A learning tool for sustainability at a mixed ecological farm

Authors
J. Wolfert, E.A. Goewie – Soc. aspects of Biological Farming
A.J.M. Beulens, H. Scholten – Information Technology
E.A. Lantinga, G.J.M. Oomen – Biological Farming Systems
Sustainable Farm Systems

Operations Control

Business Control

continue

translate

feedback

values
	norms

VISION

LOCAL-SPECIFIC ENVIRONMENT
Mixed ecological farming

- Management characteristics:
 - NO quick-acting instruments
 - Prevention
 - Recycling
 ➔ Chain Management
Management Control

- Negotiation (values/norms)
- Heuristic Problem Solving (learning)
 - Unstructured ➔ Structured
- Operational Control (habituation)
MC model structure and system development

Sustainability Goal Hierarchy

Sustainability Function Deployment

Product Flow Model

Sustainability Management Handbook
Product Flow Model (example)

- *milking cows*
- *milk market*
- *milk*
- *grass/clover*
- *ensilaging*
- *soil nutrients*
- *animal welfare*
- *potato growing*
- *grass/clover seed*
- *seed supplier*
- *silage grain*
- *silage feed*
- *nutrients*
- *manure*
- *surface water*
- *nitrate leaching*
- *nature-value*
- *nature-effect*
- *LEGEND*
- *production unit*
- *external resource*
- *internal resource*
- *soft by-product*
- *product flow*
- *internal resource flow*
- *emission flow*
- *by-product flow*
MC model structure and system development

Sustainability Goal Hierarchy

Product Flow Model

Sustainability Function Deployment

Sustainability Management Handbook
MC model structure and system development

- Sustainability Goal Hierarchy
- Product Flow Model
- Sustainability Function Deployment
- Sustainability Management Handbook
Sustainability Function Deployment

property goals-operations relation matrix

Flow:
- mown grass/clover
 - from
 - ley growing
 - to
 - grass/clover ensilaging

Relations:
- 1 = weak
- 3 = medium
- 9 = strong

Property Goals
- Sand content
- Grass/clover ratio
- Dry matter content
- Structure value

Operations
- Seed purchase
- Soil tillage
- Sowing
- Growing
- Mowing
- Loading

Importance Factor (1-5)

<table>
<thead>
<tr>
<th>Property Goals</th>
<th>Seed Purchase</th>
<th>Soil Tillage</th>
<th>Sowing</th>
<th>Growing</th>
<th>Mowing</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand content</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Grass/clover ratio</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter content</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Structure value</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Determination of Critical Operations
- 1
- 2
- 3
- 4
- 5
MC model structure and system development

- Sustainability Goal Hierarchy
- Product Flow Model
- Sustainability Function Deployment
- Sustainability Management Handbook
Flow details

flow: mown grass/clover
unit: ley growing

Evaluation

sub goal: sand content
OK
main goal: butyric acid bacteria spores
not OK

diagnose

Monitoring

1. Take 2 samples of 100g of each 5th self loading forage wagon (instr. SAM.323)
2. Determine sand content (instr. DET.316)
3. Write down the results on form SND.325

preventive measures

instructions

procedures

experiments

Soil tillage
- after tillaging, the land must be as smooth as possible (ST.001)

Growing
- regularly check for mole hills and remove them (MH.007)

Mowing
- check mower adjustment; re-adjust if necessary (MOW.850)

Loading
- use a clean wagon; clean if necessary (WAG.520)
Conclusions

- **Learning tool**
 - Continuous redesign process
 - Translation: sustainability ➔ daily management
 - handbook
 - updated
 - tailored

- **Sustainability emerges with the grip a farmer can get on product properties by monitoring and assurance throughout the complete production process**