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Abstract 

Wijga, S. (2013). Immunogenetics in dairy cattle: somatic cell count and natural 

antibody levels. PhD thesis, Wageningen University, the Netherlands 

 

There remains a lot to be learned about the interpretation of genetic parameters 

and the biology of disease resistance and somatic cell count, also known as somatic 

cell score (SCS). This PhD thesis aimed to obtain additional insight in disease 

resistance and SCS by: 1) quantifying the impact of genetics on innate immunity, 

represented by natural antibodies (NAb), through estimation of heritabilities and 

genetic correlations; 2) identifying the genomic regions involved in SCS and NAb 

levels; 3) quantifying the impact of genetics on environmental sensitivity for SCS.  

Natural antibody levels were found to be heritable with heritabilities ranging from 

0.06 to 0.55 and in general, heritabilities for NAb isotypes were higher than 

heritabilities for total NAb levels, the latter making no distinction between isotypes. 

Genetic correlations suggest that isotypes IgA and IgM have a common genetic 

basis, but that the genetic basis for IgG1 differs from that for IgA or IgM. An 

additional genome-wide association study for NAb levels showed that information 

can be gained when total NAb levels are further subdivided into isotype levels. A 

region on chromosome 23 was significantly associated with genetic variation in 

isotype IgM levels. The bovine major histocompatibility complex (MHC) is located 

near this region, making this a region of candidate gene(s) involved in NAb 

expression in dairy cows both from a functional and positional perspective. Results 

from the study on genetic parameters and the genome-wide association study 

suggest that NAb isotypes may provide a better characterization of different 

elements of the immune response or immune competence and enable more 

effective decisions when breeding programs start to include innate immune 

parameters. A genome-wide association study was not only performed for NAb 

levels, but also for SCS. Relatively few associations, however, were found, which 

suggests that SCS is controlled by multiple loci, each with a relatively small effect, 

distributed across the genome.  

Somatic cell score is partly under genetic control, but is also affected by the 

environment. Sensitivity to respond to environmental factors, however, can have a 

genetic origin. Environmental factors can be divided into known and unknown 

factors, referred to as macro- and micro environment, respectively. Macro-

environmental sensitivity can be expressed as genetic variation in the slope of a 

reaction norm, whereas micro-environmental sensitivity can be expressed as 

differences in residual variance that have a genetic origin. Both macro- and micro-

environmental sensitivity were found for SCS and these sensitivities were positively 



 
 

correlated. Knowledge on both forms of sensitivity can aid in optimization of 

selection as correlations between the additive genetic variance in intercept, slope 

and environmental variance were all away from unity. Selection for reduced 

environmental sensitivity has the potential to reduce variability in animal 

performance due to environmental factors and herewith increase predictability of 

performance across and within environments. 

Knowledge on disease biology is important to fully understand the processes 

involved when selecting for increased disease resistance, as a better understanding 

enables a better prediction of the consequences. In this context, the general 

discussion discussed the phenotype definition and statistical modeling, influence of 

maternal effects and genetic variation in the MHC region. The discussion contained 

three conclusions: 1) analyses of cell types (detailed phenotypes) rather than SCS 

can provide further insight in the genetic control of SCS and mastitis; 2) no 

evidence was found for maternal genetic effects on NAb levels in milk. Maternal 

environmental effects, however, could play a role in NAb levels; 3) genetic diversity 

in the MHC region is maintained by natural selection. Selective breeding and farm 

management practices may affect this genetic diversity, which could bring about 

negative effects on animal fitness, such as fertility problems. Selective breeding for 

specific MHC haplotypes may therefore impose a risk for negative effects on animal 

health. 
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From early days and continued to this day, societies strongly depend on animal 

agriculture to not only provide food, fiber and other products, but also economic 

prosperity (Fisher and Mellor, 2008). Over time, a diversity of measures including 

nutrition, management and breeding have led to improved livestock productivity 

(Fisher and Mellor, 2008). Initially, breeding focused primarily on production traits 

such as milk yield, growth rate and number of eggs (Oltenacu and Broom, 2010). 

Today’s breeding programs increasingly take into account functional traits such as 

fertility, survival and disease resistance to mitigate and improve the effects of 

breeding on animal behavior, physiology, health and welfare as some could 

become negatively affected when animal breeding primarily focuses on production 

traits (Fisher and Mellor, 2008), due to for instance negative correlations among 

traits.  

This first chapter introduces the functional traits natural antibody (NAb) levels and 

somatic cell count (SCC). After an introduction of the innate and adaptive immune 

system, the structure and function of NAb are reviewed. Further the relation of SCC 

with mastitis is discussed and concepts of genome-wide association studies and 

environmental sensitivity are introduced. 

 

1.1. Disease resistance 

An important functional trait is disease resistance. Infectious diseases have a 

negative effect on livestock health and welfare and are an important source of 

economic loss (e.g. Glass, 2004). Further, disease causing pathogens in livestock 

and the substances used to eradicate these pathogens can provide a threat to 

biosecurity, public health, product quality and food safety (e.g. Glass et al., 2012). 

Potential means to increase disease resistance include vaccination and breeding, 

where the economically most effective means likely lies in the coupling of the 

development of vaccines with genetic selection for disease resistance. The optimal 

approach, however, depends on the host and the pathogen (Glass, 2004). Breeding 

for disease resistance has the potential to permanently improve resistance in a 

population. Disease resistance is, however, a complex phenomenon which not only 

involves various host-resistance mechanisms, but also depends strongly on 

environmental factors. Disease resistance remains a topic that warrants further 

study, as it may lead to new insights and approaches to reduce the impact of 

disease.  
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Figure 1.1 Overview of the (relation between) innate and adaptive immune system. 
Abbreviations: NK cell, natural killer cell; Tfh, follicular helper T cell; Th, T helper cell; Treg, 
regulatory T cell. (Adapted from Knight, J.C., 2013). 

 

1.2. Immunity 

The first physiological barrier that protects an individual from potentially 

pathogenic agents is an external barrier, such as skin, mucous membranes, body 

fluids or bacterial flora (Uthaisangsook et al., 2002). Once the potential pathogen 

has passed this first barrier, the second barrier is formed by the immune system.  

 

Innate and adaptive immune system 

A typical feature of the immune system is its ability to recognize and differentiate 

between the body’s own (self) molecules, and non-self molecules (Sordillo and 

Streicher, 2002). In theory, the immune system can be divided into two 

components: the innate immune system and the adaptive immune system. In 

practice, however, the separation of innate and adaptive immunity is less obvious, 

because these systems are closely entangled and share many effector mechanisms 

(Rainard and Riollet, 2006). Innate immunity involves inborn resistance which is 
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expressed upon a very first pathogenic exposure, whereas adaptive immunity 

involves resistance acquired upon (repeated) pathogenic exposure. This adaptive 

immunity is initially weak, but strengthens with repeated encounters 

(Uthaisangsook et al., 2002). Figure 1 depicts an overview of the (relation between) 

innate and adaptive immune system. Note that this overview is for illustrating 

purposes and as such not exhaustive. 

Innate immunity is a universal evolutionary conserved system, whereas adaptive 

immunity has evolved primarily in vertebrate species (Beutler, 2004, Medzhitov 

and Janeway, 1997). Recognition by the innate immune system occurs via 

conserved structures present on potential pathogens, called antigens, which most 

probably play a role in primary cell stability and cell preservation mechanisms. The 

benefit of recognizing conserved structures is that the immune system does not 

have to follow all mutational changes that occur in pathogens (Vollmers and 

Brändlein, 2009; Vollmers and Brändlein 2006). The innate immune response forms 

the foundation for activation of all adaptive immune responses by releasing 

effector cytokines, which is followed by an effector response by the adaptive 

immune system (Medzhitov and Janeway, 1997).  

 

Natural antibodies 

Natural antibodies are part of the innate immune system (Vollmers and Brändlein, 

2009), and reside in serum, colostrum or milk, in the absence of apparent external 

antigenic stimulation. Natural antibodies are of importance in the activation of a 

primary immune response against (potential) pathogens. Upon invasion NAb trap 

the pathogens by binding to antigens present on the pathogens and transport them 

to lymphoid organs, herewith removing the pathogen from the circulation, and as 

such protecting vital organs from infection. The increased concentration of antigen 

in lymphoid organs triggers the T-cell and B-cell responses of the adaptive immune 

system (Kohler et al., 2003; Ochsenbein et al., 1999). Further roles of NAb may 

involve physiological ‘housekeeping’ tasks, and recognize and discard senescent 

cells, and other self-molecules (Vollmers and Brändlein, 2009). 

Natural antibodies are measurable in bovine milk (Ploegaert et al., 2010; Van 

Knegsel et al., 2007). The bovine mammary gland has an active function in the 

regulation of the antibody concentration in colostrum and milk, although 

antibodies are not produced by the epithelium in the mammary gland itself 

(Stelwagen et al., 2009). Whereas some antibodies may “leak” from the blood 

serum into the colostrum or milk, most antibodies enter the udder via selective 

transport. These antibodies may originate from blood serum or are produced by 

intramammary plasma cells (Stelwagen et al., 2009). Little is yet known about the 
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exact role of NAb in bovine milk. In general, immune components in bovine milk 

are involved in conveying passive immunity to offspring and in providing host 

immunity to the mammary gland (Stelwagen et al., 2009). Most likely NAb play an 

eminent role in the innate immune defense of the mammary gland (Rainard and 

Riollet, 2006). 

Antibodies, NAb but also antibodies that are part of the adaptive immune system, 

can be classified based on their binding specificity, but they can also be grouped 

according to the structure of their heavy chains. These groups, different in the 

structure of their heavy regions, are known as isotypes. Although NAb are mostly 

isotype immunoglobulin (Ig) M, IgG and IgA NAb were reported (Matter and 

Ochsenbein, 2008). An overview of antibody isotypes is provided in Figure 2. 

 

 
 

Figure 1.2 Antibody isotypes. 

 

Which antigens an antibody is able to bind, i.e. the binding specificity of an 

antibody, is defined in the variable region of the antibody by the antigen binding 

site (Jerne, 1985). An overview of the antibody structure is provided in Figure 3. 

Innate immunity mostly functions through a transmitted germ-line coded pool of 

receptors that mainly bind conserved structures. A key characteristic of antibodies, 

however, is variability, which is acquired by combinatorial association (Vollmers 

and Brändlein, 2009), a process that generates antibody diversity by differential 

combination of antibody light chains and heavy chains. Additionally, recombination 

mistakes, deletions and additions in germ-line immunoglobulin genes provide a 

genetic and antigen binding site variability that is adequate to enable protection 

against a broad diversity of pathogenic agents (Vollmers and Brändlein, 2009).  
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Figure 1.3 Antibody structure.         

 

1.3. Mastitis 

Mastitis, an inflammation of the mammary gland, is regarded as the most frequent 

and costly infectious disease in dairy herds of developed countries, where costs can 

be attributed to revenues not earned due to for instance reduced milk yield and to 

real expenditures such as treatment costs and culling (Seegers et al., 2003). Many 

countries have included mastitis or the commonly used indicator trait SCC in their 

national genetic evaluations (Mark et al., 2002) in order to increase udder health.  

Innate and adaptive immunity are required to be highly interactive and coordinated 

to enable optimal protection from mastitis (Sordillo and Streicher, 2002; Stelwagen 

et al., 2009). 

Upon invasion of pathogens through the teat end into the mammary gland, 

resident cells already present in the mammary gland form the first line of defense. 

In most uninfected quarters SCC is below 10
5
 cells/ mL (Rainard and Riollet, 2006). 

After entrance into the teat end, bacteria grow and divide rapidly, where bacterial 

numbers in milk from infected quarters often exceed 10
6
/mL (Kehrli and Shuster, 

1994). Quickly after pathogens are recognized by resident cells in the udder, 

additional cells are transported to the udder through the blood-milk barrier. 

Recently it was shown that the best immune protection against an intramammary 

infection is provided by a fast recruitment of novel immune cells that reside in the 

blood. This influx of novel immune cells is indicated by a rapid rise in SCC after 

pathogenic invasion (Baumert et al., 2009). Due to reduced mammary gland 

defense mechanisms, cows are particularly susceptible to mastitis during the 

Light chain 

Constant region 

Heavy chain 

 
 Antigen binding site 

(variable region) 
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periparturient period (Sordillo and Streicher, 2002). Usually SCC exceed 1 million 

cells/mL of milk at parturition, and in the 7 to 10 days after calving SCC decrease to 

10
5
 cells/mL (Rainard and Riollet, 2006). The state of host resistance is affected not 

only by diverse physiological stressors, but also genetics (Kehrli and Shuster, 1994). 

Although heritability for mastitis or SCC is usually rather low, genetic variability is 

present. The heritability is low, however, because a very large environmental 

variance typically dilutes the genetic variance. Heritability estimates for clinical 

mastitis mostly range from 0.02 to 0.04, for SCC
1
 these estimates range from 0.05 

to 0.14 for single monthly test-days and from 0.10 to 0.18 for lactation-average SCC 

(Rupp and Boichard, 2003). Most estimates regarding the genetic correlation 

between mastitis and SCC originate from Scandinavian data as, unlike most 

countries, Scandinavian countries routinely record clinical mastitis incidence. These 

data show genetic correlations that range from 0.50 to 0.80, with an average 0.70, 

which suggests that SCC and mastitis partly have a common genetic basis (Rupp 

and Boichard, 2003). 

Although the heritability and genetic correlation provide insight in the genetic 

control of traits, they do not reveal the disposition of the underlying genes, their 

number or their effect on the phenotype (Glass et al., 2012). 

 

1.4. Genome-wide association studies 

A genome-wide association study may aid in obtaining insight in the disposition of 

the underlying genes, their number or their effect on the phenotype. The objective 

of genome-wide association studies is to identify associations between one or 

multiple genetic markers and a trait (Cordell and Clayton, 2005) using a genome-

wide dense marker map. Three marker types can be distinguished: 1) the causative 

mutation itself; 2) linkage disequilibrium markers, these markers are in population-

wide linkage disequilibrium with the causative mutation; 3) linkage equilibrium 

markers, these markers are in population-wide linkage equilibrium with the 

causative mutation but within some families they are linked to the causative 

mutation (Dekkers, 2004). The primary difference between linkage disequilibrium 

and linkage equilibrium markers is that for linkage disequilibrium markers the same 

allele is associated with the trait in a comparative fashion across the entire 

population, whereas for linkage equilibrium markers the allele can be differently 

associated with the trait in different families (Cordell and Clayton, 2005). 

                                                           
1 For genetic parameter estimation SCC are commonly log-transformed into somatic cell 
score because of the skewness of the SCC distribution. 
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Frequently used genetic markers are single nucleotide polymorphisms, which are 

based on linkage disequilibrium with the causative mutation. Discovery of 

thousands of single nucleotide polymorphisms markers in the genome coupled 

with a substantial reduction in genotyping costs has enabled genomic selection 

(Hayes et al., 2009) and identification of genetic control of traits.  

Genetic control of quantitative traits, such as disease resistance, lies somewhere on 

a spectrum, with one the one end of this spectrum the polygenic hypothesis and on 

the other end the monogenic hypothesis. The polygenic hypothesis assumes 

genetic control through many genes with relatively small effects (Detilleux, 2009), 

whereas the monogenic hypothesis assumes genetic control through a single gene. 

Most quantitative traits are likely affected by a combination of genes with major 

and minor effects, coupled with environmental influences (Detilleux, 2009). 

Genome-wide association studies provide opportunities to not only increase insight 

in the location of a trait on the polygenic-monogenic spectrum, but also to identify 

candidate genes for the genetic control. Identification of regions on the genome or, 

preferably, candidate genes associated with a trait is important for an increased 

understanding of the trait biology. 

 

1.5. Environmental influences  

Phenotypes are not only influenced by genetics, but also by environmental factors. 

Different genotypes may, however, show differences in response to (alterations in) 

environmental factors. These differences in response by different genotypes are 

defined as genotype by environment (GxE) interaction, and indicate that there is 

genetic variation in environmental sensitivity (Falconer and Mackay, 1996). 

Environmental factors can be classified into two categories: macro- and micro-

environmental factors. Macro-environmental refers to known environmental 

effects that can be categorized or quantified, such as temperature, diet etc. Macro-

environmental sensitivity can be expressed either as the genetic variance in the 

slope of a reaction norm if the environmental parameter is a continuous trait, or as 

genetic covariances between environments if the environmental parameter is a 

categorical trait, where phenotypes in the separate environments are regarded as 

individual traits (Mulder et al., 2013). Micro-environmental refers to unknown 

environmental effects (Falconer and Mackay, 1996). In contrast to macro-

environmental sensitivity, micro-environmental sensitivity cannot be extracted 

from the residual variance due to their unknown nature. Micro-environmental 

sensitivity can, however, be modeled by allowing for genetic effects in the residual 
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variance part of the model, such as in the double hierarchical generalized linear 

model (Rönnegård et al., 2010). 

Recently, an extension of the double hierarchical generalized linear model with a 

reaction norm model was developed by Mulder et al. (2013) to analyze macro- and 

micro-environmental sensitivity simultaneously. Simultaneous analysis of macro- 

and micro-environmental sensitivity provides additional insight in the interactions 

of traits with environmental factors. Further, macro-micro analyses may aid to 

optimize estimation of variance-controlling breeding values. Selection on variance-

controlling breeding values is relevant when trait uniformity is desired, when 

interest is in traits with an intermediate optimum value (Mulder et al., 2008) or 

when selecting for increased robustness. 

 

1.6. Aim and outline of this thesis 

Reduction of the impact of disease in livestock production becomes increasingly 

important, not only from an economical and environmental perspective, but also 

from a human and animal welfare viewpoint. Livestock breeding provides a means 

to permanently decrease the impact of disease. Mastitis is a major infectious 

disease in dairy cattle and SCC is an indirect measure of mastitis frequently used in 

dairy cattle breeding schemes. Still, there is much to be learned about the 

interpretation of genetic parameters and the biology of disease resistance and SCC. 

Insight in the genetics of disease resistance can be gained by detection of genomic 

regions involved in existing disease resistance traits, by exploration of potential 

novel indicator traits and by studying the interactions of disease traits with 

environmental factors.  

This thesis has the objective to:  

1) quantify the impact of genetics on innate immunity, represented by NAb, 

through estimation of heritabilities and genetic correlations; 

2) identify the genomic regions involved in SCC and NAb levels; 

3) quantify the impact of genetics on environmental sensitivity for SCC. 

 

The outline of this thesis is as follows:  

Chapter 2 covers the estimation of heritabilities for natural antibody levels in milk. 

In addition, genetic correlations between different natural antibody isotype levels 

are estimated.  

In Chapter 3 a genome-wide association study is performed on the natural antibody 

levels for which genetic parameters are estimated in chapter 2. Chapter 4 includes 

a genome-wide association study on SCC, where both lactation-average SCC and 
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the trait standard deviation in test-day SCC are analyzed. Chapter 5 studies the 

genetic variation in environmental sensitivity for SCC by means of a double 

hierarchical generalized linear model. Finally, chapter 6 will discuss some of the 

biology that is behind NAb and SCC and includes the conclusions of this PhD thesis. 
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Abstract 

The objective of the present study was to estimate genetic parameters for natural 

antibody isotypes immunoglobulin (Ig)A, IgG1 and IgM titers
1
 binding the bacterial 

antigens lipopolysaccharide, peptidoglycan and the model antigen keyhole limpet 

hemocyanin in Dutch Holstein-Friesian cows (n=1,695). Further, the present study 

included total natural antibody titers binding the antigens mentioned above, 

making no isotype distinction, as well as total natural antibody titers and natural 

antibody isotypes IgA, IgG1 and IgM titers binding lipoteichoic acid. The study 

showed that natural antibody isotype titers are heritable and that these 

heritabilities were generally higher than heritabilities for total natural antibody 

titers. Genetic correlations for nearly all possible combinations of total natural 

antibody titers and natural antibody isotype titers were positive. Strong genetic 

correlations were found between IgA and IgM. Genetic correlations were 

substantially weaker when they involved an IgG1 titer, indicating that IgA and IgM 

have a common genetic basis, but that the genetic basis for IgG1 differs from that 

for IgA or IgM. Results from this study indicate that natural antibody isotype titers 

show the potential for effective genetic selection. Further, natural antibody 

isotypes may provide a better characterization of different elements of the immune 

response or immune competence. As such, natural antibody isotypes may enable 

more effective decisions when breeding programs would start to include innate 

immune parameters.  

 

Key words: immunoglobulin, dairy cattle, innate, immune, heritability, correlation, 

IgA, IgG1, IgM   

                                                           
1 A measure of antibody level 
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2.1 Introduction 

Natural antibodies (NAb) are part of the innate immune system (Matter and 

Ochsenbein, 2008) and exist without apparent antigenic stimulation (Ochsenbein 

and Zinkernagel, 2000). They are poly-reactive and show low affinity binding with 

various antigens (Casali and Notkins, 1989).  

Antibodies can be grouped according to two mutually exclusive important 

structural resemblances. On the one hand, NAb can be classified according to the 

structure of their variable part, i.e. the ‘binding specificity’ (Jerne, 1985). Natural 

antibodies generally bind antigens shared by classes of pathogens (Medzhitov and 

Janeway, 1997). Major antigens include lipopolysaccharide (LPS), part of gram 

negative bacteria, lipoteichoic acid (LTA), part of gram-positive bacteria, 

peptidoglycan (PGN), part of both gram-positive and gram-negative bacteria and 

the model antigen keyhole limpet hemocyanin (KLH). On the other hand, NAb can 

be classified according to the molecular structure of their constant part, i.e. their 

isotype (Jerne, 1985). Each isotype has its own biochemical and biological 

properties (Schroeder and Cavacini, 2010). The availability of a broad diversity of 

binding specificities coupled with different isotypes allows for an effective immune 

response against a multitude of antigens. 

Natural antibody titers can be measured in bovine blood plasma and milk (Van 

Knegsel et al., 2007; Ploegaert et al., 2011), where they are repeatable over time 

and show variation among cows (Ploegaert et al., 2011). Ploegaert et al. (2010) 

showed that NAb titers in bovine milk are heritable, with heritabilities ranging from 

0.10 to 0.53, and that positive genetic correlations exist among them. These 

findings, together with the immediate and early protection and poly-reactivity of 

NAb (Baumgarth et al., 2005) make them potentially interesting indicators that can 

be useful in selection for disease resistance once genetic correlations with disease 

resistance have been found.  

The study of Ploegaert et al. (2010) estimated genetic parameters for total NAb 

binding KLH, LPS, LTA, or PGN, making no isotype distinction. Further, the study 

estimated genetic parameters for NAb isotypes immunoglobulin (Ig)A, IgG1 and 

IgM binding LTA. More recently, IgA, IgG1 and IgM isotype titers binding KLH, LPS 

or PGN became available. Isotypes may be genetically different traits and may 

provide biologically relevant information when compared to total NAb titers. 

Knowing the genetic parameters of isotype specific titers binding an antigen, in 

addition to total NAb binding that antigen, will among other allow more effective 

decisions on inclusion of NAb titers in the breeding goals of cattle. Knowledge on 

genetic parameters can provide more insight in the genetic control of NAb isotypes, 
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and as such, provide information about the relevance of measuring individual 

immune components. The objective of the present study was to estimate genetic 

parameters for NAb isotypes IgA, IgG1 and IgM binding KLH, LPS or PGN. 

 

2.2 Materials and methods 

Cows and phenotypes 

The present study was based on data collected as part of the Milk Genomics 

initiative. Natural antibody titers were available for 1,695 cows, which were 

previously included in the study by Ploegaert et al. (2010). Cows were located on 

380 commercial dairy herds in the Netherlands and between 66 and 263 days in 

lactation on the day that milk samples were taken, with an average of 166 days. 

Cows were at least 87.5% Holstein-Friesian and were sired by 1 of 50 young bulls 

(n=761), 1 of 5 proven bulls (n=764) or 1 of 45 other proven bulls (n=170), where 

the latter were added to the dataset to obtain at least five cows per farm. In 

contrast to proven bulls, young bulls were still under evaluation regarding their 

genetic merit. The pedigree was made available by the Dutch cattle cooperative 

(CRV, Arnhem, the Netherlands), and contained 26,300 individuals.  

Natural antibodies binding Megathura crenulata-derived KLH, Escherichia coli-

derived LPS, Staphylococcus aureus-derived LTA, and S. aureus-derived PGN were 

measured in morning milk samples by means of indirect ELISA as outlined by 

Ploegaert et al. (2010) and Ploegaert (2010b). Milk antibody levels were expressed 

as titers. Titers were defined as log2 values of the dilutions that gave an extinction 

nearest to 50% of the highest average extinction of a standard positive milk sample 

(Ploegaert et al., 2010). This standard positive milk sample was present in duplicate 

on each microtiter plate and consisted of a milk sample known to contain 

detectable NAb levels.  

This resulted in the following 16 traits: total NAb binding KLH (KLH-T), LPS (LPS-T), 

LTA (LTA-T) or PGN (PGN-T), NAb isotype IgA binding KLH (KLH-IgA), LPS (LPS-IgA), 

LTA (LTA-IgA) or PGN (PGN-IgA), NAb isotype IgG1 binding KLH (KLH-IgG1), LPS (LPS-

IgG1), LTA (LTA-IgG1) or PGN (PGN-IgG1) and NAb isotype IgM binding KLH (KLH-

IgM), LPS (LPS-IgM), LTA (LTA-IgM) or PGN (PGN-IgM). The sum of IgA, IgG1 and 

IgM isotype titers is not equivalent to total NAb, as, among others, titers are 

relative measures and as such not an absolute amount of binding antibody.  

 

Statistical analyses 

Variance components for the NAb titers were estimated using a linear animal 

model:  
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where the response variable y represented the NAb titer; µ was the general mean; 

dimijklmn was the covariate describing the effect of days in milk, modeled with a 

Wilmink curve (Wilmink, 1987) with regression coefficients b1 and b2; afcijklmn was 

the covariate describing the effect of age at first calving with regression coefficients 

b3 and b4; seasonk represented the fixed effect of calving season in three classes: 

summer (June - August 2004), autumn (September - November 2004) and winter 

(December 2004 - February 2005); stypel was the fixed effect of sire type in three 

classes: proven bull, young bull or other proven bull, and accounted for the genetic 

level of the sire types; herdm, distributed as ~N(0,Iσ
2

herd), was the random effect 

accounting for farm effects; animaln, distributed as ~N(0,Aσ
2

a), was the random 

additive genetic effect of the cow; and eijklmn, distributed as ~N(0,Iσ
2

e), was the 

random residual effect. Matrix I represented the identity matrix, and matrix A 

contained the additive genetic relationships between animals. 

 

Variance components for estimating the heritability and the herd variance 

proportion were estimated by means of univariate analyses. 

 

The intra-herd heritability (h
2

in) in the narrow sense represented the proportion of 

phenotypic variance attributable to genetic variation among cows within a herd 

and was calculated as 
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
  ,           (2) 

 

where 2
a  was the additive genetic variance, 2

e  was the residual variance, and 

where the denumerator represented the phenotypic variance (
2
p  ). 

 

The across-herd heritability (h
2

ac) in the narrow sense represented the proportion 

of phenotypic variance attributable to genetic variation among cows between 

herds and was calculated as 
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where 2
a  was the additive genetic variance, 2

herd  was the variance attributable 

to herd, and 2
e  was the residual variance. 

 

The herd variance proportion (herd
vp

) was calculated as 
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where 2
a  was the additive genetic variance, 2

herd  was the variance attributable 

to herd, and 2
e  was the residual variance. 

 

(Co)variance components for estimating genetic correlations and correlations 

attributable to herd were estimated by means of bivariate analyses.  

 

Genetic correlations were calculated as 
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where 2
1a  was the additive genetic variance for trait 1, 2

2a  was the additive 

genetic variance for trait 2 and 2,1 aa  was the genetic covariance between trait 1 

and trait 2.  

 

Correlations attributable to herd were calculated as 
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where 2
1herd  was the variance attributable to herd for trait 1, 2

2herd  was the 

variance attributable to herd for trait 2 and 2,1 herdherd  was the covariance 

attributable to herd between trait 1 and trait 2. 

All analyses were performed using the ASReml software package (Version 2; 

Gilmour et al., 2006). 

 

2.3 Results 

Descriptive Statistics  

The present study included total NAb titers as well as NAb isotype IgA, IgG1 and 

IgM titers binding KLH, LPS, LTA or PGN. Means and corresponding standard 

deviations are shown in Table 1. On average, PGN-T had the highest mean titer 

(6.67), and PGN-IgA had the lowest mean (0.05). When compared with isotypes 

IgG1 and IgM within each binding specificity NAb isotype IgA consistently had the 

lowest mean titer. When NAb isotype titers were compared with total NAb titers 

within individual binding specificities, total NAb generally had higher means, with 

LTA-T as an exception. Standard deviations ranged from 0.76 for KLH-T to 1.49 for 

KLH-IgG1. Natural antibody isotype IgG1 consistently showed the highest standard 

deviation, regardless of binding specificity. 

 

Table 2.1 Mean and standard deviation (SD) for total natural antibody titers (T) and natural 

antibody isotype immunoglobulin (Ig)A, IgG1 and IgM titers binding keyhole limpet 

hemocyanin (KLH), lipopolysaccharide (LPS), lipoteichoic acid (LTA), or peptidoglycan (PGN). 
 

Antibody
1 

Mean SD 

KLH-T 4.88 0.76 
KLH-IgA 0.99 0.98 
KLH-IgG1 2.96 1.49 
KLH-IgM 2.31 0.99 
LPS-T 4.20 0.97 
LPS-IgA 1.95 1.13 
LPS-IgG1 3.06 1.43 
LPS-IgM 2.62 1.03 
LTA-T 4.43 0.89 
LTA-IgA 3.86 1.16 
LTA-IgG1 4.39 1.38 
LTA-IgM 5.26 0.89 
PGN-T 6.67 1.04 
PGN-IgA 0.05 0.96 
PGN-IgG1 5.45 1.40 
PGN-IgM 2.18 0.90 
1
Antibody names are a combination of antigen abbreviation and immunoglobulin isotype.
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Heritabilities 

Table 2 includes the estimates for the heritability and the phenotypic variance for 

all NAb titers studied. The following part of this study focused on the intra-herd 

heritability. Results for the across-herd heritability were similar to those for the 

intra-herd heritability, though across-herd heritabilities were somewhat lower than 

the intra-herd heritabilities due to the additional variance component in the 

denumerator. Heritabilities ranged from 0.08 for LTA-IgG1 to 0.55 for KLH-IgA. Of 

the different isotypes IgG1generally had high phenotypic variances and low 

heritabilities. In contrast to IgG1, isotype IgM had lower phenotypic variances and 

higher heritabilities. In general, isotype IgA had higher heritability estimates than 

IgG1 and IgM isotypes, except for PGN-IgM and additionally for LTA-IgM in case of 

the across-herd heritability. Heritabilities for LPS-T and PGN-T were low compared 

to heritabilities for the different isotypes and heritabilities for LTA-T and KLH-T 

were intermediate. 

 

Genetic correlations 

With eight exceptions, genetic correlations were positive and ranged from 0.01 to 

0.99 (Table 3). A correlation was regarded strong when its absolute value was ≥ 

0.70 and as weak when it was ≤ 0.35. Of the 120 correlations ~30% were weak, 

~50% were strong and ~20% were intermediate between 0.35 and 0.70. All weak 

correlations, which included all negative correlations, involved an IgG1 titer as one 

of the traits. A heat map of the estimated genetic correlations between the 16 NAb 

traits shows that the IgG1 isotypes cluster in a separate branch, whereas the IgA 

and IgM isotypes cluster together in another branch (Figure 1). Within NAb binding 

specificity, i.e. binding KLH, LPS, LTA or PGN, correlations between NAb isotype IgA 

and IgM ranged from 0.87 to 0.95. The correlations between IgG1 and IgA or IgM 

were consistently weaker with correlations ranging from -0.23 to 0.75. Across 

binding specificity, isotype IgA antibody titers were strongly correlated, ranging 

from 0.89 to 0.98. The same was also found for isotype IgM antibody titers, with 

genetic correlations ranging from 0.92 to 0.96. The genetic correlations between 

isotype IgG1 antibodies for different specificities were substantially weaker, 

ranging from 0.05 to 0.92.  
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Figure 2.1 Heat map of genetic correlations between total natural antibody titers (T) and 
natural antibody isotype immunoglobulin (Ig)A, IgG1 and IgM titers binding keyhole limpet 
hemocyanin (KLH), lipopolysaccharide (LPS), lipoteichoic acid (LTA), or peptidoglycan 
(PGN).

1,2
 

 
Herd variance proportions and correlations due to herd 

Table 2 includes the herd variance proportion for all NAb titers studied. The herd 

variance proportions ranged from 0.08 for KLH-IgM to 0.37 for LTA-IgG1. Herd 

variance proportions were generally highest for IgG1 titers, ranging from 0.18 to 

0.37, indicating that a relatively large proportion of the differences in IgG1 can be 

explained by differences between herds. Herd variance proportions for IgM were 

generally lowest ranging from 0.08 to 0.13. Herd variance proportions for isotype 

IgA were more variable with intermediate values for KLH-IgA and PGN-IgA, a low 

value for LPS-IgA and a high value for LTA-IgA. Correlations attributable to herd 
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were in general positive and ranged from -0.18 to 0.86 (results not shown). Of the 

120 correlations attributable to herd ~70% were weak (≤ 0.35), ~5% were strong (≥ 

0.70) and ~25% were intermediate between 0.35 and 0.70.  

 

Table 2.2 Phenotypic variance (σ
2

p)
1
, intra-herd (h

2
in)

1
 and across-herd heritability (h

2
ac)

1
, 

herd variance proportion (herd
vp

)
1
 and corresponding standard errors in parentheses for 

total natural antibody titers (T) and natural antibody isotype immunoglobulin (Ig)A, IgG1 and 

IgM titers binding keyhole limpet hemocyanin (KLH), lipopolysaccharide (LPS), lipoteichoic 

acid (LTA), or peptidoglycan (PGN). 
 

Antibody
2 

σ
2

p h
2

in  h
2

ac  herd
vp

 

KLH-T 0.49 (0.02) 0.40 (0.09) 0.34 (0.08)  0.16 (0.03) 
KLH-IgA 0.85 (0.05) 0.55 (0.12) 0.48 (0.10)  0.16 (0.03) 
KLH-IgG1 1.72 (0.08) 0.40 (0.10) 0.32 (0.08) 0.25 (0.04) 
KLH-IgM 0.92 (0.04) 0.45 (0.10) 0.41 (0.09) 0.08 (0.02) 
LPS-T 0.82 (0.03) 0.15 (0.06) 0.13 (0.06) 0.13 (0.03) 
LPS-IgA 1.23 (0.06) 0.52 (0.11) 0.48 (0.10) 0.08 (0.02) 
LPS-IgG1 1.77 (0.08) 0.24 (0.08) 0.20 (0.07) 0.18 (0.03) 
LPS-IgM 0.98 (0.05) 0.42 (0.10) 0.39 (0.09) 0.09 (0.02) 
LTA-T 0.72 (0.03) 0.32 (0.09) 0.28 (0.08) 0.14 (0.03) 
LTA-IgA 1.06 (0.05) 0.49 (0.11) 0.37 (0.09) 0.31 (0.04) 
LTA-IgG1 1.39 (0.06) 0.08 (0.06) 0.06 (0.04) 0.37 (0.05) 
LTA-IgM 0.70 (0.03) 0.44 (0.10) 0.39 (0.09) 0.13 (0.03) 
PGN-T 0.78 (0.03) 0.13 (0.06) 0.10 (0.04) 0.36 (0.05) 
PGN-IgA 0.81 (0.04) 0.30 (0.09) 0.26 (0.08) 0.16 (0.03) 
PGN-IgG1 1.57 (0.07) 0.15 (0.07) 0.12 (0.05)  0.26 (0.04) 
PGN-IgM 0.75 (0.04) 0.39 (0.10) 0.35 (0.09) 0.10 (0.03) 
1
 σ

2
p = σ

2
a + σ

2
e; h

2
in= σ

2
a/σ

2
p; h

2
ac= σ

2
a/(σ

2
p + σ

2
herd); herd

vp
 = σ

2
herd/ (σ

2
p + σ

2
herd), where σ

2
a was 

the additive genetic variance, σ
2

e was the environmental variance, and σ
2

herd was the 
variance attributable to herd. 
2
Antibody names are a combination of antigen abbreviation and immunoglobulin isotype. 

 

Residual correlations 

Residual correlations were all positive and ranged from 0.05 to 0.75 (results not 

shown). Of the 120 correlations attributable to residual aspects ~50% were weak, 

~47% were intermediate and ~3% were strong. 
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Table 2.3 Genetic correlations between total natural antibody titers (T) and natural antibody isotype immunoglobulin (Ig)A, IgG1 and IgM titers 

binding keyhole limpet hemocyanin (KLH), lipopolysaccharide (LPS), lipoteichoic acid (LTA), or peptidoglycan (PGN).
1,2

 
 

              Genetic correlations Trait 

               1.00 LPS-IgM 
              1.00 0.95 LPS-IgA 
             1.00 0.89 0.82 LTA-IgA 
            1.00 0.97 0.98 0.99 KLH-IgA 
           1.00 0.92 0.87 0.80 0.94 LTA-IgM 
          1.00 0.92 0.91 0.87 0.83 0.93 PGN-IgM 
         1.00 0.96 0.95 0.93 0.80 0.80 0.96 KLH-IgM 
        1.00 0.85 0.91 0.81 0.95 0.93 0.95 0.91 PGN-IgA 
       1.00 0.43 0.56 0.66 0.54 0.63 0.57 0.60 0.55 PGN-T 
      1.00 0.57 0.84 0.80 0.86 0.91 0.98 0.92

3
 0.85 0.81 LTA-T 

     1.00 0.83 0.43 0.70 0.82 0.77 0.91 0.84 0.80 0.80 0.88 KLH-T 
    1.00 0.77

3 
0.99 0.53 0.68 0.84 0.74 0.90 0.99 0.89 0.91 0.91 LPS-T 

   1.00 0.91
3 

0.99
3 

0.92
3 

0.05 0.03 0.53 0.47 0.75 0.81 0.56 0.49 0.55 LTA-IgG1 
  1.00 0.92

3
 0.65 0.33 0.42 0.44 0.10 0.02 0.08 0.19 0.16 0.31 0.16 0.13 LPS-IgG1 

 1.00 0.56 0.91
3
 0.72 0.38 0.33 -0.11 -0.13 -0.10 -0.11 0.10 -0.06 0.12 0.10 0.07 KLH-IgG1 

1.00 0.18 0.57 0.05 0.22 0.09 0.08 0.62 -0.23 -0.05 0.03 0.06 0.04 -0.08 0.01 0.04 PGN-IgG1 
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1
 Antibody names are a combination of antigen abbreviation and immunoglobulin isotype  

2
 Standard errors ranged from 0.02 to 0.32, with an average of 0.15 

3
 Genetic (co)variances liable to change from positive definite to fixed at boundary; log likelihood converged 
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1.4 Discussion  

The present study aimed to generate insight in genetic control of NAb isotypes 

through estimation of heritabilities and genetic correlations. In general, 

heritabilities for NAb isotypes were high and higher than heritabilities for total 

NAb. Further, isotype IgG1 generally had the lowest heritability coupled with the 

highest herd variance proportions whereas isotype IgM generally had the higher 

heritabilities and the lowest herd variance proportions. Genetic correlations 

between studied NAb were nearly all positive; IgA and IgM were strongly 

correlated whereas the correlation of IgA or IgM with IgG1 was substantially 

weaker.  

 

NAb and innate immunity 

Natural antibody levels are expected to be maintained, throughout life, at relatively 

constant levels (Lutz and Miescher, 2008). Within and even between species, the 

NAb repertoire and reactivity is notably stable. This stability appears to originate 

from an evolutionary selection process which provides an innate legacy of 

specificities that enable protection against pathogens, malignant cells and other 

disadvantageous modifications (Vollmers and Brändlein, 2009). The present study 

included titers with binding specificities for LPS, LTA and PGN derived from S. 

aureus or E. coli, both of which are among the most prevalent causative bacteria 

for mastitis in dairy cattle (Barkema et al., 1998). As such, it is likely that cows have 

been previously exposed to LPS, LTA and PGN. The NAb titers binding these 

antigens may therefore, in part, reflect previous exposure and these NAb titers can 

consequently be regarded as a combination of authentic NAb and antibodies 

produced by the adaptive immune system. Although antibodies directed against 

LPS, LTA and PGN may, in part, have been produced under the influence of 

antigenic exposure, the present study, following Star et al. (2007), Van Knegsel et 

al. (2007) and Ploegaert et al. (2010), regarded LPS-, LTA- and PGN-binding 

antibodies as natural antibodies because cows were not intentionally nor 

controllably exposed to these antigens.  

The model antigen KLH, however, is an antigen that cows do not encounter except 

for experimental conditions. Therefore antibodies binding KLH can be regarded as 

authentic NAb that reflect the ability to respond to novel antigens.  

Ploegaert et al. (2011) showed that NAb in bovine milk generally give an accurate 

representation of serum NAb titers, herewith providing a less invasive and less 

laborious method of sampling to assess the NAb titers that are systemically 

available to these cows. Further, a high repeatability was reported for NAb titers, 

which suggests that a single milk sample per cow provides a representative 
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phenotype. The greater part of the NAb phenotypes was explained by effects of 

genetics and herd; effects of fixed model terms were small relative to genetics and 

herd.  

 

Influence of genetics and management  

Heritabilities for NAb ranged from 0.08 to 0.55 and herd variance proportion 

ranged from 0.08 to 0.37. Although all NAb titers are influenced by herd-

environment, ~70% of the correlations attributable to herd were weak (≤ 0.35) 

suggesting that NAb titers are influenced by different aspects of the herd-

environment. The same suggestion can be drawn from the residual correlations 

where ~50% of the correlations were weak.  

Based on the relatively low heritability and the relatively high herd variance 

proportion, Ploegaert et al. (2010) suggested that LTA-IgG1 titers may depend 

more on environmental than genetic factors when compared to IgA and IgM titers. 

Results for KLH-IgG1, LPS-IgG1 and PGN-IgG1 were consistent with the findings for 

LTA-IgG1. Current findings are in line with Baumgarth et al. (2005), who indicated 

that isotype IgM was less dependent on external antigenic stimulation than IgA and 

especially IgG1. Thus, although the genetic composition of a cow is an important 

factor in antibody titers, there are also substantial herd effects, which are likely to 

include differences between herds in housing system, infection pressure, feed and 

management. This implies that even when genetic improvement programs would 

start to include parameters of the innate immune system, the health of dairy cattle 

will continue to be greatly influenced by environmental management, as was also 

pointed out by e.g. Burton et al. (1989).  

 

Heritability 

In addition to Ploegaert et al. (2010) the present study is, to our knowledge, the 

first to estimate genetic parameters for NAb titers in dairy cattle herewith making a 

distinction in NAb binding specificity as well as isotype. Kelm et al. (1997) and 

Mallard et al. (1983) studied IgM, IgG1 and IgG2 antibody isotype serum levels in 

non-immunized Holstein cows, making no distinction between binding specificities, 

and found heritabilities up to 0.74 (Kelm et al., 1997) and 0.85 (Mallard et al., 

1983). In calves, the heritability of IgG1 and IgG2 serum levels upon natural 

exposure to nematodes ranged from 0 to 0.99 (Gasbarre et al., 1993). Genetic 

parameters for antibody isotypes have also shown to be heritable in other species. 

In Romney lambs, the heritability for total antibody levels and antibody isotype 

IgG1 upon natural exposure to nematodes ranged between 0.25 and 0.37 (Douch 

et al., 1995). Finally, Duah et al. (2009) studied antibody isotypes IgG1, IgG2, IgG3, 
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IgG4, IgM, IgA and IgE binding Plasmodium falciparum antigens in human serum 

and found heritabilities up to 0.98.  

In the present study, heritabilities ranged from 0.08 to 0.55. Heritabilities of this 

magnitude show the potential for effective genetic selection. Heritabilities for NAb 

isotypes were generally equal to or higher than total NAb, although these 

differences were not always significant. Total NAb are a combination of different 

isotypes and, based on the genetic correlations found in the present study, a 

combination of genetically different traits. Therefore, NAb isotypes may be more 

specific measures that may allow for a better characterization of different aspects 

of the immune response or immune competence and as such allow for more 

effective decisions on inclusion of NAb titers in the breeding goals of dairy cattle. 

Combined with the higher heritabilities, NAb isotypes may be more useful in an 

animal breeding context than total NAb. 

 

Genetic correlations 

Natural antibody isotype titers IgA and IgM were strongly correlated, regardless of 

binding specificity. Correlations, however, were substantially weaker when they 

involved an IgG1 titer. These results suggest that IgA and IgM have a common 

genetic basis but that the genetic basis for NAb isotype IgG1 titers differs from that 

for IgA or IgM titers. The genetic distinction between IgG1 and IgA or IgM may 

originate from the functions these isotypes serve. Isotype IgM plays a role in the 

early, innate, immune response (e.g. Ehrenstein and Notley, 2010; Schroeder and 

Cavacini, 2010). IgA may play a critical role, mainly in mucosal tissue, in prevention 

of infections by bacteria or viruses, pathogenesis, or both (e.g. Woof and Kerr, 

2006; Schroeder and Cavacini, 2010). Isotype IgG is mainly involved in the adaptive 

immune response and among other aids in neutralization of toxins and viruses (e.g. 

Schroeder and Cavacini, 2010). Thus, isotypes IgA and IgM play an important 

preventive role early in the immune response, whereas isotype IgG is of main 

importance in the adaptive, and frequently curative, immune response. A 

functional relationship between IgA and IgM was also suggested by findings of 

Harriman et al. (1996) who found altered immunoglobulin isotype expression in IgA 

deficient mice. In these mice secretion of IgM increased substantially, whereas 

secretion of IgG1 was also increased but to a lesser extent.  

Further, the strong positive genetic correlations between IgA and IgM are 

supported by molecular similarities. For instance, the CH3 domains of both IgA and 

IgM have short tailpieces that bind with the J-chain by means of disulfide bonds 

(Schroeder and Cavacini, 2010).  
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Few studies on genetic correlations between natural antibodies have been 

published. A study in poultry by Siwek et al. (2006) included KLH-T, LPS-T and LTA-T. 

Genetic correlations were mostly positive and ranged from -0.03 to 0.92, 

depending on population and age. In general, genetic correlations were in line with 

the current findings. 

The positive genetic correlations between nearly all NAb titers found in the present 

study indicate that genetic selection for an individual NAb titer is unlikely to be 

genetically detrimental to the other NAb titers.  

 

NAb and health  

Not much is known about NAb and their meaning for health. Somatic cell counts 

(SCC) are a commonly used measure for intramammary infections (e.g. Rupp and 

Boichard, 2003). Ploegaert et al. (2010) have studied the influence of elevated SCC 

(SCC > 80,000 cells/mL) on heritabilities for total NAb and isotypes IgA, IgG1 and 

IgM titers binding LTA by removing records with elevated SCC from the dataset. 

Similar to the study by Ploegaert et al. (2010), heritability estimates in the present 

study were generally not affected by the presence of elevated SCC.  

Studies on the relations between NAb titers and disease status, prevalence or 

severity in livestock are limited, especially for NAb isotypes. Van Knegsel et al. 

(2007) reported a negative relation between energy balance and milk KLH-T and 

LPS-T titers. In poultry, Sun et al. (2011) have identified high serum KLH-IgM and 

KLH-IgG titers as a protective element enabling survival, where, depending on the 

genetic background, IgM seemed to be a stronger indicator for survival than IgG. 

Isotype IgA was not studied. Further, Star et al. (2007) have suggested that high 

KLH-T serum levels and low LPS-T serum levels are indicative of an increased 

probability to survive a laying period. Moreover, studies in mice have shown that 

NAb contribute to resistance against viral infections, bacterial infections and that 

they may also have a role in parasite clearance (Matter and Ochsenbein, 2008).  

Although limited evidence is available on the relation between NAb titers and 

health, scientific results suggests that it is worthwhile to continue research in this 

direction. 

 

1.5 Conclusion 

This study showed that NAb isotypes IgA, IgG1 and IgM binding KLH, LPS and PGN 

are heritable traits and that NAb isotype titers generally are more heritable than 

total NAb titers. Further, strong positive genetic correlations were estimated 

between isotypes IgA and IgM, which indicates a common genetic basis for these 

isotypes. Correlations of IgA or IgM with IgG1 were considerably weaker, though 
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mostly positive. These findings indicate that, when compared to total NAb, isotypes 

may be more specific parameters that may allow for a better insight in different 

elements of the immune response or immune competence and, as such, allow for 

more effective decisions when genetic improvement programs would start to 

include parameters of the innate immune system. Further research is needed to 

assess the relations between NAb and disease resistance.  
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Abstract 

Natural antibodies (NAb), part of the innate immune system, are considered to 

provide a barrier at the onset of infection and to act as a stimulus for activation of 

the adaptive immune system. Variation in NAb levels can result from genetic or 

environmental factors. This study aimed to provide more insight in the largely 

unknown genomic basis of NAb levels in cow milk. Generally, NAb bind antigens 

shared by classes of pathogens. This study included NAb binding lipopolysaccharide 

(LPS), shared by gram-negative bacteria, lipoteichoic acid (LTA), shared by gram-

positive bacteria, peptidoglycan (PGN), shared by gram-negative and gram-positive 

bacteria and the model antigen keyhole limpet hemocyanin (KLH). DNA and NAb 

levels from 1,939 cows were analyzed. Cows were genotyped for about 50,000 

markers. Each individual marker was tested for detection of variation in NAb levels. 

Results show that information can be gained when total NAb levels are further 

subdivided into isotype levels, suggesting that analysis of detailed phenotypes can 

provide further insight in the genetic control of traits. Further, this study identified 

genomic regions associated with NAb levels on all bovine autosomes. A region on 

BTA23 was consistently found significantly associated with genetic variation in 

isotype IgM levels across the different binding specificities. The bovine major 

histocompatibility complex (MHC) is located near this region, making this a region 

of candidate gene(s) involved in NAb expression in dairy cows both from a 

functional and positional perspective. 

 

Key words: genomic region, SNP, immunoglobulin, dairy cattle, innate, immune, 

IgA, IgG1, IgM  
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3.1 Introduction 

Natural antibodies (NAb) reside in human and animal serum, colostrum or milk, in 

the absence of apparent external antigenic stimulation. Further, NAb are poly-

reactive and show low affinity binding with various antigens (e.g. Casali and 

Notkins, 1989). Not only within but also between species the natural antibody 

repertoire and reactivity pattern is noteworthily stable. It appears that this stability 

evolves from an evolutionary selection process which offers an innate 

hereditament of binding specificities that provide protection against pathogenic 

agents, malignant cells and other detrimental alterations (Vollmers and Brändlein, 

2009). Given this resemblance in repertoire and reactivity between species and the 

poly-reactivity of NAb, NAb levels are possible means to improve natural resistance 

in livestock which may reduce the need for antibiotics once effects on disease 

resistance are known.  

Natural antibodies can be classified in two ways: 1) according to their binding 

specificity, which concerns the structure of the variable region of the antibody, and 

2) according to their isotype, which concerns the constant region of the antibody 

(Jerne, 1985). The binding specificity refers to the antigens the antibodies bind. 

Generally they bind antigens shared by classes of pathogens (Medzhitov and 

Janeway , 1997); important antigens are lipopolysaccharide (LPS), lipoteichoic acid 

(LTA), peptidoglycan (PGN) and the model antigen keyhole limpet hemocyanin 

(KLH).  The isotype of an antibody defines its biochemical and biological qualities 

(Schroeder and Cavacini, 2010).  

It was shown that NAb of different binding specificities and isotypes are 

measurable in bovine milk (Ploegaert et al., 2010; Van Knegsel et al., 2007), that 

milk NAb levels vary between cows (Ploegaert et al., 2011) and that they are under 

substantial genetic control (Ploegaert et al., 2010, Wijga et al., 2013). Little, 

however, is known about genes underlying this genetic variation in NAb levels. 

Availability of dense genotypic data in the form of single nucleotide polymorphisms 

(SNP) makes it possible to perform a genome-wide association study (GWAS; e.g. 

Hirshorn and Daly, 2005). A GWAS provides opportunities to detect genomic 

regions involved in traits and aims at an increased understanding of the genetic 

control of traits, potentially leading to the identification of (candidate) genes (e.g. 

Pryce et al., 2010). Increased knowledge on genetic control of NAb not only gives 

insight in the immunological background of the trait, but such information can also 

be useful in selecting animals for breeding.  

By means of a GWAS, we aimed to identify genomic regions associated with NAb 

levels measured in bovine milk. To obtain detailed insight in the genetic 
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background of NAb, the present study involved detailed phenotypes. Besides total 

NAb levels, making no isotype class distinction, also the distinct NAb isotypes 

immunoglobulin (Ig)A, IgG1 and IgM, each binding LPS, LTA, PGN or KLH were 

studied. 

 

3.2 Materials and methods  

A brief overview of the data is provided. Additional details are provided by 

Ploegaert et al. (2010) and Wijga et al. (2013), who used the same NAb phenotypes 

as used in the present study to estimate genetic parameters. Schopen et al. (2011) 

and Bouwman et al. (2011) used the same genotypes as used in the present study. 

 

Cows and phenotypes 

Milk samples and phenotypes for this study were collected as part of the Milk 

Genomics Initiative. The NAb levels were measured as titers. Phenotypes included 

in the present study were 1) total NAb titers, making no isotype distinction, binding 

the antigens KLH (KLH-T), LPS (LPS-T), LTA (LTA-T) or PGN (PGN-T) and 2) NAb 

isotype IgA, IgG1 and IgM titers binding KLH (KLH-IgA, KLH-IgG1 and KLH-IgM), LPS 

(LPS-IgA, LPS-IgG1 and LPS-IgM), LTA (LTA-IgA, LTA-IgG1 and LTA-IgM) and PGN 

(PGN-IgA, PGN-IgG1 and PGN-IgM). Rather than an absolute amount of binding 

antibody, titers are relative measures. As such, the sum of IgA, IgG1 and IgM is not 

equivalent to total NAb.  

Titers were measured in morning milk samples using an indirect ELISA procedure 

(Ploegaert et al., 2010a; Ploegaert et al. 2010). Titers were available for 1,695 

genotyped cows that were at least 87.5% Holstein-Friesian and that were housed in 

380 commercial dairy herds across the Netherlands. Cows were on average 166 

days in lactation when milk samples were taken, with a range from 66 to 263 days. 

The pedigree contained 26,300 animals and was made available by the Dutch cattle 

cooperative CRV (Arnhem, The Netherlands).   

 

Genotypes 

DNA was extracted from blood samples of cows. Blood was sampled in agreement 

with the directive for animal use and care as approved by the ethical committee on 

animal experiments of Wageningen University (protocol number 200523.b). Cows 

were genotyped in September 2008 for 50,905 SNP with a custom Infinium assay 

(Illumina, San Diego, CA, USA) designed by CRV. Quality control was applied to the 

SNP data from all 1,868 cows that were genotyped with a call rate ≥ 90%. A SNP 

was retained for analyses when the minor allele frequency (MAF) was > 1%, and 

when the SNP did not show a strong deviation from Hardy Weinberg equilibrium 
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(χ2 values < 600). In total, 1,695 cows with both phenotypes and genotypes, 

consisting of 48,862 SNP, were retained and included in the analyses. The SNP 

positions were mapped according to the Baylor 4.0/bosTau4 assembly.  

 

Statistical analyses 

The association of each individual SNP with the individual NAb titers was estimated 

following a univariate linear animal model: 

 

 

ijklmnnml

kijklmnijklmn
DIM

ijklmnijklmn

eanimalherdstype

seasonafcbafcbebdimby ijklmn
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
 2

43
05.0

21
,      (1) 

 

where the response variable y was the NAb titer; µ represented the general mean; 

dimijklmn was the covariate that defined the effect of lactation stage, modeled with a 

Wilmink curve (Wilmink, 1987) with regression coefficients b1 and b2; afcijklmn was 

the covariate that accounted for the effect of age at first calving with regression 

coefficients b3 and b4; seasonk accounted for the fixed effect of season of calving in 

three categories: summer (June - August 2004), autumn (September - November 

2004) and winter (December 2004 - February 2005); stypel was the fixed effect of 

sire type in three classes: proven bull, young bull or other proven bull. The dataset 

consisted of five large paternal half sib families with about 200 daughters each, 

sired by proven bulls and 50 smaller families with about 20 daughters each, sired 

by young bulls. To obtain at least three cows per herd the dataset included 

additional cows sired by other proven bulls. Unlike proven bulls, young bulls were 

still under evaluation regarding their genetic merit; SNPm referred to the fixed 

effect of SNP genotype; herdn, distributed as ~ N(0,Iσ
2

herd), was the random effect 

that accounted for farm effects where I was the identity matrix; animalo, 

distributed as ~N(0,Aσ
2

a), was the random additive genetic effect of the cow where 

A was the matrix containing the additive genetic relationships between animals 

based on the pedigree; and eijklmno, distributed as ~N(0,Iσ
2

e), was the random 

residual effect. 

To reduce computation time, the additive genetic variance and the herd variance 

were fixed at the estimate obtained from univariate analyses without the fixed 

effect of SNP. The additive genetic variance and herd variance were previously 

reported by Wijga et al. (2013). Analyses were performed using the ASReml 

software package (Version 2; Gilmour et al., 2006).  
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Multiple testing 

Single SNP association studies result in multiple testing, which increases the chance 

for false positive results. To control the number of false positives a false discovery 

rate (FDR) threshold was applied. The FDR represents the expected proportion of 

SNP falsely denoted associated with a trait. The package “qvalue” (Story and 

Tibshirani, 2003) in R was used to calculate the FDR. In the present study SNP 

associations were considered suggestive if they surpassed an FDR of 0.20 and 

significant if they surpassed an FDR of 0.05. Suggestive associations were reported, 

significant associations were discussed in detail.  

 

Regions 

Multiple SNP in linkage disequilibrium with the causative mutation all can show an 

effect. Suggestive and significant associations were therefore not only reported 

individually, but they were also grouped into genomic regions; SNP were 

considered in the same genomic regions if they were less than 200kb apart. Each 

SNP that had a distance less than 200kb to the previous SNP was added to the 

same genomic region. This approach was applied to both suggestive and significant 

SNP. At 200kb the average linkage disequilibrium, as quantified by r2, has 

decreased to about 0.15 (Khatkar et al., 2008; de Roos et al., 2008).  

 

Quality and sensitivity of association 

Sensitivity of the association to a small number of observations per genotype class 

and to extreme phenotypic values was assessed for the significant (FDR 0.05) 

associations. This study applied a MAF threshold (MAF ≥ 1%), which may result in 

few cows in a particular genotype class. The minimal number of cows in each 

genotype class was set at 6. Genotype classes that consisted of 5 cows or less were 

removed from the data for that SNP. Subsequently, the SNP was retested to 

confirm the significant association. Further, for genotype classes containing 

relatively few animals, one or a few extreme phenotypes may have a large 

influence on the significance. In the present study, the sensitivity of the significant 

association was tested when a SNP genotype class consisted of 50 cows or less. 

Phenotypes were regarded as extreme when the sequential increase of the titers 

within a genotype class showed an interval of at least one titer and there were only 

one or two values above or below this interval. If extreme NAb titers were present, 

the SNP was retested without these extreme phenotypes to confirm the 

association. 
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Table 3.1 Chromosomal distribution of SNP that passed a false discovery rate threshold of 0.20 and 0.05 for total natural antibody titers (T) and 

natural antibody isotype immunoglobulin (Ig)A, IgG1 and IgM titers binding keyhole limpet hemocyanin (KLH), lipopolysaccharide (LPS), 

lipoteichoic acid (LTA), or peptidoglycan (PGN).
1,2,3 

 

B
TA

 

K
LH

-T
 

K
LH

-I
gG

1
 

K
LH

-I
gM

 

LP
S-

T 

LP
S-

Ig
A

 

LP
S-

Ig
G

1
 

LP
S-

Ig
M

 

LT
A

-T
 

LT
A

-I
gA

 

LT
A

-I
gG

1
 

LT
A

-I
gM

 

P
G

N
-T

 

P
G

N
-I

gA
 

P
G

N
-I

gG
1

 

P
G

N
-I

gM
 

A
ll 

1 8
5
  2

2
  2

2
  2

2
    3

3
  2

1
   19 

2 30
17

  25
18

|1 1 8
2
 3

3
|1 8

7
|1 2

1
  1 14

12
|1 1 1   94|4 

3 39
29

|1
 

4
2
 16

14
 1|1 12

10
 3

1
|3

1 
10

7
|1  1  2

2
 1 3

2
 6

5
|1 2

2
 100|7 

4 4
3
  10

8
    4

4
    7

6
 1   1 27 

5   10
5
|5

1 
 2

1
  5

1
|5

1 
   6

2
|5

1 
   6

2
 29|15 

6 3
3
  3

3
    3

3
|1     4

3
   1 14|1 

7 3
3
  20

13
|2

1 
2

2
 1  11

5
|4

1 
   4

3
|1  1  2

2
 44|7 

8 12
6
  14

12
|1 2

1
 2

2
  4

3
    8

7
 3

2
    45|1 

9 1  15
11

   1 4
3
    4

3
  3

2
  6

5
 34 

10   3
2
    2

2
    4

2
  1   10 

11 15
8
  6

3
 1   3

2
    3

3
 1   4

4
 33 

12 4
3
  3

3
  3

2
  2

2
    7

5
     19 

13 3
2
  7

7
  2

1
  3

2
    6

4 
    21 

14 26
15

  17
11

    19
11

    22
12

     84 
15 6

6
  7

5
  3

1
  17

9
|2

2 
   1    1 35|2 

16 3
3
  8

4
    1    4

3
    2

1
 18 

17   4
4
|1 1       6

5
    2

2
 13|1 

18 2
2
  10

7
  2

2
  5

3
    10

10
|2

2 
   7

5
 36|2 

19   4
2
  2

2
  2

2
  3

3
  7

5
|1     18|1 

20   5
5
  1  5

5
  3

2
  10

5
|2

2 
    24|2 



3 GWAS for NAb 

 

 

44 

 

21 3
2
 1 10

6
   1 2

2
|1    3

2
   18

6
|14

6 
1 39|15 

22 3
3
      1  1 6

2
      11 

23 9
6
  86

29
|17

6 
 10

5
  56

25
|25

11 
 1  29

11
|5

2 
   38

19
|6

4 
229|5
3 

24   1        3
2
    1 5 

25  2
2
 3

3
  1       2

2
    8 

26 45
20

  9
3
  1  22

12
|6

1 
 6

1
  16

8
    8

3
 107|6 

27 7
5
  7

3
  4

2
  4

3
  2

1
  7

5
|2

1 
   1 32|2 

28 4
4
  8

6
    4

3
    1     17 

29 11
8
  12

7
 5

3
|1   7

7
|1    9

8
|1   1|1 2

2
 47|4 

U
4 

1  2    2    3    1 9 
0.20

5 
242

154
 7

5 
327

197 
13

10 
56

36 
8

6 
208

127 
2

1 
17

10 
7

3 
199

130 
13

11 
11

8 
25

12 
86

53 
 

0.05
6 

1  27
11 

2
2 

 4
2 

47
21 

   20
12 

  16
8 

6
4 

 
1
Antibody names are a combination of antigen abbreviation and immunoglobulin isotype. 

2
SNP that passed FDR 0.20, with regions in superscript, are reported before “|”,  SNP that passed FDR 0.05, with regions in superscript, are 

reported in bold after “|”. 
3
 KLH-IgA and the X chromosome were omitted from the table as no SNP passed FDR 0.20.  

4
 Unassigned SNP 

5
Total number of SNP associations per trait that passed FDR 0.20, with regions in superscript. Regions do not include unassigned SNP. 

6
Total  number of SNP associations per trait that passed FDR 0.05, with regions in superscript. Regions do not contain unassigned SNP. [Notes] 
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3.3 Results 

Associations 

Suggestive associations (FDR 0.20) were found for all traits, except for KLH-IgA. In 

total, 1,221 suggestive SNP associations were found on all bovine autosomes. Some 

of these associations overlapped between traits, after removal of duplicates 807 

unique SNP remained. We found 123 significant associations (FDR 0.05) that 

involved 84 unique SNP distributed over 15 out of 29 bovine chromosomes. An 

overview of the suggestive and significant associations is provided in Table 1. 

Position, MAF, estimated effects of SNP genotype classes, and –log10 P-values of 

significant SNP are provided in Supplementary Table 1. Two significant SNP had a 

genotype class consisting of 5 animals or less and after excluding this genotype 

class these SNP associations were confirmed. In total, 15 significant associations 

involved a SNP genotype class that consisted of 50 cows or less. One of these 

associations, SNP ARS-BFGL-NGS-88208 with LPS-IgM, contained a genotype class 

consisting of 15 cows of which two had extreme phenotypes. Removal of the two 

extreme phenotypes caused a decrease of the –log10 P-value of association from 

4.5 to 1.7, at which point this association fell below the 0.20 FDR threshold. 

Therefore this association was removed from the further discussion.  

 

Total NAb titers 

In total 154 genomic regions were found suggestively (FDR 0.20) associated with 

KLH-T, 10 with LPS-T, one with LTA-T and 11 for PGN-T. These regions contained 

few significant (FDR 0.05) SNP associations: for KLH-T one was found on 

chromosome (BTA) 3 and for LPS-T one was also found on BTA3 as well as one on 

BTA29 (Figure 1). No significant SNP associations were found for LTA-T and PGN-T 

(Figure 1).  

 

NAb isotype IgA titers  

For KLH-IgA no suggestive or significant regions were found. In total, 36 regions 

were found for LPS-IgA, 10 for LTA-IgA and eight for PGN-IgA. None of these 

regions contained significant associations (Figure 2). The smallest FDR estimates 

were 0.11 for LTA-IgA on BTA20, 0.13 for LPS-IgA on BTA27, 0.16 for PGN-IgA on 

BTA3 and 0.65 for KLH-IgA on BTA1.  
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Figure 3.1 –Log10 P-values from single SNP analyses for total natural antibody binding 

keyhole limpet hemocyanin (KLH), lipopolysaccharide (LPS), lipoteichoic acid (LTA) and 

peptidoglycan (PGN). Chromosomes are arranged from left to right from chromosome 0 

(unassigned SNP) to chromosome X. SNP above the black solid horizontal line passed the 

0.05 false discovery threshold. For LTA-T and PGN-T no SNP surpassed the 0.05 false 

discovery threshold. SNP above the black dashed horizontal line surpassed the 0.20 false 

discovery threshold. 
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Figure 3.2 –Log10 P-values from single SNP analyses for natural antibody isotype IgA binding 
keyhole limpet hemocyanin (KLH), lipopolysaccharide (LPS), lipoteichoic acid (LTA) and 
peptidoglycan (PGN). Chromosomes are arranged from left to right from chromosome 0 
(unassigned SNP) to chromosome X. For all binding specificities no SNP surpassed the 0.05 
false discovery threshold. SNP above the black dashed horizontal line surpassed the 0.20 
false discovery threshold, for KLH-IgA no SNP surpassed the 0.05 false discovery threshold. 
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Figure 3.3 –Log10 P-values from single SNP analyses for natural antibody isotype IgG1 binding 
keyhole limpet hemocyanin (KLH), lipopolysaccharide (LPS), lipoteichoic acid (LTA) and 
peptidoglycan (PGN). Chromosomes are arranged from left to right from chromosome 0 
(unassigned SNP) to chromosome X. SNP above the black solid horizontal line surpassed the 
0.05 false discovery threshold. For KLH-IgG1 and LTA-IgG1 no SNP surpassed the 0.05 false 
discovery threshold. SNP above the black dashed horizontal line surpassed the 0.20 false 
discovery threshold. 
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Figure 3.4 –Log10 P-values from single SNP analyses for natural antibody isotype IgM binding 
keyhole limpet hemocyanin (KLH), lipopolysaccharide (LPS), lipoteichoic acid (LTA) and 
peptidoglycan (PGN). Chromosomes are arranged from left to right from chromosome 0 
(unassigned SNP) to chromosome X. SNP above the black solid horizontal line surpassed the 
0.05 false discovery threshold, SNP above the black dashed horizontal line surpassed the 
0.20 false discovery threshold. 

 

NAb isotype IgG1 titers 

Five regions were detected for KLH-IgG1, six for LPS-IgG1, three for LTA-IgG1 and 

twelve for PGN-IgG1. Some of these regions contained significant associations. Four 

significant associations were detected for LPS-IgG1; one on BTA2 and three on 

BTA3. As the maximum distance between associations on BTA3 was about 63,000 

base pairs, these three SNP were considered to be in one region.  
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Sixteen significant associations were detected for PGN-IgG1; one on BTA3, 14 on 

BTA21 and one on BTA29 (Figure 3). The 14 associations on BTA21 were located in 

six regions between about 65 and 69 million base pairs. No significant associations 

were detected for KLH-IgG1 and LTA-IgG1. For the most significant SNP an FDR of 

0.11 was predicted for KLH-IgG1 and an FDR of 0.18 was predicted for LTA-IgG1.  

 
NAb isotype IgM titers 

We detected 197 regions for KLH-IgM, 127 for LPS-IgM, 130 for LTA-IgM and 53 for 

PGN-IgM, where each SNP that was > 200kb apart from the preceding SNP was 

assigned to a new genomic region. The 197 regions contained 100 significant SNP 

associations: 27 for KLH-IgM, 47 for LPS-IgM, 20 for LTA-IgM and six for PGN-IgM 

(Figure 4). The majority, 53, of these significant SNP associations were found on 

BTA23. For KLH-IgM additional significant associations were found on BTA2, 5, 7, 8 

and 17, where the five associations found on BTA5 were located in one region. For 

LPS-IgM additional significant associations were found on BTA2, 3, 5, 6, 7, 15, 21, 

26 and 29, where the five associations on BTA5, the four associations on BTA7 and 

the six associations on BTA26 were located in one region on the individual 

chromosomes. For LTA-IgM additional significant associations were found on BTA2, 

5, 7, 18, 19, 20, 27 and 29, where the five associations on BTA5 were located in one 

region. For PGN-IgM no significant associations were found on chromosomes other 

than BTA23.  

 

Pleiotropy 

In multiple instances, a SNP significantly associated with one NAb trait was also 

found significantly associated with one or more additional NAb traits. Such 

overlapping associations were solely found for isotype IgM. In total, 100 significant 

SNP associations were detected for NAb isotype IgM, which, after removal of 

duplicates caused by pleiotropy, involved 60 unique SNP.  

On BTA5 a region that contained five SNP was found associated with KLH-IgM, LPS-

IgM and LTA-IgM. The maximum base pair distance between these SNP was 3,117. 

For PGN-IgM the –log10 P-values of this region just fell short of the 0.05 FDR 

threshold; for the most significant SNP an FDR of 0.07 was estimated. On BTA 7, a 

region that contained two SNP was found significantly associated with both KLH-

IgM and LPS-IgM. Chromosome 23 contained the majority of significantly 

associated SNP. Four of these SNP were significantly associated with all four 

binding specificities, three with three binding specificities and eight with two 

binding specificities. Finally, one SNP on BTA29 was found associated with both 

LPS-IgM and LTA-IgM. 
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Although small differences existed, SNP effects for the overlapping SNP were in the 

same direction and in the same order of magnitude for the individual binding 

specificities (Supplementary Table 1). 

 

3.4 Discussion  

The present study aimed to identify genomic regions associated with genetic 

variance in NAb levels. The present study included not only total NAb levels binding 

KLH, LPS, LTA or PGN, making no isotype distinction, but also detailed phenotypes 

including NAb isotypes IgA, IgG1 and IgM binding KLH, LPS, LTA or PGN. Suggestive 

associations that surpassed a 0.20 FDR threshold were reported and significant SNP 

associations that surpassed a 0.05 FDR threshold were described in more detail. In 

total, the present study detected 1,221 suggestive associations of which 123, 

located in 61 regions, were significant. The majority of the associations was found 

for IgM, and most associations were located on BTA23. 

 

Environmental influence on NAb 

Antibodies are a product of innate ability and reactivity. The present study included 

NAb binding KLH, LPS, LTA and PGN. Except for KLH, these antigens are present on 

bacteria commonly present in the environment. Therefore, cows may have been 

exposed to these antigens prior to sampling. As such, the measured antibodies may 

partly find their origin in the adaptive immune response. The cows in this study, 

however, were not intentionally or controllably exposed and therefore the 

antibodies binding LPS LTA and PGN were regarded as natural antibodies which 

reflect the cow’s natural ability to mount an immune response. Antibodies binding 

KLH were regarded as authentic NAb that reflect the capacity to respond to a novel 

antigen, as cows did not previously encounter KLH. This definition of NAb is in line 

with studies by Star et al. (2007) and Van Knegsel et al. (2007). 

It was shown that a substantial proportion of the phenotypic variance found for 

NAb levels can be explained by herd effects, which are likely to reflect herd 

differences in among others housing system, infection pressure, feed and 

management (Wijga et al., 2013). These environmental effects were corrected for 

by including herd into the model.  

 

Detailed phenotypes 

The present study detected few significant associations for total NAb binding KLH, 

LPS, LTA or PGN while several were found for separate NAb isotypes, primarily for 

isotype IgM. The lack of associations with total NAb may be because the total is a 

mixture of several isotypes and these isotypes do not have a completely common 
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genetic basis, as indicated by non-unity genetic correlations (Wijga et al., 2013). It 

is expected that the differences in the genetic basis of isotypes increases the 

number of regions that affect total NAb compared to NAb isotypes. This increase 

would reduce the power to detect any of these regions, because the contribution 

of individual isotypes to total NAb dilutes the effect of genes that influence only 

one isotype. 

Most associations were found for isotype IgM in each of the four binding 

specificities. Based on the high genetic correlation between IgM and IgA (Wijga et 

al., 2013) it was expected that similar associations would be found for IgA and for 

IgM. Although no significant associations were found for IgA, 29 suggestive 

associations found for IgA (out of 84) were located in regions with suggestive and 

significant associations for IgM. For all but one of these 29 associations the same 

SNP was found associated with both IgA and IgM. For IgG1 little overlap was found, 

not only between IgG1 and IgA or IgM, but also between IgG1 of different binding 

specificities. These results are in line with our earlier findings (Wijga et al., 2013) 

that suggested a similar genetic background for IgA and IgM, whereas the genetic 

background for IgG1 is different from the other isotypes. 

 

Disease resistance 

Few studies were conducted to assess the role of NAb in disease resistance. Most 

studies focus on intentionally induced adaptive immune responses (e.g. Thompson-

Crispi et al., 2012, Rupp et al., 2007, Flori et al., 2011) or on adaptive immune 

products measured upon natural exposure (e.g. Gonda et al., 2006, Douch et al., 

1995, White et al., 2012). There is a positive non-unity genetic correlation between 

antibodies produced by the adaptive immune system and NAb, which suggests 

differences in the genetic background of these types of antibodies (Siwek et al., 

2006, Wijga et al., 2009, Wijga et al., 2013) which makes them genetically different 

traits.  

Ploegaert et al. (2010b) studied the relation between NAb levels and the risk for 

mastitis and elevated somatic cell count, and found that NAb isotypes IgA and IgM 

may play a protective role against mastitis and elevated somatic cell count. For the 

levels of these NAb isotypes the current study identified a large number of 

associated SNP in the BoLA region which corresponds to other studies that 

identified the involvement of BoLA in resistance or susceptibility to disease, 

including mastitis (Rupp et al., 2007, Kelm et al.1997, Takeshima et al., 2008). 

Further, Van Knegsel et al., (2007) showed a negative relation between energy 

balance and KLH-T and LPS-T levels in milk. A negative energy balance is associated 

with a suppressed immune function, which makes the cow more vulnerable to 
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metabolic and infectious diseases (Goff, 2006). In poultry, high serum KLH-IgM and 

KLH-IgG (Sun et al., 2011) and high KLH-T and low LPS-T  (Star et al., 2007) levels 

seem to be associated with survival. Moreover, murine results have indicated that 

NAb are involved in parasite clearance and resistance to viruses and bacteria. The 

exact role of NAb in livestock disease resistance and survival, however, remains 

subject for further study.  

 

Candidate genes 

The present study used a SNP panel, rather than whole genome sequence 

information. As such, this SNP panel is unlikely to include causative mutations and 

any detected effects are assumed to be through LD. Given the bovine LD pattern 

(De Roos et al., 2008, Khatkar et al., 2008), a scan was applied to identify candidate 

genes within a 200kb window around significantly associated regions. Regions on 

BTA5, BTA7, BTA21, BTA23 and BTA26 are discussed because these regions contain 

significant associations that show pleiotropy or, in case of their involvement in a 

single NAb trait, multiple SNP show a significant association.  

 

BTA5 

A region with five SNP was significantly associated with KLH-IgM, LPS-IgM and LTA-

IgM. The 200kb window around these SNP, which were located between 

79,050,638 base pairs and 79,053,755 base pairs, included five genes: HMGXB4, 

TOM1, HMOX1, MCM5 and RASD2. None of these genes have a known influence on 

NAb levels, but two serve functions relevant in immunity. The TOM1 gene is of 

major importance in autophagy, functioning in lysosomal degradation of, among 

other, pathogens (Tumbarello et al., 2012). Gene products of HMOX1 were found 

to be involved in inhibition of viral replication (Schmidt et al., 2012).  

 

BTA7 

A region with two SNP was significantly associated with KLH-IgM and LPS-IgM. The 

200kb window around this region contained six genes: F2RL3, NWD1, TMEM38a, 

MED26, CHERP, and CALR3. The gene product of F2RL3, also known as PAR4, plays 

a role in platelet aggregation (Covic et al., 2000). Further, a GWAS for susceptibility 

to and control of ovine lentivirus by White et al., (2012) has previously identified 

NWD1, TMEM38a, MED26 and CHERP as candidate genes for the provirus 

concentration in peripheral blood, but not for anti-ovine lentivirus antibodies. The 

exact function of these genes in hindering viral replication remains subject of 

further study (White et al., 2012). The antibodies in the study of White et al., 

although produced by natural exposure, are most likely part of the adaptive 
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immune system because proviral concentrations were present in peripheral blood 

in which case antibodies were probably mostly of the isotype IgG. The proviral 

concentrations in peripheral blood may be influenced by NAb levels, higher NAb 

levels may aid in lower proviral concentrations.  

 

BTA21 

On BTA21 14 SNP, located between about 66.6 and 67.6 million base pairs, were 

significantly associated with PGN-IgG1. The 200kb window around these 14 SNP 

contained eight genes: DIO3, PPP2R5C, DYNC1H1, HSP90AA1, WDR20, CINP, 

TECPR2, and ANKRD9. None of these genes have an obvious function in immunity. 

An indirect effect, however, may exist. For instance, HSP90AA1 plays a role in 

signaling regulation of TGFβ, which acts in several developmental processes and a 

diversity of disease pathogeneses (Wrighton et al., 2008). 

 

BTA23 

Most associations were detected on BTA23 and the majority of them were for 

isotype IgM. An association with BTA23 was consistently found for all four binding 

specificities, which increases the confidence in this region. Combining the IgM with 

different binding specificities showed that the majority of the associations was 

located between 24 and 34.5 million base pairs. In total, 180 out of the 209 

suggestive (FDR 0.20) SNP associations on BTA23 were located in this genomic 

region, including 52 out of the 53 significant (FDR 0.05) SNP associations. A major 

cluster of candidate genes for these associations in this region is of course the 

bovine leukocyte antigen (BoLA), the bovine variant of the major histocompatibility 

complex (MHC). Among mammalian species, the general organization of the MHC is 

a reasonably preserved structure of gene clusters where some loci are closely 

linked whereas others are fairly distant relatives (Takeshima and Aida, 2006). The 

200kb window between 23.8 and 34.7 million base pairs contains the BoLA gene 

BoLA-A, a gene that belongs to the class I region (Amills et al., 1998), and DQA5, 

DQB, DRA and DRB3, genes of the class IIa region that belong to the DQ and DR 

clusters (Amills et al., 1998). Further, this window contains genes that belong to the 

class III region, such as C4A and CYP21A2. The MHC has previously been linked to 

antibody responsiveness to LPS in mice (Rodo et al., 2006), natural and adaptive 

serum antibody levels in chicken (Biscarini et al., 2010), serum NAb levels in cows 

(Dietz et al., 1997), and NAb levels in human serum (Pozsonyi et al., 2009). In 

humans, the major immunoregulatory MHC region, the -DR and -DQ clusters, were 

particularly thought to be causative for the association with NAb levels (Pozsonyi et 
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al., 2009). It may very well be, however, that the observed effects are caused by 

multiple genes or mutations rather than just one. 

The MHC may influence antibody levels directly, but an indirect influence is more 

likely. A study by Fesel and Coutinho (1999) suggests that natural antibody 

repertoires, and more specifically IgM, are regulated by T lymphocytes that are 

restricted by genes from the MHC complex, which implies an indirect influence of 

the MHC. The exact mechanisms behind this regulation are not yet known (Zelenay 

et al., 2007). Further, IL-17A and IL-17F were located in the currently identified 

region. The IL-17A gene was previously identified as a candidate gene for NAb 

regulation in chicken by Biscarini et al. (2010). The role of IL-17A in NAb regulation 

is yet unknown, but the IL-17A cytokine is known to affect a variety of cells to 

coordinate tissue inflammation (Akdis et al., 2012). The IL-17 cytokine was, for 

instance, found to have a pro-inflammatory involvement in bovine mastitis (Tao 

and Mallard, 2007).  

 

BTA26 

On BTA26, a region consisting of six SNP was significantly associated with LPS-IgM. 

Further, these SNP were suggestively associated with KLH-IgM, LTA-IgA, LTA-IgM 

and PGN-IgM. The 200kb window, located between 11,381,155 and 11,391,593 

base pairs, contained one gene, LIPA, which is involved in lipid metabolism 

(Zschenker et al., 2006). In previous studies by Bouwman et al., (2011, 2012) these 

SNP were found to have an effect on fatty acids 10:1, 14:1 and 16:1 in winter and 

summer milk samples. Previously, it was shown that lipid metabolism and immune 

response are strongly connected (Genini et al., 2011). During the early immune 

response against mastitis-causing pathogens there seems to be a deregulation of 

lipid metabolism; among other fatty acid metabolism was significantly affected 

(Genini et al., 2011). 

The associations with fatty acids on BTA26 were largely attributed to SCD1 

(Bouwman et al., 2011). On the one hand this makes SCD1 an additional candidate 

gene for the detected SNP effects, on the other hand it is possible that these SNP 

are in linkage disequilibrium with both LIPA and SCD1 or that the SNP effects are 

caused by neither LIPA or SCD1.  

 

The current study performed a GWAS without making prior assumptions or prior 

selection of regions or SNP, except for the quality control prior to the GWAS. It was 

the first study to show by means of a GWAS that a region on BTA23 affects isotype 

IgM levels in bovine milk. The association of this region with isotype IgM was found 

for four different binding specificities, herewith increasing the confidence in this 
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region. The region on BTA23 contains among others genes belonging to the BoLA 

complex, which further strengthens findings of previous studies that identified 

BoLA as a major candidate gene involved in NAb levels. The present study provides 

a further step in unraveling the immunological background and genetic control of 

NAb, which is, given the resemblances in NAb between species, not only relevant 

for dairy cattle but also for many other species. 

 

3.5 Conclusion 

Increased resistance of pathogens against antibiotics, increased emphasis on 

animal welfare and the high costs associated with disease raise the importance of 

knowledge on the genetic basis of disease resistance. The current results show that 

information can be gained when total NAb levels are further subdivided into 

isotype levels, suggesting that analysis of detailed phenotypes can provide further 

insight in the genetic control of traits. Further, this study identified genomic regions 

associated with NAb levels on all bovine autosomes. A region on BTA23 was 

consistently found significantly associated with genetic variation in isotype IgM 

levels across the different binding specificities. Candidate genes in this region are 

BoLA and IL-17, from both a functional and positional perspective. These candidate 

genes were previously also identified for NAb levels in poultry, suggesting a 

possible evolutionary conserved role. Also regions on other bovine chromosomes 

were found to be associated with NAb levels, although their effects were not as 

pronounced as those found for IgM on BTA23. This suggests that NAb levels in cow 

milk are polygenic traits, where a region on BTA23 has an important effect on levels 

of isotype IgM.   
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Supplementary Table 3.1 Position (chromosome (BTA), base pair (BP)), minor allele frequency (MAF) with minor allele in parentheses, –log10 P-

values, and estimated effects of SNP genotype classes with standard error in parentheses of SNP that passed FDR 0.05 for total natural antibody 

titers (T) and natural antibody isotype immunoglobulin (Ig)A, IgG1 and IgM titers binding keyhole limpet hemocyanin (KLH), lipopolysaccharide 

(LPS), lipotechoic acid (LTA), or peptidoglycan (PGN)
1,2,3

. The SNP effects are shown in the order as presented in column ‘Alleles’. 
 

Trait SNP BTA BP MAF (%) -log10 P Alleles Effect allele 1 Effect allele 2 

KLH-IgM ARS-BFGL-NGS-40444 2 125,843,459 31.5 (T) 4.7 CT 0.90 (1.18) -4.61 (1.14) 

KLH-IgM ULGR_BTA-73956 5 79,050,638 43.3 (C) 4.8 CT 3.66 (0.90) -1.29 (0.75) 

KLH-IgM ULGR_BTA-73959 5 79,051,169 43.3 (C) 4.8 CT 3.66 (0.90) -1.29 (0.75) 

KLH-IgM ULGR_rs29017602 5 79,053,306 43.2 (T) 4.8 AT -1.29 (0.75) 3.68 (0.90) 

KLH-IgM ULGR_rs29017601 5 79,053,570 43.2 (T) 4.8 CT -1.29 (0.75) 3.68 (0.90) 

KLH-IgM ULGR_BTA-73955 5 79,053,755 43.3 (C) 4.8 CT 3.66 (0.90) -1.29 (0.75) 

KLH-IgM ULGR_BTA-80302 7 6,696,843 26.8 (A) 5.4 AG -6.68 (1.37) -0.31 (0.67) 

KLH-IgM ULGR_BTA-94681 7 6,799,790 33.7 (G) 5.1 GT -5.07 (1.09) -0.64 (0.68) 

KLH-IgM ULGR_BTA-81715 8 66,637,734 6.4 (T) 4.9 CT -4.67 (1.06) -
3 

KLH-IgM ULGR_rs41255651 17 74,610,587 16.4 (C) 5.0 CT -1.31 (2.10) 3.39 (0.74) 

KLH-IgM ULGR_BTA-55976 23 25,400,136 19.4 (G) 5.2 AG -2.43 (0.71) 4.61 (1.69) 

KLH-IgM ULGR_BTA-55977 23 25,400,154 20.9 (G) 4.9 AG -2.07 (0.70) 4.94 (1.62) 

KLH-IgM ULGR_BTA-55986 23 25,404,687 19.4 (A) 5.2 AC 4.61 (1.69) -2.43 (0.71) 

KLH-IgM ULGR_BTA-56015 23 25,735,114 23.1 (G) 7.3 AG -2.62 (0.69) 5.30 (1.49) 

KLH-IgM ULGR_BTA-55999 23 25,821,757 23.2 (A) 6.9 AG 5.06 (1.50) -2.61 (0.69) 

KLH-IgM ULGR_BTA-56062 23 27,541,568 49.4 (T) 4.8 CT -0.75 (1.00) 3.38 (0.79) 

KLH-IgM ULGR_BTA-55829 23 28,077,464 25.0 (C) 4.5 CT 3.58 (1.41) -2.21 (0.69) 

KLH-IgM ULGR_AAFC03027556_71020 23 32,502,273 21.4 (T) 6.3 CT -1.23 (0.69) 7.51 (1.61) 
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KLH-IgM ULGR_BTA-56309 23 33,355,369 27.0 (A) 4.7 AG 3.79 (1.26) -1.87 (0.67) 

KLH-IgM ULGR_BTA-56314 23 33,355,913 26.0 (C) 4.9 CT 4.48 (1.327) -1.69 (0.68) 

KLH-IgM ULGR_BTA-56316 23 33,355,951 26.0 (A) 4.8 AG 4.44 (1.33) -1.69 (0.68) 

KLH-IgM ULGR_rs29014813 23 33,358,902 24.0 (C) 6.2 CT 5.57 (1.41) -1.85 (0.69) 

KLH-IgM ULGR_BTA-56317 23 33,359,113 24.0 (G) 6.2 AG -1.85 (0.69) 5.57 (1.41) 

KLH-IgM ULGR_BTA-56318 23 33,380,250 28.3 (G) 4.5 AG -1.69 (0.67) 4.00 (1.27) 

KLH-IgM ULGR_AAFC03010340_60689 23 34,108,791 19.8 (G) 7.1 AG -2.44 (0.72) 6.49 (1.68) 

KLH-IgM ULGR_AAFC03125015_28415 23 34,240,241 21.1 (T) 7.3 CT -2.63 (0.72) 5.70 (1.56) 

KLH-IgM ULGR_BTA-56432 23 34,323,308 28.3 (G) 5.4 AG -2.62 (0.70) 2.83 (1.19) 

KLH-T ULGR_BTA-91070 3 46,057,230 20.3% (T) 6.4 GT 1.87 (0.38) -1.21 (0.90) 

LPS-IgG1 ARS-BFGL-NGS-8557 2 137,307,256 32.8 (A) 6.5 AG 3.25 (1.36) -3.47 (0.83) 

LPS-IGg1 ULGR_BTA-66934 3 8,592,574 38.5 (T) 5.7 CT -3.76 (0.86) 1.73 (1.24) 

LPS-IgG1 ULGR_BTA-66937 3 8,594,930 32.2 (T) 6.0 CT -3.91 (0.86) 1.68 (1.26) 

LPS-IgG1 ULGR_BTA-66939 3 8,657,866 37.6 (A) 7.4 AG 1.28 (1.26) -4.53 (0.86) 

LPS-IgM BFGL-NGS-112511 2 133,007,840 24.3 (A) 4.6 AG 1.70 (1.32) -2.47 (0.61) 

LPS-IgM ULGR_BTA-67611 3 39,211,879 42.8 (T) 5.2 CT 1.33 (0.66) -3.03 (0.79) 

LPS-IgM ULGR_BTA-73956 5 79,050,638 43.3 (C) 4.6 CT 3.57 (0.81) -0.43 (0.68) 

LPS-IgM ULGR_BTA-73959 5 79,051,169 43.3 (C) 4.6 CT 3.57 (0.81) -0.43 (0.68) 

LPS-IgM ULGR_rs29017602 5 79,053,306 43.2 (T) 4.6 AT -0.43 (0.68) 3.59 (0.82) 

LPS-IgM ULGR_rs29017601 5 79,053,570 43.2 (T) 4.6 CT -0.43 (0.68) 3.59 (0.82) 

LPS-IgM ULGR_BTA-73955 5 79,053,755 43.3 (C) 4.6 CT 3.57 (0.81) -0.43 (0.68) 

LPS-IgM ULGR_BTA-76480 6 60,145,510 30.1 (A) 4.6 AC 0.84 (1.08) 2.86 (0.62) 

LPS-IgM ULGR_BTA-80302 7 6,696,843 26.8 (A) 6.2 AG -6.38 (1.24) -0.07 (0.61) 
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LPS-IgM ULGR_BTA-80282 7 6,770,805 45.2 (A) 4.7 AG -3.39 (0.88) 0.05 (0.68) 

LPS-IgM ULGR_BTA-94681 7 6,799,790 33.7 (G) 5.4 GT -4.68 (0.99) -0.33 (0.61) 

LPS-IgM ULGR_BTA-80228 7 6,844,949 35.6 (A) 4.6 AG 3.87 (0.96) -0.10 (0.62) 

LPS-IgM ULGR_BTA-38017 15 19,401,333 36.0 (A) 4.5 AG 2.05 (0.95) -1.99 (0.62) 

LPS-IgM ULGR_BTA-36271 15 28,497,636 9.9 (A) 4.4 AG 1.18 (2.83) -3.36 (0.77) 

LPS-IgM ULGR_BTA-119906 21 61,592,669 31.8 (C) 4.8 AC 0.33 (0.62) 4.57 (1.03) 

LPS-IgM BFGL-NGS-117853 23 10,610,366 20.3 (T) 4.6 CT 2.00 (0.73) -5.51 (1.70) 

LPS-IgM ULGR_BTA-81671 23 24,354,847 39.3 (T) 4.2 GT -2.73 (0.92) 0.11 (0.85) 

LPS-IgM ULGR_BTA-81672 23 24,355,053 39.2 (A) 4.2 AG 0.12 (0.85) -2.73 (0.93) 

LPS-IgM ULGR_BTA-81670 23 24,359,275 39.4 (G) 4.2 GT 0.09 (0.84) -2.74 (0.92) 

LPS-IgM ULGR_BTA-81668 23 24,359,315 39.3 (A) 4.3 AC 0.17 (0.85) -2.75 (0.92) 

LPS-IgM ULGR_BTA-81665 23 24,359,519 39.2 (T) 4.2 CT -2.73 (0.93) 0.12 (0.85) 

LPS-IgM ULGR_BTA-55976 23 25,400,136 19.4 (G) 4.5 AG -2.22 (0.64) 3.39 (1.53) 

LPS-IgM ULGR_BTA-55977 23 25,400,154 20.9 (G) 4.3 AG -1.99 (0.64) 3.60 (1.47) 

LPS-IgM ULGR_BTA-55986 23 25,404,687 19.4 (A) 4.5 AC 3.39 (1.53) -2.22 (0.64) 

LPS-IgM ULGR_BTA-56015 23 25,735,114 23.1 (G) 7.0 AG -1.96 (0.63) 5.47 (1.35) 

LPS-IgM ULGR_BTA-55999 23 25,821,757 23.2 (A) 6.8 AG 5.31 (1.35) -1.97 (0.63) 

LPS-IgM ULGR_AAFC03115293_6435 23 26,084,397 24.7 (T) 4.6 CT -2.36 (0.63) 2.33 (1.25) 

LPS-IgM ULGR_BTA-56043 23 26,442,573 44.3 (A) 4.2 AC 3.25 (0.79) -0.42 (0.91) 

LPS-IgM ULGR_BTA-56062 23 27,541,568 49.4 (T) 4.6 CT -0.73 (0.91) 2.97 (0.71) 

LPS-IgM ULGR_BTA-55829 23 28,077,464 25.0 (C) 5.8 CT 3.84 (1.27) -2.16 (0.62) 

LPS-IgM ULGR_AAFC03027556_71020 23 32,502,273 21.4 (T) 5.8 CT -0.95 (0.63) 6.61 (1.46) 

LPS-IgM ULGR_BTA-56309 23 33,355,369 27.0 (A) 4.5 AG 3.12 (1.14) -1.79 (0.61) 
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LPS-IgM ULGR_BTA-56314 23 33,355,913 26.0 (C) 4.5 CT 3.19 (1.20) -1.85 (0.62) 

LPS-IgM ULGR_BTA-56316 23 33,355,951 26.0 (A) 4.5 AG 3.22 (1.20) -1.85 (0.62) 

LPS-IgM ULGR_rs29014813 23 33,358,902 24.0 (C) 5.0 CT 4.17 (1.28) -1.73 (0.62) 

LPS-IgM ULGR_BTA-56317 23 33,359,113 24.0 (G) 5.0 AG -1.73 (0.62) 4.17 (1.28) 

LPS-IgM ULGR_BTA-56321 23 33,379,805 31.9 (G) 4.4 AG -1.45 (0.61) 3.19 (1.01) 

LPS-IgM ULGR_AAFC03010340_60689 23 34,108,791 19.8 (G) 5.5 AG -1.95 (0.65) 5.08 (1.52) 

LPS-IgM ULGR_AAFC03125015_28415 23 34,240,241 21.1 (T) 5.5 CT -2.03 (0.65) 4.51 (1.41) 

LPS-IgM ULGR_BTA-56432 23 34,323,308 28.3 (G) 4.7 AG -1.61 (0.63) 3.46 (1.08) 

LPS-IgM ULGR_BTA-62031 26 11,181,155 27.4 (T) 5.2 CT -2.69 (0.61) 1.60 (1.28) 

LPS-IgM ULGR_AAFC03087750_60000 26 11,182,685 30.4 (C) 4.7 CT 1.02 (1.14) -2.64 (0.61) 

LPS-IgM ULGR_BTA-62035 26 11,184,582 30.1 (G) 5.2 AG -2.77 (0.60) 0.99 (1.16) 

LPS-IgM ULGR_BTA-62034 26 11,184,612 30.1 (G) 5.2 AG -2.77 (0.61) 0.93 (1.16) 

LPS-IgM ULGR_AAFC03087750_68833 26 11,191,518 30.1 (C) 5.2 CT 0.94 (1.15) -2.77 (0.60) 

LPS-IgM ULGR_AAFC03087750_68908 26 11,191,593 30.0 (A) 5.1 AG 1.02 (1.16) -2.73 (0.61) 

LPS-IgM 
ARS-USMARC-Parent-
DQ404153-no-rs 

29 39,386,276 40.0 (C) 5.1 CT -1.22 (0.81) 2.72 (0.66) 

LPS-T BTB-00132025 3 68,187,867 39.2 (G) 5.8 GT -3.48 (0.67) -0.69 (0.50) 

LPS-T ULGR_BTA-65731 29 45,924,822 29.4 (A) 5.5 AG -1.18 (0.91) 2.31 (0.51) 

LTA-IgM ULGR_BTA-113895 2 70,583,895 41.3 (A) 4.7 AG -0.31 (0.63) -1.96 (0.46) 

LTA-IgM ULGR_BTA-73956 5 79,050,638 43.3 (C) 5.5 CT 2.81 (0.58) -0.34 (0.49) 

LTA-IgM ULGR_BTA-73959 5 79,051,169 43.3 (C) 5.5 CT 2.81 (0.58) -0.34 (0.49) 

LTA-IgM ULGR_rs29017602 5 79,053,306 43.2 (T) 5.4 AT -0.33 (0.49) 2.79 (0.58) 

LTA-IgM ULGR_rs29017601 5 79,053,570 43.2 (T) 5.4 CT -0.33 (0.49) 2.79 (0.58) 

LTA-IgM ULGR_BTA-73955 5 79,053,755 43.3 (C) 5.5 CT 2.81 (0.58) -0.34 (0.49) 
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LTA-IgM ARS-BFGL-NGS-86836 7 12,133,276 15.6 (C) 4.8 CT -0.32 (1.33) -2.27 (0.49) 

LTA-IgM ULGR_AAFC03026780_34111 18 44,584,750 16.0 (T) 5.0 AT -1.59 (0.47) 4.21 (1.45) 

LTA-IgM ARS-BFGL-NGS-34276 18 49,836,014 18.9 (A) 4.9 AG 0.73 (1.12) -2.12 (0.47) 

LTA-IgM ARS-BFGL-NGS-88208 19 5,374,024 9.4 (C) 5.4 AC -1.88 (0.58) 7.33 (2.20) 

LTA-IgM ULGR_BTA-25165 20 31,684,865 42.9 (T) 6.4 GT -2.41 (0.47) 0.51 (0.67) 

LTA-IgM ARS-BFGL-NGS-56135 20 43,028,079 23.4 (G) 5.1 AG -1.27 (0.44) -4.50 (1.03) 

LTA-IgM ULGR_BTA-56015 23 25,735,114 23.1 (G) 5.6 AG -1.55 (0.45) 2.91 (0.97) 

LTA-IgM ULGR_BTA-55999 23 25,821,757 23.2 (A) 5.6 AG 2.70 (0.97) -1.64 (0.45) 

LTA-IgM ULGR_AAFC03010340_60689 23 34,108,791 19.8 (G) 4.7 AG -1.56 (0.47) 2.76 (1.09) 

LTA-IgM ULGR_AAFC03125015_28415 23 34,240,241 21.1 (T) 5.8 CT -1.51 (0.46) 3.30 (1.01) 

LTA-IgM ULGR_BTA-56432 23 34,323,308 28.3 (G) 4.8 AG -1.50 (0.45) 1.91 (0.77) 

LTA-IgM ULGR_BTA-63143 27 46,630,117 17.4 (G) 5.4 GT 1.62 (1.28) -2.18 (0.48) 

LTA-IgM ULGR_BTA-63141 27 46,630,287 17.4 (T) 5.4 CT -2.18 (0.48) 1.62 (1.27) 

LTA-IgM 
ARS-USMARC-Parent-
DQ404153-no-rs 

29 39,386,276 40.0 (C) 4.8 CT -0.59 (0.58) 1.99 (0.47) 

PGN-IgG1 ULGR_BTA-67256 3 18,583,954 6.5 (A) 4.9 AG -
3 

-4.86 (1.11) 

PGN-IgG1 ULGR_BTA-53045 21 65,500,194 36.9 (A) 6.0 AT 3.65 (1.03) -2.00 (0.74) 

PGN-IgG1 ARS-BFGL-BAC-32514 21 65,896,414 47.8 (A) 5.9 AG 1.88 (0.85) -3.15 (0.80) 

PGN-IgG1 ULGR_BTA-53065 21 66,071,922 29.4 (A) 6.6 AG 2.17 (1.24) -3.34 (0.73) 

PGN-IgG1 ULGR_BTA-53067 21 66,077,073 29.4 (A) 6.6 AG 2.17 (1.24) -3.36 (0.73) 

PGN-IgG1 ULGR_BTA-53078 21 66,222,318 47.5 (T) 5.5 CT -2.89 (0.81) -2.06 (1.00) 

PGN-IgG1 ULGR_BTA-53082 21 66,646,319 22.5 (T) 6.8 CT 3.67 (0.75) 2.14 (1.50) 

PGN-IgG1 ULGR_BTA-53085 21 66,964,131 20.9 (A) 6.6 AG 4.16 (1.61) -3.137 (0.76) 

PGN-IgG1 ULGR_AAFC03034898_116623 21 66,998,226 25.6 (T) 5.5 CT -2.624 (0.73) 3.65 (1.43) 
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PGN-IgG1 ULGR_AAFC03034898_116772 21 66,998,375 25.5 (A) 5.4 AG 3.64 (1.43) -2.59 (0.73) 

PGN-IgG1 ULGR_BTA-121321 21 67,644,994 22.9 (T) 4.9 GT -2.59 (0.74) 3.50 (1.53) 

PGN-IgG1 ULGR_BTA-121322 21 67,645,253 48.5 (G) 4.8 AG -1.71 (0.83) 2.94 (1.00) 

PGN-IgG1 ARS-BFGL-NGS-33371 21 68,636,089 30.5 (T) 5.3 CT -2.62 (0.72) 2.91 (1.26) 

PGN-IgG1 ULGR_rs29019410 21 68,645,328 33.1 (G) 4.9 CG -2.57 (0.76) 2.99 (1.28) 

PGN-IgG1 ULGR_rs29016374 21 68,809,305 41.4 (A) 5.8 AC 3.03 (0.94) -2.48 (0.78) 

PGN-IgG1 BTA-66489-no-rs 29 35,667,458 27.3 (C) 4.9 CT -0.11 (1.30) -3.35 (0.73) 

PGN-IgM ULGR_BTA-56015 23 25,735,114 23.1 (G) 6.1 AG -2.04 (0.55) 3.58 (1.20) 

PGN-IgM ULGR_BTA-55999 23 25,821,757 23.2 (A) 6.0 AG 3.51 (1.20) -2.05 (0.55) 

PGN-IgM ULGR_BTA-55829 23 28,077,464 25.0 (C) 5.2 CT 3.34 (1.12) -1.76 (0.55) 

PGN-IgM ULGR_AAFC03027556_71020 23 32,502,273 21.4 (T) 5.8 CT -1.30 (0.55) 5.19 (1.29) 

PGN-IgM ULGR_AAFC03010340_60689 23 34,108,791 19.8 (G) 5.9 AG -1.90 (0.57) 4.39 (1.35) 

PGN-IgM ULGR_AAFC03125015_28415 23 34,240,241 21.1 (T) 6.8 CT -1.89 (0.57) 4.64 (1.25) 
1
Antibody names are a combination of antigen abbreviation and immunoglobulin isotype. 

2
SNP effects presented correspond to the two homozygote genotype classes. The heterozygote genotype class was set to zero. 

3
Homozygote genotype class was not available for this SNP. 
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Abstract 

This genome-wide association study aimed to identify loci associated with 

lactation-average somatic cell score (LASCS) and the standard deviation of test-day 

somatic cell score (SCS-SD). It is one of the first studies to combine detailed 

phenotypic and genotypic cow data from research dairy herds located in different 

countries. The combined dataset contained up to 52 individual test-days per 

lactation and thereby aimed to capture temporary increases in somatic cell score 

associated with infection. Phenotypic data for analysis consisted of 46,882 test-day 

records on 1,484 cows and genotypic data consisted of 37,590 single nucleotide 

polymorphisms (SNP). Using an animal model, the association between each 

individual SNP and the phenotypic data was estimated. To account for the risk of 

false positives, a false discovery rate threshold of 0.20 was set. The analyses 

showed that LASCS significantly associated with a SNP on Bos taurus autosome 

(BTA) 4 and a SNP on BTA18. Likewise SCS-SD associated with this SNP on BTA18. In 

addition, SCS-SD significantly associated with a SNP on BTA6. Relatively few 

associations were found, suggesting that LASCS and SCS-SD are controlled by 

multiple loci, each with a relatively small effect, distributed across the genome. 

Increased knowledge on genetic regulation of LASCS and SCS-SD may aid in 

identification of genes that play a role in mastitis resistance. Such knowledge aids 

in understanding the genetic mechanisms leading to mastitis and in discovery of 

targets for mastitis therapeutics. 

 

Key words: genome wide, dairy cow, single nucleotide polymorphism, mastitis  
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4.1 Introduction 

In the last decade, mastitis resistance has become an important breeding objective 

in dairy cattle from an economical and animal welfare perspective (Miglior et al., 

2005; Rupp et al., 2007). The SCC is the commonly used indirect measure of 

mastitis (e.g. Rupp and Boichard, 2003; Detilleux, 2009). Although there is relatively 

large genetic variation for SCC (Rupp and Boichard, 2003), heritabilities for SCC are 

low to moderate (Rupp and Boichard, 2003) and a genetic antagonism exists 

between SCC and production traits (e.g. Rupp and Boichard, 1999; Carlén et al., 

2004). As such and combined with the fact that SCC can only be measured on cows 

and not on bulls, selection for mastitis resistance could benefit from genomic 

information. Genomic information may be particularly useful for increasing the 

accuracy of the estimated breeding values of bull dams, which is currently based on 

own performance.  

The recent discovery of millions of SNP in livestock genomes (Matukumalli et al., 

2009), forming dense marker maps, and a concurrent strong reduction in 

genotyping costs (Daetwyler, 2008; Hayes et al., 2009) have created opportunities 

for the use of genomic information, allowing for genome-wide association studies 

(GWAS) (Hirschorn and Daly, 2005). Results from GWAS may not only identify 

markers that enable more accurate breeding value estimation but may also aid in 

the understanding of genetic control of traits through identification of genes (e.g. 

Pryce et al., 2010). So far, GWAS reported for dairy cattle are limited and GWAS 

that are reported have been performed on traits routinely recorded in commercial 

dairy herds, using daughter yield deviations or estimated breeding values of 

progeny tested bulls. The present study used combined phenotypic and genotypic 

data of first lactation Holstein cows from four different European research herds. 

These herds provide more detailed SCC recordings, with up to 52 individual test-

days per lactation, compared to commercial herds where SCC is usually recorded 

monthly. These detailed recordings provide a more comprehensive representation 

of the phenotype. In addition, the use of genotypic data on cows allows for 

estimation of dominance effects, which is not possible when using daughter yield 

deviations. 

Generally, genetic selection is based on lactation-average SCC. Lactation-average 

SCC, however, does not capture variation in SCC levels during lactation (De Haas et 

al., 2003). As suggested by Urioste et al. (2010) and Green et al. (2004), the 

standard deviation of test-day SCC largely reflects this variation and aims to 

capture temporary increases in SCC associated with infection. The standard 

deviation of test-day SCC is genetically variable and strongly associated with clinical 
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mastitis (CM) (Urioste et al., 2010). Therefore it is an interesting candidate in 

selection for mastitis resistance (Urioste et al., 2010). 

The present study aimed to identify loci associated with lactation-average SCS and 

the standard deviation of test-day SCS through a GWAS using combined phenotypic 

and genotypic data of first lactation Holstein cows from four different European 

research herds. 

 

4.2 Materials and methods 

The present study was part of the EU funded RobustMilk project, a collaboration 

between six European research institutes (www.robustmilk.eu). The RobustMilk 

project combined unique phenotypic and genotypic data from eight research dairy 

herds located in four different European countries: three herds in Ireland 

(McCarthy et al., 2007), two herds in the Netherlands (Veerkamp et al., 2000), two 

herds in Scotland (Bell et al., 2011) and one herd in Sweden (Petersson et al., 

2006). The Scottish cows belonged to two genetic lines (Veerkamp et al., 1994) and 

were therefore treated as two separate herds. At the time of data recording, some 

cows included in the RobustMilk project were subjected to dietary treatments as 

part of other studies. Data were recorded between October 1989 and September 

2009.  

 

Genotypes 

DNA was extracted from blood samples. Cows were subsequently genotyped for 

54,001 SNP by a commercial genotyping company (ServiceXS, Leiden, the 

Netherlands) using the Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, 

CA). The SNP genotypes were scored using Illumina BeadStudio software (v3.3.4). 

Quality control was performed on the genotypic data of the separate countries, 

using criteria set by Hayes et al. (2009) with minor modifications. A SNP was 

included in the dataset when the following criteria were met: 1) the minor allele 

frequency (MAF) was > 1% in each country; 2) the percentage of missing genotypes 

for the SNP across all samples was < 5%; 3) the Gen Train score (statistical score for 

accuracy of clustering) was > 0.55 and the Gen Call score (statistical score for 

genotyping accuracy) was > 0.20; and 4) the SNP did not deviate strongly from 

Hardy Weinberg equilibrium (Hardy Weinberg χ2 values < 600). A SNP that failed a 

criterion in at least one country was discarded from the complete dataset. 

Furthermore, animals with SNP call-rates < 95% were removed from the dataset (n 

= 70). A total of 37,590 SNP were retained and were thus available for analyses. 

These SNP were distributed over the Bos taurus genome as shown in Table 1. 



4 GWAS for SCS in Holstein cattle 

 

 

69 

 

All animals genotyped within the RobustMilk project were checked for pedigree 

inconsistencies using the methodology outlined by Calus et al. (2011).  

 

Table 4.1 Distribution of SNP available for analyses over Bos taurus chromosomes (Chr) and 

the size of the individual chromosomes (Size) in million base pairs (Mbp)
1
. 

 

Chr. Size (Mbp) No. SNP Chr.  Size (Mbp) No. SNP 

NULL Unassigned SNP 1,089 16 77.9 1,135 
1 161.1 2,302 17 76.5 1,107 
2 140.8 1,911 18 66.1 927 
3 127.9 1,810 19 65.3 972 
4 124.5 1,775 20 75.8 1,085 
5 125.8 1,498 21 69.1 968 
6 122.6 1,771 22 61.8 942 
7 112.1 1,547 23 53.4 761 
8 116.9 1,643 24 65.3 885 
9 108.1 1,452 25 44.1 709 
10 106.4 1,542 26 51.8 743 
11 110.2 1,587 27 48.7 692 
12 85.4 1,170 28 46.1 647 
13 84.4 1,275 29 60.0 773 
14 81.3 1,189 X 88.5 498 
15 84.6 1,185  Total No. SNP      37,590 
1
Based on Baylor 4.0/bosTau4 assembly 

 

Animals and phenotypes 

Phenotypic data was compiled from cows that passed the genotype quality control 

and the pedigree check. This dataset consisted of 81,408 first lactation test-day 

records on 1,816 Holstein cows. Test-day records with SCC greater than zero 

recorded before 350 DIM were retained. Cows that had less than ten SCC test-day 

records were discarded in order to have sufficient records for estimating mean and 

standard deviations of SCC. 

Therefore, the edited phenotypic data used for the association study consisted of 

46,882 first lactation test-day records on 1,484 genotyped Holstein cows located in 

four countries: Ireland (n = 329 cows; 8,795 test-day records), the Netherlands (n = 

574 cows; 17,024 test-day records), Scotland (n = 390 cows; 13,312 test-day 

records) and Sweden (n = 191 cows; 7,751 test-day records).  

Lactation-average SCC and test-day SCC standard deviation were calculated for 

each cow based on her test-day records. The number of test-day records per cow 

ranged between ten and 52 with an average of 31 test-days. Lactation-average SCC 

was log-transformed (Ali and Shook, 1980) to lactation-average SCS (LASCS), where  
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Test-day SCC standard deviation was log-transformed in a similar manner into test-

day SCS standard deviation (SCS-SD) 
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where μ was the mean test-day SCC and n was the number of test-day records. 

In summary, the data for analyses consisted of 46,882 SCC test-day records on 

1,484 first lactation Holstein cows. For all cows genotypic information consisted of 

37,590 SNP. 

The approval of the Dutch Animal Care and Use committee was not needed, as 

data used in the present study were obtained from existing databases. 

 

Statistical Analyses 

Genetic and residual variances for LASCS and SCS-SD were estimated with a 

bivariate linear animal model using the ASReml software package (version 3; 

Gilmour et al., 2009). Data were analyzed with the following model 

 

 ijkkjiijk eAnimalByearCHYSTy   ,        (3) 

 

where yijk is the response variable corresponding to LASCS and SCS-SD of cow k 

from CHYST-group i born in year j; µ is the overall mean; CHYSTi was a fixed effect 

accounting for the combination i of country (C) and herd (H) in which the record 

was produced, year (Y) and season (S) of calving of the cow producing the record 

and dietary treatment (T) the cow received during lactation (i = 1 to 146). Seasons 

were defined as calendar quarters (January to March, April to June, July to 

September and October to December); CHYST groups containing <5 individuals 

were merged with adjacent CHYST groups; Byearj was a fixed effect accounting for 

the year of birth j of the cow (j = 1 to 23); Animalk, was the random additive genetic 

effect of animal k distributed as ~N(0, Aσ
2

a) which accounted for (co)variances 

between animals due to genetic relationships by formation of an A-matrix based on 

pedigree records; the pedigree consisted of 9,368 individuals over 19 generations; 
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eijk, distributed as ~N(0, Iσ
2

e) was the random residual effect, where I was the 

identity matrix. 

 

Heritabilities were calculated as 
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where 2
a  represented the additive genetic variance and 2

e  the residual variance.  

 

The genetic correlation was calculated as 

 

 22

,

SDaSCSaLASCS

SDaSCSaLASCS
gr











, 

              (5) 

 

where 2
aLASCS  was the additive genetic variance for LASCS, 2

SDaSCS  was the 

additive genetic variance for SCS-SD and SDaSCSaLASCS ,  was the additive genetic 

covariance between LASCS and SCS-SD. 

 

The association of each individual SNP with the phenotype was estimated from a 

univariate linear animal model using ASReml (version 3; Gilmour et al., 2009). The 

data were analyzed following model 3, with the addition of a fixed single SNP effect 

to the model. The consequence of this analysis is that SNP in linkage disequilibrium 

with the causative mutation will all show an effect. The heritabilities for LASCS and 

SCS-SD were fixed at the estimate obtained from the preceding bivariate analyses, 

for ease of computation which is valid when SNP effects are relatively small.  

To assess the effect of population substructure in the present dataset, the single 

SNP analysis was also performed without the random additive genetic effect of the 

animal included in the model. 

 

SNP variances were calculated based on the genotype frequencies and the 

estimated genotype effects.  
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Multiple Testing 

In the single SNP association analyses the significance of each individual SNP was 

tested, resulting in a multiple testing problem. Multiple testing increases the risk of 

false positives and to account for this, a false discovery rate (FDR) was used. The P-

value threshold corresponding to an FDR of 0.20 was calculated, based on the P-

value for each SNP obtained from the single SNP analysis using the package 

´qvalue´ in the statistical environment R (Storey and Tibshirani, 2003). The SNP with 

P-values below or equal to the P-value corresponding to the FDR were considered 

significantly associated with the phenotype.  

 

4.3 Results 

Descriptive Statistics and Genetic Parameters 

Mean LASCS, mean SCS-SD and the corresponding standard deviation for the 

combined dataset as well as the individual countries within the RobustMilk dataset 

are shown in Table 2. Standard deviations in the separate countries were within 

30% of the mean LASCS and SCS-SD of the combined data.  

The heritability estimated for LASCS was 0.17 (SE = 0.06) with a phenotypic 

variance of 1.62 and the heritability estimated for SCS-SD was 0.14 (SE = 0.06) with 

a phenotypic variance of 3.2. The phenotypic correlation between LASCS and SCS-

SD was 0.89 (SE = 0.01) and the genetic correlation between LASCS and SCS-SD was 

estimated at 0.96 (SE = 0.04). 

 

Table 4.2 Mean, standard deviation (SD) and number of animals (N) for lactation-average 

somatic cell score (LASCS) and the standard deviation for test-day somatic cell score (SCS-SD) 

for the combined data (RobustMilk) and for each separate country of origin of the cows 

included in the data. 
 

Data N        LASCS        SCS-SD 

  Mean SD Mean SD 

RobustMilk 1484 6.4 1.3 6.3 1.9 

Ireland 329 6.7 1.3 6.7 1.7 

The Netherlands 574 6.3 1.4 6.2 1.9 

Scotland 390 6.0 1.2 5.9 1.9 

Sweden 191 6.8 1.3 6.9 1.8 
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Association of SNP with LASCS 

The GWAS showed a significant association with LASCS on BTA4 and on BTA18 

(Figure 1). On BTA4, SNP BTB-01841922 (ss64858711) showed a significant effect 

with a –log10 P-value of 5.1.On BTA18, SNP ARS-BFGL-NGS-101491 (ss86330740) 

showed a significant effect with a –log10 P-value of 5.6.  

For SNP BTB-01841922, the genotype class with the smallest number of 

observations (AA) consisted of 13 cows of which 12 were from Ireland. The MAF for 

this SNP was 0.11. As AA animals came primarily from one country, the sensitivity 

of the analysis was tested by omitting cows belonging to the AA genotype class. 

This retest resulted in an increase in –log10 P-value from 5.1 to 5.7. –Log10 P-

values and the genetic variance explained by the two significantly associated SNP 

are given in Table 3. Estimated SNP effects for the LASCS associated SNP in the 

combined RobustMilk dataset as well as in the separate populations are shown in 

Table 4. In general, estimated SNP effects in individual countries were in the same 

direction for each genotype class as the combined RobustMilk data, although effect 

sizes differed. These differences were, however, not significant (α = 0.10). For SNP 

BTB-01841922 on BTA4, the homozygote genotype class with the largest number of 

observations (BB) consistently resulted in a lower LASCS than the heterozygote 

genotype class. Analysis of the untransformed SCC data showed that the SNP effect 

of -0.44 for this homozygote genotype class corresponded to a lower LASCS of 

approximately 51,000 cells/mL compared to the heterozygote genotype class. For 

SNP ARS-BFGL-NGS-101491 on BTA18, the homozygous genotype class with the 

smallest number of observations (AA) resulted in the highest LASCS whereas the 

homozygous genotype class (BB) with the largest number of observations resulted 

in the lowest LASCS. Ireland and Scotland showed a slight deviation from this 

pattern (Table 4), but these deviations were not significant (α = 0.10). Analyses of 

the untransformed combined RobustMilk data showed that the implication of the 

AA genotype for this SNP was an additional 87,000 cells/mL compared to the BB 

genotype. 

The MAF for BTB-01841922 was 0.11 in the total dataset and remained relatively 

stable over birth years 1991 to 2007. The minor allele, allele A, was the unfavorable 

allele, resulting in an increased LASCS. The MAF for ARS-BFGL-NGS-101491, allele A, 

was 0.27 and fluctuated over birth years from a minimum of 0.05 to a maximum of 

0.34. Also for this SNP the minor allele was the unfavorable allele.  

 

Association of SNP with SCS-SD 

The GWAS for SCS-SD showed two SNP (Figure 2) with an FDR ≤ 0.20. The SNP ARS-

BFGL-NGS-101491 on BTA18, previously associated with LASCS, had a –log10 P-
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value of 5.8 for SCS-SD. On BTA6, SNP BTB-02087354 (ss65101233) had a–log10 P-

value of 5.3. As part of the genotype quality control, SNP with a MAF ≤ 1% were 

removed from the dataset. For SNP BTB-02087354, however, this could not prevent 

a genotype class (BB) with only one cow. For this reason, the analysis was repeated 

without this cow. As a result the –log10 P-value of association increased from 5.3 

to 6.1. –Log10 P-values and the genetic variance explained by the two significantly 

associated SNP are given in Table 3. Estimated SNP effects for the SCS-SD 

associated SNP in the total RobustMilk dataset as well as in the separate 

populations are shown in Table 5. For SNP BTB-02087354 on BTA6 the 

heterozygous genotype class resulted in the highest SCS-SD compared to the 

homozygous genotype class, with the exception of Sweden. Analysis of the 

untransformed SCC data showed that SCS-SD was approximately 235,000 cells/mL 

higher in the heterozygous genotype class compared to the homozygous genotype 

class. For SNP ARS-BFGL-NGS-101491 on BTA18, the smallest homozygote genotype 

class (AA) resulted in the highest SCS-SD and the largest homozygote genotype 

class (BB) resulted in the lowest SCS-SD, with the exception of Scotland where the 

heterozygous genotype class resulted in the highest SCS-SD. Analyses of the 

untransformed SCC data, using the combined RobustMilk data, showed that the AA 

genotype resulted in a 197,000 cells/mL increase in SCS-SD compared to the BB 

genotype. 

The MAF for SNP BTB-02087354 was 0.02 and remained stable over the birth years 

tested.  

 

Table 4.3 SNP significantly associated (FDR < 0.20) with lactation-average somatic cell score 

(LASCS) and the standard deviation for test-day somatic cell score (SCS-SD), their location on 

the Bos taurus autosome (BTA), -log10 P-value (-log10 P) and the proportion of genetic 

variance explained by the SNP (Var). 
 

BTA SNP  bp Trait -log10 P Var 

4 BTB-01841922 11,369,399 LASCS 5.1 0.11 
6

1
 BTB-02087354 8,658,351 SCS-SD 6.1 0.14 

18 ARS-BFGL-NGS-101491 12,785,002 SCS-SD 5.8 0.16 
18 ARS-BFGL-NGS-101491 12,785,002 LASCS 5.6 0.15 
1
SNP consisted of two genotype classes 
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Table 4.4 Effect sizes per genotype class for SNP BTB-01841922 and ARS-BFGL-NGS-101491 

significantly associated with lactation-average somatic cell score with the corresponding 

standard error in parentheses for the combined RobustMilk data and for each separate 

country of origin. 
 

Data          BTB-01841922      ARS-BFGL-NGS-101491 

 AA AB BB AA AB BB 

RobustMilk -0.45 (0.37) 0 -0.44 (0.09) 0.29 (0.15) 0 -0.32 (0.08) 

Ireland 0.19 (0.37) 0 -0.18 (0.15) 0.44 (0.26) 0 0.27 (0.16) 

The Netherlands -
1
 0 -0.64 (0.15) 0.41 (0.26) 0 -0.30 (0.26) 

Scotland -
2
 0 -0.34 -0.05 (0.30) 0 -0.19 (0.14) 

Sweden -
2
 0 -0.28 0.24 (0.49) 0 -0.47 (0.48) 

1
Genotype class consisted

 
of one cow 

2 
No cows were present in this genotype class 

 

Table 4.5 Effect sizes per genotype class for SNP BTB-02087354 and ARS-BFGL-NGS-101491 

significantly associated with the standard deviation for test-day somatic cell score with the 

corresponding standard errors in parentheses for the combined RobustMilk data and for 

each separate country of origin. 
 

Data ARS-BFGL-NGS-101491 BTB-02087354
1
 

 AA AB BB AA AB 
RobustMilk 0.50 (0.21) 0 -0.42 (0.11) 0 1.20 (0.24) 
Ireland 0.77 (0.34) 0 -0.30 (0.20) 0 1.65 (0.37) 
The Netherlands 0.82 (0.36) 0 -0.35 (0.36) 0 1.45 (0.45) 
Scotland -0.19 (0.45) 0 -0.32 (0.21) 0 0.50 (0.57) 
Sweden 0.10 (0.66) 0 -0.77 (0.65) 0 -0.14 (0.70) 
1
SNP consisted of two genotype classes 

 

Polygenic Component 

All analyses in the present study included a polygenic component to account for 

family relationships between cows and population substructure caused by these 

relationships. In contrast to the LASCS analysis including a polygenic component 

(Figure 3b), a quantile-quantile plot for the LASCS analysis without a polygenic 

component showed many spurious SNP effects as deviations from the expected 

null distribution of the P-values and did therefore show an effect of population 

substructure (Figure 3a). The same was true for SCS-SD (results not shown). 
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Figure 4.1 –log10 P-values from single SNP analysis for lactation-average somatic cell score 
(LASCS). Chromosomes are arranged from left to right from chromosome 0 (unassigned SNP) 
to chromosome X. SNP above the black horizontal line passed the 0.20 false discovery rate 
threshold. 

 

 
 

Figure 4.2 –log10 P-values from single SNP analysis for test-day somatic cell score standard 
deviation (SCS-SD). Chromosomes are arranged from left to right from chromosome 0 
(unassigned SNP) to chromosome X. SNP above the black horizontal line passed the 0.20 
false discovery rate threshold. 
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            a) b) 
 

Figure 4.3 Quantile-quantile plot of the expected null distribution of the P-values versus the 
observed null distribution of the P-values for the lactation-average somatic cell score where 
a) relationships between animals were not accounted for in the model and b) relationships 
between animals were accounted for in the model. 

 

4.4 Discussion 

The objective of this GWAS was to identify loci associated with LASCS and SCS-SD 

using cow data. Few countries routinely record mastitis events, hindering direct 

selection for mastitis resistance (Rupp and Boichard, 1999). Instead the common 

practice is to use SCC or SCS as an indirect selection for mastitis (e.g. Rupp and 

Boichard, 2003). In commercial dairy herds, SCC is generally recorded monthly 

resulting in approximately 12 SCC test-day records per cow. Monthly SCC 

recordings may not always detect elevated somatic cells due to CM (Rupp and 

Boichard, 1999), because a mastitis infection can occur and the animal restored to 

health within a one month period (Vaarst and Enevoldsen, 1997). In the present 

study, the number of SCC test-day records per cow ranged from 10 to 52 with an 

average of 31 SCC records. This increases the likelihood that elevations in SCC 

caused by infections of short duration, such as CM caused by Escherichia coli (De 

Haas et al., 2002; Burvenich et al., 2003; Bannerman et al., 2004) were included.  

 

LASCS and SCS-SD 

The LASCS is often calculated as the average of the log-transformed test-day SCC 

(Mark et al., 2002). Our preference, however, was to average test-day SCC first and 

then log-transform the data, as the influence of elevated test-day SCC on lactation-

average SCC and thus on LASCS is larger by this method (De Haas et al., 2008). 

Moreover, the genetic correlation between the log-transformed average of test-
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day SCC and CM was found to be higher than the genetic correlation between the 

traditionally used average of the log-transformed test-day SCC and CM (De Haas et 

al., 2008). The SCS-SD was also chosen as a trait for analysis to capture variation in 

SCC levels of individual cows. For instance, cows can have the same lactation-

average SCC but very different patterns of variation around the mean because of 

differences in infection status. Urioste et al. (2010) found that in general, cows 

without any CM episode tend to have a relatively low variation in SCC and that 

these animals show faster recovery when infected.  

 

Genetic Parameters 

The estimated heritabilities using the RobustMilk dataset were in good agreement 

with previously reported estimates. For example, the heritability of 0.17 for first 

lactation LASCS was also reported previously by Rupp and Boichard (1999) and 

Mrode and Swanson (2003). Heritabilities reported in other studies are of the same 

approximate magnitude (e.g. Carlén et al., 2004; Heringstad et al., 2008). The 

estimated heritability for SCS-SD in the present study was 0.14 and agreed well 

with the finding of Urioste et al. (2010), which was 0.10 for weekly recordings and 

0.14 for monthly recordings. Although SCS-SD has previously been analyzed 

(Urioste et al., 2010), the present study is the first to report the genetic correlation 

coefficient between LASCS and SCS-SD which was 0.96 with an upper 95% limit of 

1.0 and a lower 95% limit of 0.88. This indicates that the genetic component of 

these two traits was not significantly different. 

 

GWAS 

The present study detected few SNP associations with LASCS or SDS-SD which 

indicates that effects of most QTL involved in genetic control of LASCS and SCS-SD 

were not large enough to be detected with the traits defined in the present 

dataset. Firstly, this could suggest that the present dataset may not provide 

sufficient power to detect loci with relatively small effects for the currently defined 

traits. The detection power of GWAS, especially for low to moderately heritable 

polygenic traits, will likely be substantially increased by including a larger number 

of animals. Detection of few genomic regions involved in genetic regulation of SCS, 

or SCS related traits is supported by other studies (e.g. Heyen et al., 1999; 

Klungland et al., 2001; Meredith et al., 2010). This could also suggest that SCS may 

be influenced by multiple QTL dispersed throughout the genome, each with a 

relatively small effect which hinders detection of genomic regions. 

In accordance with the genetic correlation between LASCS and SCS-SD, GWAS 

results identified a SNP significantly associating with both LASCS and SCS-SD. The 
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SNP ARS-BFGL-NGS-101491 passed the 0.20 FDR threshold for both LASCS and SCS-

SD, with the same direction of the effect and a similar –log10 P-value for both traits. 

In addition, the SNP BTB-01841922 on BTA4 was found to be significantly 

associated with LASCS, with a –log10 P-value of 5.7. The direction of the effect of 

this SNP for SCS-SD was the same as for LASCS, but the –log10 P-value of 3.5 fell 

short of the 0.20 FDR threshold. Similarly, the SNP BTB-02087354 on BTA6 was 

found to be significantly associated with SCS-SD with a –log10 P-value of 6.1. The 

direction of the effect for this SNP for LASCS was the same as for SCS-SD but once 

again the –log10 P-value of 4.6 fell short of the 0.20 FDR threshold.  

 

Candidate Genes 

Genes within a window of 200,000 bp around the associated SNP were considered 

as candidates. At this distance linkage disequilibrium (r
2
) decreases to a value of 

approximately 0.15 (Khatkar et al., 2008). The 200,000 bp window around SNP ARS-

BFGL-NGS101491, which associated with both LASCS and SCS-SD, contained eight 

genes. Six of these genes, SLC7A5, CA5A, RNF166, MVD, CTU2, and SNAI3, have no 

apparent function in mastitis resistance. The bovine SMAR1 gene, however, 

(Genebank  BC119967.1) is located within this window. The gene product of SMAR1 

plays a central role in cell cycle, apoptosis and signaling pathways through its 

interaction with proteins such as NFκB, p53 and TGF-β (Malonia et al., 2011). 

Furthermore, the p22-PHOX gene (Genebank accession number AF036096.1) is also 

located in close proximity to SNP ARS-BFGL-NGS-101491. The protein product of 

this gene plays a role in phagocytosis as it is an essential component for an active 

phagocyte NADPH oxidase. This NADPH oxidase is required for the production of 

superoxide, a precursor of microbicidal oxidants (Sumimoto et al., 1996). A 200,000 

bp window around SNP BTB-01841922 contained four genes, TFPI2, GNGT1, GNG11 

and BET1, of which three are involved in functions relating to mastitis resistance. 

The GNGT1 and GNG11 genes code for G proteins which function as signal 

transductors (Downes and Gautam, 1999) involved in regulation of cell migration 

and adhesion (Ahmed et al., 2010), key attributes of innate immune responses 

(Snyderman and Goetzl, 1981). The TFPI2 gene (Genebank AY234861.1) codes for a 

protein that plays a role in proliferation and apoptosis of smooth muscle cells 

(Ekstand et al., 2010). The mammary gland contains smooth muscle-like 

myoepithelial cells whose protein expression resembles that of smooth muscle 

cells (Deugnier et al., 1995). Given this resemblance, the TFPI2 gene product may 

also exert influence on mammary tissue. No genes were present within a 200,000 

bp window around SNP BTB-02087354.  

 

http://www.ncbi.nlm.nih.gov/nuccore/NM_001075620.1
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Comparison with Literature 

Multiple studies have identified regions containing QTL underlying genetic variation 

for SCS on almost all bovine chromosomes (Rupp and Boichard, 2003; Khatkar et 

al., 2004; Hu and Reecy, 2007). Chromosomes one, 18, 21 and 23 are frequently 

reported to contain QTL for SCS (Rupp and Boichard, 2003; Khatkar et al, 2004). 

Previously, linkage studies have reported QTL for SCS on BTA4 (Zhang et al., 1998; 

Tal-Stein et al., 2010) and BTA 6 (Daetwyler et al., 2008; Lund et al., 2008). These 

QTL, however, do not appear to be in close proximity to SNP BTB-01841922 and 

SNP BTB-02087354. Further, linkage studies have reported a QTL for SCC and CM 

on BTA18 near the microsatellite marker TGLA227, located at approximately 

65,000,000 bp (Bennewitz et al., 2003; Kühn et al., 2003; Schulman et al., 2004). 

This QTL could not be confirmed in the present GWAS.  

From linkage studies, it seems that the magnitude of associations between 

phenotypes and genetic markers may be largely influenced by environmental 

factors (e.g. infection pressure) and the genetic background specific to studied 

populations and breeds (Rupp and Boichard, 2003). 

GWAS results may be subjected to the same limitations. From GWAS with 1,341 

SNP Kolbehdari et al. (2009) identified two SCS associated SNP on BTA18 located at 

807,748 bp and 1,414,404 bp. The SNP ARS-BFGL-NGS101491 associating with 

LASCS and SCS-SD in the present study is not located in the same region given its 

position at 13,839,646 bp. A GWAS with 17,349 SNP performed by Sodeland et al. 

(2011) on Norwegian Red dairy cattle showed associations to daughter yield 

deviations for LASCS and CM on BTA12, BTA19 and BTA20. None of these 

associations were detected in the present study.  

 

CM and Production Traits  

The RobustMilk dataset contains 390 cows that were part of two genetic lines 

(Scottish data) (Veerkamp et al., 1994). One line was selected for kilograms of milk 

fat plus protein and the other line was selected to resemble the average genetic 

merit for milk fat plus protein for all UK evaluated cows. A genetic antagonism has 

been described between SCC and production traits (e.g. Rupp and Boichard, 1999; 

Carlén et al., 2004). Phenotypic differences in LASCS and SCS-SD were, however, 

small between the two lines and no differences in MAF could be detected for the 

significant SNP. 

In contrast, SCC and the occurrence of mastitis show a strong positive genetic 

correlation (e.g. Rupp and Boichard, 1999; Carlén et al., 2004; Koivula et al., 2005). 

Clinical mastitis records were available for RobustMilk cows from Scotland and 

Sweden. In total 98 cows had a case of CM recorded during the first lactation 
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(mastitic cows); the remaining 483 cows from Sweden and Scotland without such a 

record were assumed free of CM during this period (non-mastitic cows). There 

were clear phenotypic differences in SCS between mastitic and non-mastitic cows; 

the average LASCS was 7.1 for mastitic and 6.1 for non-mastitic cows and the 

average SCS-SD was 7.8 for mastitic and 5.9 for non-mastitic cows. The MAF for the 

significant SNP, however, did not differ between mastitic and non-mastitic cows. 

For SNP ARS-BFGL-NGS-101491 on BTA18, the frequency of the unfavorable allele 

was 0.25 in mastitic cows and 0.24 in non-mastitic cows. For SNP BTB-02087354 on 

BTA4, the frequency of the unfavorable allele was 0.02 in both mastitic and non-

mastitic cows. For SNP BTB-01841922 on BTA6, the favorable allele had a 

frequency of 0.09 in mastitic cows and 0.07 in non-mastitic cows. In agreement 

with other studies (Klungland et al., 2001; Sodeland et al., 2011), these results 

suggest that the SNP associated with LASCS or SCS-SD do not have major effects on 

CM. One explanation is that LASCS is an average value of multiple test-day records 

and therefore not directly comparable with CM records (Sodeland et al., 2011). In 

addition, the traits measure separate aspects of udder health (Lund et al., 2007), 

which results in a loss of statistical power (Lund et al., 2007; Sodeland et al., 2011). 

Furthermore, SNP effects on LASCS and SCS-SD in the present study were relatively 

small. So, if an association of these SNP exists with CM, the difference in allele 

frequency would have a minor impact on the phenotype.  

 

4.5 Conclusion 

The present study is one of the first studies to combine detailed phenotypic and 

genotypic cow data from research herds located in different countries. Relatively 

few associated SNP were found, which suggests that LASCS and SCS-SD are 

controlled by multiple loci, each with a relatively small effect, distributed across the 

genome, although the number of animals included in the study is relatively small. 

Findings from the present study need to be verified in subsequent independent 

studies. More knowledge on genetic control of LASCS and SCS-SD is needed to 

enable higher selection response for these traits and such knowledge could be 

particularly valuable for improvement of the accuracy of estimated breeding values 

for bull dams. Moreover, such knowledge contributes to the quest for genes for 

mastitis resistance and aids the understanding of the genetic mechanisms of 

mastitis and the discovery of targets for mastitis therapeutics.  
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Abstract 

Sensitivity to respond to environmental factors can have a genetic origin. 

Environmental factors can be divided into known and unknown environmental 

factors, referred to as macro- and micro-environment, respectively. Macro-

environmental sensitivity can be expressed as genetic variation in the slope of a 

reaction norm, whereas micro-environmental sensitivity can be expressed as 

differences in residual variance that have a genetic origin. The aim of this paper is 

to estimate macro- and micro-environmental sensitivity for somatic cell count in 

Holstein dairy cattle, where the macro-environment was defined as the herd-year 

average somatic cell count. A dataset containing over 1.6 million test-day records 

on about 177,000 cows was available. Variance components were estimated with a 

double hierarchical generalized linear model extended with a reaction norm using 

the ASReml software. Both macro- and micro-environmental sensitivity were found 

for somatic cell score and these two sensitivities were found to be positively 

correlated. Estimated variance components and genetic correlations obtained with 

the macro or micro model resembled those obtained with the macro-micro model, 

which suggests that use of macro or micro models does not lead to biased 

estimates resulting from micro models partly picking up macro-environmental 

sensitivity or vice versa. Knowledge on both forms of sensitivity, however, may aid 

in optimization of selection as correlations between the additive genetic variance in 

intercept, slope and environmental variance were all away from unity. We 

conclude that selection for reduced environmental sensitivity has the potential to 

reduce variability in animal performance due to known and unknown 

environmental factors and herewith increase predictability of performance across 

and within environments. 

 

Key words: macro-environmental sensitivity, genotype environment interaction, 

environmental variance, double hierarchical generalized linear model, genetic 

parameters, heterogeneity, residual variance   
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5.1 Introduction 

Individual animals may show genetically determined differences in their response 

to environmental influences, a phenomenon known as genotype by environment 

interaction (GxE) (Falconer and Mackay, 1996). The GxE can manifest itself in two 

forms: 1) reranking of animals across environments, 2) differential scaling of animal 

performance across environments (Falconer and Mackay, 1996).  

A variety of factors contribute to the environment of an animal. The factors that 

are known and can be categorized (e.g. ad-libitum or restricted diet) or quantified 

(e.g. temperature) are referred to as macro-environmental factors (Falconer and 

Mackay, 1996). As such, genetic variation in macro-environmental sensitivity is 

genetic variation in response to macro-environmental factors. When macro-

environmental factors can be quantified on a continuous scale, macro-

environmental sensitivity can be expressed as genetic variation in the slope of a 

reaction norm. Genetic variances and covariances of a reaction norm can be 

translated into genetic correlations between pairs of environments, i.e. values of 

the environmental parameter (De Jong and Bijma, 2002), as measures of GxE 

interaction. When macro-environmental factors can be categorized, then the 

macro-environmental sensitivity can be expressed as the genetic covariance 

between environments. The combination of the unknown environmental factors 

constitutes the micro-environment (Falconer and Mackay, 1996). Genetic variation 

in micro-environmental sensitivity is genetic variation in response to micro-

environmental factors. Micro-environmental sensitivity, also referred to as genetic 

heterogeneity of residual variance, can be expressed as differences in residual 

variance that have a genetic origin (Rönnegård et al., 2013; Mulder et al., 2013).  

As livestock breeding is a global activity that serves a wide range of production 

systems, presence of macro- and micro-environmental sensitivity affects animal 

breeding. Increased knowledge on macro-and micro-environmental sensitivity may 

facilitate optimal performance of animals and selection for increased uniformity 

and robustness (Mulder, 2007).  

Recently, Rönnegård et al. (2010) showed that application of a double hierarchical 

generalized linear model (DHGLM; Lee and Nelder, 2006) allows for estimation of 

micro-environmental sensitivity using standard variance component estimation 

programs such as ASReml. A subsequent study (Rönnegård et al., 2013) showed 

existence of moderate genetic variation for micro-environmental sensitivity for 

milk yield and somatic cell score in Swedish Holstein cattle. Mulder et al. (2013) 

have extended the DHGLM as proposed and used by Rönnegård et al. (2010; 2013) 

with a reaction norm model to study macro- and micro-environmental sensitivity 
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simultaneously in dairy cattle. By means of simulation it was shown that estimation 

of genetic parameters with sufficient precision required designs with at least 100 

sires with each 100 half-sib offspring. Application of the model to lactation-average 

milk yield suggested presence of both macro- and micro-environmental sensitivity. 

The present study builds on the study by Mulder et al. (2013) who applied the 

DHGLM extended with a reaction norm to simulated data and to lactation-average 

milk yield in field data. The model, however, has not been applied to test-day 

records, which are frequently used in dairy breeding. Test-day records provide a 

more comprehensive representation of the phenotype compared to lactation-

averages; animals may have the same lactation-average SCS but patterns of 

variation around this mean may differ between these animals. Further, individual 

phenotypic measurements may manifest themselves under the influence of 

different environmental influences. These environmental influences may cancel 

each other out by using lactation averages. Therefore, the present study aimed to 

estimate genetic variation in macro- and micro-environmental sensitivity in 

Swedish Holstein cattle based on test-day records using a DHGLM extended with a 

reaction norm model. The model was applied to test-day somatic cell score (SCS). 

In addition, this study aimed to provide a biological and genetic interpretation of 

the results. 

 

5.2 Materials and methods 

Data 

Data used in the current study were previously used in studies by Windig et al. 

(2013), Rönnegård et al. (2013) and Mulder et al. (2013). Data contained almost 1.7 

million first lactation test-day records, obtained from 177,411 Swedish Holstein 

cows. On average 9.5 test-day records were available for each cow. Data were 

recorded between 2002 and 2009 and cows were located in 1,759 herds. Data 

included test-day records recorded between 7 and 366 days in milk for cows with 

age at calving between 19 and 38 months. Test-day somatic cell count (SCC) 

records were log-transformed (Ali and Shook, 1980) to SCS test-day phenotypes for 

analyses as SCS = log2 (SCC/100,000) + 3. Cows were sired by 762 sires, where the 

number of daughters per sire ranged from 46 to 7559. At least two generations of 

male ancestors were known for sires of all cows with records. In total, the pedigree 

contained 4,072 individuals.  

 

Genetic model 

The present study aimed to estimate genetic variation in macro- and micro-

environmental sensitivity using a DHGLM (Rönnegård et al., 2010, 2013), which was 
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extended with a reaction norm model (Mulder et al., 2013). In brief, the genetic 

model that describes the genetic variance in macro- and micro-environmental 

sensitivity models the macro-environmental sensitivity as genetic variation in the 

slope of a linear reaction norm, whereas micro-environmental sensitivity is 

modeled as genetic variation in environmental variance according to an 

exponential model: 

 

P = μ + Aint + Asl x + exp(0.5ln( 2
E ) + 0.5Av)ε ,        (1) 

 

where P represents the phenotype, μ is the population mean for the phenotype, 

Aint and Asl are the additive genetic values for the intercept and for the slope of the 

reaction norm (= macro-environmental sensitivity), respectively, x is the 

environmental parameter that is responsible for the genotypes to respond 

differently, 2
E  is the environmental variance of the exponential model, Av is the 

additive genetic value for the environmental variance (=micro-environmental 

sensitivity) and ε is a scaled environmental deviation with variance one. 

Variances and covariances for additive genetic values Aint, Asl, and Av are 
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Statistical model 

Data were analyzed with a sire model. The genetic model described above was 

translated in a statistical macro-micro model as follows 
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where y was the vector with the phenotypic observations, ψs was the vector with 

the linearized values of transformed squared residuals calculated as in Rönnegård 

et al. (2010). X (Xv) was the incidence matrix for fixed effects for y (ψs), b (bv) was 

the vector with solutions for fixed effects for y (ψs), Zs and Zsv were the incidence 
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matrices for the sire effects for the intercept of the reaction norm and the 

environmental variance, Zx was the matrix with the environmental parameter x as a 

covariate for the sire effects for the slope of the reaction norm, sint, ssl and sv were 

the vectors with the estimated sire effects for intercept, slope and environmental 

variance, P (Psv) was the incidence matrix for the permanent environmental effects 

for y (ψs), pe (pesv) was the vector with solutions for permanent environmental 

effects for y (ψs), and e and esv were the vectors with the residuals of y and ψs, 

respectively. Sire effects sint, ssl, and sv were assumed distributed N~(0, 
4

1
GA), 

where A represents the matrix with genetic relationships between animals based 

on pedigree records and where it was assumed that sire (co)variances represent a 

quarter of the additive genetic variance. Permanent environmental effects were 

assumed distributed as N~(0, QI), where Q represents the matrix of permanent 

environmental (co)variances, Q = 
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the identity matrix.  

Residuals es and esv were assumed distributed N ~ ,
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where 2
 and 2

v
 represent the scaling variances for the residual variances and 

where 1
sW  and 1

svW  represent the weights corresponding to y and ψs. 

Weights 1
sW  and 1

svW  were calculated as in Rönnegård et al. (2010), which was 

different from the calculation in Mulder et al. (2013), because in the current study, 

as in the study of Rönnegård et al. (2010), the residual variance does not include 

2
Aσ

4

3
. This 

2
Aσ

4

3
 is absorbed by the permanent environmental effect due to using 

repeated observations. The modification shown in Mulder et al. (2013) is, however, 

applicable for situations with single observations per animal. 

 

The sire macro-micro model was applied by iterating this model for 50 runs, where 

every run was a converged ASReml (Version 3; Gilmour et al., 2009) analysis. 

Parameters were considered converged when the sum of the squared relative 

difference was below 10
-4

. Each iteration generated REML-estimates of variance 
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components for the current values of ψs, Ws, and Wsv. Subsequently, the vector ψs, 

and the diagonals of Ws and Wsv were updated for the next iteration. 

The fixed effects included in the mean model were the covariate lactation stage 

(DIM) modeled with a Wilmink curve (Wilmink, 1987), the covariate year-season of 

calving (ys), herd test-day effect (htd) consisting of 21,570 classes and the covariate 

age at calving (AgeC). Fixed effects included in the variance model were the 

covariate DIM modeled with a Wilmink curve (Wilmink, 1987), the covariate ys, and 

htd consisting of 21,570 classes.  

 

Definition macro-environment 

Matrix Zx (see model 4) describes the environmental parameter x for the slope of 

the reaction norm. In the present study, two environmental parameters were 

estimated from the data and they were individually included in model 2. These 

parameters were herd-year-average (hy)SCC and herd-year-average milk yield 

(hyMY). Both were scaled to have mean zero and variance 1.0: 
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where hyi was the hySCC or hyMY value belonging to record i, n was the number of 

records in the dataset, μ was the mean hySCC or mean hyMY over all records in the 

dataset, and SDhy was the standard deviation over all herd-year classes which was 

calculated as 
1n

)μ(hy 2
i




. Two environmental parameters were used: the 

herd-year average SCC (hySCC) and the herd-year average milk yield (hyMY). The 

environmental parameter hySCC represents the disease incidence in the herd, 

where herds with high hySCC are expected to have a higher incidence of mastitis. 

The environmental parameter hyMY represents the management related to milk 

production, i.e. feeding regime or milking frequency. The environmental 

parameters hySCC and hyMY can be partly correlated as an environments with 

lower incidence of mastitis may have also higher milk yield.  

 

Model selection 

The goodness of fit of the macro-micro model was compared to three simpler 

models: 1) a macro model which only accounts for macro-environmental 
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sensitivity, 2) a micro model which only accounts for micro-environmental 

sensitivity and 3) a simple model which contained only one additive genetic effect 

for the phenotype. The goodness of fit of the four models was assessed to 

determine if simultaneously accounting for macro- and micro-environmental 

sensitivity substantially improved the fit of the model compared to either 

accounting for macro- or micro-environmental sensitivity or none of them. Further, 

the present study determined the fit of the macro-micro and the macro model 

when the used environmental parameter x was either hySCC or hyMY. The 

goodness of fit of each model was assessed using the Akaike’s information criterion 

(AIC) using the h-likelihood framework (Mulder et al., 2013). The h-likelihood was 

approximated using the adjusted profile h-likelihood (APHL) (Mulder et al., 2013): 

 

i
sv

svi sv

2^
1

2^

sv )/wσ()σ(w2logLAPHL



   ln ,       (4) 

 

where 
isvw was the weight for the variance model for observation i, which is the i

th
 

diagonal of 
isvW . AIC was calculated as (Mulder et al., 2013): 

 

AIC = APHL + 2t ,             (5) 

 

where t was the number of variance parameters estimated by the model. The 

model with the lowest AIC was considered as the model that had the best fit to the 

data. 

 

Genetic parameters 

Heritability  

Heritabilities express the proportion of genetic variance relative to the phenotypic 

variance. Due to the use of a reaction norm model heritabilities for y were 

calculated as 

 

2
,

22
,

2
,2

,
iEyPEyiAy

iAy
iyh






 ,          (6) 

 

where 2
,iAy  was the additive genetic variance in y in environment i, 2

PEy  was the 

variance of permanent environmental effects for y, and 2
,iEy was the residual 
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variance for y calculated as the average of the ratio of the residual variance ( 2
Ey ) 

and the weight ( sw ) of the individual observations in environment i. The 2
Ay  in 

environment i was calculated as  

 

2
Asl

2
Aint,Asl

2
Aint

2
Ay,i σxσx2σσ  ,          (7) 

 

where 2
Aintσ  was the additive genetic variance of the breeding value for intercept, 

2
Asl  was the additive genetic variance of the breeding value for slope variance, 

Aint,Aslσ  was the covariance between the breeding value for intercept and the 

breeding value for slope variance and x was the value of the environmental 

parameter x in environment i.      

For ψ the heritability was calculated as 

 

222

2

2




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

EPEAv

vA
h


 ,           (8) 

 

where 2
Av  was the additive genetic variance in ψ, 2

 PE  was the permanent 

environmental effect of ψ, and 2
 E  was the residual variance expressed as the 

ratio of the residual variance of ψ and the average weight ( svw ) of the individual 

observations (
sv

E

w

2
). 

 

Genetic correlations  

When reaction norms are fitted, the amount of reranking of genotypes between 

different macro-environments can be expressed by the genetic correlation 

between macro-environments 1 and 2:  
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where 2,1 AyAy  was the genetic covariance between environment 1 and 2, and 

2
1Ay  and 2

2Ay  were the additive genetic variances of the two environments (see 

equation 7 for calculation). 

The covariance between the two macro-environments was calculated as 

  

2
Asl21Aint,Asl21

2
AintAyAy1 σxxσ)x(xσσ 2, ,      (10) 

 

where x1 and x2 correspond to the value of the environmental parameter x in 

environments 1 and 2. 

 

Besides genetic correlations among macro-environments, genetic correlations 

between performance in macro-environment i and performance in micro-

environment can exist. These correlations were calculated as 

 

22

,

AvAyi

AvAyi
gr




 ,                        (11) 

 

where AvAyi , was the covariance between the breeding value of y in environment 

i and the breeding value of ψ, 2
Ayi was the additive genetic variance of the 

breeding value of y in environment i, and 2
Av  was the additive genetic variance of 

the breeding value for ψ.  

The AvAyi , was calculated as  

 

Asl,AvAint,AvAyi,Av σxσσ  ,                       (12) 

 

where Aint,Avσ  was the covariance between the breeding value for intercept and ψ, 

AvAsl,  was the covariance between the breeding value for slope and ψ, and x was 

the value of the environmental parameter in environment i. 
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5.3 Results  

Model selection 

Six models were run and the APHL and AIC of these models are shown in Table 1. 

The macro-micro model when using hySCC as x fitted the data best, followed by a 

macro model with the same x. The macro-micro model when using a different x 

was slightly better than using a micro model, which suggests that using a micro 

model would be sufficient. The simple model had the worst fit for both traits.  

It can be concluded that the best fitting model was the macro-micro model using 

the environmental parameter corresponding to the response variable itself.    

 

Table 5.1 Adjusted profile h-likelihood (APHL) and Akaike’s information criterion (AIC) for the 

macro-micro
1
, macro

1
, micro

1
 and the simple

1
 model for response variable somatic cell score 

(SCS). The environmental parameter (x) (herd-year average somatic cell count (hySCC) or 

herd-year average milk yield (hyMY)) used for the reaction norm in the macro-micro and 

macro model is in parentheses. For readability, AIC of the models were scaled according to 

their deviation from the best performing model (AIC*). 
 

Trait (x) Genetic model APHL AIC AIC* 

SCS (hySCC) Macro-micro 2302930 2302948 0 
SCS (hyMY) Macro-micro 2304549 2304567 1619 
SCS (hySCC) Macro 2304239 2304251 1303 
SCS (hyMY) Macro 2305804 2305816 2868 
SCS Micro 2304556 2304568 1620 
SCS Simple 2305854 2305862 2914 
1
Macro-micro: model accounts for both macro- and micro-environmental sensitivity, macro: 

model accounts for macro-environmental sensitivity, micro: model accounts for micro-
environmental sensitivity, simple: model accounts for a genetic effect for the phenotype, but 
not for macro- and micro-environmental sensitivity. 

 

Estimated variance components 

Variance components estimated for SCS are shown in Table 2. Only the macro-

micro and macro model where x was the same trait as the response variable are 

shown in this table, because the fit of this model was better than that of the 

macro-micro and macro model where x was a different trait than the response 

variable.  

Estimates for 2
Aintσ  were between 0.21 and 0.25. The estimate for 2

Avσ  was about 

0.05 and the estimate for 2
Aslσ  was about 0.03. Estimates for 2

Aintσ  and 2
Aslσ  

obtained with the macro and micro model were similar to the estimates obtained 

with the macro-micro model. These similarities suggest that use of macro or micro 

models does not lead to biased estimates resulting from micro models partly 
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explaining macro-environmental sensitivity or vice versa. The average fitted 

residual variance was 0.60. The fitted permanent environmental effects were 1.20 

for y and 0.61 for ψ and the correlation between the permanent environmental 

effects for y and ψ was 0.43. 

Estimated genetic correlations between the variance components were positive 

and moderate to high, ranging from 0.46 to 0.78 (Table 2). Estimates obtained with 

the macro and micro model were of the same approximate magnitude as those 

obtained with the macro-micro model. The positive genetic correlations suggest 

that when selection decreases SCS (i.e. the trait level represented by the intercept) 

SCS is more stable across environments (represented by the slope) and that the 

variability within environments (represented by the environmental variance) will 

decrease as well. In short, animals with that are genetically prone to a high SCS are 

more sensitive to environmental changes.  

It can be concluded that moderate to high positive genetic correlations exist 

between 2
Aintσ , 2

Aslσ  and 2
Avσ . Both variance component estimates and estimated 

genetic correlations obtained with the macro-micro model were similar to those 

obtained with the macro or micro model. 

 

Genetic parameters 

Heritability 

When a reaction norm is applied, the different classes of x are regarded as 

individual traits. Therefore, a heritability can be calculated for each herd-year class. 

The macro-environment for SCS (hySCC) had 7,193 classes. For each class of the 

macro-environment the heritability was calculated according to equation 6. Here, 

2
,iEy was defined as the average residual variance in each class. Results are shown 

in Figure 1. The average heritability was 0.10 and ranged from 0.02 to 0.68. The 

figure shows a quadratic trend which is the result of the quadratic component in

2
Ay  (see equation 7).  

The micro-environment is defined as the genetic variation in environmental 

variance. Therefore, in contrast to macro-environmental sensitivity, one heritability 

can be calculated for micro-environmental sensitivity, which was 0.01. 

We conclude that heritabilities of SCS differ greatly among herd-year classes. The 

heritability for micro-environmental sensitivity is relatively low. 
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Table 5.2 Estimated variance components
1
 for response variable somatic cell score (SCS) estimated with different models

2
. Corresponding SE are 

in parentheses. 
 

 
 
 
 
 
 

2
intA = additive genetic variance of the breeding value for intercept, 

2
Asl  = additive genetic variance of the breeding value for slope variance 

(macro-environmental sensitivity), 
2
Av  = additive genetic variance of the breeding value for environmental variance (micro-environmental 

sensitivity) ρAint,Asl = genetic correlation between intercept and slope, ρAint,Av = genetic correlation between intercept and environmental variance, 
and ρAsl,Av = genetic correlation between slope and environmental variance. 
2
Macro-micro: model accounts for both macro- and micro-environmental sensitivity, macro: model accounts for macro-environmental sensitivity, 

micro: model accounts for micro-environmental sensitivity, simple: model accounts for a genetic effect for the phenotype, but not for macro- and 
micro-environmental sensitivity. The environmental parameter x used for the reaction norm in the macro-micro and macro model was the herd-
year average somatic cell count. 

Trait Model  σ
2

Aint σ
2

Asl σ
2

Av ρAint,Asl ρAint,Av ρAsl,Av 

SCS Macro-micro  0.247 (0.004) 0.031 (0.001) 0.051 (0.001) 0.607 (0.054) 0.517 (0.044)  0.782 (0.049)  
SCS Macro  0.208 (0.004) 0.034 (0.008) - 0.487 (0.061) - - 
SCS Micro 0.238 (0.004) - 0.046 (0.012) - 0.466 (0.048) - 
SCS Simple 0.206 (0.004) - - - - - 
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Correlations macro-environmental sensitivity 

The macro-environment is defined by environmental parameter x and genetic 

correlations with respect to animal performance can be estimated between pairs of 

environments, i.e. values of x. These correlations give an indication of reranking of 

animals across the different environments, and are as such a measure of GxE. 

Genetic correlations among different values of x (hySCC) were positive and 

generally high (Table 3). Correlations decreased as the difference between the 

values of x increased. Near unity correlations were found between adjacent values 

of x. The genetic correlation was lowest between x values -2 and 2, where the 

correlation had decreased to 0.40.  

We conclude that genetic correlations among different values of x were generally 

positive and relatively high.  

 

Correlations macro- and micro-environmental sensitivity  

Genetic correlations can not only be estimated between different values of the 

environmental parameter x, but also between the different values of x and the 

micro-environment. Correlations between the micro-environment and different 

values of x (hySCC) ranged from -0.04 for x = -2 to 0.70 for x = 2.  

Thus, genetic correlations between micro-environmental sensitivity and phenotypic 

level in different macro-environments were mostly positive, which suggests that an 

increase in phenotypic level often leads to an increase in micro-environmental 

sensitivity, i.e. an increased environmental variance. 

 

Table 5.3 Genetic correlations between the different values of the macro-environment (x), 

and genetic correlations between the different values of the macro-environment (x) and the 

micro-environment for somatic cell count. 
 

 Macro Micro 

x -2.0 -1.5 -1.0 -0.5 0 0.5 1 1.5 2.0  

-2.0          -0.04 
-1.5 0.98         0.13 

-1 0.91 0.98        0.29 
-0.5 0.81 0.92 0.98       0.42 

0 0.71 0.85 0.94 0.99      0.52 
0.5 0.61 0.77 0.89 0.96 0.99     0.59 

1 0.53 0.71 0.84 0.93 0.97 0.99    0.64 
1.5 0.46 0.65 0.79 0.89 0.95 0.98 1.00   0.67 
2.0 0.40 0.59 0.75 0.86 0.93 0.97 0.99 1.00  0.70 
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Figure 5.1 Heritability of the phenotype for each value of  
environmental parameter x (hySCC) for somatic cell score (SCS). 
 

       
 

                                           

 
 
Figure 5.2 Estimated breeding values for intercept (EBV) plotted 
against estimated breeding values for micro-environmental 
sensitivity (vEBV) for somatic cell score (SCS). 
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Figure 5.3 Estimated breeding values for intercept (EBV) plotted 
against estimated breeding values for macro-environmental 
sensitivity (slEBV) for somatic cell score (SCS). 
 
 
 
 

 
Figure 5.4 Estimated breeding values for micro-environmental 
sensitivity (vEBV) plotted against estimated breeding values for 
macro-environmental sensitivity (slEBV) for somatic cell score (SCS). 
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Figure 5.5 Illustration of the effect of the sire estimated breeding for slope (slEBV) on 
daughter phenotypes (SCS) along different values of the environmental parameter (hySCC). 
The figure shows observed daughter phenotypes for two example sires that were found to 
have a high and a low slEBV in the macro-micro model. 

 

Breeding values 

The macro-micro analyses performed in the present study not only provide 

knowledge on variance components for macro- and micro-environmental 

sensitivity, but also breeding values are obtained. In Figure 2 estimated breeding 

values for intercept (Aint) are plotted against the estimated breeding values for 

micro-environmental sensitivity (Av). In Figure 3 estimated breeding values for 

intercept (Aint) are plotted against the estimated breeding values for slope (Asl) and 

in Figure 4 estimated breeding values for slope (Asl) are plotted against the 

estimated breeding values for environmental variance (Av). Due to the positive 

genetic correlations between Aint, Asl, and Av the studied population does not 

contain animals with a high estimated breeding value for intercept coupled with a 

low estimated breeding value for environmental variance. The population does 

contain multiple animals that have a low estimated breeding value for intercept 

coupled with a low estimated breeding value for environmental variance. Similar 

results were seen when estimated breeding values for intercept were plotted 

against estimated breeding values for slope and when estimated breeding values 

for environmental variance were plotted against estimated breeding values for 

slope, as was expected from the genetic correlations presented in Table 2. Figure 5 

shows observed daughter phenotypes for two example sires that were found to 

either have a high or a low estimated breeding value for slope. As a result of the 

positive correlation between the intercept, the slope and the environmental 
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variance, the sire with a high slEBV also has a higher intercept and more variation 

around the slope compared to the sire with a low slEBV. 

 

5.4 Discussion 

The present study aimed to simultaneously estimate macro- and micro-

environmental sensitivity for SCS based on test-day records using a DHGLM 

extended with a reaction norm model. Both macro- and micro-environmental 

sensitivity were detected. Moderate to high positive genetic correlations were 

found between 2
Aintσ , 2

Aslσ  and 2
Avσ . Heritabilities ( 2

yh , see equation 6) for SCS 

differed among herd-year classes. The heritability for micro-environmental 

sensitivity ( 2
ψh , see equation 8) was found to be relatively low. Genetic correlations 

for SCS between different values of x were generally positive and relatively high. 

Genetic correlations between micro-environmental sensitivity and phenotypic level 

in macro-environments were mostly positive and showed a larger range than 

genetic correlations for SCS between different macro-environments, i.e. different 

values of x. 

 

Model selection  

The present study tested six models and found that the fit of the macro-micro 

model that used x corresponding to the response variable itself was substantially 

better than the fit of the other five models. Mulder et al. (2013) made a similar 

model comparison for lactation-average milk yield and found the micro model to 

have the best fit, although the fit of the macro-micro model was almost as good. 

The substantially better fit of the macro-micro model in the present study, when 

compared to the simple model and the individual macro and micro model, may be 

due to the use of test-day records. Use of test-day records not only allows use of 

between-cow variation, but also within cow-variation in performance at different 

levels of environmental parameters (Hayes et al., 2003).The additional information 

obtained from use of test-day records may allow for a better estimation of 

environmental sensitivity. An additional advantage of use of test-day records is 

availability of more records per sire, which are potentially recorded across a wider 

range of production levels when compared to lactation-averages. As such, test-day 

information may yield more accurate predictions of GxE (Hayes et al., 2003). 

The reaction norm model that used an environmental parameter (x) corresponding 

to the response variable was found to have a better fit than the model that used a 

different x. The difference in fit may be explained by the low correlation of -0.15 
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between hySCC and hyMY. This correlation suggests that the two environmental 

parameters explain different aspects of the management and environment, and it 

is therefore not surprising that the macro-micro and macro models that each apply 

a different environmental parameter show a different fit. The superior fit of hySCC 

is most likely due to the fact that hySCC directly originates from SCS and as such 

explains the response variable better than hyMY as the correlation of hySCC with 

SCS was 0.24, whereas the correlation of hyMY with SCS was -0.06. Benefits from 

using an environmental parameter x corresponding to the response variable itself 

was previously also reported by Calus et al. (2005), who found that environmental 

sensitivity or genotype by environment interaction was more often detected when 

x was the average of the analyzed trait or a characteristic closely related to the 

trait.  

 

Environmental parameters 

In the present study hySCC and hyMY were used as environmental parameters. 

These environmental parameters were scaled to allow for a similar interpretation 

of the parameters and, as such, to be able to compare the models. We preferred 

hySCC as an environmental parameter over hySCS because hySCC is the ‘true’ 

phenotype. When SCC is log-transformed into SCS extreme values are regressed 

toward the mean which decreases the influence of the extreme values relative to 

the effects of the intermediate values. As hySCC is an average value used as an 

environmental parameter and no regression was performed on this parameter log-

transformation is less relevant than it would be if it were a (non-averaged) 

response variable. In addition, following the central limit theorem, the hySCC was 

approximately normally distributed with a small tail to the right.  

 

Interpretation of results 

Macro-environmental sensitivity 

A reaction norm model analyses the phenotype as a function of the environmental 

parameter. As a result, for each value of the environmental parameter a heritability 

can be estimated and genetic correlations can be estimated between the different 

values of the environmental parameter. For SCS the average estimated heritability 

was 0.10 and ranged from 0.02 to 0.68. In general, the heritability for SCS increased 

as the hySCC increased. The average heritability of 0.10 is in agreement with 

findings from previous studies where heritabilities ranging from 0.05 to 0.14 for 

single monthly test-days were reported (e.g. Rupp and Boichard, 2003). The 

increase in heritability that is observed at increasing values of x agrees with the 

theory presented by Bishop and Wooliams (2010), that is, the heritability increases 
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at increasing prevalence (represented by a higher hySCC). When the prevalence in 

a herd increases the variation in disease exposure decreases which leads to higher 

heritability estimates. The high heritabilities for high hySCC classes should, 

however, be treated with caution because these heritabilities are probably biased 

upwards by the quadratic term in 2
Ayσ , although the extent of the bias is unknown.   

In the present study genetic correlations for SCS between different values of the 

environmental parameter were found to range from unity to 0.40, which indicates 

presence of considerable GxE. Presence of GxE has consequences for optimal 

selection in breeding programs and on farm level presence of GxE implies that 

management and genetic selection should be coupled, rather than be regarded as 

separate components when reducing SCC (Calus et al., 2006). In a previous study by 

Calus et al. (2005), estimates for genetic correlations of SCS in different 

environments were near unity. In a later study, however, environmental sensitivity 

was assessed based on test-day records rather than lactation averages and greater 

effects of GxE were estimated (Calus et al., 2006). These results, coupled with the 

current findings compared to Mulder et al. (2013), suggest that analysis of test-day 

records would enable detection of more GxE than lactation records. A study by 

Windig et al. (2013), however, used the same dataset as was used for the present 

study to assess the prevalence of (sub)clinical mastitis as a measure of exposure; 

estimated genetic correlations across herd prevalences were above 0.92, much 

higher than in the present study. Most likely it is not only the size of the dataset but 

also the definition of the traits that affects the ability to estimate GxE. In the study 

of Windig et al. (2013) (sub)clinical mastitis was recorded as a binary trait. A 0/1 

definition may limit the amount of detail in the phenotypic information, hereby 

hindering estimation of GxE. 

 

Micro-environmental sensitivity 

The present study builds on studies by Rönnegård et al. (2013) and Mulder et al. 

(2013). Rönnegård et al. (2013) focused solely on micro-environmental sensitivity, 

whereas Mulder et al. (2013) extended the model used by Rönnegård et al. (2013) 

with a reaction norm model. Micro-environmental sensitivity represents the 

sensitivity of an animal regarding an alteration in an unknown environmental factor 

and is quantified by additive genetic variance in the residual variance. Rönnegård et 

al. (2013) used the same dataset as was used in the present study to estimate 

micro-environmental sensitivity. As expected, the micro-model used in the present 

study gave results similar to those of Rönnegård et al. (2013).  
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Estimates for micro-environmental sensitivity obtained with the macro-micro 

model were similar to estimates obtained with the micro-model. According to the 

macro-micro model an increase of the average breeding value of ψ by 1 2
Avσ results 

in about 23% increase in residual variance. According to the micro model this 

increase in residual variance is about 22%. This similarity in estimates suggests that 

that the individual micro model does not lead to biased estimates when compared 

to the macro-micro model. The heritability found for micro-environmental 

sensitivity was relatively low with a value of 0.01 This estimate corresponds with 

heritabilities for micro-environmental sensitivity reviewed by Hill and Mulder 

(2010), although it should be noted that the definition of the heritability applied by 

Hill and Mulder (2010) is not identical to the definition applied in the present study.  

 

Macro- and micro-environmental sensitivity  

Extension of the micro model with a reaction norm model results in the macro-

micro model. In addition to the additive genetic variance in intercept, which 

represents the trait mean, the additive genetic variance in the slope of the reaction 

norm and the environmental variance are estimated. The current study is the first 

to apply the macro-micro model to test-day records. Mulder et al. (2013) have 

previously applied the model to lactation-average MY. In the present study, as in 

the study by Mulder et al. (2013), both macro- and micro-environmental sensitivity 

were detected. This suggests that extension of the DHGLM with a reaction norm 

model provides information that would not be obtained when solely modeling 

micro-environmental sensitivity. In addition to a correlation between the intercept 

and environmental variance which can be estimated with the micro-model, the 

macro-micro model estimated genetic correlations between the intercept and the 

slope of the reaction norm and between the slope of the reaction norm and the 

environmental variance. Correlations were all away from unity, which suggests that 

accounting for both macro- and micro-environmental sensitivity may improve 

predictability of animal performance across environments.  

  

Estimated breeding values macro- and micro-environmental sensitivity 

The genetic parameters that were estimated in the current study as well as in 

previous studies (e.g. Mulder et al., 2013; Rönnegård et al., 2013) suggest that it is 

possible to breed for increased trait uniformity. Breeding for uniformity in SCS 

would require an animal to have a low estimated breeding value for micro- or 

macro-environmental sensitivity (Rönnegård et al., 2013), while the genetic level of 

SCS is maintained or reduced. Somatic cell score is a frequently used indicator trait 
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in selection against mastitis, as it is thought that selection for decreased SCS results 

in decreased susceptibility to mastitis (e.g. Rupp and Boichard, 2003). The 

estimated breeding values for the intercept were positively correlated with macro- 

and micro-environmental sensitivity, which suggests that selection for reduced SCS 

results in a correlated reduction in macro- and micro-environmental sensitivity. It 

makes sense that differences between sires with resistant and sires with less 

resistant daughters increase when the prevalence increases. Therefore, a macro-

micro model may help to select more efficiently to reduce mastitis across 

environments. 

 

5.5 Conclusion  

It is important to obtain knowledge on livestock sensitivity to known (macro) and 

unknown (micro) environmental factors, among other because livestock breeding is 

a global activity that serves a wide range of production systems. We showed that 

both macro- and micro-environmental sensitivity exist for somatic cell score in 

dairy cattle and that these two forms are positively correlated. The fit of the macro-

micro and macro model that used an environmental parameter corresponding to 

the response variable itself was better than the fit of the macro-micro and macro 

model that used an environmental parameter that did not correspond to the 

response variable. The use of macro or micro models does not lead to biased 

estimates resulting from micro models partly picking up macro-environmental 

sensitivity or vice versa. Knowledge on both forms of sensitivity can aid in 

optimization of selection because correlations between the additive genetic 

variance in intercept, slope and environmental variance were all away from unity. 

Selection for reduced environmental sensitivity provides opportunities to reduce 

variability in animal performance due to known and unknown environmental 

factors and herewith increase predictability of performance. In this way, selection 

for reduced environmental sensitivity may help to reduce mastitis incidence across 

environments. 
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6.1 Introduction 

Thesis objectives  

Reduction of the impact of livestock diseases becomes increasingly important, not 

only for economic and environmental reasons, but also from a human and animal 

welfare perspective. For instance, improvement of disease resistance can 

contribute to a reduced use of antibiotics. One way to reduce the impact of disease 

is through incorporation of disease resistance into livestock breeding schemes. 

Livestock breeding has the potential to decrease the impact of disease on the long-

term. Further, effects of breeding are cumulative and result in a permanent 

improvement of disease resistance, provided that the pathogen does not evolve in 

such a way that host resistance is bypassed. Besides production traits, breeding 

schemes increasingly include traits related to health and welfare, such as disease 

resistance (Mark and Sandøe, 2010, Fisher and Mellor, 2008, Miglior et al., 2005). 

Mastitis constitutes an important infectious disease in dairy cattle, where somatic 

cell score (SCS)
1
 is frequently used in dairy cattle breeding as an indicator trait for 

mastitis. Despite the widespread use of SCS, still there is a lot to be learned about 

the interpretation of the trait and the corresponding genetic parameters and the 

biology of disease resistance and SCS. This PhD thesis aimed to obtain additional 

insight in disease resistance and SCS through the following objectives:  

1) quantify the impact of genetics on innate immunity, represented by 

natural antibodies (NAb) measured in milk, through estimation of 

heritabilities and genetic correlations; 

2) identify the genomic regions involved in SCS and NAb levels; 

3) quantify the role of genetic factors on the environmental sensitivity of 

SCS. 

 

Main results  

In general, phenotypes are established under the influence of genetic and 

environmental factors, where the amount of genetic and environmental influences 

varies among traits. The extent of the genetic influence on the phenotype is 

represented by the heritability.  

This thesis showed that NAb levels show heritable variation; heritabilities ranged 

from 0.08 to 0.55. Further, results suggest that different NAb isotypes are partly 

under different genetic control. Immunoglobulin (Ig)A and IgM levels were found to 

have a common genetic basis, but NAb isotype IgG1 levels were found to be 

                                                           
1
For genetic parameter estimation SCC are commonly log-transformed into somatic 

cell score because of the skewness of the SCC distribution 
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genetically different from IgA or IgM levels (chapter 2). A genome-wide association 

study (GWAS) for NAb levels revealed that a region on chromosome 23 is strongly 

associated with genetic variation in NAb isotype IgM levels. Regions on other 

bovine chromosomes (14 out of the 29 remaining chromosomes) were also found 

to be associated with NAb levels, though their effects were not as pronounced as 

those found on BTA23 (chapter 3). A GWAS for SCS (chapter 4) detected two 

associations, one on chromosome 4 and one on chromosome 18. For the trait 

standard deviation in SCS, a measure for the variability of SCS, also two associations 

were detected, one on chromosome 6 and one on chromosome 18, which was the 

same region as found for SCS. Finally, in chapter 5 both macro- and micro-

environmental sensitivity were found for somatic cell score in dairy cattle. In 

addition it was found that these two sensitivities are positively correlated.  

Chapters 2 to 5 have focused on estimation of genetic parameters for NAb and SCS 

and on identification of genomic regions for these traits. The aim of this final 

chapter (chapter 6) is to discuss some of the biology behind NAb and SCS, as an 

understanding of trait biology may lead to alternative trait definition or alternative 

statistical analyses which may affect genetic parameter estimation, identification of 

candidate genes and breeding programs. Firstly, I will discuss the biology behind 

SCS with regard to the potential value of statistical models and detailed 

phenotyping in genetic analyses. Secondly, I will discuss the consequences an 

involvement of maternal effects on genetic parameters that are estimated for 

traits, with a focus on NAb. In addition, I will investigate if there are indications for 

maternal effects on NAb levels. Finally, as the MHC was identified as a major 

candidate gene involved in NAb levels, the final part of this general discussion 

discusses factors that affect MHC diversity. Further, possible implications of 

livestock breeding on genetic diversity of the MHC region are discussed. 

 

6.2. SCS: definition and statistical analysis 

Most countries routinely record SCS but not clinical mastitis (CM) (e.g. Rupp and 

Boichard, 2003). Given the relatively high genetic correlation between SCS and 

mastitis (Rupp and Boichard, 2003), SCS is frequently used as an indirect measure 

of mastitis in genetic evaluations (Mark et al., 2002). A potential difficulty in the use 

of SCS records in genetic analyses is that SCS records are a mixture of records on 

healthy and diseased animals. Statistical properties or the biological interpretation 

may differ between the healthy and diseased animals, possibly leading to 

suboptimal results of genetic analyses (Bishop and Woolliams, 2010; Riggio et al., 

2010). Insufficiently accounting for the possible statistical and biological differences 
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between healthy and diseased animals may not only affect the estimated genetic 

parameters, but may also affect the ability to detect markers or genes associated 

with the trait. Possible approaches to deal with data potentially being a mixture of 

healthy and diseased animals include statistical modeling of SCS and detailed 

phenotyping. Statistical modeling of SCS involves models and SCS-derived traits 

that allow statistical properties to differ between healthy and diseased cows. 

Detailed phenotyping involves the possibility to further refine the SCS phenotype 

by differentiation of the cell types underlying SCS. Both approaches are discussed 

in the next two sections. 

 

Modeling SCS 

Lactation-average SCS and test-day SCS are frequently used traits in genetic 

selection for increased udder health, or, increased mastitis resistance. Lactation-

average SCS and test-day SCS, however, may not optimally account for the dynamic 

nature of SCS caused by intra-mammary infections (Detilleux et al., 1997), as they 

either ignore variation or are not biologically related to mastitis infections (Windig 

et al., 2010). Therefore, alternative SCS traits have been suggested and studied by 

means of longitudinal SCS data. For instance, Franzén et al. (2012) proposed a 

method to account for changes in SCS during lactation by modeling transition 

probabilities between different states of mastitis (i.e. healthy or diseased), which 

considers both the mastitis liability and the recovery process. Including the entire 

disease course into the genetic evaluation offers possibilities for a substantial 

genetic gain (Franzén et al., 2012). A liability-normal mixture model presented by 

Madsen et al. (2008) allows individual animals to vary in the probability to develop 

mastitis. Results show differences in genetic parameters between SCS of healthy 

and diseased cows, and the model was suggested as a tool to select for liability of 

putative mastitis rather than SCS. 

De Haas et al. (2003) found that pathogen-specific CM is genetically stronger 

correlated to patterns of peaks than to lactation-average SCS, suggesting an 

advantage of selection for patterns of peaks, rather than lactation-average SCS to 

reduce pathogen-specific CM. Heritabilities for the alternative SCS traits, however, 

were in the range of the heritability for lactation-average SCS (e.g. De Haas et al., 

2008, De Haas et al., 2003) and also genetic correlations between alternative SCS 

traits and lactation-average SCS were high (De Haas et al., 2008). The high genetic 

correlations suggest that the alternative SCS traits and lactation-average SCS have a 

common genetic background. As such, when compared to lactation-average or 

test-day SCS, patterns of peaks, and maybe also other alternatively defined SCS 

traits, may provide limited additional information when the aim is to eventually 
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identify genes involved with udder disease to obtain a better understanding of the 

underlying biology.  

 

Detailed phenotyping 

Knowledge on the genetic control (e.g. heritability, correlated responses, and 

associated genes) of SCS may be obtained when phenotypes that describe the 

underlying physiological processes are measured. Somatic cell score is a combined 

trait, largely build up from four other traits, as somatic cells in milk are a blend of 

different cell types: polymorphonuclear neutrophils, macrophages, lymphocytes 

and, to a lesser extent, epithelial cells (Baumert et al., 2009). Although 

measurement of these four cell phenotypes requires additional effort compared to 

measurement of SCS, and therefore may not be feasible for a rather large number 

of animals, studying these four traits underlying SCS separately may provide 

insights that are not obtained when they are analyzed together as SCS because 

information on the individual traits may be diluted when they are combined.  

In a healthy cow the majority of the somatic cells consist of macrophages and 

lymphocytes. Upon bacterial infiltration into the teat end an inflammatory 

response is elicited, which not only increases the number of cells, but also alters 

the predominant cell types. The inflammatory response generates a rapid influx of 

neutrophils from the blood stream into the udder. As a result, neutrophils become 

the predominant cell type (> 95%) in the infected udder (Kehrli and Shuster, 1994). 

As such, the somatic cell composition in healthy cows differs from the composition 

in diseased cows, which indicates that SCS in healthy and diseased cows requires a 

different biological interpretation. 

Not only from a biological viewpoint, but also from a genetic perspective somatic 

cell score may be regarded as a different trait in healthy and diseased cows, as non-

unity genetic correlations (0.78, 0.61) were found between SCS in healthy cows and 

cows with CM (Detilleux et al., 2009; Madsen et al., 2008). In sheep, the genetic 

correlation between SCS in healthy and diseased animals was 0.62 (Riggio et al., 

2010). These findings suggest that SCS in healthy and diseased animals to some 

extent have a common genetic basis but that there are also genes involved in only 

healthy or diseased SCS (Detilleux et al., 2009). Genetic correlations between the 

different SCS cell types were, to my knowledge, not yet studied. The non-unity 

genetic correlation of SCS between healthy and diseased animals, however, 

suggests that these may differ from 1.  

Heritability of disease outcome (healthy or diseased) or SCS are generally relatively 

low. Individual immune components, however, tend to show higher heritabilities. 

For instance, the heritability for the concentration of polymorphonuclear 
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neutrophils in bovine blood was estimated at 0.87 (Detilleux et al., 1994), 

heritabilities for adaptive immune components in porcine serum and plasma were 

above 0.40 for 15 out of 25 traits (Flori et al., 2011), and heritabilities for NAb levels 

ranged from 0.08 to 0.55 (chapter 2). Heritability estimates for NAb isotypes were 

generally equal to or higher than total NAb, the latter making no distinction 

between isotypes. These higher heritabilities for detailed phenotypes suggest a 

larger contribution of genetics to the phenotypic variance than is suggested by less 

detailed phenotypes. As such, less detailed phenotypes may provide an 

underestimated view on the role of genetics in disease resistance. 

Chapter 3 studied the genetic control of NAb levels and not only included total 

NAb, but also NAb isotypes IgA, IgG1 and IgM. Each of these NAb levels was 

measured for four different binding specificities, resulting in 16 traits in total. For 

all binding specificities, few significant associations were identified for total NAb 

levels. Several, however, were detected for NAb isotypes, mainly for isotype IgM. 

The limited number of associations with total NAb could be caused by the trait 

definition. Total NAb are a blend of several isotypes. It was found that these 

isotypes do not all have a common genetic basis (chapter 2). As such, the number 

of genomic regions associated with total NAb is most likely larger than the number 

of genomic regions associated with individual NAb isotypes, whereas the power to 

detect them is most likely reduced. This reduction can be attributed to diluted 

effect of genes that affect a single isotype when not individual isotypes but total 

NAb are considered.  

 

To summarize, statistical modeling and various SCS derived traits can provide useful 

information for selection. Currently, however, statistical models and SCS derived 

traits do not seem to be of additional value when compared to use of lactation-

average or test-day SCS for detection of markers and genes associated with SCS 

when the aim is to obtain insight in the trait biology. Somatic cell score is 

composed of multiple cell types, which likely do not have the same genetic 

background. Studies (chapter 2 and 3) on NAb, which included not only the 

combined trait (total NAb) but also the individual component traits (NAb isotypes), 

suggest that analyses of detailed phenotypes rather than the combined trait can 

provide further insight in the genetic control of traits. 

 

6.3. Maternal effects on antibodies 

Maternal effects can be defined as maternal contributions to offspring phenotypes 

that go beyond the direct genetic contributions (Bernardo, 1996). Examples of 
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maternal contributions to offspring phenotypes include hormones, nutrients and 

antibodies (Hasselquist and Nilsson, 2009). Generally, maternal effects influence 

the offspring phenotype during early life, but in some instances their effects may 

be long-lasting. An enhanced immune response to an antigenic challenge in mice 

was found not only in the F1 generation but also the F2 generation, where only the 

grandmother received the challenge (Hasselquist and Nilsson, 2009). Further, 

maternally derived antibodies shape the antibody repertoire and B cell 

development in the offspring (Fink et al., 2008). Because maternal effects can exert 

a long-term effect on antibody phenotypes the relevance of accounting for 

maternal effects on NAb levels is assessed in this paragraph. Genetic parameters 

for NAb levels were estimated in chapter 2 using a model that did not take 

maternal effects into account. Presence of maternal effects, however, may affect 

results from genetic analyses by introducing a covariance between the maternally 

inherited genes of the offspring and the environment they experience. Therefore it 

is relevant to investigate whether or not this covariance exists. The first section of 

this paragraph focuses on the consequences of the presence of maternal effects on 

the estimation of genetic parameters, followed by a section on maternal 

antibodies. This second section first provides some physiological background on 

maternal antibodies, after which the possible involvement of maternal effects in 

NAb levels will be estimated and discussed.   

 

Consequences of maternal effects for genetic parameters 

Maternal effects can either be of maternal genetic or maternal environmental 

origin. In the case of a maternal genetic effect there is variation in the quality of the 

parental environment, where this variation has a genetic origin (Wolf et al., 1998). 

A dam can for instance have a genetic predisposition to be a good mother. 

Maternal effects can have relevant implications for breeding programs (Bernardo, 

1996; Meyer, 1992). Models that solely account for direct genetic contributions to 

the phenotype, i.e. that ignore maternal effects, have the underlying assumption 

that the covariance between genotype and phenotype equals the additive genetic 

variance of the trait. When maternal effects affect the phenotype, offspring acquire 

not only the parental genes, but also (part of) the environment, which creates a 

covariance between the genes that they inherit and the environment that they 

experience (Wolf et al., 1998; Meyer, 1992). This covariance not only changes the 

relation between genotype and phenotype, but also alters the translation of 

genetic effects into the phenotype and hinders accurate estimation of heritabilities 

or additive genetic variances (Wolf et al., 1998). Thus, depending on the size and 

direction of the maternal effects, the response to selection in breeding programs 
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can differ from the expected response if maternal effects are present but 

unaccounted for in the statistical analysis (Wolf et al., 1998; Meyer, 1992).  

 

Maternal antibodies 

Background 

Transfer of antibodies from mothers to offspring was already documented over a 

century ago (Ehrlich, 1892) and transfer of maternal antibodies can be defined as 

“the transfer of antibodies by an immunocompetent adult, typically a female, to an 

immunologically naïve neonate transplacentally or through colostrum, milk, yolk, 

etc.” (Grindstaff et al., 2003). These maternal antibodies provide the neonate with 

passive immune protection which is fundamental in early life (Pastoret, 2007), as 

their immature adaptive immune system restricts them to an innate immune 

defense (Hasselquist and Nilsson, 2009). The maternal antibodies not only protect 

the neonate by coating pathogens which intervenes with pathogenicity, but also 

reduce the resource requirements on the neonate’s immune system which secures 

availability of resources for growth or maintenance needs (Addison et al., 2009). 

The amount and repertoire of the maternal antibodies transmitted to offspring 

seem to reflect the maternal disease environment and to mirror the maternal 

systemic antibody population (Hasselquist and Nilsson, 2009).  

In cattle, as in sheep, horses and pigs, antibodies are not transferred 

transplacentally (Pravieux et al., 2007). Rather, transmission of antibodies occurs 

via colostrum and milk, where the transmission depends on both the maternal 

secretion of antibodies into the colostrum or milk and the absorption of these 

secreted antibodies by the neonate (Baintner, 2007).  

Antibodies in milk or colostrum may be blood-derived or they may be locally 

produced by plasma cells, the latter being pre-dominantly the case for isotype IgA 

(Stelwagen et al., 2009). Release of HCl and pepsinogen in the suckling stomach is 

limited, which allows passage of undegraded maternal antibodies into the small 

intestine. During 24 - 48 hours the bovine neonatal gut absorbs all kinds of 

proteins, including IgA, IgM and IgG, coupled with a negligible digestion of the 

antibodies. This short period that enables the neonate to absorb maternal 

antibodies is compensated for by an efficient absorption and a substantial gut 

length. The closure of the protein absorption is followed by a prolonged secretion 

of the absorbed antibodies in lymph and by a rapid digestion of newly acquired 

maternal proteins to cover the amino acid requirements of the neonate (Baintner, 

2007). To optimize antibody absorption of neonates, calves should be fed one to 

one and a half liters colostrum directly (at the very most four to six hours (Heinrichs 

and Elizondo-Salazar, 2009)) after birth (Remmelink et al., 2012) and at least four 
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liters should be provided within the first eight hours after birth (Heinrichs and 

Elizondo-Salazar, 2009). Calves should be fed colostrum at least the first two days 

after birth. Preferably, calves are fed colostrum from cows that have been on the 

farm for some time and it is advised that farmers have some colostrum from older 

cows in storage, so that calves can always be provided with colostrum in case of 

insufficient production of the dam (Remmelink et al., 2012). 

 

Maternal effects on Nab 

It is yet unknown if NAb levels are affected by maternal effects, and, if so, to what 

extent levels are affected by maternal effects and whether levels are affected by 

maternal genetics or maternal environment. A limitation in analysis of maternal 

environmental effects is that unless embryo transfer or cross-fostering was applied, 

direct additive effects and maternal environmental effects are largely confounded 

(Meyer et al., 1992). Although the data is not optimal to estimate maternal effects, 

which were therefore not accounted for in the models of chapter 2 and 3, I tried to 

obtain some insight in whether maternal effects may be involved in antibody levels. 

To study whether maternal genetic effects affect NAb levels the model used to 

estimate genetic parameters for NAb levels, model 1 in chapter 2, was extended 

with a random dam effect which, in addition to the random animal effect, was 

linked to the pedigree: 

 

ijklmnoonmlkijklmno

ijklmnoijklmnoijklmno

edamanimalherdstypeseasonafc

bafcbebby ijklmno






2

43
dim05.0

21 dim
,     (1) 

 

where the response variable y was the NAb level; μ represented the population 

mean; dimijklmno was the covariate that defined the effect of lactation stage, 

modeled with a Wilmink curve (Wilmink, 1987) with regression coefficients b1 and 

b2; afcijklmno was the covariate that accounted for the effect of age at first calving 

with regression coefficients b3 and b4; seasonk accounted for the fixed effect of 

season of calving in three categories: summer (June - August 2004), autumn 

(September – November 2004) and winter (December 2004 – February 2005); 

stypel was the fixed effect of sire type in three classes: proven bull, young bull or 

other proven bull. Unlike proven bulls, young bulls were still under evaluation 

regarding their genetic merit, to obtain at least three cows per herd the dataset 

included additional cows sired by other proven bulls; herdm was the random effect 

that accounted for farm effects; animaln was the random additive genetic effect of 
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the cow; damm was the random maternal genetic effect of the dam on the 

phenotype of the cow; and eijklmno was the random residual effect. 

The difference in log-likelihood between the extended model and the original 

model was tested for significance based on a 2
1 distribution. This was done for 

each individual NAb trait, as defined in chapter 2, as well as for fat, protein and 

milk yield. For none of the traits the extended model had a significantly better fit 

than the original model (results not shown). Therefore, I did not find evidence that 

NAb levels in milk are affected by maternal genetic effects. 

An indication of maternal environmental effects on traits measured in cows may be 

obtained when the data are analyzed with a sire model and a dam model:  
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 ,     (2) 

 

where model components were as formulated for model 1 and siren was the 

random additive genetic effect of the sire, and 

 

ijklmnnmlkijklmn

ijklmnijklmnijklmn

edamherdstypeseasonafc

bafcbebby ijklmn






2

43
dim05.0

21 dim
 ,     (3) 

 

where model components were as formulated for model 1 and damn was the 

random additive genetic effect of the dam. 

When maternal effects do not affect the concerning trait, the additive genetic 

variance component estimated with the sire model and with the dam model is 

expected to be of the same approximate magnitude:  

 

MSdamsirea  222  ,                                                                                                 (4) 

 

where 2
a  is the additive genetic variance, 2

sire  is the part of the additive genetic 

variance explained by the sire (i.e. 2

4

1
a  in the absence of maternal effects), 2

dam

is the part of the additive genetic variance explained by the dam (i.e. 2

4

1
a  in the 

absence of maternal effects), and MS is the Mendelian sampling term. When the 
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part of the additive genetic variance explained by the dam is substantially larger 

than that of the sire, this could suggest presence of maternal effects. Additive 

genetic variances for NAb levels obtained with an animal model, a sire model and a 

dam model are shown in Table 1.  

 

Table 6.1 Additive genetic variances for NAb levels obtained with an animal model (
2
a ), a 

sire model ( 
2
sire ), and a dam model (

2
dam ) for total natural antibody levels (T) and 

natural antibody isotype immunoglobulin (Ig)A, IgG1 and IgM levels binding keyhole limpet 

hemocyanin (KLH), lipopolysaccharide (LPS), lipoteichoic acid (LTA), or peptidoglycan (PGN).
1
 

Corresponding standard errors are in parentheses. The P-value reflects the significance of 

the difference in log-likelihood (DLog-L) between a model that estimated 
2
dam  and a model 

that was fixed to the expected 
2
dam  (=

2

4

1
a ). 

 

Trait 2
a

 
4*

2
sire 2

 4*
2
dam 2

 DLog-L  P-value 

KLH-T 0.20 (0.05) 0.17 (0.01) 0.19 (0.03) 10.10 <0.01 
    KLH-IgA 0.47 (0.12) 0.35 (0.03) 0.70 (0.07) 17.18 <0.01 
    KLH-IgG1 0.68 (0.18) 0.70 (0.05) 0.24 (0.07) 0.44 0.51 
    KLH-IgM 0.41 (0.11) 0.28 (0.02) 0.79 (0.07) 28.58 <0.01 
LPS-T 0.12 (0.05) 0.09 (0.01) 0.29 (0.04) 4.38 0.04 
    LPS-IgA 0.64 (0.16) 0.51 (0.04) 0.59 (0.07) 18.34 <0.01 
    LPS-IgG1 0.42 (0.15) 0.48 (0.05) 0.09 (0.06) 0.28 0.60 
    LPS-IgM 0.41 (0.11) 0.26 (0.02) 0.66 (0.07) 21.08 <0.01 
LTA-T 0.23 (0.07) 0.17 (0.02) 0.42 (0.05) 13.52 <0.01 
    LTA-IgA 0.52 (0.13) 0.40 (0.03) 0.67 (0.07) 17.68 <0.01 
    LTA-IgG1 0.11 (0.08) 0.08 (0.02) 0.39 (0.07) 4.14 0.04 
    LTA-IgM 0.31 (0.08) 0.22 (0.02) 0.60 (0.05) 26.22 <0.01 
PGN-T 0.10 (0.05) 0.11 (0.01) 0.13 (0.03) 0.90 0.34 
    PGN-IgA 0.25 (0.08) 0.10 (0.02) 0.52 (0.05) 23.56 <0.01 
    PGN-IgG1 0.24 (0.11) 0.32 (0.03) 0.02 (0.05) 0.00 1 
    PGN-IgM 0.29 (0.08) 0.15 (0.02) 0.71 (0.06) 28.90 <0.01 
Fat yield 0.24 (0.06) 0.18 (0.01) 0.26 (0.14) 0.00 1 
Milk yield 2.15 (0.62) 1.77 (0.15) 6.23E-07

3 
(0.63E-08) 0.14 0.71 

Protein yield 0.04 (0.01) 0.03 (0.002) 1.72E-09
3 

(0.17
E
-10) 0.10 0.75 

1
 Antibody names are a combination of antigen abbreviation and immunoglobulin isotype

 

2
 Values were multiplied by 4 for ease of comparison to 

2
a  

3
 LogL not converged because the parameter value was close to boundary    

 

For all but three of the NAb traits, it was found that the additive genetic variance 

explained by the dam was higher than the additive genetic variance explained by 

the sire. All three traits with higher sire variance were responses to IgG1. This was 
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not found for the production traits fat, milk and protein yield. For fat yield, the 

additive genetic variance explained by the dam was of the same approximate size 

as what was found for with the sire and animal model. For milk and protein yield 

the estimated genetic variance explained by the dam was close to zero, whereas 

the residual variance and herd variance for these two traits were higher when the 

dam model was applied than when the animal model was applied. This suggests 

that for milk and protein yield the dam model is not able to separate the individual 

variance components. To test whether the additive genetic variance explained by 

the dam differed significantly (according to 2
1  distribution) from her expected 

contribution (= 2

4

1
a ) the log-likelihood of the dam model was compared to the log-

likelihood of an ‘expected contributions’ model. In this ‘expected contributions’ 

model the additive genetic variance explained by the dam was fixed to the ratio of 

the expected contribution, 2

4

1
a , over 2

e  where 2
a  was obtained from the animal 

model and 2
e  was obtained from the dam model. The P-values corresponding to 

the difference between the dam model and the ‘expected contributions’ model are 

provided in table 1. With five exceptions, additive genetic variances explained by 

the dam significantly differed from the expected contributions, which could 

indicate that the dam contributes more to the antibody phenotype than what is 

directly inherited by the offspring. Herd variances and phenotypic variances were 

of the same approximate magnitude for the dam model, the sire model and the 

animal model. Among the five non-significant exceptions were three out of four 

IgG1 levels. This may be due to the biology of IgG1. The antigens 

lipopolysaccharide, lipoteichoic acid and peptidoglycan are present on bacteria 

commonly present in the environment. Cows may have been previously exposed to 

these antigens. As such, antibodies measured against these antigens may partly 

find their origin in the adaptive immune system limiting the potential for maternal 

effects. Isotype IgG is of main importance in the adaptive immune response 

(Schroeder and Cavacini, 2010). Therefore, it is likely that the environment of the 

animal itself is much more important for the antibody levels than maternal effects. 

The importance of the animal’s own environment for IgG levels is supported by 

results from chapter 2, which show that IgG levels are more dependent on 

environmental factors than IgA and IgM levels. 

 

To summarize, maternal effects can have a maternal genetic and a maternal 

environmental origin. No evidence was found that NAb levels in milk are affected 

by maternal genetic effects. Maternal environmental effects, however, could play a 
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role in NAb levels as analyses suggested that in general dams contribute more to 

the offspring antibody phenotype than what was expected based on additive 

genetics alone. Heritabilities for most NAb levels (chapter 2) may therefore 

somewhat overestimated, but as the data structure is not optimal to estimate 

maternal effects it is not possible to determine the extent of the overestimation. 

These results warrant further study for the influence of maternal effects on NAb 

levels.  

 

6.4. Genetic diversity and selection at the major 

histocompatibility complex 

Chapter 3 identified the major histocompatibility complex (MHC), located on 

bovine autosome 23, as a candidate region with an important effect on the 

regulation of NAb isotype IgM levels. This information could be used in selective 

breeding by selecting for specific MHC haplotypes. The MHC plays a central role in 

the immune response and regulation, as suboptimal functioning of the MHC 

hinders an effective immune response and makes further infection likely (Knapp, 

2005). The immune system is a highly interactive system, which functions through a 

cascade of responses that are directly or indirectly linked to each other, some more 

than others. It therefore seems almost inevitable that genetic selection for one 

immunological trait leads to correlated responses in other immunological traits, 

especially when selection acts on major genes of the immune system, such as the 

MHC. The MHC contains the most polymorphic genes in the vertebrate genome 

(e.g. Knapp, 2005; Bernatchez and Landry, 2003; Hughes, 2002), with co-dominant 

expression of alleles (Knapp, 2005). Several (evolutionary) processes may act to 

maintain this genetic diversity, including balancing selection (e.g. Bernatchez and 

Landry, 2003), recombination (e.g. Carrington, 1999) and sexual selection by mate 

choice (e.g. Knapp, 2005). Both the central role of the MHC in the immune system 

and the possible evolutionary aim to maintain genetic diversity at the MHC region 

may have consequences for breeding schemes. For instance, the central role of the 

MHC may lead to undesired correlated responses or selective breeding may be 

counteracted by natural selection. To prevent negative outcomes for the animal 

and the breeding scheme, it is important to obtain knowledge on the biology of the 

MHC region before pursuing genetic selection on this region. This paragraph about 

the MHC will first provide a short background in the possible forces acting on 

maintenance of genetic diversity in the MHC region, after which possible 

implications of selective breeding on MHC diversity are discussed. 
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Balancing selection 

Maintenance of genetic diversity in the MHC may originate from host-pathogen co-

evolution (e.g. Knapp, 2005), where two basic co-evolution types exist. The first 

type is the overdominance, or heterozygote advantage, where MHC heterozygote 

individuals have an advantage over homozygotes because they have the ability to 

resist a broader array of pathogens (Bernatchez and Landry, 2003; Hughes and 

Yeager, 1998). The second type is negative frequency dependent selection, where 

an inability of the most common host MHC genotypes to respond to one or more 

pathogens decreases the relative fitness of these genotypes. This provides a 

selective advantage to relatively rare MHC alleles. The time-lag character of such 

co-evolutionary responses could result in constant shifts in fitness values of 

different genotypes in both hosts and pathogens, and could thereby provide in the 

maintenance of a high genetic diversity (Bernatchez and Landry, 2003).   

One of the two most frequently used methods to determine whether balancing 

selection is acting upon the MHC region is the dn/ds ratio test, which compares the 

number of non-synonymous (amino acid-altering) mutations to the number of 

synonymous mutations (e.g. Bernatchez and Landry, 2003; Hughes, 2002; Hughes 

and Yeager, 1998). In general, most non-synonymous mutations negatively affect 

protein structure and function and therefore natural selection rapidly eliminates 

such mutations. The dn/ds ratio, however, showed strong evidence of natural 

selection favoring non-synonymous mutations in the MHC region (Bernatchez and 

Landry, 2003; Hughes, 2002).  

 

Recombination 

Recombination events during meiosis allow for re-arrangements of genetic material 

which generates novel combinations of alleles in the offspring. In this way, 

recombination aids in maintaining genetic diversity and continuing genomic 

evolution (Carrington, 1999). Recombination, however, seems to occur in specific 

locations. In the murine MHC, four regions with high recombination rates were 

identified, encompassing several ‘hotspots’ (Carrington, 1999). Other regions show 

strong linkage disequilibrium (Carrington, 1999; White, 1989). This strong linkage 

disequilibrium suggests that in some instances insufficient time has elapsed for 

recombination to break up these regions (White, 1989), but it could also suggest 

that these regions have a selective advantage and recombination is suppressed by 

some mechanism (Carrington, 1999; White, 1989). Such suppression of 

recombination provides opportunities for polymorphisms to be retained for a 

substantial longer period of time than expected.  
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Sexual selection by mate choice 

Another strategy to maintain genetic variation in the MHC is sexual selection by 

mate choice.  

Sexual selection most likely has evolved for two reasons: inbreeding avoidance and 

increased disease resistance. The relative contribution of these two factors, 

however, is unknown (Potts et al., 1994). Although inbreeding avoidance driven as 

well as disease resistance driven sexual selection both aim to increase offspring 

fitness, the starting-point of these two forms of sexual selection differs. Inbreeding 

avoidance driven sexual selection tries to avoid mating of related individuals who 

are more likely to have certain (MHC) alleles in common (Bernatchez and Landry, 

2003). This probably functions to increase overall fitness of individuals, rather than 

only disease resistance. Sexual selection driven by disease resistance, however, 

functions primarily to increase disease resistance in progeny. Choosy parents may 

have increased fitness for disease resistance because a disproportionate number of 

offspring have a heterozygote genotype (Bernatchez and Landry, 2003), which are 

likely able to bind a broader array of pathogens compared to offspring with a 

homozygote genotype (Bernatchez and Landry, 2003; Hughes and Yeager, 1998). 

Further, mating preferences may provide a means for a population to ‘keep up’ 

with the evolution of pathogens (Bernatchez and Landry, 2003), which evolve due 

to mutations.  

It is hypothesized that sexual selection by mate choice functions through MHC-

related olfactory signaling, which was found in a diversity of species, ranging from 

sticklebacks (Reusch et al., 2001) to humans (Chaix et al., 2008). More research, 

however, is needed to unravel the relationship between odor and MHC genes 

(Knapp, 2005). 

 

Consequences of livestock production for MHC diversity 

A key characteristic of the MHC is its high level of polymorphism (e.g. Bernatchez 

and Landry, 2003). Genetic diversity in the MHC region is maintained by natural 

selection through forces including balancing selection, recombination, and sexual 

selection by mate choice. Selective breeding may reduce genetic variation in a trait. 

This reduction in genetic variation may influence the ability of a population to cope 

with novel circumstances (Neeteson-van Nieuwenhoven et al., 2012) such as novel 

pathogens. Negative effects associated with reduced genetic variation in the MHC 

region have been reported in some species. For instance, it was shown recently 

that female Magellanic penguins that were homozygous for DRβ1 genes, in 

contrast to heterozygote females, did not fledge any chicks (Knafler et al., 2012). 

Negative effects of increased homozygosity in the MHC region were also suggested 
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by studies in humans which indicate that some homozygote offspring are 

selectively aborted. Further, in pigtailed macaques reproductively unsuccessful 

mates had a higher amount of MHC alleles in common than reproductively 

successful mates (Knapp, 2005).  

The MHC diversity and dynamics may be affected by selective breeding on the MHC 

region, either via direct selection or indirect though correlated responses. It is 

unknown how or to what extent natural selection counteracts selective breeding or 

how and to what extent selective breeding affects the contribution of natural 

selection to genetic diversity in the MHC region. Further, it is unknown how 

important MHC diversity still is in current husbandry. In the remaining part of this 

paragraph I will briefly discuss how selective breeding may affect genetic diversity 

of the MHC and the role of natural selection in maintenance of diversity, followed 

by some suggestions to study MHC diversity in current livestock production. 

The most obvious effect of selective breeding on the three described forces of 

natural selection is intervention in sexual selection by mate choice. One reason for 

the evolution of mate choice is inbreeding avoidance (Potts et al., 1994). In 

livestock production mate choice is a human decision, which may lead to a choice 

that differs from the choice the animals would have made themselves in the 

absence of selective breeding. In selective breeding it is common to pose 

restrictions on the relatedness between mates based on the average inbreeding 

coefficient. In this way we, unconsciously, allow for genetic diversity of the MHC as 

less related individuals are more likely to have fewer alleles in common. Under 

influence of natural selection, however, animals might specifically try to avoid 

inbreeding at the MHC locus rather than avoid average inbreeding. 

Farm management practices may have reduced the importance of MHC diversity 

and the contribution of balancing selection. Hygienic measures can eliminate or 

diminish the risk of infection, whereas treatment and vaccination can prevent or 

diminish a reduction in fitness of infected animals that would have experienced a 

reduced fitness if these measures were not provided. As a result of these 

measures, our livestock populations may have a less dynamic MHC than they would 

have under the sole influence of natural selection.  

The process of recombination is the least affected by current livestock production, 

as it is a process that occurs during meiosis (Carrington, 1999), which is the least 

likely to be under human control. The process of recombination will remain present 

every meiosis to generate new combinations of (MHC) alleles and as such 

contribute to genetic diversity. With more homozygosity in the MHC region of a 

population, however, fewer opportunities remain for meiosis to create novel 

combinations. 
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It is probable that MHC diversity has become less important for our livestock than it 

is for natural populations, as farm management practices may compensate for the 

consequences of reduced MHC diversity. Diversity could become, however, more 

important when the aim is to breed for more robust animals, i.e. animals that are 

more resistant to disease, require less treatment and that require less labour. A 

reduced importance of diversity does not mean that maintenance of diversity is not 

relevant in current livestock production. A large amount of allelic loss could result 

in negative effects, such as fertility problems (e.g. Knapp, 2005), that cannot be 

compensated for by treatments and vaccinations. In contrast, if there is indeed an 

evolutionary strive for maintenance of genetic diversity in the MHC region forces of 

natural selection may counteract selective breeding for this region.  

Insight in the effects of human interference (e.g. selective breeding, husbandry) on 

MHC diversity can be obtained by comparing the diversity of the MHC region in 

bovine populations that differ in the extent of human interference. If MHC diversity 

is important for population fitness and survival, it can be expected that populations 

with and without human intervention are fairly similar in MHC diversity. Further, 

such comparative studies can provide insight in trans-species polymorphisms and 

recombination hotspots. Studies using MHC genotypes may provide insight in 

problems associated with a large amount of homozygosity the MHC region or with 

homozygosity in individual MHC genes. Such studies can aid in risk-assessment for 

loss of MHC diversity and provide insight in the importance of preserving MHC 

diversity in breeding schemes.   

 

To summarize, in chapter 3 of this thesis I showed that the MHC is an important 

region affecting NAb levels in milk. Results from previous studies showed that 

natural selection strives for high genetic diversity of the MHC region by for instance 

balancing selection, recombination and mate choice. Negative effects of reduced 

MHC diversity have been reported for animal fitness, which means that direct or 

indirect selection on MHC can impose a risk. Reduced diversity, however, may be 

counteracted by natural selection. Although MHC diversity may have become less 

important in current animal husbandry due to farm management practices such as 

hygienic measures, treatment and vaccination, this does not mean that 

maintenance of MHC diversity is not relevant in current livestock production. Loss 

in MHC diversity may result in negative effects on animal health which cannot be 

compensated for by treatments and vaccinations. Further research, however, is 

needed to obtain more insight on MHC diversity and possible negative effects of 

loss of diversity. 
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6.5. Thesis conclusions  

This thesis showed that genetic factors substantially contribute to innate immunity. 

Natural antibody levels are heritable traits and a common genetic basis was found 

for NAb isotypes IgA and IgM. Findings from chapters 2 and 3 indicate that, when 

compared to total NAb, isotypes are more detailed phenotypes that allow for a 

better insight in different elements of the immune response or immune 

competence. Genomic regions associated with NAb levels were identified on all 

bovine autosomes and a region on chromosome 23 was found to have an 

important effect on levels of isotype IgM. For SCS (chapter 4), however, few 

associated genomic regions were found. Chapter 5 detected macro- and micro-

environmental sensitivity in test-day SCS, which indicates that a cow’s sensitivity to 

changes in her environment is affected by genetics. Further, chapter 5 showed that 

macro- and micro-environmental sensitivity are positively correlated. The present 

chapter (chapter 6) discussed some of the biology behind NAb and SCS, as trait 

biology may affect genetic parameter estimation, identification of candidate genes 

and breeding programs. This chapter contained three conclusions: firstly, analyses 

of cell types (detailed phenotypes) rather than SCS can provide further insight in 

the genetic control of SCS and mastitis. Secondly, no evidence was found for 

maternal genetic effects on NAb levels in milk. Maternal environmental effects, 

however, could play a role in NAb levels. Finally, genetic diversity in the MHC 

region is maintained by natural selection. Selective breeding and farm 

management practices may affect this genetic diversity, which could bring about 

negative effects on animal fitness, such as fertility problems. Selective breeding for 

specific MHC haplotypes may therefore impose a risk for negative effects on animal 

health. 
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Summary 

Reduction of the impact of livestock diseases becomes increasingly important, not 

only for economic and environmental reasons, but also from a human and animal 

welfare perspective. One way to reduce the impact of disease is through 

incorporation of disease resistance into livestock breeding schemes. Livestock 

breeding has the potential to decrease the impact of disease on the long-term. 

Besides production traits, breeding schemes increasingly include traits related to 

welfare, such as disease resistance. Mastitis constitutes an important infectious 

disease in dairy cattle, where somatic cell score (SCS) is frequently used in dairy 

cattle breeding schemes as an indicator trait for mastitis. Still, there is a lot to be 

learned about the interpretation of genetic parameters and the biology of disease 

resistance and SCS. This PhD thesis aimed to obtain additional insight in disease 

resistance and SCS through the following objectives: 1) quantify the impact of 

genetics on innate immunity, represented by natural antibodies (NAb), through 

estimation of heritabilities and genetic correlations; 2) identify the genomic regions 

involved in SCS and NAb levels; and 3) quantify the impact of genetics on 

environmental sensitivity for SCS. Chapter 1 introduces the functional traits NAb 

levels and SCS, reviews the structure and function of NAb, discusses the relation of 

SCS with mastitis and introduces concepts of genome-wide association studies and 

environmental sensitivity. Chapter 2 covers the estimation of heritabilities for NAb 

levels in milk. In addition, genetic correlations between different NAb isotype levels 

are estimated. In Chapter 3 a genome-wide association study is performed on the 

NAb levels for which genetic parameters were estimated in chapter 2. Chapter 4 

includes a genome wide association study on SCS, where both lactation-average 

SCS and the trait standard deviation in lactation-average SCS are analyzed. Chapter 

5 studies the genetic variation in environmental sensitivity for SCS by means of a 

double hierarchical generalized linear model. Finally, chapter 6 discusses some of 

the biology that is behind NAb and SCS.  

In chapter 2 genetic parameters for NAb isotypes immunoglobulin (Ig) A, IgG1 and 

IgM levels binding the bacterial antigens lipopolysaccharide, lipoteichoic acid, 

peptidoglycan and the model antigen keyhole limpet hemocyanin were estimated 

in Dutch Holstein-Friesian cows. Further, this study included total NAb levels 

binding the antigens mentioned above, making no isotype distinction. The study 

showed that NAb isotype levels are heritable, with heritabilities ranging from 0.06 

to 0.55, and that these heritabilities were generally higher than heritabilities for 

total NAb levels. Genetic correlations were nearly all positive and ranged from -

0.23 to 0.99. Strong genetic correlations were found between IgA and IgM. Genetic 
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correlations were substantially weaker when they involved IgG1, indicating that IgA 

and IgM have a common genetic basis, but that the genetic basis for IgG1 differs 

from that for IgA or IgM. Results from this study indicate that NAb isotype levels 

show the potential for effective genetic selection. Further, NAb isotypes may 

provide a better characterization of different elements of the immune response or 

immune competence. As such, NAb isotypes may enable more effective decisions 

when breeding programs start to include innate immune parameters.  

Chapter 3 aimed to provide more insight in the largely unknown genomic basis of 

NAb levels in milk using the antibody phenotypes for which genetic parameters 

were estimated in chapter 2. Additionally, genotype information consisting of 

about 50,000 markers was available for these cows. Each individual marker was 

tested for detection of variation in NAb levels. Results show that information can 

be gained when total NAb levels are further subdivided into isotype levels, 

suggesting that analysis of detailed phenotypes can provide further insight in the 

genetic control of traits. Further, this study identified genomic regions associated 

with NAb levels on all bovine autosomes. A region on BTA23 was consistently found 

significantly associated with genetic variation in isotype IgM levels across the 

different binding specificities. The bovine major histocompatibility complex (MHC) 

is located near this region, making this a region of candidate gene(s) involved in 

NAb expression in dairy cows both from a functional and positional perspective.  

Chapter 4 aimed to identify genomic regions associated with lactation-average SCS 

and the standard deviation of test-day SCS. It is one of the first studies to combine 

detailed phenotypic and genotypic cow data from research dairy herds located in 

different countries. The combined dataset contained up to 52 individual test-days 

per lactation and thereby aimed to capture temporary increases in SCS associated 

with infection, mainly by means of the standard deviation of test-day SCS. 

Phenotypic data consisted of 46,882 test-day records on 1,484 cows and genotypic 

data consisted of 37,590 markers. The association between each individual marker 

and the phenotypic data was estimated. The analyses showed that lactation-

average SCS was significantly associated with a marker on chromosome 4 and a 

marker on chromosome 18. Likewise the standard deviation of test-day SCS was 

associated with this marker on chromosome 18. In addition, the standard deviation 

of test-day SCS was significantly associated with a marker on chromosome 6. 

Relatively few associations were found, suggesting that lactation-average SCS and 

the standard deviation of test-day SCS are controlled by multiple loci, each with a 

relatively small effect, distributed across the genome.  

Chapter 5 studied environmental sensitivity for SCS. Sensitivity to respond to 

environmental factors can have a genetic origin. Environmental factors can be 
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divided into known and unknown environmental factors, referred to as macro- and 

micro environment, respectively. Macro-environmental sensitivity can be 

expressed as genetic variation in the slope of a reaction norm, whereas micro-

environmental sensitivity can be expressed as differences in residual variance that 

have a genetic origin. The aim of the study was to estimate macro- and micro-

environmental sensitivity for SCS in Holstein dairy cattle, where the macro-

environment was defined as the herd-year average somatic cell count. Variance 

components were estimated with a double hierarchical generalized linear model 

extended with a reaction norm using the ASReml software. Both macro- and micro-

environmental sensitivity were found for SCS and these two sensitivities were 

found to be positively correlated. Estimated variance components and genetic 

correlations obtained with the macro or micro model resembled those obtained 

with the macro-micro model, which suggests that use of macro or micro models 

does not lead to biased estimates resulting from micro models partly picking up 

macro-environmental sensitivity or vice versa. Knowledge on both forms of 

sensitivity, however, can aid in optimization of selection as correlations between 

the additive genetic variance in intercept, slope and environmental variance were 

all away from unity. We conclude that selection for reduced environmental 

sensitivity has the potential to reduce variability in animal performance due to 

known and unknown environmental factors and herewith increase predictability of 

performance across and within environments. 

Chapter 6 discussed some of the biology behind NAb and SCS, as trait biology may 

affect genetic parameter estimation, identification of candidate genes and 

breeding programs. Knowledge on disease biology is of vital importance to fully 

understand the processes involved when selecting for increased disease resistance, 

as a better understanding enables a better prediction of the consequences. 

Chapter 6 contained three conclusions: firstly, analyses of cell types (detailed 

phenotypes) rather than SCS can provide further insight in the genetic control of 

SCS and mastitis. Secondly, no evidence was found for maternal genetic effects on 

NAb levels in milk. Maternal environmental effects, however, could play a role in 

NAb levels. Finally, genetic diversity in the MHC region is maintained by natural 

selection. Selective breeding and farm management practices may affect this 

genetic diversity, which could bring about negative effects on animal fitness, such 

as fertility problems. Selective breeding for specific MHC haplotypes may therefore 

impose a risk for negative effects on animal health. 
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Samenvatting 

Het verminderen van de impact van veeziekten wordt steeds belangrijker, niet 

alleen omwille van economie en milieu, maar ook omwille van menselijk en dierlijk 

welzijn. Een mogelijkheid om de impact van ziekte te verminderen is het opnemen 

van ziekteresistentie in fokprogramma’s. Dierfokkerij biedt de mogelijkheid om de 

impact van dierziekten op de lange termijn te reduceren. Naast 

productiekenmerken bevatten fokprogramma’s in toenemende mate kenmerken 

welke gerelateerd zijn aan welzijn, zoals ziekteresistentie. Mastitis is een 

belangrijke infectieziekte in melkvee, waar het celgetal (SCS) een kenmerk is dat 

veelvuldig in fokprogramma’s wordt gebruikt als een indicator voor mastitis. Nog 

steeds is er veel te leren over de interpretatie van genetische parameters en de 

biologie achter ziekteresistentie en SCS. Deze PhD thesis had als doel aanvullend 

inzicht te verkrijgen in ziekteresistentie en SCS middels de volgende doelen: 1) 

kwantificeren van de impact van genetica op innate immuniteit door het schatten 

van erfelijkheidsgraden en genetische correlaties, waarbij natuurlijke antilichamen 

(NAb) als model kenmerk zijn genomen; 2) identificeren van regio’s op het genoom 

welke een rol spelen in SCS en NAb niveaus; en 3) kwantificeren van de impact van 

genetica om milieugevoeligheid van SCS. Hoofdstuk 1 introduceert de kenmerken 

NAb niveaus en SCS, geeft een beknopt overzicht van de structuur en functie van 

NAb, bespreekt de relatie tussen SCS en mastitis en introduceert principes van 

genome-wide assocatie studies en milieugevoeligheid. Hoofdstuk 2 betreft de 

schatting van erfelijkheidsgraden voor NAb niveaus in melk. Daarnaast zijn tevens 

genetische correlaties tussen verschillende NAb isotype niveaus geschat. In 

hoofdstuk 3 is een genome-wide associatie studie uitgevoerd voor de NAb niveaus 

waarvoor genetische parameters zijn geschat in hoofdstuk 2. Hoofdstuk 4 bevat 

een genome-wide associatie studie voor SCS, waar zowel lactatiegemiddeld SCS als 

het kenmerk standard deviatie voor test-dag SCS zijn geanalyseerd. Hoofdstuk 5 

bestudeert de genetische variatie in milieugevoeligheid van SCS middels een 

double hierarchical generalized linear model. Tot slot bespreekt hoofdstuk 6 wat 

van de biologie rondom NAb en SCS.  

In hoofstuk 2 zijn genetische parameters geschat voor NAb isotypes 

immuunglobuline (Ig)A, IgG1 en IgM niveaus, welke in staat zijn de bacteriële 

antigenen lipopolysaccharide, lipoteichoic acid, peptidoglycaan en het model 

antigen keyhole limpet hemocyanin te binden. Deze NAb niveaus zijn gemeten in 

melk van Nederlandse Holstein-Friesian koeien. Naast isotypes waren in deze 

studie ook totale NAb niveaus opgenomen, welke geen onderscheid maken tussen 

isotypes. De studie liet zien dat NAb niveaus erfelijk zijn met erfelijkheidsgraden 
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variërend van 0.06 tot 0.55, en dat erfelijkheidsgraden voor NAb isotype niveaus 

over het algemeen hoger zijn dan erfelijkheidsgraden voor de totale NAb niveaus. 

Genetische correlaties waren vrijwel allen positief, variërend van -0.23 tot 0.99. 

Sterke genetische correlaties werden gevonden tussen IgA en IgM. Genetische 

correlaties waren aanzienlijk minder sterk wanneer de combinatie waarvoor de 

correlatie werd geschat IgG1 bevatte. Dit suggereert dat IgA en IgM een 

gezamelijke genetische oorsprong kennen, maar dat de genetische oorsprong voor 

IgG1 verschilt van dat voor IgA of IgM. Resultaten uit deze studie laten daarnaast 

zien dat NAb isotype niveaus potentie tot effectieve selectie hebben. Daarbij 

zouden NAb isotypes een betere karakterisering kunnen verschaffen met 

betrekking tot de verschillende elementen in een immuunrespons of immuun 

competentie. Zodoende zouden NAb isotypes effectievere beslissingen kunnen 

bewerkstelligen wanneer innate immuunparameters onderdeel worden 

fokprogramma’s. 

Hoofdstuk 3 had als doel meer inzicht te verschaffen in de grotendeels onbekende 

genomische basis van NAb niveaus in melk met behulp van de antilichaam 

fenotypes waarvoor genetische parameters zijn geschat in hoofdstuk 2. Daarbij was 

genotype informatie, bestaand uit ongeveer 50.000 markers, beschikbaar voor 

deze koeien. Iedere marker werd individueel getest op detectie van variatie in NAb 

niveaus. Resultaten laten zien dat extra informatie verkregen kan worden wanneer 

totale NAb niveaus verder worden onderverdeeld in isotype niveaus. Dit suggereert 

dat het analyseren van gedetailleerde fenotypes meer inzicht kan verschaffen in de 

genetische achtergrond van kenmerken. Daarnaast werden in deze studie 

genomische regio’s gevonden op alle boviene autosomen welke geassocieerd 

werden met NAb niveaus. Een regio op chromosoom 23 was consistent 

geassocieerd met genetische variatie in isotype IgM niveaus ongeacht de 

bindingsspecificiteit van de antilichamen. Het boviene major histocompatibility 

complex (MHC) ligt dichtbij deze regio. Zowel vanuit een functioneel als een 

positioneel perspectief is dit een regio met kandidaat genen betrokken bij NAb 

expressie in melk koeien.  

Hoofdstuk 4 had als doel genomische regio’s te identificeren welke geassocieerd 

zijn met lactatiegemiddeld SCS en de standaarddeviatie van test-dag SCS. Het is een 

van de eerste studies welke gedetailleerde fenotypische en genotypische koe data, 

afkomstig van onderzoeksboerderijen in verschillende landen, combineert. De 

gecombineerde dataset bevatte tot 52 individuele test-dagen per lactatie met als 

doel tijdelijke stijgingen in SCS geassocieerd met infecties vast te leggen, met name 

middels de standaard deviatie van test-dag SCS. Fenotype data bestond uit 46.882 

test-dag waarnemingen van 1.484 koeien en genotype data bestond uit 37.590 
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markers. De associatie tussen iedere individuele marker en de fenotype data werd 

geschat. De analyses lieten zien dat lactatiegemiddeld SCS significant geassocieerd 

was met een marker op chromosoom 4 en een marker op chromosoom 18. Ook de 

standaard deviatie van test-dag SCS was geassocieerd met deze marker op 

chromosoom 18. Verder was de standaarddeviatie van test-dag SCS significant 

geassocieerd met een marker op chromosoom 6. Relatief weinig associaties 

werden gevonden, wat suggereert dat lactatiegemiddeld SCS en de 

standaarddeviatie van test-dag SCS bepaald worden door meerdere genomische 

regio’s ieder met een relatief klein effect, verdeeld over het genoom.  

Hoofdstuk 5 bestudeerde de milieu gevoeligheid van SCS. Gevoeligheid tot 

reageren op milieu-invloeden kan een genetisch oorzaak hebben. Milieu-invloeden 

kunnen verdeeld worden in bekende en onbekende invloeden, ook wel macro- en 

micro milieu genoemd. Macro-milieu gevoeligheid kan omschreven worden 

middels de slope van een reactie norm, terwijl micro-milieu gevoeligheid 

omschreven kan worden middels verschillen in residuele variantie welke een 

genetische oorsprong hebben. Het doel van de studie was om macro- en micro-

milieu gevoeligheid van SCS te schatten in Holstein melkvee, waar het macro-milieu 

gedefinieerd was als het boerderij-jaar gemiddelde celgetal. Variantie 

componenten werden geschat met een double hierarchical generalized linear 

model uitgebreid met een reactie norm, met behulp van de ASReml software. 

Zowel macro- en micro-milieugevoeligheid werd gevonden voor SCS en deze twee 

gevoeligheden waren positief gecorreleerd. Geschatte variantie componenten en 

genetische correlaties verkregen met het macro of micro model kwamen overeen 

met de schattingen verkregen met een macro-micro model, wat suggereert dat 

gebruik van macro of micro modellen niet leidt tot onjuiste schattingen doordat 

micro modellen gedeeltelijk macro-milieu gevoeligheid oppikken of andersom. 

Kennis van beide vormen van gevoeligheid, echter, kan nuttig zijn bij het 

optimaliseren van selectie omdat de additief genetische variantie in intercept, 

slope en milieu-variantie allen geen 1 waren. We concluderen dat selectie voor 

verminderde milieugevoeligheid potentie heeft variabiliteit in prestatie van dieren 

door bekende en onbekende milieu factoren te verminderen en hiermee 

voorspelbaarheid van prestatie binnen milieus en over milieus heen te vergroten. 

Hoofdstuk 6 bespreekt wat van de biologie achter NAb en SCS, omdat biologie van 

kenmerken de schatting van genetische parameters, identificatie van kandidaat 

genen en fokprogramma’s kan beïnvloeden. Kennis van biologie van ziekten is 

belangrijk om ziekteprocessen te doorgronden wanneer selectie is gericht op 

verhoogde ziekteresistentie, omdat een beter begrip een betere inschatting van de 

consequenties van selectie mogelijk maakt. Hoofdstuk 6 bevatte 3 conclusies: 1) 
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analyse van cel types (gedetailleerde fenotypes) in plaats van SCS kan mogelijk 

verder inzicht verschaffen in de genetische achtergrond van SCS en mastitis; 2) er 

zijn geen aanwijzingen gevonden voor een betrokkenheid van maternaal 

genetische effecten op NAb niveaus. Maternale milieu-effecten zouden echter wel 

een rol kunnen spelen in NAb niveaus in melk; 3) genetische diversiteit in de regio 

welke genen van het major histocompatibility complex bevat wordt in stand 

gehouden door natuurlijke selectie. Gerichte fokkerij en bedrijfsmanagement zou 

deze diversiteit kunnen beïnvloeden, wat negatieve effecten op fitness van dieren 

met zich mee kan brengen, bijvoorbeeld vruchtbaarheidsproblemen. Gericht 

fokken op specifieke MHC haplotypes kan daardoor een risico op negatieve 

effecten op diergezondheid met zich meebrengen. 
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Dankwoord 

Tot ongeveer 3 maanden voor mijn MSc afstuderen vroeg ik me af: ‘wie bij zijn 

volle verstand kiest toch voor een PhD traject?’. Deze vraag is me ook het 

afgelopen jaar veelvuldig (lees dagelijks) door het hoofd geschoten en nu ik dit zo 

schrijf kan ik maar tot één conclusie komen: ik dus....  

Ik kan dit dankwoord maar op één manier beginnen en dat is met het bedanken 

van de degenen die het in de eerste plaats mogelijk hebben gemaakt dat ik dit 

proefschrift heb kunnen schrijven: mijn ouders. Pap en mam, jullie hebben het 

altijd belangrijk gevonden dat Tom en ik zouden studeren, dat we iets zouden doen 

wat we leuk vonden en dat we zouden presteren naar ons beste kunnen. Volgens 

mij zijn we hier beiden in geslaagd, maar dit hadden we nooit kunnen doen zonder 

jullie onvoorwaardelijke liefde en steun. Al die vakanties die jullie ‘rundum Hause’ 

hebben doorgebracht omdat het vakantiegeld bestemd was voor collegegeld, de 

tijd en het geld dat jullie geïnvesteerd hebben om mij een fijn thuis te kunnen 

geven op mijn studentenkamers in Leeuwarden en Renkum, alle autoritjes die jullie 

hebben gemaakt om mij (en Tom) te komen helpen wanneer dat nodig was, zelfs 

naar Leeuwarden rijden om bijvoorbeeld een kapotte koelkast te vervangen was 

niet te veel moeite. We grappen wel eens dat ik duidelijk niet vooraan in de rij 

stond toen de lengte en het figuur werden uitgedeeld, maar ik denk dat dat komt 

omdat ik vooraan in een andere rij stond: de rij waar de beste ouders werden 

uitgedeeld. Mam, dank voor alle keren dat je de zorg voor mijn meiden op je hebt 

genomen en sorry voor alle dingen die we dit jaar niet hebben kunnen doen omdat 

dit proefschrift telkens weer in de weg stond. Ik weet dat jullie het wel weten, maar 

toch maar even voor de zekerheid en voor alle anderen die dit lezen: ik hou 

waanzinnig veel van jullie. 

 

Het schrijven van dit proefschrift was net zo min mogelijk geweest zonder de hulp 

van mijn promotor en mijn co-promotoren. Johan, dank voor het in mij gestelde 

vertrouwen toen je me hebt aangesteld op dit project. Dat ik een proefschrift zou 

schrijven had ik zelf niet voor mogelijk gehouden, maar jij zag dit anders. Dank voor 

deze unieke kans, ondanks het zware afgelopen jaar ben ik bij dat ik deze kans 

gegrepen heb. In het begin van mijn project was je op de achtergrond aanwezig en 

beschikbaar wanneer nodig, maar met name het afgelopen jaar is het contact wat 

intensiever geworden rondom de afronding van het project. Dank voor je tijd die je 

in je drukke agenda hebt vrijgemaakt om te helpen en voor je scherpzinnige en 

eerlijke feedback op het door mij geleverde werk.  
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Henk, dank voor de vrijheid en het vertrouwen. Ik werk graag zelfstandig en vraag 

om input wanneer ik vind dat ik hier behoefte aan heb. Jij vond dit allemaal prima 

en dat heb ik zeer gewaardeerd. Hoewel jij in het begin het idee had dat ik eigenlijk 

niet op deze feedback zat te wachten, heb ik er altijd veel waarde aan gehecht en 

het stilvallen en de gereserveerdheid bij het krijgen feedback had niet zozeer te 

maken met dat ik moeite had met kritiek, maar meer met dat ik alles wat je zei 

goed wilde onthouden om hiervan te leren en mezelf te verbeteren.  

John, je bent in mijn ogen altijd de rust zelve en ogenschijnlijk laat je druk en 

deadlines nooit de overhand krijgen. Dit heb ik als erg prettig ervaren en dit heeft 

voor mij een waardevolle bijdrage geleverd aan de werksfeer en aan de kwaliteit 

van het werk. Je opmerkingen waren altijd duidelijk en terecht en ik heb ze 

nagenoeg allemaal ter harte genomen. Je bent erg hulpvaardig en betrokken, ook 

al kom je hierdoor niet altijd toe aan je eigen werkzaamheden. 

Henk, John en Johan, het was een plezier onder jullie supervisie te mogen 

promoveren en ik wens jullie alle goeds in jullie toekomst.  

 

Thanks to all my colleagues at ABG. There’s many of you, so I’m not going to 

mention all of you by name. Thanks to all of you that helped me with my work one 

way or another, or that gave PhD life that little bit extra during coffee breaks. Two 

of you I’d like to mention by name. Han, we worked together on macro-micro 

environmental sensitivity, a difficult topic that I tried to tackle in a relatively short 

timeframe. Thank you for all your patience in explaining the theory, and explaining 

it again, …and again. I appreciate the time investment you made and that you kept 

my deadlines in mind as this was the final study of this thesis. I wish you all the best 

in your future, both in your professional and personal life. 

Alex, thank you for all your help with the computer and the difficulties that came 

with it. Although I’m sure I interrupted you many times, you always made time 

immediately and I want you to know that I appreciated it. Some problems were 

difficult to tackle, but fortunately most had a relatively easy answer (for you… ) 

You made life quite a bit easier. I wish you all the best. 

 

Dank aan mijn mede DEC leden, met wie ik de afgelopen 6 jaar iedere maand 

vergaderd heb. Ik heb er altijd enorm veel plezier in gehad om met jullie te 

discussiëren over de ingediende proefplannen. Graag had ik nog een tijdje 

gebleven, maar helaas komt er een tijd om afscheid te nemen. Ook voor jullie alle 

goeds in jullie toekomst.  
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I’d also like to express my gratitude towards my friends. To all my friends, new and 

old, thank you for your support and your interest in my project and progression.  

Eva, uit het oog is zeker niet uit het hart. Weet dat ik altijd maar 1 telefoontje van 

je verwijderd ben.  

Panya, although you’re far away in Norway, it feels as if you’re very close by as 

you’re always just one e-mail away. Thank you for your help and advice during the 

PhD and finishing this thesis. Also thank you for your postcards, please don’t stop 

sending them   

Dianne, ik blijf het apart vinden hoezeer wij op elkaar lijken. Bedankt voor je 

luisterend oor en alle gezelligheid. Ook al zien we elkaar niet meer dagelijks, ik 

hoop dat we toch nog regelmatig samen een kopje thee zullen doen. 

Katrijn and Ewa, you silly girls. Thank you so much for all the great ‘girls nights’ and 

the kidnappings. Great memories   

Mathijs, ik hoop dat we onze etentjes kunnen voortzetten ondanks dat we 

(tijdelijk?) met 1 persoon minder zijn.  

 

Ze kunnen niet lezen en ze snappen er niets van wanneer het tegen ze wordt 

gezegd, maar een van de grootste bronnen van vreugde (en ook verdriet) tijdens 

mijn PhD waren mijn fretten Jasmin en Julliët en mijn kat Isabel. Dank voor de 

troostende lik en het bezorgen van een schaterlach wanneer nodig. Julliët, jou 

moeten laten gaan was de aller moeilijkste beslissing die ik heb moeten maken, het 

heeft me laten inzien hoe sterk ik kan zijn als dat nodig is. Als dat me er niet onder 

krijgt dan zal het afronden van deze PhD dat zeker niet doen. 

 

Mijn lieve familie, waarmee ik het toch wel erg getroffen heb.  

Tom, ook al zien we elkaar niet zoveel, we weten toch wel wat we aan elkaar 

hebben. Emiel en Mario, mijn tweede ouders  Jullie waren er toen ik nog een 

huilbaby was, tijdens alle belangrijke momenten in mijn leven, ook nu en ik weet 

zeker ook in de toekomst. Weet dat ik heel veel van jullie hou. Gerard, Harriëtte, 

Jaap, Kristin, Astrid en Marc. Dank voor jullie steun, knuffels en belangstelling. 

Astrid, bedankt voor je bijzondere bijdrage aan mijn proefschrift. Jouw tekeningen 

op de kaft van dit proefschrift vind ik erg bijzonder, en dit maakt het dan toch een 

soort van familieproject   

En tot slot Richard, maat, partner  Dank voor je geduld deze afgelopen maanden, 

ik weet dat ik je regelmatig op de proef heb gesteld (net als jij mij ;-)). Bedankt voor 

de zorg voor mijn (onze) meisjes wanneer ik even niet in staat was voor ze te 

zorgen. Als onze relatie een road-trip, kamperen, een verbouwing, fretten en een 
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PhD project overleeft dan zegt dat mij dat wij samen een sterk team zijn dat wel 

tegen een stootje kan. Ik hou van je. 

 

Liefs, Susan 



 

 

 

 
 

 
 
 

 
Colophon 

 
 
 
 
 
 

  



Colophon 

 

 

178 
 

Colophon 

This thesis was carried out as part of the RobustMilk project that is financially 

supported by the European Commission under the Seventh Research Framework 

Programme, Grant Agreement KBBE-211708. The content of this thesis is the sole 

responsibility of the author(s), and it does not necessarily represent the views of 

the Commission or its services. More information on the RobustMilk project is 

available on: www.robustmilk.eu 

The Milk Genomics Initiative is acknowledged for providing data (chapter 2 and 3). 

 

The artwork on the cover was created by Astrid Qualm [as.qualm@gmail.com]. 

 

Figure 1.2 Martin Brändli http://en.wikipedia.org/wiki/File:Mono-und-Polymere.svg 

Figure 1.3 Adapted from http://en.wikipedia.org/wiki/File:Antibody.svg 

 

This thesis was printed by GVO drukkers & vormgevers B.V. | Ponsen & Looijen, 

Ede, the Netherlands. 

 

 


