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Abstract 

Saravanan, S. (2013). Feed intake and oxygen consumption in fish. PhD thesis. 

Wageningen University, The Netherlands. 

In fish, the voluntary feed intake is influenced by dietary, environmental and/or 

physiological factors. It is well known that under hypoxia the concentration of oxygen in 

the water (DO) determines the feed intake of fish. However at non-limiting water DO 

levels (normoxia), several other mechanisms might play a role in feed intake regulation. 

Under hypoxia feed intake and oxygen consumption are interrelated. In this thesis we 

proposed the ‘oxystatic’ concept of feed intake regulation, which states that even at 

normoxia and in the absence of other constraints, the long term (weeks) voluntary feed 

intake of fish can be constrained by a set-point value of oxygen consumption. Dietary 

macronutrient composition affects the ‘dietary oxygen demand’ (i.e., amount of O2 

consumed per unit of feed). This oxystatic concept implies that fish fed to satiation with 

diets differing in ‘dietary oxygen demand’ (mg O2/ g or kJ feed) will have a different 

digestible energy intake but a similar oxygen consumption. The validity of the oxystatic 

concept was assessed in two species, Nile tilapia and rainbow trout. These fish were fed 

diets which had large contrasts in nutrient composition (i.e., protein to energy ratio; 

type of the non-protein energy source (starch vs. fat); amino acid composition) in order 

to create contrasts in dietary oxygen demand. In all conducted studies with both species, 

the digestible energy intake was affected by the diet composition. However, in some 

studies oxygen consumption was similar and in others it differed between the diets, 

which respectively supports and contradicts the oxystatic concept. In all studies with 

both species, the digestible energy intake of tilapia and trout was negatively related to 

dietary oxygen demand and positively related to efficiency of oxygen utilization for 

energy retention. Furthermore it was observed in tilapia that the within-day variation in 

feed intake was affected by dietary macronutrient composition. The variation in within-

day feed intake was related to pre-feeding oxygen levels. Based on the combined results, 

it is suggested that even at normoxia voluntary feed intake in fish is limited/determined 

by oxygen consumption and/or the oxidative metabolism. Overall, the oxystatic concept 

appears to be valid for certain conditions, but its generic application remains 

questionable. Yet, the oxystatic concept enables the combination of dietary, 

environmental and fish factors into one concept. Further it provides a conceptual insight 

for better understanding of feed intake regulation in fish. 
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Aquaculture continues to be one of the fastest growing (6.3% per year) animal food 

producing sectors worldwide and produces 47% of food fish for human consumption 

(FAO, 2012). The increasing demand for food fish from aquaculture requires 

intensification. In intensive fish farming, feed is the main input and takes substantial 

share in the total production cost. Thus, the quality of feed and feeding management is 

important economic criterion for fish farmers. Feeding fish to their voluntary feed intake 

level is essential to maximize the growth rate. Compared to terrestrial animals, the ad 

libitum feeding of fish under farming conditions is relatively time consuming and a 

challenging task due to the difficulty in measuring the actual feed intake (Cho and 

Bureau, 1998; Jobling et al., 1995). In addition, determining the voluntary feed intake of 

fish is complicated, since feed intake varies with changes in the environmental, dietary 

and physiological (animal) factors. Consequently, as a common practise, fish are fed 

(often below their voluntary feed intake) with a pre-determined feed ration that may be 

insufficient to realise their full growth potential. Therefore, a thorough understanding of 

the factors affecting voluntary feed intake and their underlying mechanism is important 

for a good prediction of the feed ration and for optimizing the feeding management in 

fish farming. 

Feed intake in fish 

As in mammals, voluntary feed intake in fish is considered to be under the control of a 

central feeding system (located in the brain) with hunger and satiation signals being 

transmitted through complex networking of peripheral neural and humoral signals (Lin 

et al., 2000; Volkoff et al., 2005). Several neuropeptides, specific protein molecules, 

gastrointestinal peptides, hormones and blood metabolites operate the switch on-off 

mechanism of feed intake in fish (Volkoff and Peter, 2006; Volkoff et al., 2009). These 

feed intake signalling molecules in fish (like other animals) are controlled by a multitude 

of complex factors (Jobling et al., 2012). In addition, fish adjust the voluntary feed intake 

on its own time window (on daily, weekly, monthly basis) depending on their 

physiological state, which is also affected by the quality of feed (De la Higuera, 2001) 

and the prevailing environmental/water conditions (Kestemont and Baras, 2001) (fig. 

1.1). 

The factors affecting feed intake in fish can be conveniently divided into short term 

(within-day) and long term (weeks) controlling factors. 

 

 



Chapter 1 | 13 
 

 

Figure 1.1 Factors influencing feed intake in fish 

Short term control of feed intake  

In short term, the maximum amount of feed a fish can ingest at a time is limited by its 

stomach (gut) volume and the gastrointestinal emptying rate (Grove et al., 1985; Jobling, 

1981; Vahl, 1979). Therefore, dietary physical characteristics (like excess starch and 

fibre) can also determine feed intake due to increase in the dietary bulk. However, the 

stomach volume increases in fish fed bulky diet over experimental periods of few weeks 

(in rainbow trout (Hilton et al., 1983; Ruohonen and Grove, 1996); in plaice, (Jobling, 

1982). In addition, the amount of feed intake often exceeds the normal level of intake 

after a period of feed deprivation (Rubio et al., 2010), which implies a flexibility in the 

gut volume. The gastrointestinal emptying rate is relatively fast in fish and varies widely 

between fish size, meal size and dietary characteristics (Güner and Davies, 2003; 

Hossain et al., 1998; Jobling, 1987). The gastrointestinal motility also depends on the 

environmental factors. For instance, the increase in water temperature increases the 

rate of evacuation (Brett and Higgs, 1970; Pérez-Casanova et al., 2009). Overall, the fish 

gut shows high morphological and functional plasticity towards the effect of dietary and 

environmental factors. Hence in long term, the physical limitation of gut will have 

minimal influence on the feed intake in fish. 

Besides the physical limitations of the gut, a number of single nutrient/metabolite based 

mechanisms control feed intake. A well-known mechanism in mammals is based on 

signals generated by blood glucose. This mechanism is known as glucostatic theory 

(Mayer, 1953). However, the control of feed intake in fish by blood glucose is 

controversial. In rainbow trout hyperglycemia induced by the oral administration of 

glucose did not induce significant change in feed intake (Soengas and Aldegunde, 2004), 

whereas, increased blood glucose levels induced by the intraperitoneal administration 
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of glucose reduced feed intake in common carp and gold fish (Kuz'mina and Garina, 

2001) and increased feed intake in rainbow trout (Polakof et al., 2008). It is usually 

considered that the circulatory glucose plays only a minor role in energy provision, and 

the low glucose turnover rates observed in fish seems to confirm this belief (West, 

1994). Overall, the glucostatic regulation of feed intake in fish apply to short term 

feeding whereas its relevance in the long term feed intake is unclear. Next to blood 

glucose, the circulating level of amino acids in the blood control feed intake in mammals 

via specific receptors in the brain (aminostatic theory) (Gietzen et al., 2007; Mellinkoff et 

al., 1956). Compared to mammals, protein plays an important role in energy supply in 

fish (Kaushik and Medale, 1994; Weber and Haman, 1996). The changes in the amount 

of dietary protein (Gurure et al., 1995) as well the composition of amino acids in the diet 

affects feed intake in various fish species (see De la Higuera, 2001). However, the direct 

impact of blood amino acids level on feed intake and its controlling mechanism is 

studied to a lesser extent (Kuz’mina, 2005). 

Long term control of feed intake 

A long term controlling factor of feed intake is not mutually exclusive from the short 

term controlling factor but is considered to have an additive effect. Like other animals, 

fish consume feed to satisfy the energy required for maintenance, growth and 

reproduction (Cho and Kaushik, 1985; Kaushik and Medale, 1994). If the energy demand 

for maintenance and growth of fish is presumed to be constant, then fish will maintain a 

similar energy intake when fed diets varying in macronutrient composition. Indeed in 

fish, a number of studies show similar digestible energy intake when fish were fed with 

diets varying in amount and type of digestible energy (Bendiksen et al., 2002; Boujard 

and Médale, 1994; Bromley, 1980; Kaushik and Luquet, 1984; Yamamoto et al., 2000). In 

contrast, other studies in fish show different digestible energy intakes suggesting an 

involvement of other factors rather than energy requirement in the control of feed 

intake (Alanärä, 1996; Figueiredo-Silva et al., 2012; Helland and Grisdale-Helland, 

1998). Besides energy requirement, an animal’s demand for target lean growth (protein-

stat) may control feed intake (Azevedo et al., 2004; Geurden et al., 2006; Millward, 1995; 

Peres and Oliva-Teles, 1999; Webster, 1993). In addition, Kennedy (1953) proposed the 

lipostatic control of feed intake in mammals which states that there is a set point for 

body fat reserve/adiposity which provides feedback signals for feed intake through 

leptin (Zhang et al., 1994). In fish, studies have shown that large fat stores reduce feed 

intake on a long term (Jobling, 1993; Jobling et al., 2002; Johansen et al., 2003; Shearer et 

al., 1997; Yamamoto et al., 2002), but the role of leptin in signalling adiposity in the feed 

intake regulation of fish is still unclear (Frøiland et al., 2012). 
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Overall, the majority of short- and long-term feed intake control mechanisms mentioned 

above could partly explain the feed intake response of fish to changes in the dietary 

factors (bulk, protein, starch, fat and energy), but fails to provide a systematic 

explanation towards the impact of environmental factors. A number of environmental 

factors (water dissolved oxygen, temperature, salinity, pH, ammonia etc.) affects feed 

intake in fish (see Kestemont and Baras, 2001). For instance, fish  exposed to a high 

water ammonia levels show differences in feed intake (Schram et al., 2010), but the 

increase or decrease in feed intake lacks a comprehensive explanation. Similarly, the 

impact of other environmental factors on feed intake of fish is rather descriptive and 

lacks conceptual mechanism. As feed intake of fish is affected by both the dietary and 

environmental factors, knowledge on the combined effect of these factors and their 

control mechanisms on feed intake are essential.  Since, oxygen consumption of fish is 

also influenced by several dietary (due to nutrient metabolism (Fu et al., 2007)) and 

environmental factors (e.g., temperature and nitrite effect on oxygen uptake capacity 

(Fry and Hart, 1948; Lewis and Morris, 1986)), it can be an unifying factor in explaining 

the control of feed intake in fish. Therefore, a thorough investigation on the link between 

oxygen consumption and feed intake in fish is needed for better understanding of feed 

intake control in fish. 

Oxygen in control of feed intake 

Availability of water oxygen 

Oxygen is involved in all aspects of animal life. The amount of oxygen in water is about 

20 times less than in the air and extracting oxygen from water is more difficult than 

from air (Kramer, 1983). Unlike in air, the amount of dissolved oxygen in water 

fluctuates greatly and is being the prime limiting factor for survival, feeding, growth and 

reproduction in water breathing fish (Kramer, 1987; Pauly, 2010). The impact of water 

dissolved oxygen on feed intake is widely documented in different fish species (Foss et 

al., 2002; Glencross, 2009; Pichavant et al., 2000; Thetmeyer et al., 1999; Tran-Duy et al., 

2012). In general, feed intake decreases linearly with decreasing water oxygen levels. 

The minimum concentration of dissolved oxygen in water at which the physiological 

oxygen demand of fish for feed intake is limiting is termed ‘incipient dissolved oxygen’ 

(iDO) (Tran-Duy et al., 2012). Below iDO, feed intake depends on the dissolved oxygen 

concentration of water but above iDO feed intake is independent of the water dissolved 

oxygen (fig. 1.2). 

The mechanism controlling feed intake under hypoxic condition is that the availability of 

the oxygen in the water is insufficient to meet the oxygen demand of fish for feed intake. 

At normoxia the availability of dissolved oxygen from water is sufficient to meet oxygen 

demand of the fish and thus will not constrain feed intake.  



16 | General introduction 
 

 

Figure 1.2 Relation between water dissolved oxygen level and feed intake in fish 

Oxidative metabolism 

Oxygen is essential for aerobic metabolism to derive energy (ATP) from protein, fat and 

carbohydrates for growth and maintenance. The consumption of feed gives rise to heat 

production which is proportionate to the post-feeding oxygen consumption of an animal 

(Kleiber, 1961). The oxidative metabolism of nutrients influences food/energy intake in 

mammals (Friedman and Tordoff, 1986; Scharrer and Langhans, 1986; Stubbs, 1996). 

The partitioning of ingested macronutrients (protein, carbohydrate and fat) between 

oxidation and storage/ deposition in the body provide feedback signals for energy 

intake (Stubbs, 1996). Compared to carbohydrate or protein, dietary fat is stored 

efficiently (less oxidised) in the body and the degree of oxidation is linked to their 

negative feedback on energy intake. Hence, the dietary fat is the least satiating than 

carbohydrate or protein (Stubbs, 1996). The protein and carbohydrate metabolism in 

the body is tightly regulated through obligatory oxidative disposal of nutrients resulting 

in a high satiating effect (Stubbs, 1998). Further, the oxidation of metabolic fuel is the 

common pathway providing signals for food intake regulation in mammals  (Friedman 

et al., 1986). 

Efficiency of oxygen utilization 

Besides the direct involvement of the oxidative metabolism in the control of food intake, 

it is widely accepted that the enhanced oxidative metabolism due to food/energy intake 

has putative negative effects on the animal in the long term. This is due to reactive 

oxygen species, which may impair cell function and vitality, leading to ageing (Dowling 

and Simmons, 2009; Kirkwood and Shanley, 2005). The negative effect of enhanced 

oxidative metabolism on animal fitness is considered as an intrinsic cost of food intake 
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(Illius et al., 2002; Masoro, 2000). Based on such notion, Ketelaars and Tolkamp (1992) 

initially proposed the ‘efficiency of oxygen utilization’ as a cost-benefit model (oxygen 

consumption vs. net energy) in the control of feed intake in ruminants. According to this 

theory, feed intake has both benefits and costs. Thus the animal would strive to optimize 

the benefits of feed intake (net energy) against the intrinsic costs of feed intake (oxygen 

consumption). In other words, an animal will try to maximize its net energy intake per 

unit oxygen consumed as shown in ruminants fed with different feed stuffs (Tolkamp 

and Ketelaars, 1992; Ketelaars and Tolkamp, 1996). The validity of the concept of 

oxygen efficiency in the regulation of feed intake in a broader context has been argued 

(Emmans and Kyriazakis, 1995; Forbes, 2007). Since the oxidative metabolism of 

nutrients and its consequence are fundamental to all animals, the above mentioned 

concepts of oxidative metabolism and efficiency of oxygen utilization can also be 

applicable in the control of feed intake in fish. 

Oxygen consumption 

The maximum amount of oxygen that a fish can obtain/uptake from water for aerobic 

metabolism is referred as active metabolism. The minimum oxygen consumption needed 

to sustain the physiological activity of an unfed fish is referred as routine metabolism. 

The difference between the routine metabolism and active metabolism is considered as 

the metabolic scope or scope for activity within which the fish must perform all 

activities including feeding to grow and reproduce (Priede, 1985).  The absolute 

metabolic scope (oxygen consumption) of fish can be constrained by anatomical (e.g., gill 

surface (Pauly, 1981)), physiological (e.g., cardiac output) and environmental (e.g., 

temperature (Fry and Hart, 1948)) factors. In certain fish species feeding and its 

associated cost alone can use the entire metabolic scope. For example, the rate of oxygen 

consumption of juvenile cod fed to satiation was close to the value of maximum oxygen 

consumption rate of active fish (Soofiani and Hawkins, 1982). Thus it can be assumed 

that the maximum feed intake of those fish can be constrained by the oxygen 

consumption. In line, Tran-Duy et al. (2008) studied the effect of changes in digestible 

energy (DE) source (fat vs. starch) in the diet on maximum feed intake in Nile tilapia and 

found a significant effect of DE source on the digestible energy intake of fish. A striking 

observation in that study was the similar heat production of fish, irrespective of 

differences in digestible energy intake and retained energy. Based on the observation of 

similar heat production, calculated as difference between metabolizable and retained 

energy, the authors postulated the involvement of limitation in oxygen uptake (e.g., gill 

surface area) for feed intake and nutrient processing. Similarly based on the oxygen 

uptake limitation in fish by diffusion at gill and gill surface area, van Dam and Pauly 

(1995), proposed the so called ‘oxygen limitation theory’. This theory states that the 
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maximum rate of feed intake of fish is related to the capacity to deliver oxygen for 

feed/nutrient processing. 

Taken together, even at non-limiting water oxygen levels (normoxia), many factors can 

set a limit on the oxygen consumption of fish such as a limited gill surface, a limited 

capacity of oxygen delivery to tissues and mitochondrial metabolism, and the negative 

consequences (reactive oxygen species) of oxidative metabolism. Moreover, in fish, the 

damage due to oxidative metabolism is assumed to be greater due to the presence of 

high level of polyunsaturated fatty acids (Bell et al., 1986) that are susceptible to 

oxidation (Gardner, 1989). Thus a fish should have a desired set-point value of oxygen 

consumption rate to perform all its functions, including feeding. 

Hypothesis 

In line with the above mentioned association between feed intake and oxygen 

consumption, we propose a hypothetical framework which could explain feed intake in 

fish under non-limiting water oxygen levels (above iDO or normoxia) as a function of 

oxygen consumption. Based on the observation of similar heat production together with 

differences in the digestible energy intake of Nile tilapia (Tran-Duy et al., 2008) we 

propose the concept of ‘oxystatic’ control of feed intake in fish, which states that the heat 

production (oxygen consumption) can control feed intake in fish. The relation between 

voluntary feed intake and oxygen consumption (fig. 1.3) illustrates two possible 

scenarios in the control of feed intake. 

First, it is speculated that at non-limiting water oxygen levels (normoxia) and in the 

absence of other potential constraints on feed intake, the voluntary feed intake in fish 

can be constrained by a set-point value of heat production or oxygen consumption 

(assumption-1, fig. 1.3). This set-point value is below the maximum aerobic capacity of 

fish. The fish would strive not to exceed the set-point oxygen consumption by adjusting/ 

regulating its voluntary feed intake on a larger time scale (weeks/months). If this is true, 

then indeed one would expect to observe identical heat production/oxygen 

consumption when fish fed different diets varying in the nutrient composition. 
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Figure 1.3 Assumptions on the relation between voluntary feed intake and oxygen 

consumption in fish 

Second, it is assumed that in certain situations the set-point heat-production/oxygen 

consumption cannot be attained (assumption-2, fig. 1.3) when fish fed diets of very low 

quality so that other constrains (e.g., gut volume) might limit feed intake. 

Also to test the ‘oxystatic’ concept, it is important that the normal oxygen 

uptake/aerobic capacity of fish should not be restrained by external factors (e.g., water 

oxygen level). In growing fish the amount of oxygen consumed per unit feed (mg O2/ g 

or kJ feed) can be altered by the type of dietary macronutrient (protein, fat and 

carbohydrates). In addition, depending on the type of dietary energy substrate oxidation 

and growth composition, the oxygen consumption per unit feed (mg O2/ g or kJ feed) 

and the utilization of consumed oxygen (net energy retained, kJ/mg O2 consumed) can 

be altered. For instance, the deposition of body fat from dietary fat is considered to be 

relatively inexpensive (480 kJ/mol synthesized or 0.015 kJ expended per kJ 

synthesized), whereas the formation of fat from either carbohydrates (6,100 kJ/mol 

synthesized) or amino acids (12,800 kJ/mol synthesized) is more costly’ (Reeds et al., 

1982). This trend would also reflect in the oxygen consumption of an animal.  Hence, fish 

fed diets having different macronutrients (e.g., different protein to energy ratio or 

changes in non-protein energy source (starch vs. fat)) will induce differences in oxygen 

consumption. This diet induced differences in oxygen consumption per unit feed intake 

is defined as dietary oxygen demand (i.e, mg O2 consumed/kJ digestible energy intake), 

which is represented by the difference in the slope of the line between Diet A and Diet B 

in fig. 1.4.  
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Figure 1.4 Hypothetical illustration on the effect of diet composition (diet A vs. diet B 

having high vs. low oxygen demand, respectively) on voluntary feed intake and oxygen 

consumption in fish 

If the ‘oxystatic’ concept holds true, feeding fish with diets having a high oxygen demand 

per unit feed intake (Diet A; fig 4) compared to the diet having a low oxygen demand per 

unit feed intake (Diet B; fig 4) would result in a different voluntary feed intake, however 

at an identical heat production/oxygen consumption. In other words, feeding fish to 

satiation with different diets contrasting in dietary oxygen demand will result in a 

similar oxygen consumption, but will have different feed intake (fish fed with low 

oxygen demand diet will have higher feed intake). 

Aim and outline of the thesis 

In fish, it is widely known that feed intake causes an increase in oxygen consumption. 

However, the impact of enhanced oxygen consumption induced by the ingested 

nutrients on the feed intake regulation has never been explored. Therefore, the general 

aim of this thesis was to investigate the role of oxygen consumption in control of feed 

intake in fish. Elucidating this role is important to understand why and how fish adjust 

their voluntary feed intake (in long-term and short-term/within day variation) in 

response to changes in the diet composition. 

The observation of similar heat production together with differences in digestible 

energy intake of Nile tilapia in the study of (Tran-Duy et al., 2008) was the trigger/basis 

for the concept of ‘oxystatic’ control of feed intake in fish proposed in this thesis. 

Therefore, the first objective was to verify the previous observation of similar heat 

production in other fish species (rainbow trout) under non-limiting water oxygen 

conditions (chapter 2). 
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The next step was to test the existence of ‘oxystatic’ control of feed intake by direct 

measurement of oxygen consumption in fish. The contrasts in dietary macronutrient 

composition (i.e., protein to energy ratio and non-protein energy source) were created 

to alter the dietary oxygen demand, which in turn will influence the oxygen consumption 

of the fish. Applying the changes in the macronutrient composition of diet, we tested the 

validity of the oxystatic concept in two species, Nile tilapia (chapter 3) and rainbow 

trout (chapter 4). 

Next to alteration in the dietary macronutrient composition, the quality of dietary 

protein (amino acid composition) was expected to alter the dietary oxygen demand. A 

balanced amino acid diet will have a lower oxygen demand than an imbalanced amino 

acid diet. Therefore, this was tested in rainbow trout at two water oxygen levels 

(chapter 5). 

In chapters 2 to 5 the focus was on the involvement of heat production/oxygen 

consumption in the long term control of feed intake in fish. However, the feed intake 

response of fish observed over weeks might be a result of short term feed intake 

regulation (within-day effect). Therefore in chapter 6, we assessed the impact of dietary 

macronutrient composition on within-day variation in feed intake and oxygen 

consumption of Nile tilapia, to test whether the within-day (morning vs. afternoon meal) 

variation in feed intake induced by diet composition is related to the within-day 

variation in oxygen consumption of fish. 

In the final chapter 7, the main results of all studies described in this thesis are 

discussed in line with the general objective and proposed the ‘oxystatic’ concept. 

Limitation and future perspectives of this concept and overall conclusions are 

presented. 
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Abstract 

The hypothesis was tested that fish fed to satiation with iso-energetic diets differing in 

composition will have different digestible energy intakes (DEI) but similar total heat 

production. Four iso-energetic diets (2 x 2 factorial design) were formulated having a 

contrast in i) the ratio of protein to energy (P/E): high (HP/E) vs. low (LP/E) and ii) the 

type of non-protein energy (NPE) source: fat vs. carbohydrate which were iso-

energetically exchanged. Triplicate groups (35 fish/ tank) of rainbow trout were hand-

fed each diet twice daily to satiation for 6 weeks under non-limiting water oxygen 

conditions. Feed intake (FI), DEI (kJ kg-0.8 d-1) and growth (g kg-0.8 d-1) of trout were 

affected by the interaction between P/E ratio and NPE source of the diet (P<0.05). 

Regardless of dietary P/E ratio, the inclusion of carbohydrate compared to fat as main 

NPE source reduced DEI and growth of trout by ~20%. The diet-induced differences in 

FI and DEI show that trout did not compensate for the dietary differences in digestible 

energy or digestible protein contents. Further, changes in body fat store and plasma 

glucose did not seem to exert a homeostatic feedback control on DEI. Independent of the 

diet composition, heat production of trout did not differ (P>0.05). Our data suggest that 

the control of DEI in trout might be a function of heat production, which in turn might 

reflect a physiological limit related with oxidative metabolism.  
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Introduction 

Fish under farming conditions are mostly fed pre-set amounts of a single feed type so 

that the fish cannot compensate feed intake (FI) for the eventual lack of a particular 

nutrient or for energy content, which may lead to reduced growth. Thus, predicting the 

feed ration close to the voluntary FI level of fish as a function of diet composition and 

culture conditions is essential to maximize growth rate and feed use and also to 

minimize feed wastage in the aquatic environment. This requires a better understanding 

of the dietary, physiological, and environmental factors affecting FI and their underlying 

mechanisms. 

Compared to mammals, mechanisms controlling FI are relatively less explored in fish. It 

was stated that “fish like other animals, eat to satisfy their energy requirements” (Cho 

and Kaushik, 1985). Indeed, among the dietary factors, the digestible energy (DE) 

content has been widely suggested to be a major determinant of FI control in several fish 

species such as rainbow trout, Oncorhynchus mykiss (Boujard and Médale, 1994; Kaushik 

and Luquet, 1984; Morales et al., 1994; Yamamoto et al., 2000), Atlantic salmon, Salmo 

salar (Bendiksen et al., 2002), Atlantic cod, Gadus morhua (Lekva et al., 2010), European 

seabass, Dicentrarchus labrax (Dias et al., 1998), turbot, Scophthalmus maximus 

(Bromley, 1980) and Channel catfish, Ictalurus punctatus (Page and Andrews, 1973). 

In contrast, some studies have shown that fish do not regulate their FI based on dietary 

DE density as a whole, as seen in rainbow trout (Cláudia Figueiredo-Silva et al., 2011; 

Geurden et al., 2006), Atlantic salmon (Helland and Grisdale-Helland, 1998), Arctic 

charr, Salvelinus alpinus (Alanärä, 1996) and European seabass (Peres and Oliva-Teles, 

1999), suggesting a possible role of energy or nutrient utilization and thus of DE source 

in FI regulation in fish. Recently, Tran Duy et al. (2008) studied the effect of changes in 

DE source (fat vs. starch) on FI in Nile tilapia, Oreochromis niloticus and found similar 

dry matter FI but different digestible energy intake (DEI) as affected by the DE source of 

the diet. One striking observation in that study was the similar total heat production of 

fish, irrespective of the diet-induced differences in ingested (DE) and retained (RE) 

energy. Based on the observation of similar heat production, calculated as the difference 

between metabolisable and retained energy, the authors postulated the involvement of 

heat production in the control of FI in Nile tilapia. Therefore, the present study further 

investigates the relation between heat production and the effect of macronutrient 

composition on FI and DEI in another teleost model, rainbow trout. We hypothesized 

that rainbow trout fed to satiation with iso-energetic diets, differing in protein to energy 

ratio (P/E) as well as in non-protein energy (NPE) source, would result in different DEI 

but with similar heat production.  
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Materials and Methods 

The experiments were conducted following the Guidelines of the National Legislation on 

Animal Care of the French Ministry of Research (Decree 2001-464 of May 29, 2001) and 

were approved by the Ethics Committee of INRA (according to INRA 2002-36 of April 14, 

2002). 

Diets 

Four diets were formulated in a 2 x 2 factorial design with protein to energy ratio (P/E) 

and non-protein energy (NPE) source as main factors, each consisting of two levels, 

being ‘high’ vs. ‘low’ and ‘fat’ vs. ‘carbohydrate’, respectively. The formulation and 

ingredient composition of diets are shown in Table 2.1. In order to have identical 

nutrient and energy density between diets, 15% of cellulose was included in the fat 

diets. We thus had four diets (Table 2.1) viz., high P/E ratio with fat as energy source 

(HP/EF), high P/E ratio with carbohydrate as energy source (HP/EC), low P/E ratio with 

fat as energy source (LP/EF) and low P/E ratio with carbohydrate as energy source 

(LP/EC). As expected, all four diets resulted in similar digestible energy content (~18 kJ g-

1) and contrast in P/E ratio between HP/E diets (~26 mg kJ-1) and LP/E diets (~14 mg kJ-1). 

The ingredient mixtures of each diet were extruded through a 2 mm die, dried, sieved, 

and stored in plastic bags (feed extrusion plant, INRA Donzacq, France). The analyzed 

nutrient compositions of the four diets are detailed in Table 2.1. 

Feeding trial and sampling 

Rainbow trout (O. mykiss) were obtained from the same parental stock (INRA Lées-

Athas fish farm, France) and were transferred to the experimental facilities of INRA 

(Donzacq, France) where they were acclimatized to the rearing conditions prior to the 

start of the feeding trial. The experimental setup consisted of 12 independent circular 

tanks (150 L) in a flow-through system (flow rate, 0.4 L sec-1;  water renewal in tank 

minimum 8 times per h) supplied with natural spring water having a temperature of 16 

± 1°C (mean ± SD), average pH (7.4), ammonia (<0.05 mg L-1), nitrite (<0.02 mg L-1), 

nitrate (<15 mg L-1),  dissolved oxygen (DO; > 8.5 and >7.0 mg L-1 respectively in inlet 

and outlet) under natural light regimen (February-April). At the start of experiment, fish 

(32.4 g initial body weight) were sorted for homogenous size and randomly allotted 

among the 12 tanks (35 fish/tank). Diets were assigned randomly to triplicate tanks and 

hand-fed twice daily to visual satiation (i.e., feed distributed until the fish stop 

displaying active feeding) in morning and afternoon. In total, the feeding trial lasted for 

7 weeks, during the first 6 weeks (growth period) we assessed feed intake, growth and 

nutrient utilisation, and then fish were allowed to recover for 1 week (recovery period) 

before post-prandial sampling. During the growth period, mortality was monitored daily 
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and fish were group weighed every 2 weeks to calculate intermediate growth and feed 

intake. A random sample of 36 h feed deprived fish were euthanized (overdose of 

anaesthesia, 2-phenoxy-ethanol) and stored at -20ºC for subsequent analyses of whole 

body composition, at the beginning (35 fish) and end (8 fish/tank) of the growth period. 

At the end of the 6 weeks, all fish were counted and weighed to calculate the final body 

weight of fish. The fish were then continued to be fed their respective diets for a period 

of 1 week (recovery period) prior to post-prandial blood sampling. At 7 h post-feeding, 

nine fish per dietary treatment were sampled for blood. The blood was drawn from the 

caudal vein and transferred into a vial containing 20 µl anticoagulant (2g potassium 

oxalate + 1 g sodium fluoride in 100 ml distilled water). Blood samples were centrifuged 

(3000G, 10 min) and the plasma obtained were stored at -20° C until analyses of glucose 

and triglycerides. 

Digestibility study 

In parallel to the 6-week feeding trial, a separate 4-week digestibility trial was 

conducted at the INRA fish rearing unit (St Pée-sur-Nivelle, France) with rainbow trout 

from the same stock as in the feed intake study. Fifteen fish (mean body weight, 65 g) 

were stocked in 12 cylindro-conical tanks (60 L) connected to an automatic faeces 

collection unit (Choubert et al., 1982), the diets were assigned randomly among tanks in 

triplicates. The tanks received continuous supply of water (14 ± 1°C; mean ± SD) from 

the recirculation water system and were maintained at uniform conditions throughout 

the experiment. Prior to faeces collection, fish were acclimatized for a week to the 

experimental conditions and to their respective experimental diets. Diamol (acid 

insoluble ash, AIA) was added into the feed as inert marker for determining digestibility. 

Fish were fed twice daily (1.5% of body weight) and faeces collected twice daily over 3 

weeks, pooled per tank and stored at -20°C. 

Chemical analyses  

Whole fish from each tank were ground, pooled and fresh moisture content was 

determined. Fish and faeces were subsequently freeze-dried before further analyses. 

The nutrient compositions of fish, diet and faeces were analyzed according to the 

following procedures. Feed, faeces and whole body samples were analyzed for dry 

matter (105ºC for 24 h), protein (Kjeldahl; N x 6.25) after acid digestion, fat content of 

feed and faeces (Folch et al., 1957) using dichloromethane instead of chloroform and the  
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Table 2.1 Formulation, ingredient composition and analyzed nutrient content of 

experimental diets 

 Diets1 

HP/EF HP/EC LP/EF LP/EC 
Ingredients (%)     
 Protein mixture2 66.0 66.0 35.9 35.9 
 Oils3 11.0 1.0 19.1 9.1 
 Gelatinized maize starch4 5.0 30.0 24.3 49.3 
 Cellulose5 15.0 0.0 15.0 0.0 
 Other6 3.0 3.0 5.7 5.7 
Analyzed nutrient content on DM basis (g kg-1)   
 Dry matter (DM; g kg-1 diet) 938 924 949 947 
 Crude protein (N x 6.25) 519 511 276 261 
 Crude fat 152 34 207 143 
 Total carbohydrates7 254 380 444 528 
 Starch 49 303 246 456 
 Ash 75 75 73 68 
 Gross energy (GE; kJ g-1) 22.8 20.6 22.8 21.2 
 Digestible energy (DE; kJ g-1) 18.70 18.27 18.74 18.19 
 DP/DE (mg kJ-1)8 26.5 26.8 14.1 13.7 

1 HP/EF - High P/E ratio diet with fat as main non-protein energy source; HP/EC - High P/E ratio 
diet with carbohydrate as main non-protein energy source; LP/EF - Low P/E ratio diet with fat as 
main non-protein energy source; LP/EC - Low P/E ratio diet with carbohydrate as main non-
protein energy source 
2 Protein mixture (% mixture):  50% fishmeal (Sopropêche 56100 Lorient, France), 16.5% 
soybean protein concentrate (Sopropêche 56100 Lorient, France) , 16.5% pea protein 
concentrate (Roquette 62080 Lestrem, France), 16.5% wheat gluten (Roquette 62080 Lestrem, 
France) and 0.5% DL methionine (Ajinomoto Eurolysine 75017 Paris, France). 
3 Oils: rapeseed oil (Daudruy 59640 Dunkerque, France) in HP/E diets; 5% (% diet) fish oil 
(Sopropêche 56100 Lorient, France) and the remaining part from rapeseed oil in LP/E diets.  
4 Gelatinized maize starch: Roquette 62080 Lestrem, France. 
5 Cellulose: Rettenmeier et Sohne 73494 Rosenberg, Germany 
6 Other (% diet): 2% Diamol (indigestible marker, Diamol GM, Franz Bertram Hamburg, 
Germany); 1% vitamin and mineral premix (INRA UPAE 78200 Jouy en Josas). For LP/E-diets 
0.4% CaCO3, 1.8% Ca(HPO4)2, and 0.5% Na2CO3 were added.  
7 Calculated as, total carbohydrates (starch, free sugars, cellulose) = 1000 - (crude protein + 
crude fat + ash). 
8 DP/DE (Digestible protein to digestible energy ratio) = (Crude protein x % apparent 
digestibility coefficient of crude protein)/ (gross energy x % apparent digestibility coefficient of 
gross energy- see table 2.4). 
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fat content of fish by petroleum ether extraction (Soxhlet; 40-60ºC) and gross energy 

content by adiabatic bomb calorimeter (IKA-Werke C5000). Ash contents were 

determined by combustion in muffle furnace (550°C for 12 h). The same ash samples of 

feed and faeces were used to determine acid insoluble ash (ISO, 1981). Starch content 

was determined as glucose, using the amyloglucosidase/ hexokinase/glucose-6-

phosphate dehydrogenase method after ethanol (40%) extraction and starch 

decomposition in dimethylsulfoxide/ HCl (ISO, 2005). Plasma glucose and triglycerides 

were determined following the procedures provided in the commercial kits, Glucose 

RTU (nº 61269) and Triglycérides (PAP 150 nº 61236) from Bio-Mérieux, Marcy-

L’Etoile, France. 

Calculations 

The mean individual initial (Wi) and final (Wf) body weight of fish was obtained dividing 

the total initial and final fish biomass of the tank by the number of fish present in tank at 

start and end of study respectively. Absolute growth of fish (in g d-1) was calculated as 

the difference between mean individual final (Wf) and initial (Wi) body weight of fish 

per tank divided by duration of experimental period (t). The geometric mean body 

weight (WG; in g) is calculated as�(Wi	x	Wf), from which mean metabolic body weight 

(MBWG; in kg0.8) was calculated as (WG/1000)0.8. Growth rate on metabolic body weight 

(GRMBW; in g kg-0.8 d-1) was calculated as (Wf-Wi)/(MBWG x t). Daily growth coefficient 

(DGC, in % d-1) was calculated as 100 x (Wf1/3 –Wi1/3)/t.  

Absolute feed intake (FIABS; g DM fish-1 d-1) was calculated on dry matter (DM) basis as 

FItot/(n x t) where FItot is the total feed intake per tank (in g DM) over experimental 

period, n is the number of fish in tank and t is the experimental period. FI as fed (g fish-1 

d-1) was calculated in similar way as FIABS but on as fed basis. Feed intake of fish 

expressed as a percentage of body weight (FIPCT; % d-1) was calculated as (FIABS/ WG) x 

100 /t and feed intake per metabolic body weight (FIMBW; g DM kg-0.8 d-1) was calculated 

as FIABS/ MBWG. Feed gain ratio (FGR; dry matter intake/wet weight gain) was 

calculated on DM basis as FIMBW/ GRMBW. 

Apparent digestibility coefficients (ADC, in %) of dry matter, crude protein, crude fat, 

total carbohydrate, gross energy and ash were calculated for each tank using acid 

insoluble ash (AIA) as inert marker as described previously (Tran-Duy et al., 2008). 

Apparent digestibility coefficients were calculated as ADCX = (1− (AIAdiet /AIAfaeces) × 

(Xfaeces /Xdiet)) ×100, where X represents dry matter, crude protein, crude fat, total 

carbohydrate, gross energy and ash, AIAdiet and AIAfaeces are the AIA content in the diet 

and faeces, respectively and Xdiet  and Xfaeces are the quantity of X in the diet and faeces, 

respectively. 
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The parameters of nitrogen balance (mg N kg-0.8 d-1) and energy balance (kJ kg-0.8 d-1) 

were calculated per tank, without changes as described earlier (Tran-Duy et al., 2008). 

The gross nitrogen intake (GNI) was calculated as product of total feed intake (g DM kg-

0.8 d-1) and nitrogen content of feed (mg g-1). The digestible nitrogen intake (DNI) was 

calculated as product of GNI and ADC of nitrogen (%). Faecal nitrogen loss (FN) was 

calculated as the difference between GNI and DNI. The retained nitrogen (RN) was 

calculated as the difference between nitrogen content of final and initial fish carcass. 

Branchial and urinary nitrogen loss (BUN) was calculated as difference between DNI and 

RN. Parameters of energy balance were calculated as follows: gross energy intake (GEI) 

as the product of feed intake (g DM kg-0.8 d-1) and energy content of the diet; digestible 

energy intake (DEI) as product of GEI and ADC of energy;  metabolisable energy intake 

(MEI) was calculated as the difference between DEI and the branchial and urinary 

energy loss (BUE), which was estimated as BUE = (BUN×24.85)/1000, where 24.85 is 

the amount of energy (in kJ) equivalent to 1 g excreted nitrogen, assuming that all 

nitrogen is excreted as NH3–N (Bureau, 2002); retained energy (RE) as the difference 

between energy content of final and initial fish carcass. The total heat production (H) 

was calculated as the difference between metabolisable energy intake (MEI) and 

retained (RE) energy from the energy balance. Similarly, the fat balance (mg kg-0.8 d-1) 

was calculated per tank. The gross fat intake (GFI) was calculated as product of total 

feed intake (g kg-0.8 d-1) and fat content of feed (mg g-1). The digestible fat intake (DFI) 

was calculated as product of GFI and ADC of fat (%). Faecal fat loss (FF) was calculated 

as the difference between GFI and DFI. The retained fat (RF) was calculated as difference 

between fat content of final and initial fish carcass. 

Statistical procedure 

Statistical analyses were performed using SAS 9.2 (SAS Institute, Cary, NC, USA). Data 

were analyzed for the effect of P/E ratio, type of NPE source and their interaction by 

two-way ANOVA (PROC GLM). Normal distribution of the residuals was verified using 

Kolmogorov-Smirnov’s test (PROC UNIVARIATE). The faecal fat loss (FF) overruled the 

assumption of normal distribution (P <0.05) and logarithmic data transformation 

satisfied the assumptions. In the case of a significant interaction, post-hoc pair wise 

comparison of means was done using Tukey-Karmer test.   
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Results 

Feed intake and growth 

Feed intake (in g fish-1 d-1, g DM fish-1 d-1, % d-1, and g DM kg-0.8 d-1), growth (in g d-1 and 

g kg-0.8 d-1), and feed gain ratio (FGR) were significantly affected by the P/E ratio and by 

the NPE source of the diet with a highly significant interaction between both factors 

(Table 2.2).  

Within HP/E and LP/E groups, feed intakes were affected by the type of NPE, being lower 

in trout fed carbohydrate relative to fat as NPE source. The effect of NPE source on FI 

was greater with LP/E diets (~20% difference) than with HP/E diets (~11% difference); 

with lowest intakes registered in trout fed the LP/EC diet (11.6 g DM kg-0.8 d-1). Trout fed 

the diets containing fat as NPE source, i.e. HP/EF (16.6 g DM kg-0.8 d-1) and LP/EF (15.4 g 

DM kg-0.8 d-1) had similar dry matter intakes, irrespective of P/E ratio. Intakes of trout 

fed the diets with carbohydrate as NPE source were lower at low than at high P/E ratio. 

At high P/E ratio, growth (g kg-0.8 d-1) was not significantly different between groups fed 

diet HP/EF and HP/EC, despite their different feed intakes. At low P/E intake, growth was 

lower in trout fed carbohydrate (LP/EC) relative to fat (LP/EF) as NPE source. The lowest 

growth was found in fish fed diet LP/EC (7.9 g kg-0.8 d-1), being 1.6 times lower than that 

of the LP/EF group. Remarkably, growth of trout fed the LP/EF diet (with only DP/DE of 14 

mg kJ-1) did not differ significantly from that of fish fed diet HP/EC (with DP/DE of 26 mg 

kJ-1). The FGR was also affected by a significant interaction between both factors (NPE 

source and P/E ratio), being higher in trout fed carbohydrate compared to fat at the low 

P/E ratio, but not at the high P/E ratio at which FGR was not affected by the NPE source. 

Body composition 

The initial and final body compositions of the trout are shown in Table 2.3. Except for 

dry matter, other parameters (protein, fat, ash, and energy) of final body composition 

were affected (P<0.01) by P/E ratio of diet. Similarly, NPE source of diet affected 

(P<0.01) all parameters except protein and ash. There was no significant interaction 

between both effects on final body composition, except for ash content. Whole body 

protein content of fish fed LP/E diets was about 11% lower than in those fed with HP/E 

diets (P<0.001). Compared to initial body protein content, fish fed with LP/E diets had 

7.5% lower protein content. Final body fat content increased in all groups compared to 

initial body fat content. Whole body fat content was 24% significantly higher in trout fed 

with LP/E diets (low P/E ratio) and 44% higher in groups fed diets containing fat as NPE 

source (P<0.01). 
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Table 2.2 Voluntary feed intake and growth performance of rainbow trout fed the experimental diets for 6 weeks1 

DM, dry matter; FIPCT, Feed intake per percentage body weight; FIABS, Absolute feed intake; FIMBW, Feed intake per metabolic body weight; DGC, Daily 
growth coefficient; FGR, Feed gain ratio. 1 Values represent least squares (LS) means (n=3), row means with different superscript letters were 
significantly different and assigned only if interaction effect was significant (P<0.05). 2 HP/EF - High P/E ratio diet with fat as main non-protein energy 
source; HP/EC - High P/E ratio diet with carbohydrate as main non-protein energy source; LP/EF - Low P/E ratio diet with fat as main non-protein 
energy source; LP/EC - Low P/E ratio diet with carbohydrate as main non-protein energy source.

 Diets2  P- value 

 HP/EF HP/EC LP/EF LP/EC Pooled SEM P/E ratio NPE source P/E x NPE 

Growth period (d) 42 42 42 42 - - - - 

No. of tanks 3 3 3 3 - - - - 

No. of fish / tank 35 35 35 35 - - - - 

Survival (%) 98.1 98.1 96.2 89.5 1.90 0.025 0.118 0.118 

Initial body weight (g) 32.4 32.5 32.3 32.4 0.35 0.792 0.792 1.000 

Final body weight (g) 103.7a 96.6ab 84.4b 59.5c 3.26 <0.001 0.001 0.025 

Feed intake (FI)         

 FI as fed (g fish-1 d-1) 1.82a 1.59b 1.53b 1.00c 0.044 <0.001 <0.001 0.010 

 FIPCT (% d-1) 2.9a 2.6b 2.8ab 2.2c 0.05 <0.001 <0.001 0.018 

 FIABS (g DM fish-1 d-1) 1.70a 1.46b 1.45b 0.95c 0.042 <0.001 <0.001 0.013 

 FIMBW (g DM kg -0.8 d-1) 16.6a 14.7b 15.4ab 11.6c 0.29 <0.001 <0.001 0.012 

Growth         

 Absolute (g d-1) 1.70a 1.53ab 1.24b 0.65c 0.078 <0.001 0.001 0.026 

 GRMBW (g kg-0.8 d-1) 16.5a 15.3ab 13.2b 7.9c 0.60 <0.001 <0.001 0.009 

 DGC 3.6a 3.3ab 2.9b 1.8c 0.13 <0.001 <0.001 0.008 

FGR (DM intake/ wt.gain) 1.01a 0.96a 1.17b 1.48c 0.037 <0.001 0.008 0.001 
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Table 2.3 Effect of dietary treatments on final body composition (on fresh weight 

basis) of rainbow trout fed the experimental diets for 6 weeks1 

  Final body composition  

Unit in g 

kg-1 
Initial body 
composition 

Diets2  P- value 

HP/EF HP/EC LP/EF LP/EC 
Pooled 

SEM 
P/E 
ratio 

NPE 
source 

P/E x 
NPE 

Dry 

matter 

(DM) 

220 278 251 285 257 4.1 0.125 <0.001 0.871 

Protein 153 156 162 143 140 3.4 <0.001 0.632 0.263 

Fat 34 94 61 111 81 3.9 0.001 <0.001 0.684 

Ash 26 21a 21a 19b 20ab 0.5 0.008 0.223 0.042 

Energy 

(kJ g-1) 
5.0 7.5 6.3 8.1 6.8 0.16 0.015 <0.001 0.913 

1 Values represent least squares (LS) means (n=3), row means with different superscript letters 
were significantly different and assigned only if interaction effect was significant (P<0·05). 
2 HP/EF - High P/E ratio diet with fat as main non-protein energy source; HP/EC - High P/E ratio 
diet with carbohydrate as main non-protein energy source; LP/EF - Low P/E ratio diet with fat as 
main non-protein energy source; LP/EC - Low P/E ratio diet with carbohydrate as main non-
protein energy source. 

Nitrogen, fat and energy balance 

Table 2.4 presents the apparent nutrient and energy digestibility coefficients (ADC) used 

to calculate parameters of nitrogen, fat and energy balance presented in Table 2.5. 

Digestible nutrient intakes in terms of digestible nitrogen intake (DNI), digestible fat 

intake (DFI) and DEI were different between the dietary groups. DNI was affected 

(P<0.001) by P/E ratio and the source of NPE without interaction between both factors 

(P>0.3). The DNI was 54% higher with HP/E than LP/E diets and 18% lower in diets with 

carbohydrate compared to fat as NPE source. Despite the differences in DNI between 

both HP/E diets, RN was similar in trout fed the HP/EF and HP/EC diets. However, with LP/E 

diets, retained nitrogen (RN) differed significantly in line with their DNI. DFI was 

affected (P<0.05) by the interaction between P/E ratio and NPE source of diet, being the 

lowest and the highest respectively in HP/EC and LP/EF diets. In contrast to DFI, retained 

fat (RF) was only influenced by the dietary NPE source, with 46% higher RF in trout fed 

fat relative to carbohydrate diets. 

The amount of voluntary DEI, as supplied from the different dietary macronutrients, is 

shown in fig 2.1. The DEI paralleled dry matter intake, showing a significant interaction 

between dietary P/E ratio and NPE source (Table 2.5). The lowest DEI were observed in 
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LP/EC fed groups, whereas DEI of trout fed diet LP/EF were not significantly different from 

those in HP/E groups. There was no significant difference in metabolisable energy intake 

(MEI) between HP/EF and LP/EF groups, both being higher than in groups fed 

carbohydrate as NPE source. However, retained energy (RE) was different and 

significantly affected by both P/E ratio and NPE source of diet, being lower in trout fed 

LP/E- relative to HP/E-diets and in trout fed carbohydrate relative to fat as NPE source. 

Although DEI and RE was different, the total heat production (H) was unaffected 

(P>0.05) by the P/E ratio, the NPE source and their interaction (Fig. 2.2). 

 

Figure 2.1 Effect of diet composition on digestible energy intake (DEI) in rainbow trout. 
Fish were fed to satiation with iso-energetic diets of different macronutrient composition having 

contrast in P/E ratio (high, HP/E vs. low, LP/E) and NPE source (fat, F vs. carbohydrates, C) for 6 

weeks. The bars show the amount of DEI derived from the digestible protein, fat and total 

carbohydrate (nitrogen-free extract) for each dietary group. Different superscripts indicate 

significant differences in total DEI. 
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Figure 2.2 Effect of diet composition on heat production in rainbow trout. Heat production 

(H; least squares mean ± SD) in rainbow trout fed to satiation the iso-energetic diets of different 

macronutrient composition having contrast in P/E ratio (high, HP/E vs. low, LP/E) and NPE 

source (fat, F vs. carbohydrates, C). H was unaffected by P/E ratio, NPE source and their 

interaction effect (P>0.05). 

 

Post-prandial glucose and triglyceride circulating levels 

Figure 2.3 depicts the 7 h post-prandial plasma glucose and triglyceride (TAG) levels in 

rainbow trout fed the four experimental diets. The plasma glucose (g L-1) was affected 

(P<0.001) by the dietary P/E ratio, NPE source and their interaction. Plasma glucose 

being higher in trout fed the LP/E compared to HP/E diets. The effect of NPE source on 

plasma glucose was significantly greater with the LP/E diets than HP/E diets. HP/EF and 

HP/EC diet showed similar plasma glucose levels and fish fed LP/EC diet attained the 

highest glucose levels. In contrast, TAG levels were affected by the NPE source 

(P=0.037), being higher in trout fed fat vs. carbohydrate, but not (P>0.05) by the P/E 

ratio. There was no interaction between P/E ratio and NPE source on plasma TAG. 
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Table 2.4 Apparent nutrient digestibility coefficient (%; ADC) in rainbow trout fed with 

four experimental diets1 

 Diets2  P- value 

Unit in % HP/EF HP/EC LP/EF LP/EC 
Pooled 

SEM 

P/E 

ratio 

NPE 

source 

P/E x 

NPE 

Dry matter (DM) 72.7a 83.8b 73.7a 80.1b 0.88 0.156 <0.001 0.027 

Protein 95.5 95.9 96.1 95.2 0.24 0.750 0.338 0.028 

Fat 96.7a 89.0b 95.8a 96.7a 0.38 <0.001 <0.001 <0.001 

Total 

carbohydrates3 
23.0a 76.4b 56.3c 74.0b 2.03 <0.001 <0.001 <0.001 

Ash 34.0 36.5 32.7 33.8 1.99 0.346 0.396 0.709 

Energy3 82.0a 88.7b 82.1a 85.7c 0.64 0.053 <0.001 0.040 

1 Values represent least squares (LS) means (n=3), row means with different superscript letters 
were significantly different and assigned only if interaction effect was significant (P<0·05). 
2 HP/EF - High P/E ratio diet with fat as main non-protein energy source; HP/EC - High P/E ratio 
diet with carbohydrate as main non-protein energy source; LP/EF - Low P/E ratio diet with fat as 
main non-protein energy source; LP/EC - Low P/E ratio diet with carbohydrate as main non-
protein energy source.  
3 ADC of total carbohydrates and energy includes the effect of the added cellulose (indigestible) 
in diets HP/EF and LP/EF. 
 

 

Figure 2.3 Effect of diet composition on post-prandial plasma glucose and 

triglycerides in rainbow trout. Seven hours post-prandial plasma levels (least squares 

mean ± SD) of glucose and triglycerides (TAG) of rainbow trout fed diets having contrast in P/E 

ratio and NPE source. Glucose was affected by dietary P/E ratio, NPE source and their 

interaction (P<0.001). In contrast, TAG levels were affected only by the NPE source (P=0.003) 

and not by P/E ratio and their interaction effect (P>0.05). 
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Table 2.5 Nitrogen, fat and energy balance in rainbow trout fed the experimental diets for 

6 weeks1 

 Diets2  P- value 

 HP/EF HP/EC LP/EF LP/EC 
Pooled 

SEM 

P/E 

ratio 

NPE 

source 

P/E x 

NPE 

Nitrogen balance (mg N kg-0.8 d-1)     

 GNI 1384 1204 680 484 15.1 <0.001 <0.001 0.593 

 FN 62.1 49.2 26.7 23.3 2.6 <0.001 0.011 0.103 

 DNI 1240 1068 620 437 13.7 <0.001 <0.001 0.393 

 BUN 905a 748b 367c 304c 16.3 <0.001 <0.001 0.021 

 RN 417a 408a 287b 157c 12.9 <0.001 <0.001 0.002 

Fat balance (mg kg-0.8 d-1)      

 GFI 2532a 501b 3198c 1661d 55.8 <0.001 <0.001 0.002 

 FF 84a 55a 136b 55a 7.2 0.005 <0.001 0.004 

 DFI 2448a 446b 3062c 1606d 56.8 <0.001 <0.001 0.001 

 RF 2011 1133 2093 1072 101 0.919 <0.001 0.496 

 RF/DF 0.83 2.54 0.68 0.67 - - - - 

Energy balance (kJ kg-0.8 d-1)      

 GEI 380 303 352 246 6.6 <0.001 <0.001 0.055 

 FE 68 34 63 35 1.9 0.278 <0.001 0.133 

 DEI 311a 269b 289ab 211c 6.7 <0.001 <0.001 0.027 

 BUE 22a 19b 9c 7c 0.4 <0.001 <0.001 0.021 

 MEI 288a 250b 280a 203c 6.5 0.003 <0.001 0.018 

 RE 144 107 131 70 6.1 0.003 <0.001 0.083 

SEM, Standard error mean; GNI, Gross nitrogen intake; FN, Faecal nitrogen loss; DNI, Digestible 
nitrogen intake; BUN, Branchial and urinary nitrogen loss; RN, Retained nitrogen; GFI, Gross fat 
intake; FF, Faecal fat loss; DFI, Digestible fat intake; RF, retained fat; RF/DF, fat efficiency; GEI, 
Gross energy intake; FE, faecal energy loss; DEI, digestible energy intake; BUE, branchial and 
urinary energy loss; MEI, metabolisable energy intake; RE, retained energy. 
1 Values represent least squares (LS) means (n=3), row means with different superscript letters 
were significantly different and assigned only if interaction effect was significant (P<0·05). 
2 HP/EF - High P/E ratio diet with fat as main non-protein energy source; HP/EC - High P/E ratio 
diet with carbohydrate as main non-protein energy source; LP/EF - Low P/E ratio diet with fat as 
main non-protein energy source; LP/EC - Low P/E ratio diet with carbohydrate as main non-
protein energy source. 
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Discussion 

In the present study, voluntary FI paralleled DEI due to the similar DE contents of the 

formulated diets. FI in rainbow trout as in several other fish species has been reported 

to be regulated by the total DE content of the diet (Boujard and Médale, 1994; Morales et 

al., 1994). The present data show that under satiation feeding conditions, rainbow trout 

consumed different amounts of DE, depending on the diet composition. These findings 

agree with previous reports in rainbow trout (Cláudia Figueiredo-Silva et al., 2011; 

Encarnacao et al., 2004; Geurden et al., 2006), highlighting the controversy on whether 

FI is adjusted to maintain a constant DEI in fish. In addition, these findings further 

suggest the involvement of dietary or physiological factors other than dietary DE 

content alone in the regulation of FI. 

Independent of dietary DE level, FI has been shown to be directed by the animal’s 

genetic growth potential in such a way that the animal will attempt to eat as much of a 

feed as needed to fulfill the nutrient requirements for achieving its (maximal) growth 

potential (Emmans and Kyriazakis, 1995). In this respect, intakes of specific nutrients 

such as protein have been shown to be separately regulated from energy intake, as 

shown in pig (Henry, 1985), poultry (Shariatmadari and Forbes, 1993) and rat 

(Sørensen et al., 2008). As a result, an excess of energy is ingested with low protein diets 

while an energy deficit may occur with high protein diets. Also fish have been reported 

to show hyperphagia and over-consume DE to compensate for reduced dietary protein 

as seen in Atlantic salmon (Helland and Grisdale-Helland, 1998). In contrast, protein 

levels above optimum do not seem to down-regulate DEI in rainbow trout (Geurden et 

al., 2006) in line with findings in mammalian carnivores used to deal with high protein 

intakes (Hewson-Hughes et al., 2011; Mayntz et al., 2009). The present low P/E (LP/E) 

and high P/E (HP/E) diets provided respectively 14 and 26 mg of digestible protein per kJ 

DE being, respectively, above and below the optimal DP/DE ratio of 17- 19 mg kJ-1 (Dias 

et al., 1999) or 21 mg kJ-1 (NRC, 2011) for rainbow trout. However, the similar or even 

decreased DEI in LP/E- compared with the HP/E-groups show that the trout fed the low 

P/E diets did not ‘over-eat’ energy to compensate for the reduced protein. In both cases, 

this resulted in lower digestible nitrogen intake (DNI) as well as lower weight and 

protein (RN) gain than with the high P/E diets.  

According to the lipostatic theory of FI regulation [31], the failure of the trout fed LP/E 

diets to increase DEI and hence compensate DNI may be caused by the higher relative 

level of body fatness of fish fed the LP/E compared with HP/E diets. The negative effect of 

high body fat content on FI or DEI (Kennedy, 1953), mediated through the feedback 

mechanism of leptin is well documented in mammals (Woods et al., 1998). Adipostatic 

feedback control of FI has also been reported to occur in salmonid fish (Dias et al., 1999; 



Chapter 2 | 43 
 

 

Johansen et al., 2003; Silverstein et al., 1999). However, diet-induced increases in the 

relative level of adiposity, which moreover varies depending on body size (Bureau et al., 

2003), did not necessarily reduce appetite or energy intakes in rainbow trout (Gélineau 

et al., 2001; Geurden et al., 2006). Similarly, the observation of similar DEI in trout fed 

HP/EC and LP/EF diets, despite the difference in adiposity (61 and 111 g kg-1, 

respectively), suggests a low feedback control of relative body fatness on DEI. 

Interestingly, rainbow trout reduced intakes following the iso-energetic substitution of 

fat by carbohydrate, irrespective of the dietary P/E ratio. This might be due to physical 

constraints as the volume of feed a fish can eat depends on the stomach capacity and gut 

evacuation rate (Güner and Davies, 2003; Riche et al., 2004). The expansion of starch 

during feed extrusion reduces the bulk density of the pellets. As such, the lower density 

of diet LP/EC possibly limited the amount of FI during the first meals, but unlikely  

affected the long term (weeks) FI, as fish are known to increase stomach volume when 

fed high-bulk diets (Ruohonen and Grove, 1996). In addition, gut evacuation rate and 

hence the return of appetite are expected to be enhanced by the relatively high (16°C) 

water temperature (He and Wurtsbaugh, 1993). Another factor susceptible to reduce FI 

following the substitution of fat by carbohydrate is increased plasma glucose. The 

glucostatic theory implies that FI is controlled to maintain glucose homeostasis in blood 

through a feedback mechanism signaled by both hypothalamus and liver (Mayer, 1991). 

Thus, an increase or decrease in blood glucose level leads respectively to a down- or up-

regulation of FI. Evidence in fish on glucostatic control of FI is highly ambiguous. For 

instance, high plasma glucose was found to either increase (Hemre et al., 1989) or 

decrease (Polakof et al., 2008; Volkoff and Peter, 2006) FI in fish. Our data on the 

relation between FI and plasma glucose also appear inconsistent as the substitution of 

fat by carbohydrate either increased (LP/E-groups) or unmodified (HP/E-groups) plasma 

glucose, whereas this led to reduced intakes in both groups. Moreover, voluntary FI 

between HP/EC and LP/EF groups were not significantly different, despite the differences 

in circulating plasma glucose. 

Rather than a direct glucostatic or lipostatic feedback control of FI, some studies in 

mammals suggest that it is the overall metabolic utilization of the ingested nutrients 

which signals satiety and hence determines FI (Blundell and Tremblay, 1995; Nicolaidis, 

2011; Woods and Ramsay, 2011). In other words, the degree of nutrient oxidation rather 

than the ingested amount of dietary energy per se would generate satiety (Stubbs and 

Tolkamp, 2006). In fish, the question whether and how dietary energy utilization 

(energy retention vs. expenditure/heat production) regulates the amount of DEI has 

received little attention. Interestingly, the energy balance of the present trout revealed 

no significant difference in heat production (133-149 kJ kg-0.8 d-1) between fish of the 
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different treatments, whereas the amount of energy retained (70 - 144 kJ kg-0.8 d-1) and 

DEI (211 - 311 kJ kg-0.8 d-1) were strongly affected by the dietary DE source. This 

confirms previous findings in Nile tilapia fed to satiation with diets varying in 

macronutrient supply and supports the hypothesis that heat production may set a limit 

to voluntary FI (Tran-Duy et al., 2008). This was also suggested in the very early works 

of Brobeck (Brobeck, 1957) in mammalian models, reporting that the important factor 

in FI regulation is not the food’s energy value, but rather the amount of extra heat 

released during its assimilation. Further studies with homoeothermic vertebrates 

confirmed the relation between heat production and FI, yet mostly in relation with 

ambient temperature (Ferguson and Gous, 1997). Homoeothermic animals, when 

exposed to ambient temperature above the upper critical temperature, lower FI in order 

to avoid the excess heat production caused by the thermic effect of feeding [50]. As such, 

the extent to which the animal is able to dissipate heat to the environment will 

determine how much it will eat, as shown in pig (Ferguson and Gous, 2002) and broiler 

(Koh and Macleod, 1999). Since fish do not maintain constant body temperature, the 

amount of heat to be dissipated to the environment is not expected to control FI in fish 

in the same way as in homeotherms. Therefore, other more basic metabolic processes 

involved in heat production, shared by both homeo- and ectotherms, such as aspects 

related with oxygen use, may be implicated in the dietary control of FI in fish.  

Theoretically, the amount of heat production by aerobic metabolism in animals parallels 

the amount of oxygen consumed (McLean, 1972). In mammals, several studies pointed 

at the difference between macronutrients in their contribution to oxidative metabolism 

and how these may relate to satiety (Nicolaidis, 2011; Stubbs and Tolkamp, 2006). In 

this respect, satiety and hence dietary FI control have been associated with the degree of 

hepatic oxidative metabolism (Friedman, 1998; Langhans, 2008) or the efficiency of 

oxygen use (Ketelaars and Tolkamp, 1996). The comparison of the heat production 

values observed in the present study (133-149 kJ/kg0.8/d) with values calculated (i.e., 

H= MEI-RE) from literature for rainbow trout fed to satiation (e.g., 107 (Azevedo et al., 

1998), 77-91 (Glencross et al., 2007), 93-112 (Glencross et al., 2008), 160 (Glencross, 

2009) and 103-112 (Kim and Kaushik, 1992) kJ/kg0.8/d), shows our values to be in the 

upper range, even after adjusting for the effect of temperature (positive curvilinear 

relationship between both variables, fig. 2.4). The present finding that heat production 

was similar irrespective of dietary composition in trout kept under normoxic condition, 

suggests that the DEI control in fish is a function of heat production. This might reflect a 

physiological limit related to oxidative metabolism. Various biological constrains might 

cause such a limit in fish even under normoxic water condition. For instance, the 

capacity of oxygen uptake by the fish (e.g. gill surface (Tran-Duy et al., 2008)), the 

capacity of oxygen transport (e.g. cardiac performance, hemoglobin affinity for O2) 
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and/or constraints in oxidative metabolism at cellular level (e.g. mitochondrial 

respiration, production of reactive oxygen species). Measurements of oxygen 

consumption data are needed to further elucidate the role and possible limits set by heat 

production/oxidative metabolism on DEI. Therefore, ongoing studies in our laboratories 

further explore the relation between macronutrient-induced changes in feed/nutrient 

intake and oxygen consumption as well as the link with hepatic oxidative metabolism 

and hypothalamic satiety markers.  

 

Figure 2.4 Relation between water temperature (T, °C) and heat production  in rainbow 

trout fed to satiation The heat production values (H, kJ kg-0.8 d-1) are calculated for rainbow 

trout fed to satiation from literature data (e.g., Azevedo et al., 1998; Glencross et al., 2007; 

Glencross et al., 2008; Glencross, 2009; Kim and Kaushik, 1992) and from the present study. H 

was curvilinearly related to temperature, H = 26.6 × e0.0923 × T, R2 = 0.73.   

 

In conclusion, the present study demonstrates that the macronutrient composition of 

the diet modifies voluntary DEI in rainbow trout. The observation that the rainbow trout 

had similar heat production, together with different DEI, is in line with the proposed 

hypothesis that DEI in fish might be controlled as a function of heat production, which 

might reflect a physiological limit related to oxidative metabolism. 
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Abstract  

It has been hypothesised that, at non-limiting water oxygen conditions, voluntary feed 

intake (FI) in fish is limited by the maximal physiological capacity of oxygen use (i.e., an 

‘oxystatic control of FI in fish’). This implies, that fish will adjust FI when fed diets 

differing in oxygen demand, resulting in an identical oxygen consumption. Therefore, FI, 

digestible energy (DE) intake, energy balance and oxygen consumption were monitored 

at non-limiting water oxygen conditions in Nile tilapia fed diets with contrasting 

macronutrient composition. Diets were formulated in a 2 by 2 factorial design in order 

to create contrasts in oxygen demand: 2 ratios of digestible protein to digestible energy 

(DP/DE; ‘high’ vs. ‘low’); and a contrast in type of non-protein energy source (‘starch’ vs. 

‘fat’). Triplicate groups of tilapia were fed twice daily each diet to satiation for 48 days. 

FI (g DM/kg0.8/d) was significantly lower (9.5%) in tilapia fed the starch relative to fat 

diets. DP/DE ratio affected DE intakes (P <0.05), being 11% lower with ‘high’ than with 

‘low’ DP/DE ratio diets, which was in line with the 11.9% higher oxygen demand of 

these diets. Indeed, DE intakes of fish showed an inverse linear relation with the dietary 

oxygen demand (R2, 0.81; P <0.001). As hypothesized (‘oxystatic’ theory), oxygen 

consumption of fish was identical among three out of the four diets. All together, these 

results demonstrate the involvement of metabolic oxygen use and dietary oxygen 

demand in the control of FI in tilapia. 
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Introduction 

Voluntary feed intake (FI) in fish, as in other animals, is controlled by a complex 

combination of nutritional, physiological and environmental factors (Fletcher, 1984). It 

has frequently been suggested that FI is controlled to maintain a relatively constant 

digestible energy (DE) intake i.e., to meet the DE requirements (Boujard, 1994; Cho, 

1990; Kaushik, 1983; Lee and Putnam, 1973; Lekva et al., 2010). However few studies in 

fish have suggested the involvement of other nutritional factors in the control of FI 

(Geurden et al., 2006; Tran-Duy et al., 2008b). Studies that verify the importance of 

other well-known regulatory mechanisms of FI in mammals, such as glucostatic (Mayer, 

1953) or lipostatic control (Kennedy, 1953) either lead to an ambiguous conclusion or 

show lesser impact in fish (Bellamy, 1968; Geurden et al., 2006) than in terrestrial 

animals. The effect of non-protein energy source (NPE; fat and starch) on FI in fish is 

unclear (Grisdale-Helland et al., 2008) and has not been systematically assessed at least 

at similar DP/DE ratio and DE content of diets. 

Among the abiotic factors, dissolved oxygen (DO), pH, and ammonia are recognized to 

affect FI in fish (Kestemont, 2001). The effect of the availability of oxygen on FI has been 

relatively well documented. Several studies demonstrated that FI in fish decreases 

linearly with declining water DO content (Buentello, 2000; Glencross, 2009; Pichavant et 

al., 2000; Thetmeyer, 1999). The minimum DO level at which metabolic oxygen demand 

in fish limits FI is termed as incipient DO (iDO). Thus, below iDO, FI depends on DO 

concentration of water, whereas above iDO, FI is independent of water DO 

concentration. Recent studies in Nile tilapia (Tran-Duy et al., 2008b) and rainbow trout 

(our own unpublished data) under non-limiting DO showed differences in DE intake, 

when fish were fed to satiation with diets differing in NPE source (starch vs. fat). In 

addition, total heat production (considered theoretically as oxygen consumption) was 

found to be similar despite their difference in DE intake and retained energy. These data 

suggest that the difference in FI between the dietary groups might be caused by 

limitations in the maximum oxygen uptake or by the metabolic oxygen demand as 

induced by the nutrient processing. Since the amount of oxygen required to metabolize 

the dietary macronutrients depends on whether they are used for growth (protein, fat or 

glycogen) or production of ATP (McCue, 2006 ; Secor, 2009), feeding diets with different 

macronutrient composition results in different levels of metabolic or dietary oxygen 

demands (DOD), being defined here as the amount of oxygen (in mg) consumed per unit 

of digestible energy (kJ DE) intake. In terrestrial vertebrates, evidence on the role of 

oxygen as a regulatory factor in the control of FI has been studied at various levels such 

as oxygen efficiency of the whole animal (Ketelaars and Tolkamp, 1992; Ketelaars and 

Tolkamp, 1996) or oxidative metabolism in liver (Friedman, 1998) or in hypothalamus 
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(Coppola et al., 2007), whereas the link between oxygen use and voluntary FI has not 

been considered in fish nutrition. 

It is postulated that, at non-limiting water DO, FI in fish may be limited by the maximal 

physiological capacity of oxygen use (for growth and maintenance). In order to verify 

this hypothesis, voluntary FI and oxygen consumption were monitored in Nile tilapia fed 

diets with contrasting macronutrient composition at non-limiting water DO conditions. 

The objective of this study is to verify the existence of an ‘oxystatic control of FI in fish’, 

i.e., intakes of diets with different oxygen demand are controlled by a physiological limit 

in metabolic oxygen use. If the hypothesis holds true, then fish will adjust intakes 

according to differences in dietary oxygen demand. 

Materials and Methods 

All procedures involving animals were carried out in accordance with the Dutch law on 

experimental animals and were approved by the Wageningen University Animal 

Experimental Committee. 

Diets  

Four iso-energetic diets were formulated according to a 2 x 2 factorial design to create 

contrasts in dietary oxygen demand (DOD) between diets (Table 3.1). The first factor 

was the digestible protein to digestible energy (DP/DE) ratio which was changed by 

modifying the dietary protein levels, ‘low’ (LP diets) vs. ‘high’ (HP diets). It is assumed 

that fish fed diets with low DP/DE ratio will have minimal use of protein as energy 

source, whereas at the high DP/DE ratio a substantial amount of protein will be used as 

energy source (LeGrow, 1986). Thus, the contrast in DP/DE ratio between diets will 

cause a difference in protein to fat deposition ratio in fish (Lee and Putnam, 1973) and 

thereby generate difference in DOD. The different DP/DE ratios (HP diets, 25 mg/kJ; LP 

diets, 14 mg/kJ) were created by exchanging an equal proportion (30%) of protein 

ingredient mixture (fish meal, wheat gluten, soya protein concentrate, pea protein 

concentrate and DL-methionine) by an equivalent amount of energy ingredient mixture 

(rapeseed oil, fish oil and gelatinized maize starch).  

The second factor was the type of non-protein energy source (NPE): ‘starch’ vs. ‘fat’. The 

oxygen demand of dietary starch and fat depends on whether it is used for ATP 

production through oxidation or deposited as an energy store (fat) in the body. The 

amount of oxygen required to deposit fat from dietary fat is lower than that required for 

lipogenesis from starch (Blaxter, 1989; Reeds, 1982). Therefore, diets were formulated 

to contain either starch (diets HPS and LPS) or fat (diets HPF and LPF) as major NPE 

source at both dietary DP/DE ratios. For the fat-diets, 10% of rapeseed oil was added as 

NPE source, whereas for the starch-diets it was exchanged by 25% of gelatinised maize 



Chapter 3 | 53 
 

 

starch, assuming a similar digestible energy content of 10% rapeseed oil to that of 25% 

gelatinised maize starch. Furthermore, in order to have identical nutrient and energy 

density between these diets, 15% of cellulose was included in the fat-diets. The final 

ingredient compositions of diets are shown in Table 1. Diets were produced by Research 

Diet Services (Wijk bij Duurstede, The Netherlands). The ingredient mixture of each diet 

excluding major part of the oils, were mixed and hammer-milled (Condux LHM20/16, 

Hanau, Germany) through a 1 mm screen. Diets were processed by extrusion using a 

Clextral BC45 laboratory scale twin-screw extruder (Clextral, Firminy, France) with a 3 

mm die, resulting in a pellet size of about 3 mm. In HPS and LPS diets, all oils were added 

to the mixture prior to extrusion. In HPF diet 6% of the oils and in LPF diet 9.1% of the 

oils were added to the mixture prior to extrusion. Following extrusion, pellets were 

dried in a tray-drier at 70°C for 3 h and cooled to ambient temperature. Finally, HPF and 

LPF diets were coated with the remaining part of the oils (5 and 10%, respectively) and 

stored at 4°C. 

Fish stock and pre-experimental rearing conditions 

A stock of 300 juvenile (mean body weight. 5 g) male Nile tilapia (NMT Manzala Silver 

strain) was obtained from a commercial fish breeder (Til Aqua International, Velden, 

The Netherlands) and reared at the experimental facilities (‘De Haar Vissen’) of the 

Wageningen University, The Netherlands. The fish were housed in six tanks (120 l) at a 

stocking density of 50 fish per tank. These tanks were connected to a common water 

recirculation unit comprised of trickling filter, settling tank and pump. Initially, fish were 

fed with a commercial starter feed (Skretting, F-10, MP Pro Aqua Brut; 1.0 mm, 57% 

crude protein, 15% crude fat) for about 6 weeks and thereafter with larger feed pellets 

(Skretting, F-1P Classic; 2.5 mm, 47% crude protein, 14% crude fat) until the fish 

reached a body weight of 40 g. During this pre-experimental period (10 weeks), fish 

were hand fed twice daily with a ration of about 10 g/kg0.8/d. The fish were kept at 

optimal rearing conditions (water flow rate in tank, 6 l/min; temperature, 28°C; DO, 

>5mg/l; photoperiod, 12 light:12 dark hours).  

Housing facility 

The 48-day feeding trial was carried out in the Aquatic Metabolic unit of Aquaculture 

and Fisheries group, Wageningen University, The Netherlands. This metabolic unit 

consists of 12 metabolic tanks (90x60x45cm) in a series connected to a common water 

recirculation system consisting of trickling filter, oxygenation unit, a sump, a drum filter 

(Hydrotech 500®) and a cooling/heating system for maintaining uniform water quality 

throughout the study. Water was supplied to all tanks from a common inlet thus 

ensuring identical water quality and drained through individual tank outlets into the 

system. The oxygenation unit maintained the concentration of DO in water by injecting  
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Table 3.1 Formulation, ingredient composition and analyzed nutrient content of experimental diets 

 

 

Diets* 

HPF HPS LPF LPS 

Ingredients (%)     

 Rapeseed oil 11.0 1.0 14.1 4.1 

 Gelatinized maize starch† 5.0 30.0 24.29 49.29 

 Cellulose 15.0 - 15.0 - 

 Fish meal‡ 33.0 33.0 18.0 18.0 

 Wheat gluten 10.89 10.89 5.94 5.94 

 Soya protein concentrate 10.89 10.89 5.94 5.94 

 Pea protein concentrate 10.89 10.89 5.94 5.94 

 Fish oil§ - - 5.0 5.0 

 Calcium carbonate - - 0.36 0.36 

 Monocalcium phosphate - - 1.8 1.8 

 Sodium carbonate - - 0.45 0.45 

 DL-Methionine 0.33 0.33 0.18 0.18 

 Diamol║ 2.0 2.0 2.0 2.0 

 Vitamin-mineral premix¶ 1.0 1.0 1.0 1.0 

Analyzed nutrient content (g/kg DM)    

 Dry matter (DM; g/kg) 963 931 946 925 

 Crude protein (N x 6.25) 534 541 295 299 

 Crude fat 170 70 232 132 

 Starch 38 294 234 476 
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Table 3.1 Formulation, ingredient composition and analyzed nutrient content of experimental diets (continued) 

 

 

Diets* 

HPF HPS LPF LPS 

 Total carbohydrates** 221 312 399 495 

 Ash 74 77 73 73 

 Gross energy (kJ/g) †† 23.1 (20.48) 20.8 23.1 (20.51) 20.8 

Digestible nutrient content (g/kg DM)    

 Protein (N x 6.25) 502 514 279 281 

 Fat 159 68 209 126 

 Total carbohydrates 27 270 219 460 

 Digestible energy (kJ/g) 18.6 19.5 18.6 19.5 

 DP/DE (mg/kJ) 27.0 26.4 15.0 14.4 

DP/DE, digestible protein to digestible energy ratio 
* HPF – High DP/DE ratio diet with fat as NPE source; HPS - High DP/DE ratio diet with starch as NPE source; LPF - Low DP/DE ratio diet with fat as 
NPE source; LPS - Low DP/DE ratio diet with starch as NPE source. 
† Gelatinized maize starch (Merigel®100; Amylum Group, Belgium). 
‡ Fish meal (999 LT fish meal - crude protein 72%, Triple Nine Fish protein, Esbjerg, Denmark). 
§Fish oil (999 Fish Oil, Triple Nine Fish protein, Esbjerg, Denmark). 
║Diamol (Acid insoluble ash, as inert marker for digestibility measurement)- Diamol GM, Franz Bertram, Hamburg, Germany. 
¶ Mineral premix composition (to supply, mg kg-1 feed): 50, iron (as FeSO4.7H2O); 30, zinc (as ZnSO4.7H2O); 0.1, cobalt (as CoSO4.7H2O); 10, copper (as 
CuSO4.5H2O); 0.5, selenium (as Na2SeO3); 20, manganese (as MnSO4.4H2O); 500, magnesium (as MgSO4.7H2O); 1, chromium (as CrCl3.6H2O); 2, iodine 
(as CaIO3.6H2O). Vitamin premix composition (to supply, mg or IU kg-1 feed): 10, thiamin; 10, riboflavin; 20, niacin; 40, pantothenic acid; 10, 
pyridoxine; 0.2, biotin; 2, folic acid; 0.015, cyanocobalamin; 1500, choline (as choline chloride); 100, ascorbyl phosphate; 3000 IU, retinyl palmitate; 
2400 IU, cholecalciferol (Rovimix® D3-500, DSM Inc.); 100 IU, α-tocopheryl acetate; 10, menadione (as menadione sodium bisulfite, 51%); 400, 
Inositol; 100, anti-oxidant BHT (E 321); 1000, calcium propionate. 
** Calculated as, total carbohydrates (starch, free sugars and non-starch polysaccharides) = 1000 - (crude protein + crude fat + ash). 
†† Gross energy value measured including energy from added cellulose, values within parenthesis represents energy value calculated excluding 
energy from added cellulose (15%).
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pure oxygen into the common inlet, which was regulated by a mass flow controller 

(Brooks® Model 5850S, Brooks instruments, The Netherlands) and microprocessor 

(Brooks® Read out and control electronics model 0154, Brooks instruments, The 

Netherlands). Each metabolic tank was equipped with a water flow meter (MAGFLOW® 

MAG 5000, Danfoss A/S, Nordborg, Denmark) to regulate and monitor water flow. The 

volume of water within tanks was kept identical (200 l) by adjusting the standpipe. The 

water surface of each tank was covered with a water resistant floating panel to prevent 

gas exchange between water and air. Within the floating panel, a circular feeding hatch 

(18.5cm diameter) with removable floating lid was used to feed the fish. The inlet and 

outlet of each metabolic tank were linked to two separate sampling pipe lines. One 

sampling pipe led to an auto-analyzer (SANplusSYSTEM, Skalar, The Netherlands) to 

continuously measure nitrite, nitrate, total-ammonia nitrogen (TAN), urea and CO2. The 

other sampling pipe led to a common measuring hub to continuously measure dissolved 

oxygen (WTW-Trioximatic® 700 IQ, WTW GmbH, Weilheim, Germany), pH (WTW-

SensoLyt DW® (SEA) 700 IQ, WTW GmbH) and conductivity (WTW TetraCon325® 700 

IQ, WTW GmbH) of water. The oxygen measurements from each metabolic tank were 

regulated by an electromagnetic valve (ASCO model 24/50 6 WFT, ASCO/Joucomatic, 

Scherpenzeel, The Netherlands) which controlled the water flow from inlet and outlet of 

each tank to the common measuring hub. These electromagnetic valves were controlled 

by algorithmic program via. a user interface (HTBasic, Version 9.5, TransEra Corp.) and 

the measured values of dissolved oxygen, water flow, pH and conductivity were 

automatically recorded in personal computer. 

In addition, the outlet of each tank was connected to a swirl separator (44 cm height, 

24.5 cm diameter; AquaOptima AS, Trondheim, Norway) to collect faeces for 

determination of nutrient digestibility. The faeces were collected in a detachable 250 ml 

bottle at the bottom of the swirl separator. To minimize the bacterial decomposition of 

faeces, the bottle was kept under ice. During feeding, another set of bottles were used in 

the swirl separator to collect the uneaten feed pellets flushed out from the tanks.  

Experimental procedure 

At the start of the experiment, 240 fish (mean body weight 40 g) from the stocking tanks 

(unfed for about 36 hours) were taken out, anaesthetized (0.2 g/l tricaine methane 

sulfonate (MS-222, Finquel®, Argent chemical lab., Washington) with 0.4 g/l sodium 

bicarbonate as buffer), weighed individually and randomly distributed among the 12 

metabolic tanks (20 fish/tank). The respective diets were assigned randomly to 

triplicate tanks. Twenty fish were sacrificed with an excess dose of anesthesia (0.8 g/l 

tricaine methane sulfonate with 1.6 g/l sodium bicarbonate as buffer) for initial body 

composition, kept in plastic bags, sealed and stored at -20°C until further analysis.  
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During the experimental period (48 days), fish were hand fed with their respective diets 

twice daily to apparent satiation for an hour (09.00 to 10.00 and 16.00 to17.00 hrs). At 

the end of each feeding session the uneaten pellets were collected and counted to 

determine feed intake accurately. Feed fed and uneaten feed were recorded for each 

feeding. From the second week of the trial, 30 min prior to each feeding, faeces were 

collected from swirl separator and transferred to aluminum trays and stored at -20°C 

until further analysis. A representative sample (50 g) of each diet was collected twice 

weekly and stored at 4°C. 

The fish were kept under optimal water quality parameters (mean ± SD) during the 

entire study period with photoperiod (12 light: 12 dark hours), temperature (27.7 ± 

0.29ºC), pH (6.8 ± 0.11), dissolved oxygen at tank inlet (8.8 ± 0.75 mg/l) and outlet (5.6 

± 0.58 mg/l), conductivity (2821 ± 99 μS/cm), nitrite (0.02 ± 0.01 mg N/l), nitrate (85 ± 

0.5 mg N/l) and TAN (0.12 ± 0.06 mg N/l). After 20 days from the start of the 

experiment, as the DO level in tank outlets dropped below 5 mg/l, especially during 

postprandial hours, pure oxygen was injected into the common inlet until the end of the 

experiment, in order to ensure sufficient DO availability to the fish. 

The volume of water (Vt) and water flow (Wf) were kept constant at 200 l and 7 l/min 

respectively in all tanks. Thus, the rate of replenishment (Vt/ Wf) of entire tank water is 

achieved in about 30 min. The water was sampled for duration of 5 min from common 

inlet and outlet of each tank and flushed over the oxygen electrode for measuring 

oxygen concentration. Thus within an hour, oxygen was measured twice in common 

inlet and outlet of 4 tanks. The oxygen measurements were performed in a continuous 

cycle of 2 days (48 hours; from 08.00 to 08.00 hrs) in a set of 4 tanks consisting of all 

dietary treatments. Consequently, in six days, oxygen measurement was undertaken in 

all 12 tanks. This procedure was repeated till the end of the experiment resulting in 5 

cycles of 48-hour oxygen measurements for each tank. The oxygen electrode was 

calibrated once every week. 

At the end of the experiment, fish were starved for about 36 hours prior to handling. 

Fish from each tank were anaesthetized and weighed individually for final body weight. 

Eight fish from each tank were randomly sampled for analysis of final body composition 

and handled in similar way as initial body composition samples.  

Analytical procedure 

Frozen fish samples were homogenized twice through a 4.5 mm die in a meat mincer 

(Gastromaschinen, GmbH model TW-R 70, Feuma) and sub-samples were taken 

immediately for dry matter and protein analysis. The rest of the homogenized fish 

samples and faeces (pooled per tank) were then freeze-dried and finely ground using a 



58 | Dietary oxygen demand and feed intake in tilapia  
 

 

blender. Prior to fat analysis, feed and faecal samples were hydrolysed by boiling for 1 

hour with 3N HCl. Proximate composition of feed, fish carcass and faeces were analyzed 

in triplicate for dry matter, protein (Kjeldahl method), fat (Soxhlett method), ash, acid-

insoluble ash, energy (Bomb-calorimeter) as described elsewhere (Santos et al., 2010). 

Starch content was determined as glucose, using the amyloglucosidase/ 

hexokinase/glucose-6-phosphate dehydrogenase method after ethanol (40%) extraction 

and starch decomposition in dimethylsulfoxide/ HCl (ISO., 2005). 

Calculations 

Weight gain rate of fish (g/d) was calculated as the difference between average 

individual final (Wf) and initial (Wi) body weight of fish per tank divided by the duration 

of the experimental period (t). The geometric mean body weight (WG; in g) was 

calculated as √(Wi x Wf). Growth rate on metabolic body weight (GRMBW; in g/kg0.8/d) 

was calculated as (Wf -Wi)/(MBWG x t), where MBWG is the mean metabolic body weight 

of fish (in kg0.8), which was calculated as (WG /1000)0.8 and t, the duration (days) of the 

growth study. Lean body growth of fish (in g/d) was calculated as the difference 

between (Wf – Wf-fat) and (Wi –Wi-fat) divided by (t), where Wf-fat and Wi-fat are the crude 

fat content of final and initial fish carcass respectively, expressed on fresh weight basis. 

Daily growth coefficient (DGC, in %/d) was calculated as 100 x (Wf1/3 –Wi1/3)/t.  

Daily absolute feed intake (FIABS; g DM/fish/d) was calculated on dry matter basis as 

FItot/ (n x t), where FItot is the total feed intake per tank (in g DM) over the experimental 

period corrected for dead fish and uneaten pellets, n is the number of fish per tank, and t 

is the experimental period. FI as fed (g/fish/d) was calculated in similar way as FIABS but 

on as fed basis. Feed intake of fish expressed as a percentage of body weight (FIPCT; g 

DM/100 g fish/d) was calculated as (FIABS/WG) x 100 and feed intake per metabolic 

body weight (FIMBW; g DM/kg0.8/d) was calculated as FIABS/MBWG. Feed gain ratio (FGR; 

dry matter intake/wet weight gain) was calculated as FIMBW/MBWG.  

Apparent digestibility coefficient (ADC; in %) of dry matter, protein, fat, total 

carbohydrate, gross energy and ash were calculated for each tank according to Tran Duy 

et al. (2008b), using acid insoluble ash (AIA) as inert marker. Digestible nutrient intake 

(g or kJ/kg0.8/d) was calculated as FIMBW x FeedZ x (ADCZ/100), where FeedZ is the 

nutrient content in feed on dry matter basis (in g), ADCZ is the apparent digestibility of 

nutrients (in %) and Z represents dry matter, protein, fat, total carbohydrate, energy 

and ash. 

The parameters of nitrogen balance, fat balance and energy balance were calculated per 

tank and expressed in mg N/kg0.7/d, mg/kg0.9/d and kJ/kg0.8/d respectively. The gross 

nitrogen intake (GN) was calculated as product of total feed intake (g DM/kg0.7/d) and 
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nitrogen content of feed (mg/g). The digestible nitrogen intake (DN) was calculated as 

product of GN and ADC of nitrogen (%). Faecal nitrogen loss (FN) was calculated as the 

difference between GN and DN. The retained nitrogen (RN) was calculated as the 

difference between nitrogen content of final and initial fish carcass. Branchial and 

urinary nitrogen loss (BUN) was calculated as difference between DN and RN. 

Parameters of fat balance were calculated as follows: gross fat intake (GF) was 

calculated as product of total feed intake (g DM/kg0.9/d) and fat content of feed (mg/g). 

The digestible fat intake (DF) was calculated as product of GF and ADC of fat (%). Faecal 

fat loss (FF) was calculated as the difference between GF and DF. The retained fat (RF) 

was calculated as the difference between fat content of final and initial fish carcass. 

Parameters of energy balance were calculated as follows: gross energy intake (GE) as 

the product of feed intake (g DM/kg0.8/d) and energy content of the diet; digestible 

energy intake (DE) as product of GE and ADC of energy; branchial and urinary energy 

loss (BUE) as product of ammonia-N and urea-N with their corresponding energy value 

of 24.9 and 22.5 kJ/ g N (Bureau, 2002). Ammonia-N and urea-N were calculated from 

BUN based on the measured averaged ratio ammonia-N to urea-N excretion of 9 to 1 

over diets (our own unpublished data). Metabolizable energy intake (ME) as the 

difference between DE and BUE; retained energy (RE) as the difference between energy 

content of final and initial fish carcass; and heat production (H) as the difference 

between ME and RE; retained energy as protein (REp) as product of retained protein (RN 

x 6.25) and 23.7, where 23.7 is the energy content of 1g of protein (Brafield, 1985); 

retained energy as fat (REf) as difference between RE and REp, assuming total retained 

energy only in the form of fat and protein. 

The oxygen consumption of the fish was calculated per tank and expressed as mg 

O2/kg0.8/min adopting the formula used for calculating ammonia excretion in fish 

(Kaushik, 1980): OXt = ((VL x ΔC) + (Ct x ΔW))/(t x Wmean), where OXt is the O2 

consumption of fish per unit time (mg O2/kg0.8/min), VL is the volume of water in 

metabolic tank (in l), ΔC is the variation in O2 concentration in outlet between two 

consecutive measurements (Ci – Ci-t), Ct is the mean O2 concentration of inlet minus 

outlet between two consecutive intervals (Ci – Ci-t/2), ΔW is the water flow per unit time 

(l/min), t is the unit of increment in time (min) between two consecutive oxygen 

measurements, and Wmean, is the average predicted metabolic body weight of fish (kg0.8) 

during the measurement days. Wmean was calculated as (Wp/1000)0.8 where, Wp is the 

predicted daily body weight of individual fish, estimated as Wi(1-48) + DFIi(1-48)/ FGRtank, 

where DFI i(1-48) is the daily feed intake per fish per tank (in g/fish), Wi is the average 

initial body weight of fish, i indicates the ith day of experiment, and FGRtank is the feed 

gain ratio of each tank calculated for the entire experimental period. 
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Dietary oxygen demand (mg O2/kJ or mg O2/g) for each diet was calculated by dividing 

mean daily oxygen consumption (mg O2/kg0.8/d) of fish in each tank by their respective 

DE (kJ/kg0.8/d) or daily dry feed intakes (g DM/kg0.8/d). Similarly, efficiency of oxygen 

utilization for energy retention (i.e., oxygen efficiency; kJ RE/mg O2 consumed) was 

calculated by dividing RE (kJ/kg0.8/d) of fish within each tank by their respective mean 

daily oxygen consumption (mg O2/kg0.8/d). 

Statistical procedures 

Statistical analyses were performed using SAS 9.1 (SAS Institute, Cary, NC, USA). The 

homogeneity of variances among groups was checked by Levene’s F test (PROC ANOVA). 

All variables met the assumption of equal variances (P >0.05). The parameters related 

with feed intake, oxygen consumption, growth and nutrient utilization were subjected to 

a two-way analysis of variance (ANOVA) in order to test the effect of DP/DE ratio, type 

of NPE and their interaction (PROC GLM). Normal distribution of the residuals was 

verified using Kolmogorov-Smirnov’s test (PROC UNIVARIATE). The total digestible 

carbohydrate intake and retained fat (RF) overruled the assumption of normal 

distribution (P <0.05) and logarithmic data transformation satisfied the assumptions. 

When the interaction between DP/DE and NPE was significant (P <0.05), comparison of 

means was performed using Tukey-Kramer test. A linear regression (PROC REG) 

analyzed the relation between dietary oxygen demand or oxygen efficiency and DE 

intake of each treatment unit.  

Results 

Growth  

The survival of the fish during the experimental period was above 98% and did not 

differ among the dietary treatments (P >0.05). Data on growth and feed utilization of the 

fish over the entire study period are reported in Table 3.2. Mean initial body weight was 

not different among dietary groups (P >0.05). Mean final body weights were higher for 

fish fed with fat as NPE (P <0.02), as was the growth rate expressed per unit metabolic 

body weight, being 9.3% higher in fish fed the fat relative to starch diets. A similar trend 

was observed for overall growth rate (DGC) or lean body growth. While growth 

parameters were not affected by the DP/DE ratio of diet (P >0.05), FGR was significantly 

improved in fish fed high DP/DE ratio diets (P <0.01). Similarly, protein efficiency ratio 

(PER) was affected by dietary DP/DE ratio (P <0.001) with higher efficiency in LP than 

HP diets. There were no interaction effects between DP/DE ratio and NPE on any of the 

growth parameters.  
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Table 3.2 Growth performance of Nile tilapia fed the experimental diets for 48 days (n 3) 

 Diets*  P- value 

 
HPF HPS LPF LPS SEM 

DP/DE 
ratio 

NPE 
DP/DE x 

NPE 
Growth period (d) 48 48 48 48 - - - - 
No. of tanks 3 3 3 3 - - - - 
No. of fish / tank 20 20 20 20 - - - - 
Initial body 
weight (g) 

40.6 40.1 40.6 41.0 0.50 0.386 0.945 0.397 

Final body weight 
(g) 

240.8 213.7 249.8 221.0 8.41 0.360 0.010 0.927 

Growth         
 Weight gain 

rate (g/d) 
4.2 3.6 4.4 3.8 0.18 0.392 0.011 0.887 

 GRMBW 
(g/kg0.8/d) 

26.6 24.3 27.3 24.6 0.80 0.503 0.014 0.801 

 Lean growth 
(g/d) 

3.6 3.2 3.5 3.1 0.14 0.635 0.016 0.909 

 DGC (%/d) 5.8 5.3 6.0 5.4 0.16 0.471 0.013 0.848 
FGR 0.88 0.89 0.92 0.93 0.010 0.003 0.432 0.995 
PER† (%) 2.12 2.08 3.69 3.60 0.032 <0.001 0.088 0.554 

SEM, Standard error mean; DP/DE, digestible protein to digestible energy ratio; NPE, non-
protein energy source; GRMBW, Growth expressed in metabolic body weight; DGC, Daily growth 
coefficient; FGR, Feed gain ratio; PER, Protein efficiency ratio. 
* HPF – High DP/DE ratio diet with fat as NPE source; HPS - High DP/DE ratio diet with starch as 
NPE source; LPF - Low DP/DE ratio diet with fat as NPE source; LPS - Low DP/DE ratio diet with 
starch as NPE source. 
† PER = wet weight gain/protein intake.
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Feed intake and digestible nutrient intake 

Feed intake and digestible nutrient intake of Nile tilapia are shown in Table 3.3. FI 

(expressed as fed, ABS, PCT and MBW of fish) was affected by the type of NPE source (P 

<0.03) and to a lesser extent by the DP/DE ratio (P =0.07), which disappeared when FI 

was expressed on DM basis. Although not significantly different, fish fed LP diets had 

approximately 6% higher FI than HP diets. On the other hand, tilapia fed diets 

containing starch as the main NPE had significantly reduced FI (9.5%) compared to 

those fed the fat diets. 

Table 3.3  Feed intake, digestible nutrient intake (on dry matter basis, except dry matter) 

of Nile tilapia and dietary oxygen demand of experimental diets (n 3).  

  Diets*  P- value 

  HPF HPS LPF LPS SEM 
DP/DE 

ratio 
NPE 

DP/DE 
x NPE 

Feed intake (FI)         
 FI as fed (g/fish/d) 3.8 3.4 4.2 3.8 0.17 0.064 0.038 0.745 
 FIABS (g DM/fish/d) 3.7 3.2 4.0 3.5 0.16 0.100 0.015 0.839 
 FIPCT (g DM/100g 

fish/d) 
3.7 3.5 4.0 3.7 0.11 0.069 0.028 0.727 

 FIMBW (g DM/kg 0.8/d) 23.4 21.5 25.1 22.8 0.74 0.074 0.023 0.759 

Digestible nutrient intake (g or kJ/kg       
 Dry matter 16.8 19.0 18.5 20.5 0.48 0.010 0.002 0.787 
 Protein 11.7 11.1 7.0 6.4 0.21 <0.001 0.018 0.912 
 Fat 3.7 1.5 5.2 2.9 0.13 <0.001 <0.001 0.684 
 Total carbohydrate 0.6 5.8 5.5 10.5 0.16 <0.001 <0.001 0.551 
 Ash 0.67 0.69 0.75 0.76 0.015 0.001 0.319 0.754 
 Energy  435 420 468 446 11.8 0.035 0.156 0.775 
Dietary oxygen demand        
 mg O2/ g DM intake 366 399 311 365 8.3 <0.001 <0.001 0.265 
 mg O2/ kJ DE intake  19.7 20.5 16.7 18.7 0.37 <0.001 0.005 0.163 

SEM, Standard error mean; DP/DE, digestible protein to digestible energy ratio; NPE, non-
protein energy source; FIABS, absolute feed intake; FIPCT, feed intake expressed in percentage 
body weight of fish; FIMBW, feed intake expressed in metabolic body weight.  
* HPF – High DP/DE ratio diet with fat as NPE source; HPS - High DP/DE ratio diet with starch as 
NPE source; LPF - Low DP/DE ratio diet with fat as NPE source; LPS - Low DP/DE ratio diet with 
starch as NPE source. 
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Digestible dry matter, protein, fat and total carbohydrate (without cellulose) intakes 

were affected by both DP/DE ratio and NPE of diets (P <0.02). As expected per the 

protocol, digestible protein intake was 41% lower with LP than with HP diets. Digestible 

fat and carbohydrate intakes were also affected by both DP/DE ratio and NPE of diets (P 

<0.001). In contrast to digestible macronutrient intakes, DE intake was not affected by 

the source of NPE (P >0.05), but was affected by the dietary DP/DE ratio, being higher at 

low than at high DP/DE ratio (P <0.05). There was no interaction between the effect of 

DP/DE ratio and of NPE on any of the observed FI and digestible nutrient intake 

variables (P >0.05).  

Oxygen consumption 

The oxygen consumption (mg O2/kg0.8/min) of Nile tilapia (fig. 3.1), affected by both 

DP/DE ratio and NPE of diet (P <0.01), showed a significant interaction between both 

effects (P =0.01). The multiple means comparison (Tukey’s test) showed that except for 

the LPF (mean ± SD; 5.4 ± 0.14) diet group, oxygen consumption was similar in the other 

three diet groups (HPF, 5.9 ± 0.05; HPS, 6.0 ± 0.04; LPS, 5.8 ± 0.04).  

 

Figure 3.1 Effect of diets on mean oxygen consumption (mg O2/kg0.8/min) of Nile tilapia. 

Each bar shows overall mean with standard deviation represented by error bars. Bars labeled 

with different lower case letters are significantly different (n 3; P <0·05).  

Dietary oxygen demand 

The dietary oxygen demand of diets expressed both on DM and DE intake (Table 3.3) 

were influenced by DP/DE ratio and NPE of diet (P <0.01). The HP diets induced a 11% 

higher oxygen demand than LP diets. Similarly, starch diets led to a 11% and 7% higher 

oxygen demand per unit DM and DE intake respectively, compared to fat diets. No 

interaction effect was observed for dietary oxygen demand. Intriguingly, DE intake 

showed a significant inverse linear relation (R2 =0.81) with dietary oxygen demand of 
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the diets (fig. 3.2). Fish fed the LPF diet with the lowest dietary oxygen demand, had 

highest DE intakes, followed by LPS, HPF and HPS groups. 

 

Figure 3.2 Relation between dietary oxygen demand and DE intake of Nile tilapia fed diets 

differing in DP/DE ratio and NPE source. For every unit increase in dietary oxygen demand, 

DE intake of Nile tilapia would decrease with 14. 4 kJ (n 12; P <0.001). 

Body composition 

The initial and final whole body compositions of tilapia are presented in Table 3.4. 

Dietary DP/DE ratio had a significant effect on final body composition of tilapia. Similar 

effect was observed for the dietary NPE source, except for dry matter and gross energy 

content where no effect was found (P >0.05). The fat content of fish fed the LP diets 

were 37% higher than fish fed the HP diets. Consequently, LP-fed fish had about 19% 

higher energy deposit per unit body weight compared to HP-fed fish. There was no 

interaction effect between DP/DE ratio and NPE on final body composition, except for 

protein content (P <0.05).  

Nitrogen, fat and energy balance 

Nitrogen, fat and energy balances are shown in Table 3.5. All parameters of the nitrogen 

balance (GN, FN, DN, BUN and RN) were affected by the DP/DE ratio of the diets (P 

<0.02) and, except for RN (P =0.063), also by NPE (P <0.02). GN and DN intake was 

about 41% lower with LP compared to HP diets. HP diets resulted in higher FN (33.5%) 

and BUN loss (59%) than LP diets. RN represented 37% and 58% in terms of DN intake 

in HP and LP diets, respectively. GN, DN and RN were 7.1%, 6.7% and 6.2% higher, 

respectively, in fish fed fat compared to starch diets. No interaction effect between NPE 

and DP/DE ratio was observed except for FN (P <0.05).  
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Table 3.4 Effect of DP/DE ratio of diet and NPE source (fat vs. starch) on final body 

composition (on fresh weight basis) of Nile tilapia (n 3). 

  Final body composition 

Unit in 

 (g/ kg) 

Initial body 

composition 

Diets*  P- value 

HPF HPS LPF LPS SEM 
DP/DE 

ratio 
NPE 

DP/DE 

x NPE 

Dry matter 243 307 299 347 333 5.2 <0.001 0.067 0.563 

Protein 154 153a 161b 143c 143c 1.4 <0.001 0.019 0.038 

Fat 56 124 109 166 153 4.9 <0.001 0.019 0.777 

Ash 34 32 29 33 32 0.7 0.016 0.024 0.469 

Energy(kJ/g) 5.6 8.5 8.1 10.1 9.6 0.2 <0.001 0.100 0.919 

SEM, Standard error mean; DP/DE, digestible protein to digestible energy ratio; NPE, non-
protein energy source 
* HPF – High DP/DE ratio diet with fat as NPE source; HPS - High DP/DE ratio diet with starch as 
NPE source; LPF - Low DP/DE ratio diet with fat as NPE source; LPS - Low DP/DE ratio diet with 
starch as NPE source. 
a,b,c Values represent LS means, row means with different superscript letters were significantly 
different and assigned only if interaction effect was significant (P <0·05). 
 

Variables of fat balance (GF, FF, DF and RF) were affected by DP/DE ratio and NPE of 

diet (P <0.01) without interaction, except for FF. RF was significantly (P <0.05) different 

between HP and LP groups, being about 30% higher in LP compared to HP diet groups. 

The RF/DF (i.e., fat efficiency) was found to be above 1 for starch diet groups (2.0, HPS; 

1.5, LPS) and close to 1 for fat diet groups. 

The DP/DE ratio of the diet had no effect on GE, FE and H (P >0.05), but affected DE and 

ME intakes being about 11% higher in fish fed LP relative to HP diets. On the other hand, 

the source of NPE did not affect DE and ME intakes, but showed a lesser effect on REp (P 

=0.063). Although ME intakes of fish fed starch and fat diets were found to be similar, 

the higher RE with fat diets resulted in a 10% lower heat production (H) than with 

starch diets. There was no interaction between DP/DE ratio and NPE of diet on any of 

the energy balance parameters (P >0.05). 
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Table 3.5 Nitrogen, fat and energy balance in Nile tilapia fed the four experimental diets 

for 48 days (n 3) 

 Diets*  P- value 

 HPF HPS LPF LPS SEM DP/DE ratio NPE DP/DE x NPE 

Nitrogen balance (mg N/kg0.7/d)     

 GN 1587 1470 944 864 32.1 <0.001 0.015 0.575 

 FN 97a 72b 52c 55c 3.9 <0.001 0.019 0.009 

 DN 1490 1398 891 809 28.6 <0.001 0.016 0.858 

 BUN 975 901 403 371 17.1 <0.001 0.014 0.256 

 RN 515 497 488 439 15.0 0.022 0.054 0.329 

 RN/DN 0.35 0.36 0.55 0.54 - - - - 

Fat balance (mg/kg 0.9/d)       

 GF 5007 1924 7347 3821 192.8 <0.001 <0.001 0.284 

 FF 250a 59b 598c 151ab 33.6 <0.001 <0.001 0.005 

 DF 4692 1849 6595 3630 152.9 <0.001 <0.001 0.701 

 RF 4634 3719 6453 5462 279.8 <0.001 0.005 0.625 

 RF/DF 0.99 2.01 0.98 1.50 - - - - 

Energy balance (kJ/kg0.8/d)   

 GE 541 449 582 475 16.8 0.081 <0.001 0.666 

 FE 106 29 114 29 5.5 0.515 <0.001 0.479 

 DE 435 420 468 446 11.8 0.035 0.156 0.775 

 BUE 30 28 12 12 0.5 <0.001 0.017 0.276 

 ME 404 392 456 435 11.4 0.003 0.175 0.729 

 H 163 180 157 175 6.0 0.335 0.020 0.982 

 RE 241 211 298 260 11.0 0.001 0.015 0.713 

 REp 96 93 91 82 2.7 0.016 0.063 0.297 

 REf 145 118 207 178 8.8 <0.001 0.012 0.893 

SEM, Standard error mean; DP/DE, digestible protein to digestible energy ratio; NPE, non-
protein energy source; GN, Gross nitrogen intake; FN, Faecal nitrogen loss; DN, Digestible 
nitrogen intake; BUN, Branchial and urinary nitrogen loss; RN, Retained nitrogen; GF, Gross fat 
intake; FF, Faecal fat loss; DF, Digestible fat intake; RF, retained fat; RF/DF, fat efficiency; GE, 
Gross energy intake; FE, faecal energy loss; DE, digestible energy intake; BUE, branchial and 
urinary energy loss; ME, metabolizable energy intake; H, heat production; RE, retained energy; 
REp, retained energy as protein; REf, retained energy as fat 
* HPF – High DP/DE ratio diet with fat as NPE source; HPS - High DP/DE ratio diet with starch as 
NPE source; LPF - Low DP/DE ratio diet with fat as NPE source; LPS - Low DP/DE ratio diet with 
starch as NPE source. 
a,b,c Values represent LS means, row means with different superscript letters were significantly 
different and assigned only if interaction effect was significant (P <0·05). 
 



Chapter 3 | 67 
 

 

Discussion  

Indispensable criteria 

Two main criteria need to be fulfilled to investigate the possible role of dietary oxygen 

demand (DOD) on FI regulation: (i) the availability of dissolved oxygen from water (DO) 

should not be limiting for the fish and (ii) the experimental diets should generate 

differences in oxygen demand in the species concerned.  

It is well documented in many fish species that a reduction in concentration of water 

oxygen lowers FI (Buentello, 2000; Glencross, 2009; Pichavant et al., 2000; Thetmeyer, 

1999). The mean incipient DO concentration inside the tank for Nile tilapia has recently 

been reported to be 2.6 and 5.0 mg/l for small (60-100 g) and big (200-270 g) fish, 

respectively (Tran-Duy et al., 2008a), below which FI decreases. Cho (1992) however 

underlined the importance of considering the rate of replenishment of oxygen per unit 

time (mg/l/s) rather than the mean oxygen concentration inside the tank. In the present 

study, oxygen was kept at an average of 8.8 mg/l in inlet and 5.6 mg/l in outlet water, 

indicating a DO concentration higher than 5.6 mg/l inside the tank. This concentration, 

together with the 30 min total replenishments, ensured sufficient oxygen availability for 

the fish (40-250g) throughout the experiment.  

As intended, the diets generated differences in DOD (kJ per g DM or DE intake), related 

to both the DP/DE ratio (HP>LP) and NPE source (starch>fat). The metabolic fate of a 

specific dietary nutrient for energy production depends on the relative proportions of 

energy-yielding nutrients and on the nutritional status of the fish. The high oxygen 

demand for the HP diets agrees with post-feeding oxygen consumption data reported in 

fish fed high protein (Jobling, 1980; Peres, 1999) and also with the use of protein for 

ATP production in fish (Alsop and Wood, 1997). The low oxygen demand in tilapia fed 

the high fat diets, as observed in other studies (Cho, 1992; Seth, 2009), suggests that the 

majority of the dietary fat was used for fat deposition rather than for ATP production, as 

reflected by their higher level of body adiposity. In terms of ATP (oxygen) demand, the 

formation of fat from dietary lipids is considered to be less expensive than from either 

starch or protein (Blaxter, 1989; Reeds, 1982), which likely explains the increase in 

dietary oxygen demand observed following the replacement of fat by starch as non-

protein energy source. 

Control of feed intake 

FI in several fish species, including Nile tilapia, has been found to be regulated by the 

dietary DE level in order to maintain a constant DE intake irrespective of diet 

composition, provided all essential nutrients are present in adequate amounts and in the 

right proportions (Boujard, 1994; Cho, 1990; Kaushik, 1983; Kubaryk, 1980; Lee and 
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Putnam, 1973; Lekva et al., 2010). In case of a very low dietary DE density, FI can be 

limited by the excessive bulk relative to stomach volume induced by the physical 

characteristics of the feed (Lovell, 1979). Some studies however reported an increase in 

stomach volume to allow increased dry matter intakes as shown in rainbow trout 35% 

over a 10-week period (Ruohonen, 1996), and in plaice (Jobling, 1982). In the present 

study, tilapia fed the LP compared to HP diets with similar DE concentration displayed a 

11% higher DE intake. The current finding that the tilapia did not adjust FI for constant 

DE intake is in line with observations in other studies (Alanärä, 1996; Geurden et al., 

2006; Helland, 1998; Peres, 1999), showing the absence of dietary DE intake 

compensations and hence suggests a role of factors other than DE in the control of FI. A 

possible adjustment to make up for the low protein supply in the LP diets is one 

explanation for this. 

Some studies in mammals suggest that an animal seeks to eat until it reaches the 

maximum protein deposition as determined by its genetic growth potential (Birkett, 

2001; Webster, 1993). In fish also, some studies propose that FI is controlled in order to 

achieve the maximal protein growth rather than to fulfill the daily energy needs 

(Azevedo, 2001; Gélineau, 2001; Geurden et al., 2006). If it is indeed the maximal growth 

potential which determines FI, one would expect to have similar lean body growth, 

irrespective of diet composition. In contrast, results of the current study showed 

differences in lean growth and RN between fish groups, which does not comply with 

above claims.  

Like in mammals, reduced FI in fish fed high-fat diets has been attributed to increased 

adiposity or high body fat contents (Boujard et al., 2004; Johansen et al., 2003; Metcalfe, 

1992; Shearer et al., 1997; Silverstein, 1999). In the present study, high growth (GRMBW) 

in fat groups resulted from the high deposition of body fat (lipid gain), as seen in other 

fish species fed high levels of dietary fat (Azevedo, 2004a; Grisdale-Helland et al., 2008; 

Vergara, 1999). However, tilapia fed either the HPF or LPF diet did not reduce FI. On the 

contrary, these groups in fact had a higher FI, despite their high body fat content. Similar 

observations have been made in other fish such as turbot (Saether, 2001) and rainbow 

trout (Geurden et al., 2006). Our results suggest that FI in Nile tilapia is not related to 

adiposity, which suggest the need for further studies on the lipostatic control of FI in 

poikilotherms. 

Our previous observations showing different DE intakes concurrent with similar heat 

productions in Nile tilapia (Tran-Duy et al., 2008b) and rainbow trout (our own 

unpublished data) suggest that DE intake might be limited and thus controlled by either 

constraints in the physiological capacity of oxygen uptake or metabolic oxygen use by 

the fish. This forms the basis of the proposed oxystatic theory, which to our knowledge 
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has never been considered before in fish. The concept of the ‘oxystatic control of FI in 

fish’ tested here assumes that (maximal) FI is limited by the (maximal) capacity of 

oxygen use in the fish. In this view, it is expected to find similar oxygen consumption if 

fish are fed to satiation with diets differing in macronutrient composition. Thus, changes 

in the dietary oxygen demand (by changing the macronutrient composition) are 

expected to induce differences in FI. Indeed in the current study, the amount of oxygen 

consumed per unit metabolic body weight was similar for three out of the four diets. As 

such, the reduced DE intakes of fish fed the HP diets, which had a higher dietary oxygen 

demand than LP diets but which resulted in equal oxygen consumption by the fish, 

possibly stem from physiological constraints in oxygen use, in line with the ‘oxystatic 

control of FI in fish’. Also in mammals, high levels of dietary protein have been reported 

to produce a higher satiating effect than fat (Anderson and Moore, 2004; Friedman, 

1998; Stubbs, 1996), which has been attributed to their limited storage capacity and 

hence their (obligatory) partitioning towards oxidation. Interestingly, tilapia fed the LPF  

diet however consumed a lower amount of oxygen than fish from the other three dietary 

treatments. Moreover, tilapia fed this low oxygen-demanding diet displayed the highest 

FI. According to the oxystatic theory, LPF-fed  fish could have eaten more since oxygen 

consumption did not reach its upper limit. As such, it is believed that FI in tilapia fed the  

 

Figure 3.3 Relation between oxygen efficiency and DE intake of Nile tilapia fed diets 

differing in DP/DE ratio and NPE source. The DE intake of tilapia increases linearly with 

increasing efficiency of oxygen utilization for energy retention (n 12; P <0.001). 
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LPF diet was limited by other constraints of physical (stomach capacity) or metabolic 

(lipid/protein gain) origin rather than by the maximum capacity of oxygen use.  

Our data demonstrate that DE intake in tilapia is not only significantly related to the 

dietary oxygen demand, but also to the amount of energy retained per unit of oxygen 

consumed (figs. 3.2 & 3.3). DE intakes decreased with increasing dietary oxygen demand 

but also increased linearly with increasing oxygen efficiency (i.e., amount of energy 

retained per unit of oxygen consumed). This parallels the finding in ruminants, that 

metabolizable energy intake increases with increasing oxygen efficiency (Ketelaars and 

Tolkamp, 1992). Based on these observation in ruminants, Ketelaars and Tolkamp 

postulated the ‘oxygen efficiency theory’ in the control of FI (Ketelaars and Tolkamp, 

1992; Ketelaars and Tolkamp, 1996). According to this theory, FI entails both benefits 

(energy gain) and costs (measured as oxygen consumption) to the animal, which strives 

to optimize its FI close to the value of maximum efficiency of oxygen utilization for 

energy gain. The current results however do not allow to conclude whether FI in Nile 

tilapia is regulated as a function of (maximizing) oxygen efficiency or by a limit set by 

the (maximum) capacity of oxygen use by the fish.  

In summary, the FI of Nile tilapia was related to dietary macronutrient-induced changes 

in oxygen demand. As such, even under normoxic conditions, oxygen consumption of 

fish appears to play a role in the dietary control of FI in tilapia. Further studies are 

warranted to explore other environmental and nutritional factors affecting oxygen use 

in fish and their metabolic implications in regulating FI in fish. 
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Abstract 

This study investigated the hypothesis that the voluntary feed intake in fish is regulated 

by diet-induced differences in oxygen use. Four diets were prepared with a similar 

digestible protein to digestible energy ratio (18 mg/kJ), but which differed in the 

composition of non-protein energy source. This replacement of fat (F) by starch (S) was 

aimed to create a diet-induced difference in oxygen use (per unit of feed): viz. diets F30-

S70, F50-S50, F65-S35 and F80-S20 with digestible fat providing respectively 28, 49, 65 

and 81% of the non-protein digestible energy (NPDE). Each diet was fed to satiation to 

triplicate groups of twenty rainbow trout for 6 wk. As expected, diet-induced oxygen use 

decreased linearly (R2=0.89; P<0.001) with increasing NPDE as fat. The digestible and 

metabolizable energy intake of trout slightly increased with increasing NPDE as fat (i.e., 

decreasing starch content) (R2=0.30; P=0.08 and R2=0.34; P=0.05, respectively). Oxygen 

consumption of trout fed to satiation declined with increasing dietary NPDE as fat 

(R2=0.48; P=0.01). The inverse relation between digestible energy intake of trout and the 

diet-induced oxygen use (R2=0.33; P=0.05), suggests a possible role of diet-induced 

oxygen use in feed intake regulation as shown by the replacement of dietary fat by 

starch.   
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Introduction 

In fish, factors influencing feed intake is extensively documented but the underlying 

mechanism that regulates feed intake has been less intensively studied compared to 

mammals (Houlihan et al., 2001). It has been often suggested that fish, like other 

animals, adjust their voluntary feed intake according to the digestible energy content of 

the diet in order to meet a predefined energy requirement (Kaushik et al., 1981; 

Rasmussen et al., 2000; Yamamoto et al., 2000). However, recent findings in rainbow 

trout (Alvarez et al., 1998; Encarnação et al., 2004; Figueiredo-Silva et al., 2012a; 

Geurden et al., 2006; Morales et al., 1994; Saravanan et al., 2012a) and in other teleosts 

(Alvarez et al., 1998; Saravanan et al., 2012b; Tran-Duy et al., 2008) contradict the 

notion that feed intake is adjusted to have a constant digestible energy intake. Similarly, 

the demand for a target lean growth or protein deposition rather than for a predefined 

energy requirement has been proposed to regulate feed intake in fish (Azevedo et al., 

2004; Encarnação et al., 2004; Geurden et al., 2006; Peres and Oliva-Teles, 1999). 

However, several other fish studies did not show an equal protein deposition under 

satiation feeding (Saravanan et al., 2012b; Saravanan et al., 2012a). The diet-induced 

difference in the voluntary intake levels observed in various fish species (Borges et al., 

2009; Da Vies, 1989; Figueiredo-Silva et al., 2012a; Gélineau et al., 2001; Saravanan et 

al., 2012a) might be related to the type and level of dietary non-protein digestible 

energy (NPDE) source (starch vs. fat) as suggested in mammals (see review Blundell et 

al., 1996). The mechanism by which the NPDE source affects voluntary feed intake in 

fish has been, so far, little explored. In terrestrial animals, dietary starch and fat exert 

their effects on feed intake via feedback mechanisms mediated by circulating glucose 

(Mayer, 1955) (glucostatic regulation) and body fat store (Kennedy, 1953) (lipostatic 

regulation), respectively. These chemostatic control mechanisms of feed intake show 

inconsistent outcomes in fish (Saravanan et al., 2012b; Saravanan et al., 2012a). 

Alternatively, the thermostatic regulation of feed intake in homeotherms proposes the 

intake to be controlled by the animal’s need for body heat and its ability to dissipate the 

extra heat to the environment generated as a by-product of food processing (Brobeck, 

1948; Strominger and Brobeck, 1953). As such, the concept of thermostatic control and 

its more recent revision, “heat dissipation limit theory (Speakman and Król, 2005)” in 

the feed intake regulation of fish is debatable because of its ectothermic nature. Besides, 

in homeotherms under thermoneutral condition, differences in diet-induced 

thermogenesis are suggested to be involved in the regulation of food intake 

(Westerterp-plantenga et al., 1990; Westerterp, 2004). As such, the heat produced by 

food processing in animals varies with the dietary macronutrient (protein, fat, and 

starch) composition (Karst et al., 1984), which implies a difference in the diet-induced 

oxygen use (per unit of feed). Further, the basic biochemical processes of oxidative 
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nutrient metabolism are analogous between homeotherms and poikilotherms 

(endotherms and ectotherms). An enhanced oxidative metabolism over a long term has 

been suggested to impart putative negative effects (e.g., the buildup of reactive oxygen 

species) on the animal (Fridovich, 1998; Sohal and Weindruch, 1996). In view of the 

above findings, we have previously proposed a role of oxygen consumption in the 

control of voluntary feed intake in Nile tilapia fed with diets highly varying in the 

macronutrient composition (Saravanan et al., 2012b). In that study, Nile tilapia linearly 

adjusted the feed intake (digestible energy intake) depending on the diet-induced 

differences in oxygen use and moreover showed a similar oxygen consumption in some 

of the diet groups, which suggests that physiological factors related to oxygen 

consumption perhaps, constrained the feed intake. 

The present study was designed to test the role of diet-induced differences in oxygen 

use (O2 per unit of feed) on the voluntary feed intake in rainbow trout. To this end, the 

feed intake (digestible energy intake) and oxygen consumption were monitored in 

rainbow trout fed to apparent satiation with diets contrasting in the percentage of NPDE 

source (starch vs. fat) and with a similar digestible protein to digestible energy ratio. The 

contrast in fat and starch is expected to create a difference in diet-induced oxygen use. 

In addition, growth, body composition, nutrient partitioning (nitrogen, fat, and energy 

balance) and postprandial nutrient (plasma glucose and triglycerides) concentrations 

were observed to evaluate their involvement on the regulation of feed intake in rainbow 

trout. 

Materials and Methods 

The study was conducted at De Haar vissen, Wageningen University in accordance with 

the Dutch law on experimental animals and as approved by the Ethical Committee of 

Wageningen University for animal experiments. 

Diets 

Four diets, with the aim to have a similar digestible protein to digestible energy ratio 

(~18 mg/kJ) and contrasting in the percentage of non-protein energy source (starch vs. 

fat), were formulated by replacing an iso-energetic (iso-digestible energy) amount of 

two test ingredients: gelatinized maize starch vs. rapeseed oil. The test ingredients were 

exchanged with the assumption that the digestible energy value of 12.5 g maize starch 

(87% apparent digestibility coefficient) is equal to that of 5.0 g rapeseed oil (95% 

apparent digestibility coefficient). To the basal ingredient composition (62.5%), 

different ratios of the test ingredients (maize starch vs. rapeseed oil) were added. These 

test ingredients were exchanged iso-energetically to create contrasts in percentage of 

non-protein energy (F, fat vs. S, starch) (Supplemental Table): viz. Diet F30-S70, 0% 
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rapeseed oil + 37.5% maize starch; Diet F50-S50, 5% rapeseed oil + 25% maize starch; 

Diet F65-S35, 10% rapeseed oil + 12.5% maize starch; and Diet F80-S20, 15% rapeseed 

oil + 0% maize starch. Due to the difference in energy content (kJ/g) between rapeseed 

oil and maize starch, an incomplete mass balance of 92.5, 85.0, and 77.5%, respectively 

occurred to diet F50-S50, F65-S35, and F80-S20. In order to complete the mass balance 

to 100%, the amount of both the basal and the test ingredients were adjusted in those 

diets in an equal proportion without affecting the aimed digestible protein to digestible 

energy ratio and contrast in non-protein energy type. Diamol (acid insoluble ash) was 

added as inert marker to measure the digestibility. The ingredient mixture were 

extruded (Clextral BC45, twin screw extruder) through a 3 mm die, dried (70°C for 3 h), 

vacuum coated with oils and stored at 4°C (Research Diet Service B.V., Wijk bij 

Duurstede, The Netherlands). The analyzed gross and digestible nutrient content of the 

diets are shown in Table 4.1. The observed digestible protein to digestible energy ratio 

of diets varied from 18 to 19.8 mg/kJ. The percent fat in the NPDE was 28% in diet F30-

S70, 49% in diet F50-S50, 65% in diet F65-S35, and 81% in diet F80-S20. 

Fish, housing conditions, and feeding 

At the start of the experiment, 240 unfed (feed-deprived for about 36 h) juvenile 

rainbow trout (Oncorhynchus mykiss; supplied by Forrel BV, The Netherlands) were 

individually weighed (under sedation; 2-phenoxy ethanol, 0.25 mL/L water) and 

randomly distributed among the 12 metabolic tanks (20 fish/tank). Each tank was 

assigned randomly to one of the four experimental diets forming triplicates per diet. The 

details of the aquatic metabolism unit are described elsewhere (Saravanan et al., 2012b), 

in brief, the entire unit was connected to a recirculating aquaculture system with the 

facilities to collect fish feces and to measure the oxygen consumption. Throughout the 

experiment, the environmental/water quality parameters (mean ± SD) were maintained 

in an optimal conditions for rainbow trout; photoperiod 12 light: 12 dark h, water 

volume (150 L/tank), water flow (7 L/min), water temperature (13.7 ± 0.1ºC), pH (7.42 

± 0.2), dissolved oxygen of water at the tank inlet (10.3 ± 0.3 mg/L), conductivity (2.9 ± 

0.2 µS/cm), nitrite (<0.15 mgN/L), nitrate (<250 mgN/L) and total ammonia nitrogen 

(<0.5 mgN/L). The fish were hand fed with their respective diets twice daily to apparent 

satiation for an hour (09.00 to 10.00 and 16.00 to 17.00 hrs). Feed given and uneaten 

pellets were counted and registered at each feeding.  
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Supplemental Table Ingredient composition of the experimental diets1 

 Diets 

 F30-S70 F50-S50 F65-S35 F80-S20 

Test ingredients  % 

 Rapeseed oil 0.00 5.41 11.77 19.36 

 Gelatinized maize starch 37.50 27.03 14.71 0.00 

Basal ingredients % 

 Fish meal 16.50 17.84 19.41 21.29 

 Soy protein concentrate 7.50 8.11 8.82 9.68 

 Pea protein 7.50 8.11 8.82 9.68 

 Wheat gluten 7.50 8.11 8.82 9.68 

 Wheat flour 16.00 17.30 18.82 20.65 

 Fish oil 3.00 3.24 3.53 3.87 

 DL-methionine 0.25 0.27 0.29 0.32 

 L-Lysine HCl 0.05 0.05 0.06 0.07 

 L-Threonine 0.05 0.05 0.06 0.07 

 Calcium carbonate 0.20 0.22 0.24 0.26 

 Mono-calcium phosphate 1.45 1.57 1.71 1.87 

 Diamol2 1.50 1.62 1.77 1.94 

 Vitamin mineral premix3 1.00 1.08 1.18 1.29 

1 F30-S70, F50-S50, F65-S35, and F80-S20, respectively: diet with fat providing 28, 49, 65, and 
81% of the non-protein digestible energy. F, fat; S, starch. 
2 Diamol (Acid insoluble ash, as inert marker for digestibility measurement)- Diamol GM, Franz 
Bertram, Hamburg, Germany.  
3 Mineral premix composition (to supply, mg per kg feed): 50, iron (as FeSO4.7H2O); 30, zinc (as 
ZnSO4.7H2O); 0.1, cobalt (as CoSO4.7H2O); 10, copper (as CuSO4.5H2O); 0.5, selenium (as 
Na2SeO3); 20, manganese (as MnSO4.4H2O); 500, magnesium (as MgSO4.7H2O); 1, chromium (as 
CrCl3.6H2O); 2, iodine (as CaIO3.6H2O). Vitamin premix composition (to supply, mg or IU per kg 
feed): 10, thiamin; 10, riboflavin; 20, niacin; 40, pantothenic acid; 10, pyridoxine; 0.2, biotin; 2, 
folic acid; 0.015, cyanocobalamin; 1500, choline (as choline chloride); 100, ascorbyl phosphate; 
3000 IU, retinyl palmitate; 2400 IU, cholecalciferol (Rovimix® D3-500, DSM Inc.); 100 IU, α-
tocopheryl acetate; 10, menadione (as menadione sodium bisulfite, 51%); 400, Inositol; 100, 
anti-oxidant BHT (E 321); 1000, calcium propionate. 
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Table 4.1 Analyzed nutrient content of the experimental diets1 

 Diets 

 F30-S70 F50-S50 F65-S35 F80-S20 

Dry matter, g/kg 947 948 959 954 

Crude protein (N x 6.25), g/kg DM 336 363 397 431 

Crude fat, g/kg DM 71 133 198 283 

Starch, g/kg DM 493 402 285 164 

Ash, g/kg DM 60 64 70 71 

Gross energy, kJ/g DM 19.9 21.4 23.1 25.1 

Digestible protein2, g/kg DM 317 344 377 411 

Digestible fat2, g/kg DM 61 123 186 267 

Digestible total carbohydrate2, g/kg DM 354 298 229 146 

Digestible energy2, kJ/g DM 16.0 18.1 20.3 22.9 

Non-protein digestible energy, kJ/g DM 8.5 10.0 11.3 13.0 

Digestible protein to digestible energy ratio, 

mg/kJ  
19.8 19.0 18.6 18.0 

Fat as non-protein digestible energy, % 28 49 65 81 

1  F30-S70, F50-S50, F65-S35, and F80-S20, respectively: diet with fat providing 28, 49, 65, and 
81% of the non-protein digestible energy. F, fat; S, starch. 
2 Calculated as product of respective nutrient/energy content in feed and their measured 
percentage apparent digestibility. 
 

Sampling and measurements 

At the start of experiment 20 fish were euthanized (2-phenoxy ethanol, 1.5 mL/L water) 

and stored at -20ºC for the analysis of the initial whole body composition. The entire 

experiment lasted for 7 wk, over the first 6 wk period (nutrient balance period), feed 

intake, growth, digestibility, oxygen consumption, and final body composition were 

determined. After 1 wk of recovery period (end of 7 wk), blood samples were collected. 

Fish feces were collected using swirl separator as previously described (Saravanan et al., 

2012b) and stored at -20ºC until further analysis. From the second week onwards, the 

water was sampled automatically for a duration of 5 min from the common inlet and the 

outlet of each tank and flushed over the oxygen electrode (WTW-Trioximatic® 700 IQ, 

WTW GmbH, Weilheim, Germany) to measure dissolved oxygen concentration. The 

oxygen measurements were performed in a continuous cycle of 2 d (48 h; from 08.00 to 

08.00 h) in a set of 4 tanks consisting of all the dietary treatments. Thus, in 6 d dissolved 

oxygen concentrations were measured in all 12 tanks. The oxygen electrode was 
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calibrated once a week. This procedure was repeated until the end of the experiment, 

which resulted in 5 cycles of 48 h oxygen measurements per tank. At the end of 6 wk, the 

fish (feed-deprived for about 36 h) were individually weighed and in addition, 6 fish per 

tank were euthanized and stored at -20ºC for final body composition analysis. The 

remaining fish in each tank were then continued to be fed with their respective diets for 

1 wk (recovery period) prior to post-prandial blood sampling. After 6 h post-feeding, 5-6 

fish from each tank were sampled for blood under sedation. The blood (1 mL) was 

collected from the caudal part, mixed to 20 µL anti-coagulant (potassium oxalate + 

sodium fluoride), and centrifuged (3000x g, 10 min). The plasma obtained was then 

stored at -20ºC until analysis.  

Chemical analyses 

Chemical analysis of the feeds, feces and fish carcasses were done in triplicates for dry 

matter (ISO 6469/NEN 3332), crude protein (Nx6.25; Kjeldahl, ISO 5983/NEN 3145), 

crude fat (Soxhlett, ISO-DIS 6492), ash (ISO 5984/NEN 3329), acid-insoluble ash (ISO 

5985) and gross energy (adiabatic bomb calorimetry, IKA-calorimeter C 7000). The 

starch content of the feed was determined enzymatically as glucose (ISO 15914). Plasma 

glucose and triglycerides (TGs) were determined following the protocol provided in the 

commercial kits, Glucose (RTU n° 61269) and TGs (PAP 150 n° 61236) from Bio-

Merieux, Marcy-L’Etoile, France. 

Calculations 

Apparent digestibility coefficient (%)= [(1 – DAIA/ FAIA × FN/ DN) × 100], where DAIA and 

FAIA are the acid insoluble ash content (% dry matter) in the diet and feces, respectively, 

and FN and DN are the amount of nutrient in 1 gram dry matter of the feces and diet, 

respectively. The comparative slaughter method was used to determine the nitrogen (N) 

(mg N/(kg0.7 . d)), fat (g/(kg0.9 . d)) and energy balance (kJ/(kg0.8 . d)) as previously 

described (Saravanan et al., 2012b). The only exception was the branchial and urinary 

energy loss, which was calculated as BUN × 24.9/1000, where, BUN is the branchial and 

urinary nitrogen loss and 24.9 is the amount of energy in kJ/g NH3-N, assuming all 

nitrogen was lost as ammonia (Bureau, 2002). Oxygen consumption of the fish was 

calculated per tank with the difference in measured concentration of oxygen between 

inlet and outlet, and the rate of water flow in the tank using the formula shown 

elsewhere (Saravanan et al., 2012b) without modification. 

Statistical analysis 

For all dependent variables, the tank was considered as the experimental unit. Data 

were tested for the relation between the dependent variable (Y; e.g., growth, feed intake 

etc.) and the measured percentage of fat in NPDE of the diets as an independent variable 
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(X, %; 28, 49, 65, 81) according to the linear regression model: Yi = α + βX + εi, where α, 

β, and ε represents intercept, slope and error term respectively (i = 1, 2, 3,…12). Data 

were analyzed using the general linear model procedure in SAS 9.2 (SAS institute, Cary, 

NC, USA). Linear regression results were reported when P<0.1. 

Results 

Feed intake 

The mean percentage survival of fish, about 93% over all the treatments, was not 

affected by replacing non-protein energy source of the diet (P=0.33). Feed intake was 

significantly affected by replacing dietary non-protein energy source (Table 4.2). The 

absolute feed intake (g DM/(fish . d)) and feed intake per unit metabolic body weight (g 

DM/(kg0.8 . d)) of the trout decreased linearly with increasing percent of fat in NPDE of 

the diet (P<0.001). The feed intake of trout in the low fat diet (F30-S70) was 34% 

greater than in those fed the high fat diet (F80-S20).  

Growth and body composition 

Growth performance of the trout and all the measured body composition parameters 

were significantly affected by replacing non-protein energy source of the diet (Table 

4.2). The final body weight and the growth of trout increased with increasing percent of 

fat in NPDE (P<0.001). The growth of trout fed F80-S20 was 21% higher than in the 

group fed the F30-S70 diet. Feed conversion ratio reduced linearly from 1.16 to 0.70 

with increasing percent fat from 28 to 81% in NPDE of the diet (P<0.001).  

The final body dry matter, crude fat and energy content increased (P<0.001), whereas, 

the crude protein (P<0.01) and ash (P=0.002) decreased linearly with increasing percent 

of fat in NPDE of the diet. Compared to the initial body fat content (72 g/kg) of trout, the 

final body fat content almost doubled (141 g/kg) in the group fed the F80-S20 diet with 

81% NPDE as fat. The lowest final body fat content (81 g/kg) was observed in the group 

which received the F30-S70 diet with 28% NPDE as fat. 
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Table 4.2 Feed intake, growth, and body composition of rainbow trout fed diets with varying levels of fat and starch for 6 wk1 

 Diets   Regression analysis 

 F30-S70 F50-S50 F65-S35 F80-S20 Pooled SEM  β (SE) R2 P-value 

Initial body weight, g 51.3 51.0 50.8 51.3 0.36  - - 0.92 
Final body weight, g 134.9 143.4 153.4 160.4 3.28  0.49 (0.08) 0.81 <0.001 
Feed intake (FI)          
 Absolute FI, g DM/(fish . d) 2.3 2.1 2.0 1.8 0.07  - 0.01 (0.002) 0.75 <0.001 
 FIMBW2, g DM/(kg0.8 . d) 16.8 15.4 14.0 12.5 0.38  - 0.08 (0.009) 0.89 <0.001 
Growth          
 Absolute, g/d 2.0 2.2 2.4 2.6 0.08  0.01 (0.002) 0.81 <0.001 
 GrowthMBW2, g/(kg0.8 . d) 14.6 15.7 17.0 17.7 0.41  0.06 (0.01) 0.81 <0.001 
Feed conversion, g DM intake/ g wet weight gain 1.16 0.98 0.82 0.70 0.02  - 0.01 (0.001) 0.98 <0.001 
Final body composition3, g/kg wet weight          
 Dry matter 275 299 307 320 2.8  0.82 (0.08) 0.92 <0.001 
 Crude protein 166 164 158 157 2.5  - 0.18 (0.06) 0.50 0.010 
 Crude fat 81 111 123 141 3.1  1.10 (0.08) 0.95 <0.001 
 Ash 22 21 21 20 0.3  - 0.04 (0.009) 0.63 0.002 
 Energy, kJ/g wet weight 7.0 8.1 8.6 9.1 0.15  0.04 (0.004) 0.91 <0.001 

1 Values are least-squares mean; (n=3). Linear regression results were reported when P<0.1. F30-S70, F50-S50, F65-S35, and F80-S20, respectively: 
diet with fat providing 28, 49, 65, and 81% of the non-protein digestible energy. F, fat; S, starch. 
2 Expressed in metabolic body weight (MBW), calculated using geometric mean body weight i.e., (√(Final body weight x Initial body weight)/1000)0.8. 
3 Initial body composition of rainbow trout at start of the experiment (g/kg wet weight): dry matter, 254; crude protein, 156; crude fat, 72; ash, 23; 
energy 6.4 kJ/g wet weight. 
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Nitrogen, fat, and energy balance  

Gross and digestible nitrogen intake were not affected by the replacement of the dietary 

non-protein energy source (P>0.2) with intakes of 695 and 659 mgN/(kg0.7 . d), 

respectively (Table 4.3). Despite the similar digestible nitrogen intake, the retained 

nitrogen and nitrogen retention efficiency increased (P<0.01) with increasing percent of 

fat in NPDE of the diet. In line with the increasing amount of fat in the diet, gross and 

digestible fat intake and fat retention of the trout increased (P<0.001), but the fat 

retention efficiency decreased linearly (P<0.001). The mean fat retention efficiency 

increased linearly with increasing fat in NPDE of the diets. 

The gross energy intake of the trout tended to decrease linearly (P=0.05), whereas, 

digestible (P=0.08) and metabolizable energy intake (P=0.05) increased with increasing 

percent of fat in NPDE of the diet; with regression coefficient of digestible and 

metabolizable energy intake of 0.30 and 0.34 kJ/(kg0.8 . d per %), respectively. The 

differences in feed intake or gross energy intake between the dietary treatments did not 

relate to the growth of trout, but the difference in the digestible energy intake of trout 

was related to the growth (P=0.004; fig 4.1A). The heat production decreased with 

increasing fat in NPDE (P<0.001). The higher metabolizable energy intake together with 

the lower heat production resulted in an increased energy retention and growth (Table 

4.2 and 4.3). Similarly, the energy retained as fat and protein increased with increasing 

fat in NPDE (P<0.001).  

Plasma glucose and triglycerides 

 At 6 h post-feeding, plasma glucose tended to decrease linearly (P=0.09) and plasma 

TGs tended to increase linearly (P=0.06; fig 4.1B) with increasing NPDE as fat. 

Oxygen consumption and diet-induced oxygen use 

 The oxygen consumption (mg O2/(kg . min) and mg O2/(kg0.8 . min)) of rainbow trout 

was linearly affected (P<0.01) by non-protein energy source of the diet (Table 4.4). 

Mean oxygen consumption of rainbow trout decreased with increasing percent inclusion 

of digestible energy as fat in the diet.  

The diet-induced oxygen use (mg O2/kJ digestible energy intake) decreased (P<0.001) 

with increasing percentage of fat in NPDE (Table 4.4). The digestible energy intake of 

trout reduced with increasing diet-induced oxygen use (P=0.05; Fig 4.1C). 
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Table 4.3 Nitrogen, fat, and energy balance of rainbow trout fed diets with varying levels of fat and starch for 6 wk1 

 

 

1 Values are least-squares mean; (n=3). Linear regression results were reported when P<0.1. F30-S70, F50-S50, F65-S35, and F80-S20, respectively: 
diet with fat providing 28, 49, 65, and 81% of the non-protein digestible energy. F, fat; S, starch. 

 Diets   Regression analysis 

 F30-S70 F50-S50 F65-S35 F80-S20 Pooled SEM  β (SE) R2 P-value 

Nitrogen balance mg N/(kg0.7 . d)      
 Gross nitrogen intake 706 700 695 677 19.0  - - 0.27 
 Digestible nitrogen intake (DNI) 667 663 661 645 17.5  - - 0.38 
 Retained nitrogen (RN) 314 331 341 352 7.7  0.72 (0.18) 0.62 0.002 
 Nitrogen efficiency (RN/DNI), % 47 50 52 55 1.1  0.14 (0.03) 0.75 <0.001 
Fat balance g/(kg0.9 . d)      
 Gross fat intake 1.5 2.6 3.5 4.5 0.09  0.06 (0.002) 0.99 <0.001 
 Digestible fat intake (DFI) 1.3 2.4 3.3 4.2 0.07  0.06 (0.002) 0.99 <0.001 
 Retained fat (RF) 1.6 2.7 3.2 3.9 0.12  0.04 (0.003) 0.95 <0.001 
 Fat efficiency (RF/DFI), % 124 110 97 92 2.5  - 0.61 (0.06) 0.90 <0.001 
Energy balance kJ/(kg0.8 . d)      
 Gross energy intake 338 330 322 313 8.3  - 0.43 (0.20) 0.33 0.05 
 Digestible energy intake (DEI) 271 279 284 285 6.6  0.30 (0.16) 0.27 0.08 
 Metabolizable energy intake 260 268 274 276 6.2  0.34 (0.15) 0.34 0.05 
 Heat production 152 126 108 92 4.5  - 1.11 (0.10) 0.92 <0.001 
 Retained energy 108 143 166 184 4.9  1.45 (0.12) 0.94 <0.001 
 Retained energy as protein 60 63 64 66 1.4  0.13 (0.03) 0.60 0.003 
 Retained energy as fat 48 80 102 118 4.5  1.32 (0.11) 0.94 <0.001 
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Table 4.4  Oxygen consumption and diet-induced oxygen use in rainbow trout fed diets with varying levels of fat and starch for 6 wk1 

 Diets   Regression analysis 

 F30-S70 F50-S50 F65-S35 F80-S20 Pooled SEM  β (SE) R2 
P-

value 

O2 consumption, mg O2/(kg . min) 5.26 5.10 4.95 4.67 0.11  - 0.01 (0.003) 0.61 0.003 

O2 consumption, mg O2/(kg0.8 . min) 3.28 3.21 3.13 2.99 0.07  - 0.005 (0.002) 0.48 0.013 

Diet-induced oxygen use2, mg O2/kJ DEI 17.5 16.6 15.9 15.1 0.21  - 0.04 (0.005) 0.89 <0.001 

Retained energy/oxygen consumed3, J/ mg O2 23 31 37 43 0.86  0.37 (0.02) 0.97 <0.001 

1 Values are least-squares mean, (n=3). F30-S70, F50-S50, F65-S35, and F80-S20, respectively: diet with fat providing 28, 49, 65, and 81% of the non-
protein digestible energy. F, fat; S, starch. 
2 Diet-induced oxygen use = O2 consumption (mg O2/(kg0.8 . d))/ digestible energy intake (DEI; kJ/(kg0.8 . d)). 
3 Retained energy/oxygen consumed = Retained energy (RE; J/(kg0.8 . d))/ O2 consumption (mg O2/(kg0.8 . d)). 
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Figure 4.1 Relations between digestible energy intake and growth (A), percent of dietary 

NPDE as fat and 6 h postprandial plasma glucose and TGs concentration (B), and diet-induced 

oxygen use and digestible energy intake in rainbow trout fed diets with varying levels of fat and 

starch as NPDE sources for 6 wk. Values are mean ± SD, n=3 (B) or in equations, mean ± SE, n=12 

(A,C). DEI, digestible energy intake; F30-S70, F50-S50, F65-S35, and F80-S20 respectively: diet 

with fat providing 28, 49, 65, and 81% of the NPDE; NPDE, non-protein digestible energy; TGs, 

triglycerides.  

 

All measured parameters were tested for curvilinearity but for none was the quadratic 

function significant (P>0.10). 

  



Chapter 4 | 89 
 

 

Discussion 

The digestible energy intake (DEI) range in the present study is within that seen in our 

previous study with rainbow trout (211-311 kJ/(kg0.8 . d)), where DEI was found to be 

significantly increased following the replacement of starch by fat (Saravanan et al., 

2012a). The present data confirm the effect of non-protein energy source on DEI, be it to 

a lesser degree since trout in the present study consumed a larger amount (dry matter) 

of the less energy-dense (starch) diets than of the high energy-dense (fat) diets. In 

general, literature in fish suggests that feed intake is regulated to meet the digestible 

energy requirement, or in other words, fish maintain a relatively constant DEI (Boujard, 

1994; Cho, 1990; Lee and Putnam, 1973). However, the effect of diet on the digestible 

energy intake of fish in the present and also in other studies (Borges et al., 2009; Da Vies, 

1989; Figueiredo-Silva et al., 2012a; Gélineau et al., 2001; Peres and Oliva-Teles, 1999; 

Saravanan et al., 2012a) contradicts with the above suggestion.  

In mammals, the influence of dietary non-protein energy source on feed (energy) intake 

has been related to the direct effects of blood glucose (Mayer, 1955) and body fat level 

(Kennedy, 1953). The non-significant relation between DEI and postprandial plasma 

nutrient concentrations suggests that there were no effects of either postprandial (6 h) 

plasma glucose (P>0.1) or TGs concentration (P>0.1; data not shown) on DEI of the 

trout. The lack of a visible effect of glucostatic feedback on DEI has been previously 

suggested in rainbow trout (Saravanan et al., 2012a) and in Atlantic cod (Hemre et al., 

1989). Also, an increased body fat level in the trout fed diets with a high fat level did not 

negatively affect DEI, as would be expected to occur via lipostatic feedback mechanisms. 

On the contrary, our data show slightly an increased DEI with increasing body fat 

content, in line with other reports in fish (Figueiredo-Silva et al., 2012c; Gélineau et al., 

2001; Saravanan et al., 2012b; Saravanan et al., 2012a). This suggests a lesser impact of 

lipostatic feedback on DEI in the juvenile trout. Similarly, studies in mammals have 

shown that the intake of dietary fat energy exerts a weaker satiety effect than 

carbohydrates (Rolls and Hammer, 1995), resulting in a high DEI (Blundell et al., 1996) 

as also seen in fish (Encarnação et al., 2004; Saravanan et al., 2012a). This difference in 

the satiety effect between fat and starch has been associated with their post-absorptive 

metabolic fate, in particular the partitioning between storage and oxidation (Stubbs, 

1996). Irrespective of the fat intake, trout in the present study predominantly deposited 

dietary fat into body fat with a high fat retention efficiency (>92%). This confirms the 

overall low utilization of ingested fat for energy production through oxidation and the 

large capacity of trout to store body fat without compromising DEI as previously 

reported in this species (Figueiredo-Silva et al., 2012c; Figueiredo-Silva et al., 2012b; 

Geurden et al., 2006; Saravanan et al., 2012a) and in other fish (Schrama et al., 2012). 
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The changes in non-protein energy source altered the diet-induced oxygen use which 

increased with increasing dietary starch and decreasing dietary fat, in accordance with 

our earlier observations in Nile tilapia (Saravanan et al., 2012b). This may be attributed 

to the differences in the metabolic use of absorbed glucose and fatty acids, for instance 

the synthesis of fat from dietary starch demanding more oxygen than from dietary fat 

(Reeds, 1982). The fat retention efficiency greater than 100% (110-124%) substantiates 

the occurrence of de novo lipogenesis in trout fed the high starch diets. This probably 

contributes to the high oxygen use of starch-rich diets, as seen in tilapia, which displayed 

even a higher fat retentions (>200%). Of interest, the present range in diet-induced 

oxygen use in trout (15.1-17.5 mg O2/kJ DEI) is only slightly below the range found in 

tilapia (16.7-20.5 mg O2/kJ DEI), despite the overall higher DEI and the differences in 

metabolic handling of starch in tilapia compared to trout (Figueiredo-Silva et al., 2012b).  

Our previous studies suggested that the feed intake or DEI in fish can be constrained by 

a set-point value of oxygen consumption (on a time scale larger than weeks). This is 

based on the observations in trout and Nile tilapia that the feeding of diets differing in 

the macronutrient composition resulted in different DEI but with an equal heat 

production (Saravanan et al., 2012a; Tran-Duy et al., 2008) or with an equal oxygen 

consumption (Saravanan et al., 2012b). The trout in the present study however did not 

consume an equal amount of oxygen. This clearly suggests that oxygen consumption did 

not impose a physiological constraint on the feed intake or DEI in this study. Yet, DEI 

was negatively related to the diet-induced oxygen use. This is consistent with our 

previous data in Nile tilapia, providing further support to a possible role of diet-induced 

oxygen use in the regulation of feed intake in fish (Saravanan et al., 2012b). Still, the rate 

of decrease in DEI per unit increase in diet-induced oxygen use (i.e. slope of line) was 

100% larger in tilapia (~14.4 kJ/(kg0.8 . d per diet-induced oxygen use) than in the 

rainbow trout (~7.1 kJ/(kg0.8 . d per diet-induced oxygen use). This difference in the 

slope warrants further confirmation, but may be related to inter-species differences 

with tilapia handling carbohydrates differently than rainbow trout at a moderately low 

protein intake (Figueiredo-Silva et al., 2012b). 

In mammals, under thermoneutral condition, the consumption of a high protein diet 

result in a greater satiety together with the high diet-induced thermogenesis/energy 

expenditure (Veldhorst et al., 2008). This increase in satiety effect of a high-thermogenic 

protein diet at rest is conceived due to an increase in oxygen consumption and to a 

lesser extent by the body heat (thermogenesis) (Westerterp-Plantenga et al., 1999; 

Westerterp-plantenga et al., 1990). In the same way, DEI of the trout in the present 

study reduced with increasing diet-induced oxygen use (per unit of feed). This suggests 

a possible role for diet-induced oxygen use in the regulation of feed intake/DEI in 
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poikilotherms. In the view of the present results and bearing in mind the key-role of 

oxygen use as the basis of diet-induced thermogenesis, we hypothesize that also in 

homeotherms, in the absence of other potential intake constraints; the DEI is regulated 

by oxidative metabolism. Similarly, the satiating power of a nutrient has been proposed 

to be determined by their degree of hepatic oxidative metabolism as outlined in the 

hepatic oxidation theory in mammals (Allen and Bradford, 2012).  

In order to create a strong contrast in the type of non-protein energy, the diet with the 

lowest level of fat had 49% of starch, which is uncommon in the feed for rainbow trout. 

The general consensus in fish nutrition that a carnivorous fish like rainbow trout are 

glucose intolerant is debatable (Moon, 2001). In the current study, none of the observed 

parameters showed a curvilinear response, which suggest no negative effect of high 

starch. Also, the postprandial plasma glucose concentrations (4.1 to 5.8 mmol/L) were 

well within the range of values (3.8 to 11 mmol/L) reported in the literature (Bergot, 

1979; Kaushik and de Oliva Teles, 1985). Iso-energetic replacement of starch by fat in 

the diets always coincides with alterations in the dietary energy density. In this study, 

we chose not to include a dietary filler (e.g., cellulose), because of its possible effect on 

the feed intake at a high inclusion level (Bromley and Adkins, 1984). Consequently, the 

dietary concentrations differed also for other nutrients than starch and fat, but their 

ratio to digestible energy (e.g., digestible protein to digestible energy ratio) was kept 

comparable between the diets. As for all studies applying changes in the diet 

composition, the suggested impacts of type of non-protein energy source in the current 

study might also be due to other confounding changes in the diets (e.g., nutrient density, 

protein content etc.). 

In summary, the present study shows that the DEI of trout increased with increasing 

replacement of dietary starch by fat as non-protein energy source, but to a lesser extent 

than previously reported for rainbow trout (Figueiredo-Silva et al., 2012c; Geurden et 

al., 2006; Saravanan et al., 2012a). In agreement with the observations in Nile tilapia 

(Saravanan et al., 2012b), the DEI was inversely related to diet-induced oxygen use, 

which suggests a possible role of diet-induced oxygen use in feed intake regulation as 

shown by the replacement of dietary fat by starch. 
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Abstract 

Compromisation of food intake when confronted with diets deficient in essential amino 

acids is a common response of fish and other animals, but the underlying physiological 

factors are poorly understood. We hypothesize that oxygen consumption of fish is a 

possible physiological factor constraining food intake. To verify, we assessed the food 

intake and oxygen consumption of rainbow trout fed to satiation with diets which 

differed in essential amino acid (methionine and lysine) compositions: a balanced vs. an 

imbalanced amino acid diet. Both diets were tested at two water oxygen levels: hypoxia 

vs. normoxia. Trout consumed 29% less food under hypoxia compared to normoxia (p < 

0.001). Under both hypoxia and normoxia trout significantly reduced food intake by 

11% and 16% respectively when fed the imbalanced compared to the balanced amino 

acid diet. Oxygen consumption of the trout per unit body mass remained identical for 

both diet groups not only under hypoxia but also under normoxia (p > 0.05). This 

difference in food intake between diets under normoxia together with the identical 

oxygen consumption supports the hypothesis that food intake in fish can be constrained 

by a set-point value of oxygen consumption, as seen here on a six-week time scale. 
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Introduction 

The majority of animals, including fish, show a reduction in food intake when the food 

has an imbalanced essential amino acid composition (D'Mello, 2003; De la Higuera, 

2001; Fortes-Silva et al., 2012). It is not clear which physiological factor (constraint) 

forces an animal to compromise its food intake when confronted with a dietary amino 

acid deficiency (Potier et al., 2009). In rodents, physiological factors such as changes in 

postprandial blood and brain concentration of free amino acids and ammonia (liberated 

by deamination) down regulate food intake when fed with amino acid deficient diets 

(Anderson, 1979; Gietzen et al., 2007; Mellinkoff et al., 1956; Noda and Chikamori, 1976; 

Peters and Harper, 1985). Intake of an amino acid imbalanced diet results in a less 

efficient use of amino acids for protein synthesis. The most limiting amino acid is best 

utilised while others get wasted, which leads to a greater ammoniagenesis and 

ureagenesis. The carbon remnants of these amino acids are either oxidized or used in de 

novo lipogenesis, which increases the oxygen consumption (Elango et al., 2008; 

Kaczanowski and Beamish, 1996). Compared to terrestrial animals, oxygen is a 

relatively scarce resource for fish and moreover, gill breathing in water requires more 

energy than air-breathing (Kramer, 1987). 

Therefore, we hypothesize that oxygen consumption is one of the possible physiological 

factors (constraints) which can limit food intake in fish. We propose that even at 

normoxic conditions and in the absence of other potential constraints on food intake, 

food intake in fish can be constrained by a set-point value of oxygen consumption (on a 

time scale of larger than weeks). In the present study, we assessed the food intake and 

oxygen consumption of rainbow trout fed diets, which were contrasting in their 

composition of two essential amino acids (methionine and lysine; a balanced vs. an 

imbalanced diet). Both diets were tested at two different water dissolved oxygen (DO) 

concentrations (hypoxia vs. normoxia). The conceptual illustration of the hypothesis 

tested is shown in figure 1. The dietary deficiency of both lysine and methionine in the 

current study was used with the purpose to create a contrast in oxygen consumption per 

unit food intake (i.e. a difference in slope as depicted in fig. 5.1). In addition to normoxia, 

we measured food intake and oxygen consumption under hypoxia as a positive control 

in order to verify the effect of dietary amino acid induced changes in oxygen 

consumption on food intake, at limiting water DO levels. 
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Figure 5.1 Conceptual illustration of the hypothesis tested in the present study  

It is hypothesized that under non-limiting water oxygen level (normoxia) food intake of fish fed 

a diet deficient in essential amino acids is compromised by a physiological constraint in oxygen 

consumption. To test the hypothesis, fish were fed under normoxia with diets contrasting in 

essential amino acids (lysine and methionine) composition: an imbalanced (ImbAA) vs. a 

balanced amino acid (BAA) diet. The difference in amino acid composition of the diet is expected 

to create differences in metabolism, which will alter the amount of oxygen consumption per unit 

of food intake. This amount of oxygen consumption per unit of food is higher at the ImbAA diet 

than at the BAA diet (as indicated by the differences in the slope of lines). As such: 1) If oxygen 

consumption is constraining the food intake, then the food intake between ImbAA and BAA fed 

fish will be different but the oxygen consumption will be similar;  2) If oxygen consumption is 

not constraining the food intake, then food intake between ImbAA and BAA fed fish will be 

different but also the oxygen consumption. Further, to verify the effect of dietary amino acid 

induced changes in oxygen consumption on food intake, we measured food intake under limiting 

water oxygen level (hypoxia) as a positive control. 

Materials and Methods 

Ethics statement 

This study complied with the Dutch law on experimental animals and was approved by 

the ethical committee for animal experiments of Wageningen University (DEC: 

2011016.d). 

Fish and housing conditions 

Three hundred and sixty juvenile rainbow trout (Oncorhynchus mykiss; Mohnen 

Aquaculture, Germany) with an average initial body weight of 52.5 g ± 1.2 g (mean ± SD) 

were randomly allocated among 12 tanks (30 fish tank-1) of the aquatic metabolism unit 

(De Haar Vissen, Wageningen University). The tanks were connected to a closed 
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recirculation system, equipped to adjust and monitor water flow and oxygen 

concentration in the inflow water of each tank of the fish housing facility, as for details 

reported elsewhere (Saravanan et al., 2012). Throughout the experiment, fish were 

reared under the following conditions: photoperiod (12 L: 12 D), water temperature 

(13.8 ± 0.4°C), pH (7.5 ± 0.3), conductivity (2.9 ± 0.2 mS cm-1), nitrite (<0.08 mg N l-1), 

nitrate (<32 mg N l-1), total-NH3-N (<0.15 mg N l-1). 

Treatments  

Treatments were designed in a 2 by 2 factorial setup with dietary amino acid  

composition and water dissolved oxygen (DO) levels as main factors, each consisting of 

two levels; an amino acid ‘balanced’ vs. ‘imbalanced’ diet and ‘normoxia’ vs. ‘hypoxia’, 

respectively. The contrast in dietary amino acid composition was made sufficiently large 

in order to alter the oxygen consumption required per unit of food, being ‘high’ with an 

imbalanced (deficient) amino acid diet and ‘low’ with a balanced (adequate) amino acid 

diet. Thus, two diets differing in the limiting amino acid content (i.e. lysine and 

methionine) were prepared: a balanced amino acid diet which meet the lysine (5.1 g per 

16 g N) and methionine (2.4 g per 16 g N) requirement for rainbow trout (NRC, 2011), 

and an imbalanced amino acid diet  which was 47% deficient in lysine (2.7 g per 16 g N)  

and 31% deficient in methionine (1.6 g per 16 g N) requirement. The ingredient 

composition of the experimental diets is given in table 5.1. The diets were prepared 

(Research Diet Service B.V., Wijk bij Duurstede) by extrusion process (Clextral BC45, 

twin screw extruder) with a 3 mm die, dried (70°C for 3 h), vacuum coated with oil and 

stored at 4°C. The dietary nutrient compositions are shown in table 5.2. 

The difference in dissolved oxygen (DO) level in the water was created by adjusting the 

rate of water flow into the tanks. The water volume was kept constant at 200 l in all 

tanks. For the normoxia groups, the rate of water inflow into tank (mean ± SD) was kept 

at 7.9 ± 0.03 l min-1 with mean water DO level of 10.2 ± 0.2 mg l-1, and the mean DO 

content in the outflowing water remained above 8.0 mg l-1. When necessary, pure 

oxygen was injected into the inflow water in order to maintain outflow DO content 

above 8.0 mg l-1. The hypoxia condition was created by reducing the rate of water inflow 

(1.94 ± 0.02 l min-1) with a mean DO content of 9.8 ± 0.2 mg l-1, and the mean DO content 

in the outflowing water remained below 6.0 mg l-1 and above 4 mg l-1. The level of DO 

content for the hypoxia treatment was decided based on the reported incipient DO level 

of about 6.0 mg l-1 for rainbow trout (Pedersen, 1987). The applied DO level in hypoxia 

treatment is expected to reduce food intake but with very minimal level of discomfort 

for rainbow trout. The welfare of fish was assessed daily by observing the food intake (at 

tank level) and general behaviour of fish. 
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Table 5.1 Ingredient composition of the experimental diets  

Ingredients (%) Balanced diet Imbalanced diet 

Wheat gluten 26 26 

Soy protein concentrate 14 14 

Lysine HCl 1.3 - 

DL-methionine 0.4 - 

L-glutamic acid - 1.7 

Gelatinized maize starch* 11 11 

Wheat 28.5 28.5 

Fish oil† 11.8 11.8 

Mono-calcium phosphate 3 3 

Calcium phosphate 1 1 

Diamol‡ 2 2 

Vitamin-mineral premix§ 1 1 

* Gelatinised maize starch (Merigel® 100; Amylum Group). 
† Fish oil (999 Fish Oil; Triple Nine Fish protein). 
‡ Diamol (acid-insoluble ash, as inert marker for digestibility measurement) – Diamol GM; Franz 
Bertram. 
§ Vitamin-mineral premix composition is reported elsewhere (Saravanan et al., 2012) 
 
Experimental procedure 

The treatments were randomly assigned among 12 tanks to have triplicates for each 

treatment group. During the experimental period of 6 weeks, fish were hand-fed with 

their respective diets twice daily to apparent satiation for an hour (09.00-10.00 and 

16.00-17.00 hrs). At each feeding session, feed given and uneaten feed were recorded; in 

addition, uneaten pellets were collected and counted to determine the food intake 

accurately. Faeces were collected to determine nutrient digestibility in a similar way as 

described earlier (Saravanan et al., 2012). The oxygen consumption of fish was 

monitored for the entire experimental period. The concentration of oxygen in the inlet 

and outlet of each tank was automatically measured at 5 min intervals using an 

electrode (WTW-Trioximatic® 700 IQ, WTW GmbH, Weilheim, Germany) and data were 

recorded in a personal computer using interface (HTBasic, Version 9.5, TransEra Corp.). 

The oxygen measurement was performed in a continuous cycle of 2 consecutive days 

(48 h; from 08.00 to 08.00 hrs) in a set of four tanks comprising all treatments. 

Consequently, in 6 days, oxygen concentrations were measured in all the 12 tanks. The 

oxygen electrode was calibrated once every week. In addition, one continuous 48 h  
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Table 5.2 Analysed nutrient and amino acid composition of the amino acid imbalanced 

and balanced diets 

 Balanced diet Imbalanced diet 

Dry matter (DM; g kg-1) 976 965 

Crude protein (g kgDM-1) 388 377 

Crude fat (g kgDM-1) 144 137 

Starch (g kgDM-1) 296 301 

Ash (g kgDM-1) 73 72 

Digestible energy* (kJ gDM-1) 17.95 17.52 

Amino acid composition (% crude protein)   

Arginine 3.94 4.11 

Histidine 1.80 1.88 

Isoleucine 3.32 3.53 

Leucine 6.03 6.37 

Lysine 5.13† 2.73 

Methionine 2.35† 1.62 

Phenylalanine 4.23 4.46 

Threonine 2.53 2.68 

Tryptophan 0.77 0.85 

Valine 3.58 3.82 

Cysteine 1.52 1.64 

Tyrosine 2.58 2.73 

Glutamic acid 25.03 30.58 

* Digestible energy determined under normoxia treatment of the present study (Saravanan et al., 
2012) 
† For rainbow trout the estimated requirement for lysine, vary from 4.5 to 6.3% crude protein 
(NRC, 2011) and for methionine, it varies from 1.8 to 2.14% crude protein depending on level of 
cysteine (Kim et al., 1992; NRC, 2011). 
 
(from 08.00 to 08.00 hrs) measurement of total ammonia nitrogen was performed in all 

the 12 tanks.  

The water was continuously sampled at  3 min intervals from a common inlet and outlet 

of each tank using an auto-sampler (SANplusSYSTEM, Skalar, The Netherlands) and the 

concentration of total ammonia nitrogen was determined with colorimetric method 

(Krom, 1980) following the manufacturer’s (Skalar) protocol. The oxygen consumption 

(mg kg-0.8 h-1) (Saravanan et al., 2012) and the total ammonia nitrogen excretion (mg N 

kg-0.8 d-1) (Kaushik, 1980) of fish were calculated using the formula as described 
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previously. Fish were weighed under sedation (0.25 ml l-1, 2-phenoxy ethanol) at the 

start and end of the experiment 36 h after the last meal. Fish used to determine initial 

(15 fish) and final body composition (8 fish tank-1), and the remaining fish at the end of 

experiment were euthanized by an overdose of anaesthesia (1 ml l-1, 2-phenoxy 

ethanol). Fish samples for body composition were stored at -20°C until further analysis. 

Chemical analysis 

Whole fish samples were pooled per tank, ground, and subsequently freeze-dried before 

analysis. Analyses of fish were done in triplicates for dry matter (105°C for 24 h), crude 

protein (Kjeldahl; N x 6.25), crude fat (Soxhlet; 40-60ºC) and energy (Bomb calorimetry) 

as described previously (Saravanan et al., 2012). Nutrient compositions of the diets were 

determined using the same methods. The amino acid composition of the diets were 

analysed (AGROBIO, Rennes, France) in an amino acid analyser (Biochrom 30; 

Pharmacia Biochrom Ltd) according to standard methods (Moore and Stein, 1951). 

Calculation and statistical analysis 

All parameters of fish growth performance, food intake and body composition were 

calculated as per formulae mentioned earlier (Saravanan et al., 2012). Values were 

expressed as mean ± SD. Two-way ANOVA was used to assess the effect of dietary amino 

acid composition (diet), water DO level and their interaction (PROC GLM; SAS 9.2, SAS 

Institute) and was followed by post-hoc Tukey test, if interaction was significant (p < 

0.05). Normal distributions of the residuals were verified using Kolmogorov-Smirnov 

test (PROC UNIVARIATE). 

Results 

Food intake and growth 

Food intake of trout was clearly affected by the diet (p < 0.001; fig. 5.2A). Under hypoxia, 

the food intake of trout was 11% lower when fed the imbalanced compared to the 

balanced amino acid diet. Similarly, under normoxia, the food intake was 16% lower for 

fish fed the imbalanced compared to the balanced diet. Regardless of the dietary amino 

acid composition, trout kept under hypoxia showed a 29% lower food intake than under 

normoxia (fig. 5.2A). The difference in food intake of trout between both diets was 

greater under normoxia than hypoxia, as indicated by the significant interaction 

between water DO level and diet. The digestible protein intake and digestible energy 

intake of trout paralleled the food intake. The intakes of specific amino acids (glutamic 

acid, lysine, and methionine) of trout were in line with the created contrast in amino 

acids between the diets (table 5.3).  
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At end of the 6 weeks, the survival of fish was above 98% and was not different between 

treatments (p = 0.73). Trout fed the amino acid balanced diet had better growth than 

trout fed the amino acid imbalanced diet. Likewise, trout kept under normoxia had a 

larger final body weight and higher growth compared to fish kept under hypoxia (table 

5.3).  

Body composition and nutrient utilisation 

As expected, the difference in amino acid composition of the diet altered the nitrogen 

utilisation by the rainbow trout as well as their body composition (table 5.3). The total 

ammonia nitrogen excretion per unit digestible protein intake was affected by the diet 

(p = 0.006), being 45% higher in trout fed the imbalanced than in those fed the balanced 

amino acid diet. The protein retention efficiency was thus significantly lower (24%) in 

trout fed the imbalanced than in those fed the balanced amino acid diet. Both nitrogen 

excretion and retention efficiency were unaffected by the water DO level and its 

interaction with diet (p > 0.05; table 5.3). Both under hypoxia and normoxia, trout fed 

the amino acid imbalanced diet showed 14% more body fat than fish fed the balanced 

diet, despite their lower food intake. 

Oxygen consumption 

The oxygen consumption of trout was lower under hypoxia than normoxia, which was 

due to the applied contrast in water DO levels (fig. 5.2B). Under hypoxia, the oxygen 

consumption of trout was identical at the balanced (142.5 mg kg-0.8 h-1) and imbalance 

amino acid (142.6 mg kg-0.8 h-1) diet (p = 0.36). Despite the differences in food intake 

under normoxic conditions, the oxygen consumption of trout fed the balanced (171.9 mg 

kg-0.8 h-1) or the imbalanced amino acid (169.2 mg kg-0.8 h-1) diet were equal (p = 0.36). 

There was no significant interaction effect between water DO level and diet on the 

oxygen consumption of trout (p = 0.31). 

Discussion 

We found that irrespective of the water DO levels, the rainbow trout fed the amino acid 

imbalanced diet did not increase food intake to compensate for the inadequate amount 

of lysine and methionine supplied by this diet. Growth was reduced in trout fed the 

amino acid imbalanced diet, in agreement with data from most of the amino acid 

requirement studies in fish (Kim et al., 1992; Rodehutscord et al., 1997; Rumsey et al., 

1983; Walton et al., 1984). In mammals, the capacity to sense specific nutrients in the 

diet has been well documented (Gietzen et al., 2007). Similarly, the changes in diet 

selection pattern when fed diets differing in amino acid composition have been reported 

in some fish species (Fortes-Silva et al., 2012; Yamamoto et al., 2001). The difference in 

food intake between the amino acid balanced and imbalanced diet groups validates that 
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trout are able to detect the presence of specific dietary essential amino acid. 

Nevertheless, our aim was to understand the mechanisms involved in the reduced food 

intake of trout fed the imbalance compared to the balanced amino acid diet, and this 

under conditions of contrasting water DO levels (hypoxia vs. normoxia). 

 

 

Figure 5.2. Effect of diet and dissolved oxygen on food intake and oxygen consumption in 

rainbow trout. Rainbow trout fed to satiation with a balanced amino acid diet and an 

imbalanced amino acid diet at two levels of water dissolved oxygen (DO): hypoxia vs. normoxia. 

(A) Food intake was affected by dietary amino acid composition (p < 0.001), water DO level (p < 

0.001), and the interaction between both factors (p = 0.02). (B) Oxygen consumption was 

affected by water DO level (p < 0.001) but unaffected by dietary amino acid composition (p = 

0.36) and the interaction between both factors (p = 0.31). Values are mean ± SD (n = 3, group of 

30 fish tank-1).  

 

Regulation of food intake in fish is influenced by various physiological conditions, which 

interact with dietary and environmental factors (Fletcher, 1984). Among environmental 

factors, the water DO level is known to influence food intake and growth of fish 

(Buentello et al., 2000; Davis, 1975; Evans, 2007; Glencross, 2009; Mallekh and 

Lagardère, 2002; Pichavant et al., 2001; Thetmeyer et al., 1999; van Dam and Pauly, 

1995), as confirmed in the current study by the lower food intake in trout under hypoxia 
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compared to normoxia. Reduced food intake under limited DO conditions (hypoxia) has 

been explained by a reduced metabolic scope of oxygen for aerobic activities and 

metabolism, including those related to food processing (Glencross, 2009; Tran-Duy et al., 

2008). Our data further show an effect of dietary amino acid composition on food intake 

under hypoxia. The lower food intake in trout fed the imbalanced amino acid diet 

relative to the balanced diet, while accompanied by similar oxygen consumption, is 

possibly caused by the imposed limitation in oxygen availability combined with 

increased oxidative metabolism for nutrient processing when fed the amino acid 

imbalanced diet. Indeed, averaged over both hypoxia and normoxia, the oxygen 

consumption per gram digestible protein intake (DPI) of trout fed the amino acid 

imbalanced diet was 992 mg O2 per g DPI, which was about 18% higher than when fed 

the amino acid balanced diet (841 mg O2 per g DPI).  

The higher oxygen consumption in the amino acid imbalanced diet groups is likely to be 

attributed to an obligatory increase in amino acid deamination and the further 

processing of amino acid carbon skeleton towards de novo lipogenesis (Kaczanowski and 

Beamish, 1996). This is confirmed in the current study by the higher ammonia excretion, 

lower nitrogen retention and increased body fat content of trout fed the imbalanced 

compared to the balanced amino acid diet. Thus, the higher oxygen demand for 

metabolism along with the imposed limitation of oxygen availability under hypoxia is 

likely to constrain the food intake of trout, explaining the lower intake of imbalanced 

amino acid diet. 

Of interest, exactly similar observations were made under normoxia as under hypoxia. 

Even at non-limiting water DO level, rainbow trout reduced their food intake when fed 

the imbalanced amino acid diet compared to the balanced diet. Moreover, even under 

normoxia, trout of both dietary groups displayed identical oxygen consumption, 

although the oxygen consumption was higher than those seen under hypoxia. Unlike 

under hypoxia, this diet-specific reduction in food intake  points toward a constraint 

imposed by factors other than by the availability of water DO (i.e., supply of oxygen to 

the fish).  
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Figure 5.3 Food intake and oxygen consumption of trout in relation to the proposed 

hypothesis (figure 5.1). The measured food intake and oxygen consumption of rainbow trout 

fed to satiation with a balanced amino acid diet and an imbalanced amino acid diet at two levels 

of water dissolved oxygen: hypoxia vs. normoxia. Values are mean ± SD (n = 3). 

As mentioned above, the metabolic handling of the amino acid imbalanced diet under 

normoxia also requires higher oxygen consumption per unit of digested protein intake 

compared to the balanced diet. As such, the equal oxygen consumption of trout in both 

the dietary groups together with the differences in voluntary food intake (fig. 5.3) 

suggests that the oxygen consumption may act as a physiological factor constraining 

food intake. This is in conformity with our hypothesis as shown in figure 1, that there is 

set-point oxygen consumption over a period of weeks. The question remaining is what 

dictates the set-point oxygen consumption. An increased oxidative metabolism has been 

suggested to exert a negative effect on the organism with cellular damage, for instances 

due to the production of reactive oxygen species (Dowling and Simmons, 2009). This 

implies the oxygen consumption as an intrinsic cost of food intake (Illius et al., 2002; 

Ketelaars and Tolkamp, 1996). Therefore, reducing food intake of a high oxygen 

demanding diet, such as the amino acid imbalanced diet might be a strategy of fish to 

avoid the negative effects related to increased oxygen use. In support of the present 

results, a previous study (Saravanan et al., 2012) in Nile tilapia similarly showed an 

equal oxygen consumption (in three out of four dietary treatments) together with 

altered intake levels of diets which differed in the amount of oxygen consumed per unit 
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of digestible energy intake, created by changes in dietary macronutrients. This and the 

present findings (fig. 5.3) of diet-induced differences in food intake in concert with 

similar oxygen consumptions, obtained at normoxia in both species, suggest that 

physiological constraints related to oxygen consumption might play a role in the control 

of food intake in fish, even under non-limiting DO conditions. 
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Table 5.3 Fish performance, metabolic parameters and body composition of rainbow trout fed to satiation with balanced amino acid diet 

and imbalanced amino acid diet at two levels of water dissolved oxygen: hypoxia vs. normoxia for 42 days. 

 Normoxia  Hypoxia  P value 

 
Balanced 

diet 

Imbalanced 

diet 

 Balanced 

diet 

Imbalanced 

diet 

Pooled 

SEM 

Water DO 

level 
Diet 

Water DO x 

Diet 

Fish performance 

 Initial body weight (g) 53.0 52.0  53.3 51.9 0.72 0.844 0.143 0.828 

 Final body weight (g) 144.4a 109.5b  110.8c 92.5b 2.52 <0.001 <0.001 0.011 

 Growth (g kg-0.8 d-1) 15.3a 10.8b  10.7b 8.2c 0.29 <0.001 <0.001 0.010 

 
Food intake (g DM 

fish-1 d-1) 
2.1a 1.5b 

 
1.3c 1.1d 0.04 <0.001 <0.001 0.006 

 
Digestible energy 

intake (kJ kg-0.8 d-1) 
259a 213b 

 
185c 162d 4.1 <0.001 <0.001 0.021 

 
Digestible protein 

intake (g kg-0.8 d-1) 
5.4a 4.4b 

 
3.7c 3.2d 0.08 <0.001 <0.001 0.014 

 
Glutamic acid intake 

(mg kg-0.8 d-1) 
1400a 1399a 

 
970b 1031b 24.9 <0.001 0.263 0.249 

 
Lysine intake (mg kg-

0.8 d-1) 
287a 125b 

 
199c 92d 2.5 <0.001 <0.001 <0.001 

 
Methionine intake (mg 

kg-0.8 d-1) 
131a 74b 

 
91c 55d 1.4 <0.001 <0.001 <0.001 
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Table 5.3 Fish performance, metabolic parameters and body composition of rainbow trout fed to satiation with balanced amino acid diet 

and imbalanced amino acid diet at two levels of water dissolved oxygen: hypoxia vs. normoxia for 42 days (continued) 

 Normoxia  Hypoxia  P value 

 
Balanced 

diet 
Imbalanced 

diet 
 Balanced 

diet 
Imbalanced 

diet 
Pooled 

SEM 
Water DO 

level 
Diet 

Water DO 
x Diet 

Metabolic parameters 

 
Total ammonia nitrogen 

loss (mg N per g DPI) 
50 73 

 
49 71 6.2 0.779 0.006 0.965 

 
Protein retention 

efficiency (%)* 
44.9 34.3 

 
45.2 33.9 0.48 0.998 <0.001 0.482 

Final body composition** 

 Protein (g kg-1) 164.3a 145.1b  164.2a 140.1b 0.94 0.028 <0.001 0.033 

 Fat (g kg-1) 108.0 123.0  99.2 113.1 3.36 0.024 0.003 0.882 

SEM, Standard error mean; DO, dissolved oxygen; DM, dry matter; DPI, digestible protein intake. 
Mean values in a row with unlike superscript were significantly different and assigned only if the interaction effect was significant (p < 0.05). 
* Protein retention efficiency (%) = (Wet protein gain/ protein intake in dry weight) x 100 
** Initial body composition (g kg wet weight-1): 157, protein and 80.5, fat.  
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Abstract   

In the present study we investigated the effect of dietary protein level and non-protein 

energy source (fat vs. starch) on the within-day variation (morning vs. afternoon) in feed 

intake and digestible energy (DE) intake of Nile tilapia. Triplicate groups (20 fish/tank) 

of fish were fed with one of the four iso-energetic diets contrasting in protein level (high; 

~27 mg digestible protein/kJ DE vs. low; ~14 mg digestible protein/kJ DE) and in the 

type of non-protein energy source (‘starch’ vs. ‘fat’) for 48 days. Fish were hand-fed 

twice daily in morning (09.00 hrs) and afternoon (16.00 hrs) to apparent satiation for an 

hour. Apparent nutrient digestibility, oxygen consumption, and non-fecal nitrogen 

(ammonia and urea) excretion were measured. The feed intake of tilapia was affected by 

the dietary protein level and NPE source, and their impact differed between feeding 

sessions (morning vs. afternoon) (P<0.01). Feed intake in the morning and afternoon 

feeding were respectively affected by the type of dietary NPE source and protein level 

(P<0.05). At morning, feed and digestible energy intake was higher in group fed the diets 

with fat as NPE source than starch, regardless of protein levels in the diet. These 

differences in intake at the morning feeding were not related to the pre-feeding oxygen 

consumption of tilapia (P>0.05). Compared to the low protein diet, tilapia fed the high 

protein in the morning showed a significant reduction (10%) in digestible energy intake 

during afternoon feeding. The digestible energy intake of tilapia at afternoon feeding 

was inversely related to the two and one hour pre-feeding oxygen consumption 

(P<0.05). Together, these results suggest that the pre-feeding metabolic status (oxygen 

consumption) of the fish influences the within-day variation in feed intake. 
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Introduction 

To attain the full growth potential, fish needs to be fed to their level of daily voluntary 

feed intake. Under farming conditions, fish are often fed twice or thrice daily in feeding 

sessions with a given amount of feed ration. Fish fed with different diets to satiation or 

given access to self-feeding show differences in feed intake between feeding sessions of 

a day (Gélineau et al., 2002; Tran-Duy et al., 2008). However, factors that determine 

these differences in feed intake remain little understood. Therefore, understanding the 

factors affecting feed intake of fish between feeding sessions of a day will help in better 

prediction of the feed ration, which is important for feed management under practical 

conditions of fish farming. Feeding in fish usually follows a diel (24 h) pattern, with 

distinct active feeding moments directed by the endogenous biological rhythm (Aranda 

et al., 1999; Bolliet et al., 2001; López-Olmeda and Sánchez-Vázquez, 2010; Sánchez–

Vázquez et al., 1999). A number of physiological, dietary and environmental factors 

affect the feeding frequency and daily feed intake (Houlihan et al., 2001). Several studies 

in fish have focused on factors such as water temperature, dietary energy density, 

dietary bulk and their impact on physical limitation of stomach and the rate of gut 

evacuation/ emptying in relation to feed intake in a meal (Elliott, 1975; Fletcher, 1984; 

Jobling, 1980; 1981; Pérez-Casanova et al., 2009; Ruohonen et al., 1997; Sánchez-

Vázquez et al., 2001; Shiau et al., 1988). However, the impact of dietary macronutrients 

on within-day differences in feed intake (i.e., between feeding sessions of a day) is 

relatively less studied in fish. In mammals, the impact of dietary macronutrients on food 

intake between meals is well documented (Anderson and Moore, 2004; Saris and 

Tarnopolsky, 2003). For instance, the intake of protein, fat, or carbohydrate rich diet in a 

meal is shown to differently affect food intake in subsequent meal, which is linked to 

different metabolic effects (e.g., satiety) induced by dietary macronutrients (Halton and 

Hu, 2004).  

We have recently reported that macronutrient composition of the diet affects total daily 

feed and digestible energy (DE) intake in Nile tilapia (Saravanan et al., 2012). The focus 

of the aforementioned study was primarily on the long-term (weeks) regulation of feed 

intake in fish without addressing the effects on the short-term (within-day) regulation of 

feed intake. The objectives of the present study are: (i) to assess the effect of dietary 

macronutrient composition (protein level and non-protein energy source) on within-day 

variation (morning vs. afternoon) in feed intake of Nile tilapia and (ii) to find whether 

these relate to the pre-feeding metabolic status of the fish in terms of oxygen 

consumption and non-fecal nitrogen (ammonia and urea) excretion. 
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Materials and Methods 

Here we mention only the important information on materials and methods relevant to 

this present study and for specific details of the experiment the reader is re-directed to 

refer our previous study (Saravanan et al., 2012). The present study was approved by 

Wageningen University Animal Experimental Committee and conducted in accordance 

with the Dutch law on experimental animals. 

Diets 

Briefly, four iso-energetic diets (~19 kJ DE/g) were formulated (2x2 factorial setup) to 

have contrast in (i) amount of protein: high (HP; ~27 mg digestible protein/kJ DE) vs. 

low (LP; ~14 mg digestible protein/kJ DE) and (ii) type of non-protein energy (NPE) 

source:  fat (F) vs. starch (S) which were iso-energetically exchanged. Thus, four diets 

having either a high protein with fat (HPF) or starch (HPS) as NPE source or a low 

protein with fat (LPF) or starch (LPS) as NPE source. Details on ingredient composition, 

diet preparation, and nutrient analysis have been reported earlier (Saravanan et al., 

2012). To ensure an identical nutrient and energy density between the diets, cellulose 

was used as ingestible filler in the fat diets. The analyzed nutrient compositions of the 

four diets are presented in Table 6.1. 

Experimental procedure 

A group of 240 juvenile Nile tilapia (Oreochromis niloticus) with mean body weight of 

40.6 ± 0.8 g per fish (mean±SD) was randomly allocated among 12 metabolic tanks (20 

fish/tank). Each experimental diet was fed to triplicate groups of fish for 48 days. Fish 

were hand fed with their respective diets twice daily to apparent satiation for an hour in 

morning (09.00 to 10.00 hrs) and afternoon (16.00 to 17.00 hrs). At the end of each 

feeding session, the uneaten pellets were collected and counted to determine the feed 

intake accurately. Thus, the feed intake of fish was recorded separately during morning 

and afternoon feeding. Fish were weighed at the beginning and at the end of the study to 

determine growth and weight gain. Apparent digestibility of diets were determined to 

calculate digestible energy intake of the fish (Saravanan et al., 2012). Throughout the 

experiment, the fish were reared under optimal water quality parameters: photoperiod 

(12L:12D), mean water temperature (28 ºC), water flow in tank (7.0 l/min), dissolved 

oxygen (8.8 mg/1), pH (6.8) and conductivity (2.8 mS/cm). During the experiment, 

within-day oxygen consumption and non-fecal nitrogen excretion (ammonia and urea) 

of fish were determined. The concentration of oxygen in inlet and outlet of each tank 

was automatically measured at  5 min intervals using an electrode (WTW-Trioximatic® 

700 IQ, WTW GmbH, Weilheim, Germany) and the data  
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Table 6.1 Analyzed nutrient composition (g/kg dry matter) of experimental diets fed to 

Nile tilapia 

 Diets b 

HPF HPS LPF LPS 

 Dry matter (g, DM) 963 931 946 925 

 Crude protein  534 541 295 299 

 Crude fat  170 70 232 132 

 Starch  38 294 234 476 

 Ash  74 77 73 73 

 Digestible protein 502 514 279 281 

 Digestible energy (kJ/g) 18.6 19.5 18.6 19.5 

 DP/DE (mg/kJ) 27.0 26.4 15.0 14.4 

a Diet formulation, ingredient, and digestible nutrient composition of diet are reported 
previously (Saravanan et al., 2012) 
b HPF – high protein diet with fat as NPE source; HPS - high protein diet with starch as NPE 
source; LPF - low protein diet with fat as NPE source; LPS - low protein diet with starch as NPE 
source. 
DP/DE, digestible protein to digestible energy ratio 
 

were recorded in a personal computer using interface (HTBasic, Version 9.5, TransEra 

Corp.). Similarly, water was continuously sampled at intervals of 3 min from a common 

inlet and from the outlet of each tank using an auto-sampler (SANplusSYSTEM, Skalar, 

The Netherlands) and the concentration of total ammonia nitrogen (TAN) and urea-

nitrogen determined with colorimetric methods (Krom, 1980; Wybenga et al., 1971) 

following the manufacturer’s (Skalar) protocol. The oxygen consumption was measured 

in a continuous cycle of 2 days (48 h; from 08.00 to 08.00 hrs) in a set of four tanks 

consisting of all the diet groups. Thus, over 6 days, oxygen consumption was measured 

in all 12 tanks and during the entire growth study, 5 cycles of 48 h oxygen consumption 

measurements were determined for each tank. Similarly, a continuous 48 h (from 08.00 

to 08.00 hrs) measurement of TAN and urea were performed in all 12 tanks to 

determine the non-fecal nitrogen (branchial and urinary nitrogen, BUN) loss.  

Calculation and statistics 

Feed and digestible energy intake, and oxygen consumption and nitrogen excretion 

(Kaushik, 1980) of fish were calculated using the formula as described previously 

(Saravanan et al., 2012). Statistical analyses were performed using SAS 9.2 (SAS 

Institute, Cary, NC, USA). The effect of feeding session, protein level, and NPE source on 

feed and digestible energy intake was tested by F-tests using 3-way ANOVA, with mean 

feed and digestible energy intake within a tank taken as repeated measurements. At 
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each feeding session, the effect of protein level, NPE source, and their interaction on all 

parameters were tested using 2-way ANOVA for non-repeated measurements. The 

relation between pre-feeding hourly oxygen consumption of the fish and digestible 

energy intake at each feeding session was tested (PROC CORR). For all tests, the level of 

significance was set at P<0.05. 

Results 

Feed and digestible energy intake 

The feed and digestible energy intake of tilapia was affected by the 3-way interaction 

effect of dietary protein level, NPE source, and feeding sessions (P<0.01; fig. 6.1A, B). 

This implies that depending on the feeding session, the effect of dietary protein level and 

NPE source on feed and digestible energy intake was different. Tilapia showed a 

significantly higher feed intake at afternoon compared with morning feeding in all the 

diet groups except in those fed HPF diets (Table 6.2). 

At the morning feeding, the amount of feed consumed by the tilapia was unaffected by 

dietary protein level (P>0.05), but affected by the NPE source (P<0.05), being 15% 

higher in tilapia fed the fat diets (HPF & LPF) compared to starch (HPS & LPS) diets 

(Table 6.2). A similar pattern was seen for digestible energy intake (fig. 6.1A), being 10% 

higher in group fed fat than starch diets (P=0.07). Both feed and digestible energy intake 

were unaffected by the interaction effect of dietary protein level and NPE source 

(P>0.05). 

At the afternoon feeding, feed and digestible energy intake of tilapia was affected by the 

dietary protein level with a strong interaction effect with NPE source (P<0.05) (Table 

6.2; fig. 6.1B). The fish fed high protein diets (HPF & HPS) had a 10% lower digestible 

energy intake than the fish fed low protein diets (LPF & LPS). In other words, fish fed 

high protein diet in the morning significantly reduced their digestible energy intake in 

the afternoon feeding or subsequent meal. 

Further, the digestible protein intake of tilapia at each feeding session paralleled with 

the contrasts in the amount of dietary protein levels, being lower in fish fed low protein 

diets (LPF & LPS) compared with high protein diets (HPF & HPS). The digestible protein 

intake of tilapia was only affected (P<0.01) by the NPE source in group fed diets with 

high protein at morning feeding (Table 6.2). 
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Table 6.2 Within-day feed intake, digestible energy intake, and daily mean total ammonia, 

and urea excretion of Nile tilapia fed the experimental diets for 48 days (n 3) 

 Diets a  P- value 

  
HPF HPS LPF LPS SEM Protein NPE 

Protein x 

NPE 

Feed intake (FI; g DM/kg0.8/meal)      

 Morning FI 12.3X 10.2X 11.7X 10.7X 0.49 0.984 0.014 0.321 

 Afternoon FI 11.1aY 11.4aY 13.4bX 12.1abY 0.28 <0.001 0.094 0.026 

Digestible protein intake (DPI; g/kg0.8/meal)    

 Morning DPI 6.2aX 5.2bX 3.3cX 3.0cX 0.15 <0.001 0.004 0.060 

 Afternoon DPI 5.6aX 5.8aX 3.7bX 3.4bX 0.10 <0.001 0.690 0.018 

Metabolic parameters        

 TAN excretion 

(mg N/kg0.8/d) 
698a 547b 183c 185c 27.2 <0.001 0.025 0.023 

 Urea excretion 

(mg N/kg0.8/d) 
75 58 20 18 7.5 <0.001 0.232 0.371 

a HPF – high protein diet with fat as NPE source; HPS - high protein diet with starch as NPE 
source; LPF - low protein diet with fat as NPE source; LPS - low protein diet with starch as NPE 
source. 
Mean values within a row having different superscript (a,b,c) are significantly different and 
assigned only if the interaction effect was significant (P<0·05). 
Mean values of feed intake and digestible protein intake within a column having different 
superscript (X,Y ) shows significant difference between morning and afternoon. 
SEM, pooled standard error mean; NPE, non-protein energy source; DM, dry matter 
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Figure 6.1. Mean (± SD) digestible energy intake of Nile tilapia at morning (A) and 

afternoon (B) fed with diets varying in the amounts of protein and non-protein energy 

source (fat vs. starch). At morning feeding, the digestible energy intake was slightly affected 

(P=0.07) by the dietary non-protein energy source (NPE; fat vs. starch) and unaffected by the 

protein level and its interaction effect with NPE source (P>0.05). At afternoon feeding, the 

digestible energy intake was affected by the dietary protein level (P<0.001) and unaffected by 

the NPE source and the interaction effect (P>0.05).  

Oxygen consumption and non-fecal nitrogen excretion 

The oxygen consumption pattern of Nile tilapia over a 24-hr cycle is shown in Fig. 6.2A. 

The value of oxygen consumption measured over an hour is represented herein as the 

mean value in that respective hour; for e.g. mean value of oxygen consumption between 

08.00 and 09.00 hrs is represented at 08.30 hrs. After the morning feeding at 09.00 hrs, 

the oxygen consumption of tilapia increased in all the diet groups. A clear deviation in 

the pattern of oxygen consumption emerged after 2 and 3 hour feeding in fish fed diet 

with starch (HPS & LPS) and fat (HPF & LPF) as main NPE source, respectively. 

Following the morning feeding, the oxygen consumption of tilapia leveled-off at about 4 

hours after meal (13.00 hrs) in the groups fed the low protein diets, but continued to 

increase in the groups fed the high protein diets, particularly in the HPF diet group. After 

the afternoon feeding (16.00 hrs), the oxygen consumption of tilapia once again 

increased, attained a peak point, and thereafter gradually decreased in all the diet 
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groups. The peak oxygen consumption of tilapia was quite similar among the diet 

groups, except LPF diet group which showed the lowest peak for oxygen consumption. 

The mean daily oxygen consumption of tilapia was significantly affected by the dietary 

protein, NPE source and their interaction (data already reported in Saravanan et al., 

2012). 

The total ammonia nitrogen (TAN) and urea-nitrogen excretion patterns of tilapia over a 

24-hr showed a strong distinction between high and low protein diets (fig. 6.2B, C). Five 

hours after morning feeding, the TAN excretion of tilapia fed the high protein diet 

diverged differently; being high in fat (HPF) compared with starch (HPS) diet groups. 

This difference in TAN excretion was not noticeable between low protein diet groups 

(LPF & LPS). Similar observations were made for the urea-nitrogen excretion. The mean 

daily TAN excretion of tilapia was affected by the dietary protein, NPE source and their 

interaction effect (P<0.05; Table 6.2). 

The TAN excretion was similar (P>0.05) in tilapia fed low protein diet (LPF & LPS), 

however, at high protein diet, TAN excretion was significantly affected by the type of 

dietary NPE source. The urea excretion of tilapia was affected by the dietary protein 

level (P<0.001) and unaffected by the type of NPE source (P>0.05; Table 6.2). In all the 

diet groups, ammonia and urea contributed approximately 90% and 10% respectively, 

in the total non-fecal nitrogen excretion of the Nile tilapia.  

Oxygen consumption vs. digestible energy intake 

The digestible energy intake of tilapia at the morning feeding was not significantly 

related to each of the seventeen pre-feeding hourly (from 16:30 to 08:30 hrs) oxygen 

consumption. For instance, there was no relation between one hour pre-feeding oxygen 

consumption of fish at 08:30 hrs and digestible energy intake at the morning feeding 

(fig. 6.3A). Similarly, the digestible energy intake of tilapia at the afternoon feeding was 

not related (P>0.05) to each of the five, pre-feeding hourly (from 09:30 to 13:30 hrs) 

oxygen consumption. Of interest, the digestible energy intake of tilapia at the afternoon 

feeding was inversely related to two (14:30 hrs) and one (15:30 hrs; fig. 6.3B) hour pre-

feeding oxygen consumption (P<0.05). In other words, the high pre-feeding oxygen 

consumption or metabolic status of tilapia resulted in reduced digestible energy intake. 
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Figure 6.2 Mean hourly oxygen consumption (mg O2/kg0.8/h) (A), total ammonia nitrogen 

excretion (TAN; mg N/kg0.8/h) (B), and urea excretion (mg N/kg0.8/h) (C) pattern over 24 

hours of Nile tilapia fed diets with varying amounts of protein and non-protein energy 

source ( fat vs. starch). HPF – Diet with high protein and fat as NPE source; HPS – Diet with 

high protein and starch as NPE source; LPF – Diet with low protein and fat as NPE source; LPS – 

Diet with low protein and starch as NPE source. In X-axis, the two vertical arrows correspond 

with feeding time and the horizontal black bar represent night hours. The value measured over 

an hour is represented as the mean value in that respective hour; for e.g. the mean value 

between 08.00 and 09.00 hrs is represented at 08.30 hrs.  
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Figure 6.3 Relationship between pre-feeding oxygen consumption and digestible energy 

intake of Nile tilapia during morning (A) and afternoon (B) feeding. 

Discussion 

Under captive conditions, Nile tilapia consumes significantly more feed in the afternoon 

(second meal) compared to the morning (first meal of the day) feeding (Tran-Duy et al., 

2008). In agreement, tilapia in the present study also had a higher feed intake at 

afternoon than at the morning feeding in three out of the four diet groups. The higher 

intake of tilapia during afternoon might reflect an inherent feeding behavior in line with 

the diel feeding rhythms. However, Nile tilapia under self-feeding condition shows active 

diurnal (Toguyeni et al., 1997; Tran-Duy et al., 2008) and nocturnal feeding behavior 

(Fortes-Silva et al., 2010). Besides, a large variety of diel changes in external factors such 

as light, temperature and dissolved oxygen (DO) levels of water are likely to synchronize 

the feeding rhythm of fish (Aranda et al., 1999; Kestemont, 2001). For instance, at a low 

DO level (i.e., below normoxia) tilapia did not exhibit differences in feed intake between 

morning and afternoon feeding, but at a high DO level (normoxia), the feed intake was 

greater in the afternoon than in the morning feeding (Tran-Duy et al., 2008). In the 

present study, fish were kept under a relatively high DO level which allowed them to 

exhibit the differences in feed intake between feeding sessions. In addition, fish were 

reared under constant rearing conditions (temperature, photoperiod, etc.) which are 

considered optimal for Nile tilapia. Therefore, the effect of these external factors on the 

differences in feed intake between feeding session is not only expected to be minimal, 

but also to be similar between the four diet groups. As a consequence, the observed 

differences in feed and digestible energy intake of tilapia between feeding sessions 

(morning vs. afternoon) are likely to be provoked by the applied contrast in the dietary 

protein level and NPE source. In the present study, the ingested macronutrients 



124 | Within-day feed intake of tilapia 
 

influenced metabolic status of the tilapia as indicated by the difference in within-day 

pattern of oxygen consumption and nitrogen excretion.  

Despite the similar digestible energy content of diets, the digestible energy intake of 

tilapia during morning feeding was higher in fish fed fat diets compared to starch diets. 

These differences in the digestible energy intake between diets groups at the morning 

feeding does not relate to the pre-feeding oxygen consumption of tilapia. This implies a 

lesser impact of pre-feeding metabolic status of the fish on feed intake at the morning 

meal/feeding, probably related with the 17 h inter-meal interval which allowed the 

strong decline in levels of oxygen consumption and nitrogen excretion. The stomach 

capacity (fullness) can determine the maximum feed intake of a fish at a single meal 

(Brett, 1971). This implies that the feed intake might be affected by volume of the diets 

(Jobling, 1980; Ruohonen et al., 1997). However, in the present study the feed intake of 

tilapia at the morning meal/feeding is less likely to be affected by the dietary volume. 

Since, compared to morning feeding the feed intake (in g dry matter) of tilapia was 

higher during afternoon feeding in three out of the four diet groups, which suggests that 

the feed intake of tilapia at morning feeding was not limited by their stomach capacity. 

Altogether, based on the present results it is difficult to explain the differences in intake 

of tilapia at the morning feeding. 

The digestible energy intake at afternoon feeding was inversely related to the one and 

two hour pre-feeding oxygen consumption of tilapia. This suggests that the changes in 

metabolic status (oxygen consumption) of fish induced by the composition of the 

morning meal/feeding influences the feed intake at the subsequent afternoon feeding. 

This is in line with evidence in eel (Anguilla anguilla), which shows feed intake was 

related to the metabolic status, as the level of minimum oxygen consumption prior to 

feeding was negatively correlated to the amount of feed intake (Heinsbroek et al., 2008).. 

In the present study, the tilapia fed high protein diet not only had a higher magnitude of 

oxygen consumption, but oxygen consumption also plateaued more slowly than in 

tilapia fed the low protein diets. The latter perhaps suggests a slow rate of gut passage in 

tilapia fed high protein diet as seen previously in other fish species (e.g., Fris and Horn, 

1993). Thus, a slower gut emptying rate may have contributed to the reduced feed 

intake during the afternoon feeding in these groups (Jobling, 1980; 1981;Riche et al., 

2004; Seginer, 2008).  

In mammals, consumption of different macronutrients (protein, fat, starch) is suggested 

to elicit different levels of satiety (Blundell et al., 1993; Rolls and Hammer, 1995). 

‘Satiety’ is the state of fullness between two meals or feeding in animals (Blundell et al., 

1996; Blundell and Tremblay, 1995). This non-instantaneous inter-meal state begins 

after the ending of a meal/feeding (i.e., after food ingestion), and is believed to impart its 
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effect on the amount of food consumed during the subsequent meal/feeding. For each 

unit energy (caloric) intake, protein is suggested to generate a greater satiety followed 

by starch and then by fat, thus suggested to affect food (energy) intake in mammals 

(Potier et al., 2009; Westerterp-Plantenga et al., 1999). In the field of fish nutrition, little 

is known on the potential differences in the satiety effect of different macronutrients on 

feed intake. In line with the above studies, our data indicate that the tilapia fed high 

protein diet in the morning reduced their digestible energy intake at afternoon feeding. 

This effect can be ascribed to the satiety effect of the morning protein intake on the 

subsequent digestible energy intake at afternoon feeding, as no effect of protein level 

was seen at the morning feeding. Also in mammals, high protein preloads (e.g. at 

breakfast) reduce food intake in the subsequent ad libitum (e.g. at lunch) meal (Stubbs et 

al., 1996; Weigle et al., 2005). The intake of a high dietary protein increases the overall 

metabolic energy expenditure (heat production) in mammals which is perceived to elicit 

satiety (Westerterp, 2004), and is analogous to oxygen consumption of tilapia in the 

present study. The dietary protein also exerts its satiety effect in mammals through 

mechanisms related to circulating plasma amino acid level (Mellinkoff et al., 1956), gut 

emptying (Jahan-Mihan et al., 2011), stimulation of satiety hormones like 

cholecystokinin and glucagon-like peptide-1 (Anderson and Moore, 2004), but these 

mechanisms need to be elucidated in fish. 

In summary, the macronutrient composition of the diet affects the within-day feed 

intake of Nile tilapia and the effect of macronutrients differed between feeding sessions 

(morning vs. afternoon). The relation between digestible energy intake and pre-feeding 

oxygen consumption at morning and afternoon feeding suggests that the pre-feeding 

metabolic status influences the within-day feed intake in Nile tilapia. 
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Introduction 

This thesis investigates the concept of ‘oxystatic’ control of feed intake in fish, which 

states that at non-limiting water oxygen levels, the long term (weeks) voluntary feed 

intake in fish can be constrained by a set point value of oxygen consumption (heat 

production). This chapter reflects on the results from previous chapters to assess the 

validity of this concept, describes the perspectives and limitations of the concept, 

explores the possible mechanism involved and provides methodological considerations. 

Finally the implications of this research outcome are given in the context of fish farming 

and fish biology. 

Validation of the oxystatic concept 

Even at non-limiting water oxygen levels, the digestible energy intake (DEI) of rainbow 

trout and Nile tilapia was affected by the diet composition, as was shown in respectively 

chapters 2, 4 and 5 and in chapter 3. This difference in digestible energy intake was 

expected to be caused by the limitation of oxygen consumption (heat production) as 

proposed in the oxystatic concept. In rainbow trout (chapter 2) we found similar heat 

production and different DEI as seen previously in Nile tilapia (Tran-Duy et al., 2008). 

However, unlike in endothermic animals the relevance of heat production in control of 

feed intake in fish is questionable. Although heat production and oxygen consumption 

are interrelated, they are not identical. This was observed in tilapia (chapter 3). At the 

high digestible protein to digestible energy ratio diets the oxygen consumption of tilapia 

was similar while their heat production was different between the dietary non-protein 

energy sources (chapter 3). Further, irrespective of the oxygen consumption, the heat 

production of fish was affected by the dietary non-protein energy source (chapter 3 and 

4) and amino acid balance (chapter 5, data not shown). All this confirms that the heat 

production is not a proper proxy for oxygen consumption. Hence it is impossible to draw 

conclusions regarding the oxystatic control of feed intake in fish based on the heat 

production values from chapter 2. In addition the fact that in chapter 2, we found 

different DEI and similar heat production values (chapter 2) suggests that the actual 

oxygen consumption of trout was likely to be different between the diet groups. 

However, this cannot be confirmed without the measurement of oxygen consumption. 

Therefore we wanted to validate the oxystatic concept by direct measurement of oxygen 

consumption in fish. 

In Nile tilapia similar oxygen consumption was observed in three (HPF, HPS and LPS) 

diet groups which supports the proposed oxystatic concept (fig. 7.1A). The DEI of tilapia 

in these three diet groups might have been constrained by the set-point oxygen 

consumption (chapter 3). The treatment group (LPF) which did not conform to the 
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oxystatic concept consumed the lowest amount of oxygen but showed also the highest 

DEI and growth. Based on this observation, we hypothesize that the voluntary DEI can 

also be limited by other factors (e.g., fat/protein gain ratio) than the set-point oxygen 

consumption. This might occur when an optimal diet is given in terms of oxygen demand 

and the animal’s requirement for lean body growth as determined by the genetic 

potential. 

 

 

 

Figure 7.1 In relation to the proposed oxystatic concept, the observed digestible energy 

intake and oxygen consumption of Nile tilapia (A) and rainbow trout (B) from chapter 3 

and 4, respectively.  
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In rainbow trout, the replacement of dietary fat by starch decreased the DEI but 

increased the oxygen consumption (chapter 4). These differences in oxygen 

consumption are in contradiction with our hypothesis that the DEI of trout is 

constrained by a set-point oxygen consumption (fig. 7.1B). However, trout fed with diets 

varying in amino acid balance at normoxic conditions did show differences in DEI and at 

the same time consumed similar amounts of oxygen (chapter 5). This on its turn 

underlines again a possible set-limitation imposed by the oxygen consumption for feed 

intake in trout. 

Overall, the oxygen consumption data in both Nile tilapia (chapter 3) and rainbow trout 

(chapter 4 and 5) both support and contradict the oxystatic concept, respectively.  

Apparently, feed intake is under control of multiple factors and there is no single factor 

which can be proposed to control voluntary feed intake under all conditions. Thus for all 

the existing theories of feed intake regulation, including the oxystatic theory, it is 

obvious that they are only valid in the absence of other constraints on feed intake. In 

addition, the set point oxygen consumption constrains particularly the voluntary feed 

intake in the long term. The experimental period of 6 weeks that we usually applied 

might have been insufficient to observe the set point oxygen consumption in all the diet 

groups.  However, the similar oxygen consumption observed in the various studies of 

this thesis cannot be considered as a coincidence as it is observed in two very different 

fish species under different dietary regimes.  

To test the oxystatic concept, we tried to influence the oxygen consumption of fish by 

changing the dietary oxygen demand (i.e., slope of line, chapter 1-fig. 1.4) in all the 

reported studies (chapter 3, 4 and 5).  It is also possible to test the oxystatic concept by 

changing the oxygen consumption for maintenance without altering the dietary oxygen 

demand. In fish the maintenance can be influenced by several dietary (e.g., salt content) 

and environmental (e.g., water pH, salinity) factors through challenging the 

physiological homeostasis which in turn will affect the oxygen consumption.  

Testing the oxystatic concept by altering maintenance 

In growing fish, the total oxygen consumption consists of oxygen consumed for 

routine/basal metabolism (maintenance) and for growth (production). The oxygen 

consumption needed for the basal metabolism is essential to maintain homeostasis of 

several physiological processes in an organism. The acid-base homeostasis (pH) is one of 

the most important physiological processes maintained under homeostasis. Changes in 

water pH influence the acid-base homeostasis in fish (Janssen and Randall, 1975). An 

increase in oxygen consumption was observed in rainbow trout reared in low and high 

water pH compared to neutral water pH (Hargis, 1976). Hence, disturbance in the acid-

base homeostasis of fish may alter the amount of oxygen consumption for maintenance. 
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Since, the oxystatic concept assumes set-point oxygen consumption as a constraint for 

voluntary feed intake, it is postulated that altering the maintenance oxygen consumption 

will also affect voluntary feed intake in fish (fig. 7.2). 

 

Figure 7.2 Hypothetical illustration of the influence of maintenance on the voluntary feed 

intake and oxygen consumption in fish 

In other words, if the oxystatic concept holds true, an increase in the maintenance 

oxygen consumption will decrease the voluntary feed intake because of constraint in the 

oxygen consumption (fig 7.2). To test this, first a reliable and stable factor influencing 

maintenance is required. In fish the acid-base homeostasis can be affected by the dietary 

electrolyte balance (dEB) which in turn will alter the maintenance energy expenditure 

(Dersjant-Li et al., 2000). The dEB is defined as the sum of mineral cations minus the 

sum of mineral anions present in the diet. In animal nutrition, dEB is often simplified by 

restricting it to the difference in only the major ions of the diet i.e., as Na + K – Cl, in 

mEq/kg (Mongin, 1981). A preliminary study to assess the impact of different dEB levels 

(-200 to + 800 mEq/kg) on maintenance energy expenditure in Nile tilapia at a 

restricted feeding showed a lowest and highest maintenance energy in fish fed +200 dEB 

and +800 dEB, respectively (Saravanan et al., 2013).  
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Figure 7.3  Relation between dietary electrolyte balance (dEB) and metabolisable energy 

expenditure for maintenance (MEm) in Nile tilapia (from Saravanan et al., 2013) . 

Subsequently a study was conducted in the aquatic metabolic unit of Wageningen 

University with Nile tilapia (30 fish/ tank) to assess the impact of altering maintenance 

on the voluntary feed intake and oxygen consumption (Saravanan et al., unpublished 

data). Triplicate groups of fish were fed to satiation with one of the four diets 

contrasting in amino acid (methionine and lysine) balance (balanced vs. imbalanced) 

and dEB levels (+200 vs. +700 mEq/kg). The contrast in the dietary amino acid (AA) 

balance is expected to alter the dietary oxygen demand, being lower at a balanced AA 

than at the imbalanced AA diet. Similarly, the fish fed 200 dEB diets will have lower 

maintenance compared to 700 dEB diets. The oxygen consumption of fish was not 

expected to be affected by diets whereas an effect on DEI was expected at both AA 

balance and dEB levels. As shown in table 7.1, dEB affected the metabolisable energy 

expenditure for maintenance in agreement with our previous observation (Saravanan et 

al., 2013).  

The DEI of tilapia was significantly affected by the dietary AA balance, but contrary to 

the expectation the DEI was unaffected by the dEB levels (P=0.102). We did not avail 

over the oxygen consumption data because of a technical failure in the oxygen 

measurement system during the experiment. Nevertheless, the similar DEI of tilapia 

between 200 and 700 dEB levels within the balanced AA and imbalanced AA diet group 

provide evidence against the postulated oxystatic concept. Furthermore, with increasing 

maintenance energy requirement the DEI was expected to decrease, but we found 

numerically higher DEI in tilapia, especially at the imbalanced AA diet groups. In line 

with this, rainbow trout kept at a low water pH consumed more feed possibly to 
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compensate for the higher maintenance cost (Dockray et al., 1996; Reid et al., 1997). 

Together these evidences raise doubts about the general validity of the oxystatic concept 

under conditions of altered maintenance in fish. However, before coming to the final 

conclusion regarding the validity of the oxystatic concept other factors (both dietary and 

environmental) affecting maintenance should be studied.  

Table 7.1. Metabolisable energy for maintenance (MEm), digestible energy intake (DEI) 

and heat production (H) in Nile tilapia fed experimental diets to satiation for 6 weeks. 

 
Balanced 

AA 

 Imbalanced 

AA 
 P-value 

dEB (mEq/kg) 200 700 
 

200 700 SEM 
AA 

balance 
dEB AAxdEB 

MEm 

(kJ/kg0.8/d) 
64 82 

 
67 87 3.4 0.287 <0.001 0.808 

DEI (kJ/kg0.8/d) 357 360  235 254 6.0 <0.001 0.102 0.215 

H (kJ/kg0.8/d) 161 174  121 141 1.7 <0.001 <0.001 0.258 

 

Perspectives and limitations of the oxystatic concept 

Influence of temperature 

The oxystatic concept assumes a ‘fixed oxygen budget’ that a fish can use for voluntary 

feed intake in the long term. However, when feeding fish with similar diets but at 

different environmental conditions, the oxygen consumption may differ. For instance, 

even at normoxia the changes in the water temperature affect oxygen consumption of 

fish by altering maintenance (basal metabolism) and aerobic capacity (active 

metabolism) (fig. 7.4). 

As in all poikilothermic animals, in fish, temperature acts as an important steering factor 

for metabolism (Hansen and Falk-Petersen, 2001). With increasing water temperature 

the total oxygen consumption of fish increases, whereas the metabolic scope for feed 

intake increases steadily and then decreases at supra-optimal temperature (Brett, 

1979). Therefore fish reared at different water temperature will have ‘different set-point 

oxygen consumptions’ according to the oxystatic concept. In addition, water 

temperature influences the rate of metabolism, hence the time within which the fish 

regulates its function including feeding may vary. Fish decreases voluntary feed intake 

at high temperature (i.e., above thermal preferendum of fish) due to the reduction in the 

metabolic scope (Mallekh and Lagardère, 2002). 
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Figure 7.4 Relation between the water temperature and oxygen consumption in fish 

(modified from Wieser, 1985). 

 

This reduction in metabolic scope reflects the limitation in the capacity for the uptake of 

oxygen at the gills and to deliver oxygen by the circulatory system to the respiring 

tissues under conditions of high oxygen demand (Jobling, 1997; Pörtner and Knust, 

2007). In addition, the solubility of oxygen (thus the concentration of oxygen) in water 

decreases with increasing temperature and this might further affect the balance 

between oxygen demand and -supply of fish (Jensen et al., 1992). Therefore, a 

pronounced limitation of oxygen consumption on voluntary feed intake is foreseen at 

high sub-optimal water temperature.  

In this thesis we always measured the feed intake and oxygen consumption of fish at the 

optimal temperature for Nile tilapia (27°C) and for rainbow trout (14°C). However, as 

discussed above and illustrated in fig 7.4, the oxystatic concept is more likely to be valid 

at high water temperature. In other words, the oxygen consumption will be a constraint 

for feed intake in fish at high water temperatures. Therefore, the contradicting outcome 

from the studies of this thesis might confer to the oxystatic concept at high temperature. 

On the other hand at low water temperature, constraint of oxygen consumption per se is 

not expected to control feed intake. At low temperature also limitations such as low 

enzyme activity might control the feed intake in fish. 

Oxystatic concept in short term control of feed intake  

The oxystatic concept proposed in this thesis considers the long term feed intake 

regulation. The outcome of long term feed intake can be due to the short term feed 

intake response of fish. As shown in chapter 6, the variation in the DEI of Nile tilapia at 

afternoon feeding was inversely related to the pre-feeding oxygen consumption. This 
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variation in the feed intake response of fish can also be related to limitation in oxygen 

consumption. Specifically, after the morning feeding the oxygen consumption of fish 

increases steadily in all diet groups and more or less attains a peak after 4 hours. During 

the peak hour of oxygen consumption the concentration of water oxygen concentration 

decreased dramatically from an average value of 5.6 mg/L to values close to 3.0 mg/L. 

Under such conditions, e.g., a reduced oxygen concentration in water combined with the 

peak oxygen demand for metabolism, the maximum rate of gill ventilation might be a 

limitation for oxygen consumption in fish. However, this needs to be verified using 

automated systems for measuring ventilation rates in fish, such as have been used by 

Altimiras and Larsen (2000).  

Fish after feed deprivation showed an increased compensatory feed intake 

(hyperphagia) above their normal voluntary feed intake (Ali et al., 2003), which implies 

that the oxystatic concept may not be applicable in the short term feed intake regulation. 

It is also hypothesized that if oxystatic limitation is expected to control feed intake, then 

the hyperphagia in fish will not be sustained and therefore must level-off to the normal 

level of voluntary feed intake in long term. Therefore, studying the voluntary feed intake 

and oxygen consumption of fish under conditions of feed deprivation and re-feeding in 

long term will also help to further verify the validity of the oxystatic concept. 

Overall the oxystatic concept combines dietary, environmental and fish factors to 

explain the long term control of feed intake. The results from this thesis suggest that its 

validity is limited to long term and under certain conditions. In addition, the oxystatic 

concept does not sufficiently explain the short term (within-day) variation in feed intake 

of fish. Nevertheless, it serves as an useful explanatory concept towards a better 

understanding of feed intake regulation in fish.  

Dietary oxygen demand and oxygen efficiency in feed intake of fish 

In this thesis, irrespective of the differences in the diet composition, the DEI of Nile 

tilapia (chapter 3) and rainbow trout (chapter 4) was inversely related to dietary oxygen 

demand (DOD). However there was a clear difference in the rate of decrease in DEI per 

unit increase in DOD between Nile tilapia (~14.4 kJ/kg0.8/d/DOD) and rainbow trout 

(~7.1 kJ/kg0.8/d/DOD). We initially suggested this to be due to the differences in 

handling macronutrients between species (see chapter 4). However, the combined data 

of DOD and DEI in rainbow trout from chapter 4 and chapter 5 at normoxic conditions 

indicates a slope of ~16.1 kJ/kg0.8/d/DOD which is comparable to the slope in Nile 

tilapia (fig. 7.5).  
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Figure 7.5 Relation between the dietary oxygen demand (DOD) and digestible energy 

intake (DEI) in Nile tilapia and rainbow trout. 

Despite the differences in the rearing temperature, 27°C for tilapia and 14°C for trout, 

the close similarity in the slope of the lines suggests that both species regulate the DEI in 

a similar pattern depending on the DOD.  Therefore, regardless of the diet composition it 

is possible to use the DOD as a predictor of the DEI in fish at normoxic condition. 

However refinements in the determination of DOD for specific diets are required to 

avoid the confounding effect of basal oxygen consumption and DEI as mentioned below 

in the section on the methodological considerations.   

Besides DOD, the findings from this thesis show that the DEI of Nile tilapia is directly 

related to the efficiency of oxygen utilization for energy retention (see chapter 3). From 

the studies performed with rainbow trout in chapter 4 and 5, a similar relation as in the 

equations below is shown. 

DEI (kJ/kg0.8/d)= 252 + 0.82 X; n=12, R2=0.29, P=0.072 (chapter 4) 

DEI (kJ/kg0.8/d)= 75 + 6.0 X; n=6, R2=0.95, P=0.001 (chapter 5 - normoxic condition) 

DEI (kJ/kg0.8/d)= 82 + 4.1 X; n=6, R2=0.93, P=0.002 (chapter 5 - hypoxic condition) 

Where, X is the efficiency of oxygen utilization for energy retention (retained energy in 

Joule per mg O2 consumed). These results in both fish species comply with the concept 

of oxygen efficiency in feed intake regulation as proposed in ruminants (Ketelaars and 

Tolkamp, 1992). The oxygen efficiency theory assumes a cost-benefit model (oxygen 

consumption vs. net energy) rather than a constraint model thus ‘no fixed oxygen 

budget’ for an animal. Therefore, the oxygen consumption of animals fed different diets 
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might differ, which is opposite to the assumption of the oxystatic concept.  Further the 

oxygen efficiency theory states that the voluntary feed intake of an animal is at the point 

where the efficiency of oxygen utilization for net energy is at its maximum. Thus, 

increasing the oxygen efficiency increases the voluntary digestible energy intake as 

shown in this thesis. However, at hypoxic conditions the involvement of oxygen 

efficiency in control of voluntary feed intake in rainbow is an obvious artefact, since feed 

intake of trout under hypoxia is clearly constrained by the water oxygen levels. 

Therefore in the presence of obvious constraints on the feed intake in fish (e.g., hypoxia, 

temperature in ectotherms) the validity of oxygen efficiency theory remains unclear. 

Further the availability of prey/food is sporadic in case of predatory fish species. Thus 

when food is available these species are likely to maximize the food intake subject to 

constraints instead of eating for a maximal efficiency as their main goal. Hence the 

feeding behaviour and feeding habit of fish has to be taken into consideration in feed 

intake theories. 

Possible signalling mechanisms 

The present thesis demonstrates the involvement of dietary oxygen demand and the 

limitation of oxygen consumption in the control of voluntary feed intake in fish. It is 

important to explore the signalling mechanisms through which the central feeding 

system (hypothalamus) senses the limitation in oxygen consumption to regulate feed 

intake in fish. Oxygen is vital for the aerobic metabolism in all tissues, as it functions as 

the final acceptor of electrons in the mitochondrial oxidative phosphorylation for ATP 

production (Goda and Kanai, 2012). Therefore to sustain the aerobic ATP production, 

cells have to tightly regulate the supply of oxygen to meet their oxygen demand. 

Compared to fish, the mechanism of oxygen homeostasis has been studied extensively in 

mammals (Nikinmaa and Rees, 2005). Under oxygen limitation (hypoxia) the adaptive 

response of an animal is mediated by several oxygen sensors (e.g., molecular oxygen, 

reactive oxygen species, cytochromes, ATP, pH) through different effector systems (e.g., 

hypoxia-inducible factor pathway) (Renshaw and Nikinmaa, 2007). The hypoxia-

inducible factor (HIF) is the key transcription factor which regulates the adaptive 

response under hypoxia in mammals and fish (Nikinmaa and Rees, 2005). Therefore it is 

proposed that the changes in feed intake response due to environmental hypoxia and 

difference in DOD at normoxia might be regulated through the HIF pathway, but such a 

direct link between the HIF and central feeding system needs to be elucidated in fish and 

in mammals.  

In mammals, the oxygen- and energy (ATP)-dependent signals from liver to the brain 

might regulate feed intake (Friedman, 1998). This concept is later proposed as the 

‘hepatic oxidation theory’ in the control of feed intake (Allen et al., 2009). The changes in 
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the oxygen and energy status in liver due to nutrient oxidation provide signals to the 

feed intake regulating systems in the brain (Allen et al., 2009). In fish, the hypothalamic 

neuropeptide Y (NPY) and cocaine amphetamine regulator transcript (CART) are 

important orexigenic and anorexigenic peptides, respectively (Volkoff et al., 2005). In 

line with this, the reduced feed intake of rainbow trout fed starch compared to fat diets 

was associated with increased hepatic cytochrome oxidase (marker of oxidative 

phosphorylation) together with higher CART mRNA expression in hypothalamus 

(Figueiredo-Silva et al., 2012). In another study, rainbow trout fed at normoxic 

conditions with a balanced amino acid and imbalanced amino acid diet (same diets used 

as in chapter 5) showed a reduced feed intake in the group fed an imbalanced- 

compared to a balanced- amino acid diet (Figueiredo-Silva et al. our own unpublished 

data). However, the mRNA expression of markers of oxidative phosphorylation (e.g., 

cytochrome oxidase) in the liver was similar between the diet groups (Figueiredo-Silva 

et al., unpublished data), suggesting the existence of a possible threshold level in the 

hepatic oxidative metabolism in signalling the regulation of feed intake. The effector 

mechanism by which the hepatic oxidative status signals the brain is not yet clearly 

understood. 

Methodological considerations 

Dietary oxygen demand (DOD) 

Like feed efficiency, the DOD is also a functional property of a diet and is affected by the 

dietary nutrient composition as shown in chapters 3, 4 and 5. The DOD in these chapters 

was calculated by dividing the mean total oxygen consumption and the mean voluntary 

DEI of fish over the experimental period expressed as mg O2/kJ DEI. However, when 

calculating the DOD in this way, the difference in DEI may confound the outcome. The 

inverse relation between DOD and DEI implies that the DOD of a specific diet will be 

affected by the changes in the voluntary DEI of fish. In other words, an increased DEI will 

decrease the DOD. The relation between the weekly mean satiation DEI and DOD 

(calculated from weekly mean oxygen consumption and DEI) of Nile tilapia from the 

study of chapter 3, confirms that the DOD of the diet is affected by changes in the DEI of 

fish (fig. 7.6A). Further, the DOD of a diet can be calculated as marginal DOD or gross 

DOD depending on whether the total oxygen consumption of fish is corrected for 

maintenance. The total oxygen consumption of fish consists of oxygen consumed for 

maintenance and growth (production). In this thesis we calculated the gross DOD with 

total oxygen consumption (including maintenance) divided by the voluntary DEI. The 

contrast in the DOD between diets is mainly caused by the differences in oxygen 

consumption used for growth. Therefore, changing maintenance is expected to have 

minimal influence on the DOD. This is supported by the observation in Nile tilapia that 
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Figure 7.6 (A) The dietary oxygen demand as affected by the DEI in Nile tilapia (B) 

Approach to determine marginal dietary oxygen demand. 

the differences in maintenance energy (MEm) between 200 and 700 dEB was almost 

equal to their differences in the heat production within the balanced- and imbalanced-

amino acid diet groups (table 7.1). Overall, the gross DOD values of diets calculated in 

the previous chapters have less strength to be a real good predictor of feed intake. To 

overcome this problem the marginal DOD of a diet has to be determined from the slope 

of the line between the DEI and oxygen consumption of fish fed at different feeding 

levels as illustrated in fig. 7.6B. 
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Heat production (H) 

In a biological system the heat liberates due to basal metabolism, heat increment of 

feeding and physical activity by the metabolic conversion of nutrients into energy 

(Kleiber, 1975). The H can be determined in three ways, direct calorimetry, indirect 

calorimetry and comparative slaughter technique. Unlike in homeotherms, the 

determination of H using direct calorimetry is difficult in fish. In terrestrial animals H is 

commonly determined by indirect calorimetry using the respiratory measurement of 

oxygen consumption and CO2.  However, in fish often the oxygen consumption alone is 

measured and the CO2 is neglected due to the complexity in the analytical measurements 

(Bureau et al., 2002). In addition, heat production in fish is considered to be mainly due 

to the catabolism of amino acid and fats. Therefore a standard oxycalorific coefficient of 

13.6 kJ/ g O2 has been suggested to estimate H using oxygen consumption (Cho and 

Kaushik, 1990). However, the H estimated with the oxycalorific coefficient of 13.6 kJ/ g 

O2 and the oxygen consumption of Nile tilapia from chapter 3 is lower than the H values 

obtained from the comparative slaughter technique (table 7.2). This suggests that when 

a standard oxycalorific coefficient is used, the H is underestimated. 

 

Table 7.2. The comparison between heat production (H) values estimated from 

comparative slaughter technique and indirect calorimetry using the standard oxycalorific 

coefficient (13.6 kJ/ g O2). 

 Diets 

 HPF HPS LPF LPS 

Oxygen consumption (g/kg0.8/d) 8.50 8.64 7.78 8.35 

Comparative slaughter technique1     

H (kJ/kg0.8/d) 163 180 157 175 

Indirect calorimetry2     

H (kJ/kg0.8/d) 116 118 106 114 

 1 H= metabolizable energy intake – retained energy. 2 H= Oxygen consumption x 13.6 
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The main reason for the difference between the H values obtained from the two 

methods is possibly due to the type of nutrient oxidation. Compared to a conventional 

fish feed, in our study the fish were fed with diets having a large contrast in 

macronutrient composition. This would alter the type of nutrient oxidation thereby 

affecting the amount of heat produced per gram of oxygen consumption. Therefore in 

studies applying contrast in dietary nutrient composition, the measurements of both 

oxygen consumption and CO2 production are required for good estimation of H using 

indirect calorimetry.   

Experiments with groups of fish compared to individual fish 

The oxystatic concept proposed the limitation in the oxygen consumption on the control 

of voluntary feed intake in fish. In other words an individual fish is supposed to have set-

point oxygen consumption which controls its feed intake. In this thesis, however, the 

feed intake and oxygen consumption were measured in groups of fish (at tank level), 

representing the averages of all fish. As such, our data are only a proxy of the real 

relation between feed intake and oxygen consumption. However, in fish, there is not 

really a choice under group housing, measuring individual feed intake of fish on a daily 

basis is a real practical challenge. In addition, individual housing of fish in a tank will 

affect their voluntary feed intake, and won’t provide realistic data either. In this thesis’ 

studies, the only measurement made at individual level was body weight of fish at start 

and end of the experiments. For instance the coefficient of variation of final body weight 

was affected in Nile tilapia (study of chapter 3, data not shown). This variation in body 

weight of tilapia fed different diets can be due to the differences in feed intake and/or 

nutrient conversion efficiency. It is also likely that each individual have their own level 

of set point oxygen consumption value. Unfortunately, this will be very difficult to 

monitor in fish.    

Implications of our research 

Aquaculture 

In aquaculture, the supply of oxygen is one of the most limiting environmental factors 

which determine the fish production capacity. A low water oxygen level limits the feed 

intake of fish thereby reducing the growth (Davis, 1975) as is shown also in chapter 5. 

Therefore, in intensive fish farming systems (e.g., recirculating aquaculture systems) it 

has been a common practice to maintain a continuous supply of oxygen through aeration 

and oxygenation. The minimum concentration of water dissolved oxygen (incipient DO) 

needed to meet the oxygen demand for feed intake depends on the fish size (Tran-Duy et 

al., 2012) and the nutrient profile of the diet as indicated by the differences in the feed 

intake of rainbow trout between amino acid-balanced and –imbalanced diets at hypoxic 
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conditions (chapter 5). The present results highlight the importance of diet composition 

in estimating the oxygen requirement for specific aquaculture production systems. 

Besides the water oxygen level, the accumulation of metabolites like CO2 and 

nitrogenous compounds (e.g., nitrite, ammonia) in water of intensive aquaculture 

systems would affect the oxygen carrying capacity in fish (Basu, 1959; Lewis Jr and 

Morris, 1986), which in turn might affect the feed intake of fish. Further, at the non-

limiting water oxygen levels and in the absence of other external factors affecting 

oxygen uptake, fish increase feed intake with decreasing DOD and as well with the 

increasing efficiency of oxygen utilization for energy retention. These parameters should 

be taken into consideration in the prediction models for a good prediction of feed intake 

in fish. 

Most fish farming occurs in open culture systems like ponds and cages which are prone 

to seasonal changes in temperature and light which in turn might result in fluctuations 

in water dissolved oxygen levels. This variation in water dissolved oxygen level will 

affect feed intake of fish. However, it is possible to minimize the impact by adjusting the 

nutrient composition of feed (i.e., adjusting the dietary oxygen demand) depending on 

the specific culture condition. 

Moreover, under farming conditions the daily feed ration is fed to the fish in distinct 

feeding sessions or alternatively, fed continuously. The results from this thesis show that 

when the ration is fed in two feeding sessions, the enhanced oxygen consumption of fish 

following the first meal/feeding affects feed intake during the subsequent second 

feeding. Therefore increasing the number of feeding sessions or feeding continuously 

will lower the peak oxygen consumption of fish which might reduce the impact of 

dietary macronutrients on the within-day variation in feed intake.  

Aquatic ecosystem 

Unlike in farming conditions, the food is not readily available for fish in their natural 

habitat. Therefore the fish have to actively forage on different types and amounts of  

food/prey items to fulfil their nutrient requirements. In addition, fish have to adjust 

their feeding behaviour depending on the prevailing environmental conditions and the 

availability of food. For instance, the increasing occurrence of hypoxia in marine waters 

and freshwater bodies due to eutrophication and climate change might shift the energy 

flow by disturbing the food web (Diaz and Rosenberg, 2008). Hypoxia in aquatic 

environments affects the abundance, diversity and catch of fish (Breitburg, 2002). It also 

induces changes in the diet of fish due to structural shifts in food availability (Pihl, 1994; 

Pihl et al., 1992; Rahel and Nutzman, 1994). However, it is also possible that the fish 

itself have different food preferences under hypoxia, which is not yet known. A study in 

fruit fly shows an altered diet preference under chronic hypoxia. Flies avoided yeast 
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(high in protein) which might be toxic under hypoxia compared to normoxia (Vigne and 

Frelin, 2010). As shown in this thesis, depending on diet composition the oxygen 

demand might differ. Therefore, under hypoxic conditions organisms might prefer to 

consume a diet which demands low oxygen. The latter may be true for certain species of 

fish as well. 

Main conclusions 

From this thesis the following main conclusions can be drawn on the feed intake control 

mechanism in fish 

• Even at non-limiting water dissolved oxygen levels, the capacity to consume 

oxygen and the limitations in oxidative metabolism of fish should also be 

considered in the long term control of voluntary feed intake. 

• The consistent inverse relation between digestible energy intake and dietary 

oxygen demand in Nile tilapia and rainbow trout at different dietary regime 

suggests the involvement of dietary oxygen demand in the regulation of feed 

intake in fish. 

• The minimum water dissolved oxygen level at which fish reduces the feed intake 

depends on the dietary oxygen demand. In other words, even at hypoxic 

conditions the maximum feed intake of fish is determined by the diet 

composition. 

• As in higher animals, the difference in the macronutrient composition of diet 

seems to alter satiety and within-day feed intake in fish, which is related to the 

pre-feeding metabolic status. 

• Overall, the oxystatic concept i.e., the voluntary feed intake in fish is constrained 

by a set point value of oxygen consumption appears to be valid at certain 

conditions. However, its generic application remains questionable. Yet, the 

oxystatic concept is unique as it combines dietary, environmental and fish factors 

and provides a conceptual insight for better understanding of feed intake 

regulation in fish. 
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Summary 

The voluntary feed intake of fish is affected by several dietary, environmental and 

physiological factors. Compared to mammals the underlying mechanisms of feed intake 

regulation in fish have been less intensively studied. It is widely accepted that fish eat to 

satisfy their energy requirements, just like most other animals. Similarly, fish reduce 

feed intake when there is a limitation in the water dissolved oxygen levels. However, 

even at non-limiting water oxygen levels, the digestible energy intake of fish is affected 

by the nutrient composition of the diet. Based on the observation of similar heat 

production together with different digestible energy intake in Nile tilapia, we thought 

that a limitation in heat production (oxygen consumption) might affect the voluntary 

feed intake. In this thesis we proposed the ‘oxystatic’ concept which states that at non-

limiting water oxygen levels and in the absence of other constraints, the feed intake of 

fish as measured over a period of weeks, can be constrained by a set-point value of 

oxygen consumption. Therefore the aim of this thesis was to assess the validity of the 

oxystatic concept and to elucidate the role of oxygen consumption in the control of feed 

intake in fish. 

Our first objective was to verify the previous observation of similar heat production 

under non-limiting water oxygen condition in other fish species than Nile tilapia. In 

chapter 2, we investigated the feed intake, digestible energy intake and heat production 

of rainbow trout reared in a water flow-through system. The fish were fed to satiation 

with four iso-energetic diets contrasting in protein to energy ratio (low vs. high) and 

non-protein energy source (starch vs. fat). The results showed that the feed and 

digestible energy intake of trout was altered by the macronutrient composition of the 

diet. Further the calculated heat production of trout was similar and unaffected by the 

diets as seen previously in Nile tilapia. The repeated observations of similar heat 

production in both species suggest the feed intake of fish to be controlled by a 

physiological limitation in oxygen consumption and oxidative metabolism. 

Next we investigated the existence of ‘oxystatic’ control of feed intake, by direct 

measurement of oxygen consumption and feed intake in two species, Nile tilapia 

(Chapter 3) and rainbow trout (chapter 4 and 5). The nutrient compositions of the diets 

were altered to create a contrast in dietary oxygen demand (mg O2/ g or kJ feed) in 

order to influence the oxygen consumption of fish. In chapter 3, the feed intake, 

digestible energy intake and oxygen consumption were monitored in Nile tilapia fed to 

satiation with four iso-energetic diets contrasting in protein to energy ratio (low vs. 

high) and the type of non-protein energy (NPE) source (starch vs. fat). Feed intake and 

digestible energy intake of tilapia was affected by the dietary NPE source and protein to 

energy ratio, respectively. The macronutrient induced changes in digestible energy 
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intake of tilapia was negatively related to dietary oxygen demand and positively related 

to oxygen efficiency for energy retention. Moreover, the oxygen consumption was 

similar in three out of four diet groups. This suggests that even at non-limiting water 

oxygen levels, the voluntary feed intake might be constraint by the set-point oxygen 

consumption of fish in line with the oxystatic concept.  

In chapter 4, we assessed the feed intake and oxygen consumption of rainbow trout fed 

to satiation with four diets highly contrasting in non-protein energy (NPE) source 

(starch vs. fat) and with similar digestible protein to digestible energy ratio. The dietary 

oxygen demand decreased linearly with increasing replacement of starch by fat in the 

diet. The digestible energy intake of trout increased with increasing fat as NPE in the 

diet. Similarly, the oxygen consumption of trout decreased with increasing dietary fat, 

which contradicted the oxystatic concept. However, the digestible energy intake of trout 

was inversely related to dietary oxygen demand in accordance with our previous 

findings in Nile tilapia (chapter 3). Together, these results suggest a possible role of 

dietary oxygen demand in feed intake regulation.   

In chapter 5, we investigated the oxystatic concept in rainbow trout fed two diets 

contrasting in amino acid (methionine and lysine) balance (balanced diet vs. imbalanced 

diet). The contrast in dietary amino acid balance was expected to alter the dietary 

oxygen demand, being high with imbalanced than with balanced amino acid diet.  Both 

diets were tested at two water oxygen levels (hypoxia vs. normoxia). Compared to 

normoxia, trout under hypoxia consumed 29% less feed. When fed imbalanced diet the 

feed intake of trout were 11% and 16% lower than balanced diet at hypoxia and 

normoxia, respectively. The oxygen consumption of trout was similar under hypoxia but 

also under normoxia. The identical oxygen consumption of trout at normoxia together 

with differences in feed intake supports the oxystatic concept, that is the feed intake of 

fish can be constrained by a set-point oxygen consumption. 

The feed intake response of fish observed over 6 weeks in the above studies might be a 

result of short-term feed intake regulation. Therefore in chapter 6, we assessed the 

impact of dietary macronutrient composition on within-day (morning vs. afternoon 

feeding) variation in feed intake and oxygen consumption of Nile tilapia using data from 

the study of chapter 3. Further the relation between the within-day oxygen consumption 

and variation in within-day feed intake was investigated. The within-day digestible 

energy intake of tilapia was affected by the macronutrient composition of diet and their 

impact differed between feeding sessions. At morning feeding, regardless of the dietary 

protein level the digestible energy intake was higher in fish fed the diets with fat as NPE 

source than starch. These differences in digestible energy intake at the morning feeding 

were not related to oxygen consumption of tilapia, which suggests the involvement of 
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feed intake control mechanisms other than the oxygen consumption. Compared to the 

low protein diet, fish fed the high protein diet in the morning reduced the digestible 

energy intake at afternoon feeding with 10%. The difference in digestible energy intake 

of fish at the afternoon feeding was inversely related to the two and one hour pre-

feeding oxygen consumption. The results suggest that the pre-feeding metabolic status 

(oxygen consumption) might influence the within-day feed intake. 

In the final chapter 7, the general validity of the oxystatic concept was discussed based 

on the results from the above chapters. Moreover the validity of oxystatic concept was 

addressed in the context of altered maintenance requirements of fish and changing 

water temperature. Further the implications of this thesis results for aquaculture and for 

a natural aquatic ecosystem were discussed.  

Overall the following conclusions can be drawn from this thesis: 

• Even at non-limiting water dissolved oxygen levels, the capacity to consume 

oxygen and the limitations in oxidative metabolism of fish should also be 

considered in the long term control of voluntary feed intake. 

• The consistent inverse relation between digestible energy intake and dietary 

oxygen demand in Nile tilapia and rainbow trout at different dietary regime 

suggests the involvement of dietary oxygen demand in the regulation of feed 

intake in fish. 

• The minimum water dissolved oxygen level at which fish reduces the feed intake 

depends on the dietary oxygen demand. In other words, even at hypoxic 

conditions the maximum feed intake of fish is determined by the diet 

composition. 

• As in higher animals, the difference in the macronutrient composition of diet 

seems to alter satiety and within-day feed intake in fish, which is related to the 

pre-feeding metabolic status. 

• Overall, the oxystatic concept i.e., the voluntary feed intake in fish is constrained 

by a set point value of oxygen consumption appears to be valid for certain 

conditions. However, its generic application remains questionable. Yet, the 

oxystatic concept is unique as it combines dietary, environmental and fish factors 

and provides a conceptual insight for better understanding of feed intake 

regulation in fish 
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Samenvatting 

De vrijwillige voedselopname van vissen wordt beïnvloed door verschillende voedings-, 

omgevings- en fysiologische factoren. Vergeleken met zoogdieren, zijn bij vissen de 

onderliggende mechanismen van de voedselopnameregulatie minder intensief 

bestudeerd. Het is algemeen aanvaard dat, net als de meeste andere dieren, vissen eten 

om in hun energiebehoefte te voldoen. Ook verminderen vissen hun voedselopname 

wanneer er een limitatie is in de, in het water opgeloste zuurstof niveaus. De 

verteerbare voedselopname van vissen wordt echter, ook bij niet limiterende 

zuurstofniveaus in het water, beïnvloed door de nutriëntensamenstelling van het dieet. 

Gebaseerd op waarnemingen bij Nijltilapia, waarbij de warmteproductie gelijk bleef bij 

verschillende verteerbare energieopnames, dachten wij dat een beperking in de 

warmteproductie (zuursofconsumptie) van invloed zou kunnen zijn op de vrijwillige 

voedselopname. In deze dissertatie introduceren we het concept ‘oxystatic’, wat 

aangeeft dat bij niet-limiterende zuurstofniveaus in het water en in de afwezigheid van 

andere beperkingen, de voedselopname van vissen gemeten over een periode van een 

aantal weken, beperkt kan worden door een zuurstofconsumptie set-point waarde. 

Daarom is het doel van deze dissertatie om de validiteit van het begrip oxystatic te 

bepalen en om de rol van zuurstofconsumptie in de voedselopnameregulatie van vissen 

te verklaren.      

Onze eerste doelstelling was om de eerder genoemde observaties van gelijke 

warmteproductie bij niet-limiterende zuurstofniveaus in het water, te verifiëren voor 

andere vissoorten dan Nijltilapia. In hoofdstuk 2  onderzochten we de voedselopname, 

verteerbare energieopname en warmte productie van regenboog forel, welke gekweekt 

werden in een doorstroom systeem. De vissen werden tot verzadiging gevoerd met vier 

iso-energetische diëten, welke verschilde in eiwit - energie ratio (laag vs. hoog) en niet-

eiwit energiebronnen (zetmeel vs. vet). De resultaten lieten zien dat de voeropname en 

verteerbare energieopname van forel veranderde afhankelijk van de macronutriënten 

samenstelling van het dieet. Verder was de berekende warmte productie van forel gelijk 

en werd niet beïnvloed door de diëten, zoals ook eerder gezien bij Nijltilapia. De 

herhaaldelijke observaties van gelijke warmteproductie bij beide vissoorten suggereert 

dat de voedselopname van vissen gecontroleerd wordt door een fysiologische limitatie 

in zuurstofconsumptie en een oxidatief metabolisme. 

Vervolgens onderzochten we het bestaan van een ‘oxystatic’ gereguleerde 

voedselopname, door directe metingen van de zuurstofconsumptie en voedselopname in 

twee vissoorten; Nijltilapia (hoofdstuk 3) en regenboogforel (hoofdstuk 4 en 5). De 

nutriëntensamenstellingen van de diëten werden veranderd om een contrast te creëren 

in het zuurstofverbruik van de diëten (mg O2 of kJ voer), om de zuurstofconsumptie van 
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de vissen te beïnvloeden. In hoofdstuk 3 werden de voedselopname, verteerbare 

energieopname en zuurstofconsumptie gemonitord van Nijltilapia welke gevoerd 

werden tot verzadiging met vier iso-energetische diëten, welke verschilde in eiwit - 

energie ratio (laag vs. hoog) en het type niet-eiwit energiebron (NPE) (zetmeel vs. vet). 

Voedselopname en verteerbare energieopname van tilapia werden respectievelijk 

beïnvloed door de NPE bron van het dieet en de eiwit - energie ratio. De door de 

macronutriënten geïnduceerde verandering in verteerbare energieopname van tilapia 

was negatief gerelateerd aan de benodigde zuurstof voor het dieet en positief 

gerelateerd aan de zuurstof efficiëntie voor energiebehoud. Bovendien was de 

zuurstofconsumptie gelijk in drie van de vier dieet groepen. Dit suggereert dat zelfs bij 

niet-limiterende zuurstoflevels in het water, de vrijwillige voedselopname beperkt kan 

worden door de set-point zuurstofconsumptie van vissen, wat in line is met het oxystatic 

concept.                             

In hoofdstuk 4, hebben we de voeropname en zuurstofconsumptie bepaald van 

regenboogforellen welke gevoerd werden tot verzadiging met vier diëten die sterk 

verschilde in NPE bron (zetmeel vs. vet) en met vergelijkbare verteerbare eiwit – 

verteerbare energie ratio. De benodigde zuurstof voor het dieet nam lineair af met een 

toenemende vervanging van zetmeel door vet in het dieet. De verteerbare 

energieopname van forel nam toe met een toename van vet als NPE bron in het dieet. 

Ook verminderde de zuurstofconsumptie van forel bij een toename van vet in het dieet, 

wat tegenstrijdig is met het oxystatic concept. Echter, in overeenstemming met onze 

eerdere bevindingen in Nijltilapia, was de verteerbare energieopname van de forellen 

omgekeerd evenredig met de benodigde zuurstof voor het dieet (hoofdstuk 3). 

Gezamenlijk suggereren deze resultaten een mogelijke rol van de benodigde zuurstof 

voor het dieet in de voeropnameregulatie. 

In hoofdstuk 5, onderzochten we het oxystatic concept door regenboogforellen te 

voeren met twee diëten, welke verschilde in aminozuur (methionine en lysine) balans 

(gebalanceerd dieet vs. niet-gebalanceerd dieet). Verwacht werd dat het verschil in 

aminozuurbalans in het dieet, de benodigde zuurstof voor het dieet zou veranderen, 

waarbij de benodigde zuurstof voor het dieet hoger is bij een niet-gebalanceerd dieet 

dan bij een gebalanceerd dieet. Beide diëten werden getest bij twee zuurstofgehaltes in 

het water (hypoxie vs. normoxia). Vergeleken met normoxia omstandigheden, 

consumeerde forellen 29% minder voer onder hypoxie omstandigheden. Wanneer de 

forellen gevoerd werden met een niet-gebalanceerd dieet, waren de voedselopnames 

11% en 16% lager dan wanneer ze gevoerd werden met een gebalanceerd dieet onder 

respectievelijk hypoxie en normoxia condities. De zuurstofconsumptie van de forellen 

was gelijk onder zowel hypoxie als normoxia condities. De gelijke zuurstofconsumptie 
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van forellen onder normoxia omstandigheden welke gepaard gaat met verschillen in 

voedselopname ondersteunen het oxystatic concept, wat inhoudt dat de voedselopname 

van vissen beperkt kan worden door een set-point zuurstofconsumptie.         

De voedselopname respons van de vissen, welke voor de bovengenoemde studies 

geobserveerd werden voor 6 weken, kan een gevolg zijn van de kortdurende 

voeropname regulatie. Daarom werd in hoofdstuk 6 voor Nijltilapia, de impact van de 

dieet macronutriëntensamenstelling op de variatie in voedselopname en 

zuurstofconsumptie binnen een dag (ochtend vs. middag voeren) bepaald, door data te 

gebruiken uit de studie van hoofdstuk 3. Verder werd de relatie tussen de 

zuurstofconsumptie binnen een dag en de variatie in voedselopname binnen een dag 

bestudeerd. De verteerbare energieopname van tilapia werd binnen een dag beïnvloed 

door de macronutriënten samenstelling van het dieet en de impact verschilde tussen de 

voersessies. Tijdens de voersessie in de ochtend was de verteerbare energieopname 

hoger in vissen welke gevoerd werden met een dieet met vet in plaats van zetmeel als 

NPE bron, ongeacht het eiwitlevel van het dieet. Deze verschillen in verteerbare 

energieopname gedurende de ochtend voersessie waren niet gerelateerd aan 

zuurstofconsumptie van tilapia, wat, in plaats van de zuurstofconsumptie, de 

betrokkenheid van voeropname regulatie mechanisme suggereert. Vergeleken met 

vissen gevoerd met een dieet met een laag eiwit gehalte, verminderde vissen, welke in 

de ochtend gevoerd werden met een dieet met een hoog eiwit gehalte, hun verteerbare 

energieopname met 10%. Het verschil in verteerbare energieopname van de vissen in de 

middag voersessie was omgekeerd evenredig met de zuurstofconsumptie twee en een 

uur voordat het voeren begon. De resultaten suggereren dat de metabole status 

(zuurstofconsumptie) voorafgaand aan het voeren invloed zou kunnen hebben op de 

voedselopname binnen een dag.      

In het slothoofdstuk, hoofdstuk 7, wordt, gebaseerd op de resultaten van de 

bovengenoemde hoofdstukken, de algemene validiteit van het oxystatic concept 

bediscussieerd. Bovendien wordt de validiteit van het oxystatic concept bepaald in de 

context van gewijzigde onderhoudsbehoeften en veranderende water temperatuur. 

Verder worden de implicaties van de resultaten van deze dissertatie voor aquacultuur 

en natuurlijke aquatische ecosystemen bediscussieerd.      

De belangrijkste conclusies uit dit proefschrift zijn: 

• Zelfs bij niet-limiterende zuurstofgehaltes in het water, moeten de capaciteit om 

zuurstof te consumeren en de beperkingen in oxidatief metabolisme ook 

beschouwd worden in de regulatie van de vrijwillige voedselopname over de 

lange termijn. 
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• De consistente omgekeerd evenredige relatie tussen verteerbare energieopname 

en de benodigde zuurstof voor het dieet van Nijltilapia en regenboogforel gezien 

bij verschillende dieet regimes, suggereert dat de benodigde zuurstof voor het 

dieet betrokken is bij de voedselopname regulatie van vissen.  

• De minimum zuurstofconcentratie in het water waarbij vissen hun voeropname 

verminderen hangt af van de benodigde zuurstof voor het dieet. Met andere 

woorden, zelfs onder hypoxia condities wordt de maximale voeropname van 

vissen bepaald door de dieet samenstelling. 

• Net als bij hogere dieren, lijkt het verschil in de macronutriëntensamenstelling 

van het dieet de verzadigdheid en de voedselopname van vissen binnen een dag 

te veranderen, wat gerelateerd is aan de metabole status voorafgaand aan het 

voeren.        

• In het geheel genomen, lijkt het oxystatic concept i.e., de vrijwillige voeropname 

in vissen wordt beperkt door een set-point waarde van de zuurstofconsumptie, te 

gelden voor bepaalde condities. Echter, de generieke toepassing blijft 

twijfelachtig. Nochtans is het oxistatic concept uniek, want het combineert dieet, 

omgeving en vis factoren en biedt een conceptueel inzicht voor een beter begrip 

van voedselopname regulatie in vissen. 
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