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Abstract

A commonly observed organismal response to changing growth rate is a metabolic shift 
from one mode of metabolism to another. This phenomenon is potentially interesting from 
a fundamental and industrial perspective because it can influence cellular choices and can 
limit the capacity of industrial microorganisms to channel nutrients to desired products. The 
mechanistic cause of the metabolic shift may vary between species, but the presence of such 
shifts from bacteria to man suggests functional relevance, which may be understood through 
an evolutionary perspective. One of the many existing hypotheses (reviewed in Chapter 
2) states that protein investment costs affect the metabolic strategy employed, and that the 
implemented strategy is the result of a cost-benefit analysis. To test this experimentally, we 
performed a global multi-level analysis using the model lactic acid bacterium Lactococcus 
lactis subsp. cremoris MG1363, which shows a distinct, anaerobic version of the bacterial 
Crabtree/Warburg effect: at low growth rates it produces “mixed-acids” (acetate, formate and 
ethanol) and at high growth rates it produces predominantly lactate from glucose. 

We first standardized growth conditions and established an in vivo–like enzyme assay 
medium mimicking the intracellular environment for enzyme activity measurements of 
growing cells of L. lactis (Chapter 3). With standardized experimental procedures we 
characterized at multiple cellular levels, glucose-limited chemostat cultures of L. lactis at 
various growth rates. More than a threefold change in growth rate was accompanied by 
metabolic rerouting with, surprisingly, hardly any change in transcription, protein ratios, and 
enzyme activities (Chapter  4). Even ribosomal proteins, constituting a major investment 
of cellular machinery, scarcely changed. Thus, contrary to the original hypothesis, L. lactis 
displays a strategy where its central metabolism appears always prepared for high growth 
rate and it primarily employs the regulation of enzyme activity rather than alteration of gene 
expression. Only at the highest growth rate and during batch growth – conditions associated 
with glucose excess – we observed down-regulated stress protein levels and up-regulated 
glycolytic protein levels. We conclude from this that for glucose, transcription and protein 
expression largely follow a binary feast / famine logic in L. lactis. 

To delve deeper into the mechanism of regulation of the shift in L. lactis, we tested a 
mixed-acid fermentative lactose-utilizing L. lactis MG1363 derivative and showed that 
there is a strong positive correlation between glycolytic flux and the extent of homolactic 
fermentation: a correlation caused by metabolic regulation (Chapter 5). We subsequently 
provided new evidence for a causal relationship between the concentration of the glycolytic 
intermediate, fructose-1,6-bisphosphate (FBP) and the metabolic shift. We showed that 
2,5-anhydromannitol, which converts to a non-metabolizable FBP analogue in vivo, almost 
doubles the flux towards lactate when taken up by the cells. In vitro the activating effect 
of the analogue on lactate dehydrogenase is similar to native FBP, whereas it had no effect 



on the enzyme phosphotransacetylase (part of the mixed-acid pathway). The activation 
concentration of the analogue, however, is much lower than normal intracellular FBP 
concentrations. This may imply that the activation of lactate dehydrogenase in vivo requires 
a much higher concentration of FBP, but this remains to be resolved. We subsequently put the 
regulatory relationships of glycolytic flux, FBP, the redox potential and allosteric effectors 
on enzymes of the glycolytic and downstream pathways together in a mathematical model to 
test and investigate whether these interactions can explain the metabolic shift (Chapter 6). 
Although the model was not able to consistently fit combined data from the chemostats at 
various dilution rates, and in vivo–NMR data of glucose pulsed non-growing cells, we found 
for the best fitted model that the parameters most influencing the metabolic shift were those 
involved in regulation by FBP and inorganic phosphate.

In conclusion, L. lactis seems to be always prepared for high growth rate as it carries a high 
overcapacity of enzymes, a property retained even after evolving for 800 generations under 
constant environmental conditions. Moreover, its growth rate-related metabolic shift does 
not appear to be an outcome of growth-rate optimization with protein cost as a major driver. 
At the mechanistic level, the choice of the strategy is regulated via alterations in metabolite 
levels, with FBP (and probably phosphate) exerting a central role.
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General Introduction

Introduction

Our planet is dominated by prokaryotic microorganisms, whether in the oceans, the soil, their 
sub-surfaces, air, plants, birds, animals and also humans (Whitman et al, 1998). Part of their 
success is due to their capacity to adapt very quickly to the environment. Their adaptation is 
mediated by metabolic (seconds to minutes) or gene-regulatory responses (several minutes to 
hours) on short time scales, and by accumulation of beneficial mutations on an intermediate 
time scale (a few hundred generations, i.e. weeks to months) (Bennett et al, 2008). An 
apparent regulatory response to changing growth conditions seems to be a shift from one 
mode of cellular metabolism to another, such as the shift from respiration to fermentation in 
yeast (to ethanol) (De Deken, 1966), tumour cells (to lactate) (Warburg, 1956) and E. coli 
(to acetate) (Britten, 1954), and the shift from mixed-acid to homolactic fermentation in 
Lactococcus lactis (Thomas et al, 1979). The focus of this thesis is on the latter industrially-
relevant lactic acid bacterium since as discussed below, such shifts in metabolic strategies 
are potentially interesting from a fundamental as well as industrial perspective. From a 
fundamental scientific point of view, the reason why such metabolic shifts exist is unclear. 
From an industrial perspective such shifts are relevant because they affect the quality and 
productivity of industrial fermentations. The selection of L. lactis as model system for cell 
factories is further elaborated here as well as the system biology approach used in this thesis. 

Cell factories and trade-offs

Bacteria have been utilized by humans since ancient times, with the earliest evidence of 
fermentation dating back to 7000-6600 BC (McGovern et al, 2004). The major use in current 
times is in the food and biotechnology industry. The maintenance of industrial strains, 
however, is not trivial. Industrial strains need to have and retain the required properties 
to maintain high production rates. These strains are continually subjected to selection of 
mutations that probe the boundaries of physical and biochemical limitations inherent in 
physiology and manifested as trade-offs. Essentially, trade-offs call for a choice between 
two incompatible features, either of which if chosen automatically leads to forfeiting the 
other. There are several biological examples of trade-offs: cells can invest in growing bigger 
or producing offspring, cells can be optimized for their current environment or be prepared 
for possible future changes, just to mention a few. The overall response of the cell depends 
on the metabolic strategies employed, which are governed by environmental (external) and 
evolutionary (internal) constraints. There are several factors, extrinsic and intrinsic, in the 
production processes that prevent optimal performance of bacteria in the industrial setting 
(Fig 1):

•	 Extrinsic factors: acid- and osmotic stress. A very low pH or a very high osmolality 
inhibits growth, which is favourable in fermented food products as these conditions 
also inhibit spoilage organisms. But the same condition imposes difficulty in biomass 
and protein production. 



8

Chapter 1

• Intrinsic factors: overfl ow metabolism and uncoupling. Under carbon excess 
conditions, instead of producing more biomass, microbes often tend to waste a large 
fraction of the substrate either in the form of overfl ow metabolites or heat production 
(Russell, 1986, 1992). This imposes a major complication for high-density growth and 
protein production. Ethanol formation in Baker’s yeast is also a major issue, because of 
which the biomass is produced at low sugar concentrations: these conditions, however, 
reduce the specifi c CO2 production rate of that biomass (van Hoek et al, 1998). 

Cells have selected options to utilize substrates for product formation, stress resistance or 
biomass formation. Depending on growth conditions, they can alter their metabolic strategy. 
To achieve cell behaviour that is optimal from the perspective of industrial production, it is 
thus crucial to comprehend the interdependencies of the above factors, and specifi cally, to 
understand the growth dependence of shifts in metabolic strategies.

Figure 1: Schematic illustration 
showing interdependent processes 
operational within a cell (factory). The 
cell converts substrates to metabolites 
thereby generating energy (∆G), part 
of which is dissipated (heat), and the 
rest is used in either generating new 
cells, or combating extrinsic stresses by 
improving robustness and resistance that 
limits the making of new cells (dotted 
line). The overall cellular response is 
shaped by external (environmental) 
and internal (evolutionary) constraints. 
Adapted from (Kuipers & Kok, 2007).

Why we chose to study Lactococcus lactis

Our aim was to study a shift in metabolic strategy (or metabolic shift, henceforth) in a model 
organism. We chose the industrially important lactic acid bacterium Lactococcus lactis. Being 
a major component in dairy fermentations (which have a global market value of 75 billion 
Euro), there have been world-wide efforts to optimize it as a cell factory (de Vos, 2011). 
The reasons for choosing this bacterium were straightforward: it is a simple bacterium with 
a small genome size of about 2.53 Mbp (Wegmann et al, 2007; Linares et al, 2010) and has 
the specifi c advantage over other microorganisms of being easily genetically amenable and 
not compartmentalized. Besides, it has relatively simple regulatory mechanisms (operons, no 
regulatory cascades consisting of many layers), and cell differentiation, e.g. spore formation, 
does not occur. It has well-characterized functional genomics and most importantly, it exhibits 
a metabolic shift under anaerobic conditions. 

 Substrates 

Metabolites 

New cells 

Robustness/
resistance 

∆G 

Biocon-
versions 

heat 

Extrinsic (industrial)
stresses: pH, heat, 
acid, osmotic stress 

organic acids,  
vitamins, amino 
acids, proteins, etc. 


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Lactococcus lactis is an important industrial microorganism generally regarded as safe 
(GRAS). It is a low-GC-content, mesophilic, facultative gram-positive bacterium that rapidly 
ferments sugars to primarily produce lactic acid. It is one of the many species of Lactic Acid 
Bacteria (LAB) in the phylum Firmicutes that are found in nutrient rich environments such 
as milk, meat, decomposing plant material and the mammalian gastrointestinal tract (Carr 
et al, 2002). Traditionally LAB have been used in food fermentations due the properties 
they render: preservation, texture, flavour and nutritional value. Their use is not limited to 
the food industry: they are increasingly being used in diverse biotechnological applications. 
Their industrial applications include biomass production for starter cultures (used to initiate 
fermentation of food products), production of (high-value) metabolites, flavour compounds, 
(bulk) enzymes and/or (medically relevant/bioactive) proteins (de Vos & Hugenholtz, 2004; 
Teusink & Smid, 2006). They are also widely used to deliver a variety of biomolecules to the 
gastrointestinal tract (Wells & Mercenier, 2008; Berlec et al, 2012). 

Among LAB, L. lactis has received by far the most attention. The commercial importance of L. 
lactis has led to extensive characterization of its physiology, and the development of a variety 
of genetic and metabolic engineering tools. Due to the available technologies and despite, or 
one may say, because of its relatively simple metabolism, L. lactis is an attractive target as a 
cell factory for the improvement of food quality and human health. It was the first genetically 
modified organism used as a delivery vehicle for therapeutic protein in the treatment of a 
human disease (Braat et al, 2006). Like other LAB, L. lactis lacks a functional electron chain 
and relies on fermentative processes (pyruvate to lactate) to satisfy its energy requirement 
by substrate level phosphorylation. The genome sequences of a number of L. lactis strains 
are available (Linares et al, 2010). Of special interest is L. lactis subsp. cremoris MG1363, 
which is a plasmid-free descendant of the dairy starter strain NCDO712 (Gasson, 1983) 
and is regarded as the international prototype for LAB genetics. Its derivative NZ9000 is 
widely used in combination with the nisin-controlled overexpression system (Kuipers et 
al, 1998). Hence, it is an ideal candidate for overexpression studies, but genome sequence 
analysis revealed that it has considerable differences with the strain MG1363 (Linares et al, 
2010). MG1363 is a well-established strain for metabolic engineering strategies (de Vos & 
Hugenholtz, 2004). Moreover, evolutionary studies on prolonged chemostat cultivations are 
also being carried out on this strain (Price et al, 2010; Santos, 2011) making it an extremely 
attractive choice to study metabolic strategies. 

Systems biology approach to comprehend metabolic strategies

The general systems theory put forth by Ludwig von Bertalanffy (Bertalanffy, 1950, 1969) 
was one of the first pioneering theories that proposed systems thinking and considered 
the organism as a ‘whole’ consisting of complex parts (Weckowicz, 1988). Thereafter 
‘systems analysis’ endeavours were consistent in various areas of biology (developmental 
biology, immunology and ecology) (Westerhoff & Palsson, 2004). Subsequent decades of 
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reductionistic research and its consequent revolution in high-throughput technologies –
facilitating system characterization at the molecular level– has resulted in the availability of 
vast amounts of data. This has forced a change in perspective from reductionistic to holistic. 
The convergence of reductionistic molecular biology with a parallel stream of mathematical 
modelling (stemming from non-equilibrium thermodynamics theory) to elucidate cellular 
regulatory circuits has revived systems level thinking in biology, known in present day, as 
the field of Systems Biology (Westerhoff & Palsson, 2004). Such an integrative systems 
biology approach comprises iterative cycles of experimentation and mathematical modelling 
and aims at understanding emergent system behaviour arising out of characteristics of and 
interactions between its components. 

Metabolic strategies are invariably linked to the metabolism of the microbes exhibiting 
metabolic shifts. Metabolism, however, cannot be isolated from the rest of the cell as 
evidenced by the link of growth rate to the onset of overflow metabolism in yeast, E coli, or 
L. lactis. Numerous successes have been reported in re-routing central carbon metabolism 
towards products of interest although the objective is often achieved by coordinated alterations 
of several genes rather than merely disrupting or overexpressing single genes (de Vos & 
Hugenholtz, 2004). Nevertheless predicting physiological behaviour is challenging due to 
the intricate interactions linking virtually all cellular processes. Tackling such challenges 
requires a global understanding of cell physiology and behaviour, a goal that systems biology 
aims to achieve.

The ‘evolutionary optimization’ perspective 

As stated by Kitano (2002), the systems biology approach “requires a shift in our notion 
of “what to look for” in biology”. Kitano (2002) listed four fundamental properties, the 
insight of which can lead to a systems-level understanding of a biological system: system 
structures, system dynamics, the control method and the design method. The first property 
entails system definition at the molecular and structural level; the second entails time and 
condition dependent behaviour; the third entails the control mechanisms or the ‘how’ of 
system behaviour; and the fourth entails the design principle or the ‘why’ behind system 
behaviour. This can be likened to the indoctrination of efficient and final causes (causa 
efficiens and causa finalis) by Aristotle. The efficient cause is the ‘source’ of the change, or 
the molecular mechanism of a particular organismal trait; while the final cause is the ‘sake for 
which’ the trait exists, or the evolutionary advantage the trait confers to the organism. While 
most scientific investigations fall under the category of efficient causes, a deeper insight can 
be obtained by going a step further and asking the question: why do organisms behave as 
they do? In other words, we can aim to understand the organism from a functional, ‘fitness-
enhancing’ perspective (Papp et al, 2009). 
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Adopting such an ‘evolutionary perspective’ can improve our understanding of organisms, 
and can lead to more effective solutions (Goel et al, 2012b). For instance, ecologists and 
behavioural scientists have tried to explain several aspects of animal behaviour from an 
optimization view of interacting strategies in populations. Examples are the explanation 
of the regulation of sex ratios in offspring (Hamilton, 1967), the evolutionary game theory 
applied to animal behaviour (Smith & Price, 1973) and the explanations of allometric scaling 
laws (West et al, 1997). In microbiology, classic examples are explanation of persistence of 
extracellular proteases (to break-down milk proteins to free peptides) in L. lactis (Bachmann 
et al, 2011) and invertase (hydrolysis of sucrose) in yeast (Gore et al, 2009) as cooperative 
traits. Furthermore, the successes of flux balance analysis approaches present a classic 
example of the usefulness of optimization approaches (Teusink et al, 2011). 

Before undertaking the quest for the ‘final cause’, however, it is important to understand what 
evolution does to the behaviour, or in other words, to the regulation of metabolism of the 
organism. First of all, how does selection act on a population of organisms, or, what is fitness? 
The most commonly used proxies for fitness are the highest growth rate and the number 
of observable offspring. Secondly, it is necessary to define the physical and biochemical 
limitations within which the organism can be optimized. Finally, fitness needs to be linked 
to lower level biochemical properties or an observable aspect of the cell, for instance, the 
occurrence of the metabolic shift or other observable aspects in the behaviour of animals or 
microorganisms in conflict situations. These then can be related to fitness. In other words, 
one should model the optimization problem – to be able to make predictions from fitness 
optimization to selection of observable biological properties. These concepts are reviewed in 
more detail in chapter 2.

The questions

With the extensive characterization of the lactic acid bacterium Lactococcus lactis subsp. 
cremoris MG1363, we were interested in both, the how, as well as the why behind the growth-
related metabolic shift of L. lactis from mixed-acid to homolactic fermentation. Linking 
protein investment and metabolism, it has been suggested that evolutionary optimization of 
resource allocation underlies the metabolic shift (Molenaar et al, 2009). We thus set out to 
test this hypothesis that the reason for shifting metabolic strategy from low to high substrate 
availability is optimization of protein allocation for maximization of growth rate. Integrated 
‘omics’ approaches can offer a systems-level view of processes at multiple cellular levels 
(Aggarwal & Lee, 2003). Thus, using this systems biology approach to the model bacterium 
L. lactis, we were looking for answers to the following questions:

•	 How is the growth-dependent metabolic shift regulated in L. lactis?
•	 How does this shift correlate with protein investment in L. lactis?
•	 Why does L. lactis exhibit the metabolic shift?
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Thesis outline

The aim of this thesis is to understand metabolic shifts in bacteria. For this purpose, we have 
used a systems biology approach to elucidate a specific case of the metabolic shift from 
mixed-acid to homolactic fermentation in the industrially important lactic acid bacterium 
Lactococcus lactis subsp. cremoris MG1363. We first discuss at length the generality of the 
metabolic shift and its association with fitness and trade-offs in cell factories. Highlighting 
the importance of standardization in systems biology, we developed a standardized in vivo-
like enzyme assay medium to measure enzyme capacities. Combining this protocol with 
transcript-, protein- and flux determinations, we conducted a multi-level analysis on L. lactis 
to investigate the metabolic shift as a function of growth. We conducted further experiments to 
investigate specifically the metabolic regulation of the shift in L. lactis. Finally we attempted 
to develop a kinetic model of L. lactis to bring together the numerous regulatory influences 
of the metabolic shift and investigated its intricate relationship with growth rate. These topics 
have given rise to the chapters of this thesis that are recapitulated below.

Chapter 2
This chapter reviews the current literature on metabolic shifts in (micro)organisms with a 
focus on the performance in industry as cell factories. A number of theories and mechanisms 
for metabolic shifts as well as the trade-offs involved are summarized. Furthermore, the 
application of systems biology to tackle complexities of cell factories is discussed.

Chapter 3
As a prerequisite to studying the metabolic shift from mixed-acid to homolactic fermentation 
in Lactococcus lactis with a systems biology approach, this chapter describes the 
standardization of the enzyme activity assay, resulting in an in vivo-like assay medium for 
L. lactis. 

Chapter 4
This chapter describes the investigation of the metabolic shift in L. lactis at multiple cellular 
levels at various growth rates in glucose-limited chemostat cultures. It combines transcript- 
and protein data, enzyme capacities and fluxes to extensively characterize the metabolic 
shift from mixed-acid to homolactic fermentation in L. lactis and shows that the shift is 
metabolically regulated.

Chapter 5
To elaborate metabolic regulation of the metabolic shift in L. lactis further, this chapter 
provides evidence for a direct correlation of glycolytic flux with lactate formation. The effect 
of a non-metabolizable fructose-1,6-bisphosphate (FBP) analogue is also investigated. It 
reiterates the role of FBP in the metabolic regulation of the shift. 
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Chapter 6
Combining the existing regulatory relationships affecting central carbon metabolism in L. 
lactis, this chapter describes a kinetic model of the glycolysis and downstream pathways 
of L. lactis. Based on the chemostat data from this thesis as well as in vivo NMR data from 
the literature, this model reproduces the metabolic shift from mixed-acid to homolactic 
fermentation as a function of growth rate. A sensitivity analysis of parameters affecting the 
shift –and limitations of the model fitting– are discussed.

Chapter 7 
This chapter summarizes the findings of this thesis and concludes it. It reflects on the approach 
applied, and discusses various hypotheses that can be formulated based on data generated in 
this thesis. It discusses some results from evolution and heterogeneity experiments and puts 
into perspective our current understanding of metabolic shifts with L. lactis as a paradigm.
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Abstract

Performance of industrial microorganisms as cell factories is limited by the capacity to 
channel nutrients to desired products, of which optimal production usually requires careful 
manipulation of process conditions, or strain improvement. The focus in process improvement 
is often on understanding and manipulating the regulation of metabolism. Nonetheless, 
one encounters situations where organisms are remarkably resilient to further optimization 
or their properties become unstable. Therefore it is important to understand the origin of 
these apparent limitations to find whether and how they can be improved. We argue that by 
considering fitness effects of regulation, a more generic explanation for certain behaviour can 
be obtained. In this view, apparent process limitations arise from trade-offs that cells faced as 
they evolved to improve fitness. A deeper understanding of such trade-offs using a systems 
biology approach can ultimately enhance performance of cell factories.

Keywords: Biotechnology industry, Evolution, Fitness, Metabolic shift, Systems biology, 
Trade-off
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Introduction

Among the several microorganisms used in the food and biotechnology industry, Escherichia 
coli, by far the most widely studied microorganism, is an excellent work horse for the 
production of several high value products (Table 1). Other work horses include Bacillus 
subtilis, lactic acid bacteria, yeast (Saccharomyces cerevisiae), fungi (Aspergilli) and 
mammalian cell lines, each utilized for the production of a wide range of products that are 
directly or indirectly an inherent part of our daily lives. 

Not all of these organisms had the complete set of desired traits to start with. Multiple methods 
are employed to obtain the preferred properties, including evolutionary engineering, classical 
mutagenesis and screening, rational and reverse metabolic engineering, global transcription 
machinery engineering or genetic modification (Nevoigt, 2008), and more recently synthetic 
biology (Khalil & Collins, 2010). Numerous successes in substantial improvement of 
processes and strains have been reported in the past decades (Park & Lee, 2010; Brockmeier 
et al, 2006; Ikeda, 2006; Donalies et al, 2008; Smid et al, 2005). Nevertheless, common 
practical problems are encountered due to the shifts in metabolic strategies during growth 
(Table 1). 

Industrial strains need to have and retain the required properties to maintain high production 
rates. However, the one process that none of these strains can evade is their evolution, 
governed by their “fitness” in the respective environments. Microorganisms are subject 
to selection and the selection pressure is often on specific growth rate. In a fermentor the 
fastest growing strain produces the most progeny and therefore is likely to invade most of 
the population. How well microorganisms flourish in terms of competing with other strains, 
is called their fitness. Most often, the strain properties necessary for industrial production 
processes are not the same as those that enable the cell to attain maximal fitness. Hence, 
identifying the selection pressures and strategic decisions that microorganisms can make, will 
help in tuning their environment so as to align their cellular objectives with the production 
process objective, and ensure constancy in biotechnological applications.

Understanding physiology from the perspective of optimized fitness

The end result of microbial physiology is a direct consequence of adaptations that improve 
fitness, which can be mimicked in silico by adopting some optimality criterion for a 
microorganism in its environment. The premise of this approach is that cells will adapt, 
often surprisingly fast, and move towards some optimal fitness if cultivated under constant 
conditions. Such an in silico optimality approach has been used frequently over the years, and 
is often also disputed: microorganisms might not be optimal for specific tasks. At the end of 
this section, we will show a counterexample of this optimality assumption.
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Nearly two decades ago, physiological observations of E. coli were explained by optimization 
of growth within stoichiometric constraints (Varma et al, 1993) using the well-known 
modelling approach for analysing biochemical networks: flux balance analysis (FBA) (Orth 
et al, 2010) . In the post-genome era, this approach was extended to genome-scale metabolic 
networks. An early example successfully demonstrated that optimizing metabolic network 
fluxes to maximize growth could explain physiological metabolic behaviour in E. coli 
(Edwards et al, 2001). In this approach, measured nutrient uptake rates are used to constrain 
the metabolic network which is then optimized for maximal growth, to generate predictions of 
growth and product formation rates. The in-silico predictions of growth of E. coli on acetate 
and succinate were found to be consistent with experimental measurements. Microorganisms 
are thus limited by environmental constraints and the aforementioned studies reinstate that 
the resulting physiological behaviour is a consequence of an underlying optimality objective 
which improves their fitness.

Table 1: Summary of various organisms used as industrial work horses, the shifts in metabolic strategies they 
exhibit, their industrial applications and the mechanisms of regulation

Micro-
organism

Metabolic shifts/Trade-
offs

Application Mechanism of regulation

Escherichia 
coli

     Substrate
 

Recombinant proteins 
(Leuchtenberger et al, 
2005), amino acids 
(Park & Lee, 2010), 
vaccines (Shiloach 
& Rinas, 2009) and 
immobilized enzymes 
(Synowiecki et al, 
2006)

•	 Limitations in the carboxylic acid 
cycle due to limited oxygen and carbon 
source availability, tight regulation 
of the CoA pool and environmental 
conditions (Wolfe, 2005)

•	 Redox ratio: need to regenerate NAD+ 
in the absence of oxygen (Vemuri et al, 
2006)

•	 Global regulators (CcpA, CodY 
and TnrA) exerting control at the 
transcriptional level of catabolic genes 
and operons (Stülke & Hillen, 2000; 
Sonenshein, 2007; Fujita, 2009) 

•	 Phosphoenolpyruvate-pyruvate-oxalo-
acetate node dynamics (Sauer & 
Eikmanns, 2005) 

Bacillus 
subtilis

Vitamins, 
heterologous proteins 
and enzymes 
(Shimizu, 2008; Pohl 
& Harwood, 2010)

Lactic acid 
bacteria

     Substrate Dairy and fermented 
foods, probiotics, 
bulk and fine 
chemicals (Teusink & 
Smid, 2006)

•	 Triggered by carbon source limitation 
(Thomas et al, 1979) and oxygen 
concentration (Jensen et al, 2001)

•	 Balance of the NADH/NAD+ ratio 
(Cocaign-Bousquet et al, 1996)

•	 Allosteric effects of fructose-1,6-
bisphosphate (FBP) and triose 
phosphates on mixed acid branch 
enzyme activities, inhibition of alcohol 
dehydrogenase by adenine nucleotide 
pool (Neves et al, 2005) 

•	 Modulations of certain transcripts 
and protein levels (Kowalczyk & 
Bardowski, 2007)

Oxidative 
phosphorylation

Acetate 
secretion

Mixed-acids Lactic acid
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Yeast 
(Saccharo-
myces 
cerevisiae)

Substrate Baking, brewing, 
wine-making, 
bioethanol, bulk 
and fine chemicals, 
recombinant proteins 
(van Dam et al, 2002; 
Nevoigt, 2008)

•	 Low affinity and high capacity of 
pyruvate decarboxylase compared 
with pyruvate dehydrogenase enzymes 
(Postma et al, 1989; Pronk et al, 1996)

•	 Post-translational regulation (Daran-
Lapujade et al, 2007; Pronk et al, 
1996)

•	 Differential gene expression (Pronk et 
al, 1996)

•	 Flux-sensing via FBP (Huberts et al, 
2012)

•	 Balance of the NADH/NAD+ ratio 
(Vemuri et al, 2007)

Filamentous 
fungi 
(Aspergilli)

Substrate Proteins, enzymes 
bulk and fine 
chemicals (Meyer et 
al, 2011)

•	 Environmental influences triggering 
transcriptional regulation

•	 Regulation by global regulators
•	 Sporulation associated signal trans-

duction
(Hoffmeister & Keller, 2007)

Mammalian 
cell lines 
(Myeloma, 
Hybridoma, 
etc.) 

Substrate Recombinant 
proteins, monoclonal 
antibodies, nucleic 
acid-based drugs 
(Vives et al, 2003; 
Lim et al, 2010; 
Reiter & Blüml, 
1994)

•	 Warburg effect: lactate production 
via enhanced glycolysis despite 
the presence of adequate oxygen 
(Warburg, 1956)

•	 Increase in glucose transporters 
and kinases, post-translational 
modifications of enzymes, hypoxia-
inducible factor: HIF, mitochondrial 
defects (Gatenby & Gillies, 2004; 
Gillies & Gatenby, 2007; Gillies et al, 
2008; Gatenby et al, 2010)

•	 Regulation by metabolic enzymes 
(Diaz-Ruiz et al, 2011)

However, not all physiological states can be described by growth optimization. This is because 
under varying environmental settings, cells often exhibit suboptimal behaviour where their 
resulting growth rate is very different from what a standard FBA would predict. Schuetz 
et al (2012) showed that a multidimensional objective can attempt to explain suboptimal 
behaviour. Additionally, as pointed out by (Teusink et al, 2006), growth optimization in FBA 
is in fact yield optimization (Fig 1A) and therefore in scenarios where yield optimization 
is not the objective, standard FBA approaches will invariably fail to predict observations 
(Schuster et al, 2008; Santos et al, 2011). This is to be expected for biotechnologically 
relevant conditions such as high concentrations of rapidly fermentable sugars that lead to 
ATP-inefficient metabolism. Indeed, in the seminal paper from the group of Palsson, it was 
shown that E. coli evolves towards an in silico predicted “line of optimality” on glycerol, 
but, on glucose, the evolved cells increased their growth rate but moved away from the FBA-
predicted line of optimality by producing acetate (Ibarra et al, 2002). The same difference 
between glucose and glycerol was observed for Lactobacillus plantarum (Teusink et al, 
2006, 2009).

Oxidative 
phosphorylation

Lactate 
production

Secondary 
metabolite 
production

Growth and 
primary 

metabolism

CO2 
production

Ethanol 
fermentation
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FBA applies only a limited set of constraints, being mass-balance constraints (steady 
state assumption) and some capacity constraints (usually on input fluxes) to bound fluxes 
through the network. New approaches which apply additional constraints routed in physics 
and chemistry have to be used to understand metabolic strategies that FBA cannot explain. 
Beg et al (2007) for the first time, used the macromolecular crowding or solvent capacity 
constraint on the metabolic network of E. coli. This constraint limits the total intracellular 
space available for enzymes in cytoplasm. With this constraint, FBA was able to reproduce 
acetate production in E. coli. Subsequently, this approach was used to model proliferating 
mammalian cells to explain the Warburg effect (Vazquez et al, 2010; Shlomi et al, 2011). 
These approaches extend the notion of metabolic efficiency being analogous to stoichiometric 
ATP-yield only: different flux distributions have different implementation consequences 
(costs if you will), that should also be taken into account when computing optimal behaviour, 
as we will elaborate on later.

FBA of multiple species

Microorganisms seldom live in isolation and analysing single species metabolic networks 
in isolation provides little insight into microbial interactions in communities. Consequently 
there have been recent efforts to model competition, co-existence, and strain and species 
interactions using multispecies stoichiometric metabolic modelling. Zomorrodi and Maranas 
(2012) recently developed a comprehensive FBA framework, OptCom, capable of capturing 
the trade-offs between individual and community fitness criteria. This approach uses a multi-
level, multi-objective optimization routine that allows for constraints of individual species in 
a larger scaffold of community-level objective maximization. The authors use genome-scale 
metabolic models of a two-species microbial system and quantify the syntrophic interaction 
in terms of the extent and direction of transfer of metabolites and electrons between species. 
Simpler approaches were also used to predict metabolic fluxes, interspecies electron transfer 
and the ratio of constituent species for anaerobic microorganisms (Stolyar et al, 2007) and in 
subsurface environments (Zhuang et al, 2011a). Tzamali et al (2011) used a graph-theoretic 
approach to identify metabolic interactions and their importance on growth in E. coli strain 
communities. Their results suggest that in certain communities, cross-feeding enhances the 
growth rate of participating species. The main issues in all of these approaches, that are 
currently being actively investigated, are how to balance fluxes that are catalyzed by species 
with different abundances in the population, and what would be a realistic objective for such 
a community. In summary, multispecies metabolic modelling is an emerging field that aims 
to quantify metabolic interactions, identify trade-offs and to provide insights into the impact 
of different substrate availability on species abundance in microbial communities. Some 
powerful approaches are starting to develop and are getting ready for use in biotechnological 
applications. 
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Cheaters and unexpected strategies in communities

At times, the outcome of optimization of microbial fitness can be surprisingly intricate: an 
important additional attribute of the optimum is that it should be (evolutionarily) stable. 
In one such example, the lactic acid bacterium Lactococcus lactis excretes an extracellular 
protease to degrade milk proteins into free utilizable peptides, a feat required when the 
peptides in the environment are insufficient for growth. Under these conditions, one would 
intuitively expect this trait to be selected for. However, this protease is extracellular and 
the peptides produced do not merely benefit the cell secreting the protease, but in part also 
diffuse away from it, becoming accessible to neighbouring cells. To grow well, it would 
indeed be beneficial if all cells produce this protease, but imagine a scenario where one cell 
does not. This “cheater” cell will still consume peptides released by neighbouring cells but 
will have more resources (not allocated to protease production) available for growth and 
reproduction. This, on average, will lead to more progeny and a spread of the protease-
negative trait in the population. In fact, it was shown experimentally that this leads to a 
population that completely loses the protease-positive trait and depending on the conditions, 
grows much slower (Bachmann et al, 2011). A similar study in yeast showed that the trait 
for enzymatic breakdown of sucrose by secreted invertase is selected against, because the 
glucose and fructose formed thereafter diffuse away, and can be used by other individuals 
(Gore et al, 2009). This is a very counterintuitive outcome of the effect of selection on the 
physiology of a species, even under constant conditions. A detailed theoretical analysis of 
this cooperative and cheating behaviour and its implications on biotechnological applications 
was reviewed recently (Schuster et al, 2010). 

Trade-offs: the role of physical and biochemical constraints

In the previous section we discussed a modelling framework (FBA) using empirically derived 
uptake flux constraints and additionally an intracellular space constraint. The latter results in 
a shift, from efficient use of potential chemical energy in the substrate through oxidative 
phosphorylation to inefficient use through aerobic glycolysis, in a model of human cancer 
cells (Shlomi et al, 2011; Vazquez et al, 2010). In this example there are constraints (to 
obtain a certain flux some intracellular space is required) and limits (there is a limited amount 
of intracellular space), which necessitate a choice between oxidative phosphorylation and 
aerobic glycolysis and this we call a trade-off. Essentially, trade-offs call for a choice between 
two incompatible features, either of which if chosen, automatically leads to forfeiting the 
other. There are several biological examples of trade-offs: cells can invest in growing bigger 
or producing new cells, cells can be optimized for their current environment, or be prepared 
for possible future changes, just to mention a few.
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There could be similar constraints and limits that influence the uptake rate. For example, 
retaining membrane integrity requires a certain percentage of lipids (Molenaar et al, 2009) 
and there might be restrictions on the kinetic constants of enzymes (Heinrich et al, 1991). 
A limit on the uptake flux might arise because higher uptake flux requires more transporter 
synthesis that is limited by availability of precursors and cellular machinery. Hence, to answer 
‘why’ organisms regulate their metabolism, one needs to identify constraints that actually 
limit cellular function, namely, physical or biochemical constraints. These constraints can 
stem from thermodynamic laws, solubility of proteins or stability of DNA. More information 
about these constraints is rapidly becoming available on web-databases like BioNumbers 
(Milo et al, 2010). Furthermore, these constraints that govern trade-offs also have an origin 
in the physics of biological materials. As we try to find these more profound explanations, 
rather than taking observed constraints for granted, we also obtain a more fundamental 
understanding of observed cellular behaviour.          

Figure 1: Yield and rate. (A) Why flux balance analysis (FBA) is in fact a yield optimization problem rather than a rate 
optimization problem. (B) Trade-off between biomass yield and substrate uptake rate for a number of exponentially 
growing yeast species: Reprinted by permission from Macmillan Publishers Ltd: [Heredity] (MacLean RC (2008) 
The tragedy of the commons in microbial populations: insights from theoretical, comparative and experimental 
studies. Heredity 100:471–477), copyright (2008)

A
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Trade-offs in microbial and industrial processes

Some trade-offs are relatively obvious, such as the examples discussed in the previous 
section. Occasionally, however, a trade-off appears indirectly because we observe species 
specialized in one trait or in another trait, but never in both. One less obvious trade-off is 
the one between catabolic rate and ATP-yield (Pfeiffer et al, 2001). This trade-off is well 
described for a metabolic pathway (Waddell et al, 1997; Aledo & Esteban del Valle, 2002; 
Angulo-Brown et al, 1995). In a pathway, the free-energy of the substrate can be used either 
to produce high free-energy intermediates or to drive the pathway quickly, making yield 
and rate incompatible features. But does this argument also hold for the trade-off between 
catabolic rate and ATP-yield, considering the numerous pathways and cellular processes 
involved? 

Several microorganisms exhibit inefficient (low-yield) metabolism during fast growth. 
Above a critical growth rate and corresponding glucose concentration, S. cerevisiae ferments 
glucose (Postma et al, 1989). A similar metabolic shift to a regime with decreasing ATP-yield 
and increasing catabolic rate is observed in lactic acid bacteria (Thomas et al, 1979) and in 
mammalian cells (see Table 1). MacLean (2008) showed that biomass yield plotted against 
glucose consumption rate of several exponentially growing yeast species shows a negative 
slope, with none present at the high yield high consumption region (Fig 1B), suggesting a 
trade-off between catabolic rate and ATP-yield.

Trade-offs in industrial processes are not uncommon either, the most classic one being 
the choice between batch and continuous fermentation. Batch fermentations bear a lower 
contamination risk and a higher cost due to additional cleaning cycles, whereas continuous 
fermentations offer the advantages of steady-state operation, longer runs with shorter 
downtimes, better product consistency, easier process control, and steady utility demands 
(Wang et al, 2005; Shuler & Kargi, 2002). But because continuous fermentations run longer, 
and cells might experience selection pressures different from those previously experienced, 
the cells will evolve. This can lead to undesirable side-effects and loss of strain productivity 
(Douma, 2010). Another trade-off is seen in the dairy industry, where yogurt production 
requires strains that excrete exo-polysaccharide (EPS) for good texture and mouth-feel. 
But this trait leads to higher viscosity that can be quite problematic during starter culture 
production due to difficulties in downstream processing. Hence a single application entails 
two conflicting objectives. A similar trade-off exists for the production of cheese-starter 
culture and yeast. The final use of these cultures is the production of lactic acid and flavour 
compounds for cheese, ethanol for beverages, and CO2 for fluffy breads. However, during 
the initial start-up or growth phase of the fermentation process as well as for starter culture 
suppliers, the aim is to maximize biomass production without compromising adequate 
functionality of the resulting strain. Thus growing fast with high biomass yields versus 
achieving high levels of end products represents a trade-off.
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To predict the outcome of evolution, merely identifying a trade-off is insufficient, since 
we still do not know which incompatible trait the strain will specialize in. For instance, at 
high substrate concentrations, species will evolve towards higher growth rates, and –one 
may suspect– a low biomass yield. Alternatively, when the selection pressure is for a high 
yield, as is the case for cells in biofilms living in close proximity with their relatives (Kreft, 
2004), species will attain a high yield but probably a lower growth rate. That the evolution 
of species depends on the selection pressure exerted by the environment is important to 
realise when evolving species in the laboratory or improving strains for bio-industry, because 
an environment that improves one trait might compromise another. Thus, to improve a 
trait, it becomes extremely important to find conditions with the right selection pressure. 
A fascinating example illustrating this is improving accumulation of storage polymers via 
feast-famine cycles (Chiesa et al, 1985; van Loosdrecht et al, 1997). The condition comprises 
subjecting cells to cycles of short-time in high substrate environment and long-time without 
substrate. This condition selects for cells that store substrate during the feast regime and use 
it in the famine regime. 

From regulatory mechanisms to the underlying generic causation: 
fitness

A plethora of regulatory mechanisms involved in causing and regulating metabolic shifts 
in various organisms exist in the literature (see Table 1 for a brief summary). These studies 
have provided a wealth of knowledge in understanding metabolic shifts. While it is crucial 
to identify the regulatory and molecular mechanisms of metabolic shifts, they are different 
instantiations of the same phenotype that these cells seems to be selected for. In cancer this 
is most obvious: whilst different tumours have vastly different mutations, most of them 
display the Warburg effect (Hanahan & Weinberg, 2011). Therefore, besides identifying the 
mechanisms of metabolic shifts, we want to find a global explanation of why we see certain 
patterns of behaviour. In order to get a better understanding of its long-term behaviour it is 
also important to think about ‘why’ such a regulation system arose in the first place, in other 
words, what contribution it had to the fitness of the organism.
 
As we saw earlier, trade-offs might be an underlying cause for metabolic shifts, but identifying 
the key trade-offs can be difficult. Several explanations suggested for growth–rate–related 
metabolic shifts in microorganisms are discussed in subsequent sub-sections (Fig 2). The 
advantage of the ATP-efficient pathway seems relatively clear because it produces more 
energy per substrate. We will therefore first discuss explanations for the use of ATP-inefficient 
pathways.
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Chemical warfare

End products of inefficient metabolism are often toxic and inhibit growth of neighbouring 
species, for instance, in lactic acid bacteria (Loesche, 1986) and yeast (Piskur et al, 2006). 
Groups of microorganisms, at a cost of reduced efficiency, produce these inhibitory 
compounds to reduce competition (Fig 2A). However, if a mutated cell uses the ATP-
efficient pathway in an inefficient population, it could gain higher fitness. This is because its 
neighbours would still produce ethanol and intoxicate competitors, and the efficient mutant 
would benefit from the toxic effect on the population without itself bearing the burden of 
producing ethanol, thereby gaining an advantage with higher ATP availability. But this ATP-
efficient strain should –under the assumption in this scenario– grow faster and take over the 
population, a fundamental flaw in the hypothesis of “chemical warfare”.

Yeast is also known to use its fermentation product ethanol, as a substrate. Based on this 
observation, a make-accumulate-consume strategy comprising first producing ethanol and 
later consuming it when glucose is depleted was proposed (Piskur et al, 2006). Such behaviour 
is also seen in E. coli (Koser, 1923) and B. subtilis (Speck & Freese, 1973) and suggested in 
lactic acid bacteria that can use mixed acid fermentation products as substrate (Hols et al, 
1999). This strategy may seem clever, but if the cells waste part of the energy obtainable from 
the substrate to accumulate fermentation products for later consumption, they will have a 
lower fitness if they never encounter glucose depletion. In addition, there could be “cheaters” 
not producing, but consuming ethanol produced by others. This hypothesis also seems to 
suffer from the same cheater-invasion problem as the chemical warfare hypothesis does.

The danger of reactive oxygen species

At high growth rates, though respiration is more ATP-efficient, it could also have serious 
disadvantages leading to prohibitive constraints. A putative issue with respiration is 
the formation of reactive oxygen species as a natural by-product (Fig 2B). In yeast and 
mammalian cells it was shown that cells ferment during the DNA replication phase, because 
respiration causes DNA damage (Chen et al, 2007; Anastasiou et al, 2011). This does 
not directly explain why cells respire during slow growth, although time spent on DNA 
replication is much less at lower growth rates. But it is a challenge to determine whether 
increase in DNA replication time and metabolism at high growth rates quantitatively explain 
shifting to fermentation, because the dependency of ROS production on respiration is rather 
complicated (Kowaltowski et al, 2009).
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Figure 2: Different hypotheses and trade-offs involved, for growth rate (and substrate (S)) related ATP-efficient and 
inefficient metabolism. (A) Chemical warfare: at the cost of ATP production, toxic compounds are produced in order 
to inhibit the growth of competitors. (B) The danger of Reactive Oxygen Species (ROS): additional ATP production 
via respiration concomitantly generates ROS that can damage DNA. (C) Spatial structure: spatial structure promotes 
ATP-efficient substrate usage but lone individual cells can grow faster as long as sufficient substrate is available. 
(D) Ethanol as an inhibitor of fermentation: substrate can be used efficiently but slowly or fast but inefficiently and 
the latter strategy produces toxic compounds that are exported but nonetheless accumulate more inside the cells 
producing them. (E) Limited intracellular space: due to limited intracellular space and bulky respiratory machinery, 
the flux through respiration cannot match high substrate uptake rates and a gradual shift to inefficient metabolism 
occurs. (F) Limited membrane space: the membrane can be used to produce additional ATP from substrate via the 
electron transport chain (ETC) or to take up more substrate. (G) An economical approach: substrate can be used 
slowly and efficiently but this requires a lot of proteins, or it can be consumed fast but inefficiently which requires 
much less proteins.

The previous hypotheses address the prevalence of inefficient metabolism due to the useful 
impact of its by-product(s) or the negative impact of efficient metabolism. The following 
explanations all assume a trade-off between growth yield and growth rate. Subsequently, 
if the selection pressure acts on growth rate, only inefficient pathway usage is expected to 
prevail, simply because it is faster. Under such presumptions, the use of efficient metabolism 
at low growth rates needs to be explained! 

Spatial structure

Modelling efforts show that the existence of spatial structure in a population (due to 
incomplete mixing or biofilm formation) can select for efficient metabolism (Pfeiffer et al, 
2001; Kreft, 2004; Aledo et al, 2007) because it increases substrate availability, benefiting 
closely-related neighbours (Fig 2C). Inside these non-motile populations, cheater cells using 
inefficient metabolism might still evolve, but if cells disperse often enough to start a new 
colony, efficient metabolism can still prevail (Kreft, 2004). Cooperation with related cells 
is even stronger for multicellular organisms, except obviously for cancer cells. Experiments 
confirm that spatial organization promotes efficient metabolism while well-mixed cultures 
sustain inefficient metabolism (MacLean & Gudelj, 2006). Nonetheless, even in well 
mixed cultures, efficient to inefficient metabolism shift is observed (Hollywood & Doelle, 
1976; Thomas et al, 1979; Snay et al, 1989; Postma et al, 1989), rendering this hypothesis 
incomplete, if not questionable.

Ethanol as an inhibitor of fermentation

In a competition experiment between fermenting and respiring yeast cells, addition of 
extracellular fermentation products had a negative influence on the fermenters (MacLean & 
Gudelj, 2006). The presumption is that at higher extracellular ethanol concentrations, ethanol 
export is more difficult for fermenters, resulting in high and toxic intracellular ethanol 


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concentrations (Fig 2D). But higher accumulation of intracellular ethanol in fermenters 
in comparison with respirers is not proven yet, leaving this hypothesis open. Besides, it is 
unlikely that this is a universal explanation, because bacteria shifting between mixed acid and 
homolactic fermentation need to export either acetate and formate, or lactate, and it is unclear 
which products are more harmful.

Insofar, we have summarized explanations for the use of inefficient pathways: chemical 
warfare and the danger of reactive oxygen species, and efficient pathways: spatial structure 
and toxic effects of ethanol. But often, efficient metabolism is observed at low growth rates 
and inefficient metabolism at high growth rates. In the forthcoming sub-sections we will 
review approaches that attempt to explain the metabolic shift as a function of growth rate.

Limited space

(i) Intracellular space
As described in section 3, intracellular space constraints can impose a metabolic shift with 
increasing nutrient uptake in cancer cell models. The hypothesis is that respiration machinery 
requires more space and cannot match a high uptake flux, resulting in a shift to lactate 
production (Fig 2E). It remains to be shown that intracellular space is indeed limiting, as 
cells can change size or shape to tweak the uptake relative to intracellular space.

(ii) Membrane space
Under varying circumstances, the electron transport chain and glucose transporters compete 
for the limited membrane space (Fig 2F). Thus transport rate depends on the space occupied 
by transporters and the electron transfer chain in the membrane. FBA on the E. coli metabolic 
network with this dynamic constraint predicts that maximum growth is possible with efficient 
metabolism at low growth rates and inefficient metabolism at high growth rates, which is in 
agreement with experimental results (Zhuang et al, 2011b). Thus membrane constraints can 
explain metabolic shifts, but only in bacteria containing efficient pathway components in 
their membrane, and it can perhaps be adjusted to explain the shift in eukaryotes containing 
limited mitochondrial membrane space. This hypothesis cannot, however, explain the shift in 
lactic acid bacteria involving only cytosolic enzymes. 

An economical approach

Molenaar et al (2009) hypothesized that the metabolic shift is in fact due to a resource allocation 
problem for optimal fitness, with growth rate as a proxy for fitness. They introduced a self-
replicator model; a simple representation of a cell with efficient and inefficient metabolic 
pathways that gives insight into which strategy leads to fastest growth. By taking into account 
that the efficient pathway actually needs more cellular machinery to operate (a longer pathway 
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in lactic acid bacteria, an electron transport chain in E. coli and mitochondria in yeast), the 
self-replicator model predicts that at low substrate concentrations efficient metabolism leads 
to a higher growth rate, and at high substrate concentrations inefficient metabolism leads 
to a higher growth rate (Fig 2G). This approach takes both, the benefits (ATP efficiency) 
and the associated costs, into account when considering alternative metabolic strategies and 
thus introduces a hypothesis for the metabolic shift as a function of nutrient availability and 
hence, growth rate. However, it remains to be shown that the difference in pathway costs can 
indeed cause this shift in optimal strategy in biological systems.

The cycle of systems biology 

It remains a challenge to validate or falsify the hypotheses described in the previous section. 
Many of them look at only a specific aspect of metabolism. Nevertheless, these hypotheses 
call for an integrative approach, since fitness-associated costs are a systems property 
and cannot be inferred by studying a single component in isolation. Even then, efforts to 
approximate the costs of protein (Dekel & Alon, 2005; Stoebel et al, 2008; Shachrai et al, 
2010) have remained inconclusive. Yet, to understand microbial physiology we believe that 
a systems biology approach is the best, perhaps the only, option available. Systems biology 
aspires to capture how systems properties emerge from orchestrated interactions between 
individual components in an organism, using iterative cycles of quantitative experimental 
data generation and mathematical modelling (Fig 3). Systems biology studies have shown 
the ability to address similar problems in the past. Wessely et al (2011) incorporated genome-
wide ‘omics’ data into the genome-scale metabolic network of E. coli using various network 
and optimization tools to link protein investment and transcriptional regulation of pathways. 
With this integrative approach they identified and suggested an evolutionary trade-off between 
protein investment and rapid response time. From the industrial perspective, there have been 
quite a number of successes in systems metabolic engineering combining systems biology, 
synthetic biology and evolutionary engineering principles (Lee et al, 2011). Accumulated 
knowledge has been used to perform guided evolution comprising a combination of clever 
knockouts and selection pressures to produce industrially important compounds via stable 
processes.

Finally and ultimately, a systems biology approach should connect environmental conditions 
to genes, transcriptional regulation, transcription factor interactions and protein production 
to metabolism in a single model. One such example exists that proposes cell regulation 
via flux sensing metabolites in E. coli (Kotte et al, 2010). This is a good example of how 
integrated models could look, as closed-loop systems comprising all levels in the cell. Such 
studies are currently restricted to model organisms such as E. coli as it has been studied for 
decades and can boast of a rich source of detailed knowledge, unlike other microorganisms. 
This necessitates multi-level omics studies in the latter to be able to investigate them with 
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realistic models. There is hope that we can translate such kinetic models developed for model 
organisms to less-well studied organisms through what we have called comparative systems 
biology (Levering et al, 2012).

Figure 3: The cycle of systems biology. Defi ned 
as the quantitative study of biological processes as 
whole systems, instead of isolated parts, systems 
biology comprises utilizing knowledge bases 
and experimental data to develop and construct 
computational models to propose new hypotheses. 
The fi eld is characterized by synergistic integration 
of data and theory that can be combined to produce 
a model. Model analysis leads to predictions of 
physiological functions which might be diffi cult to 
obtain otherwise. Validation of these predictions helps 
identify novel components or interactions, which in 
turn refi ne the model. Ultimately, the effectiveness of 
a model does not necessarily depend on goodness-of-
fi t, but on its usefulness in, for example, (i) providing 
new hypotheses/leads as predictions, (ii) providing a 
data integration platform as a formal representation 
of current knowledge, or (iii) helping to discriminate 
between alternative explanations

Concluding remarks

We have discussed industrially relevant examples of metabolic shifts exhibited by organisms, 
summarized the underlying regulatory mechanisms, emphasized the existence and role of 
trade-offs in these metabolic choices, and scrutinized various hypotheses and their pitfalls in 
explaining the fi tness advantage of metabolic shifts. Systems biology, we believe, is the best 
approach we currently have, to tackle such complexities of cell factories. Nevertheless, one 
must proceed with caution in the midst of current high-throughput data generation methods 
and avert sinking in oceans of data by regularly stepping back to recapitulate the greater 
objective. We fi rmly believe that the functional perspective, i.e. the contribution of the 
observed adaptive mechanisms to fi tness, in the light of constraints and trade-offs, provides 
a powerful context to our understanding of the physiology of microbial cell factories. We 
are still quite at the tip of the iceberg but with constant consolidated systems biological 
efforts we can aim to reach a deeper understanding that will guide future major innovations 
in biotechnology and medicine.
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Abstract

Knowledge of how the activity of enzymes is affected under in vivo conditions is essential 
for analysing their regulation and constructing models that yield an integrated understanding 
of cell behaviour. Current kinetic parameters for Lactococcus lactis are scattered through 
different studies and performed under different assay conditions. Furthermore, assay 
conditions often diverge from conditions prevailing in the intracellular environment. To 
establish uniform assay conditions that resemble intracellular conditions, we analysed the 
intracellular composition of anaerobic glucose-limited chemostat cultures of L.  lactis subsp. 
cremoris MG1363. Based on this, we designed a new assay medium for enzyme activity 
measurements of growing cells of L.  lactis, mimicking as closely as practically possible its 
intracellular environment. Procedures were optimized to be carried out in 96-well plates and 
the reproducibility and dynamic range was checked for all enzyme activity measurements. 
The effect of freezing and the carry-over of ammonium sulphate from the addition of 
coupling enzymes was also established. Activities of all ten glycolytic and four fermentative 
enzymes were measured. Remarkably, most in vivo-like activities were lower than previously 
published data. Yet, the ratios of Vmax over measured in vivo fluxes were above 1. With this 
work we have developed and extensively validated standard protocols for enzyme activity 
measurements for L. lactis.

Keywords: Lactic acid bacteria, Lactococcus lactis, In vivo-like enzyme assays, 
Standardization, Systems biology
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Introduction

Lactococcus lactis is an industrially important lactic acid bacterium with a prominence in 
the fermented dairy foods industry (Cogan & Hill, 1993). It is known to convert nearly 90% 
of simple sugars like glucose into lactic acid at high growth rates (Thomas et al, 1979). 
The genome of Lactococcus lactis ssp. cremoris MG1363 has been characterized at the 
sequence level (Wegmann et al, 2007; Linares et al, 2010) and recent attempts have been 
made to perform multilevel –omics analysis under different growth conditions (Even et al, 
2003; Dressaire et al, 2009; Lahtvee et al, 2011). The integration of such multi –omics data 
sets in systems biology and bioinformatics studies rely crucially on well-validated standard 
protocols. Additionally the ability to measure many variables of the system at any given 
moment requires the development of sampling, storage and measurement assay methods that 
optimally preserve the state of the organism.

One of the variables of increasing importance is the cellular enzyme activity, as it is an 
important target of many regulatory mechanisms, both through gene expression (acting on 
enzyme level) and through posttranslational modifications (acting on the catalytic efficiency 
of the enzyme). The impact of such regulation can be interpreted and predicted increasingly 
well with kinetic models. A few kinetic studies have been carried out on L. lactis (Andersen 
et al, 2009; Hoefnagel et al, 2002b, 2002a; Neves et al, 1999; Voit et al, 2006a). In some 
studies metabolite data was generated by in vivo NMR (Neves et al, 1999; Voit et al, 2006a), 
which is an elegant method but has strong limitations regarding measurements in growing 
microorganisms (Neves et al, 2005). In other studies (Andersen et al, 2009; Hoefnagel et al, 
2002b, 2002a), only limited or no kinetic data have been collected. Additionally, the sources 
of kinetic parameters span studies investigating different strains under a variety of growth 
conditions. For instance, the maximal enzyme catalytic rates (Vmax’s) are adopted from 
different studies (Even et al, 2001; Lopez de Felipe & Gaudu, 2009), using varying growth 
conditions, assay conditions, and sometimes even different strains. In fact, even in single 
studies, enzyme assay methods for L. lactis have been adopted from various references, 
studying different organisms (Table 2). 

Table 2: Enzyme assays for L. lactis (Even et al, 2001) adopted from different microorganisms 
Enzyme assayed Microorganism in source Reference
PGI Human erythrocytes Gracy & Tilley (1975)

PFK, ALD Eubacterium limosum Le Bloas et al (1993)

TPI, PGK Corynebacterium glutamicum Dominguez et al (1998)

PGM, ENO Pig liver muscle Kulbe et al (1982)
PTA Clostridium acetobutylicum Vasconcelos et al (1994)

The assays are predominantly optimized to measure maximal activity of a particular enzyme. 
Furthermore, different assays use different buffers and some also contain non-physiological 
components like ethylenediaminetetra acetic acid (EDTA), and arsenate, amongst others. 
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Consequently, the dearth of well-established kinetic parameters under standardized conditions 
is a major setback for kinetic studies, which often limits the predictive power of models.

In the era of systems biology, we require kinetic parameters under standardized conditions, 
ideally reflecting as closely as possible the conditions encountered by the enzymes in the 
cell. In a recent study, such an attempt to standardize the assay conditions for Saccharomyces 
cerevisiae has been successfully made (van Eunen et al, 2010). On similar lines, in the 
present study, we have developed an in vivo-like assay medium to standardize enzyme 
activity measurements in L. lactis. In addition, we established protocols for harvesting, 
storage, extract preparation and specific enzyme assays of almost all enzymes in central 
energy metabolism in L. lactis. We apply these to measuring glycolytic and fermentative 
enzyme activities in batch and glucose-limited chemostat cultures of L. lactis.

Materials and methods

Strain and growth medium

Lactococcus lactis ssp. cremoris MG1363 (Gasson, 1983) was grown on chemically defined 
medium for prolonged cultivation (CDMPC) as described by Santos et al., (manuscript in 
preparation) with 25 mM glucose as the limiting nutrient and the following composition: (i) 
buffer (g∙L-1) KH2PO4, 2.75; Na2HPO4, 2.85; NaCl, 2.9; (ii) vitamins (mg∙L-1): DL-6,8-thioctic 
acid, 2; D-pantothenic acid hemicalcium salt, 0.5; biotin, 0.1; nicotinic acid, 1; pyridoxal 
hydrochloride, 1; pyridoxine hydrochloride, 1; thiamine hydrochloride, 1; (iii) metals (mg∙L-

1): ammonium molybdate tetrahydrate, 0.3; calcium chloride dihydrate, 3; cobalt(II) sulphate 
heptahydrate, 0.3; copper(II) sulphate pentahydrate, 0.3; iron(II) chloride tetrahydrate, 4; 
magnesium chloride hexahydrate, 200; manganese chloride tetrahydrate, 4; zinc sulphate 
heptahydrate, 0.3; (iv) amino acids (mg∙L-1): L-alanine, 130; L-arginine, 244; L-asparagine, 
80; L-aspartic acid, 137; L-cysteine hydrochloride monohydrate, 61; L-glutamic acid, 97; 
L-glutamine, 96; glycine, 29; L-histidine, 24; L-isoleucine, 82; L-leucine, 117; L-lysine 
monohydrochloride, 187; L-methionine, 38; L-phenylalanine, 64; L-proline, 412; L-serine, 
172; L-threonine, 68; L-tryptophan, 36; L-tyrosine, 50; L-valine, 86. The maximum growth 
rate of L. lactis in this growth medium under batch conditions is 0.7 h-1.  

Culture conditions

Glucose-limited chemostat cultures were grown in 2 L bioreactors with a working volume of 
1.2 L at 30 °C, under continuous stirring. The headspace was flushed at 5 headspace volume 
changes per hour, with a gas mixture of 95% N2 (99.998% pure) and 5% CO2 (99.7% pure) 
with oxygen impurity less than 34 vpm. A pH of 6.5±0.05 was maintained by automatic 
titration with 5 M NaOH. Fermentors were inoculated with 4% (v/v) of standardized pre-
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cultures consisting of 45 mL of CDMPC inoculated with 300 µL of a glycerol stock of L. 
lactis MG1363 and incubated for 16 h at 30 °C. After batch growth until an optical density at 
600 nm (OD600) of around 1.8, medium was pumped at the appropriate dilution rate (0.5, 0.2 
or 0.15 h-1). The chemostats were harvested assuming a steady state at 10 working volume 
changes (Even et al, 2003).  For assay standardization experiments, batch cultures were 
grown in static 50 mL cultures in the same medium at 30 °C.

Analytical methods

Cell density was measured spectrophotometrically at 600 nm and calibrated against cell dry 
weight measurements performed as follows. 4 mL of culture was filtered through a pre-dried, 
pre-weighed 0.2 µm cellulose nitrate filter (Whatman GmbH, Dassel, Germany), washed 
twice with deionized water and dried to a constant weight. For one unit change of optical 
density, the change in dry weight was determined to be 0.31 ± 0.02 gL-1OD600

-1.

Fermentation end-product analysis

Supernatant samples from chemostat fermentations were prepared by filtering the cultures 
through a 0.20 µm polyethersulfone (PES) filter (VWR international B.V., Amsterdam, 
the Netherlands) and storing the flow-through at -20ºC until further analysis. Extracellular 
concentrations of lactate, acetate, ethanol, formate, and glucose were determined by 
High Performance Liquid Chromatography (HPLC) on a Shimadzu LC-10AT liquid 
chromatograph equipped with a Shimadzu RID-10A refractive index detector for ethanol 
and glucose, and a Shimadzu SPD-10AVP UV-Vis absorbance detector set at 210 nm for the 
remaining metabolites. Separation was carried out on a Bio-Rad Aminex Ion exclusion HPX-
87H column equilibrated at 55ºC with an isocratic flow of 5 mM H2SO4 set to 0.5 mL/min. 
The injection volume used was 50 µL and concentrations were estimated by comparison of 
peak areas to a calibration curve obtained with standards analysed under the same conditions.

Element analysis

Harvested samples from chemostats at 0.5 and 0.2 h-1 dilution rate were centrifuged (4 °C, 
5 min, 10000 g) and washed twice with 100 mM tris(hydroxymethyl)aminomethane-HCl 
buffer (pH 6.5). The supernatant was discarded and the cell pellet, after snap freezing in 
liquid nitrogen, was freeze-dried. The elemental composition of freeze-dried culture was 
determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES), at the 
Energy research centre of the Netherlands (ECN Petten) (Rouf, 1964). Values obtained were 
converted to intracellular concentrations using 1.67 µL intracellular volume per mg cell dry 
weight (Thompson, 1976), assuming constant volume for both dilution rates (Supplementary 
material). 
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Sampling and preparation of cell extracts

An amount of cell culture containing 100 mg dry weight was centrifuged (4  °C, 5 min, 
8000 rpm), washed once and resuspended in 3 mL 50  mM HEPES (4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid)-KOH buffer at pH  7.5, containing 15% glycerol 
supplemented with Halt Protease Inhibitor single-use cocktail, EDTA-free (Thermo Fischer 
Scientific, Rockford, IL, USA). The rationale behind the choice of this buffer is addressed 
in the Supplementary material. This suspension was divided into 0.5 mL aliquots added to 
0.5 mg glass beads with 100 µm diameter (BioSpec Products, Bartlesville, USA) in screw 
capped tubes and stored at -20°C until further analysis. Frozen samples were thawed and 
MgCl2 was added to a final concentration of 2 mM. Cells were disrupted in a FastPrep 
FP120 homogenizer (BIO 101, Vista, CA, USA) at a speed setting of 6, in 3 bursts of 20 s, 
with 120 s intermittent cooling periods (see Fig S1 and S2 in the Supplementary material 
for details on optimization of this procedure). After centrifugation (4  °C, 10 min, 10000 
g), the supernatant was collected and a series of dilutions were prepared, which were used 
immediately for enzyme assays. Protein concentrations of whole cells and cell extracts used 
for enzyme assays were determined on the same day by the bicinchoninic acid (BCA) method 
(Stoscheck, 1990) with a BCA Protein Assay Kit (Pierce, Thermo Fisher Scientific) using 
bovine serum albumin (BSA, 2 mg·mL−1 stock solution; Pierce), containing 2 mM MgCl2 and 
Halt Protease Inhibitor cocktail, as the standard. 

Enzyme activity assays

Enzyme activities were assayed at 30 °C in freshly prepared cell extracts by coupling enzyme 
activity with the consumption or formation of NAD(P)H and monitoring its absorbance at 340 
nm (A340) in Greiner flat-bottom polystyrene microplates in a Novostar spectrophotometer 
(BMG Labtech, Offenburg, Germany). In the P-transacetylase assay, the coenzyme-A formed 
in the reaction was oxidized by 5,5’-dithiobis-(2-nitrobenzoic) acid (DTNB). Reduction 
of DTNB was monitored at 405 nm. The enolase assay was performed in two ways. One 
was by coupling with NADH formation as already described. The other was by measuring 
absorbance of its product, phosphoenol pyruvate (PEP), at 240 nm in Greiner flat-bottom 
UV-transparent (UV-star) microplates. Both assays resulted in the same activity (Table S1, 
Supplementary material). Absorbances of DTNB and PEP were monitored in a Spectramax 
spectrophotometer (Molecular Devices, Sunnyvale, CA, USA). Extinction coefficients for 
300 µL reagent mixtures with final composition as in the in vivo-like buffer in microplates 
were determined to be ε340 · L = 5.06 · 103 M-1 for NAD(P)H, ε405 · L = 10.494 · 103 M-1 for 
DTNB, and ε240 · L = 1.256 · 103 M-1 for PEP, where path length (L) is 8.1 mm. For each 
assay, activities were corrected for background rates in controls, without the start reagent, 
without cell extract, and without both (see Supplementary material for detailed protocol). 
Five dilutions in duplicate were used for all assays and their proportionality was checked. In 



39

In vivo-like assay medium for L. lactis

all cases, activity values from at least two dilutions in duplicate were proportional with the 
amount of cell extract added and were used for calculation of mean activities. The values 
obtained from the assays yield the total activity of all isoenzymes in the cell extract and are 
expressed as the rate of substrate converted, relative to total protein in the extract. Where 
reported as fluxes, values were multiplied by the ratio of total protein content per dry weight 
estimated for the respective culture. All assay mixtures had a pH of 7.5 and contained the 
components of the in vivo-like buffer, i.e. 100 mM HEPES, 400 mM potassium glutamate, 
50 mM NaCl, 1 mM potassium phosphate and 1/10th of concentration of metals as present in 
CDMPC. Additional components are described in Table 3 for each assay. ALDH was also 
assayed using a method for E. coli (Rudolph et al, 1968). The reaction mixture contained 
50 mM potassium phosphate buffer at pH 7, 0.1 mM CoA, 10 mM DTT, 0.5 mM NAD+ and 
initiator 40 mM acetaldehyde.

Desalting of coupling enzymes

Enzymes obtained from commercial suppliers were desalted by centrifugal filtration in 3 kD 
Microcon® centrifugal filters (Millipore Corporation, Bedford, MA, USA). Enzyme solutions 
were centrifuged (4 °C, 60 min, 13300 rpm), washed with an equal volume of demineralised 
water, centrifuged again and suspended in the same volume of demineralised water. The 
filters were inverted and centrifuged again (4 °C, 5 min, 9000 rpm) to obtain desalted enzyme 
solutions. 

Results 

The endeavour to establish an in vivo-like assay medium for L. lactis requires analysis of its 
cytosolic conditions regarding two major factors, namely concentrations of ionic species and 
pH. We therefore started with analysing chemostat cultures of L. lactis for concentrations of 
various elements.

Elemental analysis of L. lactis. The intracellular concentrations of different elements in 
chemostat cultures of L. lactis for dilution rates 0.5 and 0.2 h1 are listed in Table 4. Two 
dilution rates were analysed in order to test the possibility of using a single assay medium 
for analysis of cultures at dilution rates within this range. Between the dilution rates, all the 
elements had similar concentrations, except sodium, which differed by about 23 mM with a 
standard deviation of 13.6 mM. It is important to point out that these values denote total ion 
concentrations and one cannot exclude the possibility of different proportions of liganded 
and free form between the dilution rates. Nevertheless, for practical purposes, an approach 
involving one single assay medium was chosen.
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Table 3: Composition of reagent mixtures for all enzyme assaysa 

Enzyme  Reaction mixture components
GLK*
EC 2.7.1.2

4 mM MgSO4, 2 mM ATP, 0.4 mM NADP+, 5 U · mL1 G6PDH and initiator: 10 mM 
glucose

G6PDH*
EC 1.1.1.49

2 mM MgSO4, 0.4 mM NADP+ and initiator: 10 mM glucose-6P

PGI, EC 5.3.1.9 
(physiological direction)

7 mM MgSO4, 5 mM ATP, 0.3 mM NADH, 1 U · mL1 PFK, 1 U · mL1 ALD, 2 U · mL1 
glycerol-3P dehydrogenase (G3PD), 5 U · mL1 TPI, and initiator: 10 mM glucose-6P

PGI (non-physiological 
direction)

2 mM MgSO4, 0.4 mM NADP+, 1.75 U · mL1 G6PDH and initiator: 20 mM fructose-
6P

PFK
EC 2.7.1.11

7 mM MgSO4, 5 mM ATP, 0.3 mM NADH, 1  U  ·  mL1 ALD, 2  U  ·  mL1 G3PD, 
5 U · mL1 TPI, and initiator: 20 mM fructose-6P

ALD
EC 4.1.2.13

2 mM MgSO4, 0.3 mM NADH, 2 U · mL1 G3PD, 5 U · mL1 TPI, and initiator: 30 mM 
fructose-1,6BP

TPI
EC 5.1.3.1

2 mM MgSO4, 0.3 mM NADH, 2 U · mL1 G3PD, and initiator: 6 mM glyceraldehyde-
3P

GAPDH
EC 1.2.1.12

5 mM MgSO4, 5 mM cysteine-HCl, 50 mM potassium phosphate, 3 mM ADP, 14.5 
U · mL1 PGK, 5 mM NAD+ and initiator: 10 mM glyceraldehyde-3P

PGK, EC 2.7.2.3 (non-
physiological direction)

7 mM MgSO4, 5 mM ATP, 0.3 mM NADH, 8 U · mL1 GAPDH, and initiator: 10 mM 
3-PGA

PGM
EC 5.4.2.1

5 mM MgSO4, 3 mM ADP, 0.1mM 2,3BPG, 0.3 mM NADH, 2  U  ·  mL1 ENO, 
5 U · mL1 PYK, 10 U · mL1 LDH, and initiator: 5 mM 3P-glycerate

ENO
EC 4.2.1.11 
PEP absorbance┼

5 mM MgSO4, 3 mM ADP, 0.3 mM NADH, 5 U · mL1 PYK, 10 U · mL1 LDH, and 
initiator: 5 mM 2Pglycerate
2 mM MgSO4, and initiator: 5 mM 2Pglycerate

PYK
EC 2.7.1.40

5 mM MgSO4, 3 mM ADP, 5 mM fructose-1,6BP, 0.3 mM NADH, 10 U · mL1 LDH, 
and initiator: 6 mM PEP

LDH
EC  1.1.1.27

2 mM MgSO4, 3 mM fructose-1,6BP, 0.3 mM NADH, and initiator: 6 mM PYR

ACK
EC 2.7.2.1

5 mM MgSO4, 3 mM ADP, 2 mM glucose, 0.4 mM NADP+, 8.5 U · mL1 hexokinase, 
12.7 U · mL1 G6PDH, and initiator: 5 mM acetyl-P

PTA
EC 2.3.1.8
PTA control

2 mM MgSO4, 0.08 mM DTNB, and initiator: 0.4 mM acetyl-coenzyme A
2 mM MgSO4, 0.008 mM DTNB, 2 mM acetyl-P, and initiator: 0.4 mM acetyl-CoA

ADH
EC 1.1.1.1

2 mM MgSO4, 0.3 mM NADH, and initiator: 20 mM acetaldehyde 

ALDH§ (non-
physiological direction)
EC 1.2.1.10

2 mM MgSO4, 0.1 mM CoA, 1 mM DTT, 0.5 mM NAD+ and initiator 40 mM 
acetaldehyde

a  Detailed methodology can be accessed in DocS3.xls in supplementary material.
*(van Eunen et al, 2010), ┼(Lee & Nowak, 1992), §(Rudolph et al, 1968), all other enzymes (Even et al, 2001)
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Table 4: Intracellular concentrations of different elements in L. lactis at various dilution rates

Element D (h-1) Ca K Mg Mn Na S
Intracellular 
concentration 
(mM)*

0.5b 0.42 + 0.24 559 + 19 59 + 2 0.68 + 0.04 60 + 4 59 + 0.7

0.2c 0.76 + 0.44 570 + 26 53 + 2 0.67 + 0.08 37 + 13 63 + 0.6

* calculated by converting to moles obtained quantities in mg element per kg dry cells and dividing by 1.67 mL· g 
dry cells-1 (Thompson, 1976)
b values represent the average ± standard deviation of three independent biological replicates
c values represent the average ± standard deviation of two independent biological replicates

pH of the assay medium

The pH has a strong influence on the kinetic parameters of enzymes (Dixon, 1953) and 
therefore it is crucial that in all assays pH is kept constant and similar to the value in the 
cytoplasm. The pH of the assay medium was set to 7.5, the reported internal pH (Olsen et 
al, 2002) at an external pH of 6.5 (the same as in CDMPC). Furthermore, it seems that the 
internal pH is kept relatively constant in vivo in the range of external pH’s between 6 and 7 
(Molina-Gutierrez et al, 2002).

Element concentrations

Based on the data in Table 4, the composition of the ions in the medium was rationalized. 
Calcium and manganese ions may bind to proteins and other components in cells (Exterkate 
& Alting, 1999; Cossins et al, 2011) and the values in Table 4 might not represent the free ion 
concentrations. Furthermore, due to their low concentrations (Table 4), it was decided not to 
add these ions in separate solutions to the standard buffer, but as a combined solution of many 
metal ions at low concentrations to improve reproducibility (see section on addition of other 
metal ions). Although this solution has a concentration of about 2 μM each of Ca2+ and Mn2+, 
that is lower than that obtained by elemental analysis, it is sufficient to saturate enzymes in 
the assay. This is because the measured enzyme is only a fraction of the total protein content, 
which in the assay has a concentration of approximately 0.5 μM. For the sodium ion, an 
average concentration of 50 mM was selected, along with chloride as its counter ion. 

The magnesium ion concentration was ~55 mM, but inside the cell it is known to be bound 
to nucleic acids, adenine nucleotides (Romani & Scarpa, 1992) , and cell wall teichoic acid 
(Lambert et al, 1975). The cytosolic free concentration of Mg2+ in L. lactis has not been 
reported. However, in E. coli it was reported to be the same as extracellular magnesium in a 
1μM to 10 mM range (Beeler et al, 1997) and around 0.1 to 1 mM in S. cerevisiae (Hurwitz 
& Rosano, 1967). The concentration of Mg2+ in the growth medium is ~0.1 mM. For repro-
ducibility of Mg2+ in the assay, an approximate free ion concentration of 2 mM was chosen. 
The ratio of ATP and ADP binding to Mg2+ is nearly 80% (Storer & Cornish-Bowden, 1976), 
which can consequently reduce the unbound Mg2+ concentration. Therefore, the addition of 
Mg2+ in assays was always 2 mM above the concentration of ATP or ADP added. 
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The potassium ion concentration was by far the highest among all elements in L. lactis at 
approximately 550 mM. A similarly high potassium ion concentration of 600 mM and 500 
mM has been reported for L. lactis (Poolman et al, 1987c) and for another Gram positive 
bacterium, Enterococcus faecalis respectively (Harold & Kakinuma, 1985). This value of 
550 mM is representative of the free K+ concentration because K+ does not generally interact 
with non-covalently interacting metabolite structures, and thus may be evenly distributed 
in the cytoplasm (Cossins et al, 2011). Hence, after finalizing Na+, Cl-, Mg2+ and K+, it was 
necessary to find a suitable counter ion for K+ in the assay medium. 

Phosphate: an important effector

Before proceeding further with the design, first, the workability of measuring enzymes in the 
standardized in vivo-like buffer designed for yeast was checked. It consists of 300 mM K+, 
245 mM glutamate and 50 mM phosphate (van Eunen et al, 2010), with phosphate offering 
the buffering action. The same buffer components are also present in L. lactis cytoplasm 
albeit in different quantities. Assays of L. lactis were collected from literature and the buffers 
in each assay were replaced by the in vivo-like buffer of yeast at a pH of 7.5. These assays 
were then tested on commercially available enzymes and subsequently on cell extracts of L. 
lactis. 

We observed no activity for pyruvate kinase with the yeast buffer. We conceived that, for L. 
lactis, phosphate may not be the appropriate choice as a buffer, because it is a regulator of 
many glycolytic enzymes, pyruvate kinase in particular (Collins & Thomas, 1974). Hence, 
the pyruvate kinase assay was tested with varying concentrations of phosphate to investigate 
its inhibitory effect in the presence of 5 mM FBP (required for activation of PYK). At a low 
concentration of 2 mM phosphate pyruvate kinase activity is slightly inhibited (Fig 1A). In 
view of the fact that the phosphate concentration in rapidly fermenting cells is substantially 
lower than 50 mM, (<1 mM) (Neves et al, 2002), a final concentration of 1 mM free phosphate 
was chosen for the in vivo-like medium, realizing that phosphate is variable and a potential 
effector of many enzymes.

Buffering capacity

With the lowering of phosphate, the buffering capacity of the assay medium was reduced 
considerably. Since a number of components are added to assays and pH changes due to 
reactant consumption or product formation can be expected, a buffer was needed in the 
assay medium. The cell has a number of salts and proteins, which together confer buffering 
capacity in the cytoplasm, but this is not practically reproducible in vitro. Hence we searched 
for a buffer with a pKa closest to the pH of the in vivo-like assay medium, i.e. 7.5. The 
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shortlisted candidates were DIPSO and HEPES with pKa’s of 7.52 and 7.48 and effective 
pH ranges of 7.0 to 8.2 and 6.8 to 8.2 respectively. Of these, we chose HEPES on account 
of having a broader pH range and being one of the twelve Good’s buffers with numerous 
desirable characteristics like low absorbance between 240 nm and 700 nm, minimal change 
with temperature, enzymatic stability, and limited effects due to solution composition, among 
others (Good et al, 1966). We also compared the activities of a few enzymes in HEPES, and 
tris-HCl, the buffer used so far for many enzyme assays of L. lactis in Fig 1B. Activities were 
similar in both cases, except for PTA, where the activity in HEPES was higher. Concluding 
on the preceding grounds, HEPES was chosen as the buffer for the in vivo-like assay. K+ was 
chosen as the counter ion to account partially for the high concentration required in the in 
vivo-like medium.

Figure 1: (A) Relative Vmax of PYK in the presence of 5 mM FBP and varying concentrations of inorganic phosphate, 
normalized to PYK Vmax in the absence of phosphate. (B) Relative Vmax at pH 7.5 in HEPES buffer, normalized to 
Vmax in Tris-HCl buffer.  (C) Relative activities of LDH (white bars), PYK (grey bars), and GAPDH (black bars) 
with varying potassium glutamate concentrations normalized to activities in the absence of potassium glutamate. (D) 
Vmax’s with 1/10th the metals present in CDMPC, relative to Vmax’s without metals added to the assay buffer. Error 
bars represent standard deviations of a ratio (see Supplementary material), of average activities from at least three 
independent dilutions of a single cell extract.
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Counter ion for potassium

In view of the fact that a high amount of K+ was present in L. lactis, the next step was to find 
a counter ion. Glutamate was found to be the best choice because it is the most abundant free 
amino acid in the cytoplasm of L. lactis, accounting for up to 50% of the total amino acid 
pool (Thompson et al, 1986; Poolman et al, 1987d). Furthermore, it is a better alternative 
to inorganic counter ions that can significantly inhibit enzyme activities if present at high 
concentrations (Pollard & Jones, 1979). Therefore, to examine the maximum non-inhibiting 
concentration of glutamate, enzymes were tested with varying concentrations of potassium 
glutamate. Up to a concentration of 400 mM LDH was relatively insensitive, but at 500 
mM, the activity dropped by 32% (Fig 1C). For PYK, between 300 and 500 mM potassium 
glutamate, activity dropped 18-24%. For GAPDH, above 300 mM, activity dropped around 
13%. Keeping in mind that the cytoplasmic concentration of K+ in L. lactis is very high, it 
is important to have an ample amount of K+ in the assay medium. The consequence of this 
might be reduced enzyme activities. This can be supported by the fact that enzyme activities 
inside the cell might not actually function at the maximum rate as observed in conditions 
without K+. However, in order to avoid substantial inhibition, like that observed in LDH at 
500 mM potassium glutamate, a final concentration of 400 mM was chosen for the in vivo-
like medium.

Addition of other metal ions

With the composition of the assay medium nearly complete 
we thought of possible additions that would improve 
applicability and reproducibility. Chemically defined media 
for L. lactis cells always contain a concoction of metals 
necessary for its growth. Hence, it is possible that these 
metals are present in the cytoplasm. We tested the effect 
of adding 1/10th of the concentration of metals present in 
CDMPC (Table 5) to the in vivo-like medium. The activities 
in the presence of metals are slightly but not significantly 
higher, and are not inhibited by metals (Fig 1D). Since 
trace elements can easily enter the reaction mixture as 
lab contaminants, adding a known amount improves 
reproducibility without sacrificing the measurement. 
Besides, it also ensures that an enzyme will not be limited 
if dependent on some metal, making the assay suitable for 
enzymes other than those already tested. It was therefore 
decided to add to the in vivo-like assay medium, 1/10th the 
concentration of metals present in CDMPC.

Table 5: Composition of the in vivo-
like assay medium (version 1.0) for 
L. lactis 

Component Concentration
HEPES 100 mM
K+ 438 mM

Glutamate 400 mM

Phosphate 1 mM

NaCl 50 mM

MgSO4
2 mM

(NH4)6Mo7O24
0.024 μM

CaCl2
2.04 μM

CoSO4
0.107 μM

CuSO4
120 μM

MgCl2
98.376 μM

MnCl2
2.021 μM

ZnSO4
0.104 μM

FeCl2 2.012 μM
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Proposed in vivo-like assay medium

The composition of the proposed in vivo-like assay medium for L. lactis growing cultures 
was thus finalized and is described in Table 5. 

Enzyme activities in the in vivo-like assay medium

The activities of all enzymes involved in glycolysis and pyruvate metabolism were tested in 
the in vivo-like assay medium in cell extracts of L. lactis. At this point, we further standardized 
the procedure for reproducibility, recognized interfering reactions, enzyme effectors, and the 
effect of incoming ammonium sulphate from coupling enzymes, and effect of freezing on 
enzyme activities.

Proportionality and reproducibility

In order to ensure proportionality of activity with the amount of cell extract added, five 
serial dilutions in duplicate were used for all assays. In all cases, at least four slopes i.e. 
two dilutions in duplicate were linear in time, as 
well as proportional with amount of cell extract 
added, and used for calculation of activities. 
Fig 2 shows the proportionality between LDH 
activity values obtained for five dilutions of 
the cell extract with a Pearson’s correlation 
coefficient square (r2) of 0.9987. For some 
assays, less diluted cell extract showed activities 
that were not proportional with activities in more 
diluted cell extracts. For the less active GLK and 
G6PDH, only undiluted and twofold diluted 
cell extract could be used to detect activity. The 
range of activities around which measurements 
are linear in time and proportional with amount 
of cell extract are listed in Table 6.

To check the reproducibility, the assays were tested on cell extracts from three independent 
chemostat cultures grown at a dilution rate of 0.15 h-1. Every enzyme activity in the cell 
extract from each chemostat was measured at varying dilutions of cell extract, at least in four 
fold and up to twelve fold, to test technical variation. An ANOVA analysis on the data showed 
that an average technical variation of 5% was present, and that any difference above this 
percentage can be attributed to biological variation. Based on this, activities of the replicates 
are in good agreement with each other (Supplementary material, Fig S3). 
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Figure 2: Vmax of LDH at different dilutions of cell 
extract. The activity at each dilution is an average 
of duplicate measurements and error bars represent 
deviation from the average.
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Interfering reactions

The present study uses cell extracts to determine 
enzyme activities. Due to this, there may be 
enzymatic activities present that could interfere 
with assays of interest. Among these are NADH-
oxidoreductase (NOX) (EC 1.11.1.1) and L-glutamate 
N-acetyltransferase (EC 2.3.1.1). Apart from these, 
we did not find any other interfering enzyme reactions 
in the assay medium. The NOX activity was corrected 
for by subtracting background rates in controls with 
cell extract and without substrate for each enzyme. 
The acetyltransferase enzyme uses acetyl-CoA and 
glutamate as substrates to generate CoA and N-acetyl 
glutamate. It can therefore interfere with enzyme 
assays where acetyl-CoA is a substrate, for example 
PTA. Therefore, in such assays it is essential to perform 
an additional control assay to correct for the activity 
of this enzyme. In this control, PTA is inhibited by 
adding its product acetyl-P in high concentrations (2 
mM) above its half inhibition constant (Ki) which is 
0.2 mM (Hoefnagel et al, 2002b).

Enzyme effectors

Certain enzymes need activation for exhibiting activity and this was the case for GAPDH 
and PGM. For these enzymes, the assay as reported for the in vivo-like medium was obtained 
after a series of troubleshooting experiments which led to different versions of the assay. 
GAPDH was initially measured by a previous method, where 5 mM of arsenate was used as a 
phosphate analogue to drive the reaction (Garrigues et al, 1997). All assays on the chemostat 
samples reported in this study were carried out with this non optimized method. However, 
later it was found that a higher concentration of arsenate (40 mM - from the method of Even 
et al., 2001) resulted in a higher GAPDH activity (results not shown). It was possible to 
measure GAPDH activity without arsenate, but with a high concentration of phosphate (50 
mM), provided PGK and ADP were added to the assay, to ensure consumption of the product 
1,3bisphosphoglycerate. This is the final assay that is reported here for GAPDH. 

Only recently it was found that L. lactis contains a PGM variant (dPGM), which requires 
2,3bisphosphoglycerate for activity (Solem et al, 2010). Based on this study it was decided 
to add 0.1 mM of this metabolite to the PGM assay. Again, assays on chemostats in this paper 
report Vmax values obtained in the absence of 2,3-bisphosphoglycerate. 

Table 6: The range of activity rates in 
μmol·min-1·mL-1 of reaction mixture for all 
enzymes, around which absorbance curves 
are linear (r2 ≥ 0.99).  The listed r2 values 
indicate the extent to which these activity 
rates are proportional to dilutions of cell 
extract.

Enzyme Range of Vmax 
(μmol·min-1·mL-1)

r2

GLK 0.06 - 0.15 0.993
G6PDH 0.03 - 0.06 0.994
PGI 0.12 - 0.3 0.940
PGIup 0.02 - 0.05 0.998
PFK 0.05 - 0.2 0.981
ALD 0.15 - 0.3 0.997
TPI 0.2 - 0.5 0.972
GAPDH 0.08 - 0.18 0.999
PGK 0.3 - 0.5 0.998
PGM 0.1 - 0.5 0.983
ENO 0.1 - 0.4 0.998
PYK 0.15 - 0.4 0.999
LDH 0.15 - 0.5 0.997
ACK 0.1 - 0.2 0.982
PTA 0.03 - 0.08 0.985
ADH 0.03 - 0.06 0.992
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Effect of desalting ammonium sulphate from coupling enzymes

Many enzyme assays activities entail the usage of coupling activities of enzymes of 
interest to the formation of NAD(P)H. However, a majority of these coupling enzymes are 
commercially available in a suspension of ammonium sulphate with a concentration as high 
as 3.2 M. As a result, in some cases such as the PGM assay, a concentration of ammonium 
sulphate of up to 60 mM would be present. Since our aim is to establish standard in vivo-like 
conditions for enzyme assays, we checked the effect of removing the ammonium sulphate 
in assays using coupling enzymes (Fig 3A). The enzymes that were most sensitive were 
those, which had assays with high concentration of ammonium sulphate due a higher number 
of coupling enzymes. PGM (66 mM ammonium sulphate) and ENO (20 mM) were most 
affected, followed by PGI (41 mM) and PFK (41 mM). Activities of other enzymes did not 
differ greatly in the presence of small amounts (1 to 5 mM) of ammonium sulphate. For ENO, 
an alternative assay (Lee & Nowak, 1992) measuring PEP absorbance at 240 nm is a more 
elegant way to solve the ammonium sulphate problem if measurements in the UV range are 
possible. In conclusion, ammonium sulphate could have an effect on enzyme activities and it 
is better to work with desalted enzymes.

Effect of freezing cells

It is not always possible to measure all enzyme activities on the same day as harvesting 
cells. The cells have thus to be stored until they are taken for analysis. However, storage in 
frozen state and thawing of L. lactis cells can affect retention of enzyme activities (Kamaly 
& Marth, 1989) and can lead to conformational or catalytic changes of sensitive enzymes 
(Ray & Speck, 1973). It was therefore important to check whether cells could be frozen 
without change in enzyme activities. Enzyme activity measurements on fresh batch-grown 
cells and the same cells stored frozen for 3 days were compared (Fig 3B). Furthermore, 
in order to see how long cell samples could be frozen without affecting enzyme activities, 
samples were analysed for activities after 4 days, 12 days and 4 months from the day the cells 
were harvested. 

For all enzymes except GLK, TPI and ADH, freezing of cell samples for 3 days did not 
affect enzyme activities. However, PFK, PGK and ENO activities declined between 4 to 
12 days, and GAPDH declined after 4 months (Fig 3C). Other enzymes were stable until 
the period checked, i.e. 4 months. Therefore, for accurate estimates of Vmax’s, GLK, TPI and 
ADH should be measured on the same day as harvesting the cells and GAPDH, PGK and 
ENO must be measured within 3 days. 
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Figure 3: (A) Vmax’s of enzymes containing coupling enzymes in assays, without ammonium sulphate relative to 
those with ammonium sulphate in the assay. (B) Vmax’s measured in batch grown cell samples frozen for 3 days 
relative to those obtained in fresh cells. (C) Relative Vmax’s showing loss of enzyme activity during storage of cell 
samples at -20 °C at 4 days (white bars), 12 days (grey bars) and 4 months (black bars) from the day of harvesting 
the chemostat at D of 0.15 h-1. Error bars represent standard deviations of a ratio, of average activities from at least 
three independent dilutions from two independent batch cultures for (A) and (B) and from the cell extract of the 
chemostat culture for (C).

Comparison with measured fluxes

In order to check whether the in vivo-like Vmax’s could support the actual flux in growing cells 
of L. lactis, they were compared with measured fluxes. In vivo-like maximal fluxes obtained 
from enzyme activities, corrected by the measured protein per gram cell dry weight, were 
compared with fluxes based on the organic acid concentrations, cell density and set dilution 
rate in a chemostat. Additionally, maximal fluxes from batch cultures were compared with 
measured fluxes reported in literature (Even et al, 2002; Nordkvist et al, 2003). The ratios 
of the Vmax to measured fluxes for all enzymes in both culture conditions are above 1 (Fig 4) 
as expected. We can thus conclude that the in vivo-like maximal fluxes are high enough to 
sustain the glycolytic flux observed in L. lactis cells growing at maximal speed. 
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The in vivo-like assay medium was tested for all and enzymes involved in glycolysis and 
pyruvate metabolism in cell extracts of L. lactis. The only activity that could not be detected 
was the acetaldehyde dehydrogenase activity. It could not be detected in any sample, in the 
in vivo-like assay in the non-physiological direction as well as the standard assay for E. coli 
from literature (Rudolph et al, 1968). Notably, this activity has never been reported for L. 
lactis and when it was assayed, it was undetectable (Thomas et al, 1980). The gene coding for 
the enzyme catalysing this reaction is adhE. This gene encodes a bi-functional acetaldehyde-
CoA / alcohol dehydrogenase. It could be that this enzyme needs some additional factor to 
show acetaldehyde dehydrogenase activity, although the ethanol dehydrogenase activity is 
detectable under the current assay conditions. 

We compared the enzyme activities of all enzymes in batch culture, with those reported in 
literature for L. lactis MG1363 grown on glucose in a chemically defined medium (Fig 5). 
Although enzyme activities can differ when cells are grown in different media, they can be 
compared if the cells are grown on the same sugar at similar growth rates. This was the case 
for growth conditions in this study and that of Even et al., 2002, which only differed in some 
components in the defined medium. Therefore Vmax values obtained in the in vivo-like assay 
medium were compared with those from Even et al, 2002. About 9 of 14 enzymes show 
lower activity under in vivo-like conditions as compared to values reported in literature (Fig 
5). This is expected since the assays for each enzyme reported in literature were optimized 
to observe maximal activity of that particular enzyme, even though under in vivo conditions 
the enzyme may not be maximally active. The fact that we do not see this for 5 enzymes 
demonstrates that the assays might not even have been optimal for enzymes in L. lactis in the 
first place. For instance, compared to the in vivo-like assays, in literature (i) the PYK assay 
lacked FBP and phosphate, (ii) PGM lacked 2,3 BPG, (iii) PGK contained EDTA, which 
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Figure 4: Ratio of Vmax to measured fluxes for chemostat 
cultures at D = 0.15 h-1 (white bars), and for batch 
cultures with measured fluxes from Even et al., 2002 
(grey bars) and from Nordkvist et al., 2003 (black bars). 
Error bars represent standard deviations of a ratio, of 
average fluxes from three independent cultures.

Figure 5: Vmax values obtained in the in vivo-like assay 
medium (white bars) and those reported in literature 
(Even et al, 2002) (squares) for batch culture of L. lactis 
MG1363. Error bars on the white bars represent standard 
deviations of average activities from two independent 
batch cultures.
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could scavenge an essential metal ion required for activity and (iv) ALD assay had a high 
concentration of chlorine ion which might have had an inhibitory effect. This is not surprising 
if one observes the various sources for enzyme assays in L. lactis (Table 2). Overall, the in 
vivo-like Vmax’s differ from literature, some higher, and some lower than those reported. 

Concluding remarks 

We developed a standardized in vivo-like assay medium to resemble the intracellular 
environment of growing cells of L. lactis as closely as is practically feasible. The design was 
based on the intracellular concentrations of ions measured from the biomass composition of 
chemostat cultures of L. lactis ssp. cremoris MG1363. This newly developed assay medium 
was tested for the enzymes involved in glycolysis and pyruvate metabolism. This assay 
medium can also be used to assay other enzymes. In cases where enzyme levels of cells under 
starving or non-growing conditions are being investigated, it will be important to adjust the 
concentration of phosphate in the medium, which significantly changes at different levels 
of glycolytic activity (Neves et al, 2002). We understand that changes in the assay medium 
might become necessary due to reasons that will become evident as the assay medium is used 
for further research studies. Hence for practical purposes, we propose that the composition 
described in this paper be referred to as ‘Version 1.0’ (refer Table 5). Overall we believe that 
the rational design process resulted in an assay medium that mimics the cytosolic conditions 
of L. lactis as much as practically possible. Together with our extensively validated protocols 
for sampling, storage, extract preparation and individual enzyme measurements, we hope 
that this endeavour should serve to unify the conditions of enzyme assays used in the 
systems biology initiatives of L. lactis. We also believe that it would be fruitful to apply this 
methodology to other microorganisms that are investigated with systems approaches in order 
to generate standard data sets that have a wider applicability.
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Supplementary material

Figure S1 – Effect of bead beating time and cooling period on sample temperature 
Figure S2 –  Effect of bead beating cycles on LDH activity and protein content 
Figure S3 – Reproducibility of Vmax measurements in chemostat cultures 
Table S1 – Enolase activity measuring NADH or PEP absorbance 
Basis of constant intracellular volume 
Rationale behind choice of buffer 
Statistical calculations 
Standard operating protocols: General set-up, Preparation of cell extract, Protein estimation 
by BCA method
DocS3: detailed description of composition and reagents of the standardized enzyme assays 
(available at http://aem.asm.org/content/78/1/134/suppl/DC1)

Bead beating was optimized for number of bead beating cycles with respect to sample 
temperature, protein content and lactate dehydrogenase (LDH) activity.

Figure S3: Reproducibility of 
Vmax measurements in chemostat 
cultures: Vmax’s of all enzymes 
for three independent chemostat 
cultures (open, shaded and filled 
bars) at D = 0.15 h-1 normalized 
to the mean activities of the 
triplicates. Error bars represent 
standard deviations of a ratio, 
of average activities from at 
least three independent dilutions 
from the cell extract of a single 
chemostat culture.
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Figure S2: Effect of bead beating cycles on LDH activity 
and protein content: Protein (open bars) and LDH activity 
(filled bars) of samples with varying number of bead 
beating cycles. Error bars represent standard deviation of 
an average of three independent measurements

Figure S1:  Effect of bead beating time and cooling 
period on sample temperature. Error bars represent 
standard deviation of an average of three independent 
measurements. 



52

Chapter 3

Basis of constant intracellular volume 

The intracellular volume of 1.67 μL per mg dry 
weight (Thompson, 1976) was assumed to be 
independent of the growth conditions because 
•	 a similar volume with a fold difference of 

only 1.15, was found for the same strain 
under different media conditions i.e. 2.9 
μL∙mg Protein-1 which is 1.45 μL∙mg dry 
cell weight-1, assuming average 50% protein 
per dry cell weight 

•	 the fold difference in internal volumes for similar strains, L. lactis subsp. lactis ML3 
and L. lactis subsp. cremoris Wg2 was 1.24, the specific intracellular volumes being 
2.9 and 3.61 respectively (Poolman et al, 1987d). Both these findings suggest that the 
intracellular volume can be assumed to be reasonably constant under different media and 
growth conditions.

Rationale behind choice of buffer for washing and storage

A variety of methods and buffers have been used to sample cells for enzyme activities. The 
most common is the one is to wash the cells twice with 0.2 % (v/v) KCl and then resuspend 
in Tris (45 mM)-tricarballylate (15 mM) buffer (pH 7.2) containing glycerol (20%), MgCl2 
(4.5 mM) and dithiothreitol (DTT) (1 mM) (Even et al, 2001). In this study, the following 
changes were made:
•	 The washing step was reduced to once in order to reduce sampling time and loss of 

activity. 
•	 The tris buffer (pKa = 8.06, effective pH range = 7 to 9) was replaced by HEPES at pH 

7.5, because it is more effective in maintaining enzyme structure and function at low 
temperatures (Baicu & Taylor, 2002) and is the same buffering component and pH in the 
in vivo-like assay medium. 

•	 The tricarballylate component is known to inhibit the activity of the enzyme aconitate 
hydratase and scavenge Mg+2 (Lewis & Escalante-Semerena, 2006). It was therefore not 
included in the buffer. 

•	 Glycerol was added at 15% (v/v) to ensure preservation of enzymes at -20 °C.
•	 The next component, MgCl2 was not added in the buffer while sampling because no 

enzyme activity is desired while sampling and Mg+2 is a requirement for some enzyme 
activities including proteases. 

Table S1. Enolase activity measuring NADH 
or PEP absorbance: Enolase enzyme showed 
the same Vmax when assayed by coupling with 
NADH consumption or PEP formation. Values in 
parentheses denote standard deviations of three 
independent measurements. 

Enzyme Activity (U·mg 
protein-1)

NADH absorbance 2.334 (0.117)
PEP absorbance 2.252 (0.120)
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Statistical calculations

Ratios or relative quantities calculated from experimental data fall under the category of 
indirect data. Their standard deviation is different from that of observed data and depends 
on the mathematical operation involved during calculation. Thus standard deviation with 
propagating uncertainty was calculated for a ratio of means with individual standard 
deviations according to the standard formula

All graphs with relative activities contain error bars that represent standard deviations 
calculated according to the formula above.

Standard Operating Protocol

Title:
Protocols for in vivo-like enzyme activity assays for L. lactis

Description:
Method for and preparation of cell extracts and general protocol for enzyme activities in 
Lactococcus lactis

Creator:
Anisha Goel

Affiliation:
Systems Bioinformatics, VU University, Amsterdam
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General set-up

The assays are based on consumption or formation of NAD(P)H and monitoring its 
absorbance at 340 nm (A340) in Greiner flat-bottom polystyrene microplates in a Novostar 
spectrophotometer (BMG Labtech, Offenburg, Germany). This means that addition of extra 
enzymes and substrates might be needed to couple the reaction to one that can be monitored.

In the P-transacetylase assay, the coenzyme-A formed in the reaction is oxidized by 
5,5’-dithiobis-(2-nitrobenzoic) acid (DTNB). Reduction of DTNB is monitored at 405 nm. 
For enolase phosphoenol pyruvate (PEP) is measured at 240 nm in the Greiner flat-bottom 
UV-transparent (UV-star) microplate. Absorbances of DTNB and PEP are monitored in a 
Spectramax spectrophotometer (Molecular Devices, Sunnyvale, CA, USA). Extinction 
coefficients for 300 µL reagent mixtures with final composition as in the in vivo-like buffer 
in microplates were determined to be ε340 · L = 5.06 · 103 M-1 for NAD(P)H, ε405 · L = 10.494 
· 103 M-1 for DTNB, and ε240 · L = 1.256 · 103 M-1 for PEP. 

The final volume is 300 µL, including 2, 5 or 10 µL sample and 30 µL of start reagent. First 
a baseline is measured with only the sample and reagent present. Then the machine pauses, 
allowing the addition of the start reagent (better by hand because it is faster and has less 
carry-over). The reaction is then followed for 10 minutes.

The details for the individual assays are given in the supplementary file DocS3.xls.

Plate reader settings:

Measurements in the Novostar are by a test protocol with the following settings: 
Mode: Absorbance 
Check: flying mode 
Number of kinetic windows: 2
Number of cycles: 50
Number of flashes per well & cycle: 3
Cycle time: 10 s
Number of multichromatics: 1
Excitation filter: ABS340
Emission filter: empty
Pause before cycle: 21

For Spectramax, the basic kinetic protocol can be used with the following specifications
Windows: 2
No. of wavelengths: 1
Wavelength (nm): 340 (NAD(P)H) / 240 (PEP) / 405 (DTNB) / 570 (Protein assay - BCA)  
Window 1: Time 3 min: 10s, Interval 0:10s, autocalibrate, column priority
Window 2: Time 4 min: 50s, Interval 0:10s, autocalibrate, column priority
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Preparation of cell extract by Fast Prep (protocol optimised for L. lactis)

Chemicals
Stock solutions		  Concentration	
HEPES		  50 mM	
KOH		  2 M
Glycerol		  60% (v/v)
Halt Protease Inhibitor Cocktail single use EDTA-free	 100x 	 product #78425
MgCl2.6H2O		  200 mM

MW Mstock Volumestock Volume(mL) Product code

HEPES 238.3 Sigma H3375

Glycerol 99 % (v/v) 60 % (v/v) 50 mL 200 Sigma G9012

KOH 56.11 2 M ~ 2-3 mL 200 

Extract buffer:
50 mM HEPES 
KOH to adjust pH 7.5
15 % glycerol

Protease inhibitor cocktail

Prepare fresh solution 2.383 g HEPES and 100 mL demi water and adjust the 
pH with 2 M KOH to 7.5. Add 50 mL of 60 % glycerol and add water until the 
volume is 200 mL

Add 100 μL to 10 mL of buffer

MgCl2.6H2O 203.3 200 mM 5 µL

Glass beads 100 µm BioSpec 11079101

Notes
Store all organic reaction components on ice. It is not allowed to use frozen extracts for 
activity measurements. This procedure is optimised for L. lactis 

Procedure
Sampling
1. Start the centrifuge and run it with the 80 mL tube rotor, to pre-cool to 4°C 
2. Pre weigh and pre cool six 2 mL screw cap tubes with 0.5 g 100 µm glass beads
3. Collect 150-200 mL cell culture in 80 mL centrifuge tubes on ice (cell culture must be 

equivalent of 100 mg dry cell weight, calculated from

 
4. Balance the tubes and centrifuge for 5 minutes at 10,000 rpm at 4°C
5. Discard supernatant 
6. Resuspend pellet from each tube in 10 mL cold extract buffer. Collect this in a single 

tube. Wash the walls with another 10 mL cold extract buffer and collect it the same 
tube

7. Centrifuge for 5 minutes at 10,000 rpm at 4°C 
8. Resuspend pellet in 3 mL cold extract buffer. Add 30 μL of 200 mM MgCl2 solution
9. Aliquot 0.5 mL samples in the cold screw cap tubes with glass beads
10. Drop the screw cap tubes in liquid nitrogen and store at -20°C 

Volume required mL mg DCW
A sample OD nm mg DCW mL

( )
( @ ) .

=
× ⋅ −

100
600 0 3 1 ⋅⋅ −OD 1
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Cell extracts
1. Thaw the frozen sample on ice
2. Add 5 µL protease inhibitor cocktail and 5 µL of 2 M MgCl2 solution (approx. 2 mM 

final concentration) to the sample
3. Place the tubes in the Fastprep machine and lock and close the system 
4. Shake for 3 bursts of 20 sec, at speed 6 (4.0 m·s-2)
5. Between bursts cool the tubes on ice for at least 120 seconds
6. Centrifuge tubes for 10 minutes at maximum speed at 4°C 
7. Transfer supernatant to pre-cooled, labelled 1.5 mL eppendorf tube and keep the tube 

on ice

General protocol enzyme activity (protocol optimized for Novostar / Spectramax)
Procedure

1.	 Turn on Novostar and incubator of Novostar at 30°C
2.	 Turn on water bath at 30°C
3.	 Prepare cell extracts (CE)
4.	 Make the following dilutions of cell extract in duplicate in a 96-wells plate:

Dilution Previous CE  dilution 
(μL)

Extract buffer + MgCl2 + 
PIC (μL)

Total (μL) Remaining (μL)

B (blank) 0 200 200 200
1x Undiluted CE 0 300 40
2x 130  (1x) 130 260 160
5x 100  (2x) 150 250 90
8x 160  (5x) 96 256 88
10x 168  (8x) 42 210 70
12.5x 140  (10x) 35 175 75
16x 100  (12.5x) 28 128 52
20x   76  (16x) 19 95 51
30x   44  (20x) 22 66 24
40x   42  (30x) 14 56 20
50x   36  (40x) 9 45 25
60x   20  (50x) 4 24 24

Note: 	 Add the buffer first, then the cell extract or dilution. Do not use the 200 µL pipette 
to add 25 µL or 40 µL. Use the 20 µL pipette only for adding the cell extract. For the buffer, 
add 160 or 170 µL with the 300 µL multi-channel pipette and the rest again with the 20 µL 
pipette to minimize errors. 

Make the above dilutions with the appropriate set-up choosing from the following set up in 
the 96-wells plate: Depending on enzyme, varying combinations of 5 dilutions

1 2 3 4 5 6 7 8 9 10 11 12

A B B 1x 1x 2x 2x 5x 1x 1x 2x 2x 5x

B B B 5x 8x 8x 10x 10x 5x 8x 8x 10x 10x

Blank Sample 1 Sample 2
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OR
1 2 3 4 5 6 7 8 9 10 11 12

A B B 8x 8x 10x 10x 12.5x 8x 8x 10x 10x 12.5x

B B B 12.5x 16x 16x 20x 20x 12.5x 16x 16x 20x 20x

Blank Sample 1 Sample 2

OR for single samples (depending on enzyme, varying combinations of 5 dilutions)
1 2 3 4 5 6 7 8 9 10 11 12

A B B 1x 1x 2x 2x 5x 5x 8x 8x 10x 10x

5.	 Prepare reagent mix specific for the enzyme that you would like to measure 
6.	 Incubate reagent mix at 30°C for about 10 minutes
7.	 As mentioned in the enzyme protocol, pipette 5, 10 or 2 µl of each sample/dilutions 

from the 96-wells plate into a fresh plate (Greiner 655101/655191/655801) with the 
2-20 µL multi-channel pipette

8.	 Add to each well 265/260/268 µl reagent mix with the 300 µL multi-channel pipette 
(2 x 132.5 µl)

9.	 Put your plate in the Novostar and adjust the layout for your measurement. Start test 
protocol with the settings described in the general set-up section. 

10.	 During the first 20 cycles, pipette in 1 row (12 wells) of 96-well plate with conical 
bottom, 70 µl of start reagent

11.	 In the pause of the program, open the plate holder and pipette (and mix) 30 µl of 
start reagent to each well (as fast as possible), starting with the second row and 
finish with the first row (from diluted to more concentrated)

12.	 Close the plate holder again and resume program
13.	 When all enzymes are done, measure the protein concentration of the cell extract.

Data processing
1.	 View your data in Novostar in the ‘evaluation part’. Double click on your 

measurement to view the data
2.	 Copy the raw data of protein and all the enzymes into a new excel file and save it.
3.	 Process the protein data and enzyme activity data taking into account the right 

dilutions. 
4.	 Calculate enzyme activities using the following formula:

Enzyme activity 	 =  NADH consumption/producing rate (s-1) * 60 * 60
(µmol.min-1.mgProtein-1)       Protein conc. (mg/ml) * εNADH (cm-1.mM-1) * L (cm)

The first factor 60 is to convert from seconds to minutes, the second factor 60 is the 
dilution of the sample in the reaction volume (5 µl sample into 295 µl reagent mix + 
start reagent). 

Molar extinction coefficient of NADH × L (path length) = 5.060 mM-1 for 300 µL reagent 
mixture with in vivo-like buffer in a 96-well plate (655101/655191) 
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Protein estimation by BCA method 

Chemicals
Component Mstock Procedure Product code
Protease inhibitor 
cocktail (PIC) 

100x 80 µL to 8 mL of extract buffer (Halt) product no. 
78425

Extract buffer + 2 mM 
MgCl2 + PIC

Add 80 µl of 200 mM MgCl2 solution and 80 µL of  PIC to 8 ml extract buffer

BSA (Stock solution 
Pierce)

2 mg/ml Use undiluted Pierce 23209

BCA protein assay kit Pierce 23225

Procedure
1. Measure protein levels in cell extract on the same day as the extract was made.
2. Pipette 200 μL of a BSA stock into 1.5 mL tube (200 μL of 2 mg/mL).
3. Add 2 μL of 200 mM MgCl2 solution and 2 μL of 100x Protease inhibitor cocktail to 

the BSA stock (which now has a concentration of 1.960784 mg/mL).
4. Make the following standard solutions by serial dilution:

Standard BSA + 2 mM MgCl2 + PIC Extract buffer + 2 mM MgCl2 
+ PIC 

BSA conc. (mg/mL)

7 200 1.960784
6 134 41.09 1.5
5 125 25 1.25
4 100 25 1
3 75 25 0.75
2 50 25 0.5
1 25 25 0.25
Blank 0 50 0

5. Pipette 10 μL of each standard/sample (use the dilutions of the enzyme measurements) 
into a 96-wells plate.

6. Make the BCA reagent by adding 200 μL solution B to 10 mL of solution A or a 
relevant amount enough for the number of wells to be analysed.

7. Add to every well 200 μL BCA reagent.
8. Incubate for 30 minutes at 37°C.
9. Determine absorbance at wavelength 570 nm with the Novostar, using test protocol 

‘BCA’.
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Abstract 

We tested the hypothesis that protein investment costs affect the metabolic strategy employed, 
with Lactococcus lactis, a simple model bacterium showing a distinct, anaerobic version 
of the bacterial Crabtree/Warburg effect (from mixed-acid to homolactic fermentation). 
The relative transcription and protein ratios, enzyme activities and fluxes of L. lactis were 
determined in glucose-limited chemostats at various dilution rates. A more than threefold 
change in growth rate was accompanied by metabolic rerouting with, surprisingly, hardly 
any change in transcription, protein ratios, and enzyme activities. Even ribosomal proteins, 
constituting a major investment of cellular machinery, scarcely changed. Thus, contrary to 
the original hypothesis, central metabolism in L. lactis appears to be always prepared for high 
growth rate and is regulated by changing enzyme activities rather than gene expression. We 
observed down-regulation of stress proteins and up-regulation of glycolytic proteins only at 
the highest dilution rate and during batch growth. We conclude that transcription and protein 
expression largely follow a binary feast / famine logic during growth on glucose.

Keywords Genome scale flux balance analysis, Lactococcus lactis, Metabolic shift regula-
tion, Multi-level omics, Protein investment
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Introduction

The fact that cells adapt to their environment induces two complementary questions: what is 
the molecular or physiological mechanism of the adaptive response, and why does it exist? In 
this paper we study a metabolic shift in which cells reroute metabolic flux from one pathway 
to an alternative pathway, seemingly with the same function but not necessarily the same 
yield. Such shifts have recently gained attention because of renewed interest in the Warburg 
effect, which is a shift to fermentative metabolism under aerobic conditions, occurring 
in tumour cells (DeBerardinis & Thompson, 2012; Warburg, 1956). The occurrence of 
metabolic shifts in a wide variety of (micro)organisms has been investigated extensively, 
including Escherichia coli (Wolfe, 2005), Bacillus subtilis and Corynebacterium glutamicum 
(Sauer & Eikmanns, 2005), Lactococcus lactis (Thomas et al, 1979; Neves et al, 2005), 
Saccharomyces cerevisiae (Postma et al, 1989; Huberts et al, 2012) and tumour cells 
(Gatenby et al, 2010); for a recent review see Goel et al (2012b). Many of these studies explain the 
regulatory mechanism of the metabolic shift from changes in redox potential (Vemuri et al, 
2006), gene expression (Daran-Lapujade et al, 2004), or differential enzyme activity (Thomas 
et al, 1979). Others focus on its competitive advantage (Piskur et al, 2006) or stress the 
importance of biochemical constraints (Heinrich et al, 1991), spatial structure of cells, within 
biofilms for example (Kreft, 2004), and limited intracellular and membrane space (Zhuang 
et al, 2011b). Many studies, however, emphasize the role of protein cost in overall cellular 
behaviour (Dean et al, 1986; Dong et al, 1995; Snoep et al, 1995; Dekel & Alon, 2005; 
Stoebel et al, 2008; Shachrai et al, 2010). Indeed, constraints on intracellular and membrane 
space influence optimal protein investment and eventually metabolic shifts. Similarly, some 
of us linked protein investment and metabolism and suggested that evolutionary optimization 
of resource allocation underlies the metabolic shift (Molenaar et al, 2009). We proposed 
a self-replicating system integrating several cellular subsystems. The predictions of this 
self-replicator model lead to the hypothesis that a trade-off between protein investment and 
metabolic yield ultimately governs the metabolic strategy in a growth-optimized microbial 
system. Depending on the proteins involved in the different metabolic pathway branches, 
investment of proteins (enzymes) varies with varying substrate availability and consequently 
growth rate, altering the metabolic profile of the microorganism. 

To test this hypothesis, a good model system exhibiting a metabolic shift, the implementation 
of which is simple enough to be able to quantify protein investment would be necessary. 
Surprisingly, few experimental studies investigate the metabolic shift at multiple cellular 
levels (Castrillo et al, 2007; Haverkorn van Rijsewijk et al, 2011; Huberts et al, 2012). We 
chose the model lactic acid bacterium Lactococcus lactis, because it exhibits an anaerobic 
metabolic shift between lactate and a set of compounds collectively known as ‘‘mixed-acids’ 
(formate, acetate and ethanol). Hence, respiration with all its bioenergetics uncertainties does 
not play a confounding role. Moreover, the strictly fermentative growth ensures that growth 
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is dependent on large fluxes through the pathways, and hence, one can expect high costs 
associated with the metabolic pathway employed. In L. lactis this effect is enhanced because 
it has a very simple metabolism in which carbon is almost exclusively used for catabolic 
energy demands, as the medium is supplied with all amino acids. Finally, this particular 
metabolic shift has direct relevance for industrial fermentations, determining biomass yields 
and acidification rates. L. lactis exhibits the fermentation-products-shift upon changing 
growth rate under steady-state environmental conditions (Thomas et al, 1979). This is 
inherently different from the other well-studied microbial model organisms, yeast, E. coli 
and B. subtilis, with respect to the fact that L. lactis does not show a diauxic shift upon using 
the overflow metabolites. L. lactis also lacks the citric acid cycle and an electron transport 
chain and therefore the capacity to respire under standard conditions. It satisfies its ATP 
requirement via glycolysis with net 2 ATP per glucose during lactic acid production. It gains 
at most 1 ATP with the metabolic shift to mixed-acids production. By contrast, yeast cells can 
gain up to 28 additional ATP via respiration instead of fermentation.

The data presented below consist of high-quality replicated transcriptome, proteome and 
enzyme activity measurements carried out on cells grown in chemostats at different dilution 
rates. Much to our surprise, during a smooth shift at the metabolic level from mixed-acids to 
lactate, and despite a threefold change in growth rate, we observed very little regulation at 
the gene or protein level. 

Results

Bioenergetics of the metabolic shift 

To study the shift from mixed-acid fermentation to homolactic fermentation we cultured 
L. lactis in triplicate in glucose-limited chemostat cultures at dilution rates (D, henceforth 
also referred to as growth rate) of 0.15 h-1, 0.3 h-1, 0.5 h-1 and 0.6 h-1. At a growth rate of 0.6 
h-1, close to the maximal growth rate in this medium, the culture primarily yields lactate, 
whereas at a growth rate of 0.15 h-1 it mainly performs mixed-acid fermentation (Fig 1A). 
The fraction of carbon flux towards lactate (normalized to the total carbon flux) increased 
at higher growth rates, from about 10% to 75%. At intermediate growth rates (0.3 and 0.5 
h-1) we observed a combination of mixed-acid and homolactic fermentation. Energetically, 
mixed-acid fermentation is more efficient, yielding 3 ATP per glucose, while homolactic 
fermentation yields only 2 ATP per glucose. Yet, a 65% increase in lactate flux -corresponding 
to a 33% decrease in ATP generated per glucose- was not accompanied by a drastic decrease 
in biomass concentration, which declined only 14% at D = 0.6 h-1 (homolactic fermentation) 
compared with D = 0.15 h-1 (mixed-acid fermentation) (Table 1, Supplementary material, 
Table S5). 



65

Uncoupled metabolism and protein expression

Figure 1: (A) Fraction of total carbon flux towards homolactic and mixed-acid branches. (B) Total ATP formation 
rate calculated by the genome-scale stoichiometric network model. Grey areas represent standard errors.

The consumption rates of most amino acids steadily increased with increasing growth rate 
(Supplementary material, Table S7). Arginine consumption however, increased and then 
dropped with growth rate. At 0.15 h-1, arginine was consumed at a rate of 0.28 mmol∙gDW-

1∙h-1, which gradually increased up to 0.8 mmol∙gDW-1∙h-1 at D = 0.5 h-1 and abruptly dropped 
at D = 0.6 h-1 to a value lower than that at D = 0.15 h-1. Parallel to the consumption of arginine, 
production of ornithine, citrulline and ammonia steadily increased and then also dropped 
(Fig 2B), reflecting the activity of the arginine deiminase pathway. In this pathway arginine is 
converted via citrulline to ornithine, ammonia and CO2 with concomitant production of ATP 
(Poolman et al, 1987b; Driessen et al, 1987). 

Table 1: Biomass concentration, apparent catabolic carbon balance and total carbon balance in glucose-limited che-
mostat cultures of L. lactis MG1363. Values represent average of 3 replicates except for 0.5 (duplicate) and 0.45 h-1.

Dilution rate (h-1) Biomass (gDW.L-1) Catabolic C balance % 1,2 C balance % 1,3

0.15 0.81 ± 0.08 84.0 ± 10 103.4 ± 11.8
0.3 0.83 ± 0.09 80.0 ± 9.8   99.9 ± 11.7
0.45 4 0.80 ± 0.07 86.0 ± 10 104.9 ± 11.5
0.5 0.74 ± 0.02 81.7 ± 4.8  99.4 ± 5.5
0.6 0.70 ± 0.04 80.2 ± 6.7 100.3 ± 8.6

1 % C-Balance = % (qC-out / qC-in); C-moles: glucose=6, lactate=3, pyruvate=3, ethanol=2, acetate=2, succinate=4, 
biomass=27.8 gDW/C-mole (Oliveira et al, 2005)
2 Excluding biomass, indicating % glucose simply catabolized to fermentation products
3 Including biomass
4 Single experiment, technical standard deviations reported

The carbon balances were closed with less than 12% standard deviation (Table 1). We 
also included the catabolic carbon balance (calculated without biomass output), which is 
a measure of the catabolism of glucose to fermentation products without any utilization in 
biomass. To obtain a complete view of ATP production, we calculated the ATP formation 
rates via a genome-scale modelling approach as described by Teusink et al (2006), using an 
existing genome-scale stoichiometric network model (Verouden et al, 2009 and updated by 
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Flahaut et al, 2013). This comprehensive method also takes contributions from amino acids 
into account and results in a higher ATP yield compared with methods that only consider 
substrate level phosphorylation (Supplementary material, Fig S7). The results indicate 
significant contributions from amino acid catabolism to the overall energetics. However, the 
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Figure 2: (A) Schematic overview of the arginine metabolic pathway. Arginine degradation proceeds via ArcA 
(arginine deiminase) producing ammonia, plus citrulline, which is further catabolized by ArcB (ornithine 
carbamoyltransferase) into carbamoyl-P plus ornithine. ArcC (carbamate kinase) then degrades carbamoyl-P into 
ammonia plus carbon dioxide, producing 1 mole of ATP per mole of arginine. Ornithine is exchanged for arginine 
by the arginine-ornithine antiporter ArcD1/2 (Poolman et al, 1987b; Driessen et al, 1987). The transcript and protein 
ratios and the metabolic fluxes per protein are plotted as a function of growth rate; the data are normalized relative 
to D = 0.15 h-1. Grey areas represent standard errors. (B) Arginine consumption rate, and ornithine, citrulline and 
ammonia production rates. (C) Residual arginine consumption at various growth rates (arginine in the medium = 
1.4 mM). (D) Illustration of repression mechanisms that balance arginine metabolism. At low arginine and glucose 
levels, ArgR (homohexamer) blocks the expression of the catabolic arc-operon. At high arginine and low glucose 
levels, ArgR and AhrC form a heterohexameric complex that blocks the expression of the anabolic arg-operon, 
whereas the arc-operon is no longer repressed (Larsen, 2005). At high glucose concentrations, the arc genes are 
repressed by carbon catabolite repression through CcpA/HPr-Ser-P.
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total ATP formation rate levels off at high growth rate (Fig 1B). Thus, at D = 0.6 h-1 cells 
grow faster but at the same rate of ATP formed per unit biomass as at D = 0.5 h-1, suggesting 
a higher yield on ATP at the higher growth rate. The physiological processes behind this 
apparent increase in yield remain unclear. 

Glycolytic fluxes do not correlate with Vmax, protein- or transcript 
abundance

We estimated all metabolic fluxes by averaging the flux ranges predicted by flux variability 
analysis (FVA) on the genome-scale model of L. lactis MG1363, constrained by all observed 
nutrient consumption and product formation rates. The estimated glycolytic flux increased 
proportionally with growth rate (Fig 3). However, the flux through the homolactic-branch 
enzyme lactate dehydrogenase (LDH) increased nonlinearly, and fluxes through the mixed-
acid-branch enzymes pyruvate formate lyase (PFL), acetate kinase (ACK) and alcohol 
dehydrogenase (ADH) increased until D = 0.3 h-1 and then decreased at the higher growth 
rates. In contrast to these changes in fluxes, the Vmax’s measured by enzymatic assays, as well 
as the protein- and transcript ratios hardly changed (Fig 3, Supplementary material, Table 
S1 and S2).

The Vmax’s and protein ratios were nearly constant for most glycolytic enzymes up to D = 
0.5 h-1, except for PFL, whose protein ratios decreased linearly above 0.15 h-1. The Vmax of 
glucokinase (GLK) gradually decreased at higher D’s, while the protein ratio increased at D 
= 0.6 h-1 compared with other growth rates. Between 0.5 h-1 and 0.6 h-1, the Vmax’s and protein 
ratios of enzymes encoded by the las operon, phosphofructokinase (PFK), pyruvate kinase 
(PYK) and LDH, and of fructose-1,6-bisphosphate aldolase (ALD) and triosephosphate 
isomerase (TPI) increased. Also Vmax’s of phosphoglucose isomerase (PGI), phosphoglycerate 
kinase (PGK) and phosphoglycerate mutase (PGM) increased, but the changes in Vmax were 
small compared with the changes in glycolytic flux. The enzymes of the mixed-acid fermentation 
pathway showed a decreasing trend. Protein ratios of phosphotransacetylase (PTA), and 
Vmax’s and protein ratios of ACK and ADH dropped at D = 0.6 h-1 compared with other D’s. 
The two copies of acetate kinase displayed opposite behaviour, which remains unexplained. 
At higher growth rate, the ackA1 transcript increased, while the protein ratio was constant, 
whereas the ackA2 transcript was constant, while the relative AckA2 protein ratio decreased 
to a third compared with that at 0.3 h-1. The correlation between enzyme activities and their 
respective protein ratios as measured in the proteome studies are shown in Fig 4A. Except 
for GLK, ACK and ADH, most enzymes show excellent correspondence between regulation 
of protein ratios and regulation of enzyme activities. In contrast, these ratios do not correlate 
proportionally with the changes in fluxes. At the level of transcription, most genes encoding 
glycolytic enzymes showed constant levels, except for a few that increased at the highest 
growth rate of 0.6 h-1 (Fig 3). These exceptions were pgiA (PGI), fbaA (ALD) and gpmA 
(PGM). (Supplementary material, Table S1).
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Figure 3: Schematic overview of the glycolytic pathway and downstream metabolic conversions. The transcript and 
protein ratios, the Vmax’s of the corresponding enzymes, the metabolic fluxes and the Vmax/flux ratios per enzyme are 
plotted as function of growth rate; the data are normalized relative to D = 0.15 h-1. Grey areas represent standard 
errors. For fluxes with isoenzymes those with highest protein abundance are shown: GAPDH, GapB; PGM, GpmA; 
ADH, AdhE; ACK: AckA1 () and AckA2 (). 

The metabolic shift is predominantly regulated at the enzyme activity level 

The conclusions from the flux and Vmax observations concerning regulation of the glycolytic 
and downstream pathway enzymes can be summarized by calculating the hierarchical and 
metabolic regulation coefficients. The hierarchical regulation coefficient (ρh) is defined as the 
relative change in flux over the relative change in Vmax and the metabolic regulation coefficient 
(ρm) is defined as its complement ρm = 1 – ρh (see Materials and methods for calculations). 
Except for the comparison of D = 0.5 h-1 and 0.6 h-1 where the Vmax values increase, the ρm’s 
are close to one (Fig 4B) because the flux increases substantially, while the Vmax remains 
almost unchanged. From D = 0.15 h-1 to 0.5 h-1 all the ρm’s are above 0.8. From D = 0.3 h-1 
to 0.6 h-1, the ρm’s are lower, indicating partial metabolic and partial hierarchical regulation. 
From 0.5 h-1 to 0.6 h-1, except glyceraldehyde 3-phosphate dehydrogenase (GAPDH), PTA and 
ACK, all the ρm’s are zero, indicating complete hierarchical regulation. The ρm’s of ADH for 
all growth rate comparisons except 0.15 h-1 to 0.5 h-1 are below zero, indicating complete 
hierarchical regulation. 

Figure 4: (A) Correlation between enzyme activity (Vmax) and protein levels of glycolytic and downstream pathway 
enzymes at various growth rates, relative to D = 0.15 h-1. Enzyme activities for which the log2 ratio deviates by at 
least 1 in one of the measurements are coloured. (B) Metabolic regulation coefficients of glycolytic and downstream 
pathway fluxes for different growth rate pairs. The hierarchical regulation coefficient (ρh) is defined as the relative 
change in flux over the relative change in Vmax. The metabolic regulation coefficient is defined as its complement ρm 
= 1 – ρh. Green shades indicate high metabolic regulation coefficients, and red shades high hierarchical regulation 
coefficients. Calculations are given in the Materials and methods section.
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Ribosome investment

Models of growth predict a proportional increase of the protein allocated to ribosomes 
(rProtein) protein with the growth rate (Molenaar et al, 2009). Indeed, in  E. coli, the amount 
of ribosomes dictates the capacity of protein synthesis and increases with growth rate. The 
ribosome abundance is quantified by the ratio of totRNA to the total amount of protein 
(totProt), as  ribosomal RNA (rRNA) is about 85% of the total RNA (totRNA) (Bremer 
& Dennis, 1996; Scott et al 2010). We determined the ratio of totRNA to the total amount 
of protein (totProt) as an estimate of the ribosomal content of a L. lactis cell. We observed 
that the totRNA/totProt ratio increased, but not proportionally, to the growth rate. The 
increase relative to the lowest growth rate levels off at the highest growth rate (Fig 5A). The 
mRNA- and protein ratios of the ribosomal proteins (rProtein) increase slightly, relative to 
those at the lowest growth rate, with the protein ratios increasing somewhat steeper than the 
corresponding mRNA ratios (Fig 5B and C).

−

−

−
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●

●
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Figure 5: Ribosome investment with growth rate. (A) The log2 change of totRNA/totProt ratio relative to the lowest 
growth rate 0.15 h-1. Grey areas represent standard errors. (B) The log2 mRNA ratios of rProteins, (C) The log2 
rProtein ratios from the combined soluble and membrane proteome, relative to 0.15 h-1 for L. lactis (this study). 
(D) The log2 rProtein ratios relative to the lowest growth rate 0.11 h-1 from the published proteome data of E. coli 
(Valgepea et al, 2010). 
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Growth rate-related binary response

At the highest growth rate, multiple cellular modules changed abruptly. Arginine metabolism 
is one such example, and this is not merely at the metabolite level, but also at the mRNA and 
protein levels (Fig 2A). An initial increase in the expression ratios of the genes arcAC1C2D1 
is followed by a significant reduction of the same transcripts plus arcB when comparing 
growth rates 0.5 h-1 and 0.6 h-1. At the protein level, ArcABC2 showed a similar trend while 
the ArcA protein ratio stayed constant between 0.15 h-1 and 0.5 h-1, but decreased at 0.6 h-1.

Another such important category was stress response genes. Identities of proteins related 
to stress were obtained from the GO-database (Ashburner et al, 2000). Most stress-related 
transcript and protein ratios remain unchanged between the growth rates of 0.3 h-1 and 0.5 
h-1, while most changes, if any, took place between growth rates of 0.5 h-1 and 0.6 h-1 (Fig 
6A and B). The correlation between transcripts and protein ratios of stress-related genes was 
substantially higher (0.632) than the ratios of all transcripts and proteins pooled together 
(0.262, Supplementary material, Fig S8; Fig 6C). We find similar but fewer indications 
of binary response in the proteins involved in lipid biosynthesis and transport as well 
(Supplementary material, Fig S11).                  

Discussion

Experimental design 

We characterized the growth-rate dependent metabolic strategies of the model lactic acid 
bacterium L. lactis at multiple cellular levels: at the level of mRNA, protein and metabolite 
abundance and enzyme activity. A graphical representation of the experimental setup is 
shown in Fig 7. Like others (Thomas et al, 1979), we observed a shift from mixed-acid 
fermentation at low growth rates, to homolactic fermentation at high growth rates, but no 
other study measured so many parameters of this metabolic shift simultaneously. Only a few 
quantitative studies are available that link growth rate of L. lactis with metabolic responses. 
One of these investigated amino acid metabolism in isoleucine-limited chemostat cultures 
of L. lactis IL1403 (Dressaire et al, 2008). No metabolic shift was seen in this study, most 
probably as a consequence of the glucose excess conditions employed. Lahtvee et al (2011) 
recently examined glucose limitation in L. lactis IL1403 in an accelerostat setup, but also in 
this case a metabolic shift to mixed-acid fermentation was not observed at the lower growth 
rates. 

We designed our experiments specifically to test the hypothesis that shifts in metabolic 
strategies are outcomes of evolutionary optimization of resource allocation, according to the 
earlier postulated self-replicator model (Molenaar et al, 2009). Examination of the proteome 
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Gene  Annotation

llmg_0080  osmotically inducible protein C

llmg_0093  hypothetical protein

llmg_0410  co-chaperonin GroES

llmg_0411  chaperonin GroEL

llmg_0638  ATP-dependent Clp protease proteolytic subunit

llmg_0986  ATP-dependent Clp protease

llmg_1080  universal stress protein A2

llmg_1088  gluthatione peroxidase

llmg_1350  putative tellurium resistance protein

llmg_1351  putative tellurium resistance protein

llmg_1352  putative tellurium resistance protein

llmg_1574  molecular chaperone DnaK

llmg_1575  heat shock protein GrpE

llmg_1576  heat-inducible transcription repressor

llmg_1648  two-component system regulator llrD

llmg_1649  sensor protein kinase kinD

llmg_1662  universal stress protein A

llmg_2023  universal stress protein A

llmg_2047  universal stress protein E

llmg_2163  hypothetical protein

llmg_2292  GTP-binding protein TypA/BipA-like protein

llmg_2302  non-heme iron-binding ferritin

llmg_2502  chaperone protein DnaJ

A					       B

C

Figure 6: (A) The transcript and (B) protein ratios of stress-
related proteins as function of growth rate with respective 
gene annotations. Grey areas represent standard errors. (C) 
Correlation between the stress-related transcript and protein 
ratios. See inset table for legend of gene identifiers.

data showed that a major fraction of total protein is invested in glycolysis and ribosome 
synthesis (Supplementary material, Table S2). To further quantify the protein investment 
in glycolysis, we measured the maximal enzyme activities using a recently developed in 
vivo- like enzyme buffer system (Goel et al, 2012a). Intracellular fluxes were inferred 
from exometabolome data on organic acids and amino acids by flux variability analysis 
of a genome-scale model. To our surprise, growth rate and the concomitant glycolytic flux 
could increase over threefold without major changes in mRNA and protein abundance and 
maximal activity of the enzymes involved (Fig 3). 
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mRNA and protein homeostasis

The homeostasis of mRNA and protein levels in the face of a three-fold increased dilution 
by growth is far from trivial. The rate of protein synthesis should scale up with increasing 
ribosome content. In order to define the relationship between growth rate and ribosomal 
content in L. lactis, we characterized total ribosomal RNA and total protein pools at each 
growth rate. The totRNA/totProt ratio, widely accepted as a measure of ribosomal content, 
showed a gradual, albeit non-proportional increase with increasing growth rate (Fig 5A). By 
contrast, Gausing reported that a rise in the growth rate of E. coli is paralleled by an increase 
in rProtein synthesis rate. From a specific growth rate of 0.6 h-1 to 2.2 h-1 this increase was 
even proportional (Gausing, 1977). 

If we assume that a rather stable level of most rProtein-encoding mRNAs will recursively 
yield more synthesized protein at higher growth rates, our data indicate a restrained yet 
simple strategy for maintaining ribosomal content in the L. lactis cell. This is plausible if the 
turnover rate of mRNA is much higher than dilution by growth, which is in fact true because 
mRNA lifetime in bacteria (E. coli) is typically a few minutes (Taniguchi et al, 2010), while 
the fastest dilution by growth in the L. lactis cultures (used in this study) is once every 
36 min. At all growth rates, there is a certain fixed amount of mRNA for rProteins that is 
sufficient to meet the rProtein requirement as demanded by the growth rate. 

The relationship between ribosome abundance and ribosome synthesis rate is not obvious. 
The results presented here support the idea that the major limitation for an increase in the 
ribosomal content is the synthesis of rRNA. This is because rRNA has the steepest increase 
among totRNA, rProteins and mRNA of rProteins (Fig 5A). Moreover, even if the rProteins 
were limiting at high growth rates, ribosome activity would not assuredly be affected, based 
on two reasons. First, most rProteins are located on the outside of the ribosome, and do 
not play a direct role in protein synthesis (Klein et al, 2004). Second, part of the rProteins 
can be removed without a loss in ribosome activity (Bubunenko et al, 2006; Noller et al, 
1992), pointing toward the idea that rRNA as such is functional as a ribozyme without the 
requirement of rProteins (Steitz & Moore, 2003). In the assembly of a ribosome, the early-
assembly rProteins are thought to structure the rRNA in such a way that it functions as a 
ribosome (Nierhaus, 1991). In our dataset the amount of early-assembly rProteins shows a 
gradual increase with increasing growth rate (Supplementary material, Fig S1), but it is not 
proportional to the rRNA abundance (Fig 5A). So even the minimally required subset of 
rProteins does not follow the same trend as the rRNA abundance. In the proteomic dataset 
of E. coli, growing at different growth rates (Valgepea et al, 2010), the relative ratios of 
rProteins show trends comparable to those in our study for rProtein synthesis (Fig 5C and D). 
However, it might be premature to speculate that lower rProtein requirement at high growth 
rates is a general phenomenon for bacteria, since not many datasets of rProtein abundances 
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in cells growing at varying growth rates are available. Combined with relatively constant 
mRNA levels this may explain constant levels of protein, assuming no effect of growth rate 
on protein stability. 

Figure 7: Experimental setup. (A) Glucose limited chemostats of 1.2 L volume were fed with chemically defined 
medium for prolonged cultivation (CDMPC) with 25 mM glucose at a flow rate F mL·h-1. CSi is the concentration of 
nutrients in the inflow, CSo, that in the chemostat and outflow, Xbiomass, the biomass concentration inside the chemostat 
and outflow. (B) Various dilution rates were chosen to span the metabolic shift of L. lactis. (C) Chemostats were 
harvested after 10 volume changes for samples for cell density, extracellular metabolite analysis, DNA microarray 
analysis, enzyme activity assays and finally for proteomic analysis. Metabolites were analysed by HPLC, DNA 
microarray analysis involved reverse transcription of RNA and Cy3/Cy5 labeling (Larsen et al, 2006) followed by 
hybridization of labeled cDNA to DNA microarray slides (Kuipers et al, 2002), and data analysis using the Limma-
package (Smyth, 2005). Enzymes were assayed under in vivo-like conditions (Goel et al, 2012a) and proteome was 
analysed by multiplexing proteins using 8-plex iTRAQ (Steen et al, 2010). For details see the Materials and methods 
section. 
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The relatively small increase in the abundance of ribosomes as a function of growth rate 
implies excess of protein synthesis capacity at low growth rate. Indeed it has been shown that  
the ribosomes can be stored in a hibernating state during low growth rate as observed in E. 
coli (Ueta et al, 2005), S. aureus (Ueta et al, 2010) and B. subtilis (Tagami et al, 2012). This 
mechanism of hibernating ribosomes has also been observed in mammalian cells (Krokowski 
et al, 2011). L. lactis has YfiA protein which belongs to the same class as SaHPF (Hibernation 
Promotion Factor) from S. aureus, which causes dimerization of ribosomes, thus rendering 
them translationally inactive (Ueta et al, 2010). Indeed we have observed higher transcripts 
level of YfiA at lower growth rates supporting this phenomenon. Thus at slow growth rates 
YfiA seems to act as a simple allosteric regulator to control protein biosynthesis at the level 
of ribosomes.

mRNA and protein regulation 

The correlation between the transcriptome and the proteome for all chemostat data pooled 
together was generally low, with r = 0.262. Although this correlation increased for individual 
functional categories (Supplementary material, Fig S9, Table S4), overall the change in 
protein ratios was not proportional to the change in transcript ratios. In a recent study, where 
the growth rate of one culture was gradually increased using an accelerostat, a high correlation 
between the transcriptome and proteome was observed for L. lactis (up to 0.69) (Lahtvee et 
al, 2011) and E. coli (up to 0.917) (Valgepea et al, 2010). In independent chemostat cultures 
of Saccharomyces cerevisiae, however, transcriptional changes did not largely contribute to 
the change in glycolytic behaviour (de Groot et al, 2007; Daran-Lapujade et al, 2004). Some 
studies in yeast show that the correlation between the mRNA and protein ratio is dependent on 
the gene category. For example, the mRNA-protein correlation is higher for genes involved 
in stress-response compared with genes involved in core metabolic functions like glycolysis 
(Brauer et al, 2008; Castrillo et al, 2007). It is thus most likely that glycolytic fluxes are 
regulated at the post-transcriptional and post-translational level, partly explaining the poor 
correlation between transcriptome and proteome (Oliveira & Sauer, 2012). In general it is 
common to find decoupled mRNA and protein ratios (Picard et al, 2009; Taniguchi et al, 
2010). 

Correlation of fluxes with proteomics: overcapacity of enzymes over flux

The glycolytic flux increased proportionally with the growth rate. However, this was not 
the case for transcripts, proteins and enzyme activities. The ratio of Vmax/flux showed that 
the enzyme activities were generally much higher than the actual flux inside the cell at all 
growth rates for all enzymes except for PGM, GAPDH and enolase (ENO) (Fig 3). For these 
enzymes the in vitro assays had technical issues as detailed in the Materials and methods 
section; for instance, the activity of ENO turned out to be sensitive to ammonium sulphate, 
present in the buffer because of adding coupling enzymes that are suspended in ammonium 
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sulphate solution (Goel et al, 2012a). For the other enzymes, their overcapacity as suggested 
by the Vmax/flux ratios could accommodate a four-fold increase in the flux. Presumably, an 
increase in residual glucose is sufficient to increase the flux through the glycolytic enzymes, 
as was observed also for yeast at different temperatures (Tai et al, 2007).

What is perhaps even more surprising is that the enzymes of the mixed-acid branch and 
the lactic acid branch also show an overcapacity. This is in direct contrast to the economic 
argument that the cost of proteins is a dominant factor for the implementation of a particular 
metabolic strategy. One exception is ADH, which seems to be dominantly regulated at the 
expression level. PFL activity could not be measured, as the enzyme is prone to oxidation 
(Melchiorsen et al, 2000). It was shown before that the protein level of PFL correlates  with 
the flux through the mixed-acid pathway (Melchiorsen et al, 2002). Indeed, in our data, the 
log2 protein ratios of PFL  decrease with increasing growth rate and decreasing flux through 
the mixed-acid pathway (Fig 3), suggesting hierarchical regulation.  

From our data it therefore seems that L. lactis does not change metabolic strategy because of 
resource allocation optimization, but rather, it keeps both systems active and uses effectors to 
change flux. One candidate regulator is fructose1,6-bisphosphate (FBP) (Wolin, 1964). The 
concentration of FBP has been shown to increase at higher growth rate (Konings et al, 1989) 
which is concomitant with a decrease in the mixed-acid pathway flux. FBP activates LDH 
and PYK (Mou et al, 1972; Jonas et al, 1972; Thomas et al, 1979; Garrigues et al, 1997; 
Goel et al, 2012a), and inhibits PTA and ACK (Lopez de Felipe & Gaudu, 2009) thereby 
explaining the metabolic shift qualitatively. FBP also activates HPr-Ser kinase which in turn 
activates CcpA-dependent gene expression (repression or activation) (Lopez de Felipe & 
Gaudu, 2009; Zomer et al, 2007; Titgemeyer & Hillen, 2002; Luesink et al, 1998). Also in 
other organisms, notably E. coli and S. cerevisiae, FBP has been implicated as a “flux sensor” 
affecting metabolic strategies (Kotte et al, 2010; Huberts et al, 2012). 

The reason for the overcapacity of enzymes is not clear, but in yeast it has been suggested 
that under dynamic conditions, overall it might be beneficial to switch between alternative 
pathways, rather than breaking down enzymes of the least optimal pathway all the time. This 
remains to be experimentally tested. 

Another inherent assumption of the self-replicator model is that organisms are evolutionarily 
optimized, and one may wonder whether the chemostat conditions employed here reflect any 
condition that L. lactis may have met in its evolutionary history. Native to a rich environment 
of milk, this microorganism might have been selected for growth on high sugar (lactose) 
concentrations, always encountering enough substrate to support heavy investments in 
protein. The choice of using resources scantily and being unprepared to handle a sudden 
nutrient abundance might in fact be penalizing in a rich-substrate environment in the presence 
of many competitors.
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Post-translational modification of enzymes

Post-translational modification of proteins as a regulatory mechanism is abundant in eukaryotes 
(Gnad et al, 2009; Oliveira & Sauer, 2012) as well as prokaryotes (Macek et al, 2008); see 
also, the PHOSIDA database (Gnad et al, 2011). A recent study revealed phosphorylation of 
L. lactis proteins at amino acid residues serine, threonine and tyrosine (Soufi et al, 2008). 
In the absence of such post-translational modification, we should find perfect correlation 
between the log2 ratios of Vmax’s and protein levels, since Vmax is a product of total enzyme 
concentration and the catalytic turnover number (kcat). We do find this, with a few exceptions 
(Fig 4A). Of the enzymes whose Vmax’s do not perfectly correlate with their protein ratios, one 
(GLK) is involved in phosphorylating glucose and two (ACK, ADH) are involved in the 
mixed-acid branch. The hexokinase in yeast is regulated via phosphorylation (Golbik et al, 
2001). L. lactis predominantly uses PTS systems for glucose transport, while GLK is only 
useful when a glucose permease (GlkU) is used, and post-translational modification might be 
quick way of altering GLK. Post-translational modification of ACK and ADH might have an 
influence on the metabolic shift in L. lactis.

Behaviour at near-maximal growth rate

The limits of growth were approached in the condition with D = 0.6 h-1, as the washout 
kinetics indicated a maximal growth rate of 0.74 h-1 for this medium (Supplementary material 
Fig S5). The biomass concentration decreased at the highest growth rates (Table 1), and 
the concentration of residual glucose in the chemostats changed quite drastically from 
undetectable in the chemostats at D = 0.15 h-1 up to D = 0.5 h-1 to a few mM at the highest 
growth rate of 0.6 h-1 (Supplementary material, Table S5). The medium was supplemented 
with all components up to concentrations that would make glucose the limiting factor. This 
was explicitly tested in our chemostat setting (Supplementary material, Fig S3). Alongside 
lower biomass concentration, the ATP yield increased at D = 0.6 h-1 (Fig 1B) permitting cells 
to grow faster but at the same rate of ATP formed per unit biomass. 

In addition, steadily increasing transcripts and proteins of the arginine catabolic pathway 
plummeted at D = 0.6 h-1; so also the consumption rates of arginine and the production rates 
of ornithine, citrulline and ammonia (Fig 2B). The upstream region of the arginine catabolic 
gene cluster arcABD1C1C2TD2 contains 6 ARG boxes for binding of ArgR (Larsen et al, 
2008), a putative CodY operator site and a cre-site for CcpA binding (Zomer et al, 2007). It 
was proposed that arginine  binds to the arginine regulator AhrC to promote derepression, 
via release of ArgR binding, of the arcABD1C1C2TD2 cluster (Larsen et al, 2004). We 
find that until D = 0.5 h-1, residual arginine levels are a monotonic function of the growth 
rate (Fig 2C): the enhanced expression of ArcA fits with such a scenario. At the highest 
growth rate, however, some other mechanism seems to inhibit expression and flux of arginine 



78

Chapter 4

catabolism. Possibly, arginine demand at a high growth rate is so high that intracellular levels 
have dropped.  No significant upregulation was recorded of the arginine biosynthetic genes 
argCJBF, argGH and gltSargE. Thus, it seems likely that CcpA-mediated carbon catabolite 
repression, as a result of the quick increase in residual glucose, is at the basis of the steep 
decrease in ADI activity (Supplementary material, Table S5).

The amounts of several stress proteins went down at the highest growth rate. This is 
reminiscent to the feast / famine behaviour seen in B. subtilis (Buescher et al, 2012) and 
E. coli (Ferenci, 2008), in which cells are prepared for all kinds of stresses at low growth 
rate and then abruptly invest much less in stress machineries when they suddenly encounter 
high glucose concentrations, at higher growth rates. The transcript ratios of the CcpA- and 
HPr- encoding genes increased significantly with a rising growth rate (Supplementary 
material, Table S1, Fig S6). Importantly, the phosphorylation state of HPr at position 46, 
i.e. HPr-Ser-P, increases with growth rate and this may directly impact the glycolytic flux 
and other metabolic rates (Gunnewijk & Poolman, 2000; Gunnewijk et al, 2001). Both the 
transcriptome and proteome are significantly, but not drastically, reorganized upon growth at 
D= 0.6 h-1 (Supplementary material, Table S1 and S2). Altogether, growing L. lactis with a 
rate close to maximal as compared to lower growth rates results in only mild differences in 
the respective proteomes and transcriptomes.

Conclusion 

We set out to find experimental evidence for the optimization of resource allocation with 
respect to the metabolic shift. What we ended up with was completely different. Studying 
the metabolic shift of L. lactis from mixed-acid fermentation to homolactic fermentation at 
multiple cellular levels we conclude that this paradigm shift is certainly not controlled at 
either the protein synthesis or the transcriptional level. 

From the analysis of the ribosomal protein abundance as a function of growth rate, we conclude 
that the strategy of L. lactis is one of overcapacity, allowing a rapid response to changing 
conditions, rather than economizing protein investment. Additionally, while approaching the 
limits of growth, L. lactis exhibits a feast or famine-like behaviour.

Choosing overcapacity means keeping life simple, which might in fact be useful in a complex, 
nutritionally rich environment. The behaviour of cells might not be digital per se, but possibly 
in discrete substrate regimes: high, low, and in between. In between high and low, mRNA 
is kept constant by high turnover rates, and the rest increases from the increased ribosomal 
capacity. One could argue that glucose is an unusually special substrate, but in uncertain and 
fluctuating environmental conditions, it might be pointless to track it any more precisely than 
a high/low presence, since it would change anyway. 
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Materials and methods

Strain and growth medium 

Lactococcus lactis ssp. cremoris MG1363 (Gasson, 1983) was grown on chemically defined 
medium for prolonged cultivation (CDMPC) as described by Santos et al, (manuscript in 
preparation) with 25 mM glucose as the limiting nutrient and the medium composition as 
detailed in Chapter 3 (Goel et al, 2012a). 

Culture conditions

Glucose-limited chemostat cultures were grown in 2 L bioreactors with a working volume of 
1.2 L at 30 °C, under continuous stirring. The headspace was flushed at 5 headspace volume 
changes per hour, with a gas mixture of 95% N2 (99.998% pure) and 5% CO2 (99.7% pure) with 
oxygen impurity less than 34 vpm. A pH of 6.5±0.05 was maintained by automatic titration 
with 5 M NaOH. Fermenters were inoculated with 4% (v/v) of standardized pre-cultures 
consisting of 45 mL of CDMPC inoculated with 300 µL of a glycerol stock of L. lactis MG 
1363 and incubated for 16 h at 30 °C. After batch growth until an optical density at 600 nm 
(OD600) of around 1.8, medium was pumped at the appropriate dilution rate (0.15, 0.3, 0.45, 
0.5, 0.6 h-1). The actual dilution rate was measured shortly before harvesting. Some replicate 
chemostat cultures had a slightly different dilution rate. The largest deviation was found for 
a chemostat which ran at a D = 0.45 h-1 while being set at a D = 0.5 h-1 (Table 1). However, 
since the transcriptome sample derived from this chemostat did not differ significantly from 
the two other replicates, the three samples were, for the benefit of statistical power, treated as 
biological replicates in the analysis of transcriptome and proteome data.

Harvesting of cells from chemostats 

The chemostats were harvested assuming a steady state at 10 working volume changes (Even 
et al, 2003). At harvest, the medium inflow was stopped and the entire culture in the chemostat 
was pumped out at a high flow rate into sampling tubes placed on ice; the whole procedure 
taking less than 90 s. Samples were collected for cell density, extracellular metabolite 
analysis, DNA microarray analysis, enzyme activity assays and finally for proteomic and 
fatty acid composition analysis.

Cell density 

Cell density was measured spectrophotometrically at 600 nm and calibrated against cell dry 
weight measurements performed in triplicate for each sample as follows. 4 mL of culture was 
filtered through a pre-dried, pre-weighed 0.2 µm cellulose nitrate filter (Whatman GmbH, 
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Dassel, Germany), washed twice with deionized water and dried to a constant weight. For 
one unit change of optical density, the change in dry weight was determined to be 0.31 ± 0.02 
gL-1OD600

-1. 

Fermentation end-product, ammonia and amino acid analysis 

Supernatant samples from medium bottles and chemostat cultures were prepared by filtering 
through a 0.20 µm polyethersulfone (PES) filter (VWR international B.V., Amsterdam, 
the Netherlands) and storing the flow-through at -20ºC until further analysis. Extracellular 
concentrations of lactate, acetate, ethanol, formate, and glucose were determined High 
Performance Liquid Chromatography (HPLC) as described in Goel et al (2012a) (see Chapter 
3). Residual glucose concentrations were determined by enzymatic coupling with NADP+ in 
an assay containing 100 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)-
KOH, 5 mM MgSO4, 2 mM ATP, 4.5 mM NADP+, 1.5 U∙mL1 hexokinase, 1 U∙mL-1 glucose-
6-phosphate dehydrogenase (G6PDH) and sample or standard. Ammonia concentrations were 
measured using a commercially available ammonia assay kit (catalogue no. AA0100, Sigma-
Aldrich, St. Louis, Mo, USA). Amino acids (AA) were analysed by liquid chromatography 
(LC) with fluorescence detection (350 nm excitation, 450 nm emission, RF 20-A, Shimadzu, 
’s Hertogenbosch, The Netherlands). Precolumn derivatization using ortho-phtalaldehyde 
(OPA) and 3-mercaptopropionic acid was applied. The analysis was carried out by on-line 
detection using a programmable SIL 10A autosampler (Shimadzu). In brief: 25 mg OPA were 
dissolved in 5 mL borate buffer (0.1 M, pH 10.2) containing 21 µL 3-mercaptopropionic 
acid. 25 µL of sample was mixed with 25 µL borate buffer (0.2M, pH 10.2) and 25 µL of a 
DL-norvaline internal standard solution (1 mM) was added. The sample is made up to 950 µL 
with MilliQ (Millipore, Amsterdam, The Netherlands) water and placed in the autosampler. 
To every sample the SIL 10A autosampler adds 50 µL of OPA solution before analysis. 
Analysis was carried out using a quaternary LC 20AB pump (Shimadzu) operated at 640 µL/
min. The pump delivered a gradient of 10 mM Na2HPO4, 10 mM Na2B4O7 pH 8.2 in MilliQ 
water, containing 5 mM NaN3 (eluent A) and acetonitrile:methanol:water 45:45:10 (v:v:v) 
(eluent B). The gradient started at 2% B held for0.5 min, ramped to 57% at 30 min, then to 
95% at 30.1 min, held for 3 min. The employed column was an Agilent, Zorbax Eclipse plus 
C18 , 150 x 3 mm x 3.5 µm (Agilent, Waldbronn, Germany), protected with a C18 precolumn, 
held at 40 ⁰C. The injection volume was 5 µL. Amino acids were quantified by the internal 
standard method against individual calibration lines obtained under the same conditions. 
Aspartate and glutamate measurements could not reliably be determined as the concentrations 
were too close to the detection limit. Fluxes qi (in mmol∙gDW-1∙h-1) were calculated as: qi = 
D × (Ci,supernatant - Ci,medium)/Xbiomass, where C is the concentration of compound i (mmol∙L-1), 
Xbiomass is the biomass concentration (gDW∙L-1), and D is the dilution rate (h-1).
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DNA microarray analysis

Cells (2 × 30 mL) were harvested by centrifugation (5 min, 4500 g); pellets were immediately 
frozen in liquid nitrogen and stored at -80 °C. For RNA isolation the frozen cells were 
thawed on ice. Subsequent cell disruption, RNA purification, reverse transcription and Cy3/
Cy5 labeling were done as described previously (Larsen et al, 2006). Labeled cDNAs were 
hybridized to full-genome DNA microarray slides of L. lactis MG1363 (Kuipers et al, 2002), 
with the addition of probes for rProteins. All reagents and glassware for RNA work were 
treated with DEPC. RNA, cDNA quantity and quality, and the incorporation of the cyanine-
labels were examined by NanoDrop (ThermoFisher Scientific Inc.) at 260 nm for RNA and 
cDNA, 550 nm for Cy3, and 650 nm for Cy5. The four chemostats with increasing growth 
rate were run as biological triplicates. Thus, three times the samples of an increasing growth 
rate were compared directly with each other in combination with a dye-swap (Fig 7).  DNA 
microarray slide images were analyzed using ArrayPro 4.5 (Media Cybernetics Inc., Silver 
Spring, MD). Filtering of bad- and low-intensity spots and signals, data parsing, automated 
grid-based Lowess normalization, scaling, data visualization and outlier detection were 
performed using the Limma-package (Smyth, 2005). We used the common reference design 
in which direct and indirect comparisons were used to increase statistical significance. Fold 
changes are considered to be significantly altered when the p value ≤ 0.05.

Enzyme activities: sampling, cell extract preparation and assay 
conditions 

A volume of cell culture containing 100 mg dry weight was centrifuged (4  °C, 5 min, 
8,000 rpm), washed once and resuspended in 3 to 6 mL 50 mM HEPES-KOH at pH 7.5, 
containing 15% glycerol supplemented with Halt Protease Inhibitor single-use cocktail, 
EDTA-free (Thermo Fischer Scientific, Rockford, IL, USA). This suspension was divided 
into 0.5 mL aliquots added to 0.5 mg glass beads with 100 µm diameter (BioSpec Products, 
Bartlesville, USA) in screw capped tubes, snap-frozen in liquid nitrogen and stored at -20 
°C until further analysis. Frozen samples were thawed on ice and MgCl2 was added to a 
final concentration of 2 mM. Cells were disrupted in a FastPrep FP120 homogenizer (BIO 
101, Vista, CA, USA) at a speed setting of 6, in 3 bursts of 20 s, with 120 s intermittent 
cooling. After centrifugation (4 °C, 10 min, 10,000 g), the supernatant was collected and a 
series of dilutions were prepared, which were used immediately for enzyme assays. Protein 
concentrations of cell extracts were determined on the same day by the bicinchoninic acid 
(BCA) method (Stoscheck, 1990) with a BCA Protein Assay Kit (Pierce, Thermo Fisher 
Scientific) using bovine serum albumin (BSA, 2 mg·mL−1 stock solution; Pierce), containing 
2 mM MgCl2 and Halt Protease Inhibitor cocktail, as the standard. Enzyme activities were 
assayed at 30 °C at pH 7.5 in freshly prepared cell extracts within 2 weeks of harvesting the 
chemostats. The enzymes GLK, G6PDH, PGI, PFK, ALD, TPI, GAPDH, PGK, PGM, ENO, 
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PYK, LDH, ACK, PTA, ADH and aldehyde dehydrogenase (ALDH) were assayed with 
the in vivo-like assay medium (version 1) as described by Goel et al (2012a) (see Chapter 
3) with the following differences: the coupling enzymes were not desalted, GAPDH was 
assayed with 5 mM arsenate (Garrigues et al, 1997) and PGM was assayed in the absence of 
activator 2,3-bisphosphoglycerate. These differences arose because the chemostat samples 
were assayed within a week of harvesting to avoid enzyme deterioration, and we had to work 
with an interim version of the in vivo-like assays was further developed later on. ALDH 
activity was not detected. All assays were checked for linearity and proportionality with 
increasing cell extract, with at least 4 technical replicates. The values obtained from the 
assays yield the total activity of all isoenzymes in the cell extract and are expressed as the 
rate of substrate converted, relative to total protein in the extract. Obtained activities in μmol∙ 
min-1∙ mg protein-1 were converted to mmol∙gDW-1∙h-1 by multiplying activities with the ratio 
of total protein content per dry weight estimated for each chemostat culture.

Proteomic analysis

For protein expression profiling 2 × 250 mL of culture from each chemostat was collected 
by directly pouring it in pre-chilled centrifuge bottles containing chloramphenicol at a final 
concentration of 10 μg·mL-1 (2.5 mL stock solution, 10 mg·mL-1). The cells were harvested by 
centrifugation (4 °C, 5 min, 8,000 rpm). Supernatant was discarded and the pellet was washed 
with 50 mL of wash buffer (50 mM HEPES-NaOH pH 7.5, 15% glycerol) and centrifuged. 
The washed cell pellets were resuspended in 10 mL wash buffer, frozen in liquid nitrogen 
and stored at -80 °C. Cells corresponding to OD600 of 50 in a total volume of 6 mL with 1 
mM MgCl2 were disrupted at 39 kPsi with a Constant Systems cell disrupter. The crude cell 
lysates were centrifuged (4 °C, 15 min, 12,000 g); the supernatant was carefully recovered and 
subsequently centrifuged (4 °C, 15 min, 267,000 g). The supernatant, containing the soluble 
fraction was removed and stored at -80 °C. The residual membrane fraction was washed once 
and finally resuspended in 500 μL of wash buffer and stored at -80 °C. Protein concentrations 
for both soluble and membrane fractions were determined with BCA kit (Pierce). For Trypsin 
digestion 50 µg of protein was resuspended in 50 µL of 500 mM TEAB, 2% acetonitrile and 
0.08% SDS. The disulfide bonds were reduced with 3 mM Tris (2-carboxymethyl) phosphine 
hydrochloride, and the cysteine residues were modified with 4 mM iodoacetamide. The 
8-plex iTRAQ labeling was performed three times (Fig 7), according to the manufacturer’s 
protocol with few modifications as described in Steen et al (2010). The peptide mixture was 
subjected to chromatography and spectrometric analysis. The pre-fractionation of peptides 
was performed on a silica based polysulfoethyl aspartamide strong cation exchange (SCX) 
column (catalogue number: 202SE0502 Poly LC Inc., Columbia USA). 
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Proteomic data analysis and statistics

Raw proteome for each sample data consisted of four sets of 8-plex iTRAQ signal strengths 
annotated with a peptide and protein identifiers. Three data sets each originated from 
membrane and soluble protein fractions. Membrane and soluble protein fraction were 
analyzed separately. Peptide identifiers could only be compared within and not between an 
8-plex iTRAQ data set. Individual samples within an 8-plex dataset were signal normalized 
by LOESS regression on an M-A transformation of the signals, as is common in microarray 
analysis. The assumption that the bulk of log-transformed signal ratios between different 
samples or between replicates will ideally be located symmetrically around 0 (no regulation) 
independent of the signal strength underlies this normalization technique. Since this technique 
is used originally when comparing only two samples, an adaptation for 8 samples was made. 
LOESS normalization was performed for each of the 28 unique pairs of samples within an 
8-plex set, and these normalizations were reconciled by linear modeling. The normalized 
data were used to fit the logarithmically transformed ratios of protein amounts at the different 
growth rates (relative to growth rate 0.15 h-1) taking into account the additional effects of 
peptide and iTRAQ 8-plex set. 

Fatty acid composition analysis

Frozen cells from the proteomic sample of each chemostat were thawed, and transmethylated 
and analyzed on a gas chromatograph for acyl chain composition according to the methods 
described earlier (Muskiet et al, 1983). The data reported is an average of the biological 
triplicates.

Total cell protein and total RNA

Frozen cells from the proteomic sample of each chemostat were thawed and 100 µL cells 
were diluted to a constant OD of 0.25. These were further diluted up to a volume of 400 µL 
and used to estimate total protein and RNA. For total protein quantification, the cells were 
lysed with 2% SDS and incubated at 96 °C for 2 h. Protein concentrations in the obtained cell 
lysates were determined in triplicate  using a BCA Protein Assay Kit (Pierce, Thermo Fisher 
Scientific) using BSA (2 mg·mL−1 stock solution; Pierce) as the standard (Stoscheck, 1990). 
For total RNA, cells were disrupted with a Qiagen Tissue Lyser (15 Hz, 2 cycles, 5 min each), 
and total RNA was extracted with phenol/ chloroform/ isoamylalcohol (25:24:1 v/v), and 
extracted again with chloroform/ isoamylalcohol (24:1 v/v). The total RNA was precipitated 
by the addition of isopropanol and by adding potassium acetate to a final concentration of 
150 mM, supplemented with Diethyl Phosphorocyanidate (DEPC) Followed by vacuum-
centrifugation for removal of the solvents from the RNA. Finally, samples were completely 
dissolved in MilliQ-DEPC and total RNA was quantified by measuring absorbance 260 nm 
using NanoDrop (Thermo Fisher Scientific Inc.). Data reported is an average of technical 
duplicates for each biological sample.
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Regulation analysis

We used regulation analysis (ter Kuile & Westerhoff, 2001) to investigate the growth rate-
related flux regulation in L. lactis. The hierarchical regulation coefficient (ρh) represents the 
extent of flux regulation through gene expression and via changes in enzyme concentration. 
It can be defined as,

                                                                                              (1)
 

for a pathway flux J, with concentration ei of enzyme i which carries a flux at a rate Vi. The 
extent of flux regulation of enzyme activity by metabolite x is called the metabolic regulation 
coefficient (ρm) defined as, 

                                                                                                                            (2)

                                                                          (3)

At steady state, the sum of the regulation coefficients ρh and ρm is one. The metabolic 
regulation coefficient ρm was calculated via ρh which was computed for a set of two growth 
rates, as the ratio of the difference between the logarithms of the fluxes to the difference 
between the logarithms of the enzyme activities, at both growth rates.  

Constraint-based modelling: flux balance analysis and flux variability 
analysis 

The genome-scale stoichiometric network model was based on an existing model of L. lactis 
MG1363 (Verouden et al, 2009 and updated by Flahaut et al, 2013) with modifications 
in growth and maintenance energy parameters which were estimated as described earlier 
(Teusink et al, 2006). The network was constrained with all measured experimental fluxes 
with the objective of maximising ATP dissipation to estimate the maintenance coefficient as 
the maximum ATP dissipation rate, and the ATP requirement for precursor biosynthesis was 
estimated by the reduced cost of biomass flux for ATP dissipation. This exercise was repeated 
to calculate the ATP parameters for each chemostat culture at each growth rate resulting 
in 12 models (for general models, and upper and lower bounds for each simulation, see 
Supplementary material, and Table S9). Flux variability analysis at a fixed growth rate was 
carried out for all models and the flux distribution was obtained by calculating the average 
of the flux range for each individual flux. All analyses were carried out using the web-based 
modelling tool: Flux Analysis and Modelling Environment (FAME) (Boele et al, 2012). 
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Regulation of ribosomes

A list of 54 ribosomal genes based on annotation of ribosomal subunits was selected from the 
genome of Lactococcus lactis, which was used to select the proteome data for the ribosomal 
proteins. From this list of ribosomal proteins, 52 proteins were detected in the experiments. 
Log2 ratios of ribosomal proteins at different stages of ribosome assembly are shown.

Figure S1: Ribosomal protein ratios relative to the lowest growth rate 0.15 h-1, for L. lactis, separated in early 
assembly, secondary assembly and late assembly (Nierhaus, 1991). 
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Figure S2: Regulation of the ribosomal proteins in the soluble 
and membrane fraction. Some of the ribosomal proteins are 
down-regulated in the soluble fraction. One could have the 
hypothesis that these are the same that show a high increase 
in the membrane fraction. However, the figure above suggests 
that this relation does not exist. We also see that the correlation 
between the two fractions is quite poor, but significant (p-value 
for two-sided test on Pearson correlation moment: 0.0357).

Glucose is the limiting substrate

To test whether glucose was the limiting substrate 
in the chemostats, we tested different feed glucose 
concentrations at two dilution rates, 0.3 and 0.6 h-1. 
We found a proportional increase in biomass with 
increasing glucose concentration confirming that 
glucose was indeed the limiting factor (Fig S3).

Furthermore, residual concentrations of amino 
acids were in reasonable ranges of the expected 
concentrations, calculated based on the theoretical 
consumption of amino acids from the CDMPC 
medium (see Materials and methods), for biomass 
formation. 
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dilution rates 0.3 and 0.6 h-1 with varying feed 
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Determination of the maximal growth rate by a wash-out experiment

Figure S5: Determination of the maximal 
growth rate of L. lactis in CDMPC 
medium in chemostats. Chemostats at 
steady state at D = 0.3 h-1 were subject 
to wash out. The washout of the biomass 
at D = 1.15 h-1 was used to determine the 
maximal growth rate. Maximal growth 
rate = D + slope = 1.15-0.4108 = 0.7392.

Carbon catabolite repression at the highest growth rate 

Carbon catabolite repression (CCR) is a predominant regulation mechanism of glycolysis 
in L. lactis, orchestrated via the carbon catabolite control protein CcpA (Zomer et al, 2007; 
Warner & Lolkema, 2003). We found that CCR is functional at both transcriptional and 
protein level at high growth rates (Fig S6). Genes displaying CCR have an upstream binding 
motif (cre-site) to which the CcpA-HPr-Ser46-P complex can bind (Zomer et al, 2007; 
Schumacher et al, 2011). We found a higher number of significantly regulated transcripts of 
CcpA regulon genes with greater fold changes at high growth rates (Table S1). But we could 
not find a coherent influence of CcpA on transcripts of glycolytic genes. The las operon’s 
transcriptional activity shows a very modest induction (1.5-2 fold) upon binding of the CcpA 
complex in the las promoter region (Luesink et al, 1998). We observed an increase only the 
transcript of the pyk gene; those of ldh and pfk were unchanged.

Figure S6: Carbon catabolite 
repression mainly takes place at 
the highest growth rate. On the 
positive x-axis is the increase 
in transcriptional activity of the 
genes pstH (encoding HPr) and 
ccpA (encoding CcpA) at different 
growth rates. On the negative x-axis 
is the total significant fold changes 
in the CcpA regulon at different 
growth rates. This data indicates 
that most of the carbon catabolite 
repression occurs at the highest 
growth rate when the residual 
glucose concentration is the highest.

y = -0.4108x + 0.6232 
R² = 0.9884 

-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

0 1 2 3 4 5

Ln
 X

(O
D

60
0n

m
) 

Time (h) 

0.5

1

1.5

2

0 0.3 0 0.5 0 0.6

C
m

ul
a

ve
 fo

ld
 c

ha
ng

e

Transcript HPr Transcript CcpA e ect of ccpA regulon

0

-10

-20

-30







89

Uncoupled metabolism and protein expression

Additional data

Biomass concentration and carbon balances, all replicates

Table S5: Biomass concentration, apparent catabolic carbon balance, total carbon balance and residual glucose 
concentrations with standard deviations, in glucose limited chemostat cultures of L. lactis MG1363. 

Dilution 
rate (h-1) Biomass (gDW.L-1) Catabolic C balance % a,b C balance % a,c Residual glucose (mM)
0.15 0.803 ± 0.068 81.02 ± 8.24 100.3 ± 9.84 BDL
0.15 0.797 ± 0.116 84.41 ± 14.1 103.5 ± 16.7 BDL
0.15 0.826 ± 0.017 86.45 ± 3.82 106.2 ± 4.54 BDL
0.3 0.842 ± 0.097 83.48 ± 10.9 103.7 ± 13.1 0.08 ± 0.06
0.3 0.806 ± 0.105 79.14 ± 11.6 98.56 ± 13.9 0.09 ± 0.06
0.3 0.840 ± 0.029 77.39 ± 3.58 97.53 ± 4.34 0.06 ± 0.06
0.5 0.762 ± 0.023 84.02 ± 4.28 102.3 ± 4.77 0.05 ± 0.06
0.45 0.790 ± 0.074 85.96 ± 9.97 104.9 ± 11.5 0.07 ± 0.06
0.5 0.722 ± 0.022 79.29 ± 4.13 96.59 ± 4.60 0.05 ± 0.06
0.6d 0.734 ± 0.005 72.84 ± 2.74 90.44 ± 2.95 0.06 ± 0.06d

0.61 0.719 ± 0.002 85.98 ± 3.61 107.85 ± 4.05 5.31 ± 0.14
0.613 0.641 ± 0.008 81.85 ± 5.03 102.51 ± 5.95 6.39 ± 0.32

BDL: Below Detection Limit
a % C-Balance = % (qC-out / qC-in); C-moles: glucose=6, lactate=3, pyruvate=3, ethanol=2, acetate=2, succinate=4, biomass=27.8 
gDW/C-mole (Oliveira et al, 2005)
b Excluding biomass, indicating % glucose simply catabolized to fermentation products
c Including biomass
d This sample was standing still for a while before filtering cells to get the supernatant, which means glucose must have been 
consumed already

List of putative isoenzymes 

The theoretical proteome of L. lactis contains a number of isoenzymes that could effectively 
perform the same function. This feature is not unique to L. lactis, since it is prevalent in a 
multitude of organisms. The possible reason for this is that it offers flexibility of regulation 
under a wide variety of environmental conditions (Postmus et al, 2012). We classified all the 
observed proteins of our dataset according to their annotated enzyme functions to compile 
a “putative” isoenzyme list of 115 enzyme groups (Table S3). In about half of the enzyme 
groups, proteins went undetected in our samples, and there was considerable variation in the 
spectral abundance of the detected peptides. This variation might indicate which proteins are 
more prominently involved in carrying out the respective reactions under glucose-limited 
chemostat growth of L. lactis. When a protein is undetected this does not confirm its absence, 
but it does indicate that it is present at very low quantities. This kind of information can be 
useful for (iso)enzyme studies with respect to engineering metabolic pathways under specific 
environmental conditions.
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ATP formation rates

We calculated the ATP formation rates 
according to the stoichiometries of 
substrate-level phosphorylation (VSLP) or via 
a genome-scale modelling approach (VGS) 
as described by Teusink et al (2006) using 
an existing genome-scale stoichiometric 
network model (Verouden et al, 2009 
and updated by Flahaut et al, 2013). The 
genomic method takes contributions from 
amino acids into account, whereas the 
substrate-level phosphorylation method 
only considers ATP associated with lactate and acetate formation. When based on the latter 
method, the curve VSLP plateaus above D = 0.5 h-1 (Fig S5). Thus, at D = 0.6 h-1 cells grow 
faster but at the same rate of ATP formed per unit biomass, suggesting a higher yield on ATP. 
The curve VGS is steeper, indicating significant contributions of amino acid metabolism to 
overall energetics, but also levels off. Surprisingly, the maximal ATP needed for biomass 
formation rate increases but drops at the highest growth rate at 0.6 h-1. 

Correlation between transcriptome and proteome

The correlation between the transcriptome and the proteome for all chemostat data pooled 
together was generally low, with r = 0.262 (Fig S8). 

Figure S8: Correlation of transcripts with soluble proteome with (A) darkened ribosomal and metabolic genes, and 
(B) shaded according to the codon adaptation index (CAI) of the gene (Sharp & Li, 1987). Genes with high CAI 
usually are highly expressed. There is no clear relation between CAI and correlation.
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For the CcpA regulon, a linear dependence was seen for all significantly altered transcripts 
and proteins (r = 0.536; Fig S9, Table S4). Similar results were obtained for several other 
pathways represented in the KEGG database, with the highest correlation coefficients being 
0.61 for starch and sucrose metabolism and 0.56 for glycine, serine and threonine metabolism. 
All other pathways had lower linear dependencies or contained less than 10 genes (Table S4).

Figure S9: Correlations between mRNA and protein log2 ratios, per regulon with the (A) membrane proteome and 
(B) soluble proteome. NA is the class of genes that are not annotated in a regulon.

Regulation of transcript and protein as a function of growth rate

The average log2 ratios of protein, transcript and flux were calculated relative to the lowest 
growth rate. The data can be found in Tab1 of the excel file Table S8. Similar to the analysis 
done previously for yeast (Brauer et al, 2008), we fitted the protein and transcript ratio data 
for each gene to a single level, a straight line, or a parabola as a function of growth rate. The 
residuals of the fits were evaluated with an ANOVA (p-value ≤ 0.05), and the parameters 
of the least complicated model (with the least parameters) were reported in a table (Tab2, 
Table S8). The columns p0, p1, p2 give the zeroth, first and second order terms of the model 
fitted to the protein data. The columns t0, t1, and t2 give the zeroth, first and second order 
terms of the model fitted to the transcript data. The regulation curves with their respective 
fits are illustrated in Fig S10. Genes that fit in our experiments to the zeroth order are stable 
and unadaptive to growth rate, they are considered to be the core genes. While the genes that 
fit to the first order fit are linearly dependent on the growth rate and therefore described as 
adaptive to the growth rate. Finally, a group of genes fit to the second order of fit. This means 
that besides growth rate, the expression of these genes depends on more than one other factor.
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Figure S10: Zero, first and second order fits for protein and transcript log2 ratios as a function of growth rate. 

Fatty acid biosynthesis 

Most of the fatty acid biosynthesis genes are organised in one large operon in L. lactis, 
and are regulated by FabT (Eckhardt et al, 2013). Transcription of these genes does not 
change coherently with increasing growth rate (Table S1). Only at the highest growth rate, 
transcription of the FabZ1 dehydratase gene is upregulated significantly, which is known 
to function as an isomerase that decreases the degree of saturation of the acyl-chains in 
Enterococcus faecalis (Lu et al, 2005). Hence we determined the length and degree of 
saturation of the acyl chains of the L. lactis cell membrane at different growth rates (Table 
S6). At the lowest growth rate, the cell membranes contain more saturated acyl chains (66%) 
and more abundant short C14 and C16 acyl chains (70%) compared with other growth rates. 
A higher degree of saturation decreases the fluidity (increases the anisotropy) whereas shorter 
chains increase the fluidity (decrease the anisotropy) compensating for each other. At the 
highest growth rate the degree of saturation is 54% and the percentage of short acyl chains 
is 55%, i.e. both, the degree of saturation and the contribution of short acyl chains decrease, 
thus implying that the membrane fluidity remains unaffected with changing growth rate. 
Nevertheless cells contain a different composition of fatty acids, with more saturated, shorter 
acyl chains at low growth rate and more unsaturated, long acyl chains at a high growth rate. 

Table S6: Acyl chain composition of L. lactis chemostat cultures at various growth rates. Values listed are percentages 
+ standard deviations of total fatty acids (100%) 

D (h-1) C14:0a C16:0a C18:0a C16:1n7a C18:1n7a C20:1n9a C20:3n6a

0.15 36.1 ± 1.3 28.6 ± 1.5 1.1 ± 0.3 5.2 ± 0.4 18.0 ± 0.3 9.4 ± 0.3 1.6 ± 0.2
0.3 23.6 ± 0.9 26.0 ± 1.0 1.0 ± 0.04 5.1 ± 0.3 36.7 ± 1.6 7.0 ± 0.8 0.7 ± 0.47
0.5 17.7 ± 1.1 29.7 ± 2.1 2.0 ± 0.5 3.7 ± 0.3 41.6 ± 3.1 5.3 ± 0.3
0.6 15.1 ± 0.9 36.8 ± 3.4 2.3 ± 0.3 2.6 ± 0.2 38.1 ± 2.5 5.1 ± 0.1

a Cx:YnZ stands for an omega Z family fatty acid with a chain of x-carbon atoms and Y double bonds
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Zeroth order 
p = p0 

First order 
p = p0 + p1 ∙ μ  

Second order 
p = p0 + p1 ∙ μ + p2 ∙ μ2 
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Lipid biosynthesis and transport protein levels as a function of growth rate

Figure S11: Log2 ratios of proteins involved in lipid biosynthesis (A) from the membrane proteome and (B) soluble 
proteome, and (C) substrate transport protein ratios, as a function of growth rate. Grey areas represent standard error. 
A majority of these proteins show no change. The few that do, mostly show an abrupt change from 0.5 h-1 to 0.6 h-1.
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Comparison of membrane and soluble proteome ratios and proteins in COG classes

Figure S12: Quality control for proteomics data: for 
all the chemostats, cells were lysed and the soluble 
and membrane proteome was isolated as described in 
Materials and methods. For each growth rate the relative 
quantification for proteins was performed on soluble and 
membrane fractions in independent experiments. This 
figure shows that the log2 ratio of a protein in soluble 
or membrane proteome is correlated. Thus a change 
in the ratio for a protein is equally well represented in 
both the fractions. The number of spectra obtained for 
a particular protein indicates its enrichment in either 
soluble or membrane fraction. Proteomics on exclusive 
membrane fractions allows investigating the minor 
changes in the abundance of membrane proteins with 
high confidence.

Figure S13: (A) Fraction of proteins in each COG 
category observed in the proteomics measurements. 
Whether a protein is membrane-associated or located in 
the cytoplasm located may be derived from the number 
of spectra in each of the fractions. (B) The number 
of proteins in each COG category that has either the 
maximum number of spectra in the membrane or in the 
soluble proteome. See inset table for legend of identifiers.
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[N] Cell motility
[O] Posttranslational modification, protein turnover, chaperones
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[Q] Secondary metabolites biosynthesis, transport and 
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[R] General function prediction only
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[T] Signal transduction mechanisms
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List of models

R_ATPM_general_model.xml

Stoichiometric model of L. lactis subsp. cremoris MG1363, with a modified biomass equation 
excluding ATP consumption, and objective of maximizing ATP hydrolysis. Constraints used 
for analysing individual growth rates are listed in Table S9, Tab1.

FVA_general_model.xml

General stoichiometric model of L. lactis subsp. cremoris MG1363 with the objective of 
maximizing biomass formation. Constraints used for analysing individual growth rates are 
listed in Table S9, Tab2.

List of supplementary material Tables

All tables (except Tables S5 and S6, already presented in the previous sections) are available 
for download at the following link:  
https://www.dropbox.com/s/1uhigboxsh0o7t8/Chapter4_Supplementary_Tables.zip

Table S1: Transcriptome analysis of L. lactis MG1363 at varying growth rates. Tab1 (all) 
contains all genes sorted in ascending order of the accession number. Tab2 
(regulon) contains the genes sorted based on their regulon and Tab3 (COG-cat) 
based on their COG-category. 

Table S2: Proteome analysis of L. lactis MG1363 at varying growth rates. All measured 
proteins are sorted on their accession number. Indicated are the number of spectral 
reads and degrees of freedoms from the membrane (mem) and soluble (sol) 
fractions of every measured protein. 

Table S3: List of (iso)enzymes of L. lactis MG1363 obtained from the proteome analysis. 
Table S4: Correlations between transcripts and proteins of KEGG-categories (Tab1) and 

regulons (Tab2). 
Table S5: Biomass concentration, apparent catabolic carbon balance, total carbon balance 

and residual glucose concentrations with standard deviations, in glucose-limited 
chemostat cultures of L. lactis MG1363. 

Table S6: Acyl chain composition of L. lactis chemostat cultures at various growth rates. 
Values listed are percentages + standard deviations of total fatty acids (100%) 

Table S7: All amino acid consumption rates (q-rates) at various growth rates. Aspartate and 
glutamate measurements could not reliably be determined as the concentrations 
were too close to the detection limit. 

Table S8: Average log2 ratios of protein, transcript and flux calculated relative to the lowest 
growth rate (Tab1) and parameters of the least complicated regulation fit model of 
transcript and protein as a function of growth rate (Tab2).

Table S9: Constraints for all R_ATPM FBA’s (Tab 1) and FVA’s (Tab 2).
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Abstract 

The metabolic shift from homolactic to mixed-acid metabolism in Lactococcus lactis has 
been intensively studied, and several mechanisms have been suggested based on in vitro 
kinetic data or gene expression studies. Here we aim to connect the in vitro mechanism 
to the metabolic shift in vivo. We show that there is a strong positive correlation between 
the glycolytic flux and the extent of homolactic fermentation in a mixed-acid fermentative 
lactose-utilizing L. lactis MG1363 derivative. This correlation was caused by metabolic 
regulation. We subsequently provide new evidence for a causal relationship between the 
concentration of fructose-1,6-bisphosphate (FBP) and the metabolic shift. We show that 
2,5-anhydromannitol, which converts to a non-metabolizable FBP analogue in vivo, almost 
doubles the flux towards lactate when taken up by the cells. In vitro the activating effect of 
the analogue on lactate dehydrogenase (LDH) is similar to native FBP, whereas up to 5 mM 
concentrations of the analogue had no effect on the enzyme phosphotransacetylase (PTA). 
The activation concentration, however, was much lower than normal intracellular FBP 
concentrations. In conclusion, the alteration of FBP levels in L. lactis has a major influence 
on metabolic fluxes after the pyruvate branch, which suggests a causal effect of FBP. Whether 
this is a consequence of LDH activation or PTA inhibition still needs to be determined.

Keywords: Fructose analogue, Lactococcus lactis, Metabolic regulation, Metabolic shift, 
Non-metabolizable FBP analogue
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Introduction

Organisms often shift from one mode of metabolism to another in the process of metabolizing 
substrates. Classical examples include the Warburg effect in mammalian cells that shift from 
aerobic respiration to lactic acid fermentation (Warburg, 1956), aerobic respiration versus 
ethanol fermentation in yeast (Postma et al, 1989) and the oxidative phosphorylation versus 
acetate secretion in Escherichia coli (Wolfe, 2005). Similarly, the metabolic shift in the lactic 
acid bacterium Lactococcus lactis comprising the change from mixed-acid to homolactic 
metabolism is also such an example (Thomas et al, 1979). Due to its relative simplicity, 
genetic accessibility and easy growth, the predominantly fermentative L. lactis is an ideal 
model to study the metabolic shift. Under a variety of conditions, L. lactis exhibits a metabolic 
shift from producing a mixture of acids and ethanol (mixed-acid pathway) at low growth 
rates, to producing almost exclusively lactic acid (homolactic pathway) at high growth rates.

The metabolic shift in L. lactis, has received considerable attention (for reviews on regulatory 
mechanisms see Thompson (1987), Cocaign-Bousquet et al (1996), Neves et al (2005), 
Kowalczyk & Bardowski (2007), Teusink et al (2011). The shift in L. lactis was first observed 
in carbon-limited chemostats at low growth rates (Thomas et al, 1979) who explained it 
based on lower enzyme activity of lactate dehydrogenase, the enzyme responsible for the 
homolactic pathway. The authors also highlighted the activation of lactate dehydrogenase 
(LDH) by the glycolytic intermediate fructose-1,6-bisphosphate (FBP), as already reported 
earlier (Mou et al, 1972; Jonas et al, 1972). Mixed-acid fermentation was also observed 
during growth on slowly fermentable sugars like galactose, maltose, ribose and xylose, also 
under carbon excess conditions (Thomas et al, 1980; Lohmeier-Vogel et al, 1986; Cocaign-
Bousquet et al, 1996). These results indicate that the rate of sugar uptake might be a causative 
factor and in the case of limiting glycolytic rate, the ATP production rate is maximized by 
utilizing the mixed-acid fermentative pathway. The presence of oxygen is also associated with 
heterofermentative behaviour (producing acetate, CO2 and other products) and high acetate 
production in particular, attributed to the activation of NADH-oxidising enzymes (Smart & 
Thomas, 1987; Cogan et al, 1989). Other factors include the inhibition of mixed-acid pathway 
enzymes by triose phosphates (Thomas et al, 1980; Takahashi et al, 1982), activation of LDH 
by the NADH/NAD+ ratio (Garrigues et al, 1997), the imbalance between catabolism and 
anabolism (Garrigues et al, 2001) and the controlling effect of glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) activity (Poolman et al, 1987a; Even et al, 1999). All the above 
studies have been crucial in elucidating in vitro, the detailed mechanisms involved in the 
metabolic shift. Apart from these approaches, the in vivo kinetics of a glucose pulse has been 
monitored through in vivo-NMR shedding light on the dynamics of nicotinamide adenine 
nucleotides, inorganic phosphate, glycolytic intermediates and pathways downstream of 
pyruvate. The most important conclusions were that the glycolytic flux was not primarily 
controlled at the level of GAPDH by NADH, and that the ATP/ADP/Pi levels could have a 
significant role (Neves et al, 2002).
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Despite the wealth of literature, the currently available data sets are of descriptive nature. 
They do not allow inferring causality of a particular metabolite controlling the metabolic shift. 
Determining a causal effect is not trivial because the molecules involved are highly connected 
within the metabolic network. To infer causality the actual concentration of a metabolite 
needs to be manipulated with little direct effect on other, potentially regulating molecules. 
FBP is a potentially relevant regulator, shown recently as a link between glycolytic flux and 
the metabolic shift in yeast (Huberts et al, 2012) and E. coli (Kotte et al, 2010). In L. lactis, 
the level of FBP as an allosteric activator of LDH was one of the first candidates labelled 
as a regulatory factor (Thomas et al, 1979) pointing towards “metabolic regulation” where 
the regulation is due to the effects of a metabolite, and not via gene or protein expression. 
FBP levels are also reported to correlate with high growth rate (Konings et al, 1989) and 
homolactic fermentation (Thomas et al, 1979). However, the activating concentration of FBP 
for LDH is in the micro-molar range (Garrigues et al, 1997), which is much lower than the 
FBP concentrations present in cells growing at low growth rates and exhibiting mostly mixed-
acid fermentation (Konings et al, 1989). A more likely mode of action, is the FBP inhibition 
of the mixed-acid pathway enzymes, phosphotransacetylase (PTA) and acetate kinase (ACK) 
(Lopez de Felipe & Gaudu, 2009). Additionally the expression of these enzymes is repressed 
via the carbon catabolite protein regulator (CcpA) the activity of which is stimulated by FBP. 

The intracellular FBP concentration thus seems like a good candidate for a high level 
of control on lower glycolysis in L. lactis. We therefore reasoned that we could address 
the question whether this molecule is able to alter the metabolic shift by using a non-
metabolizable FBP analogue. The structural analogue of β-D-fructose, 2,5-anhydromannitol 
(2,5AM) (Fig 1) can be taken up by cells and further converted into 2,5-anhydromannitol-
1-monophosphate (2,5-AM-1-P) by glucokinase (GLK) and then into 2,5-anhydromannitol-
1,6-bisphosphate (2,5-AM-1,6-P2) by phosphofructokinase (PFK), which is a dead-end and 
non-metabolizable analogue of FBP (Hartman & Barker, 1965; Raushel & Cleland, 1973; 
Marcus, 1976; Riquelme et al, 1984). We show here that the addition of 2,5 AM causes a shift 
from mixed-acid to homolactic metabolism in an L. lactis strain naturally exhibiting mixed-
acid fermentation. This shift is most likely caused by the activation of LDH by 2,5-AM-
1,6-P2. 

Figure 1: Comparison of (A) 2,5-anhydro-D-mannitol with (B) β-D-fructose showing their structural similarity. 
HXK, hexokinase, PFK, phosphofructokinase.
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Materials and methods

Strain and growth conditions

Lactococcus lactis subsp. cremoris MG1363 (Gasson, 1983) and its isogenic derivative 
Lactococcus lactis subsp. cremoris HB34 was grown on chemically defined medium for 
prolonged cultivation (CDMPC) as described by Santos et al, (manuscript in preparation) 
with 25 mM glucose or 12.5 mM lactose as carbon source and the medium composition as 
detailed previously (Goel et al, 2012a). Strain HB34 is a lactose positive isolate of MG1363 
which carries a point mutation in the celB promoter identical to the one described for strain 
HB21 (Solopova et al, 2012). For enzyme activity assays, batch cultures were grown at 30 °C 
in 50 mL tubes either static with 50 mL volume (called static cultures) or aerobically, shaken 
at 100 rpm with 10 mL volume (called aerobic cultures).

Fermentation end-product analysis

Supernatant samples from cultures were prepared by filtering through a 0.20 µm 
polyethersulfone (PES) filter (VWR international B.V., Amsterdam, the Netherlands) and 
storing the flow-through at -20ºC until further analysis. Extracellular concentrations of 
lactate, acetate, ethanol, formate, and glucose were determined High Performance Liquid 
Chromatography (HPLC) as described previously (Goel et al, 2012a). 

Acidification experiments

Mid-logarithmic cells grown on glucose-CDMPC were washed twice with saline supplemented 
with 5 μg · mL-1 chloramphenicol and subsequently re-suspended in CDMPC without a 
carbon source. The CDMPC was supplemented with 10 µM of 5-(6)-Carboxyfluorescein 
(#21877, Sigma-Aldrich, Netherlands) and 5 μg · mL-1 chloramphenicol. Multiple wells of 
a black microplate with a transparent bottom were filled with 190 μL of this suspension and 
the optical density (OD) of each well was determined at 600 nm. Subsequently 10 μL of 0.5 
M or 1 M solutions of investigated di- or monosaccharides respectively were added. The 
buffer capacity of CDMPC is limited and therefore cell metabolism leads to acidification 
which was detected as a drop in the fluorescence signal with an emission wavelength of 520 
nm (excitation 485 nm) measured every 5 min for at least 3 hrs. Acidification rates were 
determined as the maximum value of the negative slope of the decreasing fluorescence value 
for a 30 min time interval. The values obtained were normalized to the OD. 
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Enzyme activities: sampling, cell extract preparation and assay conditions

All procedures for enzyme activity measurements were essentially the same as described 
earlier (Goel et al, 2012a). Enzymes were assayed in freshly prepared cell extracts (11 mg 
protein • mL-1) at 30 °C. Except for experiments with the FBP analogue, all enzymes were 
assayed in the in vivo-like assay medium (version 1). NADH oxidase activity was assayed by 
the addition of cell extract to a mix of the in vivo-like assay medium and 3 mM NADH, and 
monitoring NADH consumption at 340 nm.

FBP analogue synthesis and enzyme assays

30 mM of 2,5-anhydromannitol (#sc-220807, Santa Cruz Biotechnology, Germany) was 
mixed with 30 mM ATP (#A2383, Sigma-Aldrich, Netherlands), 12 U · mL-1 hexokinase 
(#1426362001, Roche Diagnostics, Netherlands) 12 U · mL-1 phosphofructokinase (#F0137, 
Sigma-Aldrich, Netherlands) in 100 mM HEPES-KOH buffer (pH 7) and incubated for 30 
min at 30 °C. The pH was adjusted to 7 with KOH and the mixture was incubated again for 
10 min. This mixture was treated as a 30 mM stock solution for the FBP analogue, assuming 
complete conversion of 2,5-anhydromannitol. Various dilutions of the FBP analogue mix 
were added to the assay mixtures of LDH and PTA. LDH assay mixture contained 5 μL of 
12, 20 and 30 times diluted cell extract, 100 mM HEPES-KOH buffer, 2 mM MgSO4, 0.3 
mM NADH, 0-2.17 mM concentrations of the FBP analogue and the reaction initiator, 6 
mM pyruvate in a total volume of 300 μL. PTA assay mixture contained 5 μL of 2, 4 and 8 
times diluted cell extract, 100 mM phosphate buffer, 2 mM MgSO4, 1/100th concentration of 
CDMPC metals solution, 0.08 mM DTNB, 0-2.17 mM concentrations of the FBP analogue 
and reaction initiator 0.4 mM acetyl-coenzyme A in a total volume of 300 μL. 

Growth experiments testing the effect of 2,5-anhydromannitol 

In the first well of a 6-well plate, 2 mL of no-carbon CDMPC (nc-CDMPC) was mixed with 
2 mL of 20 mM 2,5-anhydromannitol (prepared in nc-CDMPC), and serially diluted in 2 mL 
nc-CDMPC to obtain 10, 5, 2.5, 1.25 and 0.625 mM concentrations of 2,5-anhydromannitol, 
and none in the last well. 50 μL of 0.5 M lactose was added to each well to get a final 
concentration of 12.5 mM. 20 μL of Lactococcus lactis ssp. cremoris HB34 fully grown (48 
hrs at 30 °C) in lactose CDMPC was added to each well and cell mixtures were distributed 
in 384 well plate. Growth was monitored at 30ºC, at optical density 600 nm with 10 min 
intervals in a Multiskan GO UV/Vis microplate spectrophotometer (#51119300, Thermo 
Scientific, Rockford, IL, USA).

Growth rate analysis was performed as described elsewhere (Bachmann et al, 2013). In short, 
the R software package was used to determine the slope of a log transformed time series of 
optical density readings obtained from microplate experiments.
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Results and discussion

Physiology of lactose positive Lactococcus lactis reveals enzyme 
overcapacity

L. lactis subsp. cremoris strain HB34 is a lactose-utilizing derivative of MG1363, which 
acquired the ability to transport lactose through the up-regulation of a cellobiose PTS system 
(Solopova et al, 2012). The growth rate on lactose, however, is one-tenth of that on glucose. 
On glucose, under static conditions, HB34 is homolactic like MG1363. However, if grown 
in a static batch culture on lactose, strain HB34 shows mixed-acid fermentation with 
nearly equimolar concentrations of formate, acetate and ethanol. Shaken under aerobic 
conditions, lactose-grown HB34 cultures are almost completely homoacetic, producing a 
small amount of ethanol and negligible lactate, while their cell densities are 3 times higher 
than those in static cultures (Table 1). The higher acetate production is explained by the 
aerobic activation of pyruvate dehydrogenase instead of pyruvate formate lyase, concomitant 
with NADH oxidase (NOX) activity to restore the redox balance. The increased cell density 
is probably a consequence of high ATP production during conversion of acetyl phosphate to 
acetate. 

Table 1: Cell densities and fermentation products of static and aerobic glucose- and lactose-grown HB34 batch 
cultures, and anaerobic glucose-limited chemostats of MG1363 showing standard deviations from a mean of at least 
three biological replicates. 

Parameter

HB34 MG1363
Glucose Lactose Glucose

Static   Aerobic   Static 
(0.075 h-1)

Aerobic Anaerobic 
(0.15 h-1)

OD600 nm
a 1.1 ± 0.03 1.3 ± 0.04 0.6 ± 0.01 1.6 ± 0.1 2.0 ± 0.2

Fraction homolactic 0.9 ± 0.02 0.8 ± 0.03 0.07 ± 0.005 0.01 ± 0.002 0.1 ± 0.03
Specific 
metabolite 
concentration 
(mM/OD)

Lactate 32.9 ± 0.9 30.9 ± 0.9 4.0 ± 0.5 0.4 ± 0.1 2.5 ± 0.4
Formate 0.4 ± 0.1 BDLb 19.1 ± 1.4 0.3 ± 0.2 18.6 ± 3
Acetate 1.2 ± 0.1 3.5 ± 0.4 16.0 ± 1.2 27.4 ± 3.6 9.0 ± 1.6
Ethanol 2.6 ± 0.1 2.0 ± 0.1 18.3 ± 1.2 2.8 ± 0.3 3.6 ± 0.8

aReported values are final ODs for batch cultures and steady state ODs for chemostat cultures
bBDL = Below Detection Limit

To investigate whether enzyme activities could account for the differences in metabolic 
behaviour observed in glucose-grown and lactose-grown, aerobic and static cultures, we 
measured maximal enzyme activities (Vmax’s) in various cultures (Table 2). Because both 
MG1363 and HB34 show similar behaviour in static glucose-grown cultures, their Vmax’s 
were assumed to be equal. The Vmax of glucokinase (GLK) in lactose-grown HB34 was 
double that in MG1363 (Table 2). Lactose utilization in strain HB34 is proposed to proceed 
via phosphorylation of its galactose moiety and subsequent hydrolysis into galactose-6-
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phosphate and glucose (Solopova et al, 2012) in contrast with glucose utilization where 
glucose, internalized via the PTS system, is only present in its phosphorylated form, glucose-
6-phosphate. Compared to glucose-grown MG1363, the presence of intracellular glucose 
in lactose-grown HB34 perhaps imposes an increased demand on GLK activity, possibly 
explaining a higher Vmax. 

On lactose, in line with the lower glycolytic flux and slower growth of HB34, the Vmax’s of 
FBP aldolase (ALD), pyruvate kinase (PYK) and LDH were lower than those in MG1363. 
The decrease in LDH activity, however, was not as pronounced as the decrease in lactate 
production (Table 2). On similar lines, Vmax’s of the mixed-acid pathway enzymes: ACK 
and alcohol dehydrogenase (ADH) increased but not as pronounced as the increase in 
mixed-acid pathway fluxes. When growing under aerobic, as opposed to static conditions, 
lactose-grown HB34 cultures had higher Vmax’s of GLK, PTA and NOX and about double 
acetate concentration (Tables 1 and 2). Despite double the acetate, the ACK activity remains 
the same. The gap between end product formation and Vmax’s was also observed when 
comparing aerobic and static glucose-grown HB34 cultures. Thus, overall we can conclude 
that the differences in Vmax measurements between cultures did not unequivocally explain the 
differences in metabolic behaviour.

Table 2: Maximal enzyme activities (Vmax’s) in static and aerobic lactose-grown HB34 batch cultures and Vmax’s and 
enzyme overcapacity indicated by ratio of Vmax/flux in anaerobic chemostats and static glucose-grown batch cultures 
of MG1363 showing standard deviations from a mean of at least three biological replicates. GLK, glucokinase; 
ALD, FBP aldolase; PYK, pyruvate kinase; LDH, lactate dehydrogenase; ACK, acetate kinase; ADH, alcohol 
dehydrogenase; PTA, phosphotransacetylase; NOX, NADH oxidase. 

Parameter
 

Enzyme

Vmax  (U∙mg Protein-1) Enzyme overcapacity (Vmax/Flux)

HB34 MG1363
Lactose Glucose

Static
(0.075 h-1)

Aerobic      Static Anaerobica 
0.15 h-1

Anaerobica 
0.6 h-1

Statica 
(0.74) h-1

GLK 0.4 ± 0.1 0.7 ± 0.1   0.2 ± 0.06 b b b

ALD 7.7 ± 0.1 7.4 ± 0.8   9.9 ± 0.7 45.7 ± 3.3 14.1 ± 0.8 9.6 ± 0.7
PYK 2.3 ± 0.4 2.0 ± 0.5 3.7 ± 0.4 17.7 ± 2.0 5.5 ± 0.03 2.2 ± 0.2
LDH 6.7 ± 0.5 5.2 ± 0.7 10.5 ± 0.9 170 ± 42 8.4 ± 0.3 5.6 ± 0.5
ACK 8.3 ± 0.4 8.7 ± 1.0 6.0 ± 0.7 72.1 ± 4.4 829 ± 365 74 ± 9
PTA 0.4 ± 0.1 0.7 ± 0.1  0.4 ± 0.05 3.4 ± 0.7 41.4 ± 6.5 5.0 ± 0.6
ADH 1.2 ± 0.5 < 0.2c  0.3 ± 0.06 2.7 ± 0.4 1.9 ± 1.3 3.1 ± 0.7
NOX 0.7 ± 0.01 1.6 ± 0.2  NDd ND ND ND

aFrom Chapter 4, and Goel et al (2012a)
bFlux value not available 
cActivity was below detection limit
dND = Not Determined
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We have shown earlier that the parent strain MG1363 possesses enzyme overcapacity, where 
a five-fold increase in glycolytic flux and 75% increase in lactate formation could be achieved 
with nearly unchanging enzyme capacities (Fig 2: Chapter 4). The enzymes are capable of 
supporting between 2 to 200 times the observed fluxes even at growth rates as low as 0.15 
h-1. We could similarly analyse the enzyme overcapacity in HB34 if its measured fluxes were 
available. But since we have only metabolite concentrations of the metabolites downstream 
of pyruvate, we attempted an indirect analysis of those pathways as follows. MG1363 has 
enzyme overcapacity, and lactose-grown HB34 grows at one-tenth the speed of MG1363. 
So if the Vmax’s, cell densities and metabolite concentrations in the two cases were identical, 
we could conclude that HB34 also exhibits enzyme overcapacity. For Vmax’s this is indeed 
the case, as the Vmax’s in HB34 are mostly the same or higher than those in MG1363, (except 
ALD, LDH and PYK, which are lower by a factor 0.8, 0.6 and 0.6, respectively). The cell 
densities of aerobic HB34 batch-cultures and MG1363 in anaerobic chemostats at 0.15 h-1 
are comparable; the specific metabolite concentrations of ethanol are comparable, of lactate 
are lower, and of acetate are 3 fold higher (Table 1). When combined together though, these 
differences in Vmax and metabolite concentrations are small (Table 2). Moreover a drastic 
increase of acetate in aerobic cultures of HB34 was not accompanied by a corresponding 
increase in the Vmax of ACK. We can thus conclude that lactose-grown HB34 also exhibits 
enzyme overcapacity for the lactic acid and mixed-acid pathways.

Glycolytic rate determines metabolic end product formation

A question that arises from the results in the previous section is what determines the fraction 
of carbon converted to lactate when all key enzymes are present in excess? Aeration and 
slowly fermentable sugar substrates are known to induce mixed-acid fermentation, while 
anaerobic conditions and rapidly fermentable sugar substrates induce homolactic behaviour 
(Cocaign-Bousquet et al, 1996). Rapidly fermentable sugars support a higher glycolytic flux, 
and possibly this glycolytic flux causes, through “flux sensing” (Huberts et al, 2012), a shift 
in lactate formation from mixed-acid pathway products. This would be consistent with the 
chemostat data in Chapter 4. To test whether the redirection of glycolytic flux towards lactate 
is predominantly caused by metabolic regulation, we used exponentially growing HB34 cell 
cultures with arrested protein synthesis, and tested the acidification rates on different sugars. 
The arrest of protein synthesis makes it possible to look at metabolic regulation only. The 
acidification rates, indicative of the glycolytic rate, were found to correlate positively with 
the fraction of lactate (Fig 2). Such a direct correlation between glycolytic rate and lactate 
formation with identical cellular machinery is strong and unique support for the hypothesis 
that the shift is metabolically regulated to a large extent. 
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Figure 2: Relationship between acidification rate (indicative of glycolytic rate) and fraction of lactate (over total 
amount of fermentation products formed) in lactose-pre-cultured HB34 cultures with arrested protein synthesis; 
subject to various fermentable sugars. Error bars indicate standard deviation from the mean of three biological 
replicates. 

We would like to note that the mixed-acid pathway via pyruvate formate lyase (PFL) 
produces 2 formate and 1 acetate, and thus 3 protons per glucose, while the homolactic 
pathway produces 2 lactate and 2 protons per glucose. This means that mixed-acid pathway 
products acidify faster than that of the homolactic branch, and that the acidification rate at 
high lactate fractions would be underestimated. However, overcoming this underestimation 
would only increase the effect of the correlation between acidification rate and the fraction of 
lactate. This data demonstrates that metabolic end products are determined by the glycolytic 
rate rather than the enzymatic machinery, which strongly argues for metabolic regulation.

LDH is activated by the FBP analogue, in vitro

Based on the result that metabolic regulation plays a major role in the shift from mixed-acid 
to homolactic fermentation we investigated if FBP can have a causal effect on this shift. The 
results showed that LDH is activated in vitro by the FBP analogue, reaching saturating levels 
above 30 μM (Fig 3B). We did not find an effect of the analogue (2.17 mM) on PTA activity 
(Fig 3B). Several controls consisting of components are shown in Fig 3A. The control with 
40 mM FBP shows a slight decrease in PTA activity. Therefore the lack of any effect of the 
FBP analogue on PTA activity could be due to a low concentration of the analogue. However, 
it is clear that the FBP analogue mimics the effect of native FBP on LDH.
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Lactate formation increases with 
higher concentrations of the non-
metabolizable FBP analogue 

After confirmation of the activating 
effect of the FBP analogue on LDH 
activity, we tested the effect of the 
precursor of FBP, a fructose analogue, 
2,5-anhydromannitol (2,5AM) on L. lactis 
HB34. We supplemented the cells with 
lactose and various concentrations of the 
precursor. As the metabolism of 2,5AM 
is a dead-end, all transported 2,5AM 
and downstream metabolites will be in 
equilibrium, and since the equilibrium 
constants for GLK and PFK are very large, 
virtually all 2,5AM will be converted to 
its bisphosphate form. FBP concentrations 
increase at higher growth rates (Thomas 
et al, 1979; Konings et al, 1989) and 
therefore an excess of the FBP analogue 
should mimic high FBP concentrations 
that cells normally face at high growth 
rates. This should elicit a metabolic 
response akin to fast growth in the lower 
glycolysis and downstream pathways and 
a potential feedback inhibition of upper 
glycolysis and / or glucose transport. We 
confirmed that HB34 was unable to grow with 2,5AM as the sole carbon source, which is 
not surprising since 2,5AM can only be converted to a non-metabolizable FBP analogue. 
When HB34 was grown on lactose the fraction of lactate over the total fermentation products 
increased linearly with increasing 2,5AM concentrations up to 5 mM, after which the fraction 
of lactate remained constant at 10 mM (Fig 4A). Interestingly, such a shift in metabolism is 
accompanied by slower growth and also a lower final cell density (Fig 4B).  

Interestingly the flux through the lactate branch increases with increasing 2,5AM 
concentrations, while at the same time the growth rate decreases. This is in contrast with 
what is normally seen and corroborates the notion that the activation of LDH through FBP 
has a major effect on the metabolic shift. Thus we conclude that the FBP analogue is able to 
shift metabolism towards lactate formation, providing new evidence for the role of FBP in 
the shift.
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Figure 3: (A) All relevant controls testing the effect of 
various combinations of metabolites and enzymes on 
maximal activity of LDH (white bars) and PTA (grey 
bars). *PTA and LDH were not tested at 0.1 mM and 40 
mM FBP respectively. (B)  Effect of the FBP analogue 
on maximal enzyme activities of LDH (♦) and PTA (■). 
Error bars indicate standard deviation from the mean of 
three activity measurements. 
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The effect of 2,5AM has also been tested in yeast and E. coli where the glucose consumption 
rate and ethanol production rate were inhibited at 2,5AM concentrations above 2.5 mM, but 
the yield of ethanol on glucose increased (Nghiem & Cofer, 2007). In rat hepatocytes 
2,5AM also resulted an increase in lactate formation (Riquelme et al, 1983).

Figure 4: Effect of addition of the fructose analogue: 2,5-anhydromannitol, on lactose-supplemented HB34 cultures. 
(A) Fraction of lactate formed over total amount of fermentative products, error bars indicate standard deviation 
from the mean of at least three biological replicates (B) Growth curves at varying 2,5AM concentrations showing 
standard deviations (grey areas)

An intricate metabolic regulation mechanism

Using a heterofermentative L. lactis strain with arrested protein synthesis, and supplemented 
with various sugars, we could show strong metabolic regulation of the homolactic–mixed-
acid shift for the first time in L. lactis: the glycolytic flux correlated positively with the 
fraction of lactate produced (Fig 2). Several studies reported the correlation of intracellular 
FBP levels with lactate production (Thomas et al, 1979; Konings et al, 1989; Bond & Russell, 
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1996; Neves et al, 2005), however, the presented data on the FBP analogue suggests a causal 
effect of FBP levels on higher lactate formation (Fig 4B) through the activation of LDH (Fig 
3B). It is also possible that the analogue inhibits ACK, and PTA at concentrations above 5 
mM, but this remains to be tested. In conjunction with FBP, NADH can also affect LDH 
activity. It is known that NADH reduces the activation coefficient of FBP, and FBP reduces 
the Km of LDH towards both pyruvate as well as NADH (Crow & Pritchard, 1977b). Similar 
to NADH, there are other regulatory metabolites, like phosphate which inhibits LDH and 
pyruvate kinase (PYK), phosphoenol pyruvate (PEP) which is necessary for glucose uptake 
via the PTS, the PEP pool (PEP, 3-PGA and 2-PGA) which plays a role in starved cells and the 
NADH/NAD+ ratio that inhibits GAPDH activity. In conclusion, we highlighted the role of 
FBP in the metabolic shift of L. lactis, but the intricate metabolic regulation mechanism (Fig 
5) can only be fully understood with the help of a computational model, taking all relevant 
effectors and enzyme kinetics into account. 

Figure 5: Schematic overview of regulation 
mechanisms of glycolysis in L. lactis 
discussed in this chapter. Green lines show 
activation and red lines show inhibition. 
Glucose uptake is affected by PEP levels 
and the glycolytic rate. FBP activates PYK 
and LDH, and inhibits PTA and ACK. The 
formation of FBP in upper glycolysis is 
feedback controlled by the rate of lower 
glycolysis through the redox ratio which 
NOX can relieve. Phosphate inhibits PYK 
and LDH. 
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Abstract 

There exist a variety of explanations for the metabolic shift from mixed-acid to homolactic 
fermentation in L. lactis and in Chapter 5 we unravelled the relationships between glycolytic 
flux, FBP and allosteric effectors on enzymes of the glycolytic and downstream pathways. 
The next step would naturally be to put the relationships together in a mathematical model 
to test and investigate whether these interactions can explain the metabolic shift. Kinetic 
models for primary metabolism exist for many organisms, including L. lactis, but also for 
other organisms like E. coli yeast and fungi. The most recently developed kinetic model 
of L. lactis was fitted to in vivo NMR data of metabolite dynamics during glycolytic pulse 
experiments. This model, however, did not exhibit the shift, and also had a few unresolved 
discrepancies with respect to kinetics of some enzymes. We therefore developed a new model 
and used steady-state chemostat data of L. lactis MG1363 in addition to the dynamic in 
vivo NMR data for fitting. The fitted model reproduced the metabolic shift allowing us to 
gain insight into parameters influencing the metabolic shift. In particular the importance 
of FBP and Pi were reiterated. Moreover there is still scope for improvement and these are 
summarized here to guide future modelling endeavours.

Keywords: Chemostat, Kinetic model, Glycolysis, Lactococcus lactis, Metabolic shift
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Introduction

In Chapters 1 and 4, we described the importance of the shift in metabolic routes and in 
particular the metabolic shift from mixed-acid to homolactic fermentation in Lactococcus 
lactis. This metabolic shift has been the highlight of many studies that have reported numerous 
factors –not necessarily functioning independently of each other– influencing the metabolic 
shift. The glycolytic intermediate fructose bisphosphate (FBP) as an allosteric activator 
of lactate dehydrogenase (LDH) was one of the first candidates regarded as a regulatory 
factor (Thomas et al, 1979). A list of the factors reported to have an influence on the glucose 
metabolism of L. lactis and hence the metabolic shift, are summarized in Table 1.

Table 1: Summary of the factors affecting the glucose metabolism and hence the metabolic shift from mixed-acid 
to homolactic fermentation in L. lactis

Factors affecting the glucose metabolism Reference
Phosphate inhibition of LDH Jonas et al (1972), Crow & Pritchard (1976)
Phosphate inhibition of pyruvate kinase (PYK) Collins & Thomas (1974), Crow & Pritchard (1976)

FBP activation and alteration of LDH enzyme levels Thomas et al (1979)
Inhibitory effect of triose phosphates on the mixed-acid 
pathway enzymes

Thomas et al (1980), Takahashi et al (1982)

Fermentability of sugars Thomas et al (1980), Lohmeier-Vogel et al (1986), 
Cocaign-Bousquet et al (1996)

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
activity. 
This was shown not to have major control on the wild 
type strain L. Lactis MG1363

Poolman et al (1987), Even et al (1999)

Neves et al (2002)

Presence of oxygen Cogan et al (1989), Jensen et al (2001)
The ratio of NADH/NAD+ Garrigues et al (1997)
Imbalance between anabolism and catabolism Garrigues et al (2001)
The type of strain Cocaign-Bousquet et al (2002)
Pyruvate formate lyase (PFL) enzyme levels Melchiorsen et al (2002)
Inhibition of alcohol dehydrogenase by the adenine 
nucleotide pool

Palmfeldt et al (2004)

FBP inhibition of acetate kinase (ACK) and 
phosphotransacetylase (PTA) 

Lopez de Felipe & Gaudu (2009)

Catabolite repression of ack gene Lopez de Felipe & Gaudu (2009)
Reviews in the literature Thompson (1987), Cocaign-Bousquet et al (1996), 

Neves et al (2005), Kowalczyk & Bardowski 
(2007), Teusink et al (2011)

Experimental studies have provided much insight into regulatory mechanisms that are 
associated with the metabolic shift (Table 1). However, the described available hypotheses 
are derived from a collection of individual experiments independent of each other, conducted 
with various strains in various growth media under different growth conditions. Besides, the 
hypotheses have not been consolidated to test their collective influence on the metabolic shift 
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as a function of growth rate. Due to the complexity, such a test is practically only possible 
via a computational model. Every model is built with a specific purpose, and the models 
available in the literature all attempted to answer different questions. It is not atypical but 
rather usual that these models were built to address a specific question and unfortunately 
none specifically aimed to explain the metabolic shift. 

The first model of L. lactis was a simplified kinetic model fitted to in vivo 13C- and 31P-NMR 
data from glucose pulse experiments on L. lactis MG5267, that could predict qualitative 
behaviour under aerobic and anaerobic conditions (Neves et al, 1999). The next model 
of L. lactis (Hoefnagel et al, 2002b) treated glycolysis as a single reaction and evaluated 
control points of pyruvate metabolism in the wild-type and mutants of LDH and NADH 
oxidase (NOX). This approach combined metabolic control analysis, kinetic modelling and 
experiments and achieved drastic increase in flux towards flavour compounds. The subsequent 
model from the same authors was a detailed glycolytic model that could predict qualitative 
behaviour of glucose pulse experiments from Neves et al (1999) (Hoefnagel et al, 2002a). 
The authors suggested that determination of kinetic parameters would be necessary for 
quantitative predictions. Another model simulated L. lactis in aerobic conditions using flux 
distribution analysis, kinetic modelling and metabolic control analysis (Nam et al, 2004), 
and subsequently assessed the effect of grouped enzyme kinetics as suggested for large 
biochemical networks (Jin & Lee, 2005). Other models combined nonlinear dynamic analyses 
with in vivo NMR data from glucose pulse experiments on L. lactis MG1363 to elucidate 
recovery of glucose uptake after a period of starvation (Voit et al, 2006a, 2006b). The in vivo 
13C-NMR data on extracellular glucose and lactate extrusion rate was used to model the effect 
of extracellular pH on non-growing cells of L. lactis MG1363 by appending a pH module to 
the Hoefnagel model (Andersen et al, 2009), and more recently also by a qualitative model 
(Carvalho et al, 2013). Another recent study used L. lactis to benchmark a new approach of 
identifying a metabolic reaction network from time-series data by combining mathematical 
modelling and statistical technique (Sriyudthsak et al, 2013). One of the latest available 
kinetic models of L. lactis (Levering et al, 2012) focussed on the importance of phosphate 
transport. The model was fitted to the in vivo NMR data from glucose pulse experiments 
(Neves et al, 2002) and Vmax’s collected from the literature from various strains. Model 
fitting in an underdetermined problem comes at a price: some parameters were outside the 
physiological range (Supplementary material, section S4, Table S1). Furthermore this model 
had a lumped mixed-acid pathway branch, and did not exhibit the metabolic shift. 

We therefore could not simply refine an existing model, and had to take a few steps back to 
formulate a new model, namely one that (i) had physiologically consistent parameters, (ii) 
had a detailed mixed-acid pathway, (iii) could exhibit the metabolic shift, and ultimately 
provide a kinetic explanation for it.
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Materials and Methods

Model description
 
The model consists of ordinary differential equations (ODE) that describe the dynamics of 
the metabolite concentrations with time. These equations are listed below. 

The rate equations of the kinetic model are listed in Table 2 the reactions of which are illustrated 
in Fig 1. The enzyme kinetics were modelled by generalized Michaelis-Menten equations, 
and the allosteric regulation terms by simple saturation functions representing a complete 
activation or inhibition, unless information was available about a possible cooperative effect 
of the regulators (see Table 2). Three metabolite pools, namely glucose-6-phosphate (G6P), 
phosphoenol pyruvate (PEP) and triose phosphates (TrioseP) were defined based on the quasi 
equilibrium assumption (Supplementary material, section S1). All the reactions in the model 
except three (FBA, GAPDH, PGK) were regarded irreversible based on the values of the 
equilibrium constants (Supplementary material, section S7). The intracellular volume was 
assumed to be 1.67 mL·gDW-1 as reported earlier (Thompson, 1976). 

dG6Ppool

dt
= +vPTS + vGLK − vPFK + vFBPase

dPY R

dt
= +vPTS + vPYK − vLDH − vPFL

dGlci

dt
= +vGLP − vGLK

dATP

dt
= −vGLK − vPFK + vPGK + vPYK + vACK − vat

dADP

dt
= +vglk + vpfk − vpgk − vpyk − vack + vATPase

dFBP

dt
= +vPFK − vFBA − vFBPase

dTrioseP

dt
= +2 · vFBA − vGAPDH

dPi

dt
= +vFBPase − vGAPDH − vACK + vATPase

dNAD

dt
= −vGAPDH + vLDH + 2 · vADH

dBPG

dt
= +vGAPDH − vPGK

dNADH

dt
= +vGAPDH − vLDH − 2 · vADH

dLac

dt
= +vLDH

dCOA

dt
= −vPFL + vACK + vADH

dACCOA

dt
= +vPFL − vack − vADH

dFORM

dt
= +vPFL

dAC

dt
= +vACK

dETOH

dt
= +vADH

7 Rate equations

vPTS =
V PTS
maxf · Glc

KPTS
mGlc

· PEP
KPTS

mPEP(
1 + Glc

KPTS
mGlc

+ G6P
KPTS

mG6P

)
·
(
1 + PEP

KPTS
mPEP

+ PY R
KPTS

mPY R

) ·
Pi

KPTS
aPi

1 + Pi

KPTS
aPi

· 1

1 + FBP
KPTS

iFBP

vGLP =
V GLP
maxf ·

(
Glc

KGLP
mGlc

− 1
KGLP

eq
· Glci
KGLP

mGlci

)

1 + Glc
KGLP

mGlc

+ Glci
KGLP

mGlci

4

9. PYK: adp+ h+ pep −→ atp+ pyr

10. LDH: lac+ nad −→ nadh+ pyr

11. PFL: coa+ pyr −→ accoa+ for

12. ACK: accoa+ pi+ adp −→ ac+ coa+ atp

13. ADH: accoa+ 2 · nadh −→ etoh+ coa+ 2 · nad

14. ATPase: adp+ pi ←→ atp

4 Equivalences
FBP ≡ fdp
GA3P ≡ g3p
BPG ≡ 13dpg
3PGA ≡ 3pg
2PGA ≡ 2pg
glc-D[e] ≡ glc
lac ≡ lac-L
GLCpts ≡ pts
HEX1 ≡ GLK
ALD ≡ FBA
GAPD ≡ GAPDH
LDH ≡ LDH-L
ATPS3r ≡ ATPase
ACK ≡ ACK + PTAr
ADH ≡ ADHA + ADHE ≡ ALCD2x+ACALD

5 Simplifications
– h and h2o are removed from the reactions

– Based on the equilibrium constant values only the 3 reactions are treated as re-
versible: FBA, GAPDH, PGK.

– Compartment notation ( [c], [e]) removed

– No phosphate transport is included in the model.

6 Balance equations (ODE model)

dGlc

dt
= −vPTS − vGLP

dPEPpool

dt
= −vPTS + vPGK − vPYK

3
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Table 2: Rate equations of the kinetic model of L. lactis

  

vGLK =
V GLK
maxf · Glci

KGLK
mGlci

· ATP
KGLK

mATP(
1 + Glci

KGLK
mGlci

+ G6P
KGLK

mG6P

)
·
(
1 + ATP

KGLK
mATP

+ ADP
KGLK

mADP

)

vPFK =
V PFK
maxf · F6P

KPFK
F6P

· ATP
KPFK

ATP(
1 + F6P

KPFK
F6P

+ FBP
KPFK

FBP

)
·
(
1 + ATP

KPFK
ATP

+ ADP
KPFK

ADP

)

vFBA =
V FBA
maxf · FBP

KFBA
mFBP

− V FBA
maxr · DHAP

KFBA
mDHAP

· G3P
KFBA

mG3P

1 + FBP
KFBA

mFBP

+ G3P
KFBA

mG3P

+ DHAP
KFBA

mDHAP

+ DHAP
KFBA

mDHAP

· G3P
KFBA

mG3P

+ FBP
KFBA

mFBP

· G3P
KFBA

iG3P

V FBA
maxr = V FBA

maxf · 1

KFBA
eq

· K
FBA
mDHAP ·KFBA

mG3P

KFBA
mFBP

vFBPase =
V FBPase
maxf · FBP

KFBPase
mFBP

1 + FBP
KFBPase

mFBP

+ F6P
KFBPase

mF6P

+ Pi

KFBPase
mPi

vGAPDH =
V GAPDH
maxf · G3P

KGAPDH
mG3P

· NAD
KGAPDH

mNAD

· Pi

KGAPDH
mPi

− V GAPDH
maxr · BPG

KGAPDH
mBPG

· NADH
KGAPDH

mNADH(
1 + NAD

KGAPDH
mNAD

+ NADH
KGAPDH

mNADH

)
·
(
1 + G3P

KGAPDH
mG3P

+ BPG
KGAPDH

mBPG

)
·
(
1 + Pi

KGAPDH
mPi

)

V GAPDH
maxR = V GAPDH

maxf · 1

KGAPDH
eq

· KGAPDH
mBPG ·KGAPDH

mNADH

KGAPDH
mG3P ·KGAPDH

mNAD ·KGAPDH
mPi

vPGK =
V PGK
maxf · BPG

KPGK
mBPG

· ADP
KPGK

mADP

− V PGK
maxr · P3G

KPGK
mP3G

· ATP
KPGK

mATP(
1 + ATP

KPGK
mATP

+ ADP
KPGK

mADP

)
·
(
1 + BPG

KPGK
mBPG

+ P3G
KPGK

mP3G

)

V PGK
maxr = V PGK

maxf · 1

KGAPDH
eq

KPGK
mP3G ·KPGK

mATP

KPGK
mBPG ·KPGK

mADP

vPYK =
V PYK
maxf · PEP

KPY K
mPEP

· ADP
KPY K

mADP(
1 + ADP

KPY K
mADP

+ ATP
KPY K

mATP

)
·
(
1 + PEP

KPY K
mPEP

+ PY R
KPY K

mPY R

) · 1

1 + Pi

KPY K
iPi

·
FBP

KPY K
aFBP

1 + FBP
KPY K

aFBP

vLDH =
V LDH
maxf · PY R

KLDH
mPY R

· NADH
KLDH

mNADH(
1 + Lac

KLDH
mLac

+ PY R
KLDH

mPY R

)
·
(
1 + NADH

KLDH
mNADH

+ NAD
KLDH

mNAD

) ·

(
FBP

KLDH
aFBP

)n

(
1 + FBP

KLDH
aFBP

+ Pi

KLDH
iPi

)n

vPFL =
V LDH
maxf · COA

KPFL
mCOA

· PY R
KPFL

mPY R(
1 + ACCOA

KPFL
mACCOA

+ COA
KPFL

mCOA

)
·
(
1 + PY R

KPFL
mPY R

+ FOR
KPFL

mFOR

) · 1

1 + TrioseP
KPFL

iTrioseP

vACK =
V ACK
maxf · ACCOA

KACK
mACCOA

· Pi

KACK
mPi

· ADP
KACK

mADP(
1 + COA

KACK
mCOA

+ ACCOA
KACK

mACCOA

)
·
(
1 + ADP

KACK
mADP

+ ATP
KACK

mATP

)
·
(
1 + AC

KACK
mAC

+ Pi

KACK
mPi

) · 1

1 + FBP
KACK

iFBP

vADH =
V ADH
maxf · ACCOA

KADH
mACCOA

·
(

NADH
KADH

mNADH

)2

(
1 + NADH

KADH
mNADH

+ NAD
KADH

mNAD

)2

·
(
1 + COA

KADH
mCOA

+ ACCOA
KADH

mACCOA

)
·
(
1 + ETOH

KADH
mETOH

) · 1

1 + ATP
KADH

iATP

dt
= +vADH

7 Rate equations

vPTS =
V PTS
maxf · Glc

KPTS
mGlc

· PEP
KPTS

mPEP(
1 + Glc

KPTS
mGlc

+ G6P
KPTS

mG6P

)
·
(
1 + PEP

KPTS
mPEP

+ PY R
KPTS

mPY R

) ·
Pi

KPTS
aPi

1 + Pi

KPTS
aPi

· 1

1 + FBP
KPTS

iFBP

vGLP =
V GLP
maxf ·

(
Glc

KGLP
mGlc

− 1
KGLP

eq
· Glci
KGLP

mGlci

)

1 + Glc
KGLP

mGlc

+ Glci
KGLP

mGlci

9. PYK: adp+ h+ pep −→ atp+ pyr

10. LDH: lac+ nad −→ nadh+ pyr

11. PFL: coa+ pyr −→ accoa+ for

12. ACK: accoa+ pi+ adp −→ ac+ coa+ atp

13. ADH: accoa+ 2 · nadh −→ etoh+ coa+ 2 · nad

14. ATPase: adp+ pi ←→ atp

4 Equivalences
FBP ≡ fdp
GA3P ≡ g3p
BPG ≡ 13dpg
3PGA ≡ 3pg
2PGA ≡ 2pg
glc-D[e] ≡ glc
lac ≡ lac-L
GLCpts ≡ pts
HEX1 ≡ GLK
ALD ≡ FBA
GAPD ≡ GAPDH
LDH ≡ LDH-L
ATPS3r ≡ ATPase
ACK ≡ ACK + PTAr
ADH ≡ ADHA + ADHE ≡ ALCD2x+ACALD

5 Simplifications
– h and h2o are removed from the reactions

– Based on the equilibrium constant values only the 3 reactions are treated as re-
versible: FBA, GAPDH, PGK.

– Compartment notation ( [c], [e]) removed

– No phosphate transport is included in the model.

6 Balance equations (ODE model)

dGlc

vATPase =
V ATPase
maxf ·

(
ATP

KATPase
mATP

)n

1 +
(

ATP
KATPase

mATP

)n

8 Allosteric regulation

Effector Interaction type Target reaction

PFL
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Figure 1: Schematic overview of the reactions and allosteric effects included in the kinetic model of L. lactis used 
in this study.

Parameter estimation

Parameter estimation carried out in MATLAB, using the optimization routine MultiStart, 
from the Global Optimization Toolbox, with 5000 random initial seeds uniformly sampled 
in an interval around values from the literature. For Vmax’s the bounds were ±50%. For all 
other parameters the bounds were one order of magnitude higher or lower (for a list of all 
parameter values see Supplementary material, section S8).
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Sensitivity analysis

For identifying which parameters have a major influence on the metabolic shift we performed 
a local sensitivity analysis. First, we defined a performance index to score the “size” of the 
shift, as the difference between the ratio of lactate production and glycolytic flux at high 
(D = 0.6 h-1) and low dilution rate (D = 0.15 h-1). For an ideal metabolic shift (no lactate 
production at low dilution rate and only lactate production at high dilution rate) this ratio 
difference is 2. From the measured flux ratios, the ratio difference is about 1.3 (at low D 
lactate is not zero, and at high D, part of the glycolytic flux is directed towards biomass and 
therefore not entirely towards lactate). Then, we individually perturbed all the estimated 
kinetic parameters while keeping the other parameters fixed (i.e. local sensitivity analysis), 
by a finite perturbation (+/- %), calculated the ratio between the produced effect (shift score 
variation) and the perturbation and finally normalized all the ratios by the reference values 
(of the parameters and of the score function). 

Results

Based largely on the Hoefnagel model, the Levering model could fit the data from Neves et 
al, (2002). We used the same approach and we based our model on the Hoefnagel model. All 
models need data to fit unknown parameters. We had a complete set of in vivo-like Vmax’s for 
almost all glycolytic and downstream pathway enzymes available for one strain, L. lactis 
MG1363 grown at standard steady-state conditions (Chapters 3 and 4). These Vmax’s were 
measured under the same in vivo-like assay conditions for all enzymes making it an ideal set 
for a model. With defined mixed-acid pathway reactions, and the in vivo-like Vmax’s (allowed 
to vary by only ± 50%), we commenced fitting the model with in vivo 13C- and 31P-NMR data 
from glucose pulse experiments in L. lactis MG1363 under anaerobic conditions (Neves et 
al, 2002).  

Glucose pulse experiment with non-growing cells

We estimated the parameters in the kinetic model with the in vivo concentrations of intracellular 
metabolites from non-growing cells of L. lactis MG1363 pulsed with 80 mM glucose under 
anaerobic conditions (Neves et al, 2002), in buffers with and without phosphate. We could 
not, however, use both because of Pi mass imbalance (Levering et al, 2012), which might 
be due to mobilization of Pi from phospholipids. A fictitious reaction to achieve Pi recovery 
would be required to overcome this, but it would bring in additional uncertainty in the model. 
Therefore, we only use glucose pulse experiments without the phosphate buffer.
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In Fig 2, we show the measured metabolite time profiles with the time series generated by the 
model with the best-fit parameter set. We can see that for all metabolite time series, we have a 
good agreement between experimental data and model fit. If we look at the time profiles of all 
metabolites, including those that are not measured (Fig 3), we can see that the concentrations 
are within the physiological range. In particular, we can see that the qualitative behaviour of 
inorganic phosphate matches well with experimental data: phosphate concentration rapidly 
drops during the glucose pulse and a recovers up to the initial level as soon as glucose is 
exhausted (Neves et al, 2002). 
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Figure 2: Predictions of the best-fit model based on data from Neves et al (2002) showing predicted (black) and 
measured (grey) metabolite time-series.

In the glucose pulse experiment under anaerobic conditions, Neves et al (2002) report only a 
small amount of mixed-acid pathway products. Extrapolating from a pulse experiment with 
40 mM of glucose to a pulse experiment with 80 mM of glucose, we would expect to have 
1.3 mM of formate, 1 mM of acetate and 0.2 mM of ethanol. However, we see from Fig 3, 
that the predicted amounts for formate, acetate and ethanol are higher than expected (though 
negligible if compared to the produced lactate). The reaction rates predicted by the model 
(Fig 4) are all within a physiological range except vFBA and vpgk that exhibit a short transient 
with a glitch of about 260 mmol·gDW-1·h-1 and −50 mmol·gDW-1·h-1 respectively. This 
behaviour is most likely due to the choice of the initial concentrations, not all of which are 
estimated; some are assumed based on literature (Table 2 and Supplementary material, Table 
S8). We also notice that glucose uptake, except for a very short transient at the beginning, is 
about 7 mmol·gDW-1·h-1. This value is much lower than the flux measured at D = 0.6 h-1 that 
is about 18 mmol·gDW-1·h-1 whereas the normal expectation would be that the fluxes at high 
dilution rate are comparable with those in batch conditions.
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Figure 3: Time-series of all metabolites in the model.

Figure 4: Reaction rates predicted by the model.
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Allosteric regulation of FBP on PYK

Chemostat experiments

If we just take the model fitted on data from Neves et al (2002) and simulate the chemostat 
experiments at different dilution rates, we do not see the shift from mixed-acid to lactate 
as the dilution rate increases (Fig 5): in fact, the model predicts homolactic fermentation 
independently of the dilution rate (squares). Furthermore, we can see that glucose uptake at 
the different dilution rates is significantly lower than the measured values (Table 3). This 
suggests that something is limiting the glycolytic flux in the model. The obvious candidates, 
namely the glucose transport reaction and the ATP demand reaction, did not seem to be 
the bottleneck (results not shown). Moreover, all the Vmax were at least a factor 2 higher 
than the flux they have to support, and none of the equilibrium constants of the reversible 
reactions in the model seem to be a limiting factor. A sensitivity analysis of the glycolytic 
flux with respect to the model parameters does give some leads on how to improve the model 
(Supplementary material, section S9). However, a more detailed analysis is required since 
the sensitivity analysis is a local analysis and therefore bound to the operating point where 
it is performed. 

Table 2: Initial metabolite concen-
trations (mM) of the kinetic model.

Metabolite Initial value
Glc 80
PEPpool 20.748
G6Ppool 0
PYR 0
Glci 0
ATP 0.1
ADP 8.9
FBP 4.3575
TrioseP 0
Pi 100
NAD+ 4.8397
BPG 0
NADH 0
Lac 0
COA 1
ACCOA 0
FORM 0
AC 0

ETOH 0

Structural studies of PYK suggest that the enzyme has four 
units, and each one has an allosteric site where both FBP and 
Pi can bind (Collins & Thomas, 1974; Crow & Pritchard, 
1976, 1977a; Thomas, 1976; Thompson & Torchia, 1984). 
So we expected that both allosteric regulators would exhibit 
cooperativity (possibly with the same Hill coefficient). 
However, we have found that if the feed-forward activation 
of FBP on PYK is modelled using Hill kinetics (cooperativity), 
it is not possible to reproduce the recovery of NAD+ and 
NADH after the glucose pulse (results not shown): the model 
can reproduce the recovery of NAD+ and NADH visible in Fig 
3, only if FBP regulation does not have cooperativity. After 
glucose pulse exhaustion, FBP sharply drops to low levels 
(eventually to zero). In the presence of cooperativity, such 
low FBP would severely limit the flux through PYK (since 
a concentration lower than 1 mM would have an amplified 
effect through the Hill coefficient). This would subsequently 
limit the flux through the downstream homolactic and mixed-
acid branches rendering insufficient recovery of NAD+ which 
would contradict experimental data from Neves et al (2002). 
We therefore concluded that FBP regulation does not have 
cooperativity.
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If we estimate the parameters based on both glucose pulse data and flux data from chemostat 
experiments we cannot achieve a good fit for both. By varying the relative weight of the 
prediction error for the two data sets, we can go from a model that reproduces data from 
Neves et al (2002) (see previous section) to a model that exhibits a metabolic shift (Fig 5). 
The predicted metabolic shift shows higher lactate than that in experimental data (Fig 5). It 
is likely that such a difference just reflects the fact that we have neglected the fluxes from the 
glycolytic intermediate toward biomass. However, the absolute values of the predicted fluxes 
are much lower than the measured fluxes (Table 3). In particular, the glucose uptake is much 
lower than expected, a feature also observed with the model fitted only on data from Neves 
et al (2002) (Table 3).

Fig 5: Ratio of lactate production and glycolytic flux (▲) based on measured fluxes; (■) as predicted by the model 
fitted with in vivo NMR data from Neves et al (2002) and (●) as predicted by the model fitted with in vivo NMR data 
and chemostat data (Chapters 3 and 4, this thesis).

Table 3: Measured and predicted glycolytic fluxes in mmol·gDW-1·h-1

Model fitted on Flux \ D (h-1) 0.15 0.3 0.45 0.5 0.6
Data from Neves et al 
(2002)

J measured 4.6396 9.0459 14.2330 16.8662 18.3204
J predicted 4.7749 7.5422 7.5516 7.5972 7.6448

Chemostat data (this 
thesis)

J measured 4.6396 9.0459 14.2330 16.8662 18.3204
J predicted 1.9048 3.4126 7.7288 8.0477 8.2673

Sensitivity analysis of parameters affecting the metabolic shift 

For the best-fit model (Fig 5●) (fitted on glucose pulse and chemostat data), we performed a 
sensitivity analysis to identify which parameters affect the metabolic shift from homolactic 
to mixed-acid fermentation. Fig 6 shows the histogram of the normalized sensitivities. It is 
evident that a vast majority of the parameters (about 60 out of 83 have no significant influence 
on the metabolic shift). In Table 4, we report the top list of parameters with the highest 
influence on the metabolic shift (scaled sensitivity higher than 0.2). The distribution plots of 
parameters for all enzymes are provided in the Supplementary material, section S10.
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The presence of the Hill coefficient nldh in 
the top of the list seems to suggest that any 
potential cooperativity in the regulation of 
LDH by FBP and Pi can have huge effect on the 
metabolic shift. LDH is known to be a tetramer 
with four active sites but just two allosteric 
sites. The phosphate can compete for all sites, 
so competing with FBP for the allosteric site 
as well as with the substrate for the active site 
(Feldman-Salit et al, 2013). So potentially 
LDH regulation can exhibit cooperativity, but 
this has not been characterized yet. In general, 
we can see that FBP and Pi seem to play a 
crucial role in the metabolic shift. In fact, the 
kinetic parameters representing the allosteric 
regulation of these molecules on PTS, LDH and 
PYK are present in the list. In particular, the long 
debated role of FBP activation on LDH seems 
to find a confirmation: KaFBP,ldh is the parameter 
with the third highest sensitivity. In the list, we 
also find the Vmax of glucose transport (PTS). 
This is not very surprising, if we consider that 
glycolytic flux influences the fraction towards 
lactate or mixed-acids (Goel et al, Chapter 5). 
Similarly, we could have anticipated sensitive 
parameters from the pyruvate branches (LDH, 
ADH) although not necessarily the Vmax.

Discussion

Our first research question was whether adapting the remaining model parameters with the 
new Vmax’s from chemostat experiments and glucose pulse experiments would yield a good fit 
to the experimental results, as we could not conclude a priori whether the new Vmax’s would 
change the model predictions. Having enough parameters, one might expect that any model 
would fit any data. However, it is not this simple, since structural aspects of the model, i.e. 
stoichiometric and allosteric interactions, will restrict the types of qualitative behaviour that a 
model can display (Gunawardena, 2010). We could indeed fit the model with the new Vmax’s. 
Doing so, we gained a valuable insight into the FBP-Pi-PYK cooperativity: the two allosteric 
regulators of PYK, FBP and Pi, have a different cooperativity, though they bind to the same 
allosteric site on each of the four active units of the enzyme.
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Fig 6: Kinetic parameters with the highest normalized 
sensitivity for the metabolic shift.

Table 4: Top list of the kinetic parameters with the 
highest normalized sensitivity for the metabolic shift.

Parameter Normalized sensitivity
nldh 1.8316

Vmax, pts 1.1893
KaFBP, ldh 1.1299
Vmax, ldh -1.0270
KiPi, ldh -0.9961

KmPEP, pts -0.7956
KmPYR, ldh 0.6174
KiFBP, pts 0.4020
KaPi, pts -0.3187
Vmax, adh -0.2910
KaFBP, pyk -0.2856
KmLac, ldh -0.2489
KiPi, pyk 0.2363

npyk -0.2319
KmETOH, adh    -0.2223 

Normalized Sensitivity
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So we reached the same point as the Levering model with respect to fitting glucose pulse 
data, but with physiologically consistent parameters, and with Vmax’s from a single strain 
under steady state conditions. The model, however, does not include pH as do most kinetic 
models of L. lactis glycolysis. The pH kinetics in L. lactis have indeed been characterized 
after a glucose pulse (Molenaar et al, 1991; Andersen et al, 2009), but to incorporate it 
into the model, knowledge of the buffer capacity of the cytoplasm is essential. Therefore, 
the ATPase in the model (the only ATP sink) did not include proton transport. Due to this 
simplification, however, we were unable to assess the possible influence of pH on pyruvate 
metabolism. 

The next step was to investigate the metabolic shift. Since the model fitted with dynamic 
glucose pulse data alone did not predict the chemostat data correctly, we had to include 
chemostat fluxes in combination with dynamic glucose pulse data as input for the error 
function minimized during the parameter fitting. This model reproduced the metabolic 
shift (Fig 5). The sensitivity analysis performed on this model indicated that the activation 
coefficient of LDH by FBP had a high influence on the metabolic shift, besides any potential 
cooperativity in the regulation of LDH by FBP and Pi. This reiterates the role of FBP and Pi 
in regulating the metabolic shift (Table 4). It is interesting to note here that the Lactobacillus 
plantarum, another lactic acid bacterium, does not exhibit the metabolic shift and its LDH is 
not activated by FBP (Feldman-Salit et al, 2013).

A limitation of the model is that the glycolytic flux is somehow constrained and does 
not increase above a certain value (Table 3). Thus the model always has lower glucose 
consumption rate than measured. The cause for this is not yet obvious. There could, however, 
be a few possible explanations: 

1.	 The glucose pulse experiments are conducted in batch, non-growing conditions, whereas 
all chemostat experiments are in growing conditions. The difference between growing 
and non-growing conditions could probably account for the difference in glucose uptake 
between glucose pulse and the chemostat data at D = 0.6 h-1 (we would expect the fluxes 
at the high dilution rate to be comparable with those in batch conditions). Therefore, we 
should include the fluxes towards biomass while modelling chemostat conditions. 

2.	 One could ask : is it physiologically meaningful at all to combine non-growing dynamic 
glucose pulse data and glucose-limited steady state data? There might be a correction 
factor, which could depend on differences in the expression of transporters between 
the two conditions. This expression data, however, is not available for glucose pulse 
experiments.  

3.	 The difference in glycolytic control of growing and non-growing cells is quite dramatic. 
In growing cells, glycolysis runs at the maximal rate and ATP demanding processes do 
not have significant control on the glycolytic flux, whereas in non-growing cells ATP 
demand has a high control (Koebmann et al, 2002). Currently, only the same ATPase 
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reaction is used for both batch and chemostat conditions. Thus the ATPase reaction 
(serving as the only ATP sink in the model) might have different parameters (or even 
functional forms) under different experimental conditions. In conclusion, while fitting 
the model to data from growing and non-growing conditions, we might need to also 
model the ATP demand with different reactions.

4.	 Certain missing Vmax’s could have an influence. Although we have evidence that the Vmax 
of glycolytic enzymes change by no more than 20%, a variation that cannot account for 
the changes in fluxes, we do not have measurements for Vmax of PTS and PFL. The protein 
level and consequently maximal rate of PFL* (Melchiorsen et al, 2002) and possibly 
PTS* might change significantly as a function of the dilution rate (or equivalently growth 
rate) and these changes might play a significant role in the mechanism of the metabolic 
shift. But the effect of PFL on the maximal glycolytic flux might probably be negligible 
because at high glycolytic rates PFL flux is generally low (Goel et al,  Chapter 4).

The difference between growing and non-growing conditions could also be investigated by 
gathering information about the kinetic parameters for growing cells by measuring dynamic 
behaviour of metabolites on batch growing cells pulsed with glucose in the same medium as 
that of the chemostats. Alternatively, additional in vivo NMR data of mutant strains pulsed 
under aerobic and/or anaerobic conditions that have flux through the mixed-acid branch can 
be used to gather information about the kinetic parameters of this branch for non-growing 
cells. 

In conclusion, we successfully obtained a kinetic model of L. lactis capable of reproducing 
the metabolic shift. The model provided leads for modelling growing and non-growing cells 
and reconfirmed the importance of FBP and Pi. But additional efforts are required to get a 
complete mechanistic understanding of the metabolic shift.
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Supplementary material

In this section, we describe our assumptions and simplifications (e.g. quasi equilibrium 
reactions and metabolite pools definitions); we present the results of the sensitivity analysis 
for glucose uptake; and finally the estimated kinetic parameters and their distributions.

Contents 

S1	 Quasi-equilibrium reactions and metabolite pools 
S2	 Equivalences 
S3	 Simplifications 
S4	 Comparison of Vmax

S5	 Allosteric regulation 
S6	 Cell volume 
S7	 Equilibrium constants 
S8	 Parameter estimation 

S8.1	 Km

S8.2	 Vmax

S8.3	 Keq

S8.4	 Ki and Ka

S8.5	 Initial concentrations
S9	 Sensitivity analysis for glucose uptake
S10	 Parameter distributions

S10.1	 Glucose pulse experiment with non-growing cells
S10.2	 Chemostat experiments

S1	 Quasi-equilibrium 
	 reactions and 
	 metabolite pools

1.	 PGI: [c] : g6p ↔ f 6p
g6p pool: g6p, f6p

2.	 TPI: [c] : dhap ↔ g3p
triosep pool: dhap, g3p

3.	 PGK+ PGM+ ENO:
[c] : 13dpg + adp ↔ 3pg + atp
[c] : 3pg ↔ 2pg
[c] : 2pg ↔ pep
pep pool: 3pg, 2pg, pep

S2	 Equivalences 
FBP ≡ fdp
GA3P ≡ g3p
BPG ≡ 13dpg
3PGA ≡ 3pg
2PGA ≡ 2pg
glc-D[e] ≡ glc
lac ≡ lac-L
GLCpts ≡ pts
HEX1 ≡ GLK
ALD ≡ FBA
GAPD ≡ GAPDH
LDH ≡ LDH-L
ATPS3r ≡ ATPase
ACK ≡ ACK + PTAr
ADH ≡ ADHA + ADHE ≡ ALCD2x+ACALD
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S3	 Simplifications 

•	 H+ and H2O are removed from the reactions
•	 Based on the equilibrium constant values only 3 reactions are treated as reversible: FBA, 

GAPDH, PGK.
•	 Compartment notation ([c], [e]) removed
•	 No phosphate transport is included in the model.

S4	 Comparison of Vmax

Table S1: The table shows the values for Vmax from the literature and this thesis. The units are mmol·Lcyt
-1·s-1. 

ACALDH = Acetaldehyde dehydrogenase, MAB= Mixed-acid branch.
Vmax Levering et al, 2012 Hoefnagel et al, 2002a Chapter 5, 

this thesis
Chapter 4, 
this thesis

PTS 4.8117 2.6667 - -
GLK - 1 0.9686 0.9078
PFK 20.1788 3.7833 11.1045 11.6134
FBA ⇓ 2.64502 18.3333 41.9518 42.6821
FBPase 183.348 1.6667e-04 - -
GAPDH ⇓ 37.1894 83.0667 3.6331 17.3988
PGK - 15.3333 41.5165 43.4278
PGM - 22.3333 28.1663 21.5267
ENO ⇓ - 26.6667 8.3120 15.0667
PGK+PGM+ENO ⇓ 5.96394 - - -
PGK+PGM+ENO ⇑ 60.3524 - - -
PYK 28.4132 33.8333 15.3480 19.3584
LDH 20848 55 38.2039 45.4426
PFL - 1.9 - -
ACALDH - 1.6667 - -
ADH - 4.5 0.8508 1.09697
PTA - 12 1.4396 1.74634
ACK - 8.3333 32.0556 25.9487
MAB 41.6241 - - -
ATPase 0.0124696 16.6667 - -

•	 Vmax are expressed in mmol·Lcyt
-1·s-1. For the unit conversion, a volume ratio of 0.0478 is assumed as in Neves et al 

(2002).
•	 For the data in this thesis, the volume ratio (0.0012 ÷ 0.0014) is calculated by using the dry weight measurement and 

the cytosolic volume 1.67 mL·gDW-1.
•	 For the Vmax of PTS reaction, Castro et al (2009) report values of 0.25 µmol·min-1·mgprot

-1 for mannose PTS and 0.31 
µmol·min-1·mgprot

-1 for the combination of cellobiose PTS and the glucose permease. If we assume the overall Vmax 
to be the sum of the two, namely, 0.56 µmol·min-1·mgprot

-1, a cytosolic volume of 1.67 mL·gDW-1 and 43% protein 
composition gives a Vmax of 2.4 mmol·Lcyt

-1·s-1. This is in agreement with the value from Hoefnagel et al (2002a) 
where the Vmax was assumed to be equal to the maximum measured flux of 160 mmol·lcyt

-1·min-1 = 2.67 mmol·Lcyt
-1·s-1 

for aerobic conditions (and 190 mmol·Lcyt
-1·min-1 = 3.167 mmol·Lcyt

-1·s-1 for anaerobic conditions).
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S5	 Allosteric regulation 

In Table S2, we report for each reaction 
that is allosterically regulated, the list 
of effectors (activators and inhibitors), 
though the same information can be 
deduced from the expression of the 
reaction rates.

S6	 Cell volume 

•	 2.9 μL∙mg Protein-1 = 
1.711 mL∙gDW-1 Lactococcus lactis MG1363 (Neves et al, 2002)

•	 3 mL∙gDW-1 Lactococcus lactis NCDO 2118 (Even et al, 1999)
•	 1.67 mL∙gDW-1 Streptococcus lactis ML3 (Thompson, 1976)
•	 2.7 mL∙gDW-1 Lactococcus lactis MG1363 (Levering et al, 2012)
•	 1.45 mL∙gDW-1 Streptococcus lactis ML3 (Kashket & Wilson, 1973)

Neves et al (2002) assume that 59% of biomass is protein. 
Levering et al (2012) assume that 42% of biomass is protein. 
We have chosen to use the volume from Thompson (1976).

S7	 Equilibrium constants

In Table S3, we report the equilibrium constants for the 
glycolytic reactions. The reactions with high equilibrium 
constants have been described as irreversible reactions.

S8	 Parameter estimation
 
Parameter estimation was done in MATLAB, using the 
optimization routine MultiStart, from the Global Optimization 
Toolbox, with 5000 random initial seeds uniformly sampled 
in a interval around the literature values. For Vmax the bounds 
are ±50%. For all the other parameters with a good estimate/
measurement provided in the literature, the bounds were set to 
be one order of magnitude higher or lower than the reference 
value. Finally, for the Km , Ka, Ki for which we were not able 
to find a reliable value from the literature, we set the bounds 
to [10−3, 102] mM.

Table S2: The table enumerates the allosteric regulatory 
interactions in the kinetic model. It specifies for each effector 
the reaction it affects and the type of interaction (activation → 

or inhibition    ).
Effector Interaction type Target reaction
FBP
Pi → 

PTS

G3P FBA
FBP
Pi

→ PYK

FBP
Pi

→ LDH

ATP ADH
TrioseP PFL
FBP ACK⊥

   
⊥
   
⊥
   
⊥
       

⊥
        

⊥

     
 ⊥

⊥

Table S3: The table shows the 
equilibrium constants for the 
reactions in glycolysis as reported 

in http://jjj.bio.vu.nl/. 
Reaction Keq
PGI 0.314
PFK NA*
ALD 0.056
TPI 0.045
GAPDH 7·10-4

PGK 3200
PGM 0.1
ENO 4.6
PYK 6500
PFL 650
adhE () 1
adhA () 12355
PTA 0.0281
ACK () 174.22
LDH () 360000
ACLS 900000
ACLDC 900000
BTDD-RR () 1400

  *Not Available
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S8.1	 Km

Table S4: The table shows the Km values from the literature used as initial guess for the parameter estimation 
and the estimated values (i) for the (non-growing) batch experiment in Neves et al (2002); and (ii) for both 
the batch experiment in Neves et al (2002) and the chemostat experiments in this thesis. The units are mM.

Reaction Parameter Initial value Estimated value batch Estimated value
batch & chemostat

PTS KmGlc 0.013 0.089282 0.077143
K

mPEP 0.15 0.62275 18.7261
K

mG6P 0.1 123.2766 13.4113
K

mPYR 0.1 9.997 85.7216
GLP KmGlc 2.4 3.6308 51.1896
GLK KmGlci 0.2 0.31785 1.1999

K
ATP 0.05 0.093802 0.32061

K
G6P 5.0 9.3852 0.86991

K
ADP 5.0 23.6501 2.0565

PFK KmF6P 0.25 1.1443 0.7092
K

mATP 0.18 0.20744 0.53287
K

mFBP 5.8 22.3152 43.0252
K

mADP 0.3 2.5898 0.62888
FBA KmFBP 0.17 0.16225 0.45392

K
mDH AP 0.13 0.6507 0.41803

K
mG3P 0.03 0.21753 0.015042

FBPase KmFBP 10.0 52.9981 94.4957
K

mF6P 2.0 0.55489 4.4522
K

mPi 1.0 42.6039 6.9598
GAPDH KmG3P 0.25 0.082607 0.092307

K
mNAD 0.2 0.48483 0.52967

K
mPi 2.35 15.4513 4.5155

K
mBPG 0.05 0.077281 0.060493

K
mNADH 0.067 0.25492 0.44203

PGK KmBPG 0.003 0.018179 0.010981
K

mADP 0.2 1.3133 0.087752
K

mP3G 0.5 3.1212 3.4812
K

mATP 0.3 1.5786 1.1178
PYK KmPEP 0.17 0.83397 0.085966

K
mADP 1.0 0.98635 7.0799

K
mPYR 21.0 27.1675 59.9846

K
mATP 10.0 54.3764 1.3272

n 1.5 2.447 1.3286
LDH KmPYR 1.6 1.4722 5.4312

K
mN ADH 0.056 0.10229 0.031799

K
mLac 100.0 25.0975 25.215

K
mNAD 2.4 2.918 3.0138

n 2 2.006 1.7787
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PFL KmCOA 0.007 0.037644 0.015887
K

mPYR 1.0 6.6222 6.8645
K

mAC COA 0.05 0.21784 0.063781
K

mFOR 24.0 145.0798 180.0808
ACK KmAC COA 0.06 0.19203 0.2979

K
mPi 5.0 42.8965 5.7407

K
mADP 0.5 1.3117 1.6392

K
mCOA 0.1 0.23667 0.058144

K
mATP 7.0 52.3291 36.2953

K
mAC 7.0 5.0463 25.0661

ADH KmAC COA 0.007 0.0022651 0.0058509
K

mNADH 0.025 0.038001 0.18006
K

mCOA 0.008 0.032929 0.036061
K

mNAD 0.08 0.25376 0.60243
K

mETOH 1.0 2.3496 7.3836
ATPase KmATP 1.5 8.1534 8.3166

n 1 2.9742 2.6217

S8.2	 Vmax

Table S5: The table shows the 
Vmax values from the literature 
used as initial guess for the 
parameter estimation and the 
estimated values (i) for the (non-
growing) batch experiment in 
Neves et al (2002); and (ii) 
for both the batch experiment 
in Neves et al (2002) and the 
chemostat experiments in this 
thesis. The units are mmol·Lcyt

-1·s-1

S8.3	 Keq

Table S6: The table shows the Keq 
values from the literature used 
as initial guess for the parameter 
estimation and the estimated 
values (i) for the (non-growing) 
batch experiment in Neves et al 
(2002); and (ii) for both the batch 
experiment in Neves et al, (2002) 
and the chemostat experiments in 
this thesis.

Reaction Initial Keq Estimated keq 

batch
Estimated keq 

batch & chemostat 

GLP 1 0.90374 0.95184
FBA 0.056 0.071992 0.035276
GAPDH 7 · 10−4 0.00063166 0.00080527

PGK 3200.0 105.6077 1505.3406



Reaction Initial Vmax Estimated Vmax 

batch 
 Estimated Vmax 

 batch & chemostat 

PTS 0.94 4.3712 9.373
GLP  0.34 0.24741 0.14986
GLK 0.9 1.0528 0.67818
PFK 11.61 6.8929 15.6825
FBA 42.68 46.7356 29.6565
FBPase
GAPDH

1.67 · 10-4

17.4
9.7228 · 10-5

19.5548
2.3592 · 10-4

21.4867
PGK 43.43 57.5963 30.65
PYK 19.36 11.1317 16.3218
LDH 45.44 40.0955 34.6019
PFL 1.9 4.6293 1.6775
ACK 13.85 7.5659 12.8883
ADH 1.1 1.3676 1.6005
ATPase 5.0 28.9044 83.4745


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S8.4	 Ki and Ka

Table S7: The table shows the Ki and Ka values from the literature used as initial guess for the parameter estimation 
and the estimated values (i) for the (non-growing) batch experiment in Neves et al (2002); and (ii) for both the batch 
experiment in Neves et al (2002) and the chemostat experiments in this thesis. The units are mM. 

Reaction Parameter Initial value Estimated value 
batch

Estimated value
batch & chemostat

PTS KiFBP 6.0 30.2477 41.2149
K

aPi 1.5 0.97435 20.7536
FBA KiG3P 0.23 1.0483 64.6267
PYK KaFBP 9.1 2.2247 11.1105

K
iPi 0.77 6.8302 87.6483

LDH KaFBP
4 · 10−4 6.3486 3.346

K
iPi 1.0 30.266 9.6469

PFL KiTrioseP 0.2 5.4449 4.302
ACK KiFBP 1.0 8.2737 25.6607
ADH KiATP 1.0 35.8222 53.7522

S8.5	 Initial concentrations

Table S8: Initial metabolite concentrations of the kinetic model (i) for the (non-growing) batch experiment in Neves 
et al (2002); and (ii) for both the batch experiment in Neves et al (2002) and the chemostat experiments in this thesis. 
The units are mM. 

Metabolite Initial value Estimated value 
batch

Estimated value
batch & chemostat

Glc 80 NA NA
PEPpool 20.748 NA NA
G6Ppool 0 NA NA
PYR 0 NA NA
Glci 0 NA NA
ATP 0.1 14.2277 1.115
ADP 8.9 1.3805 1.1757
FBP 4.3575 NA NA
TrioseP 0 NA NA
Pi 100 70.4991 61.9526
NAD 4.8397 NA NA
BPG 0 NA NA
NADH 0 NA NA
Lac 0 NA NA
COA 1 0.39387 13.1624
ACCOA 0 NA NA
FORM 0 NA NA
AC 0 NA NA
ETOH 0 NA NA
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S9	 Sensitivity analysis for glucose uptake

In Table S9, we report the top list of parameters with the 
highest influence on the glucose uptake (scaled sensitivity 
higher than 0.2 in absolute value). It is not surprising to 
find in this list some of the parameters of the reactions PTS, 
PYK, LDH, ADH, PFL, since they represent respectively 
the glucose transport and the product formation branches. 
However, what is not intuitive is the minus sign of many 
of these parameters (for example for the Vmax) of PTS and 
PYK: these means that increasing the Vmax of PTS or PYK 
would entail a decrease in the glucose uptake. We can also 
notice that half of the parameters are Vmax and only three are 
parameters representing allosteric regulation.

S10	 Parameter distributions

S10.1	 Glucose pulse experiment with non-growing cells

Fig S1 shows the estimated kinetic parameters for the best 50 model fits and the estimated 
initial concentrations for the same models. From these figures, it is evident that, for several 
parameters, the distribution is almost uniform over the entire sampling range, suggesting 
that such parameters are not identifiable (i.e. the changes in these parameters do not affect 
significantly the output of the model and the corresponding prediction error). Nonetheless, 
for many other parameters, the distributions are more narrow and allow us to define tight 
bounds for the parameter values. Here we discuss the most interesting and biologically 
relevant results. 

•	 PTS
Vmax

PTS has mostly values higher than those reported in the literature (Castro et al, 2009). 
This is probably due to the fact that the PTS reaction is represented in the model as a 
single lumped reaction, and as a consequence its kinetic parameters might not reflect the 
actual kinetic properties of the reaction. Moreover, in Castro et al (2009), the authors 
did not take into account the allosteric regulation of FBP and Pi, in the estimation of Vmax 
and Km.
The activation of Pi on PTS seems to play an important regulatory role in the glucose 
pulse experiments: in fact, for most of the 50 fits, KaPi

PTS has an upper bound of 20 mM 
and the Pi concentration crosses this value during the glucose pulse (it is larger than 
KaPi

PTS during starvation and it is lower than KaPi
PTS during glucose uptake). Therefore, 

the activation strength varies significantly and affects the PTS rate. On the contrary, the 
inhibition of FBP on PTS does not seem to have a significant influence.

Table S9: Kinetic parameters with the 
highest normalized sensitivity for the 
glucose uptake.

Parameter Normalized sensivity
–0.44457
–0.41048
  0.40393

–0.36522
–0.3591
  0.33529
  0.30851
  0.29035
  0.27139
–0.25237
  0.23346
  0.22466
–0.21651
  0.21599
  0.21367
–0.20419
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•	 GLP
The affinity for glucose of the permease (mean around 30 mM) is higher than in the PTS.

•	 GLK
The glucose kinase has high affinity for ATP and low product inhibition from G6P and 
ADP.

•	 PFK
The product inhibition of ADP is significant for all the best fits (Km is less than 3mM). 
This is interesting, since it has been reported in Fordyce et al (1982) that ADP might 
have an activating function. We have chosen to model PFK with a classical Michaelis-
Menten-like kinetics as in Hoefnagel et al (2002).

•	 FBPase
The very low values of the Vmax confirm that the flux through the FBPase is negligible 
consistent with experimental evidence. This is in contrast with Levering et al (2012), 
where the Vmax was significantly high and so was the corresponding flux (see Table S1).

•	 PGK
The values of the equilibrium constant of PGK are mostly lower than the 3200 reported 
for yeast and used in Hoefnagel et al (2002).

•	 PYK
If we look at Pi inhibition on PYK, we can see that for most of the fits Ki is lower 
than 25 mM. As already observed for the PTS, the Pi concentration in glucose pulse 
experiments varies from values higher than Ki to values lower than Ki, so we can expect, 
Pi inhibition to have a different effect during the glucose pulse experiment. Contrary 
to the PTS regulation, for PYK, the feed-forward regulation of FBP might play a role, 
since for a significant fraction of the model fits, the activation of PYK can be modulated 
by the variation in concentration of FBP. Moreover, it is interesting to note that the Pi 
allosteric inhibition always shows some degree of cooperativity, whereas FBP activation 
cannot have any cooperativity in order to reproduce the NAD/NADH recovery observed 
experimentally.

•	 LDH
The FBP activation constant Ka is for the majority of the model below 5 mM, suggesting 
that FBP is always activating LDH. On the other hand, Pi inhibition takes values all over 
the range, thus we cannot draw any conclusion about its role.

•	 PFL
The concentration of TrioseP varies between 0 and 10 mM during the glucose pulse 
experiments. Therefore, Fig S1 suggests that the for a large fraction of the fits, the 
inhibition by TrioseP is not significant.

•	 ACK
For most of the models, there is no modulation of the inhibition of ACK by FBP, since 
FBP concentration is mostly higher than the Ki.
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•	 ADH
ATP inhibition does not seem to be significant.

•	 ATPase
From Fig S1 it is evident that ATPase requires a high degree of cooperativity (always 
higher than 2).

•	 Initial concentrations
It is interesting to note that the initial concentration of inorganic phosphate has a mean 
value around 100 mM, almost double of what is reported in Neves et al (2002) where the 
phosphate balance before and after the glucose pulse was not closed.

S10.2	 Chemostat experiments

Fig S2 shows the estimated kinetic parameters for the best 15 model fits (the only model that 
exhibits a metabolic shift); and the estimated initial concentrations for the same models. In 
general, we can see that the parameter distributions are often multimodal contrary to what 
we have seen for the parameter estimated based only on the data in Neves et al (2002). 
This may be due to the different sample size (50 vs 15). Therefore, we should be careful in 
comparing the results of the two different estimations. Here we discuss some of the parameter 
distributions. 

•	 PTS
The Vmax is higher than the estimate based exclusively on the non-growing batch data 
in Neves et al (2002). The role of phosphate activation seems to be less important. 
Moreover, the affinity for PEP is higher.
•	 PGK
The equilibrium constant is higher than the estimate exclusively based on the non-
growing batch data in Neves et al (2002). 
•	 PYK
The role of phosphate inhibition seems to be less important. 
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Summary, Discussion

 and Concluding Remarks

“If  I find 10,000 ways something won’t work, I haven’t failed. I am 
not discouraged, because every wrong attempt discarded is another 

step forward.” 

Thomas A. Edison

 CHAPTER 777 CHAPTER      7
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Summary, discussion and concluding remarks

The research project encompassing this thesis was a systems biology effort to understand 
growth strategies in Lactococcus lactis with a focus on the metabolic shift from mixed-acid 
to homolactic fermentation as a function of growth rate. The project was a collaborative 
effort between three research groups across three universities, Wageningen University, VU 
University Amsterdam, and Groningen University, with a central theme of validating the 
optimal resource allocation (self-replicator) model with experimental data on L. lactis. The 
project therefore required careful planning and coordination, and as the hub of modelling 
and fermentation activities, this responsibility was ours. As necessary with any wet-dry 
collaboration, the experimental expectations for model validation were communicated at the 
very start to ensure availability of protocols during sampling. Subsequent experimentation 
and analysis with intense collaborative effort led to the results laid out in this thesis. As stated 
in the introduction, the aim of this thesis was to answer the following questions:	
•	 How is the growth-dependent metabolic shift regulated in L. lactis?
•	 How does this shift correlate with protein investment in L. lactis?
•	 Why does L. lactis exhibit the metabolic shift?
Parts of the first and third question and the second question and were addressed in Chapter 4. 
The ‘how’ question was investigated further in Chapters 5 and 6. In the subsequent sections, 
we review the answers to the above questions with a broader perspective.

Standardization is crucial for systems biology 

For an integrated and inter-laboratory approach it is imperative that cell samples are 
reproducible, and physiological states are well defined (Canelas et al, 2010). We therefore 
set high priority to standardization of experimental procedures. In particular, we established 
protocols for harvesting, storage, extract preparation and specific enzyme assays in L. 
lactis. Going a step further we developed an in vivo-like assay medium to standardize 
enzyme activity measurements to mimic cytosolic conditions of L. lactis as close as was 
practically possible (Goel et al, 2012a); see Chapter 3). We also standardized the sampling 
procedures and tested for reproducibility before commencing the actual experiments. That 
apart considerable efforts into the cryopreservation, inoculation and cultivation conditions of 
strain, medium optimization and setting up of mini-fermentors for prolonged cultivation by 
colleagues resulted in a complete set of standardized protocols as elaborated further below. 

Strain

The importance of cultivation history of bacterial strains cannot be stressed enough, even 
more so, when collaborative efforts are involved. Having stocks from a single strain isolate 
ensures the same strain background to start with, and makes data comparison much easier 
and more reliable. Getting rid of variation due to cultivation history decreases an important 
parameter that could cause variability. It ensures that results obtained are in fact an outcome 
of the experimental design and not an unknown phenomenon that occurred in the course of 
the strain history. 
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The genome of Lactococcus lactis subsp. cremoris MG1363 has been sequenced (Wegmann 
et al, 2007). Noticeable physiological differences were observed (in chemostats, at multiple 
dilution rates) between wild type and derivatives of Lactococcus lactis MG1363, and even 
between MG1363 strains with different cultivation histories (Filipe Santos, unpublished 
data). To minimize background genetic variation and variations in pre-culture condition, 
Filipe Santos and Herwig Bachmann applied a standardized cryopreservation and inoculation 
procedure to create, maintain and distribute single strain isolate stocks based on methods 
used in the industry (Fig 1). All the experiments in this project were carried out from the 
working stocks generated via this procedure. 

Figure 1: Standardized cryopreservation procedure developed by Filipe Santos and Herwig Bachmann, applied to 
generate stocks of the L. lactis subsp. cremoris MG1363 isolate to minimize strain variability among laboratories 
and experiments. Working stocks can be distributed to collaborating research groups. GM17: M17 medium 
supplemented with 25 mM glucose, GCDMPC: CDMPC supplemented with 25 mM glucose.  

Growth medium

A number of growth media are published for lactic acid bacteria. Filipe Santos recently 
developed a modified chemically defined medium for prolonged cultivation (CDMPC) 
based on the nutrient requirements and biomass composition of L. lactis MG1363, which 
was used for all experiments in this thesis. The major differences compared to previously 
published chemically defined media (Thomas et al, 1979; Poolman & Konings, 1988; Jensen 
& Hammer, 1993) for L. lactis: are summarized below (Filipe Santos, unpublished data):
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1. Removal of 
•	 Acetate and ammonium.
•	 Redundant and/or unessential vitamins unused by L. lactis such as B12, or those 

that could impose future technical challenges namely riboflavin, that interferes with 
fluorescence measurements and folate, which has a low solubility at neutral pH.

•	 Trace elements that are likely to precipitate.
•	 All non-essential nucleic acid precursors. 

2.  Adjustment of 
•	 Phosphate concentration 
•	 Amino acid composition to 2.5 times the amino acid requirement for 1  gDW∙L-1 

according to the published biomass composition (Oliveira et al, 2005).
3. Implementation of a new protocol that reduces variations between media batches by 

avoiding precipitation and heat or light degradation.

In vivo-like enzyme assay medium for L. lactis

Enzyme activity measurements are crucial to decipher regulation of enzymes and for 
construction of kinetic models. Ideally we would like to know how enzyme activities are 
affected in vivo. We therefore took the closest practical approach to establish uniform assay 
conditions for growing cells of L. lactis that resembled intracellular conditions (Chapter 
3). This in vivo-like assay medium was based on the intracellular composition of anaerobic 
glucose-limited chemostat cultures of L. lactis and was tested for glycolytic and downstream 
pathway enzymes. We optimized procedures for multiple sample processing using 96-well 
plates, considerably reducing measurement time and effort. We also tested the effect of 
freezing cells and carry-over of ammonium sulphate from coupling enzymes, details that can 
easily be overlooked, but can substantially impact the results and conclusions drawn from them.

Prolonged cultivation of L. lactis

Evolution experiments can give insights into the fitness perspective of a microorganism. A 
chemostat setup is a convenient way of growing microorganisms under constant conditions. 
For evolutionary studies, however, robustness, scale and affordability issues render 
prolonged-chemostat cultivations unfeasible. A versatile experimental set up to perform 
parallel prolonged cultivations under chemostat conditions at small working volumes was 
recently developed (Santos, 2011). Sampling from such small volumes in a chemostat, 
however, can easily disturb the steady state. We thus tested whether collecting samples 
from the waste-stream would give results similar to samples obtained directly from 1.2 L 
chemostat cultivations. The results for two dilution rates are shown in Fig 2 and indicate that 
Vmax’s of fructose-1,6-bisphosphate aldolase, pyruvate kinase and acetate kinase from the 
waste stream of mini-chemostats were not significantly different from the 1.2 L chemostats. 
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The Vmax of LDH did show a difference, although this difference was constant at both dilution 
rates and the trend of increasing LDH activity at the higher dilution rate was captured. Thus 
we could conclude that the Vmax’s from the waste-stream of the mini-chemostats were closely 
representative of actual steady-state samples.

Due to the time invested in standardization, the elaborate dataset generated in Chapter 4 
can serve as a reference dataset for growth-rate related behaviour of the wild-type. Any 
subsequent evolution experiments using the wild-type can be compared to this dataset. 
We also implemented this comparison in this thesis, for instance the results obtained from 
experiments on the wild-type strain MG1363 were comparable to the lactose-utilizing 
derivative HB34 as described in Chapter 5. We could also compare the wild-type Vmax’s to 
L. lactis evolved in mini-chemostats for 800 generations.

Figure 2: Comparison of steady state maximal enzyme activities after 10 volume changes in the waste stream of 
60 mL mini-chemostats with those in 1.2 L chemostat cultures of L. lactis MG1363 at two dilution rates. Error bars 
indicate standard deviations from a mean of at least three biological replicates. ALD, fructose-1,6-bisphosphate 
aldolase; PYK, pyruvate kinase; LDH, lactate dehydrogenase and ACK, acetate kinase.

Major outcomes: metabolic regulation and feast / famine behaviour 
of L. lactis

In Chapter 4 we showed that despite substantial increase towards lactate flux from low to 
high growth rates neither transcript, protein nor enzyme activity levels significantly changed: 
indicating metabolic regulation and enzyme overcapacity. Furthermore, we observed biphasic 
feast / famine behaviour of sorts: the highest (chemostat) growth rate (0.6 h-1) differed from 
the low to medium growth rates (0.15 to 0.5 h-1) in biomass concentration (lower), residual 
glucose concentration (few mM vs. undetectable) and induction of stress proteins (lower). 
Thus L. lactis does not so much change anything as gradually as the metabolic shift, but 
rather seems to displays a switch-on – switch-off behaviour possibly linked to a threshold 
level of glucose. 

0

2

4

6

8

10

12

ALD PYK LDH ACK

V m
ax

 (μ
m

ol
∙m

in
-1

∙m
g 

Pr
ot

ei
n-1

) 

D 0.3 (60 mL) D 0.3 (1.2L) D 0.6 (60 mL) D 0.6 (1.2L)



147

Summary, discussion and concluding remarks

We investigated the metabolic regulation mechanism further using a lactose-positive 
heterofermentative L. lactis MG1363 derivative strain (Chapter 5). Arresting its protein 
synthesis and supplementing it with various sugars, we showed that glycolytic flux correlated 
positively with the fraction of lactate produced indicating strong metabolic regulation of the 
shift. Furthermore, we could elegantly connect higher FBP analogue levels to higher lactate 
levels, providing the first evidence of the causal effect of FBP towards lactate formation. 
The next step was to conglomerate the allosteric interactions in L. lactis glycolysis and 
downstream pathways into a kinetic model and test the effect on the metabolic shift (Chapter 
6). The fitted model reproduced the metabolic shift and sensitivity analysis highlighted the 
central role of the glycolytic intermediate FBP and inorganic phosphate in the metabolic shift.

(Non)optimal protein allocation in L. lactis?

The endeavour of characterizing the metabolic shift of L. lactis was undertaken to test 
the hypothesis of optimal resource allocation (see Chapter 4), also called optimal protein 
allocation (Molenaar et al, 2009). The metabolic shift of L. lactis was, however, mostly 
‘metabolically regulated’ and was characterized by barely any change in protein levels 
associated with the two metabolic branches. These results falsify the hypothesis of optimal 
protein allocation. This finding can and should not be underestimated, as any other negative 
result in science. Negative results force us to question the initial assumptions underlying the 
hypothesis, one of which is that L. lactis exhibits optimal behaviour under all growth rates, 
which, as the results suggest, is incorrect. The unchanging enzyme levels with the metabolic 
shift indicate that indeed, L. lactis does not follow the optimal resource allocation strategy at 
low substrate concentrations, but the hypothesis that its protein allocation might be optimal 
at high substrate concentrations and high growth rates is still open. This is because the 
predictions of the self-replicator model based on the hypothesis of optimal protein allocation 
are applicable to a system that is optimized for growth rate. We grew L. lactis (i) in glucose 
supplemented defined medium, (ii) in carbon-limited chemostat conditions, (iii) at various 
growth rates – three aspects which one could question whether L. lactis would have been 
optimized for in the course of its evolutionary history. 

Besides the ease of analysing samples generated under well-defined conditions, the initial 
reasons for choosing these conditions were the existing evidence of altering LDH levels 
with higher lactate in L. lactis in glucose-limited chemostat conditions (Thomas et al, 1979) 
and the intention to reproduce this data along with multilevel characterization. Thomas et 
al used the strain L. lactis ML3 while we used the strain L. lactis MG1363; both strains are 
derivatives of the same ancestral strain NCDO712 (Le Bourgeois et al, 2000). However, the 
data disagree and this was a result we did not expect. A major cause could be the genetic 
difference between these two strains that developed in the course of strain history (Le 
Bourgeois et al, 2000). The medium composition was also different with potential impact on 
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gene expression. This does reiterate that strain diversity is not trivial and that standardization 
for strain usage and medium is extremely important. In any case, these differences between 
Thomas et al and our work indicates that the protein allocation model as originally proposed 
may not be as general as it was intended to be: MG1363 does not seem to adhere to it.

At this stage, the integrated multilevel omics approach to test the protein allocation hypothesis 
does raise a few retrospective questions. Was this in fact the right approach? And what did we 
really gain from it? As stated in the preceding paragraph, we obtained a negative result, and 
this implies that regulation of the metabolic shift was not as simple as we thought initially. 
In the following sections we discuss such reflections and the hypotheses that come out of the 
results from this thesis. 

A reflection on the approach

In today’s systems biology era a variety of tools are available and multiple tools can be 
combined and used to solidify data further. Such combined multi-level omics studies have 
successfully investigated a variety of microbial responses in Escherichia coli (Ishii et al, 
2007), Bacillus subtilis (Buescher et al, 2012) and also the metabolic shift in yeast (de 
Groot et al, 2007; Castrillo et al, 2007; Canelas et al, 2010). Similar to our observation in 
L. lactis (Chapter 4) robust metabolic regulation was observed in yeast and in E. coli at 
varying growth-limiting substrate levels. Buescher et al (2012) revealed global regulatory 
reconfiguration during a dynamic shift from malate to glucose, and concluded that adaptation 
is subject to a trade-off between complex and imprecise regulation, each bearing condition-
specific evolutionary advantage in B. subtilis. 

However, the metabolic shift in relation to the growth rate and protein allocation under 
controlled chemostat conditions was investigated here for the first time in Lactococcus lactis. 
One could still argue that testing the metabolite levels, enzyme activities and/or protein levels 
alone would suffice to verify the hypothesis of protein allocation. But if we were to analyse 
the various dilution rates merely for metabolite levels, enzyme activities and protein levels, 
we would miss important regulatory information like that of glucose repression or arginine 
catabolism. In retrospect it was therefore useful to include transcriptome analysis. 

Setting up and execution of chemostat fermentations, combined with sampling for multiple 
measurements, is a very time-consuming process. Moreover, once the sample is taken at the 
steady state and the fermentor is ‘killed’ no more samples from this biological replicate are 
possible. Thus we feel it is essential to envisage ahead of time, the possible outcomes of 
an experiment (questioning a hypothesis) and the corresponding analytical tools that may 
become necessary; this can save a lot of fermentor setup time and effort. 
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The multi-level omics approach does have a drawback though. Generation of vast amounts of 
data can be overwhelming and appropriate data mining and visualization tools are becoming a 
necessity (for a review of available tools see Gehlenborg et al (2010)). Indeed if data are mined 
carefully, they can be good pointers toward interesting phenomena that would otherwise go 
completely unnoticed –the examples being (see Chapter 4), (i) metabolic regulation of the 
metabolic shift (investigated further in Chapters 5 and 6) (ii) the effect of the YfiA protein on 
ribosome dimerization in L. lactis, an outcome of looking for genes specifically not changing 
with growth rate, (iii) antagonistic behaviour of two isoenzymes of acetate kinase (ACK). 
Subsequently, detailed studies are essential to supplement pointers from these global studies 
to gain a molecular level understanding, which are currently underway (Puri et al, manuscript 
submitted; Puri et al, manuscript in preparation).

Additional analyses

One of the major set of variables missing from the characterization of the metabolic shift in L. 
lactis is intracellular metabolites under steady-state conditions. Metabolomics is an important 
platform but a good quenching protocol is essential to quantify intracellular metabolites. 
Such a quenching protocol is available for Saccharomyces cerevisiae (Canelas et al, 2009), 
but is unfortunately not applicable to L. lactis. To gain any further insight into the metabolic 
regulation of the shift, such an analysis is crucial. Additionally, while the stoichiometries 
in metabolism are well established, we need better mapping of all allosteric feedback loops 
in metabolism (the ‘regulatory wiring’ of the system). Hence systematic screening of all 
glycolytic and downstream pathway enzymes for the effect of variety of important metabolites 
would be useful to accurately characterize intracellular enzyme behaviour. Both of these 
analyses would greatly improve the accuracy of the kinetic model described in Chapter 6.

Glycolytic overcapacity in L. lactis evolved in a constant environment

L. lactis seems to show a high overcapacity of enzymes. We conclude this based on the results 
from Chapter 4: an increase in glycolytic flux is not accompanied by increase in glycolytic 
enzyme capacities. This phenomenon has also been observed in the yeast Saccharomyces 
cerevisiae where glycolytic flux changing due to the absence of oxygen (Daran-Lapujade et 
al, 2007), change in temperature (Tai et al, 2007) and switch from aerobic chemostat growth 
to anaerobic glucose excess condition (van den Brink et al, 2008) showed predominantly 
metabolic regulation. It may be explained by the fact that microbes generally live in dynamic 
as opposed to stable environments. The form and abundance of nutrients and competitors 
in their environment frequently fluctuate. Based on the premise that continually-altering 
protein levels to adapt to the fluctuating environment is unfavourable –either due to high 
protein turnover costs or slow response times–, one could hypothesize that L. lactis maintains 
high capacity as an ‘always-prepared’ strategy to cope with a dynamic environment. If this 
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hypothesis were true, evolving L. lactis under constant environments should eventually lead 
to a decrease in overcapacity of enzymes. Such a decrease has in fact been observed in S. 
cerevisiae, where cells evolved for 200 generations in a constant environment of aerobic 
glucose-limited chemostats (at dilution rate 0.1 h-1) had lower capacity of glycolytic enzymes 
(Jansen et al, 2005). 

We therefore tested the maximal enzyme activities in L. lactis evolved at two different 
dilution rates, 0.3 h-1 (mixed-acid pathway metabolism) for 230 generations, and 0.6 h-1 
(homolactic metabolism) for 785 generations respectively, in anaerobic (95% N2, 5% CO2) 
glucose-limited mini-chemostats with 60 mL working volume in CDMPC medium (in 
collaboration with Filipe Santos). Surprisingly we did not observe a decrease in maximal 
enzyme activities of FBP aldolase (ALD), pyruvate kinase (PYK), lactate dehydrogenase 
(LDH) and acetate kinase (ACK) in any of the evolved cultures (Fig 3). In fact at dilution rate 
0.6 h-1 the ACK activity increased (Fig 3B) and the metabolism shifted towards mixed-acid 
fermentation, accompanied by lower residual glucose, higher biomass, and higher ATP yield 
on glucose (unlike dilution rate 0.3 h-1 where neither Vmax nor metabolism changed) (Santos 
et al, manuscript in preparation). 

That the metabolism shifts to more ATP-efficient substrate utilization is easy to explain 
based on the competition for the growth-limiting substrate in a chemostat. This has also 
been observed in S. cerevisiae where the metabolism shifted from glucose fermentation to 
glucose oxidation resulting in higher biomass yield (Brown et al, 1998; Ferea et al, 1999). 
However, the unchanging enzymatic overcapacity of L. lactis even after 785 generations is 
very intriguing indeed. One could argue that overcapacity of reversible enzymes is more 
likely to decrease as suggested for yeast (Mashego et al, 2005), and that pyruvate kinase did 
not change in evolved yeast either (Jansen et al, 2005). But that still does not explain why 
aldolase levels remain unchanged.

So in a constant environment does the apparent overcapacity of L. lactis have any evolutionary 
advantage at all? It would be interesting to test this with a competition experiment between 
the wild type strain and one without overcapacity. But until the result of such an experiment 
is available, we can only speculate about the plausible reasons for the sustained overcapacity 
of evolved L. lactis, some of which are outlined below: 

(i)  Eukaryotes and prokaryotes differ in their regulation of gene expression (Phillips, 
2008) due to structural differences like the presence or absence of nucleus, chromatin 
structure, genome size and operon organisation among others. Thus, compared to yeast, 
L. lactis might regulate differently the gene expression affecting its protein levels. 

(ii) The measured Vmax’s might not be representative of those in vivo. This could be due to 
missing knowledge of enzyme effectors, or the presence of certain isoenzymes which 
might show enzyme assay activity in vitro, but their in vivo function might differ. 



151

Summary, discussion and concluding remarks

Figure 3: Maximal enzyme activities (Vmax’s) of FBP aldolase (ALD), pyruvate kinase (PYK), lactate dehydrogenase 
(LDH) and acetate kinase (ACK) in L. lactis MG1363 evolved under constant environment. Cultures were grown 
under anaerobic (95% N2, 5% CO2) conditions in four independent glucose-limited mini-chemostats with 60 mL 
working volume in CDMPC medium at dilution rates (A) 0.3 h-1 and (B) 0.6 h-1. Error bars indicate technical 
standard deviation from mean enzyme activity determined from at least 3 replicates.

(iii) The role of glycolytic enzymes might not be limited to their glycolytic function alone. 
They could also have a regulatory function like transcriptional regulation for instance, 
or glucose homeostasis as reviewed recently in tumour cells (Kim & Dang, 2005).

(iv) The metabolism of L. lactis seems to be robust that it does not respond to any changes. 
Natively it has survived in a rich environment with a constant possibility of plentiful 
substrate. This could have shaped it to be robust to changes in substrate over long 
periods by developing regulation mechanisms to circumvent changes in proteins. The 
dimerization and subsequent stalling of ribosomes rather their breakdown, for lower 
ribosomal activity at low growth rates (Puri et al, manuscript submitted) also seems like 
an adaptation to maintain constant protein levels.
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Such additional regulation mechanisms might alter protein costs altogether, and maybe 
the present definition of protein costs simply does not hold for L. lactis due to additional 
constraints (imposed by the explanations above) that are as yet not known or accounted for.

Coexistence of mixed strategies at the single cell level

The vast majority of experimental studies thus far involve measurements that reflect 
averaged cell population behaviour (e.g. metabolite concentrations, enzymatic activity and 
transcriptome levels). Population averages of variables that are not normally distributed 
hamper the type of understanding that is generally investigated with systems biology 
approaches. Therefore, the concept of cell population heterogeneity has received increasing 
attention in the last decade (Dubnau & Losick, 2006; Smits et al, 2006; Veening et al, 2008) 
and a number of examples have been reported, e.g. bistability of the lac operon (Ozbudak 
et al, 2004), competence development and sporulation (Veening et al, 2006) and persister 
phenotypes (Balaban et al, 2004). It is not unlikely that other phenotypes such as metabolic 
strategies might be heterogeneously distributed amongst a population but they have not been 
reported so far.

There is also theoretical evidence that from a specific growth rate optimization point of view 
mixed strategies are not optimal: only one strategy is optimal under defined steady state 
conditions (Wortel et al, manuscript in preparation). In that respect the mixed metabolism 
(part mixed-acid and part homolactic) that occurs at intermediate dilution rates in L. lactis 
(see Chapter 5) could be a result of measuring population means: they might not actually 
occur within a single cell. The conclusion that L. lactis has a binary feast or famine kind 
of behaviour also supports an “on-off” character and thus the hypothesis of heterogeneous 
subpopulations.

An elegant way of tracking single cell behaviour is by measuring expression of fluorescent 
proteins (like green fluorescent protein, GFP) under control of the promoter of the gene of 
interest (Chalfie et al, 1994). This principle can also be applied to verify the hypothesis 
of heterogeneous subpopulations in L. lactis exhibiting mixed strategies. The averages of 
transcript and protein fold changes of acetate kinase (ackA2) at different growth rates are 
shown in Fig 4A (Chapter 4). Single-cell fluorescence measurements of engineered L. 
lactis cells transformed with a plasmid harbouring GFP under control of ACK promoter can 
illuminate how the different metabolic strategies of L. lactis are distributed amongst the 
population. The population could be homogeneous (Fig 4B) with the same level of ACK 
expression (grey), or, it could be a mixture of subpopulations (Fig 4C): one that expresses 
ACK (dark grey) and one with a much reduced or no expression (white). 
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Figure 4: (A) Log2 fold change ratios of ackA2 transcripts and protein levels at various dilution rates (Chapter 
4). (B) Probability distribution of fluorescence intensity in single cells in a homogeneous population and (C) 
heterogeneous population with single cells expressing (dark grey) and not expressing (white) ackA2.

This has in fact been tested by measuring on-line steady-state single-cell fluorescence in 
vivo (method developed by Filipe Santos and Herwig Bachmann) on engineered L. lactis 
cells in anaerobically grown glucose-limited chemostats at various dilution rates. The 
fluorescence intensities decreased with lower mixed-acid pathway fluxes but showed no 
signs of heterogeneity (Filipe Santos, unpublished data). This result indicates that mixed 
strategies coexist in individual L. lactis cells, rendering the hypothesis of heterogeneous 
subpopulations false. It thus questions the assumption behind the original approach, which 
is the optimization of growth rate. One could therefore conclude that L. lactis might not be 
optimized for growth rate under low substrate concentrations.

Concluding remarks

We studied both, the ‘how’ and the ‘why’ behind the metabolic shift in L. lactis. In terms of 
the ‘how’ we have tread further with respect to the causal effect of FBP. An improved kinetic 
model however, is necessary to fully illuminate the mechanism of the shift. It will most likely 
be necessary to validate the model with independent experiments or data other than those 
used for fitting to understand the shift at a broader level to drive model-predicted metabolic 
engineering of L. lactis. 
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For the ‘why’, we have learnt that the metabolic shift as we define it in L. lactis (under artificial 
steady-state chemostat environment) cannot be explained by optimal resource allocation. It 
has been five years since the project started and the field has moved on since then. Possibly 
if we can pin point the right proxy for fitness, we might be able to explain the shift, which 
could be an “anticipatory response” beneficial for a future challenge as was shown for yeast 
with respect to its diauxic shift (Mitchell et al, 2009). Recently, the well-established view 
of “regulation in microorganisms is optimized” (Schuetz et al, 2012) has been challenged 
to shift to “regulation is often suboptimal, at least under laboratory conditions” (Price et al, 
2013). Based on this we could conclude that L. lactis might in fact not be an optimized lab 
organism. It would be very interesting to see how further research shapes these statements.

Systems biology is a cycle and this thesis has thus contributed to one cycle. It is time for the 
next one to start spinning!

(Castro et al, 2009)cellobiose-PTS and the novel GlcU permease”,”container-ti-
tle”:”Molecular microbiology”,”page”:”795-806”,”volume”:”71”,”issue”:”3”,”-
source”:”NCBI PubMed”,”abstract”:”According to previous reports, Lactococcus 
lactis imports glucose via two distinct phosphoenolpyruvate:phosphotransferase 
systems (mannose-PTS and cellobiose-PTS



155

Bibliography

Bibliography

Aggarwal K & Lee KH (2003) Functional genomics and proteomics as a foundation for systems biology. Brief. 
Funct. Genomic. Proteomic. 2: 175–184

Aledo JC & Esteban del Valle A (2002) Glycolysis in wonderland: the importance of energy dissipation in metabolic 
pathways. J. Chem. Educ. 79: 1336

Aledo JC, Pérez-Claros JA & Esteban del Valle A (2007) Switching between cooperation and competition in the use 
of extracellular glucose. J. Mol. Evol. 65: 328–339

Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang J, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld 
DS, Thomas CJ, Vander Heiden MG & Cantley LC (2011) Inhibition of pyruvate kinase M2 by reactive 
oxygen species contributes to cellular antioxidant responses. Science 334: 1278–1283

Andersen AZ, Carvalho AL, Neves AR, Santos H, Kummer U & Olsen LF (2009) The metabolic pH response in 
Lactococcus lactis: an integrative experimental and modelling approach. Comput. Biol. Chem. 33: 71–83

Angulo-Brown F, Santillán M & Calleja-Quevedo E (1995) Thermodynamic optimality in some biochemical 
reactions. Il Nuovo Cimento 17: 87–90

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, 
Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin 
GM & Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. 
Nat. Genet. 25: 25–29

Bachmann H, Fischlechner M, Rabbers I, Barfa N, Branco Dos Santos F, Molenaar D & Teusink B (2013) 
Availability of public goods shapes the evolution of competing metabolic strategies. Proc. Natl. Acad. Sci. U. 
S. A. 110: 14302–14307

Bachmann H, Molenaar D, Kleerebezem M & van Hylckama Vlieg JET (2011) High local substrate availability 
stabilizes a cooperative trait. ISME J. 5: 929–932

Baicu SC & Taylor MJ (2002) Acid-base buffering in organ preservation solutions as a function of temperature: new 
parameters for comparing buffer capacity and efficiency. Cryobiology 45: 33–48

Balaban NQ, Merrin J, Chait R, Kowalik L & Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 
305: 1622–1625

Beeler T, Bruce K & Dunn T (1997) Regulation of cellular Mg2+ by Saccharomyces cerevisiae. BBA-Biomembr. 
1323: 310–318

Beg QK, Vazquez A, Ernst J, de Menezes MA, Bar-Joseph Z, Barabási A-L & Oltvai ZN (2007) Intracellular 
crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic 
activity. Proc. Natl. Acad. Sci. U. S. A. 104: 12663–12668

Bennett MR, Pang WL, Ostroff NA, Baumgartner BL, Nayak S, Tsimring LS & Hasty J (2008) Metabolic gene 
regulation in a dynamically changing environment. Nature 454: 1119–1122

Berlec A, Ravnikar M & Strukelj B (2012) Lactic acid bacteria as oral delivery systems for biomolecules. Pharm. 
67: 891–898

Bertalanffy L von (1950) An outline of general system theory. Br. J. Philos. Sci. 1: 134–165

Bertalanffy L von (1969) General system theory: foundations, development, applications Revised. George Braziller, 
Inc.



156

Le Bloas P, Guilbert N, Loubiere P & Lindley ND (1993) Growth inhibition and pyruvate overflow during glucose 
metabolism of Eubacterium limosum are related to a limited capacity to reassimilate CO2 by the acetyl-CoA 
pathway. Microbiology 139: 1861–1868

Boele J, Olivier BG & Teusink B (2012) FAME, the Flux Analysis and Modeling Environment. BMC Syst. Biol. 6: 8

Bond DR & Russell JB (1996) A role for fructose 1,6-diphosphate in the ATPase-mediated energy-spilling reaction 
of Streptococcus bovis. Appl. Environ. Microbiol. 62: 2095–2099

Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon J-P, van Deventer SJH, Neirynck S, 
Peppelenbosch MP & Steidler L (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in 
Crohn’s disease. Clin. Gastroenterol. Hepatol. Off. Clin. Pr. J. Am. Gastroenterol. Assoc. 4: 754–759

Brauer MJ, Huttenhower C, Airoldi EM, Rosenstein R, Matese JC, Gresham D, Boer VM, Troyanskaya OG & 
Botstein D (2008) Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. 
Mol. Biol. Cell 19: 352–367

Bremer H & Dennis PP (1996) Modulation of chemical composition and other parameters of the cell by growth rate. 
In Escherichia coli and Salmonella pp 1553–1569. Washington, DC: ASM Press

Britten RJ (1954) Extracellular metabolic products of Escherichia coli during rapid growth. Science 119: 578

Brockmeier U, Caspers M, Freudl R, Jockwer A, Noll T & Eggert T (2006) Systematic screening of all signal 
peptides from Bacillus subtilis: a powerful strategy in optimizing heterologous protein secretion in Gram-
positive bacteria. J. Mol. Biol. 362: 393–402

Brown CJ, Todd KM & Rosenzweig RF (1998) Multiple duplications of yeast hexose transport genes in response to 
selection in a glucose-limited environment. Mol. Biol. Evol. 15: 931–942

Bubunenko M, Korepanov A, Court DL, Jagannathan I, Dickinson D, Chaudhuri BR, Garber MB & Culver GM 
(2006) 30S ribosomal subunits can be assembled in vivo without primary binding ribosomal protein S15. RNA 
New York N 12: 1229–1239

Buescher JM, Liebermeister W, Jules M, Uhr M, Muntel J, Botella E, Hessling B, Kleijn RJ, Chat LL, Lecointe 
F, Mäder U, Nicolas P, Piersma S, Rügheimer F, Becher D, Bessieres P, Bidnenko E, Denham EL, Dervyn 
E, Devine KM, et al (2012) Global network reorganization during dynamic adaptations of Bacillus subtilis 
metabolism. Science 335: 1099–1103

Canelas AB, Harrison N, Fazio A, Zhang J, Pitkänen J-P, van den Brink J, Bakker BM, Bogner L, Bouwman J, 
Castrillo JI, Cankorur A, Chumnanpuen P, Daran-Lapujade P, Dikicioglu D, van Eunen K, Ewald JC, Heijnen 
JJ, Kirdar B, Mattila I, Mensonides FIC, et al (2010) Integrated multilaboratory systems biology reveals 
differences in protein metabolism between two reference yeast strains. Nat. Commun. 1: 145

Canelas AB, ten Pierick A, Ras C, Seifar RM, van Dam JC, van Gulik WM & Heijnen JJ (2009) Quantitative 
evaluation of intracellular metabolite extraction techniques for yeast metabolomics. Anal. Chem. 81: 7379–
7389

Carr FJ, Chill D & Maida N (2002) The lactic acid bacteria: a literature survey. Crit. Rev. Microbiol. 28: 281–370

Carvalho AL, Turner DL, Fonseca LL, Solopova A, Catarino T, Kuipers OP, Voit EO, Neves AR & Santos H (2013) 
Metabolic and transcriptional analysis of acid stress in Lactococcus lactis, with a focus on the kinetics of lactic 
acid pools. PLoS ONE 8: e68470

Castrillo JI, Zeef LA, Hoyle DC, Zhang N, Hayes A, Gardner DCJ, Cornell MJ, Petty J, Hakes L, Wardleworth L, 
Rash B, Brown M, Dunn WB, Broadhurst D, O’Donoghue K, Hester SS, Dunkley TPJ, Hart SR, Swainston N, 
Li P, et al (2007) Growth control of the eukaryote cell: a systems biology study in yeast. J. Biol. 6: 4



157

Bibliography

Castro R, Neves AR, Fonseca LL, Pool WA, Kok J, Kuipers OP & Santos H (2009) Characterization of the individual 
glucose uptake systems of Lactococcus lactis: mannose-PTS, cellobiose-PTS and the novel GlcU permease. 
Mol. Microbiol. 71: 795–806

Chalfie M, Tu Y, Euskirchen G, Ward WW & Prasher DC (1994) Green fluorescent protein as a marker for gene 
expression. Science 263: 802–805

Chen Z, Odstrcil EA, Tu BP & McKnight SL (2007) Restriction of DNA replication to the reductive phase of the 
metabolic cycle protects genome integrity. Science 316: 1916–1919

Chiesa SC, Irvine RL & Manning JF Jr (1985) Feast/famine growth environments and activated sludge population 
selection. Biotechnol. Bioeng. 27: 562–568

Cocaign-Bousquet M, Even S, Lindley ND & Loubière P (2002) Anaerobic sugar catabolism in Lactococcus lactis: 
genetic regulation and enzyme control over pathway flux. Appl. Microbiol. Biotechnol. 60: 24–32

Cocaign-Bousquet M, Garrigues C, Loubiere P & Lindley ND (1996) Physiology of pyruvate metabolism in 
Lactococcus lactis. Antonie Van Leeuwenhoek 70: 253–267

Cogan J f., Walsh D & Condon S (1989) Impact of aeration on the metabolic end-products formed from glucose and 
galactose by Streptococcus lactis. J. Appl. Microbiol. 66: 77–84

Cogan TM & Hill C (1993) Cheese starter cultures. In Cheese: Chemistry, Physics and Microbiology, Fox PF (ed) 
pp 193–255. Springer

Collins LB & Thomas TD (1974) Pyruvate kinase of Streptococcus lactis. J. Bacteriol. 120: 52–58

Cossins BP, Jacobson MP & Guallar V (2011) A new view of the bacterial cytosol environment. PLoS Comput. Biol. 
7: e1002066–e1002066

Crow VL & Pritchard GG (1976) Purification and properties of pyruvate kinase from Streptococcus lactis. Biochim. 
Biophys. Acta 438: 90–101

Crow VL & Pritchard GG (1977a) The effect of monovalent and divalent cations on the activity of Streptococcus 
lactis C10 pyruvate kinase. Biochim. Biophys. Acta 481: 105–114

Crow VL & Pritchard GG (1977b) Fructose 1,6-diphosphate-activated L-lactate dehydrogenase from Streptococcus 
lactis: kinetic properties and factors affecting activation. J. Bacteriol. 131: 82–91

Daran-Lapujade P, Jansen MLA, Daran J-M, Gulik W van, Winde JH de & Pronk JT (2004) Role of transcriptional 
regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae A chemostat culture 
study. J. Biol. Chem. 279: 9125–9138

Daran-Lapujade P, Rossell S, van Gulik WM, Luttik MAH, de Groot MJL, Slijper M, Heck AJR, Daran J-M, 
de Winde JH, Westerhoff HV, Pronk JT & Bakker BM (2007) The fluxes through glycolytic enzymes in 
Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. Proc. Natl. Acad. Sci. U. 
S. A. 104: 15753–15758

Dean AM, Dykhuizen DE & Hartl DL (1986) Fitness as a function of beta-galactosidase activity in Escherichia coli. 
Genet. Res. 48: 1–8

DeBerardinis RJ & Thompson CB (2012) Cellular metabolism and disease: what do metabolic outliers teach us? 
Cell 148: 1132–1144

Dekel E & Alon U (2005) Optimality and evolutionary tuning of the expression level of a protein. Nature 436: 
588–592



158

de Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J. Gen. Microbiol. 44: 149–156

de Groot MJL, Daran-Lapujade P, van Breukelen B, Knijnenburg TA, de Hulster EAF, Reinders MJT, Pronk JT, 
Heck AJR & Slijper M (2007) Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast 
cultures reveals post-transcriptional regulation of key cellular processes. Microbiology 153: 3864–3878

de Vos WM (2011) Systems solutions by lactic acid bacteria: from paradigms to practice. Microb. Cell Factories 
10 Suppl 1: S2

de Vos WM & Hugenholtz J (2004) Engineering metabolic highways in Lactococci and other lactic acid bacteria. 
Trends Biotechnol. 22: 72–79

Diaz-Ruiz R, Rigoulet M & Devin A (2011) The Warburg and Crabtree effects: On the origin of cancer cell energy 
metabolism and of yeast glucose repression. Biochim. Biophys. Acta 1807: 568–576

Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern J-L, Cocaign-Bousquet M & Lindley ND (1998) Carbon-
flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. 
Eur. J. Biochem. FEBS 254: 96–102

Donalies UEB, Nguyen HTT, Stahl U & Nevoigt E (2008) Improvement of Saccharomyces yeast strains used in 
brewing, wine making and baking. Adv. Biochem. Eng. Biotechnol. 111: 67–98

Dong H, Nilsson L & Kurland CG (1995) Gratuitous overexpression of genes in Escherichia coli leads to growth 
inhibition and ribosome destruction. J. Bacteriol. 177: 1497–1504

Douma RD (2010) Regulation, transport aspects and degeneration of penicillin biosynthesis in Penicillium 
chrysogenum . Available at: http://repository.tudelft.nl/view/ir/uuid:b9e00c77-26c8-423f-a5c2-6ac5092c7bb6

Dressaire C, Gitton C, Loubiere P, Monnet V, Queinnec I & Cocaign-Bousquet M (2009) Transcriptome and proteome 
exploration to model translation efficiency and protein stability in Lactococcus lactis. PLoS Comput. Biol. 5: 
e1000606–e1000606

Dressaire C, Redon E, Milhem H, Besse P, Loubière P & Cocaign-Bousquet M (2008) Growth rate regulated genes 
and their wide involvement in the Lactococcus lactis stress responses. BMC Genomics 9: 343

Driessen AJ, Poolman B, Kiewiet R & Konings W (1987) Arginine transport in Streptococcus lactis is catalyzed by 
a cationic exchanger. Proc. Natl. Acad. Sci. U. S. A. 84: 6093–6097

Dubnau D & Losick R (2006) Bistability in bacteria. Mol. Microbiol. 61: 564–572

Eckhardt TH, Skotnicka D, Kok J & Kuipers OP (2013) Transcriptional regulation of fatty acid biosynthesis in 
Lactococcus lactis. J. Bacteriol. 195: 1081–1089

Edwards JS, Ibarra RU & Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are 
consistent with experimental data. Nat. Biotechnol. 19: 125–130

Even S, Garrigues C, Loubiere P, Lindley ND & Cocaign-Bousquet M (1999) Pyruvate metabolism in Lactococcus 
lactis is dependent upon glyceraldehyde-3-phosphate dehydrogenase activity. Metab. Eng. 1: 198–205

Even S, Lindley ND & Cocaign-bousquet M (2003) Transcriptional, translational and metabolic regulation of 
glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures. Microbiology 
149: 1935–1944

Even S, Lindley ND & Cocaign-Bousquet M (2001) Molecular physiology of sugar catabolism in Lactococcus lactis 
IL1403. J. Bacteriol. 183: 3817–3824

Even S, Lindley ND, Loubiere P & Cocaign-Bousquet M (2002) Dynamic response of catabolic pathways to 



159

Bibliography

autoacidification in Lactococcus lactis: transcript profiling and stability in relation to metabolic and energetic 
constraints. Mol. Microbiol. 45: 1143–52

Exterkate FA & Alting AC (1999) Role of calcium in activity and stability of the Lactococcus lactis cell envelope 
proteinase. Appl. Environ. Microbiol. 65: 1390–1396

Feldman-Salit A, Hering S, Messiha H, Veith N, Cojocaru V, Sieg A, Westerhoff H, Kreikemeyer B, Wade RC & 
Fiedler T (2013) Regulation of the activity of lactate dehydrogenases from four lactic acid bacteria. J. Biol. 
Chem. Available at: http://www.jbc.org/content/early/2013/05/17/jbc.M113.458265

Ferea TL, Botstein D, Brown PO & Rosenzweig RF (1999) Systematic changes in gene expression patterns 
following adaptive evolution in yeast. Proc. Natl. Acad. Sci. 96: 9721–9726

Ferenci T (2008) The spread of a beneficial mutation in experimental bacterial populations: the influence of the 
environment and genotype on the fixation of rpoS mutations. Heredity 100: 446–452

Flahaut NAL, Wiersma A, van de Bunt B, Martens DE, Schaap PJ, Sijtsma L, Dos Santos VAM & de Vos WM 
(2013) Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of 
flavor formation. Appl. Microbiol. Biotechnol. 97: 8729–8739

Fordyce AM, Moore CH & Pritchard GG (1982) Phosphofructokinase from Streptococcus lactis. Methods Enzymol. 
90: 77–82

Fujita Y (2009) Carbon catabolite control of the metabolic network in Bacillus subtilis. Biosci. Biotechnol. Biochem. 
73: 245–259

Garrigues C, Loubiere P, Lindley ND & Cocaign-Bousquet M (1997) Control of the shift from homolactic acid to 
mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J. Bacteriol. 179: 
5282–5287

Garrigues C, Mercade M, Cocaign-Bousquet M, Lindley ND & Loubiere P (2001) Regulation of pyruvate 
metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism. Biotechnol. 
Bioeng. 74: 108–115

Gasson MJ (1983) Plasmid complements of Streptococcus lactis NCDO712 and other lactic streptococci after 
protoplast-induced curing. J. Bacteriol. 154: 1–9

Gatenby RA & Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4: 891–899

Gatenby RA, Gillies RJ & Brown JS (2010) Evolutionary dynamics of cancer prevention. Nat. Rev. Cancer 10: 
526–527

Gausing K (1977) Regulation of ribosome production in Escherichia coli: Synthesis and stability of ribosomal RNA 
and of ribosomal protein messenger RNA at different growth rates. J. Mol. Biol. 115: 335–354

Gehlenborg N, O’Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano H, Kohlbacher O, Neuweger H, 
Schneider R, Tenenbaum D & Gavin A-C (2010) Visualization of omics data for systems biology. Nat. 
Methods 7: S56–68

Gillies RJ & Gatenby RA (2007) Adaptive landscapes and emergent phenotypes: why do cancers have high 
glycolysis? J. Bioenerg. Biomembr. 39: 251–257

Gillies RJ, Robey I & Gatenby RA (2008) Causes and consequences of increased glucose metabolism of cancers. J. 
Nucl. Med. 49 Suppl 2: 24S–42S

Gnad F, de Godoy LMF, Cox J, Neuhauser N, Ren S, Olsen JV & Mann M (2009) High-accuracy identification and 
bioinformatic analysis of in vivo protein phosphorylation sites in yeast. Proteomics 9: 4642–4652



160

Gnad F, Gunawardena J & Mann M (2011) PHOSIDA 2011: the posttranslational modification database. Nucleic 
Acids Res. 39: D253–260

Goel A, Santos F, Vos WM de, Teusink B & Molenaar D (2012a) Standardized assay medium to measure Lactococcus 
lactis enzyme activities while mimicking intracellular conditions. Appl. Environ. Microbiol. 78: 134–143

Goel A, Wortel MT, Molenaar D & Teusink B (2012b) Metabolic shifts: a fitness perspective for microbial cell 
factories. Biotechnol. Lett. 34: 2147–2160

Golbik R, Naumann M, Otto A, Müller E, Behlke J, Reuter R, Hübner G & Kriegel TM (2001) Regulation of 
phosphotransferase activity of hexokinase 2 from Saccharomyces cerevisiae by modification at serine-14. 
Biochemistry (Mosc.) 40: 1083–1090

Good NE, Winget GD, Winter W, Connolly TN, Izawa S & Singh RMM (1966) Hydrogen ion buffers for biological 
research. Biochemistry (Mosc.) 5: 467–477

Gore J, Youk H & van Oudenaarden A (2009) Snowdrift game dynamics and facultative cheating in yeast. Nature 
459: 253–256

Gracy RW & Tilley BE (1975) Phosphoglucose isomerase of human erythrocytes and cardiac tissue. Methods 
Enzymol. 41: 392–400

Gunawardena J (2010) Models in systems biology: the parameter problem and the meanings of robustness. In 
Elements of Computational Systems Biology, Lodhi HM & Muggleton SH (eds) pp 19–47. John Wiley & 
Sons, Inc. Available at: http://onlinelibrary.wiley.com/doi/10.1002/9780470556757.ch2/summary [Accessed 
July 3, 2013]

Gunnewijk MG, van den Bogaard PT, Veenhoff LM, Heuberger EH, de Vos WM, Kleerebezem M, Kuipers OP & 
Poolman B (2001) Hierarchical control versus autoregulation of carbohydrate utilization in bacteria. J. Mol. 
Microbiol. Biotechnol. 3: 401–413

Gunnewijk MG & Poolman B (2000) Phosphorylation state of HPr determines the level of expression and the 
extent of phosphorylation of the lactose transport protein of Streptococcus thermophilus. J. Biol. Chem. 275: 
34073–34079

Hamilton WD (1967) Extraordinary sex ratios. A sex-ratio theory for sex linkage and inbreeding has new implications 
in cytogenetics and entomology. Science 156: 477–488

Hanahan D & Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646–674

Harold FM & Kakinuma Y (1985) Primary and secondary transport of cations in bacteria. Ann. N. Y. Acad. Sci. 456: 
375–383

Hartman FC & Barker R (1965) An exploration of the active site of aldolase using structural analogs of fructose 
diphosphate. Biochemistry (Mosc.) 4: 1068–1075

Haverkorn van Rijsewijk BRB, Nanchen A, Nallet S, Kleijn RJ & Sauer U (2011) Large-scale 13C-flux analysis 
reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli. Mol. 
Syst. Biol. 7: 477

Heinrich R, Schuster S & Holzhütter HG (1991) Mathematical analysis of enzymic reaction systems using 
optimization principles. Eur. J. Biochem. FEBS 201: 1–21

Hoefnagel MHN, van Der Burgt A, Martens DE, Hugenholtz J & Snoep JL (2002a) Time dependent responses 
of glycolytic intermediates in a detailed glycolytic model of Lactococcus lactis during glucose run-out 
experiments. Mol Biol Rep 29: 157–161



161

Bibliography

Hoefnagel MHN, Starrenburg MJC, Martens DE, Hugenholtz J, Kleerebezem M, Van Swam II, Bongers R, 
Westerhoff H V & Snoep JL (2002b) Metabolic engineering of lactic acid bacteria, the combined approach: 
kinetic modelling, metabolic control and experimental analysis. Microbiology 148: 1003–13

Hoffmeister D & Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat. 
Prod. Rep. 24: 393–416

Hollywood N & Doelle HW (1976) Effect of specific growth rate and glucose concentration on growth and glucose 
metabolism of Escherichia coli K-12. Microbios 17: 23–33

Hols P, Ramos A, Hugenholtz J, Delcour J, de Vos WM, Santos H & Kleerebezem M (1999) Acetate utilization in 
Lactococcus lactis deficient in lactate dehydrogenase: a rescue pathway for maintaining redox balance. J. 
Bacteriol. 181: 5521–5526

Huberts DHEW, Niebel B & Heinemann M (2012) A flux-sensing mechanism could regulate the switch between 
respiration and fermentation. FEMS Yeast Res. 12: 118–128

Hurwitz C & Rosano CL (1967) The intracellular concentration of bound and unbound magnesium ions in 
Escherichia coli. J. Biol. Chem. 242: 3719–22

Ibarra RU, Edwards JS & Palsson BO (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in 
silico predicted optimal growth. Nature 420: 186–189

Ikeda M (2006) Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. 
Appl. Microbiol. Biotechnol. 69: 615–626

Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, Hirasawa T, Naba M, Hirai K, Hoque A, Ho PY, Kakazu 
Y, Sugawara K, Igarashi S, Harada S, Masuda T, Sugiyama N, Togashi T, Hasegawa M, Takai Y, et al (2007) 
Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316: 593–597

Jansen MLA, Diderich JA, Mashego M, Hassane A, Winde JH de, Daran-Lapujade P & Pronk JT (2005) Prolonged 
selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of 
glycolytic capacity. Microbiology 151: 1657–1669

Jensen NB, Melchiorsen CR, Jokumsen KV & Villadsen J (2001) Metabolic behavior of Lactococcus lactis MG1363 
in microaerobic continuous cultivation at a low dilution rate. Appl. Environ. Microbiol. 67: 2677–2682

Jensen PR & Hammer K (1993) Minimal requirements for exponential growth of Lactococcus lactis. Appl. Environ. 
Microbiol. 59: 4363–4366

Jin JH & Lee J (2005) In silico analysis of lactic acid secretion metabolism through the top-down approach: Effect 
of grouping in enzyme kinetics. Biotechnol. Bioprocess Eng. 10: 462–469

Jonas HA, Anders RF & Jago GR (1972) Factors affecting the activity of the lactate dehydrognease of Streptococcus 
cremoris. J. Bacteriol. 111: 397–403

Kamaly KM & Marth EH (1989) Enzyme activities of cell-free extracts from mutant strains of lactic streptococci 
subjected to sublethal heating or freeze-thawing. Cryobiology 26: 496–507

Kashket ER & Wilson TH (1973) Proton-coupled accumulation of galactoside in Streptococcus lactis 7962. Proc. 
Natl. Acad. Sci. 70: 2866–2869

Khalil AS & Collins JJ (2010) Synthetic biology: applications come of age. Nat. Rev. Genet. 11: 367–379

Kim J-W & Dang CV (2005) Multifaceted roles of glycolytic enzymes. Trends Biochem. Sci. 30: 142–150

Kitano H (2002) Systems biology: a brief overview. Science 295: 1662–1664



162

Klein DJ, Moore PB & Steitz TA (2004) The roles of ribosomal proteins in the structure assembly, and evolution of 
the large ribosomal subunit. J. Mol. Biol. 340: 141–177

Koebmann BJ, Andersen HW, Solem C & Jensen PR (2002) Experimental determination of control of glycolysis in 
Lactococcus lactis. Antonie Van Leeuwenhoek 82: 237–248

Konings WN, Poolman B & Driessen AJ (1989) Bioenergetics and solute transport in lactococci. Crit. Rev. 
Microbiol. 16: 419–476

Koser SA (1923) Utilization of the salts of organic acids by the colon-aerogenes group. J. Bacteriol. 8: 493–520

Kotte O, Zaugg JB & Heinemann M (2010) Bacterial adaptation through distributed sensing of metabolic fluxes. 
Mol. Syst. Biol. 6: 355

Kowalczyk M & Bardowski J (2007) Regulation of sugar catabolism in Lactococcus lactis. Crit. Rev. Microbiol. 
33: 1–13

Kowaltowski AJ, de Souza-Pinto NC, Castilho RF & Vercesi AE (2009) Mitochondria and reactive oxygen species. 
Free Radic. Biol. Med. 47: 333–343

Kreft J-U (2004) Biofilms promote altruism. Microbiology (Reading, Engl.) 150: 2751–2760

Krokowski D, Gaccioli F, Majumder M, Mullins MR, Yuan CL, Papadopoulou B, Merrick WC, Komar AA, Taylor 
D & Hatzoglou M (2011) Characterization of hibernating ribosomes in mammalian cells. Cell Cycle Georget. 
Tex 10: 2691–2702

Kuipers OP, de Jong A, Baerends RJS, van Hijum SAFT, Zomer AL, Karsens HA, den Hengst CD, Kramer NE, 
Buist G & Kok J (2002) Transcriptome analysis and related databases of Lactococcus lactis. Antonie Van 
Leeuwenhoek 82: 113–122

Kuipers OP & Kok J (2007) Optimizing growth rate, biomass and product formation of Lactococcus lactis by a 
Systems Biology approach. STW Proposal

Kuipers OP, de Ruyter PGG., Kleerebezem M & de Vos WM (1998) Quorum sensing-controlled gene expression in 
lactic acid bacteria. J. Biotechnol. 64: 15–21

Kulbe KD, Foellmer H & Fuchs J (1982) Simultaneous purification of glyceraldehyde-3-phosphate dehydrogenase, 
3-phosphoglycerate kinase, and phosphoglycerate mutase from pig liver and muscle. Methods Enzymol. 90: 
498–511

Lahtvee P-J, Adamberg K, Arike L, Nahku R, Aller K & Vilu R (2011) Multi-omics approach to study the growth 
efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates. Microb. Cell 
Factories 10: 12

Lambert PA, Hancock IC & Baddiley J (1975) The interaction of magnesium ions with teichoic acid. Biochem. J. 
149: 519–24

Larsen R (2005) Transcriptional regulation of central acid metabolism in Lactococcus lactis PhD Thesis: University 
of Groningen

Larsen R, Buist G, Kuipers OP & Kok J (2004) ArgR and AhrC are both required for regulation of arginine 
metabolism in Lactococcus lactis. J. Bacteriol. 186: 1147–1157

Larsen R, van Hijum SAFT, Martinussen J, Kuipers OP & Kok J (2008) Transcriptome analysis of the Lactococcus 
lactis ArgR and AhrC regulons. Appl. Environ. Microbiol. 74: 4768–4771

Larsen R, Kloosterman TG, Kok J & Kuipers OP (2006) GlnR-mediated regulation of nitrogen metabolism in 



163

Bibliography

Lactococcus lactis. J. Bacteriol. 188: 4978–4982

Le Bourgeois P, Daveran-Mingot M-L & Ritzenthaler P (2000) Genome plasticity among related Lactococcus 
strains: identification of genetic events associated with macrorestriction polymorphisms. J. Bacteriol. 182: 
2481–2491

Lee BH & Nowak T (1992) Influence of pH on the Mn2+ activation of and binding to yeast enolase: a functional 
study. Biochemistry (Mosc.) 31: 2165–2171

Lee JW, Kim TY, Jang Y-S, Choi S & Lee SY (2011) Systems metabolic engineering for chemicals and materials. 
Trends Biotechnol. 29: 370–378

Leuchtenberger W, Huthmacher K & Drauz K (2005) Biotechnological production of amino acids and derivatives: 
current status and prospects. Appl. Microbiol. Biotechnol. 69: 1–8

Levering J, Musters MWJM, Bekker M, Bellomo D, Fiedler T, de Vos WM, Hugenholtz J, Kreikemeyer B, Kummer 
U & Teusink B (2012) Role of phosphate in the central metabolism of two lactic acid bacteria--a comparative 
systems biology approach. FEBS J. 279: 1274–1290

Lewis JA & Escalante-Semerena JC (2006) The FAD-dependent tricarballylate dehydrogenase (TcuA) enzyme of 
Salmonella enterica converts tricarballylate into cis-aconitate. J Bacteriol 188: 5479–86

Lim Y, Wong NSC, Lee YY, Ku SCY, Wong DCF & Yap MGS (2010) Engineering mammalian cells in bioprocessing 
- current achievements and future perspectives. Biotechnol. Appl. Biochem. 55: 175–189

Linares DM, Kok J & Poolman B (2010) Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 
and comparative physiological studies. J. Bacteriol. 192: 5806–5812

Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 50: 353–380

Lohmeier-Vogel EM, Hahn-Hägerdahl B & Vogel HJ (1986) Phosphorus-31 NMR studies of maltose and glucose 
metabolism in Streptococcus lactis. Appl. Microbiol. Biotechnol. 25: 43–51

Lopez de Felipe F & Gaudu P (2009) Multiple control of the acetate pathway in Lactococcus lactis under aeration 
by catabolite repression and metabolites. Appl. Microbiol. Biotechnol. 82: 1115–1122

Lu Y-J, White SW & Rock CO (2005) Domain swapping between Enterococcus faecalis FabN and FabZ proteins 
localizes the structural determinants for isomerase activity. J. Biol. Chem. 280: 30342 –30348

Luesink EJ, van Herpen RE, Grossiord BP, Kuipers OP & de Vos WM (1998) Transcriptional activation of the 
glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the 
catabolite control protein CcpA. Mol. Microbiol. 30: 789–798

Macek B, Gnad F, Soufi B, Kumar C, Olsen JV, Mijakovic I & Mann M (2008) Phosphoproteome analysis of E. 
coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol. Cell. Proteomics MCP 
7: 299–307

MacLean RC (2008) The tragedy of the commons in microbial populations: insights from theoretical, comparative 
and experimental studies. Heredity 100: 471–477

MacLean RC & Gudelj I (2006) Resource competition and social conflict in experimental populations of yeast. 
Nature 441: 498–501

Marcus CJ (1976) Inhibition of bovine hepatic fructose-1,6-diphosphatase by substrate analogs. J. Biol. Chem. 251: 
2963–2966

Mashego MR, Jansen MLA, Vinke JL, van Gulik WM & Heijnen JJ (2005) Changes in the metabolome of 



164

Saccharomyces cerevisiae associated with evolution in aerobic glucose-limited chemostats. FEMS Yeast Res. 
5: 419–430

McGovern PE, Zhang J, Tang J, Zhang Z, Hall GR, Moreau RA, Nuñez A, Butrym ED, Richards MP, Wang C, 
Cheng G, Zhao Z & Wang C (2004) Fermented beverages of pre- and proto-historic China. Proc. Natl. Acad. 
Sci. U. S. A. 101: 17593–17598

Melchiorsen CR, Jokumsen KV, Villadsen J, Israelsen H & Arnau J (2002) The level of pyruvate-formate lyase 
controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis. Appl. Microbiol. 
Biotechnol. 58: 338–344

Melchiorsen CR, Jokumsen KV, Villadsen J, Johnsen MG, Israelsen H & Arnau J (2000) Synthesis and 
posttranslational regulation of Pyruvate Formate-Lyase in Lactococcus lactis. J. Bacteriol. 182: 4783–4788

Meyer V, Wu B & Ram AFJ (2011) Aspergillus as a multi-purpose cell factory: current status and perspectives. 
Biotechnol. Lett. 33: 469–476

Milo R, Jorgensen P, Moran U, Weber G & Springer M (2010) BioNumbers–the database of key numbers in 
molecular and cell biology. Nucleic Acids Res. 38: D750–753

Mitchell A, Romano GH, Groisman B, Yona A, Dekel E, Kupiec M, Dahan O & Pilpel Y (2009) Adaptive prediction 
of environmental changes by microorganisms. Nature 460: 220–224

Molenaar D, Abee T & Konings WN (1991) Continuous measurement of the cytoplasmic pH in Lactococcus lactis 
with a fluorescent pH indicator. Biochim. Biophys. Acta 1115: 75–83

Molenaar D, van Berlo R, de Ridder D & Teusink B (2009) Shifts in growth strategies reflect tradeoffs in cellular 
economics. Mol. Syst. Biol. 5: 323

Mou L, Mulvena DP, Jonas HA & Jago GR (1972) Purification and properties of nicotinamide adenine dinucleotide-
dependent D- and L- lactate dehydrogenases in a group N streptococcus. J. Bacteriol. 111: 392–396

Muskiet FA, van Doormaal JJ, Martini IA, Wolthers BG & van der Slik W (1983) Capillary gas chromatographic 
profiling of total long-chain fatty acids and cholesterol in biological materials. J. Chromatogr. 278: 231–244

Nam JW, Han KH, Yoon ES, Shin DI, Jin JH, Lee DH, Lee SY & Lee J (2004) In silico analysis of lactate producing 
metabolic network in Lactococcus lactis. Enzyme Microb. Technol. 35: 654–662

Neves AR, Pool WA, Kok J, Kuipers OP & Santos H (2005) Overview on sugar metabolism and its control in 
Lactococcus lactis - the input from in vivo NMR. FEMS Microbiol. Rev. 29: 531–554

Neves AR, Ramos A, Nunes MC, Kleerebezem M, Hugenholtz J, de Vos WM, Almeida J & Santos H (1999) In 
vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Biotechnol. Bioeng. 64: 
200–212

Neves AR, Ventura R, Mansour N, Shearman C, Gasson MJ, Maycock C, Ramos A & Santos H (2002) Is the 
glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD+ and NADH 
pools determined in vivo by 13C NMR. J. Biol. Chem. 277: 28088–28098

Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. MMBR 
72: 379–412

Nghiem NP & Cofer TM (2007) Effect of a nonmetabolizable analog of fructose-1,6-bisphosphate on glycolysis and 
ethanol production in strains of Saccharomyces cerevisiae and Escherichia coli. Appl. Biochem. Biotechnol. 
141: 335–347



165

Bibliography

Nierhaus KH (1991) The assembly of prokaryotic ribosomes. Biochimie 73: 739–755

Noller HF, Hoffarth V & Zimniak L (1992) Unusual resistance of peptidyl transferase to protein extraction 
procedures. Science 256: 1416–1419

Nordkvist M, Jensen NBS & Villadsen J (2003) Glucose metabolism in Lactococcus lactis MG1363 under different 
aeration conditions: requirement of acetate to sustain growth under microaerobic conditions. Appl. Environ. 
Microbiol. 69: 3462–8

Oliveira AP, Nielsen J & Förster J (2005) Modeling Lactococcus lactis using a genome-scale flux model. BMC 
Microbiol. 5: 39

Oliveira AP & Sauer U (2012) The importance of post-translational modifications in regulating Saccharomyces 
cerevisiae metabolism. FEMS Yeast Res. 12: 104–117

Orth JD, Thiele I & Palsson BØ (2010) What is flux balance analysis? Nat. Biotechnol. 28: 245–248

Ozbudak EM, Thattai M, Lim HN, Shraiman BI & Van Oudenaarden A (2004) Multistability in the lactose utilization 
network of Escherichia coli. Nature 427: 737–740

Palmfeldt J, Paese M, Hahn-Hägerdal B & Van Niel EWJ (2004) The pool of ADP and ATP regulates anaerobic 
product formation in resting cells of Lactococcus lactis. Appl. Environ. Microbiol. 70: 5477–5484

Papp B, Teusink B & Notebaart RA (2009) A critical view of metabolic network adaptations. HFSP J. 3: 24–35

Park JH & Lee SY (2010) Metabolic pathways and fermentative production of L-aspartate family amino acids. 
Biotechnol. J. 5: 560–577

Pfeiffer T, Schuster S & Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing 
pathways. Science 292: 504–507

Phillips T (2008) Regulation of transcription and gene expression in eukaryotes. Nat. Educ. 1: Available at: http://
www.nature.com/scitable/topicpage/regulation-of-transcription-and-gene-expression-in-1086

Picard F, Dressaire C, Girbal L & Cocaign-Bousquet M (2009) Examination of post-transcriptional regulations in 
prokaryotes by integrative biology. C. R. Biol. 332: 958–973

Piskur J, Rozpedowska E, Polakova S, Merico A & Compagno C (2006) How did Saccharomyces evolve to become 
a good brewer? Trends Genet. 22: 183–186

Pohl S & Harwood CR (2010) Heterologous protein secretion by Bacillus species from the cradle to the grave. Adv. 
Appl. Microbiol. 73: 1–25

Pollard A & Jones RGW (1979) Enzyme activities in concentrated solutions of glycinebetaine and other solutes. 
Planta 144: 291–298

Poolman B, Bosman B, Kiers J & Konings WN (1987a) Control of glycolysis by glyceraldehyde-3-phosphate 
dehydrogenase in Streptococcus cremoris and Streptococcus lactis. J. Bacteriol. 169: 5887–5890

Poolman B, Driessen AJ & Konings WN (1987b) Regulation of arginine-ornithine exchange and the arginine 
deiminase pathway in Streptococcus lactis. J. Bacteriol. 169: 5597–5604

Poolman B, Hellingwerf KJ & Konings WN (1987c) Regulation of the glutamate-glutamine transport system by 
intracellular pH in Streptococcus lactis. J. Bacteriol. 169: 2272–2276

Poolman B & Konings WN (1988) Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino 
acid transport. J. Bacteriol. 170: 700–707



166

Poolman B, Smid EJ, Veldkamp H & Konings WN (1987d) Bioenergetic consequences of lactose starvation for 
continuously cultured Streptococcus cremoris. J. Bacteriol. 169: 1460–1468

Postma E, Verduyn C, Scheffers WA & Van Dijken JP (1989) Enzymic analysis of the crabtree effect in glucose-
limited chemostat cultures of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 55: 468–477

Postmus J, Aardema R, de Koning LJ, de Koster CG, Brul S & Smits GJ (2012) Isoenzyme expression changes in 
response to high temperature determine the metabolic regulation of increased glycolytic flux in yeast. FEMS 
Yeast Res. 12: 571–581

Price C, Santos F, Molenaar D, Teusink B, Poolman B & Kuipers OP (2010) Characterization of cellular composition 
of evolved strains of Lactococcus lactis: Poster Presentations. FEBS J. 277: 114

Price MN, Deutschbauer AM, Skerker JM, Wetmore KM, Ruths T, Mar JS, Kuehl JV, Shao W & Arkin AP (2013) 
Indirect and suboptimal control of gene expression is widespread in bacteria. Mol. Syst. Biol. 9: 660

Pronk JT, Yde Steensma H & Van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 
Chichester Engl. 12: 1607–1633

Raushel FM & Cleland WW (1973) The substrate and anomeric specificity of fructokinase. J. Biol. Chem. 248: 
8174–8177

Ray B & Speck ML (1973) Freeze-injury in bacteria. Crit. Rev. Clin. Lab. Sci. 4: 161–213

Reiter M & Blüml G (1994) Large-scale mammalian cell culture. Curr. Opin. Biotechnol. 5: 175–179

Riquelme PT, Wernette-Hammond ME, Kneer NM & Lardy HA (1983) Regulation of carbohydrate metabolism by 
2,5-anhydro-D-mannitol. Proc. Natl. Acad. Sci. U. S. A. 80: 4301–4305

Riquelme PT, Wernette-Hammond ME, Kneer NM & Lardy HA (1984) Mechanism of action of 2,5-anhydro-D-
mannitol in hepatocytes. Effects of phosphorylated metabolites on enzymes of carbohydrate metabolism. J. 
Biol. Chem. 259: 5115–5123

Romani A & Scarpa A (1992) Regulation of cell magnesium. Arch. Biochem. Biophys. 298: 1–12

Rouf MA (1964) Spectrochemical analysis of inorganic elements in bacteria. J Bacteriol 88: 1545–9

Rudolph FB, Purich DL & Fromm HJ (1968) Coenzyme A-linked aldehyde dehydrogenase from Escherichia coli. 
J. Biol. Chem. 243: 5539–5545

Russell JB (1986) Heat production by ruminal bacteria in continuous culture and its relationship to maintenance 
energy. J. Bacteriol. 168: 694–701

Russell JB (1992) The effect of pH on the heat production and membrane resistance of Streptococcus bovis. Arch. 
Microbiol. 158: 54–58

Santos F (2011) Understanding adaptive evolution strategies of microbes in dynamic environments through 
laboratory evolution Amsterdam

Santos F, Boele J & Teusink B (2011) A practical guide to genome-scale metabolic models and their analysis. 
Methods Enzymol. 500: 509–532

Sauer U & Eikmanns BJ (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution 
in bacteria. FEMS Microbiol. Rev. 29: 765–794

Schuetz R, Zamboni N, Zampieri M, Heinemann M & Sauer U (2012) Multidimensional optimality of microbial 
metabolism. Science 336: 601–604



167

Bibliography

Schumacher MA, Sprehe M, Bartholomae M, Hillen W & Brennan RG (2011) Structures of carbon catabolite 
protein A–(HPr-Ser46-P) bound to diverse catabolite response element sites reveal the basis for high-affinity 
binding to degenerate DNA operators. Nucleic Acids Res. 39: 2931–2942

Schuster S, Kreft J-U, Brenner N, Wessely F, Theissen G, Ruppin E & Schroeter A (2010) Cooperation and cheating 
in microbial exoenzyme production - theoretical analysis for biotechnological applications. Biotechnol. J. 5: 
751–758

Schuster S, Pfeiffer T & Fell DA (2008) Is maximization of molar yield in metabolic networks favoured by evolution? 
J. Theor. Biol. 252: 497–504

Shachrai I, Zaslaver A, Alon U & Dekel E (2010) Cost of unneeded proteins in E. coli is reduced after several 
generations in exponential growth. Mol. Cell 38: 758–767

Sharp PM & Li WH (1987) The codon Adaptation Index--a measure of directional synonymous codon usage bias, 
and its potential applications. Nucleic Acids Res. 15: 1281–1295

Shiloach J & Rinas U (2009) Glucose and acetate metabolism in E. coli – system level analysis and biotechnological 
applications in protein production processes. In Systems Biology and Biotechnology of Escherichia coli, Lee 
SY (ed) pp 377–400. Dordrecht: Springer Netherlands Available at: http://www.springerlink.com/content/
h1lv357266482wn1/ [Accessed February 28, 2012]

Shimizu S (2008) Vitamins and Related Compounds: Microbial Production. In Biotechnology: Special Processes, 
Rehm H-J & Reed G (eds) pp 318–340. Weinheim, Germany: Wiley‐VCH Verlag GmbH Available at: http://
onlinelibrary.wiley.com/doi/10.1002/9783527620937.ch11/summary [Accessed March 12, 2012]

Shlomi T, Benyamini T, Gottlieb E, Sharan R & Ruppin E (2011) Genome-scale metabolic modeling elucidates the 
role of proliferative adaptation in causing the Warburg effect. PLoS Comput. Biol. 7: e1002018

Shuler ML & Kargi F (2002) Bioprocess engineering: basic concepts Prentice Hall

Smart JB & Thomas TD (1987) Effect of oxygen on lactose metabolism in lactic streptococci. Appl. Environ. 
Microbiol. 53: 533–541

Smid EJ, van Enckevort FJH, Wegkamp A, Boekhorst J, Molenaar D, Hugenholtz J, Siezen RJ & Teusink B (2005) 
Metabolic models for rational improvement of lactic acid bacteria as cell factories. J. Appl. Microbiol. 98: 
1326–1331

Smith JM & Price GR (1973) The logic of animal conflict. Nature 246: 15–18

Smits WK, Kuipers OP & Veening J-W (2006) Phenotypic variation in bacteria: the role of feedback regulation. Nat. 
Rev. Microbiol. 4: 259–271

Smyth G (2005) Limma: Linear Models for Microarray Data. In Bioinformatics and Computational Biology 
Solutions Using R and Bioconductor, Gentleman R Carey VJ Huber W Irizarry RA & Dudoit S (eds) pp 397–
420. Springer New York Available at: http://www.springerlink.com/content/g26110k024423738/abstract/

Snay J, Jeong JW & Ataai MM (1989) Effects of growth conditions on carbon utilization and organic by-product 
formation in B. subtilis. Biotechnol. Prog. 5: 63–69

Snoep JL, Yomano LP, Westerhoff HV & Ingram LO (1995) Protein burden in Zymomonas mobilis: negative flux 
and growth control due to overproduction of glycolytic enzymes. Microbiology 141: 2329–2337

Solem C, Petranovic D, Koebmann B, Mijakovic I & Jensen PR (2010) Phosphoglycerate mutase is a highly efficient 
enzyme without flux control in Lactococcus lactis. J. Mol. Microbiol. Biotechnol. 18: 174–180



168

Solopova A, Bachmann H, Teusink B, Kok J, Neves AR & Kuipers OP (2012) A specific mutation in the promoter 
region of the silent cel cluster accounts for the appearance of lactose-utilizing Lactococcus lactis MG1363. 
Appl. Environ. Microbiol. 78: 5612–5621

Sonenshein AL (2007) Control of key metabolic intersections in Bacillus subtilis. Nat. Rev. Microbiol. 5: 917–927

Soufi B, Gnad F, Jensen PR, Petranovic D, Mann M, Mijakovic I & Macek B (2008) The Ser/Thr/Tyr phosphoproteome 
of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins. Proteomics 8: 3486–3493

Speck EL & Freese E (1973) Control of metabolite secretion in Bacillus subtilis. J. Gen. Microbiol. 78: 261–275

Sriyudthsak K, Shiraishi F & Hirai MY (2013) Identification of a metabolic reaction network from time-series data 
of metabolite concentrations. PloS One 8: e51212

Steen A, Wiederhold E, Gandhi T, Breitling R & Slotboom DJ (2010) Physiological adaptation of the bacterium 
Lactococcus lactis in response to the production of human CFTR. Mol. Cell. Proteomics MCP

Steitz TA & Moore PB (2003) RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem. 
Sci. 28: 411–418

Stoebel DM, Dean AM & Dykhuizen DE (2008) The cost of expression of Escherichia coli lac operon proteins is in 
the process, not in the products. Genetics 178: 1653–1660

Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA & Stahl DA (2007) Metabolic modeling of a 
mutualistic microbial community. Mol. Syst. Biol. 3: 92

Storer AC & Cornish-Bowden A (1976) Concentration of MgATP2- and other ions in solution. Calculation of the true 
concentrations of species present in mixtures of associating ions. Biochem. J. 159: 1–5

Stoscheck CM (1990) Quantitation of protein. Methods Enzymol. 182: 50–68

Stülke J & Hillen W (2000) Regulation of carbon catabolism in Bacillus species. Annu. Rev. Microbiol. 54: 849–880

Synowiecki J, Grzybowska B & Zdziebło A (2006) Sources, properties and suitability of new thermostable enzymes 
in food processing. Crit. Rev. Food Sci. Nutr. 46: 197–205

Tagami K, Nanamiya H, Kazo Y, Maehashi M, Suzuki S, Namba E, Hoshiya M, Hanai R, Tozawa Y, Morimoto T, 
Ogasawara N, Kageyama Y, Ara K, Ozaki K, Yoshida M, Kuroiwa H, Kuroiwa T, Ohashi Y & Kawamura 
F (2012) Expression of a small (p)ppGpp synthetase, YwaC, in the (p)ppGpp(0) mutant of Bacillus subtilis 
triggers YvyD-dependent dimerization of ribosome. Microbiologyopen 1: 115–134

Tai SL, Daran-Lapujade P, Luttik MAH, Walsh MC, Diderich JA, Krijger GC, van Gulik WM, Pronk JT & Daran 
J-M (2007) Control of the glycolytic flux in Saccharomyces cerevisiae grown at low temperature: a multi-level 
analysis in anaerobic chemostat cultures. J. Biol. Chem. 282: 10243–10251

Takahashi S, Abbe K & Yamada T (1982) Purification of pyruvate formate-lyase from Streptococcus mutans and its 
regulatory properties. J. Bacteriol. 149: 1034–1040

Taniguchi Y, Choi PJ, Li G-W, Chen H, Babu M, Hearn J, Emili A & Xie XS (2010) Quantifying E. coli proteome 
and transcriptome with single-molecule sensitivity in single cells. Science 329: 533–538

ter Kuile BH & Westerhoff HV (2001) Transcriptome meets metabolome: hierarchical and metabolic regulation of 
the glycolytic pathway. FEBS Lett. 500: 169–171

Teusink B, Bachmann H & Molenaar D (2011) Systems biology of lactic acid bacteria: a critical review. Microb. 
Cell Factories 10: S11



169

Bibliography

Teusink B & Smid EJ (2006) Modelling strategies for the industrial exploitation of lactic acid bacteria. Nat. Rev. 
Microbiol. 4: 46–56

Teusink B, Wiersma A, Jacobs L, Notebaart RA & Smid EJ (2009) Understanding the adaptive growth strategy of 
Lactobacillus plantarum by in silico optimisation. PLoS Comput. Biol. 5: e1000410

Teusink B, Wiersma A, Molenaar D, Francke C, de Vos WM, Siezen RJ & Smid EJ (2006) Analysis of growth 
of Lactobacillus plantarum WCFS1 on a complex medium using a genome-scale metabolic model. J. Biol. 
Chem. 281: 40041–40048

Thomas TD (1976) Activator specificity of pyruvate kinase from lactic streptococci. J. Bacteriol. 125: 1240–1242

Thomas TD, Ellwood DC & Longyear VM (1979) Change from homo- to heterolactic fermentation by Streptococcus 
lactis resulting from glucose limitation in anaerobic chemostat cultures. J. Bacteriol. 138: 109–117

Thomas TD, Turner KW & Crow VL (1980) Galactose fermentation by Streptococcus lactis and Streptococcus 
cremoris: pathways, products, and regulation. J. Bacteriol. 144: 672–682

Thompson J (1976) Characteristics and energy requirements of an alpha-aminoisobutyric acid transport system in 
Streptococcus lactis. J. Bacteriol. 127: 719–730

Thompson J (1987) Regulation of sugar transport and metabolism in lactic acid bacteria. FEMS Microbiol. Lett. 46: 
221–231

Thompson J, Curtis MA & Miller SP (1986) N5-(1-carboxyethyl)-ornithine, a new amino acid from the intracellular 
pool of Streptococcus lactis. J. Bacteriol. 167: 522–9

Thompson J & Torchia DA (1984) Use of 31P nuclear magnetic resonance spectroscopy and 14C fluorography in 
studies of glycolysis and regulation of pyruvate kinase in Streptococcus lactis. J. Bacteriol. 158: 791–800

Titgemeyer F & Hillen W (2002) Global control of sugar metabolism: a gram-positive solution. Antonie Van 
Leeuwenhoek 82: 59–71

Tzamali E, Poirazi P, Tollis IG & Reczko M (2011) A computational exploration of bacterial metabolic diversity 
identifying metabolic interactions and growth-efficient strain communities. BMC Syst. Biol. 5: 167

Ueta M, Wada C & Wada A (2010) Formation of 100S ribosomes in Staphylococcus aureus by the hibernation 
promoting factor homolog SaHPF. Genes Cells Devoted Mol. Cell. Mech. 15: 43–58

Ueta M, Yoshida H, Wada C, Baba T, Mori H & Wada A (2005) Ribosome binding proteins YhbH and YfiA have 
opposite functions during 100S formation in the stationary phase of Escherichia coli. Genes Cells Devoted 
Mol. Cell. Mech. 10: 1103–1112

Valgepea K, Adamberg K, Nahku R, Lahtvee P-J, Arike L & Vilu R (2010) Systems biology approach reveals that 
overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA 
synthetase. BMC Syst. Biol. 4: 166

van Dam K, Berden JA, Raamsdonk LM, Diderich JA & Kruckeberg AL (2002) Process for the production of 
yeast biomass comprising functionally deleted HXK2 genes. Available at: http://www.freepatentsonline.com/
EP1169432A1.html [Accessed March 6, 2012]

van den Brink J, Canelas AB, van Gulik WM, Pronk JT, Heijnen JJ, de Winde JH & Daran-Lapujade P (2008) 
Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism. 
Appl. Environ. Microbiol. 74: 5710–5723

van Eunen K, Bouwman J, Daran-Lapujade P, Postmus J, Canelas AB, Mensonides FIC, Orij R, Tuzun I, van Den 



170

Brink J, Smits GJ, van Gulik WM, Brul S, Heijnen JJ, de Winde JH, de Mattos MJT, Kettner C, Nielsen J, 
Westerhoff HV & Bakker BM (2010) Measuring enzyme activities under standardized in vivo-like conditions 
for systems biology. FEBS J. 277: 749–60

van Hoek P, van Dijken JP & Pronk JT (1998) Effect of specific growth rate on fermentative capacity of baker’s 
yeast. Appl. Environ. Microbiol. 64: 4226–4233

van Loosdrecht M, Pot M & Heijnen J (1997) Importance of bacterial storage polymers in bioprocesses. Water Sci. 
Technol. 35: 41–47

Varma A, Boesch BW & Palsson BO (1993) Stoichiometric interpretation of Escherichia coli glucose catabolism 
under various oxygenation rates. Appl. Environ. Microbiol. 59: 2465–2473

Vasconcelos I, Girbal L & Soucaille P (1994) Regulation of carbon and electron flow in Clostridium acetobutylicum 
grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J. Bacteriol. 176: 1443–50

Vazquez A, Liu J, Zhou Y & Oltvai ZN (2010) Catabolic efficiency of aerobic glycolysis: the Warburg effect 
revisited. BMC Syst. Biol. 4: 58

Veening J-W, Smits WK, Hamoen LW & Kuipers OP (2006) Single cell analysis of gene expression patterns of 
competence development and initiation of sporulation in Bacillus subtilis grown on chemically defined media. 
J. Appl. Microbiol. 101: 531–541

Veening J-W, Smits WK & Kuipers OP (2008) Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. 
Microbiol. 62: 193–210

Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB & Eiteman MA (2006) Overflow metabolism in Escherichia 
coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl. Environ. 
Microbiol. 72: 3653–3661

Vemuri GN, Eiteman MA, McEwen JE, Olsson L & Nielsen J (2007) Increasing NADH oxidation reduces overflow 
metabolism in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 104: 2402–2407

Verouden MPH, Notebaart RA, Westerhuis JA, van der Werf MJ, Teusink B & Smilde AK (2009) Multi-way analysis 
of flux distributions across multiple conditions. J. Chemom. 23: 406–420

Vives J, Juanola S, Cairó JJ & Gòdia F (2003) Metabolic engineering of apoptosis in cultured animal cells: 
implications for the biotechnology industry. Metab. Eng. 5: 124–132

Voit EO, Almeida J, Marino S, Lall R, Goel G, Neves AR & Santos H (2006a) Regulation of glycolysis in Lactococcus 
lactis: an unfinished systems biological case study. Syst. Biol. 153: 286–298

Voit EO, Neves AR & Santos H (2006b) The intricate side of systems biology. Proc. Natl. Acad. Sci. U. S. A. 103: 
9452–9457

Waddell TG, Repovic P, Melendez-Hevia E, Heinrich R & Montero F (1997) Optimization of glycolysis: A new look 
at the efficiency of energy coupling. Biochem. Educ. 25: 204–205

Wang L, Ridgway D, Gu T & Moo-Young M (2005) Bioprocessing strategies to improve heterologous protein 
production in filamentous fungal fermentations. Biotechnol. Adv. 23: 115–129

Warburg O (1956) On the origin of cancer cells. Science 123: 309–314

Warner JB & Lolkema JS (2003) CcpA-dependent carbon catabolite repression in bacteria. Microbiol. Mol. Biol. 
Rev. 67: 475 –490

Weckowicz TE (1988) Ludwig von Bertalanffy (1901-1972): A pioneer of general systems theory.



171

Bibliography

Wegmann U, O’Connell-Motherway M, Zomer A, Buist G, Shearman C, Canchaya C, Ventura M, Goesmann A, 
Gasson MJ, Kuipers OP, Sinderen D van & Kok J (2007) Complete genome sequence of the prototype lactic 
acid bacterium Lactococcus lactis subsp. cremoris MG1363. J. Bacteriol. 189: 3256–3270

Wells JM & Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid 
bacteria. Nat. Rev. Microbiol. 6: 349–362

Wessely F, Bartl M, Guthke R, Li P, Schuster S & Kaleta C (2011) Optimal regulatory strategies for metabolic 
pathways in Escherichia coli depending on protein costs. Mol. Syst. Biol. 7: 515

West GB, Brown JH & Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. 
Science 276: 122–126

Westerhoff HV & Palsson BO (2004) The evolution of molecular biology into systems biology. Nat. Biotechnol. 
22: 1249–1252

Whitman WB, Coleman DC & Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. U. S. A. 
95: 6578–6583

Wolfe AJ (2005) The acetate switch. Microbiol. Mol. Biol. Rev. 69: 12–50

Wolin MJ (1964) Fructose-1,6-diphosphate requirement of Streptococcal lactic dehydrogenases. Science 146: 775–
777

Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, Mahadevan R & Lovley DR (2011a) Genome-scale dynamic 
modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME 
J. 5: 305–316

Zhuang K, Vemuri GN & Mahadevan R (2011b) Economics of membrane occupancy and respiro-fermentation. Mol. 
Syst. Biol. 7: 500

Zomer AL, Buist G, Larsen R, Kok J & Kuipers OP (2007) Time-resolved determination of the CcpA regulon of 
Lactococcus lactis subsp. cremoris MG1363. J. Bacteriol. 189: 1366–1381

Zomorrodi AR & Maranas CD (2012) OptCom: A multi-level optimization framework for the metabolic modeling 
and analysis of microbial communities. PLoS Comput. Biol. 8: e1002363



172

Samenvatting*

Een veel waargenomen reactie van organismen bij een veranderende groeisnelheid, is een 
verschuiving van het metabolismepatroon. Dit fenomeen is potentieel interessant voor zowel 
academisch onderzoek als voor industriële toepassingen omdat veranderingen in metabolisme 
van invloed zijn op beslissingen van de cel. Voor de industrie zijn de verschillende metabolische 
toestanden vooral interessant daar deze van grote invloed zijn op de productielimieten van 
gewenste eindproducten. De mechanistische oorzaak van de metabolische verschuiving kan 
variëren tussen soorten onderling, maar de aanwezigheid van deze metabolische verschuiving 
suggereert een functionele relevantie, welke kan worden begrepen vanuit een evolutionair 
perspectief. Een van de vele hypothesen om de metabolische verschuiving te verklaren 
(zoals besproken in Hoofdstuk 2) veronderstelt dat de kosten van de eiwitinvestering van 
invloed is op de metabolische strategie. De uiteindelijk gebruikte metabolische strategie is 
dan een resultaat van een kosten-batenanalyse. Om dit experimenteel te toetsen hebben we 
een globale multilevel analyse uitgevoerd op het merkzuurbacteriemodel Lactococcus lactis 
MG1363. Deze bacterie vertoont een typische, anaerobe versie van het Crabtree/Warburg 
effect: bij lage groeisnelheden produceert het voornamelijk acetaat, formaat en ethanol 
(de gemengde zuurfermentatie) en op hoge groeisnelheden produceert het hoofdzakelijk 
melkzuur van glucose.

Allereerst werden alle mogelijke groeicondities gestandaardiseerd. Een speciaal ontwikkeld in 
vivo-achtig enzym assay medium bootst de intracellulaire omgeving na voor het bepalen van 
de enzymactiviteiten van groeiende L. lactis cellen (Hoofdstuk 3). Door gestandaardiseerde 
experimentele procedures hebben we op meerdere cellulaire niveaus een nauwkeurige 
karakterisering verkregen van glucose-gelimiteerde chemostaat L. lactis culturen bij 
verschillende groeisnelheden. Meer dan een verdrievoudiging in groeisnelheid had als gevolg 
dat er een metabolische verschuiving plaatsvond in de cel, maar dat dit verrassend genoeg 
niet leidde tot verschillen in transcriptie-, eiwitratio’s en de enzymactiviteiten (Hoofdstuk 
4). Zelfs ribosomale eiwitten vertoonden nauwelijks verandering ten opzichte van de 
verschillende groeisnelheden, terwijl dit een groot gedeelte is van de totale eiwitinvestering 
die een cel doet. Om deze redenen, en in tegenstelling tot de originele hypothese lijkt L. 
lactis eerder een strategie te bezitten waarbij het centrale metabolisme altijd klaar is voor 
hoge groeisnelheden en zal het eerder de enzymactiviteit reguleren dan de genexpressie 
van de metabolismegenen. Alleen op de hoogste groeisnelheden en gedurende fed-batch 
culture –condities geassocieerd met ruim voldoende glucose– observeerden we naar beneden 
bijgestelde eiwitniveaus geassocieerd met stress en naar boven afgestelde eiwitniveaus van 
glycolytische enzymen. Hieruit concluderen we dat L. lactis voor glucose, de transcriptie- en 
eiwitexpressie over het algemeen een binair tekort/overschot-logica volgt.
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Samenvatting

Om het regulatiemechanisme van de metabolische verschuiving van L. lactis beter te 
begrijpen, testten we een L. lactis MG1363 derivaat, welke lactose omzet in gemengde zuren. 
We laten zien dat er een sterke positieve correlatie is tussen de glycolytische flux en de 
omvang van homolactaatfermentatie, veroorzaakt door metabolische regulatie (Hoofdstuk 
5). Vervolgens geven we nieuw bewijs van een causaal verband tussen de concentratie van 
het glycolytische halffabricaat fructose-1,6-bifosfaat (FBP) en de metabolische verschuiving. 
We tonen aan dat 2,5-anhydromannitol, welke fungeert als niet-metaboliseerbaar analoog in 
vivo, de flux naar lactaat bijna verdubbelt wanneer het wordt toegevoegd aan cellen. In vitro 
heeft dit analoog een activerend effect op lactaatdehydrogenase dat vergelijkbaar is met FBP. 
De concentratie waarbij activatie optreedt is veel lager dan de vergelijkbare concentraties 
van intracellulaire FBP. Dit kan impliceren dat de activering van lactaatdehydrogenase 
in vivo een veel hogere FBP concentratie vereist, maar dit moet nog worden aangetoond. 
Vervolgens plaatsten we de regulerende verhoudingen van glycolytische flux, FBP de redox 
potentiaal, de allostere effecten van de glycolytische en de downstream enzymroutes samen 
in een wiskundig model om na te gaan of deze interacties de metabolische verschuiving 
kunnen uitleggen (Hoofdstuk 6). Hoewel het model niet consistent passend was voor de 
gecombineerde data van de chemostaten van verschillende groeisnelheden, en in vivo-NMR 
data van glucose- niet-groeiende cellen pulseerde, vonden we dat bij het best passende model 
de metabolische verschuiving vooral werd beïnvloed door regulatie van FBP en anorganisch 
fosfaat.

Uit dit proefschrift blijk dat, L. lactis altijd voorbereid lijkt te zijn op hoge groeisnelheden 
doordat het een grote overcapaciteit van glycolytische enzymen bezit. Deze eigenschappen 
hebben de cellen behouden, zelfs na evolueren voor 800 generaties onder constante 
omstandigheden. Bovendien lijkt de groeisnelheid-gerelateerde metabolische verschuiving 
niet voortgekomen uit een optimalisatie van de groeisnelheid met eiwitkosten als belangrijkste 
drijfveer. Op het mechanistische niveau is de keuze van metabolische strategie gereguleerd 
door veranderingen in metabolietenniveaus zelf, met FBP (en waarschijnlijk fosfaat) als 
belangrijkste componenten.

*Kindly translated from English to Dutch by T. H. Eckhardt and edited by P. T. N. van Dam 
and S. J. A. van Dam
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