduced concentration C = cL3 and a dimensionless diffusion 

coefficient D� = D(t0/L2). The relation between the reduced osmotic pressure  Π and the 

reduced concentration C depends on the type of surfactant. It can be obtained from 

experimental data. 

Again, we need an initial condition and boundary conditions: 

C(ξ, 0) = C0,                (A8) 
∂C
∂ξ

= 0 at ξ = 0,                (A9) 

�εD� ∂C
∂ξ

+ C dξ2
dτ
� = 0  at ξ = ξ1             (A10) 

where the last condition comes from the conservation of the total amount of surfactant. The 

simultaneous solution of these equations and the equations that describe the water flow 

(equation 6) yields both pressure and surfactant concentrations profiles.  
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Part I 
 Manipulating coalescence  

in dense emulsions 
 

 
 
 
 
 
 
 



 

 

 



Chapter 4 

Well-defined temperature-sensitive surfactants 
for controlled emulsion coalescence 

 

In a variety of applications, emulsion formulations are required, which exhibit 

excellent shelf stability yet can be broken or perform phase inversion at a desired 

time. Here we approach these contradictory constraints through the synthesis of 

well-defined thermoresponsive surfactants based on di(ethylene 

glycol)methacrylate and poly(ethylene glycol)methacrylate using Atomic Transfer 

Radical Polymerization. The surfactants show a Lower Critical Solution 

Temperature (LCST) of approximately 37°C, independent of molecular weight, 

which is ascertained by both Differential Scanning Calorimetry as well as 

Dynamic Light Scattering. Below the LCST, the surfactants stabilize the emulsions 

for at least four months. Above this temperature the hydrophilic block collapses 

and coalescence between the emulsion droplets occurs; this leads to demixing of 

the sample within several minutes. We reveal the mechanism for the temperature-

triggered coalescence by measurements of the temperature-dependent interfacial 

tension and by studying the interfacial morphology of surfactant-covered emulsion 

droplets. 
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4.1 Introduction 

The stabilization of liquid-liquid interfaces through the adsorption of surfactants plays an 

important role in many industrial processes in which emulsions are produced or used. The 

main aim in the development of new surfactants is to provide prolonged shelf-life by 

preventing the coalescence of emulsion droplets. The coalescence of two individual liquid 

droplets requires the close approach of the two liquid interfaces and the subsequent rupture 

of the liquid film that separates them1-7. Surfactants, which are adsorbed onto these 

interfaces, reduce the interfacial tension and prevent close approach of the droplets through 

steric or electrostatic repulsion8-12. Strong repulsive interactions between the droplet 

surfaces lead to high stability against coalescence. While stability of an emulsion against 

coalescence is often the main aim in the formulation of emulsion systems, many 

applications of emulsions do not only require high stability against coalescence, but also on 

demand breaking or phase inversion of the emulsion. For example, in the application of 

alkyd emulsions as waterborne paints, prolonged shelf-stability is required, yet upon 

application of the paint to a surface, a coating must be formed; this requires coalescence of 

all droplets to form a continuous film of the dispersed material. Furthermore, in emulsion 

synthesis and separation processes, in which two-phase systems are used to react or extract 

certain components from complex mixtures, on demand breaking of the emulsion and 

separation of the oil and water phases is required to recover the individual product.  

At first, these requirements seem contradictive: The emulsion needs to be stable on the 

shelf, yet be de-stabilized on demand by a given stimulus. With the development of novel 

classes of responsive building blocks, it becomes possible to meet these apparently 

conflicting requirements and to provide an emulsion with both high stability and on-

demand breaking or phase inversion. 

Previously, light-triggered surfactants have been developed by introducing light-responsive 

azobenzene side-groups, which undergo cis-trans isomerization upon exposure to light13, 14. 

The conformational change leads to a small variation in polarity of the polymer, thus 

changing its adsorption properties at the oil-water interface. In this way, reversible 

switching between oil-in-water and water-in-oil emulsions has been demonstrated. The 

first generation of these light-responsive surfactants shows only small changes in 

interfacial tension upon a change in wavelength15. However, a second generation of non-

ionic surfactants have recently been developed, where the azobenzene group is located in 
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between the hydrophobic tail and hydrophilic ethylene oxide group. Here the surface 

tension changes significantly after switching16. 

While these materials represent promising switchable systems, light-responsive surfactants 

have the drawback of being colored to allow light absorption. For many industrial 

applications, such as in coatings and paints, coloration is unacceptable. Moreover, in 

separation processes of sensitive compounds, such as proteins or other biomolecules, high 

light exposure doses might induce undesired photochemical changes in the molecules. New 

material systems, in which emulsion breaking is induced under mild conditions are thus 

required.  

Recently, we have reported the synthesis of a simple thermoresponsive surfactants using 

chain transfer free radical polymerization of poly(n-isopropyl acrylamide).17  Through 

physical adsorption of these surfactants at the interface, temperature-triggered self-

assembly of colloidal particles and an on-demand phase inversion of emulsions has been 

achieved. While such surfactants display many advantages over the light-responsive 

systems, such as their colourless appearance, low cost and mild triggering conditions, the 

preparation with free radical polymerization yields an ill-defined and polydisperse product.  

In this paper we describe the synthesis and characterization of a well-defined 

thermoresponsive surfactant using Atom Transfer Radical Polymerization (ATRP). From 

an alkyl-functional ATRP initiator we grow a hydrophilic block consisting of a 

combination of poly(ethylene glycol)methacrylate (PEGMA) and di(ethylene 

glycol)methacrylate (DEGMA). This polymer exhibits a lower critical solution temperature 

(LCST) that is independent of molecular weight18. We prepare a systematic range of 

surfactants, in which only the ratio of hydrophilic to hydrophobic blocks vary while all 

other properties remain unchanged. We characterize these surfactants, using light scattering 

and differential calorimetry, and we demonstrate that they can be used to prepare 

emulsions that are stable for at least four months at room temperature. Yet these same 

emulsions can be completely phase separated within minutes upon changing the 

temperature above the LCST.  Moreover, we study the mechanism with which a simple 

temperature trigger can lead to droplet coalescence. 
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4.2 Materials & Methods 

All reagents were purchased from Sigma-Aldrich and used as received. 

4.2.1 Alkyl-functional ATRP initiator 

We first prepare an ATRP initiator functionalized with a hexadecyl tail. The reaction 

proceeds as follows; in a roundbottomflask, hexadecanol (82 mmol) and triethylamine 

(90.2 mmol), are dissolved in dry dichloromethane (DCM) (200 mL). α-bromoisobutyryl 

bromide (98.4 mmol) is dissolved in 30 mL DCM and added dropwise to the reaction 

mixture. The reaction is stirred for 18 hours at room temperature. The white precipitate 

(ammonium bromide) is removed by filtration. The filtered solution is washed 3 times with 

a 1 mM NaOH-solution. The organic phase containing the product is dried by adding 

anhydrous Mg2SO4 and subsequently decolourizing carbon is added to remove coloured 

impurities. After filtration the solvent is removed by rotary evaporation. The product is 

obtained as a brown oil that crystallizes after a few days at room temperature. The 

conversion is >99% as determined by 1H NMR and the yield after purification is 48.4%. 

4.2.2 Surfactant synthesis 

The hydrophilic part of the synthesized surfactants consists of PEGMA and DEGMA. By 

adjusting the molar ratio of these two monomers, the LCST can be tuned between 90 °C, 

for homo-PEGMA, and 28°C for homo- DEGMA blocks19. Here we chose a molar ratio of  

8% PEGMA and 92% DEGMA, which results theoretically in an  LCST of 37 °C 19. 

The reaction mixture consist of the monomers PEGMA, DEGMA, and N,N,N’,N’’,N’’-

Pentamethyldiethylenetriamine (PMDETA) as ligand. All compounds are dissolved in 

toluene, with a constant mass ratio of monomer to solvent of 1:7. Quantities of reagents are 

given in Table 4.1. After degassing the solution with nitrogen for 10 minutes, CuCl is 

added as a catalyst. After purging with nitrogen for another 10 minutes, the alkyl-

functional ATRP initiator is added, thus starting the reaction. The reaction is left to proceed 

for 3 hours at 60l°C.  



Chapter 4 
 

63 

 
Figure 4.1 Reaction schemes: (a) synthesis of the initiator at room temperature in dichloromethane and (b) the 

polymerization of the surfactants by ATRP in toluene, where the ratio of the monomers is; n/m = 0.087. 

 
The reaction is quenched by exposing the reaction mixture to air. It is then diluted by 

adding approximately 3x the reaction volume of toluene and passed over an aluminium 

oxide column to remove the catalyst-ligand complex. After evaporation of the solvent, the 

product is dissolved in deionized water and purified by dialysis against deionized water 

until the product is colourless. Then the surfactant is obtained by freeze drying.  All 

products appeared as a light yellow, highly viscous oil. 

For all surfactants, the same synthetic protocol is applied. Only the ratio between 

monomers and initiator is varied to synthesize polymers with a target degree of 

polymerization of N=38, N=76, N=114. The specific composition of all the reaction 

mixtures can be found in Table 1.  
1H-NMR (400 MHz, CDCl3) (ppm): 4.3 - 3.9 (br, PEG CH2), 3.7 – 3.5 (br, PEG CH2), 3.5 

– 3.4 (br PEG OH), 3.4 – 3.3 (br PEG CH2), 2.0 – 1.6 (m br backbone CH2), 1.3 – 1.1 (br, 

C16 CH2), 1.1 – 0.9 (br, backbone & C16 CH2), 0.9 – 0.7 (br, backbone CH3). 13C-NMR 

(100 MHz, CDCl3) (ppm): 72.0 (PEG CH2), 70.5 (PEG CH2), 69.0 – 68.0 (PEG CH2), 

64.0 (PEG CH2), 59.0 (backbone CH2), (other signals too small). 
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Table 4.1 Composition of reaction mixtures and analysis of the degree of polymerisation (DP), molecular weight 
(Mw), polydispersity (PDI) and lower critical solution temperature (LCST), from gel permeation chromatography 

(GPC), 1H-NMR end group analysis, dynamic light scattering (DLS), differential scanning calorimetry (DSC). 

 

4.2.3 Characterization 

To determine the LCST of the surfactants we perform both differential calorimetry and 

light scattering measurements. Differential scanning calorimetry (MicroCal VP-DSC, GE 

Healthcare, Northampton USA) is performed on surfactant solutions in de-ionized water at 

0.05 g/L at heating rates of 1 °C/min. The size of the micelles formed by these surfactants, 

dissolved in de-ionized water at 5 g/L is measured as a function of temperature using 

Dynamic Light Scattering on a home-built light scattering set-up with a fixed detection 

angle of 90°. Interfacial tensions are measured by pendant drop tensiometry with a 

thermostated sample chamber between 20-50℃.  

Emulsions, consisting of a 5 g/L surfactant solution and decane are prepared using a 

mechanical homogenizer (IKA Ultra Turrax Tube Drive). An emulsion of low 

polydispersity, consisting of a 5g/L surfactant solution and poly-dimethylsiloxane (PDMS) 

silicone oil is prepared using a T-junction microfluidic device. Stability is judged both by 

visual inspection and by observation using brightfield microscopy with a 20x air objective. 

Temperature-triggered coalescence and the morphology of the oil-water interface are  

studied through heating the emulsions, contained within hermetically-sealed glass sample 

chambers, on a microscope-mounted Instec thermal stage (TSA02i) within a temperature 

range of 25-60 °C. 

4.3 Result and discussion 

To synthesize well-defined surfactants, which exhibit thermoswitchable stabilization of 

emulsions, we choose a mixture of PEGMA and DEGMA with a reported LCST of 37°C19. 

This copolymer has the advantageous properties that its LCST is independent of chain 

length and shows little to no hysteresis upon cooling18.  

We prepare a systematic series of surfactants with increasing chain-length of the 

 Initiator 
(mmol) 

PEGMA 
(mmol) 

DEGMA 
(mmol) 

PMDETA 
(mmol) 

CuCl 
(mmol) 

Target 
DP 

Obtained 
DP 

Mw 
(kg/mol) PDI 

LCST 
DLS 
(°C) 

LCST 
DSC 
(°C) 

N=38 0.675 2.054 23.503 1.021 1.030 38 32 7.5 1.33 34 32.0 
N=76 0.337 2.020 23.503 0.511 0.514 76 58 13.1 1.68 34 33.7 

N=114 0.253 2.362 26.442 0.383 0.385 114 63 14.3 1.51 34 33.5 
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hydrophilic block; the synthesis and characterisation are summarised in Table 1. The 

polydispersity, as obtained from gel permeation chromatography (GPC), reveals 

polydispersity indices (PDI) between 1.3 and 1.7, which is a significant improvement over 

the previously reported thermoresponsive surfactants17. Note that the total conversion is 

relatively low, ranging from 85 to 58%, as determined by comparing the target degree of 

polymerization (DP) with the DP obtained from both GPC and 1H-NMR end-group 

analysis. This is probably because the activity of the initiator is reduced due to limited 

accessibility as a result of the tethered alkyl chain. The synthetic protocol appears to work 

well for low molecular weights, while the synthesis of the higher molecular weight 

surfactants do not yield the target PDs. Despite the purity of all reagents, it appears that the 

chain length is limited to N~50-60 for the method applied. 

Since the conversion of the monomers during the synthesis is as low as 30%, it is important 

to verify that the molar ratio of PEGMA to DEGMA aimed for, is indeed present in the 

final product. Since the LCST of these copolymers is very sensitive to the exact ratio of 

these two monomers18, we can use measurements of the LCST to establish the copolymer 

compositions. Differential Scanning Calorimetry shows a distinct peak in heat capacity, 

indicative for a clear LCST phase transition. For all three surfactants the transition appears 

at the same temperature of 34 °C, with small margins of errors (see Figure 4.2a & Table 

4.1). As the LCST has been reported to be independent of molecular weight, we can 

therefore establish that the PEGMA/DEGMA ratio is constant amongst the three 

surfactants under investigation19. 

Dynamic light scattering shows that the surfactants form micelles with a radius between 

25-75 nm at room temperature. With increasing temperature, we observe a clear growth in 

apparent hydrodynamic radius to 200-500 nm, depending on the molecular weight of the 

surfactant (Figure 4.2b). We identify the LCST from the light scattering experiment by 

determining the temperature of the steepest gain in micelle radius. Also here we find an 

LCST of approximately 34°C, independent of chain length (Table 1).  
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Figure 4.2 Characterization of the thermoresponsive surfactants using Differential Scanning Calorimetry (a) and 
Dynamic Light Scattering (b) 

 
At the LCST, it is expected that the hydrophilic block collapses and demixes from water; 

consequently, we would expect that the initially stable micelles would aggregate and 

ultimately display macroscopic demixing from the aqueous solvent. Surprisingly, instead 

of macroscopic demixing, we observe that the micelles grow to a well-defined and stable 

size upon heating the surfactant solution above the LCST. We speculate that this might be 

the result of a morphological transition of the self-assembled objects. While the surfactant, 
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below the LCST, with its small alkyl tail and relatively large swollen hydrophilic 

headgroup, exhibits a conical packing parameter,20 upon heating above the LCST, the 

hydrophilic head collapses and the shape of the surfactant transitions into a more 

cylindrical packing parameter. Such changes in the shape of the surfactant are known to 

induce changes in the morphology of the micelles they form. This means that the well-

defined increase in size we observe here could be the result of a spherical-to-wormlike 

micelle transition. While further research is required to substantiate this claim, it would be 

a fascinating feature of these systems where micelle morphology can be tuned through a 

simple temperature switch. 

 
Figure 4.3 Time series of the decane-in-water emulsions, stabilized with the surfactants N=38, N=76, N=114; all 

images taken at room temperature. 

 

All surfactants prepared above are able to emulsify decane in water (top row in Figure 4.3). 

After four months at room temperature, the emulsions of N=38, N=76 and N=114 are still 

stable; this highlights the excellent performance of these thermoresponsive surfactants at a 

temperature below the LCST.  

To showcase that emulsions can be broken on demand by a thermal stimulus, we prepare 

an emulsion with high droplet volume fractions, of approximately 60 vol%. We then heat 

the emulsion to well above the LCST, while observing it on a brightfield microscope. 
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Initially, the emulsion consists of many small droplets, which do not coalescence at room 

temperature over several months. Upon heating, coalescence of smaller droplets into larger 

ones occurs all across the sample almost immediately. After approximately 2 minutes, only 

few small droplets remain and the demixing is practically complete (Figure 4.4). While we 

only show data for N=76 in Figure 4.4, identical results were obtained for  N=38 and 

N=114. Movies of this process can be found in the online S1. 

 
Figure 4.4 The coalescence of an emulsion with N=76 as surfactant, heated above the LCST. Pictures are made 

with a bright field microscope. 

 
To understand the mechanism underlying the thermally triggered coalescences, in a 

previously stable emulsion, we measure the interfacial tension between an aqueous 

surfactant solution, at a concentration of 5 g/L, and PDMS silicone oil as a function of 

temperature. We clearly see a large increase of more than a factor of two in the interfacial 

tension when the system is brought above the LCST of the thermoresponsive surfactant 

(Figure 4.5a). This increase in surface tension, or reduction in the surface pressure, 

indicates that the total adsorbed amount of surfactant decreases. This is a first indication of 

the link between collapse of the thermoresponsive block and the subsequently observed 

emulsion breaking. By measuring the concentration dependence of the interfacial tension 

between oil and an aqueous surfactant solution we can determine the critical micelle 

concentration (CMC) of our surfactants; at room temperature, below the collapse transition, 

the CMC is found to be approximately 0.1 g/L(Figure 4.5b). 
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Figure 4.5 The interfacial tension as a function of temperature at 5g/L(a) and interfacial tension as function of 

concentration at two main regime temperatures(b). 

 

The formation of micelles is governed by a balance between the energetically favourable 

grouping of hydrophobic blocks in a micellar core and the entropically unfavourable 

compression of the hydrophilic head groups in the micellar corona. Consequently, changes 

in the solvation of the head group will influence the CMC; above the LCST the solvent 

quality for the hydrophilic blocks decreases, which can be expected to result in a decrease 

of the CMC. We indeed observe that the critical micelle concentration has been reduced by 
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approximately one order of magnitude to 0.01 g/L above the LCST(Figure 4.5b). 

 
Figure 4.6 Interfacial demixing and formation of surfactant coacervate microdroplets at oil-water interfaces, 

microscopy images over time show the process (a) and the microdroplets can be clearly identified in a zoomed in 
image (b). Average radius of the microdroplets as a function of time is shown in (c). 

 
Observation of the surface morphology of individual emulsion droplets during the collapse 

transitions yield additional information for the mechanism of emulsion breaking in this 

system.  We heat a sample with a few isolated droplets from 15℃ to 60℃ at a heating rate 
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of 20℃/min; around the LCST distinct droplets of a third immiscble phase form at the oil-

water interface. We think this is a coacervate of the collapsed surfactant (Figure 4.6a&b). 

These interfacially-pinned microdroplets grow in time when the sample is maintained at 

60°C (Fig.6c) and appear to age logarithmically to macroscopic dimensions. This 

suggests a true phase separation that is pinned to the interface of the oil-water droplets. 

Note that this process is fully reversible; when we subsequently cool the samples the 

interfacial droplets disappear completely. Movies of this process can be found in the SI 

(movies S2 and S3). We can envision that bridging of emulsions droplets by these 

interfacially pinned coacervate droplets provides a mechanism for the coalescence and 

macroscopic emulsion breaking we observe.  

4.4 Conclusions 

In this paper we present the successful synthesis of well-defined thermoresponsive 

surfactants, which stabilize emulsions for over four months below their LCST. The 

emulsions can be broken on demand within minutes when heated above the LCST. This is 

mediated by desorption of the surfactants from parts of the surface, as evidenced by surface 

tension measurements, and the subsequent interfacially-pinned phase separation of the 

surfactant. Our results suggest that these well-defined thermoresponsive surfactants form 

an interesting platform to study droplet coalescence and triggered phase inversion in 

emulsion systems. Moreover, the ability to break a very stable emulsion on demand has 

industrial relevance for several applications, such as in film formation of waterborne 

emulsion paints and the recovery of products during emulsion-based extraction and 

reaction processes.  
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Chapter 5 

Switching between two modes of coalescence in 
dense thermoresponsive emulsions 

 

In this paper we describe a new approach to measure critical disjoining pressures 

and study coalescence dynamics in responsive emulsions using a recently 

developed micro-imaging-centrifugation method. We first measure the 

thermodynamic properties of thermoresponsive emulsions by analyzing 

equilibrium volumes of continous oil and water phases and densely packed 

emulsion under constant gravitational stress. We then show that the same 

microfluidic-based centrifugation method, combined with high-speed synchronised 

imaging, can be used to quantitatively study the dynamics of emulsion coalescence. 

Surprisingly, we reveal two distinct modes of coalescence in a dense emulsion, 

which can be triggered with a simple temperature jump and can be explained on 

the basis of the critical disjoining pressure.  
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5.1 Introduction 

The formation of a homogeneous film from a previously dispersed phase, for example 

during the drying of emulsions or dispersions, is an essential stage in the surface 

application of dispersed coating systems. Especially for waterborne paints, which by 

definition are dispersions of liquid or solid particles in a continuous water phase, the way 

in which the final film forms is crucial in determining its properties. With the political and 

societal incentives to phase out the emission of hazardous organic compounds from both 

consumer and industrial coatings and adhesives, this has become an even more pressing 

issue. A thorough understanding of how film formation takes place at all length scales, and 

how it can be manipulated, is required to improve the quality of waterborne paints to the 

standards of their solvent-based counterparts. Nonetheless, despite the direct implications, 

this understanding is largely lacking, which is exacerbated by the absence of model 

materials and measurement techniques. Especially, probing film formation at the length 

scale of individual particles has proven to be cumbersome.  

It is generally accepted that film formation takes place in several subsequent steps. (1) 

Evaporation of the continuous water phase leads to concentration of the dispersed droplets 

until they come into physical contact and form a jammed packing1. (2) Further evaporation 

of the continuous phase creates a capillary pressure that causes the droplets to deform and 

squeeze together; just like dry foams, this ultimately leads to faceted droplets separated by 

thin, nanometric, water films. (3) Eventually, the capillary pressure exceeds the critical 

pressure required to break individual water films  and droplets begin to coalesce leading to 

phase inversion2. While the initial stages of film formation have been studied extensively1, 

3-6, the final and essential stage of collective coalescence remains poorly understood. While 

the fluid dynamics of the coalescence of two isolated droplets has been studied in detail7, 8, 

the activated processes and corresponding randomness of the events that leads up to 

coalescence, which are especially important in dense packings of droplets, remain virtually 

unexplored due to the complexity of events. Recently, we reported that film formation in a 

drying emulsion film can occur in two distinct modes; coalescence can occur either 

localized to the drying front or in a random manner throughout the bulk of the film9. The 

type of coalescence that is observed was shown to depend sensitively on a balance between 

the critical pressure required for film rupture and the hydrostatic pressure profile that 

develops during evaporation. In these experiments, drying was used to develop a pressure 
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gradient to induce phase inversion; however, this also necessarily introduced the 

complication of a non-constant surfactant concentration, hence a variable critical pressure, 

throughout the experiment. To further advance our understanding of film formation, new 

methods are required in which these phenomena can be systematically studied and 

manipulated under well-defined conditions.  

In this paper, we apply a new method of microcentrifugation10-12 to directly study the 

coalescence in densely packed emulsions, under well-defined conditions. We show direct 

measurements of temperature-dependent critical disjoining pressures and coalescence rates. 

Surprisingly, we find that, our thermoresponsive emulsion allows tuning of the mode in 

which coalescence occurs; we show that a simple temperature trigger allows switching 

from coalescence occurring exclusively at the oil-emulsion front to coalescence occurring 

randomly throughout the entire packed layer of emulsion. These findings shed new light on 

the mechanisms of coalescence in dense emulsions at the length scale of the individual 

droplets.  

 

5.2 Experimental Section 

All reagents were purchased from Sigma-Aldrich and used as received. 

 

5.2.1 Thermoresponsive surfactants 

The synthesis of the thermally responsive surfactant and its characterization, were 

discussed in a previous paper[8]. In short, a polymer of di(ethylene glycol)methacrylate and 

poly(ethylene glycol)methacrylate is grafted to an alkyl tail through Atom Transfer Radical 

Polymerization13. The thermally responsive surfactant has a lower critical solution 

temperature (LCST) around 34°C in aqueous solution, as measured by light scattering and 

calorimetry[8].  

 

5.2.2 Emulsions 

Monodisperse emulsions of silicone oil in water, are prepared in a flow-focusing 

microfluidic device as Figure 5.1 shows. The dispersed phase presenting by red arrow, here 

silicone oil with a viscosity of 100mPa s is hydrodynamically focused at the nozzle by the 
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continuous phase presenting by blue arrows, here a 5 g/L solution of the thermoresponsive 

surfactant. This induces droplets to form at the nozzle. The size of the droplets can be 

tuned by varying the flow rates of both continuous and dispersed phases14, 15. The final 

diameter is chosen here to be 200μm due to the design of the chambers used in the 

microcentrifugation experiments; in this way we achieve a single layer of droplets in the 

coalescence chambers. Note that, upon loading the emulsions in the sample chambers, 

some coalescence occurs due to wall effects; this does not influence the further analysis of 

our experiments.  

 
Figure 5.1 The schema of flow focusing junction. 

 

5.2.3 Microcentrifugation 

 

 
Figure 5.2 Schematic illustration of the microcentrifuge mounted on an inverted microscope. 

 
Coalescence is induced by applying a constant gravitational force in a recently developed 

microcentrifugation method. In this method, a constant centrifugal force is applied to a 

microfluidic chamber (Micronit Microfluidics BV, the Netherlands) that holds a monolayer 

of emulsion droplets. Here we expand this method by incorporating temperature control 
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which allows us to trigger the collapse of the thermoresponsive surfactant. The set-up is 

schematically illustrated in Figure 5.2. A detailed description of the method is presented 

elsewhere16. We heat the sample through a stream of warm air and monitor the temperature 

of the measurement cell through an infrared thermometer. Images of the sample are 

captured using a high-speed camera, synchronized with the rotating sample chamber, 

mounted on a brightfield microscope. In our experiments we apply a constant centrifugal 

acceleration of 450g and vary the temperature between 25 and 45°C, which represent 

temperature both above and below the LCST of the surfactant. Experiments were 

conducted 5 times to ensure reproducibility of our results. 

 

5.2.4 Image Analysis 

To extract quantitative information from the images we develop an image processing 

routine in Matlab. First, we spatially filter all images to reduce high-frequency noise that is 

due to small dust particles. We then discard images in which the synchronization between 

the moving sample and the camera was not ideal, resulting in only partial capture of the 

sample cell. This is done by detecting the edges of the sample chamber, and requiring that 

each image used for further processing has two black edges that demarcate the glass 

sample walls (see SI). We then use an edge detection algorithm to locate areas of 

continuous intensity in our thresholded images to identify the position and size of all 

droplets and the continuous water and oil phases.  

 

5.3 Results & Discussion 

Emulsions of silicone oil–in-water, stabilized by our thermoresponsive surfactant13, are 

prepared by microfluidics and then collected in small sample chambers designed for the 

microcentrifugation experiments. The droplets are prepared with diameters of 

approximately 200 microns, which thus form a single layer in the sample chambers with 

smallest dimension, orthogonal to the imaging plane, of also 200 micrometers. Initially, 

droplets are present throughout the sample, but upon applying a constant gravitational 

stress of 450g, in which g is gravitational constant, the droplets, which have a lower 

density then the continuous phase, move towards the emulsion-air interface moving to the 

right side of the images. Within a few seconds, they become jammed and deform due to the 

gravitational stress, as shown in the image sequence in Figure 5.2; subsequently, the 
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droplets begin to coalesce. This leads to an increase in the volume of the continuous oil 

phase and a reduction in the volume of the packed emulsion.  

To extract quantitative information from the large number of images collected during an 

experiment, we apply an image processing routine (see Materials & Methods). An example 

of images after passing through this algorithm are shown in the bottom row of Figure 5.3; 

each droplet, as well as the oil and water bulk are recognized and colored individually. 

 
Figure 5.3: Microcentrifugation experiment on an oil-in-water emulsion, stabilized by a thermoresponsive 

surfactant based on poly(di-ethylene glycol methacrylate) at 450g and 25 °C. (top) Images obtained from the 
experiment after cropping to the region-of-interest, (bottom) images after parsing through the image analysis 

routine, in which individual droplets and bulk water and oil phases are recognized. 

 

5.3.1 Critical disjoining pressure 

Upon bringing two emulsion drops together, the water film that separates the droplets 

becomes thinner. This leads to a restoring pressure that acts to separate the droplets, which 

is known as the disjoining pressure. For the coalescence of two droplets, the film between 

them needs to rupture before the two oil drops can merge. This can only occur if the 

pressure applied to the droplets exceeds a critical disjoining pressure Π∗ . In our 

microcentrifugation experiments we can directly measure Π∗ . In steady-state, when the 

emulsion is left to equilibrate sufficiently long at fixed gravitational acceleration, a well-

defined gradient in pressure builds-up in the concentrated emulsion. The pressure within 

this packed layer is highest at the oil-front and lowest at the water-end of the emulsion and 

is determined by the gravitational pressure that emulsion droplets apply on each other. 

Coalescence will occur at the front, until the total volume of the emulsion, that pushes on 

the front, is reduced to the point where the pressure exerted on the droplets at the front 

drops below the critical disjoining pressure. 
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Thus, by analyzing the volume of both the bulk oil phase and the total volume of the 

packed emulsion, at steady-state, and knowing the density difference Δ𝜌, between oil and 

water, the disjoining pressure can be quantitatively determined. Assuming that the densely 

packed emulsion layer has the same density as the oil, thus ignoring the volume occupied 

by the thin water films, the critical disjoining pressure measured at 450g can be expressed 

as Π∗ = 450Δρh, where h is the height of packed emulsion which can be obtained from the 

images. At room temperature, below the LCST of the thermoresponsive block of our 

surfactant, we find a critical disjoining pressure, for droplets of approximately 200 

micrometers, of around 300 Pa (Figure 5.4). As the critical disjoining pressure is a function 

of the droplet size, making a direct comparison with values reported for other surfactants in 

literature difficult, this disjoining pressure is approximately two orders of magnitude lower 

than that for the common, and highly effective, surfactant sodium dodecyl sulfate9, 17. 

Nevertheless, this is sufficient to stabilize these emulsions against coalescence for several 

months under ambient conditions18.  

When we increase the temperature, to above the LCST of the surfactant, we see a gradual 

but significant decrease of the critical disjoining pressure; at 45 °C, it has decreased by a 

factor of 6 to only Π∗ ≈ 50 Pa (Figure 5.4). Note that the decrease in disjoining pressure is 

not abrupt at the LCST: Π∗ gradually decreases when increasing the temperature above the 

LCST; a similar effect was seen for the adhesive forces between two surfaces coated with 

thermoresponsive surfactants19.  

 
Figure 5.4 Critical disjoining pressure Π∗ for 200 micron oil-in-water droplets, stabilized by a thermoresponsive 

surfactant as a function of temperature, error bars indicate the average of 5 parallel experiments 
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The significant decrease in critical disjoining pressure with increasing temperature above 

the LCST also sheds new light on our previous observation that an emulsion, stabilized by 

these surfactants, could be triggered from stable to unstable with increasing the 

temperature18; when an emulsion is prepared at osmotic pressures between the critical 

disjoining pressure at room temperature and that above the LCST, it will be stable at room 

temperature. Once the temperature is raised, the osmotic pressure will remain the same yet 

exceed the decreased critical disjoining pressure, leading to rapid destabilization.  

 

5.3.2 Coalescence dynamics 

The ratio of the actual osmotic pressure in the emulsion and the critical disjoining pressure 

determines whether coalescence can occur; however, this consideration is based on 

thermodynamic arguments and thus only gives insight into equilibrium properties of the 

system. Once the critical disjoining pressure is (locally) exceeded, coalescence can occur. 

The kinetics of this process are governed by a complex interplay of the time scale for film 

rupture, typically assumed to be an activated process, film drainage, governed by 

hydrodynamic factors such as the film thickness and viscosity of the continuous phase, and 

in some cases, when the dispersed phase itself is highly viscous, the viscous flows 

associated with droplet merging. 

In our experimental approach, the kinetics of coalescence can be ideally studied; we record 

images at a frame rate of 5000 fps to capture still frames of the fast spinning sample cell. 

As the coalescence we observe occurs over relatively long time scales, we choose to 

analyse only 5 images/s; more images are available and can be used for systems in which 

these processes occur much faster. Our image analysis gives access to the area of the bulk 

oil phase at the front of the sample, indicated in red, at the right hand side of the images in 

Figure 5.3. As we know the height of the lithographically produced sample chamber 

precisely, we can track the change in volume of the bulk oil phase 𝑉𝑜𝑖𝑙 , as shown in Figure 

5.5. Also here we can clearly see the effect of our switchable surfactant. While coalescence 

occurs relatively slowly, with a rate 𝑑𝑉𝑜𝑖𝑙 𝑑𝑡� = 0.0008𝑚𝑚3/𝑠 at 25°C, below the LCST 

of the surfactant, increasing the temperature to around the LCST, 35°C, or above the LCST, 

at 45°C, greatly enhances the coalescence rate. These results are summarized in the inset in 

Figure 5.5, which show the coalescence rates as a function of temperature.  
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Figure 5.5 Coalescence kinetics measured by tracking the volume of the bulk oil phase Voil as a function of time, 
drawn lines are linear regressions through the data to extract the coalescence rates, dVoil

dt�  , which are given in 
the inset. 

 

As mentioned above, multiple factors influence the coalescence kinetics; one important 

contribution is the time required for the breaking of the thin film between two droplets. We 

can assume that film breaking is an activated process, as it occurs through an intermediate 

stage in which the total surface of the drops connected through a small liquid bridge20 is 

larger than that of the two individual drops; this intermediate state thus possesses a higher 

free energy, which provides an activation barrier against coalescence. The rate of 

transitions over this barrier, required for droplet coalescence, will depend on the absolute 

height of this energy barrier, but also on the difference ΔΠ = Π − Π∗  between actual 

pressure Π and critical disjoining pressure Π∗ . If the difference is negative, the film is 

stable and coalescence will not occur; if the difference is positive, but small, transitions 

over the energy barrier will occur but infrequently, leading to low coalescence rates, and 

when the difference becomes larger, individual coalescence events become more frequent, 

thus increasing the macroscopic coalescence rate.  

As an increase in temperature decreases the critical disjoining pressure for our 

thermoresponsive surfactants, but the gravitational acceleration remains constant, increases 
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in temperature in effect increase ΔΠ, and thus increase the coalescence rate. Interestingly, 

this enhanced rate of coalescence and emulsion breaking is thus a direct macroscopic 

manifestation of the microscopic collapse of the surfactants when the sample is heated 

above their LCST.  

 

5.3.3 Modes of coalescence 

While the analysis above, where we only consider the increase in volume of the bulk oil 

phase, gives direct access to the coalescence rates, it does not describe how the coalescence 

process occurs spatially. Recently, we showed that the coalescence in concentrated 

emulsions can occur in two distinct modes9. When the critical disjoining pressure is 

relatively low, coalescence occurs throughout the bulk of the sample in which several 

nuclei of coalesced drops form, which subsequently rapidly grow until the entire sample 

has been destabilized. By contrast, when the critical disjoining pressure of the system is 

high, the pressure is only high enough to induce coalescence at the front end of the sample; 

in this scenario, coalescence only occurs at the front where the emulsion meets the bulk oil 

phase. These observations suggest that the thermoresponsive emulsions we use here, in 

which we can gradually tune the disjoining pressure through small changes in temperature, 

could be suitable to induce a change from front to bulk coalescence on demand. 

At temperatures below the LCST of the surfactant, we indeed observe that coalescence 

only occurs at the front end of the sample, as shown in Figure 5.3. This is further 

corroborated by the fact that the droplet size in the packed emulsion remains constant; as 

drops only coalesce with the bulk oil phase, no coarsening is observed (Table 5.1). Full 

droplet size distributions are available in the supporting information.  

Interestingly, when we increase the temperature, thus decrease the disjoining pressure, the 

coalescence process proceeds completely differently. Across the packed emulsion, droplets 

begin to coalesce, leading to rapid disproportionation of the emulsions, as can be clearly 

seen in Figure 5.6. Correspondingly, the mean droplet radius increases as shown in Table I. 

This highlights that the mode of coalescence, either occurring throughout the bulk of the 

sample, or being restricted to the front, is indeed determined by the disjoining pressure. 

Moreover, the introduction of thermoresponsivity to the emulsions allows us to trigger 

these two distinctly different modes on demand. 

 



Chapter 5 
 

83 

Table 5.1 Mean droplets radius, extracted from the image analysis, as a function of time and temperature 

26°C 
Time (s) 2 1 0 4 0 100 150 
<R> (µm) 181 180 182 182 183 

46°C 
Time (s) 2 1 0 4 0 100 150 
<R> (µm) 183 188 209 217 224 

 

 
Figure 5.6: Microcentrifugation experiment on an oil-in-water emulsion, stabilized by a thermoresponsive 

surfactant based on poly(di-ethylene glycol methacrylate) at 450g and 45 °C, showing bulk coalescence. (top) 
Images obtained from the experiment after cropping to the region-of-interest, (bottom) images after parsing 

through the image analysis routine, in which individual droplets and bulk water and oil phases are recognized. 
 
 

5.4 Conclusion 
Despite a wealth of research on the coalescence kinetics of two individual droplets 

dispersed in a continuous phase, the phase inversion and film formation in dense emulsions 

remains ill understood; this is partially due to the complex nature of the problem in which 

equilibrium thermodynamics (critical disjoining pressures), activated processes (film 

rupture) and fluid dynamics (film drainage, fluid transport through the packed emulsion) 

interplay. Moreover, suitable methods to study coalescence in dense emulsions remain 

scarce; especially when control over the applied forces, thermodynamic properties and 

onset of coalescence are required. 

Here we reported on a new approach to study coalescence in dense thermoresponsive 

emulsions using a microfluidic-based microcentrifugation method. We have shown that 

both thermodynamic and kinetic properties can be measured through automated image 

analysis, and that the temperature-responsivity of the surfactants can be used to trigger 

different modes of coalescence on demand. These developments form a stepping stone for 

further investigations into the governing mechanisms that dominate phase inversion and 

film formation.  
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Appendix 

Image analysis 

We spatially filter all images to reduce high frequency noise, which mainly originates from 

small dust particles on the outside of the sample cell. We then define an area at near the 

end of the sample cell, indicated by the green area in Figure S1a, to use for image selection. 

We then select images based on the unique pattern of intensity values when crossing the 

two, black, walls of the cell. This is done to remove images in which only a part of the 

sample cell is imaged, due to minor mis-synchronisations between camera and centrifuge. 

The selected images are cropped to display only the sample cell; a reconstructed movie of 

the coalescence dynamics from these selected images can be found in the online 

supplementary information (movies S3 & S5, sped up 10x). We then apply the Matlab 

command “PixelList” to recognise all continuous areas of intensity in the images. This 

gives access to the area of each of these continuous spaces, as illustrated in Figure A5.1; 

reconstructions of the recorded movies after this image processing step can also be found 

in the supplementary information, as movies S4&S6 (sped up 10x). The continous oil 

phase, used to track the amount of coalescence that has occured, shown as the big red area 

in Figure A5.1b, can then be automatically followed in time. In the same way, the sizes of 

individual droplets can be automatically followed.  

 

 
Figure A5.1 Images analyze scheme.(a) is about algorithm (b) is result. 
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From this data we can easily extract the evolution of the droplet size distributions in time; 

as shown in Figure A5.2. For front coalescence, the distributions do not change 

significantly (Figure A5.2a) , as droplets only coalesce with the large oil reservoir, which 

doesnt lead to disproportionation of the remaining droplets. By contrast, for bulk 

coalescence, the distributions of droplet sizes shifts to larger average sizes (Figure.A5.2b); 

as coalescence occurs everywhere also disproprotionation occurs.  

 

 
Figure A5.2 The droplets distribution VS time at different coalescence modes. (a) is in front coalescence (b) is in 

bulk coalescence 

 



Chapter 6 

Summary and general discussion 
 

 

In this final Chapter, we present a summary of this dissertation highlighting the 

main results. As scientific progress can only be partly measured by the answers we 

find, we also discuss new and open questions resulting from our studies and give 

an outlook on future topics of study. 
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Coatings and paints play a significant role in daily life; they prolong the lifetime of 

materials by offering protection against, for example, corrosion, weathering or fouling, and 

literally add color to our lives. Due to their widespread use, their environmental 

consequences have become focus of increasingly strict regulations and public awareness. 

There has been a strong effort to replace traditional solvent-based coatings with waterborne 

coatings to reduce or eliminate the volatile organic compounds (VOC) that traditionally 

formed the main component of paints. A pronounced shift from solvent-based to water-

based systems has already taken place for decorative (consumer) coatings. However, for 

more demanding applications in industry, the replacement of solvent-based paints with 

greener waterborne formulations still has a long way to go, due to their lower performance 

in terms of both mechanical, durability and aesthetic aspects. The development of 

waterborne coatings with the same or better performance than solvent-borne systems is 

thus an important step towards the further vanishing of VOC-rich coatings. Ultimately, the 

final aim is to replace all solvent-borne coatings with VOC-free paint formulations.  

Waterborne paints form a very promising candidate, yet several key aspects of their 

properties during storage, handling and during their lifetime as a coating, remain poorly 

understood. Waterborne coatings are complex multiphase systems, containing a wide 

variety of dissolved and dispersed components in the common aqueous continuous phase. 

During the drying of the paint, after application, this complex mixture must undergo a 

phase inversion to achieve a homogeneous film of the resin from its initial dispersed state. 

While this state governs the structure, and thus final properties of the coating film, its 

complexity precludes a deep understanding to date. This is due to the complexity of the 

drying and phase inversion process, which is governed by a seemingly immense number of 

chemical and physical parameters.  

We therefore adopted a simplification approach, minimizing the number of parameters to 

obtain a first-pass insight into the phase inversion process. We started by directly 

visualizing how coalescence occurs in a drying 2D emulsion film, both on the single-

particle scale, with confocal microscopy, and by macroscopic imaging. Based on these 

observations, we built a hydrodynamic model that explains some of the key governing 

parameters in the film formation process. Furthermore, we explored the possibilities to 

manipulate phase inversion and coalescence, by developing new thermoresponsive 

surfactants. These new strategies allow us to obtain new insights into this complex problem. 
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Understanding coalescence in dense emulsions 

The first part of this thesis focusses on understanding how coalescence and phase inversion 

occurs in a drying emulsion film, through direct quantitative imaging. Our observations at 

different length scales are unified in a hydrodynamic model to arrive at a microscopic 

understanding of this complex macroscopic phenomenon. 

In Chapter 2 we observed two distinct modes of phase inversion in surfactant-stabilized 

o/w emulsions exposed to a unidirectional drying stress. Coalescence occurs either through 

a nucleation-and-growth mechanism, where coalesced pockets form and grow randomly 

throughout the sample, or through a coalescence front that propagates into the sample from 

the drying end. The way in which coalescence occurs is determined by a balance between 

the established pressure profile across the film and the local critical disjoining pressure in 

the emulsion. For very stable emulsions, narrow plateau borders can develop, leading to 

steep pressure gradients; the actual pressure only exceeds the critical pressure in a narrow 

zone around the drying front and front coalescence results. The opposite occurs for 

unstable emulsions; only shallow pressure profiles develop before coalescence commences 

throughout the bulk of the sample. Moreover, we find that surfactant concentration plays a 

significant role through its effect on the critical disjoining pressure at which coalescence 

occurs. This, to our knowledge, is the first observation and explanation of different modes 

of coalescence dynamics in dense emulsion films. 

Although our observations can be explained by the measured pressure gradients, several 

new questions have arisen. The most significant one is the surfactant accumulation; it is 

obvious that the surfactant, which gets transported with the continuous phase, will 

accumulate at the drying front due to the unidirectional drying in our system. We can thus 

expect not only a pressure gradient but also a surfactant gradient in the drying films; in 

Chapter 2 we purposefully assumed this effect to be negligible, due to a lack of 

experimental techniques to determine the hypothetical surfactant concentration gradient. 

However, from our measurements of the critical disjoining pressure, we know that this 

governing parameter is sensitive to the local surfactant concentration; moreover, a 

difference in surfactant concentration also leads to changes in local osmotic pressure. 

Hence, we could imagine that in fact surfactant accumulation could be important. To 

evaluate this, we need a method to measure surfactant concentrations locally; this could be 

achieved through a fluorescently-labelled surfactant, and quantitative intensity mapping 
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using fluorescence microscopy. Moreover, the coalescence events between interfaces may 

still be clearly visible if the fluorescent surfactant exhibits solvochromic emission, as the 

Nile Red dye, used in Chapter 2, does. This approach could give access to the relationship 

between the local rate of coalescence and the local surfactant concentration; from the 

image analysis, as shown in Figure 6.1, local coalescence rates can already be measured in 

our experimental set-up. 

 

Figure 6.1 (a) Quantitative analysis of the raw confocal microscopy images showing a front-coalescence process. 
and  (b) The local coalescence rate ∇ of the coalescence dynamics from a local field-of-interest. 
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Another crucial unanswered question is how the collective coalescence we study relates to 

the time of rupture of an individual film at a given disjoining pressure. This information 

could be obtained by studying the coalescence of a single, large droplet formed on a 

pressure-controlled droplet tensiometer (Sinterface PAT-1) with a macroscopically flat 

interface, as illustrated in Figure 6.2. This could provide crucial information on the 

relationship between the ratio of actual pressure and critical pressure, droplet size and film 

rupture frequency.  

 

Figure 6.2 Schematic illustration of a set-up for studying single-film rupture.  
Yellow presents oil and blue presents water. 

 
In Chapter 3 we develop a hydrodynamic model to explain the dynamics of film formation, 

and present detailed calculations. In this model we focus on the critical water volume 

fraction (ɛcr) which inversely proportional to critical disjoining pressure. We vary ɛcr over 

several decades to determine how the pressure gradients develop in time. We observe two 

trends; for relatively unstable emulsions, only shallow pressure gradients develop, while 

very stable emulsions result in very steep pressure profiles. From the slope of these 

pressure profiles we estimate the boundaries for the observed front and bulk coalescence 

modes. The predictions from this model agree well with our experimental observations, 

indicating that the critical disjoining pressure, a parameter largely overlooked until now, is 

the key factor in setting the coalescence dynamics. The model also showed the importance 

of the rate of water evaporation; slower evaporation, giving the system more time to 

equalize the pressure gradients, thus lead to more shallow profiles which trigger bulk 

coalescence. We can even imagine that the local pressure will be the constant throughout 

the film, leading to spontaneous coalescence everywhere in the film, if the rate of water 

evaporation approaches zero. Another, unexplored aspect relating to water evaporation is 

how the evaporation rate changes in time due to the oil layer that accumulates at the drying 
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end. As water needs to transport through this water layer to evaporate it becomes 

increasingly hindered when this layer grows. We can imagine that the emulsion film enters 

a sintered state due to this hindered evaporation, as predicted by other models, such as that 

of Routh and Russel1. This process could be experimentally manipulated through the use of 

oil with different water solubility, to investigate how relevant this is in reality.  

Manipulating coalescence in dense emulsions 

In Chapter 4 we show the successful synthesis of well-defined thermoresponsive 

surfactants through Atom Transfer Radical Polymerisation (ATRP) using a alkyl-

functional initiator. These surfactants can be used to stabilise emulsions for over four 

months at room temperature, below the collapse transition of the hydrophilic block of the 

surfactant, yet can be triggered to break the emulsion within minutes when the sample is 

heated to above 40 °C. This on-demand coalescence is mediated by desorption of the 

surfactants from parts of the surface, as evidenced by surface tension measurements and 

direct microscopic observations of the droplets surface. Our results suggest that these well-

defined thermoresponsive surfactants form an interesting platform to study droplet 

coalescence and triggered phase inversion in emulsion systems. Moreover, the ability to 

break a very stable emulsion on demand has industrial relevance for several applications, 

such as in film formation of waterborne emulsion paints and the recovery of products 

during emulsion-based extraction and reaction processes. 

An interesting observation during our study of the thermoresponsive surfactants is the 

surface-pinned phase separation of the surfactant from the aqueous solution upon heating 

the sample. During a fast quench, distinct droplets, of rather well-defined size, appear at 

the droplet surface; in time these droplets grow, as discussed in Chapter 4 and illustrated in 

Figure 6.3. This is reminiscent of a spinodal decomposition process, but confined to a 2-

dimensional interface.  When we make a slow quench, by adjusting the heating rate, no 

spinodal structures are observed but a homogeneous surface layer forms, which could be a 

sign of a slow nucleation and growth process (Figure 6.4). This system might thus be an 

interesting approach to study 2-dimensional demixing transitions, with temperature as a 

convenient quench parameter.  
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Figure 6.3 2D demixing of thermoresponsive surfactants during a fast quench (+20°C/min). 

 

Figure 6.4 No signs of microscopic droplets during a slow quench of the same system (+1°C/min). 

In our coalescence studies with thermal responsive surfactants, we noticed the important 

role of applied pressure on the coalescence kinetics. As illustrated in Figure 6.5, 

coalescence only occurs partially when heating a diluted sample concentrated by gravity 

alone. However, upon applying an external force (grey arrow) to densify the creamed 

emulsion layer, the demixing reaches completion.  
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Figure 6.5 Schematic illustration of application of an external force to finalize coalescence. The grey arrow 
indicates the external force, lower arrow indicates an increasing temperature. 

In Chapter 5 we reported on a new approach to study coalescence in dense 

thermoresponsive emulsions using a microfluidic-based microcentrifugation method in 

which a constant external field can be applied. We have shown that both thermodynamic 

and kinetic properties can be measured through automated image analysis, and that the 

temperature-responsivity of the surfactants can be used to trigger different modes of 

coalescence on demand. These results form further proof that our conclusions in Chapters 

3&4 regarding the nature of the transition from front to bulk coalescence are valid; also 

here we observe that changing the critical disjoining pressure, through changing the 

temperature, can induce a spontaneous switch in coalescence mode. This new approach 

forms a stepping stone for further investigations into the governing mechanisms that 

dominate phase inversion and film formation. 

As mentioned above, the coalescence of individual films and the nature of the activated 

process that govern its kinetics, remain relatively unexplored, yet it may have significant 

influence on the whole film formation process. Using our thermoresponsive surfactant, 

preliminary data, shown in Figure 6.6, show that we can achieve local film rupture by 

heating a single film between emulsion droplets with a focussed high-intensity IR laser. 

This could offer precise control over the location and moment of the first coalescence event 

in a dense film); and in turn could drastically simplify these types of studies. 

Future study could also focus on manipulating the distances and arrangements of individual 

or groups of droplets, for which optical tweezers are an ideal method. 
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Figure 6.6 Individual film rupture under local heating; (left) before local heating, arrows indicate forcus position 

of the laser, (right) upon irradiation with focussed IR light, only the targeted film ruptures and the droplets 
coalesce. 

 

 

 
Figure 6.7 The magnetic tests of magnetic emulsion on macro and micro scales. 

 

The constant external force applied by centrifugation in Chapter 5, could also be replaced 

by a magnetic driving force; the inclusion of magnetic nanoparticles in the oil can be used 

to apply forces to individual droplets. In this way, emulsions can be concentrated, with a 

well-defined pressure (as illustrated in Figure 6.7). The magnetic field can be calibrated 



Summary and General Discussion 
 

96 

from the velocity of the droplets in dilute suspensions, which can be used to apply constant 

pressures quantitatively. This would avoid the cumbersome synchronisation between 

camera and spinning microfluidic device in the microcentrifugation experiments presented 

in Chapter 5. 

 
Figure 6.8 Molecular structure of light-responsive azobenzene-modified poly(sodium acrylate) and a non-ionic 

surfactant 2. 

 

 
Figure 6.9 Light-triggered coalescence of a dense emulsion stabilised by a light-responsive polymer-surfactant 

complex.  
We have also started to explore other means to trigger the coalescence of responsive 

emulsions. We focussed on a light responsive surfactant system, as it is, in practice, more 

easy to flood a painted wall with light than heating up the entire room. Secondly, earlier 

work on these light-responsive systems showed full reversibility. Moreover, there is no 

transfer gradient problem as in our thermoresponsive system. We used a azobenzene-

modified polymer, as illustrated in Figure 6.8, which undergoes a light-induced cis-trans 
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isomery3. Combined with a non-ionic surfactant, the interfacial configuration can be altered 

significantly upon exposure to light. Figure 6.9 shows initial results how coalescence can 

be triggered upon illumination with UV light.  

Using the knowledge and methods developed in this thesis, new avenues for studying film 

formation have been opened. While our work focussed on highly idealised emulsions, real 

coating systems exhibit some complicating factors, such as viscoelasticity of the latex 

droplets, and even chemical reactions between different species of droplets, interactions 

with several surface active species and solid pigment particles. Moreover, the length scales 

in real paints are a few orders of magnitude smaller, requiring the development of new 

methodologies suitable for these length scales. These topics will be subject for future study, 

and are required to fully understand and control the properties of water-based coatings. 
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Samenvatting 
 

In dit laatste hoofdstuk presenteren we een samenvatting van dit proefschrift; 

hierin belichten we de belangrijkste resultaten uit de verschillende hoofdstukken 

en de verbanden daartussen.  
 

Coatings en verven spelen een belangrijke rol in ons dagelijks leven; ze vergroten de 

levensduur van materialen door bescherming te bieden tegen, bijvoorbeeld, corrosie, 

beschadiging door weersinvloeden, afzetting van vuil en ze brengen tevens letterlijk kleur 

in onze leefomgeving. In recente jaren hebben de effecten van deze verven en lakken op 

ons milieu en de gezondheid van de gebruikers, zowel professioneel als gewone 

consumenten zoals u en ik, veel in de aandacht gestaan en zijn onderhevig geworden aan 

steeds strengere landelijke en internationale regelgeving. In dit kader is er een sterke 

beweging ontstaan om de klassieke oplosmiddel-gebaseerde verven te vervangen door 

milieu- en gezondheidsvriendelijkere water-gebaseerde alternatieven;  met als ultiem doel 

het volledig uitbannen van vluchtige organische verbindingen, ook wel VOCs genoemd 

(naar het engels: Volatile Organic Compounds) , uit verven. Een omslag van klassieke 

verven, die grotendeels uit deze vluchtige organische verbindingen bestaan, naar VOC-

arme watergedragen verven heeft al grotendeels plaatsgevonden voor decoratieve verven 

voor de consumenten markt. Echter, voor meer veeleisende toepassingen in de industrie, is 

de weg naar het vervangen van VOCs door water er een vol met uitdagingen en obstakels. 

Dit komt met name doordat de meeste op water gebaseerde verven nog lang niet dezelfde 

kwaliteit en stabiliteit kunnen bieden als hun VOC-gebaseerde tegenhangers. Het verder 

verbeteren, en ontwikkelen van nieuwe, watergedragen verven speelt dus een cruciale rol 

bij het uitbannen van vluchtige organische verbindingen uit verfsystemen.   

 

Hoewel watergedragen verven een veelbelovende kandidaat zijn ter vervanging van 

traditionele VOC-rijke verven, worden enkele cruciale eigenschappen, zowel tijdens opslag 

en applicatie, als tijdens hun leven als coating, nog maar slecht begrepen. Deze 

watergedragen verven zijn complexe systemen waarin een veelvoud aan moleculen en 

microscopisch kleine deeltjes zijn opgelost en gesuspendeerd in de waterfase. Na het 

aanbrengen, en tijdens het drogen, van de verf moet dit complexe mengsel een zogenaamde 
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fase-inversie ondergaan; microscopisch kleine polymeerdeeltjes die in de waterfase zijn 

gesuspendeerd moeten uiteindelijke zelf de matrix van de coating vormen. Het systeem 

moet dus inverteren van een suspensie van polymeerdeeltjes in water naar een 

polymeerlaag, het liefst zonder overgebleven waterdruppels. Het is deze eindtoestand die 

de uiteindelijke coating vormt en daarmee de eigenschappen, zoals de stabiliteit en 

resistentie tegen weersinvloeden of vervuiling, bepaalt. Echter, hoe belangrijk dit proces 

van fase-inversie ook is voor de eigenschappen van de watergedragen verven, het proces 

zelf blijft grotendeels een mysterie. Dit komt met name door de enorme complexiteit van 

het droogproces en de bijbehorende fase-inversie; een proces dat geregeerd wordt door een 

ogenschijnlijk oneindig aantal chemische en fysische parameters.   

 

Om licht in de duisternis te werpen, hebben we in dit proefschrift gekozen voor een aanpak 

van simplificatie; door het aantal relevante parameters terug te brengen tot een minimum 

hebben we gepoogd een eerste diepte-inzicht te krijgen in het fase-inversie proces tijdens 

filmvorming. We zijn hiermee gestart door, met behulp van directe observatie, met zowel 

microscopische waarnemingen door middel van confocale fluorescentie microscopie, als 

macroscopische waarnemingen met een gewone huis-tuin-en-keuken camera, dit proces te 

bekijken. In plaats van het bestuderen van een echte verffilm, hebben we een film 

“nagebootst” door middel van zeer goed gedefinieerde druppels van een polymeer te 

maken. Op basis van deze directe observaties hebben we een mathematisch model 

ontwikkeld, dat een aantal van de belangrijkste parameters gedurende filmvorming 

beschrijft. Met dit model kunnen voorspellingen worden gedaan over filmvorming in 

complexere systemen. Tevens hebben we in dit proefschrift resultaten beschreven over hoe 

we, van buitenaf, in kunnen grijpen in het filmvormingsproces door het ontwerpen en 

synthetiseren van een nieuw type surfactanten die een specifieke gevoeligheid vertonen 

voor de omgevingstemperatuur. Met beide strategieën hebben we nieuw inzicht verkregen 

in het cruciale proces van filmvorming in watergedragen verven.  

 

Het begrijpen van filmvorming  in geconcentreerde emulsies 

Het eerste deel van dit proefschrift is gericht op het ontwikkelen van inzicht en begrip in 

het complexe proces van druppelcoalescentie en fase-inversie in een drogende emulsiefilm. 

Door het combineren van directe observatie, zowel op micrometer- als centimeter-
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lengteschalen, met mathematische modellering, hebben we een directe relatie kunnen 

leggen tussen de gebeurtenissen op de moleculaire en microscopische schaal en het 

uiteindelijke droogproces op de schaal van een hele verffilm. In Hoofdstuk 2 hebben we 

laten zien dat fase-inversie in drogende emulsiefilms plaats kan vinden via twee, 

ogenschijnlijk, compleet verschillende routes. Het samenvloeien van druppels, dat tot de 

fase-inversie leidt, vindt ofwel overal in de film tegelijkertijd plaats, waarbij grotere 

druppels her en der ontstaan en zo verder groeien. De film onstaat zo op een onregelmatige, 

chaotische manier. In andere situaties observeerden we juist dat druppels enkel 

samenvloeien aan het droogoppervlak, waardoor de film ontstaat door een front dat 

langzaam door de film heen trekt. Dit hebben we verklaard door het opstellen van een 

model, waarin zowel de stroming van vloeistof door de film in de richting van het droge 

oppervlak wordt beschreven, alsmede de thermodynamische stabiliteit van de druppels 

expliciet wordt behandeld. Hieruit bleek dat met name de initiële stabiliteit van de emulsie 

een cruciale rol speelt in het bepalen van het type fase-inversie dat optreedt. Als de initiële 

emulsie instabiel is, begint het samenvloeien van de druppels snel na aanvang van het 

drogen, waardoor er weinig tijd is om een groot drukverschil op te bouwen tussen het 

droge en natte uiteinde van de film. Echter, bij erg stabiele emulsies, kunnen enorme 

drukverschillen ontstaan, die we ook direct gemeten hebben, waardoor alleen aan het 

drogende front voldoende druk op de druppels wordt uitgeoefend om ze te laten 

samenvloeien. Verder bleek dat de initiële stabiliteit van de emulsie eenvoudig gestuurd 

kan worden met behulp van de concentratie surfactant die aan het monster wordt 

toegevoegd. Voor zover bij ons bekend, is dit de eerste waarneming en verklaring van deze 

twee routes waarop fase-inversie kan plaatsvinden.  

 

In Hoofdstuk 3 presenteren we een uitgewerkte versie van het hydrodynamische model dat 

de stroming van vloeistof door een drogende, en zeer geconcentreerde, emulsie beschrijft. 

Water stroomt door de dunne films en kanalen tussen de dichtgepakte emulsiedruppels 

richting het droge uitende van de film; deze stroming wordt gedreven door capillaire 

drukverschillen die heersen over de dikte van de film. Ons model voorspelt, afhankelijk 

van initiële parameters, hoe deze drukprofielen zich ontwikkelen in de tijd. Door variatie 

van de, voor verfsystemen relevante, parameters, zoals droogsnelheid en initiële 

emulsiestabiliteit, kunnen we voorspellen wanneer welk type fase-inversie optreedt.  
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Het manipuleren van filmvorming in geconcentreerde emulsies 

In Hoofdstuk 4 beschrijven we de chemische synthese van een serie, goed-gedefinieerde, 

temperatuurgevoelige surfactanten door middel van een specifiek type polymerisatie 

reactie, Atom Transfer Radical Polymerisation (ATRP) genaamd, waarmee een hydrofobe 

alkaanstaart aan een temperatuurgevoelig polymeer gekoppeld kan worden. Emulsies die 

worden gestabiliseerd door deze surfactanten zijn zeer stabiel; zelfs na 4 maanden bij 

kamertemperatuur is geen significante verandering in de toestand van de emulsies waar te 

nemen. Echter, door de temperatuur van de emulsie enigszins te verhogen naar 40 °C, net 

boven de kritische temperatuur waarbij het polymeer van oplosbaar in water naar 

onoplosbaar verandert,  wordt de emulsie binnen enkele minuten volkomen instabiel. 

Hiermee kan coalescentie tussen de druppels dus worden geprogrammeerd met een simpele 

externe stimulus. Onze experimenten laten zien dat dit gedrag veroorzaakt wordt door het 

verwijderen van surfactants van bepaalde gedeelten van het oppervlak. Met het verhogen 

van de temperatuur verandert het oppervlak van een emulsiedruppel van een homogene, 

moleculaire laag van surfactanten, naar een oppervlak met microscopisch waarneembare 

druppels van onoplosbaar geworden surfactanten, en kale plekken waar de olie en de 

waterfase in direct contact komen. Deze vinding, dat emulsies “on-demand” gevormd en 

gedestabiliseerd kunnen worden, kan in wetenschappelijk onderzoek gebruikt worden om 

het coalescentieproces, dat typisch op onvoorspelbare tijd en plaats optreedt, gemakkelijker 

en in meer detail te bestuderen. Maar ook in toepassingen zou het gebruik van een stimuli-

responsieve surfactant van groot nut kunnen zijn, onder andere voor het controleren en 

sturen van filmvorming in watergedragen verven en in het terugwinnen van stoffen die 

doormiddel van een emulsiefase geëxtraheerd zijn.  

 

Tot slot, hebben we in Hoofdstuk 5 een nieuwe methode gepresenteerd om filmvorming 

en coalescentie in geconcentreerde emulsies te bestuderen. Bij deze methode wordt de 

coalescentie in een temperatuurgevoelige emulsie geïnduceerd door middel van een 

verandering van temperatuur; de drijvende kracht voor coalescentie en filmvorming wordt 

nauwkeurig aangepast door middel van een centrifugaalkracht. Deze kracht wordt 

opgelegd door een microcentrifuge, die gemonteerd is op een microscoop met een hoge-

snelheidscamera. Op deze manier kunnen we in de tijd, en met hoge tijdsresolutie, onder 

precieze controle van alle relevante parameters, de coalescentiekinetiek volgen. We hebben 
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laten zien dat aan de hand van de zo verkregen data zowel thermodynamische parameters 

als kinetische eigenschappen nauwkeurig bepaald kunnen worden. Bovendien hebben we 

in dit laatste hoofdstuk verder bewijs geleverd dat het type fase-inversie dat optreedt 

gestuurd kan worden door het aanpassen van de initiële stabiliteit van de emulsie. Wij 

denken dat deze nieuwe microcentrifugatiemethode een opstap vormt naar het ontwikkelen 

van verder inzicht in het complexe fenomeen van fase-inversie in drogende films. 

 

Het inzicht en de methodiek die tijdens dit project is ontwikkeld heeft een veelvoud aan 

nieuwe mogelijkheden blootgelegd voor het verder verkennen van filmvorming in 

complexe mengsels. Waar ons werk zich heeft gericht op gesimplificeerde, ge-idealiseerde, 

emulsies, blijven er verschillende uitdaging in het verschiet voor studies naar echte, 

complexe verfsystemen. Onderzoek naar echte verfsystemen wordt bemoeilijkt door onder 

andere de grote ondoorzichtigheid van de verf, chemische reacties die plaatsvinden tijdens 

het drogen, de veelvoud aan opgeloste en gesuspendeerde moleculen en deeltjes, en de veel 

kleinere lengteschalen van de deeltjes in verf ten opzichte van de hier gebruikte emulsies. 

Deze uitdagingen, die essentieel zijn voor het volledig begrip van filmvorming, en voor het 

ontwikkelen van nieuwe watergedragen verven met verbeterde eigenschappen, zullen op de 

agenda staan voor onderzoek in de komende jaren.  
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