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ANALYSIS OF VARIANCE1 

by 

N I C O L A A S H . K U I P E R 

INTRODUCTION 

At the time the dutch paper was written (1952) prof. Kuiper was a professor 
at Wageningen teaching Mathematics and Statistics. The mathematical basis 
of analysis of variance was vaguely perceived at that time. In his 1952 paper 
a system of notions and corresponding notations has been developed, which 
with some right could be called the Wageningen method. To be very short, it 
centres on the use of vectors, vector spaces and orthogonal (and skew) projec­
tions without the explicit use of matrices. The notation used has the advantage 
that it is easily generalized to multivariate situations (not dealt with in the paper) 
and to more complex experimental designs. Some additional references illustrate 
this point and connected topics. 
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1. INTRODUCTION' 

In the analysis of observational results according to R. A. Fisher, well known 
as 'analysis of variance', attention is fixed on a positive number, the variance, 
to be computed for a set of observational results, and the possibility is examined 
to write this number as a sum of other positive numbers (also variances), to 
each of which a special meaning is attached. Each of these numbers is considered 
as the consequence of a distinct cause. 

In the theory, that is developed in this paper, variances will also be mentioned, 
but they don't play an essential part in the theory. The centre of the theory 
will be in the vectors. 

The purpose of using vectors in a theory aiming at the analysis of certain 
systems of observational results, and in connection with the design of experi­
ments, is fourfold: 

A. For a number of concepts, such as main effect, interaction, confounding, 
orthogonality (of an experimental design), clear definitions are often missing 
in the literature. A coherent set up of concepts is possible, and as it seems to 
us, is only possible, in terms of vectors. 

B. Some parts of the analysis of variance can be developed only in an unclear 
and unconvincing way without the use of vectors, for instance the treatment 
of non-orthogonal designs (see the literature mentioned in chapter 11 ). By using 
vectors a transparent and convincing presentation is possible. 

C. The theory allows the possibility of considering at a glance many more 
schemes of experimentation of great use in research practice. For instance it 
is not generally known, that there exist many more orthogonal experimental 
designs than those ordinarily met with in the literature (compare chapter 8 and 
14). 

D. Our notation is more simple than the notation of analysis of variance, 
generally used. The price one has to pay for these advantages lies in the need 
to study the theory of vectors and vector spaces. In chapter 2 we give some 
elements of this theory for those who are not acquainted with this subject. 

2. VECTORS 

We start by choosing a constant natural number N. Next we consider all rows 
of AT real numbers (.V|, ..., xN). Such a row is called a vector. Vectors can be 
taken together in sets of two, three or an infinite number. The biggest of such 
sets is the set of all rows of N numbers (vectors). This set is called the TV-dimen­
sional vector space (E or also EA). 

1 For critical remarks I am grateful to messrs. L. C. A. Corsten, G. Hamming, J. Hemelrijk, 
M. Keuls and C. A. G. Nass. 
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Two vectors a = (ah ..., aN) and b = (bu ..., bN) may be added. By the 
sum, denoted a + b, we mean the vector 

a + b = (al + bl,...,aN + nN). 

It is easily understood, that for sums of vectors many properties hold, that also 
hold for ordinary sums (i.e. of numbers). These properties simplify computa­
tions. For instance 

a -(- b is the same as b -(- a 
(a + b) + c is the same as a -f (b + c) 

(a •+- b) 4- (c + (d + e)) is the same as ((a + c) + (b -(- d) + e. 

It is generally true, that in sums of two or more terms the order and brackets 
may be chosen arbitrarily. In every case one gets the same answer. 

A vector (a) can also be multiplied by a number (A). A vector a multiplied 
by A is by definition: 

Aa = (Aö|, Xa-i,..., XaN). 

Also here some easily retained rules hold, facilitating computations: 

X (a + b) is the same as Aa + Ab (check this) 
(A -I- n) a is the same as Aa + /ia 

The vector 0 which represents a row of N numbers zero: (0, 0, .... 0) is called 
null vector. It has properties in common with the number 0. Thus for example 
(a an arbitrary vector) 

a + 0 = aanda + ( - i ) a = {ax,...,aN) + ( - ax,...,aN) = 0 

The vector (— 1) a or —a is called the opposite of a. As with ordinary algebra 
one can write a + ( —b) more briefly as a — b. All rules for the addition and 
subtraction also hold for vectors. Thus for example the solution of the equation 
in (the unknown vector) x: 

2a + 3x = b equals x = ^b — ^a. 

The vectors in a three-dimensional vector space (N = 3) can be pictured in 
the (ordinary) space, in which we live. One chooses an orthogonal cross of coor­
dinate axes and represents the vector (ah a2, a3) by the arrow that starts in the 
origin of the cross of axes and has its arrow point in the point with coordinates 
ah a2and a3. The addition of vectors then is pictured by the well known parallelo­
gram construction. The multiplication by a number is represented by a geometric 
multiplication with the origin as a centre of multiplication and the number as 
a multiplication factor. Historically, the more specific geometric concept of vec­
tors depicted here arose first. By abstraction the more general concept, that 
we need, came into being. 

A vector a is called (linearly) dependent on a vector b, if there exists a number 
X, such that a = Ab. The vector (6, 9, — 15, 6) for instance is dependent on 
(4,6,-10,4), for: 
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(6,9,-15,6) = 3(4,6, -10,4); 

a is called dependent on the vectors b, ..., c, if there exist numbers )., ..., n 
such that a = Âb + ... /JC. Thus (5, — 6,8,1 ) is dependent on 

(3, -2 ,0,7) and (1 ,0 , -2 , 5), for: 
(5, - 6 , 8, 1) = 3 (3, - 2 , 0, 7) -4(1 ,0 , - 2 , 5). 

To some systems of vectors in the space E one gives the name linear vector 
space, or subspace or in brief space. All vectors Aa, that are obtained from the 
constant vector a by multiplication with a real number, constitute a system that 
is called a 1-dimensional (sub-)space. 

Given some (constant) vectors a,.... b, the system of vectors Aa + ... + yb, 
with X, ..., fi variable real numbers, is a vector subspace of E. We will denote 
this space by a capital letter, for instance D. D is said to be spanned by the 
vectors a, ..., b. Notice that 0 belongs to every subspace. The set of vectors 
a,..., b is called a basis of the space D. One sometimes can generate the same 
space using a different basis. For D one can find many bases. Every basis of 
D that consists of independent vectors (no one being dependent on the others), 
contains the same number of vectors. (This is the theorem of STEINITZ). This 
number is called the dimension of the space D. 

In the books that deal with vectors, as a rule one pays little attention to those 
aspects which we will use; instead of this one treats determinants, linear equa­
tions and matrices. Some books in which one can read about vectors are: A. 
HEIJTING, Matrices en determinanten; A. C. AITKEN, Determinants and matri­
ces; H. SCHWERDFEGER, Introduction to linear algebra and matrices; MCDUFFEE, 

Vectors and matrices; R. ZURMÜHL, Matrizen. 

3. FUNCTIONS WITH AS A RANGE OF DEFINITION A 
FINITE NUMBER OF POINTS 

The plots of a field trial P,,..., i^in an agricultural experiment can be charac­
terized: by their subscript; or by, say, three numbers x, — dosage of nitrogen, 
x2 = dosage of phosphate, x3 = a number that indicates which plot with the 
dosages xh x2 is meant; or in an analogous way by more numbers; or in many 
other ways. The result of an experiment may consist of a yield yk (k = 1, ..., 
N) for each of the plots. These yields together may be conceived as a real function 
with the plots Pt -fVas range of definition; for one understands by a function 
with this range of definition the assignment of a real number to each of the 
plots. 

As our considerations also apply to many problems where the word field ex­
periment will not be found, we will often replace the word experimental plot 
by 'point' (abstraction) and our interest will be focussed on real functions de­
fined on N points. Such a function can be represented in a simple way, viz. 
by writing the values of the function in the order (numbering from 1 to JV) of 
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the points, i.e. (y,,y2, ...,yN). 
It is clear, that the sum of two functions: a = (a,, a2, .... aN) and b = (b,, 

b2,..., bN) is obtained, by adding the function values i.e. the numbers at corre­
sponding places: a + b = (a, + b,, a2 + b2 aN + bN). Also if a is a real 
number, wa = oj(ah a2 , aN) = (coah a>a2,..., coa^,). 

By these properties of addition, and multiplication with a real number (w), 
functions can be conceived as vectors and the set of all real functions on A' points 
as a vector space E. 

EXAMPLES OF FUNCTIONS AND FUNCTION-SPACES CONTAINED IN E 

a) The function r assigns to each of N points the number 1: (1, 1 1). The 
constant/unctions are of shape (c,c c) = c.(\, 1,..., l).Theyforma I-dimen­
sional subspace of E wi th a basis: r = ( 1, 1,..., 1 ). 
Definition 1. 

This space is called the space of the general means. 
Suppose that one considers plots where a crop grows; all plots are treated 

in the same way and are subject to the same influences ('all influences are distri­
buted uniformly over the plots'). If moreover accidental deviations do not occur, 
then the yield would be a constant function (C, C,..., Q, hence a vector belong­
ing to the space of the general means (See chapter 4 and 9). 
b) The elementary characteristic functions. A function that assigns to one of the 
points the number 1, and to all other points the number 0, is called an elementary 
characteristic function. This function characterizes (= determines completely) 
the point concerned. There are N characteristic functions, viz. (I, 0, ..., 0), 
(0,1,0,...,0) (0,0,...,1). 

Theorem: Every function can be written as a sum of multiples of the elementa­
ry characteristic functions, or in other words: The elementary characteristic func­
tions form a basis of the vector space of the functions of N points. The vectors 
of this basis are independent, therefore the dimension of the space equals N. 

Proof of the statement in italics: The arbitrarily chosen function (y,, y2 

^ ) equals ̂ ( l ,0,0, . . . ,0)+>'2(0,1,0, ...,0) + ... + j ,v(0,0,0,. . . , 1). 

Definition 2: 
The number of degrees of freedom of a vector space is the dimension of that 

vector space. The number of degrees of freedom of the space of the general means 
is 1, that of the space E is N. 
c) The characteristic function of a class of points. If Pjt Pk P„are a number 
of points (= a class of points), then the characteristic function of this class is 
the function, that is 1 on the points of this class and is 0 on the other points. 
The function r, and the elementary characteristic functions are examples. 
d) The subspace of functions, determined by a classification ofP, PA. Suppose 
that an assignment (classification) (named A ) of the points P, PN to m classes 

'Translator's note: CORSTEN (1958, p. 26) introduced the symbol N for the space of the general 
means. 
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named at,.... am) is given (see the scheme, where cells instead of points are drawn; 
this has the advantage that a function can be represented by writing in every 
cell the value of the function; the cells can for instance refer to agricultural plots 
with equal areas). 

the function a| the function ryai + ... + rm-am 

ay 
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0 0 
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Fig. 1. Fig. 2 

The function represented in fig. 1 is the characteristic function of the class a,. 
We call this function (= vector) a;, and the naming of the other characteristic 
functions will be analogous. Next we consider all functions that are constant 
within each class of A. If the value of such a function at the points of the class 
ak is equal \o zk(k = 1 m), then it is clear that this function is a linear 
combination of the class characteristic functions of A, viz. r/-a/ + ... + z„,a,„. 
Because the m class characteristic functions are linearly independent, one has: 

Theorem: The set of the functions that are constant within the m classes of a 
classification A form an m-dimensional vector space, with the class characteristic 
functions as a basis. This vector space is denoted by A. 

A grouping of JV plots into classes can be of practical relevance, when the 
plots within a class are subject to the same treatment. If random deviations 
are negligible then one will expect, that the yields of the plots within each class 
are equal, i.e. they are a function (= vector) in the space A corresponding to 
the classification A. If we indicate the treatment or influence that differs in the 
various classes, also by the letter A, then such a function (= vector) is called 
the 'crude' main effect of the influence A. 

Definition 3: 
The space A is called space of crude main effects of the influence A. The number 

of degrees of freedom of the crude main effect (here) is m. 
To each of the classes of classification A one can assign a (different) value 

of a variable xt. All ordinary functions flx,) (with those values of X| as range 
of definition) can be taken as functions constant within the classes; thus in fact 
one gets the complete set i.e. the space A. The constant functions also belong 
to A, thus we can remark, that space A contains the space of the general means, 
in particular r. 

Conversely, it may occur in practice that the points of a given set have a prop­
erty that can be expressed quantitatively by a number, a value of the variable 
.V,. Those points for which JCJ has the same value, can be combined into a class; 
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thus a classification can be generated by the property (x;). The 'ordinary' func­
tions y(x;) determine the vector space of crude main effects corresponding to 
that classification. 

In practice one often meets the situation that for N points two classifications 
(A and B) are given instead of one. In that case, there exists a third classification 
determined by A and B, viz. that is generated by grouping into one class those 
points that are at the same time contained in one class of A and in one of B. 
In the figures 3,4, 5 this classification A x Bis indicated by drawn lines. 

Fig. 3. 

« l 

«2 

«3 

* i h h b4 

«2 

«3 

* l b2 h bA 

Fig. 4. 

b\ b2 • bi 

ai 

03 

Fig. 5. 

Theorem: The vector spaces A and B are contained in the vector space C 
= A x B determined by the two classifications; for each function that is constant 
within the classes of the classification A, is implicitly constant within the classes 
of the classification C. 

Definition 4: Let A and B be classifications, based on two properties such that 
the vector spaces A and B are the crude main effects of the properties (influences) 
A and B, then the vector space A x B is called the space of the crude interactions 
of the two properties A and B. (Writing C for A x B, one could also consider 
space C as the space of the crude main effects of a property ('influence') C). 

If with two classifications of N plots only combinations of the two correspond­
ing influences A and B would be effective and if all other possible influences 
were the same on all plots, and there were no random deviations, then one could 
expect, that the yields within the classes A x B would be constant, i.e. they 
would form a function ( = vector) in the space of crude interactions. 
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Just as before, one can also in this case assign to each of the classes of the 
classification A(B) a (different) value of a variable x, (x2). The functions of the 
space A can thus be written in the form f(xj) and A consists of all such functions. 

The analogue holds for the functions of the shape f(x2) and vector space B. 
Also the functions of the space A x B have now a simple expression: They 
are all functions of shape f(xb x2). Thus again one sees, that the space 
A x B contains the spaces A and B. 

The converse is also of interest: The points of a set have two properties, that 
are each quantitatively expressed by a value of the variables x, and x2, respective­
ly. Those points for which xt has the same value (x2 has the same value; xt 

and x^have the same value) can be grouped into one class, and thus the classifica­
tion A (resp. B and A x B) is generated. The functions of shape J[xi),ßx2), 
f{x,, x2) form the vector spaces corresponding to those classifications: the spaces 
of crude main effects and the space of crude interactions. 

In addition to one or two classifications of N points, it may happen that more 
classifications are made, e.g. 5. If these classifications arise from variables xh 

x2,..., x5, then some examples of interesting spaces of functions are: 
1. The space of crude main effects of the second influence: the functions/j^). 
2. The space of crude interactions of the influences 2 and 3: the functions 

ÄX2. x3). 
3. The space of crude interactions of the influences 2, 3 and 5: the functions 

Ä*2. x3. x5l 
4. The space of crude interactions: the functions fixj, x2, x3, x4, x5). 

Each of these spaces contains the preceeding ones. 

e. For a given problem one may need further different subspaces. Thus it may 
happen, that one has some explicity given functions: g, h and the function r, 
and that there is some reason to consider the space of functions that is spanned 
by these given functions, i.e. the set of functions X + /ig + vh; X, /z,v real vari­
ables. 

Often a subspace is determined with respect to a property of the points, which 
has to be measured. For instance given a variable x,, one can consider the linear 
functions (X + /tï/) or the quadratic functions (X + fix, + vx2,) or etc. in x, 
or in more variables. 

Exercise (3.1) 
Determine the dimensions of the spaces defined so far for the figures 3, 4 

and 5. 

Exercise (3.2) 
When measuring property A for a number of points, it turns out that variable 

x, takes only three different values. Prove, that the space of crude main effects 
of the influence A, coincides with the space of the quadratic functions in xh 

What can be said about the space of fourth degree functions in xtl Which dimen­
sion has the space of n,h degree functions in x, in this case? (n = 0, 1,2,...). 
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Exercise (3.3) 
At a number of points the variable x, takes four different and the variable 

x2 two different values. Both variables describe 'influences'. All combinations 
of the values of x, and x2 are present. Which are the dimensions of the spaces 
of the crude main effects and of the space of the crude interactions? Which are 
the dimensions of the spaces of the functions of degree 1, 2, 3, 4, 5 in xt\ idem 
in xy, idem in X/ and xp. 

In this final paragraph we mention the decomposition of a vector y into compo­
nent vectors. Suppose A, B, ..., H to be subspaces of E, that together span E, 
with dA being the dimension of A etc., d the dimension of E, dA -t- ... + dH 

= d, the subspaces being linearly independent. One can choose then a basis 
for each subspace, and these bases together form a basis of the space E. An 
arbitrary vector y can be written as a sum of multiples of the basis vectors and 
this in only one way. These multiples can be taken together in an appropriate 
way, by which it appears that the given vector y can be written as a sum of compo­
nent vectors each belonging to one of the subspaces. These component vectors, 
also called '(skew) projections', are indicated by yîA etc., such that holds: 

In the case that the projection is orthogonal, we drop the letter s. (Thus yiA 

= yA, if y - y,A J- A). 

4. THE GAUSSION MULTIDIMENSIONAL PROBABILITY 
DISTRIBUTION 

For a moment we return to agricultural terminology: There are given N plots. 
After an experiment one gets for each plot an observational result (yield) and 
one assumes it to be a sample from a normal distribution, thus (P = probability): 

M 

• - O W . ) 2 

P{ax <yl<bl)= I K / 2 * ) exP 2^ yx ( 1 ) 

«l 

The yields on the N plots together are a function (vector), and similarly the 
expectations, denoted by y and y respectively. One assumes, that the random 
variables yh .... » a r e independent, and it follows that probabilities as in (1) 
can be muTtipliedln order to obtain: 

P(yeG,i.e.here:a, < y, < bt,i = l,...,N) = 

= f(a y/ïÜ) 'Nexp ~ < y } x dyidy2..., dyN (2) 
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This determines the probability distribution of the random vector y. The inte­
grand is called the probability density of y. 

Note that (y — y)" is the inner produclof the vector y — y with itself, where 
the inner product of two vectors a = (a,, a2, ..., aN) and b = (bh b2, ..., bN) 
is defined by al-bl + a2-b2 + ... + aN-bN= (a, b) = ab. 

(The inner product has the following properties: 
(a, b+c) = (a, b) + (a, c); (a, b) = (b, a); (ma, b) = (a, cob) = <o (a, b) • ) 

The inner product opens the possibility to introduce some geometric terms, 
which for N = 3 with the mentioned presentation in our space appear to have 
the customary meaning. The square of the length of a vector y is defined by 
(y, y) = y2; a unit vector is a vector of length 1 ; the cosine of the angle q> between 
two vectors a and b is cos <f> = ab/^/aa • bb. Two vectors a, b are perpendicular 
to each other if ab = 0. 

Suppose that C\, e2 eN are mutually orthogonal unit vectors in E, and 
zhz2, ...,zNare numbers such that 

y = z,e, + z2e2+ ... + zNeN, 

then (zy, z2, ..., zs) are called coordinates of the vector y with respect to the 
coordinate system formed by eb e2, ..., e^. The inner product of two vectors, 
given by these new coordinates, has formally the same expression (y, y') = yty\ 
+ ... + y^y's = Z/z'i + z2z'2 + ... + zNz'N, as in the old coordinates, as appears 
by substitution. 

Integral calculus tells, that the integral (2) over an arbitrary region of the 
vector space is an expression in the variables zk which is the same as that in 
the variables yk. That the integrand remains formally unchanged, follows from 
the fact that the expression for the inner product remains the same. That the 
'volume-element' dyt dy2 ... dyN remains formally unchanged may be under­
stood as a property of determinants. 

As (2) arose from a product of integrals like (1), so one can, at least if the 
region G lends itself to it, also write the new integral in zh z2,.... zNas a product 
of integrals of the form (1), but now in zk. Anyhow the decomposition into 
factors holds for the integrand. From this it follows that the random variables 
zh z2,.... zNare stochastically independent. (The metric has been defined such, 
that stochastic independence of two linear vector functions implies, and follows 
from, orthogonality of the corresponding planes of constant function values.) 
Particularly the probability distribution of the random vector with new coordi­
nates, say, (z/, z2, z3, z4,0,0,..., 0) has a probability density 

while the probability distribution of the exponent except for a factor —2 is that 
of chi-square with 4 degrees of freedom ( = dimension). 
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Now let y be a random vector as dealt with in (2). Let A be a m-dimensional 
subspace of the vector space, and let yA be the orthogonal projection of y on 
A. In the space A one may choose m mutually orthogonal unit vectors, which 
one could supplement to N such vectors in the vector space E. These unit vectors 
would determine a system of orthogonal coordinates, and in particular it would 
follow, that (yA — yA)2/(i2 is a random variable with a probability distribution 
as that of chi-square (x2) with m degrees of freedom. This random variable how­
ever is also of interest without the necessity of referring to unit vectors and coor­
dinates. Finally as it appears, we can omit these and we obtain the 

Theorem: Let A be a m-dimensional subspace of E, y a random vector with 
a central-symmetric normal probability distribution; a the standard deviation 
of the random variable yt; E(y) = y; yA and yA, the projections of y and y on 
A, respectively, then the random variable 

( —v \*-
— j has the probability distribution of chi-square (%2) with 

a dimension m 

We shall now apply the metric in the vector space as introduced by the inner 
product, and return later to statistical considerations (chapter 7). 

5. THE SPACE OF THE PURE MAIN EFFECTS OF AN IN­
FLUENCE 

Once we have introduced a metric, we know when two subspaces are com­
pletely orthogonal: each vector of one space is orthogonal to each vector of 
the other space. 

Definition 5: 
Let A be a classification, based on a property (influence) of the N points, 

A the vectorspace of crude main effects, then the vectorspace of pure main effects 
A* is the subspace of A that consists of all vectors of A, that are orthogonal 
to the space of the general means. Each vector in the space A* is called a (pure) 
main effect. 

In chapter 3 we introduced the term 'crude main effect' by considering plot 
yields that would be obtained if only one influence would not affect all plots 
equally in form or degree. We do not wish, however, to accept as a component 
of a pure main effect of the influence A any increase in yield that has the same 
value on all plots and is exclusively due to a change of another influence, com­
mon to all plots. Thus we wish the definition of a pure main effect to be such, 
that the following two crude main effects determine the same pure main effect: 
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z = 

"l 
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z* 
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z-> 

z l 

«1 

Ö3 

r i + 4 

z, + 4 

z, + 4 

-',+4 

z,+ 4 

z, + 4 

The space of crude main effects contains as two completely orthogonal sub-
spaces: the space of the general means and the space of the pure main effects 
with as bases: 

- i , respectively; 

\r r ) is a pure main effect, if 2p + 2q + 2r = 0. 
Every crude main effect can be decomposed into component vectors in both 

these spaces, and the components are the orthogonal projections. As the ortho­
gonal projection z of the vector z onto the space of the general means is: to- r, 
and z — (o • r is perpendicular to r, it follows that: 

(z — air, r) = zr — co • 6 = 0 

^ _ Z , + Z, + Z? + 2 , + 7? + Z? _ 

Fig. 6. 

z is the one component of z, the other, the pure main effect of z, therefore equals 
z —z. 

For the two schemes we find for the first and second component respectively: 

z+4 z + 4\ / z , - z z , - z 
z+4 z + 4 land I z2 — z z2 —z 
z+4 z + 4/ \ z3 -z z 3 - z 

The pure main effects of the given schemes are thus the same. A pure main 
effect is a vector from which one can derive only the 'differences' in effect, as 
a consequence of differences in the influence. 
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Another numerical example: 

/23 23 23\ /19 19 19̂  
13 13 13 = 1 9 19 19 

\22 22 / \19 19 I 
+ 

The pure main effect can be decomposed into the sum of two 'differences': 

Exercise: 
Which are the dimensions of the spaces of the pure main effects for the schemes 

of chapter 3? 

Note: The number of degrees of freedom of the space of the pure main effects 
of an influence A, generating a classification of N plots in m classes, equals m 
- 1. 

6.THE SPACES OF THE PURE INTERACTIONS 

Definition 6: 
Let A and B be two classifications, based on two properties, then the vector 

space of the pure interactions is the subspace of the space of the crude interac­
tions, consisting of all vectors orthogonal to the spaces of the crude main effects. 
Each vector in this space is called apure interaction of A and Bx. 

Examples 
a) The space of the crude interactions (fig. 7) coincides with the space 

bx b2 of all functions on the 4 points (= plots). We already know 
the spaces: (1) of the general means; (2) of the crude main 
effects A; (3) of the pure main effects A; (4) of the crude main 
effects B; (5) of the pure main effects B. The space of the pure 
interactions also is 1-dimensional with basis: (6). a-, 

Fig. 7. 

1 Translater's note: CORSTEN (1958, p. 48) introduced the notation (A x B)* for the space of 
the 'pure interactions', containing the vectors of type yA x B — y A + B. One could be inclined to 
read y<A x B>* a s VA X B — Vyi however in cases where the productstructure in classification A 
x B is of no relevance, one may give a new name S to A x B and use ys« = ys — Y N 

( = YA x B — y!x) without confusion. 
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(1) 

f+ + 

+ + 

(2) (3) (4) 

+ + 
O O 

(6) (5) 

Example b) 

O O 

+ + 
+-+- ut: 

read: + = +1 , - = - 1 

The addition of the 
dimensions: 

General means 
A pure 
JSpure 
A x Äpure 

total (= number of plots) 

ai 

a2 

au 

*> b2 bm 

Fig. 8. 

1 

4 

The spaces A* and B* are of dimension k — 1 and m — 1, respectively. The 
space of crude interactions is of dimension km. The space of pure interactions 
is of dimension km — 1 — (k — 1) — (m — 1) = (k — 1) (m — 1); an independent 
basis is as follows: 

' + - 0 . . . 0> 
- + 0 . . . 0 
0 0 0 . . . 0 

0 0 0 0 

(+ - 0 . . . 0 ' 
0 0 0 . . . 0 
- + 0 . . . 0 

,0 0 0 . . . 0 , 

The addition of the dimensions: 
General means 
Pure main effect A 
Pure main effect B 
Pure interaction A x B 

1 
k - 1 
m — 1 
( * - l ) ( w - l ) 

total km 
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ƒ+ 0 0 . . . 
0 0 . . . 

0 0 0 . . . 

,0 0 0 . . 

, etc., number: 

( * - l ) ( iw-

read: + = 1 and 

1) 
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Exercise (6.1) 
Consider in detail the classifications 

«i 

<>2 

b, b2 bx bi b5 

a2 

°\ b2 h 

Fig. 9. Fig. 10. 

Example c) 

<*i 

Û3 

b, b2 

Fig. 11. 

The important spaces: general means (1), A* (2), B* (3), pure interactions 
(4), having e.g. the independent bases 

(1) (2) (3) (4) 

+ + + + + + + + 
+ + + + 
+ + + + 0 0 0 0 

+ + + + + + -
0 0 0 0 + + -

+ + -

- + + — + + — 
+ + 0 0 0 0 

- 0 0 0 0 + + 

Together they span the space of crude interactions (dimension 6). The space 
orthogonal to it is called here (see chapter 9) the space R of pure error R. Here 
Ris of dimension 12 — 6 = 6. A basis may be e.g. 

+ - 0 0 
0 0 0 0 
0 0 0 0 

0 0 + -
0 0 0 0 
0 0 0 0 

0 0 0 0 
+ - 0 0 
0 0 0 0 

0 0 0 0 
0 0 + -
0 0 0 0 

0 0 0 0 
0 0 0 0 
+ - 0 0 

0 0 0 0 
0 0 0 0 
0 0 + -

The addition of the degrees of freedom 
General means 1 
A pure 2 
B pure 1 
Interaction A x Apure 2 
R (residual) pure error 6 

total ( = number of plots) 

20 

12 
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Exercise (6.2) 
Determine the dimensions of the hitherto defined subspaces in each of the 

following eight cases, with bases and the addition of the dimensions for each 
of them. 

0) 

ÛI 

"2 

a2 

"3 

a4 

bx h 

ai 

a2 

*1 h 

a\ 

ai 

A. h 

(2) 

b\ bi b-j 

Fig. 12. 

b, b2 63 

Fig. 13. 

(3) 

a2 

<*i 

a4 

(4) 

«2 

03 

Fig. 14. 
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(5) The space of functions (with two influences)/ (xh x2) defined at (x, ; x2) 
= (1 ; 5), (3 ; 5), (3 ; 3), (3 ; 6), (4 ; 6), (4 ; 3), (1 ; 3). 

(6) The space of functions (with three influences; define (and compute the 
dimension of) the space of the interactions of the three factors) ƒ (x,, x2, x3) 
where the variables can take each the values 1,2,4 in all combinations. 

(7) Define the spaces of the pure linear (quadratic, 3 rd degree) main effects 
and interactions in the foregoing example. 

(8) The space of functions/(xh x2, x3) where the variables each take the values 
— 1 and + 1. Show that a basis of this space is given by the 8 functions 1, xjt 

x2, x3, Xi • x2, Xi • x3, x2 • x3, x) • x2 • x3. These vectors also are bases of the 
spaces of the pure main effects and interactions! 

Express these (5)... (8) functions in terms of characteristic functions. 

7. CONFOUNDING1 

Definition 7. 
Two influences, main effects or interactions are called confounded, if the corre­

sponding vector spaces have a subspace of positive dimension in common. They 
are completely confounded if these vectorspaces coincide. One vector space is 
called completely confounded with a second one, if the former is contained in 
the latter vector space. (Complete and partial confounding, respectively.) 

Examples 
a) 

ai 

Û3 

b) 

Fig. 16. 

C\ 

a2 

The spaces A and B coincide as well as the 
spaces A* and B*. The influences A and B are 
completely confounded. 

<"2 

b2 b. I-) 
Fig. 17a. Fig. 17. 

1 The dutch term 'strengelen' was suggested by dr. G. J. Vervelde. 
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There are given three classifications (A, B and C), where the classification 
C e.g. corresponds to an influence 'differences in fertility' ('blocks'). The space 
of the pure main effects B coincides with the space of the pure interactions of 
A and C (basis: fig. 17a). The (pure) interaction A x C and the (pure) influence 
B are (completely) confounded. 

b, b-> b-i 

fli 

a2 

"3 

1 

3 

2 

2 

1 

3 

3 

2 

1 

c) Latin square: Three classifications: A, B and C 
(fig. 18). C is given by the figures in the plots. Appli­
cation of the Latin square implies the assumption, 
that the interactions of the influences are negligible, 
because the following confounding applies. The pure 
main effect of C is completely contained in the space 
of pure interactions of A and B. 

Fig. 18. 

These 2- and 4-dimensional spaces have as bases: 

+ 
/+ -

0 + 
\ - o 

and 

/ + -
- + 

\ 0 0 
respectively. 

0 
— 
+ 

0 
0 
0 

+ 

o 

0 

— 

+ 
0 

0 
0 
0 

0 
0 
0 

+ 
0 

0 

+ 

0 

+ 
— 

0 
0 
0 

0 
— 

+ 

0 

+ 

0 
0 
0 

0 

0 

+ 

0 

+ 
— 

0 
0 
0 

- \ 
0 

+ / 

°\ - . 
+/ 

But also: The pure main effect A is completely confounded with ( = contained 
in the space of) the pure interaction of B and C. The pure main effect B is com­
pletely confounded with the pure interaction of A and C. 

d) (Compare Cox and COCHRAN (1) p. 156). Eight plots are grouped into 
two classes of four plots in four ways. A letter e.g. a indicates the plots that 
are in the second class, the other plots are in the first class of classification A 
etc. The fourth way (d) may refer to differences in fertility ( = blocks). The space 
of the pure interactions of A, B and Chas as basis: 

ab ac be (1) 

abed ad bd cd + + + + 
Fig. 19. 
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This vector is orthogonal to the spaces of the pure main effects A, B, C, but 
also orthogonal to the spaces of the pure interactions A x B, A x C and 
B x C: 

4 + + - - A D + - - + 
A pure: _ _ . A x B pure: _ _ 

I * \~ y l " "T~ 

Conclusion: The pure main effect Z) and the pure interaction A x B x C 
are completely confounded in this scheme. A similar confounding holds for e.g. 
A * B and C * D, or A and B* C* D, etc., as may be verified. 

8. ORTHOGONAL CLASSIFICATIONS 

Definition 8. 
Two classifications A and B are called orthogonal, if the spaces of the pure 

main effects A* and B* are (completely) orthogonal. If the scheme involves only 
these two classifications, then also the scheme is said to be orthogonal. 

Where possible, orthogonal classifications are preferred to non-orthogonal 
ones. For if P, Q and R are spaces that together span E, and if moreover these 
spaces are mutually orthogonal, then the 'skew projections' which we would 
like to know, will turn out to be equal to the orthogonal projections of a vector, 
and the last can be computed in a simpler way (see chapter 9, 10). The 'main 
effect component' of a given vector can be computed directly through (orthogon­
al) projection. If however A and B are not orthogonal, then the computation 
of the main effect components gives technically greater difficulty, although an 
approximation can be given (See chapter 11). 

Suppose that A and B are orthogonal classifications, i.e. the space A* is com­
pletely orthogonal to B*, or also A is completely orthogonal to B*. A basis 
for A may consist of the class-characteristic functions, the first of which will 
be: (1,1,...,1,0,0 0,0). 

A basis of B* (that is also orthogonal to the space of the general means) can 
be obtained from the class characteristic functions of B. Suppose that the i-th 
class 6, of classification Z? consists of ̂ elements (= points). A basis of the space 
B* is given by functions of the following type: On the elements of the Z-th class 
the value of the function is +//«,, on the elements of the 7-th class the value 
of the function is — //«,, on the other points the function is zero. The vectors 
of this basis are indeed orthogonal to the space of the general means. (Check 
this!). If such a vector is orthogonal to the first characteristic function of the 
classification A: (1, 1, 1, ..., 1, 0, ..., 0), and r{(rj) of the numbers 1/n,-(—!/«,) 
give a contribution # 0 in the inner product of the before mentioned basis vector 
of B* and the first class-characteristic function of A, then the inner product 
of the two vectors will be equal to zero and to xx • 1/n; — x}- 1/rij, and therefore: 

V l / i , - r / l / « , = 0. 
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Hence rt : r2 : r}: = n, : n2 : n3 : , and the same holds for the other 
classes of A. The elements of the classes of B occur in each class of A in the same 
proportion as in the whole scheme. A classification that the generality of this 
necessary and sufficient condition suggests, is presented in fig. 20, where the 
area of each cell indicates the number of'points' or plots in it. (Also see chapter 
14 and fig. 24). 

Other examples are given in chapter 3, fig. 3, 4; chapter 6 example a, h, c; 
chapter 7 example c. 

Note. For use in agricultural experiments one will not take the scheme of 
fig. 20 as an experimental plan, but one will randomize the treatment combina­
tions first. 

A 

"i 

a4 

bx h h B b4 *5 

Fig. 20. 

9. STATISTICAL CONSIDERATIONS 

The first statistical problem 
Referring to chapter 4 one can formulate the statistical problem in a simple 

manner. There is given an experimental result y, a vector in the N- dimensional 
space E. This y is an observation (realization) of a random vector y with a proba­
bility distribution as mentioned in chapter 4. It is further known, or it is sup­
posed, that the expectation y = £ (y) is a vector in a linear subspace D. The 
subspace D has to be defined for each special problem. One asks for the most 
likely estimate S(y) for y that is the one for which the probability density at 
y is the biggest possible. 
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This maximum likelihood estimate (briefly denoted as M. L.-estimate) is 
found by minimizing {y — S(y)}2 (see chapter 4) and the solution is given by 
the orthogonal projection of y on D: yD. (The proof of this geometric theorem 
will be omitted here.) 

Theorem: Given the experimental result y the maximum likelihood estimate of 
y " yD. 

As a rule the space D is spanned by a number of known linearly independent 
spaces U, V, ... W, such as pure main effect spaces. E.G. one assumes that 
y can be composed by an addition of main effects. It is not so much yD that 
is of interest, as well as the components of yD in the spaces U etc. As said before, 
it is a great technical advantage, if U, V,..., W are mutually orthogonal, since 
the mentioned component vectors then are orthogonal projections, which can 
be computed easily. 

The second statistical problem 
This concerns the demand for the most likely and sometimes for further still 

likely estimates for the standard deviation a. Let R1 be the space of all vectors 
in E orthogonal to D. The random vector yR = y — yD has the null vector 
as expectation, for y = yD according to the supposition at the start of this 
chapter, and therefore 

£(>>) = ^(y) - E(yp) = null vector 

where E(y) means expectation of the random vector y. 
A subspace such as R, for which it is a priori known that E(yR) = 0, is called 

a zero-space or a space of pure error. The largest space of pure error is called 
the space of pure error. 

The random variable yR/a2 has the distribution of chi-square /2 with a 
number of degrees of freedom, that equals the dimension of R: d(R) = d(E) 
— d(D). Given an experimental result y, an unbiased estimate S(a2) of a" is 
the solution of the right hand side equation in S(cr2): 

Additional acceptable estimates of <r2can be determined in the usual way, apply­
ing the table of chi-square, since an estimate S(<J2) of a2 is called acceptable 
if the number 

YR/V) 

computed from it does not take a practically impossible value. 
A value for #d

2
R is called practically impossible, if it belongs to a predetemined 

'critical region', having probability e.g. .01 or .05 for an experimental result. 

Translator's note: In the original T is used for the space of residuals. In the English text we have 
introduced consistently R of'residuals' instead of T. 
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The acceptable values form a confidence-interval at significance level .01 or .05, 
respectively. 

The third statistical problem 
This problem, most often met in the analyses of field trials, can be formulated 

as follows: 
In the space D, containing y, is contained a subspace V. One wishes to decide, 

whether for a given experimental result y the hypothesis that expectation vector 
y lies in V, is acceptable. In case y is in V, the random vector yD — yv (in D, 
but orthogonal to V) would have the null-vector as its expectation. Further (yD 
— y\)IG2 would have the chi-square-distribution with dimension J(D) — d(V). 
From the experimental result y one might extract a second estimate of a' by 

(yp - yv)2 

d{D)-d{V) 

The quotient of this last 'suspected' estimate and the former 'unsuspected' esti­
mate (the two are stochastically independent) is the number 

f _ (yp-yv)2 . yï 
d(D) - J(V) ' d(R) 

Then f might be considered as a random sample from the /-"-distribution of Sne-
decor with d(D) — d(V) and d(R) degrees of freedom respectively. With the 
table of Fwe can see, whether the experimental result f may be considered practi­
cally possible. Therefore we look for the number F0that satisfies at dimensions 
d(D) - J(V) and d{R): 

Prob. = P(F > F0) = .05 (or .01). 

The choice of the significance level (i.e. .05 or .01) is to be made by the experi­
menter. A value F > F0is considered practically impossible. (It has a probability 
of at most 1/20 of 1/100 resp.) If the experiment gives such a value for f, then 
we conclude that the experimental result does not fit the hypothesis 'y lies in 
V' and we consider the hypothesis as non-acceptable and reject it.1 

Note that computations are often simplified by the relation 

(yD - yv)2 = yD
2 - yv

2 

which follows directly from the orthogonality: (yD — yv, yv) = 0. 

1 For the power of the F-test, see H. B. MANN (7) p. 61. 
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10. TWO EXAMPLES 

Example 1 

«i 

«2 

«3 

yu 

tti 

ƒ31 

ƒ12 

ƒ22 

ƒ32 

ƒ13 

ƒ23 

ƒ33 

ƒ14 

ƒ24 

ƒ34 

In an agricultural experiment 
with 12 plots two influences 
are investigated. One assumes 
that the effect of these influ­
ences on the yield can be writ­
ten as the sum of an effect to 
be ascribed to the first influ­
ence and one ascribed to the 
second influence. In other 

words, one assumes that y is the sum of a general mean, a pure main effect 
in A and a pure main effect in B. In again other words: there is no interaction. 

In this case D is the space spanned by A and B. These spaces and their bases 
have been illustrated in chapter 6, example b. We wish to know the vector yD, 
i.e. the best estimate for y, and the skew (here orthogonal) components of yD 

in the space of the general means (the vector y) and in the spaces of the pure 
main effects (yA. and yB«). These are the M.L.-estimates of the general mean, 
the pure main effect A and the pure main effect B from this experiment. 

The vector y. Let 

The required vector is a multiple 
h of r satisfying: y — /r is orth­
ogonal to r. Hence 

(y - /r ,r) = (y,r) - X(x,x) = Zy9-X- 12 = 0. 

A = ^ ' = v k 12 y 

y = 

The vector yA. This vector can be computed most easily as the orthogonal com­
ponent in the space A* of the vector yA. The other orthogonal 
component is y, therefore 

yA« = yA - y. 
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The vector yA In the space A we consider the following orthogonal (!) basis: 
1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 1 1 

The orthogonal components of y in the directions of these vectors are (as a 
computation, analogous to that for y, shows): 

j v y\- )'\- y\- o o o o o o o o 
0 0 0 0 y2. y2- Ï1- Ï1- o o o o 
0 0 0 0 0 0 0 0 y^.yy y3. >-3. 

4 

withjv = I yylA 

The required yA is the sum of the above three vectors and therefore consists 
of row means or more generally: means over the classes of the classification 
A. The orthogonal projection yA of'y on A is thus a scheme that is obtained from 
y by replacing the numbers of y in each class of the classification A by the class 
mean. Hence: 

Iyi- yi- yi- yi-\ 
V A = lyi- yi- >2- J2-

\ys- >'3- J3- yyf 

Analogously we find 

/y-i y-2 y-i y-*\ 
Y B = j - i y-i y-i y-4 ; yB* = VB - y 

\y-\ y-i y-i y-4 J 

Thus the vector y can be decomposed into the following component vectors: 

y = y + ( y A - y ) + ( y B - y ) + yR (i) 

The maximum likelihood estimate for E(y) is 

S(y) = y + ( y A - y ) + ( y B - y ) 

yA — y, yB — y are the M.L.-estimates of the pure main effects. 
From (1) we can easily compute yR. Next it follows from (1) (Pythagoras): 

y2 = y2 + (yA - y)2 + (yB - y)2 + yR
2. 

Since: (yA - y)2 = yA
2 - f, (y„ - y)2 = yB

2 - y2. 

it follows y R = y2 - yA
2 - y B2 + y2-

The terms at the right hand side can be computed directly from the scheme 
of the numbers >'y. An estimate of a is given by yR/6 with t/(R) = 6. 
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The addition of the dimensions: 

General means 
A pure 
B pure 
Residuals 

Number of plots 

1 
2 
3 
6 

— + 
12 

It may be that one suspects that yB. = 0 is quite well possible. Then one 
wishes to investigate if the hypothesis, that the influence B has no effect, is ac­
ceptable, i.e. whether the experimental results obtained fit that hypothesis! In 
that case one has yD = yA. The space V mentioned in chapter 9 coincides with 
A. The space in D that is orthogonal to A happens to be B*. Therefore the 
hypothesis yB. = 0 will be tested, using the F-table with the dimensions 3 and 
6, by considering the number f: 

f _ y B
2 - y 2 y R 2 _ 2 ( y B

2 - y 2 ) 

3 " 6 y 2 - y A
2 - y B

2 + y2' 
Exercise: 

Do the computations for a numerical example (e.g. VAN UVEN [9]). 

Example 2 

"2 

ƒ11 

-K211 

ym 

ƒ213 

ƒ121 

y 22i 

ƒ223 

ƒ225 

ƒ122 

ƒ222 

ƒ224 

ƒ226 

ƒ131 

ƒ 231 : 

ƒ233 ; 

ƒ235 ; 

ƒ132 

ƒ232 

ƒ234 

ƒ236 

The addition of the dimensions: 

1) General mean 1 
3) Main effect .4, pure 1 
5) Main effect B, pure 2 
7) Interaction A x B, pure 2 
8) Residuals, pure error 14 

number of plots 20 

Besides the mentioned spaces, we may also consider the spaces of crude main 
effects A (2) and B (4) and the space of crude interactions^ x B(6). 
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Bases of these spaces are (read: + = +1 ; — = —1) 

(1) (2) (3) 

4) 

+ + + + +1 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0; 

'+ 0 0 0 0\ 0 + + 0 o\ /o 0 0 + V 
+ o o o o \ . / o + + o o \ / 0 0 0 + + 
+ o o o o l ' l o + + o o ) , l o o o + + 

v + o o o o / \ 0 + + 0 0/ \ 0 0 0 + +, 

'2 0 0 \ / 0 + + -
2 0 0 1 I 0 + + - -
2 0 0 l * l 0 + H • 
2̂ - - 0 0/ \0 + + - -

f+ o o o o\ /o + + o o' 
, , 0 0 0 0 0 ( 0 0 0 0 0 . 
' • o o o o o j ' l o o o o o ' e 

0 0 0 0 0 / \ 0 0 0 0 0 

5) 

7) 

8) 

'6 - 3 -3 0 0 \ / 0 3 3 -3-3> 
f-2 1 1 0 0 1 [ 0 - - + + 
-2 1 1 0 0 I I 0 - - + + 

y-2 1 1 0 0 / \0 - - + + ; 

'o + - o o\ /o o o o o\ /o o o o o\ /o 0 0 0 0̂  
0 0 0 0 0 + 0 0 0 0 / + o o o o \ /o + o o o 
0 0 0 0 0 ' - 0 0 0 0 ' 0 0 0 0 0 ' 0 0 0 0 0 

, 0 0 0 0 0 / 0 0 0 0 0 \ - 0 0 0 0 / \0 0 - 0 0) 
etc. 

Exercise: 
Check the orthogonality, where required, of these vectors. 

The component vectors 

y y y y y 
y~ S y y y y] '^ = 2ö r^Y* ; ' s u m m a t i o n o v e r a l l p l o t s ' 
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lyi- y\- y\- y\- >'i-

JA JA J , J A | n_ n y i y i n 

[yi- yi- )'2- y* y* 

where 

yi = - 1 the numbers in the first row 

y2 = jzE the numbers of the other rows 

(Compare the general definition of yA in the first example). 

yB' = yB - y; yB analogous to yA._ 
yAxB-pure = yAxB - y - (yA - y) - (yB - y) 
where 

yA x B — 

(}'U- ƒ 12- }'\2- yÜ- ƒ13-

ƒ21- ƒ22- ƒ22- ƒ23- ƒ23-

ƒ21- ƒ22- ƒ22- ƒ23- ƒ23-

t>'21- ƒ22- ƒ22- >'23- ƒ23- . 

and 

^i2- = 2O121 + ƒ122). ƒ22- = î (CV221 + ••• + >'22éX etc. 

Finally we have: yR = y - yA x B 

The question now may arise, 'whether there is (in a numerical example) inter­
action'. This concerns the question whether it is likely that there would be no 
interaction (and that we then still would get the given experimental result). In 
different wording, the question is whether it is likely that the expectation vector 
of the pure interactions equals the null vector, i.e. that y lies in the space spanned 
by the spaces A and B. This question (testing the null-hypothesis 'there is no 
interaction') is answered, by comparing for the given experimental result y, the 
number 

f ( y A > B - y A - y R + y ) 2 . ( y - V A * R ) 2 

2 ' 14 

with the number in the /"-table for the one-sided significance level .05 (or .01) 
at dimensions 2 and 14. 

An other question whether it is acceptable that the influence B has no effect, 
i.e. y = yA, is answered on the basis of the experimental result y by comparing 
the number 

f _ ( y A v B - y A ) 2 / 4 
(y -y A x B )7 i4 

with the table of Fat dimensions 4 and 14. 
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Numerical example 

'314 268 256 223 239 
254 174 176 183 167 
238 170 159 175 145 

1234 157 160 154 154, 

;y = 

f200 200 200 200 200^ 
200 200 200 200 200 
200 200 200 200 200 

,200 200 200 200 200, 

YA: 

YB = 

YAXB • 

'260 260 260 260 260 
180 180 180 180 180 
180 180 180 180 180 
1̂80 180 180 180 180, 

[260 190 190 180 180 
\ etc. 

r314 262 262 231 231' 
242 166 166 163 163 
242 166 166 163 163 

k242 166 166 163 163, 

;yA-y 

60 60 60 60 60^ 
-20 -20 -20 -20 -20 
-20 -20 -20 -20 -20 

1-20 -20 -20 -20 -20, 

) ; y B - y = ( 
60 -10 -10 -20 -20] 

etc. ' 

yAxBpure = y A x B - y A - y B + y = 

yR = y - y A x B 

(yAxßPure)2 = 648, dim = 2 ;y | = 1816, dim 

With the F-table we have to compare f = , 0 1 , ( . . = 2.50. 

I o 10/14 

At dimensions 2 and 14 and significance level .05 we find 

P(F> 3.74/2; 14) = 0.05, 
there is not sufficient indication to reject the null hypothesis 'there is no interac­
tion'. 'No interaction' is an acceptable hypothesis. 
Exercise: 

Investigate under the priori condition 'there is no interaction', whether it is 
likely that the influence A (or B, respectively) has a zero pure main effect. What 
is under this a priori condition the space R? Is it necessary to start the computa­
tions all over again? 

For the construction and computation of some numerical examples I thank mr. L. C. A. Corsten. 
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II. NON-ORTHOGONAL SCHEMES 

Jill 

ƒ21! 

ƒ311 

^112 

ƒ212 

ƒ312 

ƒ12 

>'22 

ƒ32 

ƒ13 

ƒ23 

The given scheme y represents an observation from a central symmetric 
bl b? b% normal distribution of a random 

vector y in a 11-dimensional vec­
tor space (See chapter 4 and 9). 
We suppose that apart from ran­
dom error, the effect on the yield 

a2 ƒ211 ƒ212 ƒ22 ƒ23 by the influences A and B are ex­
pressed exclusively by their main 

a3 y J n y 3 l 2 y i 2 effects, and not by any interac­
tion. In other words, the expecta­
tion vector y is a vector in the 

space D spanned by the spaces A and B (additivity). The M.L.-estimate of y 
for the experimental result y is the orthogonal projection yD. The last one can 
be resolved in a unique way into components: 1° y, a vector in the space of 
the general means, at the same time the orthogonal projection of y onto that 
space, 2° yjA», a vector in the space of pure main effects A* and 3° y,B. in B*. 

Thus we have: yD = y + yvA. + ysB> 
and y = yD + yR 

ysA* and y iB. are estimates of pure main effects. 
Besides one can consider ( = define) crude main effects, viz. yiA = y + yvA»; 

y.s-B = y + y,B»-
The addition of the dimensions: 

general means 
A pure 
Apure 
Residuals 

1 
2 
2 
6 

number of plots 11 

(If one would also consider an interaction A x B, the space of the pure interac­
tions would have dimension 3). 

Computation of yD and its component vectors mentioned does not present 
theoretical difficulties. By means of matrices a solution is easily formulated. 
However it is possible, as with orthogonal schemes, to compute good approxi­
mations to all estimates desired, by a technically simple and quick manner. 

The iterative technique that will be discussed, has been devised and applied 
a.o. by STEVENS (8) and HAMMING (4) (see YATES (11) p. 138). A different impor­
tant technique (by means of completing missing plots) will not be presented 
here (see (15)). 

A problem in plane geometry 
In order to provide an idea of the technique to be presented, we first consider 
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a simple geometric problem. Two non-coinciding vector spaces A and B and 
the vector z are given in a (2-dimensional) plane. 

One requires an expression for the component vectors zvA and zsB which con­
tain only sums, differences and orthogonal projections of vectors. (Our prefer­
ence for orthogonal projections naturally arises from the fact that orthogonal 
projections onto spaces that correspond to classifications, can be computed easi-
ly.) 

Figure 21 suggests that zjB is the limit of the sum of the vectors, (line segments) 
such as vb v2etc. An analogous remark can be made about zsA. We now define: 
V l = Z B — ZAB-

(zABis the orthogonal projection of zAon B); 
"i = VIA» the orthogonal projection of v, on A; 
v2 = u1B = v,AB 

etc. 

"/+! = U,B = V, (AB 1 = 1 , 2 , . 

From the figure it appears that the lengths of the vectors v,, uh v2, u2 . . . . 
in this order decrease: each 'new' element is cos </> (<j> — the angle between A 
and B) times smaller than the preceeding one. By this observation one can prove 
that the limit vectors 

ZQB = lim (y, + v2 + v3 + ... + v„) and 

ZOA = lim (zA - u, - u2 - u3 - ... - u„) 
« - • ^ 

exist. These vectors belong to B and A respectively. 
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Next we consider w = z — z0A - z0B: 

W = Z - ZA + U| + u 2 + ... - v, - v 2 - v3... 

One has: 

wA = z A - z A + u, + u2 + ... - u, - u 2 - u3... = 0. 
(check this accurately) 

wB = zB - zAB + v2 + v3 + ... - (zB - zAB) - v, - v3... = 0. 

The orthogonal projections of w onto A and onto B are zero, therefore w itself 
is the null vector. Thus it has been proved, that: 

w = z - zÖA - z„B = 0, i.e. z = z()K + z„B, 

therefore 

Z0A — zs\ = ZA — E U, 

ZQB = ZiB = I V,, 

Now we return to our original problem, and take the letters A, B etc. in the 
original meaning. The difference with our geometrical example is first the fact 
that A and B do not span the space E. The space E is spanned by A, B and 
R. Moreover A and B have as intersection the space of the general means. We 
now define: 

vi = yB - yAB-

This vector is in the space B, even in the space B*: for, because A and B contain 
the space of the general means, we have 

v i = (y - VA)B = (y - yA )N + (y - yA>B* = (y - yAfo* 

Next we define u, = v1A;v2 = u,B; in general: v i+, = uiB = viAB. 

The vectors u; and Vj are in the spaces A* and B*, respectively, and the same 
holds for the vectors 

yoB« = v, + v2 + v3 + ... ad inf. 
and 

yoA« = yA - y - U| - u2 - u3... ad inf. 

The convergence of these infinite sums can be proved. 
We will show that y0A. and y0B. are the skew projections ysA. and ysB., and 

therefore are the best estimates of the required pure main effects. For this pur­
pose we consider 

w = y - y 0 A ' - y o B * - y = 0 ) 

w = y - y A + u, + u2 + u 3+ ... - v, - v 2 - v 3 . . . . 
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As before we find directly: wA = wB = 0, and therefore w is orthogonal to 
the space A and B, i.e. to D. Thus w is a vector in the space R of residuals, 
and because the decomposition of y into component vectors, as determined by 
(1), is unique, we have 

w = yR , y = y + y 0 A ' + y OB* + YR 

VSA* = yoA«' y.vB« = YOB* 

Theorem: 

y,A = yA - £ u„ 

y,B« = £ v,-. 
1=1 

N.B. If convergence is fast, a good approximation of the main effects is obtained 
from the first few terms of these series. For an orthogonal design the convergence 
is very fast: 

A numerit 

<*\ 

h = a2 

°i 

y,A = yA.y,fl« = *• 

al example. 

A. 

314 327 

329 326 

269 271 

I = )'B-

t>2 

304 

305 

264 

y-

285 

306 

4 

4 

3 

yA (row-means) 

307,5 

316,5 

268 

yB 306 291 295,5 y = 300 

The vector yA is explicitly: 

yA = 
( 

307,5 
316,5 
268 

307,5 
316,5 
268 

307,5 
316,5 
268 

307 
316 •

5\ 

• 5 ) 
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yAB is obtained from it by replacing each number by the class average of the 
B-class to which it belongs. In an analoguous way one computes U! from V( 
and v2 from u | etc. 

a\ 

a2 

«3 

yB 

yAB 
Vl 

v2 

v.t 
v4 

v5 

bx 

2 

2 

2 

6 

306 
297.33 

8.67 
0.31 
0.03 
0.01 
0.00 

9.02 

h 

1 

1 

1 

3 

291 
297.33 

-6.33 
0.31 
0.03 
0.01 
0.00 

-5.98 

h 

1 

1 

2 

295.5 
312 
-16.5 
-1.37 
-0.11 
0.00 
0.00 

-17.98 

4 

4 

3 

YK 

307.5 

316.5 

268 

u, u2 u3 u4 u5 

-1.37 -0.11 0.00 0.00 0.00 

-1.37 -0.11 0.00 0.00 0.00 

3,67 0.31 0.03 0.01 0.00 

-1.48 

-1.48 

4.02 

y,B. = (9.02 ; -5.98 ; -17.98) 
y,A. = (8.98 ; 17.98 ; -36.02) 

w = y - y,B« - y*A» - y = 

-4 
2 

-4 

9 
-1 
-2 

1 
-7 
6 

-6 
6 

As a check one may compute wA and wB. If no computational errors have been 
made, a good approximation to the null vector should be obtained in both cases. 
(Otherwise we repeat the same operation on w.) If: wA = wB Ä 0, then w is 
a good approximation to yR, from which one can compute y\. 
The M.L.-estimate for a1 is 

y|/dR = yß/6 = 280/6 = 46.67. 

Additional acceptable estimates for a2 can be computed using the table of chi-
square 

We finally mention the third statistical problem for this case. E.g. we would 
like to test the hypothesis yiB. = null vector. 
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We thus ask whether it is an acceptable hypothesis that the influence B is 
without any effect. 

If this null hypothesis is true, then a second estimate of a will be (Note that 
yA is the orthogonal projection): 

(yp - y A)1 _ yp2 - YA2 _ y2 - yR
2 - yA

2 

d(B*) d(B*) d(B*) 

The computation gives 1202/2 = 601. 
Whether this null hypothesis is acceptable, may be decided by comparing the 

quotient f of the two estimates of a' with the F-table at dimensions 
dB* = 2,dR = 6. 

f - 3 ^ ^ - 1 ^ - 1 2 . 8 8 d{p*) d{R) 2 6 

P(F> 10,92/2;6) = 0,01 

Hence the null hypothesis will be rejected. Influence B has effect. 

On the speed of convergence 
The vectors vb u b v2, u2, ... are each (except V|) an orthogonal projection 

of a vector (the preceeding one) in the space B* (A*) onto the space A* (B*). 
The proportion of the lengths of two successive vectors in the sequence equals 
cos 4>, where 4> is the angle between the two vectors. The angle between an arbi­
trary vector in A* and a vector in B* has a minimum (if all pairs of vectors 
are considered). To this minimum ( # 0, unless confounding occurs) corresponds 
a maximum of cos <j> which will be represented by g. The (n + l)lh vector in 
the sequence vh Ui, v2, ... has a length ^ gn x length v,. It follows that for 
small g convergence will be fast. The value of g for an orthogonal design equals 
g = 0. 

For a non-orthogonal design that is obtained from an orthogonal scheme 
with m rows and n columns by omitting one plot, one has 

_J_ 
mn 

We remark that designs with more than two non-orthogonal classifications, 
can be analysed in an analogous way. 
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1 

2 

3 

3 

2 

1 

1 

3 

2 

2 

1 

3 

12. A FIELD TRIAL WITH LINEAR FERTILITY TREND 

/?i b2 i>3 b4 The given scheme represents a design of a trial 
field. The numbers 1,2 and 3 refer to an influence 
A (three varieties of wheat). Based on previous ex­
perience one presumes a fertility trend increasing 
from left to right. Moreover it is supposed, that 
fertility increases linearly with distance. A fertility 
trend according to complete rows of the scheme 
is assumed to be absent. In order to avoid the con­
founding of any further fertility trends with varie­

tal differences the varieties have been randomized within each column. The rear­
ranged table of yields is as follows: 

bl bi by bn 

y = a2 

«3 

It is also supposed that the influence of fertility trend and that of varietal differ­
ences have additive effects on yield. 

If we consider the space B corresponding to classification B, then it may be 
noticed that the linear fertility trends belong to it. An example of a pure ( = 
orthogonal to the space of the general means) linear trend is: 

>'ll 

y 2i 

y a 

>'|2 

>'22 

>'32 

>'|3 

J'23 

-V33 

V|4 

ƒ24 

>'34 

479 

495 

484 

491 

493 

492 

512 

515 

497 

510 

525 

507 

/ -3 -1 1 3 \ 
- 3 - 1 1 3 ) ; 

\ - 3 -1 1 3 / 
L is the space with basis q. 

It is now assumed that the expectation vector y, to be estimated, belongs to 
the space D, spanned by the spaces of (wheat varieties) main effects A, and 
L, the space with basis q. Again R is the space orthogonal to D, i.e. orthogonal 
to A and L. 

As L is in B*, L is orthogonal to A and we thus have: 

YD = y\ + yL; yA = yA« + y; y = yD + YR; and also 

y2 = yA2 + yL2 + yR2;yA .2 = y A
2 - y 2 . 

The addition of the dimensions 
General means l 
A pure 2 
L 1 
Residuals 8 

Number of plots 12 
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For y and yA (row means) we find for the numerical example: 

( 500 etc. \ / 498 etc. \ 

) ; ya= (z ) 
f = 12 x 5002 = 3,000,000; y\ = (4982 + 5072 + 4952). 4 = 3,000,312. 

The computation of yL proceeds as follows: yL is a vector of shape ?.c\ (A 
a real number), such that y — Aq is orthogonal to q: (y — Xq, q) = (y, q) 
— /(q, q) = 0. Hence 

, (y.q) 
(q .q )" 

= -3(>'n +.V;i +yu) - Ivi2+y22+.vn) + O'n+J^+J-':») + 3CV|4+.V24+J34) 
27 + 3 + 3 + 27 

_-3.1458-1476+1524 + 3. 1542 _ 300 
60 ~ 60 ' 

/-15 -5 5 15\ 
yL= -15 -5 5 15 

V-15 -5 5 15/ 

yL
2 = /2q2 = 25.60= 1500. 

For the test of the null hypothesis: 'the varieties do not differ in productivity 
(equal yields)' we compare with the F-value at numbers of degrees of freedom 
d{A*) = 2 and </(R) = 8, the number f: 

f - y ^ . ^ - y A 2 - y 2 . y 2 - y A 2 - y L
2 - . 312.256 _ 

f - 2 ' 8 ~ 2 • 8 ~ 2 - 8 - * ' ö / 3 -

We find in the table: P (F > 4.461 2 ; 8) = .05. 
The null hypothesis is rejected at a significance level .05; in other words: The 
varieties differ in their production. 

Comparison with the usual procedure 
The above procedure makes sense if we know beforehand that a linear fertility 

trend is a natural description of reality. Sometimes this hypothesis is plausible. 
The advantage in the method used is that the dimension of R is higher than 
if we define R as the space orthogonal to A and B (instead of A and L): d.f. 
equals 8 instead of 6. The 'unsuspected' estimate of a' thus is more accurate 
(= more efficient = the standard deviation of the (random) estimate is smaller) 
and this implies, that if the varieties are really different, we have with the proce­
dure given here, more chance of rejecting the null hypothesis than with the usual 
procedure at the same significance level (.05 or .01 ). In other words: The analysis 
(test procedure) used here has more power. 

In the example this situation accidentally finds a clear illustration. The maxi-
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mum likelihood estimates of ff are 

•S, 
y 2 - y A

2 - y L
2 256 

= —— = 32 against S„ = 
8 

2 2 2 — 2 

y - yA - yB + y 

196 = 32.67. 

The values of f are 4.88 and (y^ - y2)/2: Sn = 4.77, respectively. The numbers 
of degrees of freedom are (2;8) and (2;6), respectively. 
The F-table gives 

P(f > 4.46 | 2;8) = .05 
P(f >5.14|2;6) = .05 

Only in the first case the null hypothesis will be rejected at significance level 
.05. 

Note that with non-orthogonal schemes of the above type, the theory of chapter 
11 can be applied. 

13. LATIN SQUARES 

A Latin square is a scheme of«2 plots, that in more than two (usually three') 
ways can be grouped in n classes of« elements, such that every pair of classifica­
tions is orthogonal. In experiments the three classifications correspond to three 
influences, for which one assumes additivity in the effects on 'yield' or any other 
experimental result. In agricultural field trials sometimes two of the classifica­
tions represent fertility trends in two mutually perpendicular directions. In 
fig. 22 rows and columns correspond to classifications A and B; 

"\ 

"i 

Û3 

a4 

Û5 

*, 

C\ 

<"5 

Q 

3̂ 

Cl 

b2 

c2 

C\ 

c$ 

CA 

3̂ 

h 

Cl 

Cl 

C\ 

es 

CA 

b4 

CA 

C3 

Cl 

C\ 

c% 

b5 

Ci 

CA 

Ci 

Cl 

C\ 

Cl 

«3 

ö4 

«5 

C\ 

*, 

bl 

h 
b4 

h 

Cl 

b2 

h 
b4 

h 
*1 

Cl 

h 
b4 

h 
*. 

bi 

CA 

b, 

h 
bt 

b2 

h 

es 

h 
bx 

b2 

h 
b4 

Fig. 22. Fig. 23 

The name Latin square refers to three orthogonal classifications. If four orthogonal classifications 
are involved, then the name Graeco-Latin square is used. Latin and Greek letters in addition to 
rows and columns are used to indicate classifications. 
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in fig. 23 the same classifications are represented, rearranged such that rows 
and columns represent classifications A and C. An experimental result may be 
as follows: 

(We use the arrangement of fig. 22) 

a{ 

ai 

a-i 

a4 

«5 

bi 

Ju ' 

>'2,
5 

>'3|4 

y^ 

ys\~ 

b2 

.m.2 

y*1 

y*5 

V 
V 

b) 

yj 

y*2 

>•.,,' 

>'4,5 

J53 4 

*4 

ru4 

r 2 4
3 

J 3 4 2 

.V44 

V545 

*5 

.v15
5 

J-254 

r .353 

V452 

V55 ' 

The relevant spaces are: 

General means 
Apure 
Bpure 
Cpure 
residuals 

Number of plots 

dimension 
1 

n - 1 
n - 1 
n - 1 

n2 - 3n + 2 

1 
4 
4 
4 

12 

25 

In addition to the general assumption of chapter 9, we assume that the vector 
y belongs to the space D spanned by spaces A, B and C. The best estimate of 
y from the experimental result y is the orthogonal projection yD. As A*, B*, 
C* are mutually orthogonal, the decomposition of yD into component vectors 
is given by orthogonal projections: 

YD = y + yA* +_yß* + yc* _ 
yD = y + (yA - y) + (yß - y) + (y c - y) 

and y = yD + yR 

where yA«etc. are the best estimates of the pure main effects from the experimen­
tal result y. 

According to the theorem of Pythagoras one has: 

y2 = yD2 + )R = y2 + (yA - y)2 + (yß - y)2 + (y c - y)2 + yR
2, 

and because of 
(yA-y)2 = yA2-y2etc. 

y2 = yA
2 + yB

2 + yc
2 - 2y2 + yR

2. 

Thus yR may be computed. 
If now A and B in an agricultural field trial refer to fertility trends, C to varie­

ties, and y to production (yield), then the question might be posed whether the 
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null hypothesis 'the varieties do not differ in productivity' is acceptable given 
the experimental result. At this null hypothesis y\^/ci(R) = y R/(« — 3n + 2) 
is an estimate of pure error and yc./JC* = (y c — y )/(« — 1) is a suspected 
estimate. Testing the null hypothesis requires comparing 

J) f = -ixk •?)l(n-
yz

R/(^-3« + 2) 

with the F-table. 
For numerical examples see the literature. 

14. MULTIPLE COMPLETELY-ORTHOGONAL 
CLASSIFICATIONS (FACTORIAL DESIGNS) 

A set of classifications A, B,...,C of ./V points is called completely orthogonal, 
if each (e.g. A) is orthogonal to the product classification of the other classifica­
tions (B , Q , i.e. to the classification that consists of classes that are intersec­
tions of classes of all other classifications. If the classifications refer to influences, 
as is usual in this paper, then the property can also be formulated as follows: 
The space of pure main effects of any influence, is orthogonal to all spaces of 
interactions and main effects of the other influences, i.e. orthogonal to the spaces 
of all crude interactions of the other influences. 

c2 

>-' 

«- cube with unit side 

_u_' 

Fig. 24. 
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