




Tool 1: ‘Disease2QTL’, mapping human diseases to
worm eQTLs

Exploring the genetic variation data for human gene
orthologues in worm can provide useful insight into the
function and regulation of human diseases. WormQTLHD

provides a tool for human geneticists to explore novel
causal genes for a specific human disease by using worm
QTL findings. Using a selection of one or multiple human
diseases (from OMIM, DGA, NHGRI GWAS Catalogue
or GWAS Central), a ‘shopping’ page is presented with
worm gene expression probes and their human disease
association. More information about the gene orthology
mapping and association studies can be browsed. Users
can put individual probes, or all probes at once, into the
‘shopping cart’. Subsequently, they can explore the genetic
variation of those genes across the different experiments
and studies that are stored in the WormQTLHD database.
The shopping cart is a central place in WormQTLHD

where users can see the various worm gene probes that
they have selected, and create QTL/eQTL visualizations
from the items in the shopping cart using ‘Plot QTLs’.

Using the ‘Plot QTLs’ function, researchers can test if
genes associated with the selected diseases have any QTLs
and if they map to a common genomic region. Shared
QTLs suggest that those genes are regulated by the same
genetic variation and are possibly involved in the same
biological pathways. The genes with cis-QTLs in that
genomic region are used as candidate genes in several
types of studies (35–37). The same approach can be used
for causal genes of human diseases. Alternatively, users
can also select worm phenotypes (1504 total) instead of
human diseases as a starting point. The shopping window
is presented in exactly the same way as before, so users can
browse human diseases from a worm phenotype perspec-
tive instead, or simply shop for probes of choice for a
given worm phenotype and plot their QTLs, without
considering any human disease relation.

Tool 2: ‘Region2disease’, mapping worm genomic regions
to human diseases

Researchers can link worm genomic regions to human
diseases. This approach starts by selecting a region in

Figure 2. Cross-experiment search. WormQTLHD provides four tools to explore the database: mapping human diseases to worm QTLs
(Disease2QTL); mapping a worm genomic region to human diseases (Region2disease); mapping worm QTLs to human diseases (QTL2disease);
and linking worm phenotypes to human diseases (ComparePheno).
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the worm genome, e.g. a known ‘eQTL hotspot’, where a
number of eQTLs are located. The region is selected by
providing the chromosome name, start and end base pair
positions. Users can quickly define a region of interest by
using the location of any C. elegans gene. The database
then returns all worm gene expression probes that are
annotated in this region. From the probes, the corres-
ponding worm genes are gathered, plus their human
orthologues. The user is presented with a table containing
the human-worm orthology and disease/phenotype asso-
ciations in man and worm. After shopping for some or all
of the relevant probes, users can choose to visualize eQTL
results for them (similar to Tool 1), or perform a disease
enrichment test.
The hypergeometric gene overlap test (38) to discover

phenologs (phenotype orthologues) can be performed by
clicking on ‘Disease enrichment’. All probes in the region
are linked to their corresponding genes in worm, and a test
is performed whether this entire group of genes is signifi-
cantly ‘enriched’ for one or more human diseases by
overlapping orthologous groups and worm and human
genes. The statistical significance of phenologs (P-value)
is listed in an output table. A significant result means that
the input genomic region shares a significantly larger set of
orthologous genes with a human disease than would be
expected at random, even if the expressed phenotype in
worm appears very different from the human disease
phenotype (e.g. breast cancer and fertility). This tool can
provide novel interpretation of genomic regions of
interest.

Tool 3: ‘QTL2disease’, mapping worm QTLs to human
diseases

Researchers can start by selecting a QTL/eQTL in worm
to find potential relationships with human diseases. We
can select QTLs of interest based on three criteria: a
selected experiment, a certain threshold for significance
(LOD score) and a specific gene expression probe with a
suspected QTL. If there is a QTL with a LOD score above
the threshold, we automatically select the closest 50 probes
on both sides of the highest peak marker. These probes are
presented and available for browsing, shopping and
plotting of QTLs, or can be the input for the disease
enrichment test to find phenologs.

Tool 4: ‘ComparePheno’, linking worm phenotypes to
human diseases

WormQTLHD also provides a tool that links human
diseases to classical worm phenotypes (and vice versa) to
discover phenologs in a systematic way. Users begin by
selecting one or more human diseases and clicking on
‘Compare’. The genes associated with the selected
disease are tested for enrichment against all sets of
known associated genes for worm phenotypes. The
result reveals functionally coherent, evolutionarily
conserved gene networks.
Alternatively, users can also start by selecting worm

phenotypes, which are tested against human diseases. In
addition to cross-species testing, results of within-species
disease enrichment are also available (e.g. to find the

closest related human disease for another input human
disease).

Software used

All the software has been implemented using the open
source ‘MOLecular GENetics Information Systems’—
MOLGENIS—toolkit (26). The MOLGENIS toolkit is
Java-based software to generate tailored research infra-
structure on-demand (39). In particular, we built on an
existing MOLGENIS application, the extensible xQTL
workbench (40) and the R/qtl QTL mapping and visual-
ization package for the R language (41,42). All software is
available as open source on http://github.com/molgenis
for others to reuse locally. Related technical documenta-
tion is available at http://www.xqtl.org, http://www.rqtl.
org and http://www.molgenis.org.

RESULTS

To demonstrate the added value of WormQTLHD, we
have reproduced findings from known studies and have
shown that novel insights and hypotheses can be
achieved with little time and effort. Subsequently, we per-
formed a broad-sweep disease-enrichment test to find all
non-evident phenologs and to explore which new putative
candidate genes for human diseases could be elucidated
for future research.

Case 1: Linking disease to worm phenotype from
McGary et al. (23)

McGary et al. performed a phenolog mapping between the
high incidence of male C. elegans progeny to human
breast/ovarian cancers. Of 4649 total orthologues,
McGary et al. reported 3 overlapping genes of 12
human disease-associated genes and 16 worm pheno-
type-associated genes—which is a significant enrichment
(hypergeometric test P-value of �7.2� 10�6). From the 13
worm phenotype-associated genes that were not
overlapping, 9 had orthologues that had already been
linked to breast cancer in the primary literature. They
implicated the remaining four genes as new breast
cancer candidates. We replicated these findings using the
ComparePheno tool of WormQTLHD, searching for the
WormBase phenotype ‘high incidence male progeny’. The
first human disease among the results is ‘{Breast cancer,
susceptibility to}, 114480 (3)’ from OMIM. Our tool
reported 2 overlapping genes of 4 human disease-
associated genes and 63 genes from the worm phenotype.
This resulted in a P-value �1.4� 10�3 (uncorrected). The
second best human hit in the results is ‘malignant
neoplasm of ovary’ from DGA. We found two
overlapping genes of six ovarian cancer associated genes,
resulting in a P-value �3.41� 10�3 (uncorrected).
ComparePheno also indicated enrichment of these
categories. The P-values are ‘less significant’ than
McGary et al. because (i) their definition of ‘high inci-
dence male progeny’ included only 16 rather than 63
genes and (ii) they used an older INPARANOID
version, so the overlap test was performed on a different
orthologue mapping. Together, these results from our
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database do indeed replicate their findings. See Online Use
Case 1 on the Help page to repeat this case.

Case 2: Worm eQTL hotspot from two temperature
expression data from Li et al. (43)

Li et al. (43) found an eQTL hotspot (77.56Mb on
chromosome V) on the worm genome in which genetic
variation is associated with the expression of 66 genes,
while these genes are located elsewhere on the genome.
This indicates that these genes are possibly involved in
the same biological process/pathway and potentially
share a regulatory element. They may be physically
located on the eQTL hotspot, which controls gene
expression responding to different ambient temperatures.
First, we used the Region2disease tool and input positions
ChrV:15430739–16430739 (a non-cumulative 1Mb region
around the hotspot). We put all 931 probes located in this
region in the shopping cart, and selected ‘Disease enrich-
ment’. The best hit was ‘Response to antineoplastic
agents’ (agents used in chemotherapeutic treatment of
cancer) from GWAS Catalogue (P-value �4.92� 10�3,
uncorrected). For this hit, the associated human gene,
PPP2R5E, is orthologous to WBGene00012348 (pptr-1)
present in this region. The best WormBase hit is
‘thermotolerance increased’ (P-value �1.5� 10�2, uncor-
rected), also via association with pptr-1. Padmanabhan
et al. (44) showed that pptr-1 is involved in regulating
subcellular localization and transcriptional activity of
the forkhead transcription factor daf-16. Rodriguez et al.
(24) reviewed the role of heat stress response experiments
in C. elegans for detecting human disease genes. They
reported that daf-16 in worms controls lifespan and
stress response. In humans, the daf-16 orthologue
FOXO3A is associated with aging and prevalence of
cancer (45). Using the Disease2QTL tool, a search for
‘Response to antineoplastic agents’ results in six probes
for orthologues of PPP2R5E (WBGene00012348) and
ACOX3 (WBGene00019060). We selected them all and
plotted the QTLs. This revealed a highly significant
(LOD> 50) cis-eQTL for pptr-1 in the Rockman et al.
(9) dataset. Given all the evidence, we believe pptr-1
might be an interesting candidate in the further develop-
ment of a temperature-based C. elegans model for under-
standing human cancer and developing potential
therapeutic drugs. Moreover, it shows that combining
the ‘Region2disease’ and ‘Disease2QTL’ tolls can lead to
an interesting hypothesis ready for experimental valid-
ation. See Online Use Case 2 on the Help page to repro-
duce this case.

Case 3: Osmotic stress as a model for Bardet–Biedl
syndrome from Rodriguez et al. (24)

Rodriguez et al. proposed hypertonic or osmotic stress in
C. elegans as a model to study human diseases related to
protein aggregation, such as Alzheimer’s and Parkinson’s.
Hypertonic stress due to loss of water causes an intracel-
lular ionic imbalance, which leads to rapid accumulation
of organic osmotic glycerol and accumulation of damaged
proteins. Shaye and Greenwald (25) showed that osm-12
(associated with osmotic stress response) is orthologous to

BBS7 in man, which is associated to Bardet–Biedl
syndrome (46). We used the Disease2QTL tool to look
for QTLs associated with Bardet–Biedl syndrome by
selecting all ‘Bardet-Biedl syndrome’ entries (seven in
total) from OMIM. When we plotted the QTLs in worm
for these entries, three significant eQTLs (LOD> 5) were
found for osm-12 (in cis), bbs-5 (also in cis) and bbs-2 (in
trans). The strongest QTL (LOD> 6) was found for bbs-5,
reported by probe AGIUSA3442 in the Rockman et al.
dataset. We used the QTL2disease tool to investigate this
QTL further. It revealed a nearby, very significant eQTL
(LOD> 10) for a gene named T07C4.10, which can be
investigated further as a potential candidate for this
disease model. See Online Use Case 3 on the Help page
to replicate this example.

Novel disease–gene associations by ‘broad-sweep’
disease-enrichment test

We performed hypergeometric gene overlap tests to find
phenologs between all worm phenotypes versus all human
diseases. Table 1 lists the 15 most significant hits for
human diseases that have significant gene overlap
with worm phenotypes (see Supplementary Table S1
for the top 100). New candidate genes for human
diseases can be discovered from phenologs by
investigating human orthologues of worm genes that did
not overlap with known human genes of the disease of
interest.
McGary et al. (23) reported ‘Zellweger syndrome’ in

man to be a phenolog with ‘Reduced number of
peroxisomes’ in yeast (P-value <1.0� 10�9). Our best hit
was ‘Zellweger syndrome’ with ‘peroxisome physiology
variant’ in worm (P-value <3.6� 10�10). Encouragingly,
certain top hits such as ‘coenzyme Q depleted’ in
worm versus ‘Coenzyme Q10 deficiency’ in man, and
‘spontaneous mutation rate increased’ in worm
versus ‘Mismatch repair cancer syndrome’ in man make
sense, thereby validating this approach and adding
credibility to potentially non-evident human disease
models.

DISCUSSION

The current version of WormQTLHD (August 2013) is a
comprehensive and compendious database that enables
molecular model organism data to be studied in the
context of human diseases. Just as with WormQTL (24),
we believe that WormQTLHD will be continuously curated
by the members of the C. elegans community. The results
of the ‘broad-sweep’ disease-enrichment test in combin-
ation with the web tool will be of special interest to re-
searchers in the human or worm domain. We believe these
results could also be applied to prioritize the pathogenic
variants increasingly being produced by next-generation
sequencing in diagnostic labs. Genetic variants affecting
human genes of unknown function may have worm
orthologues that are part of human-worm phenologs
and these may reveal or imply a role in a human
disease. Thus, through functionally conserved networks,
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missing information can be inferred and candidate genes
can be selected via model organisms.
The approach of WormQTLHD is conceptually similar

to that described by Smedley et al. (47). They created an
automated method called PhenoDigm to provide evidence
about gene–disease associations by analysing phenotypic
information. In their case, phenotypes consist of a collec-
tion of ontology terms, which are aligned and scored to
derive an overall phenotype-similarity score. Using this
method, known gene–phenotype associations in model
organisms (mouse, zebrafish) can be transferred to other
organisms such as man, and help us to understand the
genetic cause of disease. This method works best when
the model organism is physiologically close to man and
has comparable classical phenotypes. It would
therefore be less useful for C. elegans. However,
combining the molecular (WormQTLHD) and phenotyp-
ical (PhenoDigm) approaches may result in a very
powerful tool to discover novel gene–disease associations
in man, especially when using physiologically close model
organisms.
We plan to further develop the WormQTLHD data and

toolset. There might be more ways in which researchers
would like to search through the large amounts of data,
for example, based on custom lists of gene identifiers, or
by combining tools such as finding QTLs within specific
regions. The QTL plots could be improved or replaced
with interactive graphs that are more informative and
would allow the users to continue ‘drilling down’ in the
data instead of returning to the home page for a new
analysis with a different tool. Furthermore, we envisage
close integration with other data sources and tools such as
WormNet, R/qtl and GO Enrichment to provide even
more biological context and analytical tools for the user.
Our new database makes this data attractive and

easy-to-use for an even wider community of quantitative
geneticists working on worms and man. We are committed
to maintaining the data and software in the future and
invite the community to add and share their new data
and ideas.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Table 1. Top 15 results for the ‘broad-sweep’ disease enrichment

Phenotype1 (Ce) Phenotype2 (Hs) n1 n2 k P-value

Peroxisome physiology variant Zellweger syndrome, 214100 (3) (OMIM) 3 4 3 3.58E-10
Coenzyme Q depleted Coenzyme Q10 deficiency, 607426 (3) (OMIM) 9 3 3 7.53E-09
Spontaneous mutation rate increased Mismatch repair cancer syndrome, 276300 (3) (OMIM) 42 4 4 9.88E-09
Mitochondrial metabolism variant Coenzyme Q10 deficiency, 607426 (3) (OMIM) 17 3 3 6.09E-08
AWA odorant chemotaxis defective Cardiofaciocutaneous syndrome, 115150 (3) (OMIM) 3 2 2 3.64E-07
Peroxisome physiology variant Adrenoleukodystrophy, neonatal, 202370 (3) (OMIM) 3 3 2 1.09E-06
AWC odorant chemotaxis defective Cardiofaciocutaneous syndrome, 115150 (3) (OMIM) 5 2 2 1.21E-06
Germ nuclei rachis Cardiofaciocutaneous syndrome, 115150 (3) (OMIM) 6 2 2 1.82E-06
Excretory cell development variant Rheumatoid arthritis (GWAS Catalogue) 3 5 2 3.64E-06
Bacterially unswollen Cardiofaciocutaneous syndrome, 115150 (3) (OMIM) 11 2 2 6.67E-06
Organism starvation response variant Ovarian cancer, somatic, 604370 (3) (OMIM) 12 2 2 8.00E-06
Neuron development variant Diastolic blood pressure (GWAS Catalogue) 17 11 3 9.85E-06
Ventral closure defective Wiskott–Aldrich syndrome (DGA) 8 3 2 1.02E-05
Egg laying imipramine resistant Bone mineral density (GWAS Catalogue) 26 23 4 1.08E-05
mRNA export variant disease by infectious agent (DGA) 4 6 2 1.09E-05

n1 indicates the number of orthologues in C. elegans (Ce) with phenotype1, n2 the number in H. sapiens (Hs) with phenotype2 and k the number in
both sets. The significance of each phenolog is assessed by the hypergeometric probability (P-value).
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