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Abstract 

Precision agriculture (PA), a site specific timely intervention, has seen a growing importance over 

the past few years with widening practical application of remote sensing. This can mainly be 

attributed to advances in sensor technologies approaching the required temporal, spectral as well 

as spatial resolutions. PA could be implemented through the monitoring of crop biophysical and 

biochemical parameters. Leaf Area Index (LAI) is one of the key biophysical parameters for 

monitoring the crop condition. Although the use of spectral vegetation indices (SVIs) has been a 

common retrieval method for crucial information on crop condition from the huge stream of 

remote sensing data, the use of those indices has been constrained either by their lack of 

sensitivity to LAI or sensitivity to leaf, soil and canopy parameters. The objective of this research 

was therefore to explore the possibility to improve the sensitivity of SVIs using Radiative 

Transfer Modelling and assessing the performance of the existing SVIs across broad and narrow 

band sensors thereby evaluating the performance of European Space Agency (ESA’s) upcoming 

multispectral space systems like Sentinel-2 (S-2) and VENµS. Another aim of the study was 

performing SVIs sensitivity analysis with varying leaf, soil and canopy parameters using a 

sensitivity function (S) and finally with different management practices and crop phenologies 

based on empirical data. To this end, PROSAIL model based simulated data as well as empirical 

field data measured for a potato (Solanum tuberosum L.) crop using a Cropscan MSR16R 

radiometer and LAI-2000 for the 2011 and 2012 growing seasons were used. In addition, a 

hyperspectral airborne prism experiment (APEX) image acquired on 27 June 2011 was used for 

evaluating the SVIs for image level application across multiple sensors. The sensitivity of each 

spectral region to LAI was assessed to explore possibilities for improving the sensitivity of SVIs 

by devising new indices. Based on the result obtained, the shortwave infrared (SWIR) bands 

followed by Red-edge showed better sensitivity to LAI for different soil moisture levels than the 

red bands. This implies that the former two spectral regions can provide complementary 

information for the improvement of NIR based SVI-LAI relationships. The evaluation of SVIs 

showed consistent performance across broad bands of TM and narrow bands of MSR16R, APEX, 

S-2 and VENµS. It was found that most of the considered SVIs showed high sensitivity to leaf 

chlorophyll concentration (Cab) levels and leaf angle distributions (LADs). However, the SVIs 

showed less sensitivity to canopy background effects as simulated by the varying soil moisture 

levels. The use of the sensitivity function also showed a similar pattern for greenness indices such 

as the normalized difference vegetation index (NDVI), NDII, NDRE and ISR with a high 

sensitivity at low LAI (LAI < 3). On the other hand, Simple Ratio (SR) and Integrated Infrared 

Red edge Ratio (IIReR1and IIReR2) showed high sensitivity at higher vegetation densities. It was 

also found that the sensitivity function could not maintain consistent performance for all the SVIs 

as seen from their sensitivity record and the coefficient of determination (R2) and root mean 

square error (RMSE) values. The validation of the SVI-LAI relationship also confirmed that 

IIReR1, IIReR2 and SR were among the most suitable indices for LAI prediction based on both the 

PROSAIL and empirical field data. The validation based on empirical data obtained for a potato 

field with MSR16R also confirmed superior performance for IIReR1 (R
2 = 0.81) and SR (R2= 

0.79). Furthermore, the SVIs revealed consistent performance based on the validation using the 

APEX image with IIReR1, SR and WDVI being among the best predictors of LAI (all R2=0.86). 

The performance of those SVIs, however, did not show consistency for the 2011 and 2012 

growing seasons where many of the SVIs had inferior performance for the 2012 growing season. 

Exception to these include the SWIR based indices, NDII and ISR, which either maintained the 

same level of performance or showed improvement over the 2011 site. Hence, the choice of an 

index for crop monitoring in precision agriculture could be specific to site and crop conditions. 

Keywords: Precision agriculture, Spectral vegetation indices, PROSAIL Model, Sensitivity,  

                    Leaf area index 
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CHAPTER ONE: INTRODUCTION 

1.1 Background 

The advancement in sensor technologies over the last decades has led to the application of 

near real time information to enhance farm management practices (Schellberg, Hill et al. 

2008). This has resulted in a move towards unlocking the potentials of sensor technologies to 

enhance farming practices in precision agriculture (PA).  The development of airborne and 

space borne satellites for remote sensing of land surface features in the 1960s and 70s was in 

use for crop biomass and soil sensing based on spectral analysis (Cox 2002). Over the years, 

different remote sensing models have been developed (Beeri and Peled 2009) to map 

vegetation factors that affect agricultural field crop monitoring such as water stress, nitrogen 

content, biomass, diseases, etc.  

The factual basis of precision agriculture, which is the spatial and temporal variability of soil 

and crop factors within a field, has been appreciated for a few decades (Zhang, Wang et al. 

2002) which allowed farmers to vary treatments manually. According to Seelan, Laguette et al.  

(2003) precision agriculture is a production system that promotes variable management 

practices within a field depending on site conditions. This implies PA being treated as system 

approach to re-organize the total system of agriculture towards a low-input, high-efficiency, 

sustainable agriculture. This approach depends on the use of efficient amount of data derived 

from several technologies. Agricultural industry is now capable of gathering more 

comprehensive data on production variability in both space and time although methods and 

tools for analysis remain limited. The desire to respond to such variability on a fine-scale has 

become the goal of PA. According to Zhang, Wang et al. (2002) United States of America, 

Canada and Western Europe have been pioneers in initiating PA research in the 1980s though 

its application was mainly focused on the utilization of existing farm machineries. Nowadays 

the trend is towards operational application due to standard availability of GPS tracking fitted 

on tractors as well as advancing sensor technologies and lowering costs of sensors and 

equipment and product-services. 

 

Of the different biochemical and biophysical parameters of vegetation, the Leaf Area Index 

(LAI) is an important characteristic of vegetation canopies. LAI can be defined as a 

dimensionless ratio between the total one side leaf surface of a plant  and the surface area of 

the land on which the plant grows (Wu, Niu et al. 2008; Zheng and Moskal 2009; Herrmann, 

Karnieli et al. 2010). This biophysical parameter is used to quantitatively characterize the 

radiation regime within and under the canopy, and simulates leaf controlled ecological 

processes (Zheng and Moskal 2009). As such LAI is directly linked to production and the 

accurate measurement of it is essential for monitoring crop growth (Xiao, Liang et al. 2011), 

ecosystem carbon fluxes and ecosystem changes (Canisius, Fernandes et al. 2010; Brantley, 

Zinnert et al. 2011). It is also an essential parameter to describe the geometric structure of 

plant canopies and an important input parameter for modelling earth-atmosphere interaction 

(Xu, Fan et al. 2009). LAI is also a variable of primary importance for crop monitoring 

though it is often measured with labour intensive destructive methods (Stroppiana, Boschetti 

et al. 2006). This direct measurement of LAI is however not only labour intensive but also 

virtually impractical at larger scales (Brantley, Zinnert et al. 2011) and is often unfeasible for 

remote locations. To overcome this an integrative use of remote sensing techniques could be 

used as it is able to provide spatially and temporally distributed information on vegetation 

cover as well as on state variables such as biomass and LAI (Dente, Satalino et al. 2008). 
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1.2 Problem definition 

A variety of vegetation indices have been used to retrieve leaf characteristics from the 

complex vegetation spectra as a function of a multitude of parameters (Baret and Guyot 1991; 

Haboudane, Miller et al. 2002; Ji and Peters 2007; Clevers and Kooistra 2012; Gonsamo and 

Pellikka 2012). Currently, a variety of techniques has been used for the detection of early-

stage vegetation stress in multispectral airborne and satellite imagery (Clevers and Kooistra 

2012). These techniques include a number of different spectral vegetation indices (SVIs), “red 

edge” detection techniques, band absorption analysis, spectral mixture analysis, wavelet 

transform and neural networks (Shafri, Salleh et al. 2006). However, the widely used broad 

band vegetation indices such as NDVI, which is widely used to characterize vegetation 

growth and leaf area index, suffer from quick saturation effect. The saturation effect limits the 

power of existing indices with a slight increase in leaf chlorophyll and LAI particularly in 

dense vegetation.  

Moreover, attempts to fine tune the existing SVIs has been constrained by the spectral band 

settings as well as the spectral, spatial and/or temporal resolutions of the existing operational 

satellites. For instance, more recently the application of remote sensing for precision 

agriculture has shown progress as it relies on the high spatial resolution of operational 

satellites, namely Ikonos, QuickBird, RapidEye, GeoEye, Worldview-2 etc., among others. 

However, their spectral ability, being characterized by a small number of broad spectral bands 

in the visible and Near Infrared (NIR) bands, is limited to broad band vegetation indices 

(Herrmann, Karnieli et al. 2010). On the other hand high spectral resolution systems such as 

MERIS are also constrained by its coarser spatial resolution of 300m at best making it hardly 

suitable for most applications related to precision agriculture.  

Nevertheless, several  methods are employed to estimate LAI from the available remote 

sensing data mainly by utilizing the statistical relationship between LAI and spectral 

vegetation indices (SVIs) (Wang, Huang et al. 2007). Those vegetation indices have been 

developed to estimate plant biophysical parameters using remote sensing images and many of 

these were designed mainly with efforts to reduce interference from canopy background 

(Wang, Huang et al. 2007; Zhao, Yang et al. 2012).  However, the relationship between LAI 

and SVIs is affected by several factors such as soil background reflectance, leaf angle 

distribution (LAD) and aggregation of leaf elements, and difference in chlorophyll 

concentrations among others. Furthermore, only few studies have examined those effects on 

the estimation of leaf area index (LAI) using remote sensing techniques for crops in general 

and potato in particular. Such background effects as well as canopy specific features need to 

be identified by integrating the empirical remote sensing data with situations on the ground 

that is typical to specific arable crops such as potato. 

 

Remote sensing of vegetation characteristics has used these indices to determine various plant 

parameters such as LAI, leaf chlorophyll, biomass and ground cover (Hatfield and Prueger 

2010).  LAI is widely used in production ecology as a measure of crop growth. However, the 

measure of crop parameters such as LAI is affected by several disturbances. Several studies 

conducted to predict LAI focused either on establishing a statistical relationship between LAI 

and SVIs or using bidirectional reflectance distribution function (BRDF) (Wang, Huang et al. 

2007).  However, many of these vegetation indices are computed by averaging the spectral 

values over broad bands which might underestimate the typical crop spectral characteristics. 

The application of such relationship is not only sensor and crop specific but also insensitive 

after moderately high LAI values. Most SVIs such as NDVI, though widely used, are 

insensitive to higher LAI values which limit their application for precision agriculture apart 
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from ecological level inventories such as biomass estimation and detecting vegetation 

phenologies.   

 

Contrary to the limitations of broad band based vegetation indices, the application of narrow 

bands around the red edge and red-edge inflection point for characterizing plant bio-chemical 

and biophysical parameters (Gitelson and Merzlyak 2003; Clevers and Kooistra 2012; Zhao, 

Yang et al. 2012) showed better results. This region of the electromagnetic spectrum as a 

transition between the visible and NIR bands shifts towards shorter wavelength as the 

vegetation comes under stress (Clevers and Kooistra 2012).  Many studies are, however, not 

only limited to the use of vegetation indices derived over several bands from the massive 

spectrum for the characterization of canopy parameters but also  limited to the use of 

statistical techniques such as regression analysis. This technique does not only suffer from the 

effect of multicollinearity (Darvishzadeh, Skidmore et al. 2008) but also ends up with an 

aggregate single value lacking the capacity to characterize the sensitivities of SVIs across the 

LAI ranges (Ji and Peters 2007).  Meanwhile, the evolution of next generation satellites, 

namely Sentinel-2 and Vegetation and Environmental New Micro Spacecraft (VENµS) as 

well as the European Airborne Prism Experiment (APEX) with additional bands in the red-

edge region of the spectrum is expected to have added values. These upcoming super-spectral 

space borne systems as well as the airborne APEX sensor need to be evaluated using 

physically based radiative transfer based models such as the PRO-SAIL model. 

For these reasons this study analysed SVIs based on broad and narrow spectral band data 

(both empirical and physically-based) acquired with different sensors with the intention to 

explore methods for better prediction of key canopy parameters such as LAI for the potato 

crop with a possibility of upscaling the methods to other potential application areas.  

Therefore, further studies on the comparison as well as integration of different sensing 

techniques was required for better estimation of LAI to support PA. In addition, the upcoming 

next generation of satellites were also evaluated for their added values in this aspect.  

Moreover, this study proposed new SVIs, the performance of which was evaluated for LAI 

retrieval based on the band settings of those sensors. Finally, selected SVIs and the newly 

proposed ones were tested for their sensitivities to LAI and disturbances such as soil 

background effects, management practices and crop phenology to allow for adjustments to 

minimize such effects.  

 

1.3 Objectives 

The general objective of the study was to evaluate the performance of different SVIs across 

multiple sensors for LAI retrieval for agricultural crops with focus on potato. 

 This study intended to address the following specific objectives: 

a) To explore the possibilities for improved LAI prediction by devising new SVIs. 

b) To assess the suitability of different vegetation indices across different sensors (broad 

vs. narrow bands) for estimation of canopy bio-physical parameters such as LAI. 

c) To analyse the sensitivity of SVIs to LAI under different leaf, soil and canopy 

parameters based on PROSAIL model.  

d) To evaluate the performance of SVIs for LAI prediction under different  management 

practices, crop phenology and soil background effects using empirical field data and 

APEX imagery.  
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1.4 Research questions 

In order to achieve the above mentioned research objectives the study attempted to answer the 

following research questions. 

a. What possibilities are there to improve the sensitivity of SVIs to LAI by devising new 

indices? 

b. Which vegetation indices are suitable for LAI retrieval for a potato crop?  

c. Do SVIs yield comparable prediction power across broad and narrow band sensors? 

d. Could a sensitivity function be used to evaluate the suitability of SVIs for LAI 

mapping for arable crops? 

e. Do SVIs yield comparable performance based on empirical data with different 

management practices and crop phenologies? 

 

1.5 Set-up of the Report 

 

This thesis report is organized in six chapters including this first chapter where the general 

background, problem statement, research objectives and research questions are presented 

while chapter two covers the review of literature related to the subject of this study. The third 

chapter addresses the materials and methods part which starts with the description of the study 

area; the data used; sensors analysed; and the pre-processing and data analysis methods 

employed at each stage of the analysis. The fourth chapter presents the results part. In this 

section the results on the SVI-LAI relationships based on both broad and narrow band sensors 

are presented using both the PROSAIL and empirical field data as well as APEX imagery.  

This section also covers the results of a sensitivity analysis as well as results on the validation 

of the SVI-LAI relationships. The last two chapters, chapter five and six discuss the results 

and draw concluding remarks, in that order.  
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Precision Agriculture: An Overview 

Throughout the evolution of remote sensing several models have been developed for 

agricultural applications. These models have been developed with different purposes such  as 

explaining the variability of crop yield as a function of  physical factors such as topography, 

soil (Bishop and McBratney 2002) or meteorological data (Herrmann, Karnieli et al. 2010). 

There are also remote sensing models designed to map vegetation factors such as water stress, 

nitrogen, diseases and weeds.   

From the precision agriculture perspectives, the role of remote sensing should go beyond 

mapping the crop parameters across different physical settings and crop factors to assist in site 

specific decision making at the right time. In this regard, there are some models that enable 

decision making based on soil component mapping (Palacios-Orueta and Ustin 1998; López-

Granados, Jurado-Expósito et al. 2005) and the concept of management zones (Moreenthaler, 

Khatib et al. 2003). Such models, however, fail to provide the necessary information 

continuously over the growing season. As a result, the promise of precision agriculture is 

compromised. 

The essence of precision agriculture is that it requires the integration of remote sensing into 

the monitoring and decision making process by shortening the time spent between data 

collection and decision making (Beeri and Peled 2009). According to Cox (2002) methods 

have been developed for the application of information to a broad range of decision making in 

agricultural production as well as extending our ability to control operations automatically. He 

grouped such techniques under precision agriculture or precision farming which include 

applications to livestock production as well as the spatially variable field operations aided by 

sensor technologies. Advances in the information technology has led to wider applications to 

precision farming, which is sustainable, environmentally sound and responsive to the welfare 

and safety needs of people and animals (Cox 2002). Moreenthaler et al. (2003) and Bishop 

and McBratney (2002) considered precision agriculture as a farming methodology that applies 

nutrients and moisture only where and when they are needed in the field. The rationale of 

precision farming is to increase farm profitability by identifying the additional treatments of 

chemical and water that increase revenues more than they increase costs and do not exceed 

pollution standards, i.e., constrained optimization. 

Nevertheless, the growth of precision agriculture over the years has been below what most 

envisioned (Moreenthaler, Khatib et al. 2003; Seelan, Laguette et al. 2003; McBratney, 

Whelan et al. 2005) although the technology for successful remote sensing sensors as well as 

precision variable dispensing systems using GPS are now available and affordable. On the 

contrary, (Seelan, Laguette et al. 2003) mentioned that remote sensing has been widely used 

for large scale crop inventory though it has not made significant inroads to precision 

agriculture. The latter saw stunted progress because the application of remote sensing for PA 

was constrained mainly as: remote sensing is relatively new concept; precision farming 

requires frequent monitoring of crops at high spatial and temporal resolutions; sub optimality 

of existing satellites for PA; farmers as well as crop consultants and extension agents’ lack of 

familiarity with imagery unlike the end users of large scale crop inventory. This is attributed 

mainly to the missing of a constrained optimization model which combines information from 

remote sensing and in-situ measurements with the farmer’s tacit knowledge and experience of 

the farm.   
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2.2 Sensing techniques and data acquisition 

2.2.1 Remote sensing and close-range sensing 

The development of airborne and space borne systems for remote sensing of land surface 

features in the 1960s added a new edge to the well-established already functioning range of 

instruments for measuring variables. Since the 1970s a well-known Landsat series of satellites 

followed by other space borne platforms has been in use for biomass estimation and crop as 

well as soil moisture sensing (Cox 2002). With the improvement in sensors it has become 

possible to gather detailed information from the reflected spectra. Fast digital processing of 

the outputs coupled with data fusion techniques made it possible to produce powerful 

thematic mapping presentations (Cox 2002).  

Moreover, Cox (2002) presented various applications of active sensors such as airborne laser-

based systems (LIDAR) when combined with multi-spectral sensors operating in the visible 

and NIR bands can provide detailed three-dimensional information on ground cover. 

Furthermore, it can also simulate fluorescence which allows for the monitoring of plant 

condition. These days the monitoring of vegetation variables for different crops using SVIs is 

based on several high spatial resolution satellites such as Ikonos, QuickBird, RapidEye, and 

GeoEye with limited broad spectral bands in the visible and NIR bands (Herrmann, Karnieli 

et al. 2010). The limited spectral ability of these sensors is limited to broad band based SVIs 

and hence not suitable for PA. On the other hand, the super spectral space borne system, 

MERIS, has 15 bands within the VIS and NIR with programmable band widths ranging 

between 2.3nm and 30nm. The suitability of MERIS for most precision agricultural practices 

is however compromised by its coarse spatial resolution of 300m.  

The European Space Agency’s (ESA) next generation of super spectral satellites are marking 

the future of remote sensing with better prospects for its application in the field of precision 

agriculture. These space borne systems include Sentinel-2 and the Vegetation and 

Environmental New micro Space Craft (VENµS) space borne systems expected to be 

operational in 2014 (Herrmann, Karnieli et al. 2010; Clevers and Gitelson 2013).  Sentinel-2 

is aiming to serve missions related to environmental applications. The four red edge bands 

centred at 665, 705, 740, and 775nm with band widths of 30, 15, 15, and 20nm with the 

corresponding spatial resolution of 10 and 20m might give it an edge over the other 

operational sensors in precision agriculture.  

VENµS, another super spectral space borne system, as its name indicates is meant for 

vegetation monitoring. It has characteristic features of high spatial (5.3m), spectral (with 12 

bands in the VIS-NIR range) and temporal (a revisit time of two days with the same viewing 

angle) resolutions. Moreover, four of those bands are positioned across the red-edge at 667, 

702, 742 and 782 nm with band widths of 30, 24, 16 and 16 nm in the same order. The system 

is flying in a near polar sun-synchronous orbit at an elevation of 720 km acquiring images 

across a swath of 27km.  These unique combinations of capabilities of the upcoming ESA’s 

space borne systems seem to be a significant contribution towards enhancing the application 

of remote sensing in precision agriculture. 

Moreover, the revolution in the field of PA seems to be mainly driven by the integration of a 

range of close or in-situ sensing techniques with remote sensing data at broader scale. The use 

of global navigation satellite systems (GNSS), tractor based near sensing and in-situ wireless 

sensor networks provides a wealth of data while enhancing  the subsequent benefit through 

improved efficiency which in fact demands the integration of the different streams of spectral 

data (Kooistra, Beza et al., 2012). 
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2.2.2 Empirical vs. physical approaches 

Estimation of important crop parameters such as LAI using remote sensing techniques can be 

done based on two main approaches: empirical and physical (Darvishzadeh, Skidmore et al. 

2008; Richter, Atzberger et al. 2009 ).  The empirical approach involves the direct ground-

based measurement which is however not only time consuming and costly but also 

constrained both spatially and temporally (Richter, Atzberger et al. 2009). Remote sensing 

data have been recognized as a remedy to those problems of traditional empirical methods and 

several studies have been carried out on the retrieval of vegetation and surface parameters 

using multi spectral as well as the newly developed hyper spectral  VIs (Clevers and van 

Leeuwen 1996; Haboudane, Miller et al. 2002; Shafri, Salleh et al. 2006; Darvishzadeh, 

Skidmore et al. 2008; Darvishzadeh, Atzberger et al. 2009). This method uses statistical 

techniques to obtain a correlation between in situ measured crop parameter and spectral 

vegetation indices (Darvishzadeh, Skidmore et al. 2008). The derived relationships stands 

high chance of being sensor specific as well as dependent on site conditions and the employed 

sampling technique (Houborg and Boegh 2008). Yet, in situ calibration datasets need to be 

collected bearing high cost and labour-intensive measurement campaign to ensure that the 

different species, canopy conditions and view-sun constellations are taken care of (Richter, 

Atzberger et al. 2009).  

These challenges have led several studies to use a more complex physically based approach of 

parameter estimation by means of radiative transfer modelling (RTM) (Jacquemoud and Baret 

1990; Jacquemoud, Baret et al. 1995; Jacquemoud, Bacour et al. 2000; Herrmann, Pimstein et 

al. 2011). This approach assumes that the RTM accurately describes the spectral variation of 

canopy reflectance as a function of canopy, leaf and soil background characteristics, based on 

physical laws (Darvishzadeh, Skidmore et al. 2008). The RTM approach, apart from using the 

full spectrum acquired by hyper spectral sensors  as opposed to the limited band usage by 

SVIs, also considers the directional signatures from multi-angle sensors (Richter, Atzberger et 

al. 2009). Nevertheless, the RTM has some limitations due to requirements for an extensive 

parameterization and high computational demand  as well as  the simplicity of some models 

which fail to suit complex canopies such as row crops (Yao, Liu et al. 2008). The model 

inversion involves determination of those parameters that minimize the difference between 

the measured and simulated spectra. Such an approach has been widely applied in remote 

sensing to infer properties of the atmosphere and targets on the ground such as soil, vegetation, 

or water areas (Jacquemoud, Baret et al. 1995).   

2.3 An overview of next generation hyperspectral sensors: S-2 and VENµS  

Among the European Space Agency’s (ESA’s) future space systems are Sentinel-2 and 

VENµS. The upcoming Sentinel-2 to be launched in 2014 includes a total of 13 bands from 

which the 4 red edge bands centred around 665, 705, 740 and 775 nm with spectral bandwidth 

varying between 15 and 30 nm and spatial resolution of 10, 20, 20, and 20 m, respectively 

(Clevers and Gitelson 2013). The spatial resolution of Sentinel which is 10 m at its best, 

however, is not large enough for precision agriculture depending on the monitoring purpose. 

The Vegetation and Environmental New micro Spacecraft (VENµS) represents another super 

spectral satellite characterized by high spatial, spectral and temporal resolutions. It also has 4 

bands along the red-edge centred at 667, 702, 742, and 782 nm with spectral band widths of 

30, 24, 16 and 16 m and spatial resolutions of 30, 24, 16 and 16, respectively (Herrmann, 

Karnieli et al. 2010).  The added value of the narrowly positioned red-edge bands of the 

upcoming space systems should be evaluated against existing sensors regarding its 

performance in supporting PA in the years to come.  
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In addition, the Airborne Prism Experiment (APEX) imaging spectrometer developed by a 

Swiss-Belgian consortium on behalf of ESA constitutes a revolution to extending the scope of 

conventional remote sensing. This sensor is a dispersive push broom intended as a simulator, 

calibration and validation device for future spaceborne hyperspectral imagers recording 

hyperspectral data across 300 bands in the wavelength range between 400 nm and 2500 nm. 

The spectral band settings of the APEX sensor are believed to render opportunities for more 

precise identification of surface materials which is hardly possible with the conventional 

broadband multispectral sensors (http://www.apex-esa.org/content/apex). The spatial 

resolution of this airborne sensor being as high as 2 m to 5 m makes the device particularly 

suitable for PA as well. 

Contrary to the narrow band sensors, the Landsat Thematic Mapper (TM) is used as reference 

for broad band sensors as its band widths extend across wider ranges compared to the narrow 

bands of the upcoming ESA’s space borne systems and APEX. The narrow spectral 

resolutions of the APEX bands offer opportunities to mimic the spectral settings of other 

systems such as S-2, VENµS and obviously that of Landsat TM. The detailed information on 

the spectral band settings of the different sensors analysed in this study will be provided in the 

methods section. 

Some of the selected spectral bands were specifically meant for particular purposes of crop 

monitoring as the maximum chlorophyll absorption (665 nm), position of Red-edge (705 and 

740 nm), LAI edge of NIR plateau (775 nm), LAI (842 nm) and NIR plateau being sensitive 

to total biomass and LAI as well as water vapour (865 nm) are centred at those bands (Richter, 

Atzberger et al. 2009). The integration of these specific bands could yield a better indicator of 

the vegetation density as well as the condition of a crop. Table 6 presents the summary of the 

five sensors and the corresponding band settings considered relevant for the purpose of LAI 

estimation as well as based on the requirements of the SVIs analysed in the study.  

2.4 Monitoring crop biophysical characteristics: The Leaf Area Index (LAI) 

The biophysical and biochemical parameters of plants are at the centre of any application 

based on remote sensing techniques to assist in the decision making process in the context of 

PA. According to  Atzberger et al.  (2009) the Leaf Area Index (LAI) is one of the most 

important biophysical surface parameter attracting interest in wider researches concerned with 

earth observation (EO) data. LAI, which could be defined as total one- sided area of 

photosynthetic tissue per unit of ground area (Asner, Scurlock et al. 2003; Tian, Dickinson et 

al. 2004; Demarty, Chevallier et al. 2007), has become a central and basic descriptor of 

vegetation condition in a wide variety of physiological, climatological and biogeochemical 

studies (Asner, Scurlock et al. 2003). However, the methods employed for the derivation of 

LAI from the massive spectral data to characterize the condition of crops over the growing 

season is not straight forward.  The challenge lays not only in the limitations of the existing 

SVIs but also in integrating multi sensor data to arrive at the desired spatial and temporal 

resolutions.  

By the same token LAI is the most important descriptor of crop condition (Xiao, Liang et al. 

2009; Xiao, Liang et al. 2011). It is the basic quantity indicating crop growth condition and 

hence plays a significant role in agricultural, ecological and meteorological models at local, 

regional and global scale (Yao, Liu et al. 2008). With the growing concerns about efficient 

resource allocations in agricultural production systems knowledge of crop growth at early 

stage is important at farm level decision making and national as well as regional level 

agricultural planning and policy making (Clevers and van Leeuwen 1996). Under non-optimal 

conditions crop growth monitoring could be best done by employing remote sensing 
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techniques. According to Clevers, Büker et al. (1994) integration of remote sensing using 

spectral vegetation indices regularly through the growing season and subsequent calibration of 

the growth model based on periodic LAI estimates yielded a better result. Moreover, optical 

data could be complemented by microwave data to overcome constraints that arise from a 

cloudy weather. Nevertheless, the application of such a model at a regional scale is 

constrained as the empirical relationship between LAI and remote sensing data established 

locally may not be valid over a large spatial extent (Yuping, Shili et al. 2008). 

2.5 Vegetation indices and sensitivity analysis 

To date several SVIs have been developed in an attempt to improve the performance of the 

existing indices in terms of their sensitivity to biophysical variables such as LAI, green 

vegetation fraction (GVF), net primary productivity (NPP) and fraction of absorbed photo 

synthetically active radiation (fPAR) that are of wider application in vegetation studies (Ji and 

Peters 2007). The commonly applied SVIs include but are not limited to the ratio based 

indices such as normalized difference vegetation index (NDVI) (Rouse et al. 1974), simple 

ratio (SR) (Jordan, 1969), infrared simple ratio (ISR), normalized difference infrared index 

(NDII) (Hardisky, Klemas et al. 1983), normalized difference red edge index (NDRE) 

(Gitelson and Merzlyak 2003), soil adjusted vegetation index (SAVI) (Huete, 1988), 

transformed TSAVI (Baret & Guyot, 1991), enhanced vegetation index (EVI) (Huete et al., 

1994), and the Weighted Difference Vegetation Index (WDVI) (Clevers, 1989).   

Each of these and other SVIs have their own merits and demerits in various application areas. 

A very common limitation being their insensitivity to the vegetation biophysical parameters 

they are meant to explain. In addition, the degree of sensitivity of those indices to noises also 

varies. This is a widely felt problem when it comes to the estimation of biophysical 

parameters such as LAI to characterize the condition of vegetation as well as for monitoring 

crop condition in precision agriculture. The SVIs widely applied to date suffer from this 

saturation effect or lack of sensitivity to moderately high LAI values hence limiting their 

application for LAI mapping. The quality of the performance of the SVI in terms of their 

relationship with biophysical parameters such as LAI is evaluated on the basis of the degree 

of sensitivity to the parameters and relative insensitivity to disturbance factors such as canopy 

background and atmospheric effects (Ji and Peters 2007). 

Previous studies widely employed regression analysis to evaluate the performance of SVIs in 

the estimation of biophysical parameters. The coefficients of determination (R
2
), mean 

squared error (MSE) and the root mean squared error (RMSE)  are among the widely used 

indicators of the sensitivity of any SVIs to biophysical parameter such as LAI (Ji and Peters 

2007). While these approaches provide useful information regarding LAI-SVI relationships 

they all are single values summarizing the overall relationships across the range of 

biophysical parameters. The R
2
 value in non-linear regression, commonly called Pseudo-R

2
 

(Ji and Peters 2007; Gonsamo and Pellikka 2012), represents the proportion of variability of 

SVIs explained by the changes in biophysical parameters (LAI) while performing a regression 

of SVI (y-axis) against LAI (x-axis). The interpretation of R
2
 in nonlinear regression should 

however be treated with caution as it represents the goodness-of-fit of the model and not the 

proportion of variability in the dependent variable due to changes in the independent variable. 

This is because the proportion of variability explained by the model can vary within the model. 

However, attempts to quantify SVI-LAI sensitivities with any single value such as R
2 

is a 

gross simplification  of the relationships as in reality the proportion of variability of SVIs 

across the LAI range changes substantially with a change in vegetation densities.  The use of 

MSE and RMSE are even more precise methods to quantify sensitivity while these methods 
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are also constrained by differences in the unit or magnitude of measurements when it comes 

to cross-site comparisons (Ji and Peters 2007). As alternatives to these measures different 

statistical approaches have been developed to model the SVI-LAI relationships using 

sensitivity analysis. The earliest of these was the relative equivalent noise (REN) (Baret and 

Guyot 1991) descriptor ; vegetation equivalent noise (VEN) (Huete, Justice et al. 1994) and a 

relative sensitivity (R) (Becker and Choudhury 1988) based on two rescaled VIs, and more 

recently the relative sensitivity (Sr) (Gitelson 2004) as a means to compare two VIs based on 

the ratio of first derivatives and the ratio of ranges of value of both variables (Ji and Peters 

2007). These methods failed to account for the estimation errors associated with the predicted 

variable. Moreover, the last two methods do not yield a function as they give a single value 

amenable for comparison of two SVIs under certain circumstances. On the other hand, a 

method developed by (Ji and Peters 2007) demonstrated a statistical technique for computing 

the sensitivity function (S) across the LAI range for both linear and non-linear models. This 

technique also accounted for the estimation error associated with the predicted values while 

LAI is estimated using any SVI of interest. This sensitivity function was adapted to evaluate 

the performances of different vegetation indices across the different vegetation densities.  

Accordingly, some selected SVIs were assessed on their capacity to predict LAI. The 

selection of these indices was based partly on their extensive use in literature such as NDVI 

and SR and partly due to their performance, sensitivity or insensitivity to different parameters 

while predicting LAI. Limitations of multispectral remote sensing and problems related to 

specific band characteristics of crops, and the subsequent quick saturation of broad band 

based SVIs such as the NDVI,  insensitivity after short growth stage while important growth 

stages still to come (Herrmann, Karnieli et al. 2010) were also reasons for including the 

narrow band red-edge indices for comparison. Yet, the high sensitivity of NIR to a  range of 

LAI makes this spectral region a very important indicator of vegetation condition provided 

that an efficient correction for background effects is made (Houborg and Boegh 2008). This 

implies that proper correction for canopy background effect enhances LAI-NIR relationships 

more than other spectral regions due to high sensitivity of the NIR bands to vegetation 

densities.  

Indices derived mainly based on the red edge region were included to examine whether they 

significantly contribute to overcoming the saturation effects of other SVIs as recommended 

by (Brantley, Zinnert et al. 2011). Other optimized SVIs such as the soil adjusted vegetation 

index (SAVI) and the enhanced vegetation index (EVI) were chosen for their adjustments to 

reduce soil background effects as well as their sensitivity to crop phenological changes, as 

SAVI is, for instance, responsive to changes in LAI at an early stage of the growing season 

whereas EVI is sensitive to seasonal changes in LAI (Hatfield and Prueger 2010). On the 

other hand, those indices which combine information from shortwave infrared (SWIR) such 

as Infrared Simple ratio (ISR) (Brown, Chen et al. 2000; Fernandes, Butson et al. 2003; 

Gonsamo and Pellikka 2012) and Normalized Difference Infrared Index (NDII) Hardisky, 

Klemas et al. (1983) and which was evaluated for biomass prediction in the Canadian forest 

(Gonsamo and Pellikka 2012) were chosen for further testing of their performance for field 

crop LAI estimation. A summary of the SVIs selected for analysis is presented in Table 6. 
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CHAPTER THREE: MATERIALS AND METHODS 

3.1 Description of the experimental plots 

The study was conducted using data generated from multiple sensors during the 2011 and 

2012 growing seasons with the purpose of monitoring the growth of potato crops in 

agricultural field situated in the southern part of the Netherlands. Given the nature of cropping 

patterns in the Netherlands these potato fields needed to be shifted every year as potato is not 

grown on the same parcel every year. Accordingly these experimental parcels change every 

year with the chosen parcel being within different geographical area as shown in Figure 1 for 

the two growing seasons, for example.  

The experimental set up was designed based on differential treatment of nitrogen for the 

different plots. To this end the agricultural farm was divided into 12 different treatment levels 

for 2011 growing season where a plot of 30 m*30 m was delineated in each of the different 

treatment levels. The 12 plots fall in four initial fertilization levels while each treatment level 

was comprised of three plots. Accordingly, plots C, D & K received no nitrogen (0 kg N/ha); 

plots A, B & L had 161 kg/ha; plots E,F & J had 242 kg N/ha and plots G, H & I had 322 kg 

N/ha initial nitrogen fertilizations.  In addition, each of these plots were given different 

treatments throughout the growing season in such a way that they form three treatment classes. 

The first group consisted of plots C, A, E & G (CL) which received only initial fertilization 

before planting and no treatment afterwards. The second treatment group includes plots D, B, 

F & H (TTW) which received additional nitrogen application after planting based on sensor 

readings throughout the growing season. The third treatment group involves farm plots K, L, J 

& I (MB) which were given additional N application at a single point in time after the canopy 

closed based on the weighted difference vegetation index (WDVI) (table 1).  A range of 

sensing techniques was employed to obtain data on basic crop characteristics such as LAI and 

    

    

Figure 1. Farm sites for the potato experimental plots for 2011 (a) and 2012 (b) growing seasons  
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nitrogen status which was acquired weekly throughout the growing season. Basic crop 

characteristics were measured for which certain amount of treatment was applied or not.  

Table 1. Plots by treatment levels for the 2011 experimental potato farm 

N fertilization levels in Kgha
-1

 CL TTW MB 

0 C D K 

161 A B L 

242 E F J 

322 G H I 

 

A similar experimental set up was established for the 2012 growing season where eight plots 

were determined in such a way that four treatment classes were established i.e., a total of four 

nitrogen treatment levels consisted of two plots each. The first treatment class did not involve 

any initial fertilization whereas the second and third were subjected to different amounts of 

fertilization in two phases. The fourth class was however given no fertilization at all 

throughout the growth stages. Table 2 presents an overview of the experimental plots and the 

different treatment levels for the 2012 plots. 

Table 2. The experimental set-up for 2012 growing season 

Plots Liquid Organic 

Fertilizer (m
3
/ha) 

Organic Fertilizer 

from Stable (m
3
/ha) 

N kgha
-1

 

Nmin 

A & B 0 30 43.2 

C & D 70 25 218 

E & F 45 0 117 

G & H 0 0 0 

3.2 Data Sources and Acquisition Methods  

3.2.1 Radiative Transfer Modelling: The PRO-SAIL model 

To mimic the spectral settings of the different sensors, physically-based parameter estimation 

using the PRO-SAIL Radiative Transfer Model (RTM) inversion was used. These  RTMs 

allow the use of the full spectrum acquired by the hyperspectral sensors in the waveband 

ranges of 400-2500 nm (Richter, Atzberger et al. 2009) as opposed to SVIs that are limited to  

few spectral bands. The PROSAIL, a widely used RTM, is a combined PROSPECT leaf 

optical properties model and SAIL canopy reflectance model (Verhoef 1985; Jacquemoud and 

Baret 1990) used to retrieve crop biophysical and biochemical properties such as the LAI, leaf 

and canopy chlorophyll contents. The coupled models allow for the estimation of both leaf 

and canopy parameters which is relatively simple and requires limited number of input 

parameters with reasonable computation time (Darvishzadeh, Skidmore et al. 2008).     

The PROSPECT model (Jacquemoud, Bacour et al. 2000) computes the leaf hemispherical 

transmittance and reflectance as a function of four input parameters; namely, the leaf 

structural parameter, N (unit less),  leaf chlorophyll a + b Concentration, Cab (µgcm
-2

), the dry 

matter content, Cm (gcm
-2

), and the equivalent water thickness, Cw (gcm
-2

) (Jacquemoud, 

Bacour et al. 2000). The SAIL model apart from the leaf reflectance and transmittance 

requires eight input parameters to yield top of canopy bidirectional reflectance. These include 

sun zenith angle, ts (deg);  sensor viewing angle, to (deg); azimuth angle, phi (deg), fraction of 

diffuse incoming solar radiation, skyl; background reflectance (soil reflectance) for each 

wavelength, rsl; LAI (m
2
m

-2
), mean leaf inclination angle, ALA (deg); and hot spot size 
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parameter, hot (mm
-1

), defined as the ratio between the average size of the leaves and the 

canopy height (Verhoef, 1985). 

For the purpose of this study only selected parameters relevant to green leaf area estimation 

and sensitivity analysis were made varied.  These parameters include LAI, Cab, soil moisture 

(soil brightness), and leaf angle distributions (LIDFa and LIDFb) which were varied across a 

reasonable range to allow for the analysis of their disturbances while retrieving LAI from 

spectral data. The leaf structure parameter (N) was set at 1.8 based on previous literature 

where an N of 1.5 to 2.5 is often used (González-Sanpedro, Le Toan et al. 2008; Clevers and 

Kooistra 2012) suggesting the N value for potato to be around 1.8 on average. To allow for 

ease of distinction between the effects of those variables it was also deemed necessary to set 

the parameters which were once varied at certain fixed value and hence a value of 40 μg.cm
-2

 

and 5%, were assigned to leaf Cab and soil moisture, respectively. Spherical LAD was 

assumed as the default LAD whenever necessary. Moreover, the soil reflectance was fixed at 

50% which means bright soil background to be able to model the robustness of indices to 

model LAI and their sensitivity to canopy background effects. The variability of soil 

background effect was instead modelled by varying soil moisture because these two soil 

parameters are interchangeable bearing similar effect on the spectra and hence it does not 

make sense to vary both simultaneously. The remaining PROSAIL model parameters were 

fixed at their soil leaf canopy (SLC) demo default values as summarized in table 3.  

 

Table 3. Summary of nominal values for the PROSAIL model input parameters 

No PROSAIL parameters Nominal values Spectral 

signatures 

1 Leaf type Green 1 

2 Chlorophyll 

concentration (Cab)* 

20/40/60 μg.cm
-2

 3 

3 Equivalent water 

thickness (Cw) 

0,0137 g.cm
-2

 1 

4 Leaf dry matter (Cdm) 0.008 g.cm
-2

 1 

5 Leaf structure parameter 

(N)  

1.8 1 

6 Leaf area index (LAI)* (0.25, 8.0, 0.25) m
2
m

-2
 32 

 Hot-spot parameter 0.05 1 

7 Leaf angle distribution 

(LAD)* 

Planophile/Spherical/Erectophile 3 

     

8 Soil Moisture  5%/30%/55% 3 

9 Diffuse/direct radiation 0 1 

10 Solar zenith angle (sza) 45 1 

11 View zenith angle (vza) 0 1 

12 Sun-view azimuth angle 

(azi) 

0 1 

 Total Combinations  288 
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3.2.2 Ground based LAI measurements 

The LAI-2000 Plant Canopy Analyzer was used to measure LAI. The instrument uses an 

innovative technique for making rapid, non-destructive measurements of LAI and other plant 

attributes. The LAI-2000 calculates LAI and other attributes from radiation measurements 

made with a ‘’fish-eye’’ optical sensor (148
0
 field of view). Measurements made both above 

and below the canopy are used to determine canopy light interception at five angles, from 

which LAI is derived based on the radiative transfer model in vegetative canopies (Kooistra, 

Beza et al., 2012).  

The monitoring of potato crop growth status in terms of biophysical and biochemical 

parameters was performed. LAI was measured on a weekly basis whereby two measurements 

were done above the canopy on each end of the row (one at each side) which would then be 

divided by the six LAI measurements performed inside the row to obtain an average LAI 

value for each row (Kooistra, Beza et al., 2012). In doing so radiation was measured both 

above and inside the canopy and this procedure was routinely performed for the 12 plots 

where four rows were measured per plot.  

A Real Time Kinematic Global Positioning Satellite System (RTK-GPS) instrument was used 

to precisely geo-locate the horizontal position of the farm plots as well as the measurement 

sites to allow for time series analysis as well as validation of LAI predictions from different 

sensors against site specific measurements acquired with the LAI 2000. 

3.2.3 MSR16R and APEX  

In addition to the weekly acquired LAI measurements the spectral properties of the potato 

crop were measured using a Cropscan multispectral radiometer (MSR16R) which was carried 

alongside the LAI-2000 measurements for the corresponding experimental plots yielding a 

total of six measurement per row yielding an average LAI per row. These were routinely 

performed for four rows per plot. The instrument is a hand-held portable 16-band radiometer 

device which measures the incoming and outgoing radiance in narrow spectral bands. 

Reflectance is measured through a 28
0
 field-of-view (FOV) aperture and incoming radiation is 

measured through a cosine-corrected sphere.  

Next to the close sensing data, the Airborne Prism Experiment Spectrometer imagery (APEX) 

data was acquired during clear sky on the 27th June 2011. Even though such imagery data 

was available for a single flight, the fact that MSR16R data was also acquired on the same 

date allowed for the comparison of these sensors and for testing the capability of such sensor 

data for LAI retrieval as well as for the comparison of SVIs across sensors. Furthermore, this 

imagery allowed to simulate the performance of SVIs across multiple sensors including 

Sentinel-2 and VENµS for which actual data was not available. The high spectral and spatial 

resolution of the APEX sensor allows for testing the capability of ESA’s upcoming super 

spectral space borne systems with empirical data.  Hence, the value added by Sentinel-2 and 

VENµS due to their possession of narrow red edge bands could be evaluated. These hyper 

spectral next generation satellites are planned to be launched in 2014 and are expected to have 

added values because of those narrowly positioned red edge bands, which are lacking with 

most operational sensors. The same data was used to simulate the Landsat TM band setting in 

order to compare the performances of SVIs across broad and narrow sensors. These together 

constitute the remote sensing data for evaluating the potential of spectral data for LAI 

estimation as it would be measured through SVIs while at the same time evaluating the 

different SVIs including the newly proposed ones. Table 4 presents an overview of those 

sensors analysed in this study, the nature of datasets and the corresponding data acquisition 

methods.  
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Table 4. Overview of sensor types and the corresponding data analysed in this study 

Sensor type Description Temporal 

resolution for data 

acquisition 

LAI-2000 LAI-2000 plant canopy analyzer calculates LAI from 

radiation based on the model of radiative transfer in 

vegetative canopies. It measures in canopies ranging 

from forests to short grasses.  

Field 

measurements 

made weekly  for 

2011 and 2012 

growing season 

CROPSCAN 

MSR16R 

SYSTEM  

This device measures radiance/irradiance from a 

surface over 16 bands covering wide wavelengths 

ranging from 490nm to 1650nm with different spectral 

resolutions.  

Field 

measurements 

undertaken weekly 

for 2011 and 2012 

growing season. It 

is cloud insensitive 

allowing for 

regular data 

acquisition. 

APEX (Airborne 

Prism Experiment) 

imaging 

spectrometer 

The APEX dataset was acquired during an APEX 

flight campaign in June 2011. APEX was mounted on 

a Dornier DO-228 research aircraft operated by Flight 

Operation and Acquisition of DLR (German Space 

Agency) (M. E. Schaepman, M. Jehle et al. 2012) 

Image was acquired on a clear day from a flight height 

of about 4600m. 

One time APEX 

flight data available 

(27 June 2011) and 

used to evaluate the 

performance of 

APEX, S-2 and 

VENµS as well as 

Landsat TM 7.  

VENμS 

(Vegetation and 

Environmental 

New micro 

Spacecraft) and 

Sentinel-2, for 

assessing LAI in 

field crops. 

These are the next generation satellites with super 

spectral  red edge bands (Herrmann, Pimstein et al. 

2011) 

Both VENµS and Sentinel-2 are multi spectral 

spaceborne systems which provide Multi-spectral 

information with 13 bands in the visible, near infra-red 

and shortwave infra-red part of the spectrum. They 

have narrowly positioned red-edge bands making them 

suitable for crop monitoring because of their 5 day re-

visit time with spatial resolution of as high as 10m to 

60m.  

Simulated PRO-

SAIL data was 

generated and used 

for the evaluation 

of the added value 

of red edge narrow 

bands. Field data 

acquired with 

APEX was also 

used for theses 

sensors. 

Landsat Thematic 

Mapper (Landsat 

TM 7) 

This is widely used NASA’s Landsat space borne 

series which acquires imagery over broad spectral 

bands introduced in this study for the purpose of 

comparison with narrow band sensors. 

The PROSAIL data 

was used to derive 

SVIs based on the 

broad bands. 

 

The band settings of the hand held MSR16R radiometer, sensor, Landsat thematic mapper, the 

airborne hyperspectral APEX and ESA’s upcoming multispectral spaceborne sensors are 

summarized in Table 5. 
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Table 5: Summary of sensors and their corresponding band settings used in this study 

Sensor 

type 

Landsat  

TM*  

VENµS Cropscan Sentinel-2 APEX 

Band width 

(nm) 

Band 

position  

Width 

(nm) 

Band 

position 

Width 

(nm)  

Band 

position 

Width 

(nm)  

The band 

width ranges 

from 2.5 nm 

in the VIS 

and NIR to 8 

nm in SWIR  

1 450-520 490 40 490 7.3 490 65 

2 520-600 667 30 670 11 665 30 

3 630-690 702 24 700 12 705 15 

4 760-900 742 16 710 12 740 15 

5 1550-1750 782 16 740 13 775 20 

6 1040-1250 865 40 750 13 842 115 

7 2080-235 910 20 780 11 865 20 

    870 13 1610 90 

    1650 200   

*Denotes the complete listing of the sensor band settings  

3.2.4 Biomass data 

Biomass data was acquired destructively by harvesting one row of potato over one linear 

metre each time (0.75 m
2
). Both fresh weight and the percentage of dry biomass was obtained 

after drying the harvested canopy for 24 hours at 70
o
C (Clevers and Kooistra 2012). This 

same procedure was implemented for both 2011 and 2012 growing seasons. However, the 

biomass data was not acquired every week and hence available only for eight and seven 

weeks during the 2011 and 2012 growing seasons, respectively. For the purpose of this 

research, however, only the fresh above ground biomass was considered for the analysis of 

the LAI-biomass relationship.  

3.2.5 Meteorological data 

In addition to the remote sensing and biophysical data, meteorological data was also obtained 

from Eindhoven meteo-station as it was deemed important to consider variability in the 

weather parameters between the two growing seasons while performing a cross-site 

comparison. Weather parameters such as rainfall, temperature and total sun hours were 

considered, for these elements might affect agronomical practices. Hence, these weather 

parameters were used in the analysis as they might contribute to explaining the condition of 

the potato crop in addition to the level of nitrogen fertilization.   

3.3 Selected SVIs for analysis  

In addition to the indices introduced earlier (see section 2.4), newly developed indices are  

proposed in this study by integrating spectral information from the Red, Red-edge, Near 

Infrared (NIR) and Shortwave Infrared (SWIR) regions of the spectrum. This is mainly based 

on the differences in the sensitivities of these spectral regions to LAI as well as to canopy 

background effects. The SWIR remains sensitive to variations in soil moisture (Wang, Qu et 

al. 2008) compared to the red band, which saturates at relatively low LAI values. Hence the 

integration of these regions of the spectrum with the VIS and NIR could improve the 

sensitivity of SVIs to changes in the LAI. The incorporation of SWIR into the formulation of 

SVIs complement the information obtained from the NIR and VIS bands of the spectrum 

(Hardisky, Klemas et al. 1983; Brown, Chen et al. 2000; Gonsamo and Pellikka 2012). 

Moreover, Lee, Cohen et al. (Lee, Cohen et al. 2004) suggested that the red edge and SWIR 

bands of the electromagnetic spectrum contain more information relevant to LAI even 

compared to the conventionally used NIR bands. Table 6 presents a summary of the SVIs 

selected including the proposed ones for analysis in this study. 
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Table 6. Overview of selected SVIs for analysis by adapting their formulations to the specific band settings of different sensors 

Index Name Sensor Specific Algorithms  

Landsat TM5 APEX Sentinel-2 VENµs Cropscan References 

NDVI Normalized Difference 

Vegetation Index 

[R(760:900)-R(630:690)]/ 

[R(760:900)+R(630:690)] 

(R782-R669)/ 

(R782+R669) 

(R783-R665)/ 

(R783+R665) 

(R782-R667)/ 

(R782+R667) 

(R870-R670)/ 

(R870-R670) 

(Rouse Jr, Haas 

et al. 1974)  

WDVI Weighted Difference 

Vegetation Index 

R(760:900)-R(630:690)] (R782-C*R669) 

 

(R783-C*R665) (R782-C*R667) 

 

(R870-C*R670) (Clevers 1989) 

 

 

  *Where C is a soil reflectance factor obtained as a ratio of 

NIR/red of pure soil spectra 

  

SR Simple Ratio R(760:900)/R(630:690) R782/R669 (R783/R665) (R782/R667) (R870/R670) (Pearson and 

Miller 1972) 

MSR Modified Simple Ratio - (R741/R705)-1/ 

Sqrt [(R741/R705)+1] 

(R740/R705)-1/ 

Sqrt [(R740/R705)+1] 

(R742/R702)-1/ 

Sqrt 

[(R742/R702)+1] 

(R740/R710)-1/ 

Sqrt 

[(R740/R710)+1] 

(Si, Schlerf et 

al. 2012) 

NDII Normalized difference 

Infrared Index 

[R(760:900)-R(1550-1750)]/ 

[R(760:900)+(R1550-1750)] 

(R782-R1646)/  

(R782+R1646) 

(R783-R1610)/ 

(R783+R1610) 

- (R780-R1650)/ 

(R780-R1650) 

(Hardisky, 

Klemas et al. 

1983) 

NDRE1 Normalized Difference 

red Edge Index 

- [(782-709)]/ 

[(782+709)] 

[R783-R705)]/ 

[(R783+R705)] 

[(R782-R702)]/ 

[(R782+R702)] 

[(R780-R710)]/ 

[(R780+R710)] 

(Gitelson and 

Merzlyak 2003) 

NDRE2 Normalized Difference 

red Edge Index 

- (741-705)/ 

(741+705) 

(R740-R705)/ 

(R740+R705) 

(R742-R702)/ 

(R742+R702) 

(740-700)/ 

(740+700) 

ISR Infrared Simple ratio R(760:900)/R(1550:1750) R782/R1646 R783/R1610 - R780/R1650 (Fernandes, 

Butson et al. 

2003) 

EVI Enhanced Vegetation 

Index 

2.5(RNIR − RRED)/ 

(RNIR + 6RRED – 

7.5RBLUE + 1)  

 

2.5(R782 – R669)/ 

(R782 +  6R669 – 

7.5R490 + 1)  

 

2.5(R783-R665)/ 

(R783+  R665- 

7.5R4490+1) 

2.5(R782-  

R667)/(R782+  

R667- 

7.5*R490+1) 

2.5(R780-  

R670)/(R780+  

R670- 

7.5*R490+1) 

(Hatfield and 

Prueger 2010) 

IIReR1 Integrated Infrared 

Red-Edge Ratio 

--------- (R782/R1646)* 

(R741/R669)                                 

(R783/R1610)* 

(R740/R665) 

------ (R780/R1650)* 

(R740/R670) 

This study 

IIReR2 Integrated Infrared 

Red-Edge Ratio 

--------- (R782/R1646)* 

(R710/R669) 

(R783/R1610)* 

(R705/R665) 

------ (R780/R1650)* 

(R710/R670) 

This study 
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3.4 Methodological overview 

The schematic presentation of the logical flow of the research undertaking is organized in two 

phases as presented with the flow chart in Figure 2. The first phase of the research is 

concerned with the Radiative Transfer Modelling based on the PROSAIL Model. The 

simulation was performed using PROSPECT version 5 which yields spectral data at 1 nm 

spectral resolution over the broad range of the electromagnetic spectrum covering 400 nm to 

2400 nm. This part mainly focusses on the evaluation of selected SVIs for LAI prediction. 

The analysis of the performance of selected SVIs was based on the simulated dataset where 

selected model parameters were either made variable or set to fixed values (table 3). It also 

involves the comparison of those indices for broad and narrow band sensors. Moreover, a 

sensitivity function was also tested for its ability to indicate the performance of the different 

SVIs. This part of the research was used as model calibration for the different SVIs including 

the newly proposed ones. The sensitivity analysis and the performance of SVIs across sensors 

as judged by the R
2
 and RMSE values was used to screen out SVIs for further analysis based 

on empirical data. 

The second phase of the research is devoted to further analysing those indices already 

evaluated based on the simulated data. In this part different remote sensing data as acquired 

with Cropscan MSR16R and LAI-2000 as well as the APEX imagery were analysed. The 

LAI-2000 measurements were compared for the different nitrogen treatment levels using 

different statistical analysis such as the analysis of variance (ANOVA) and least significant 

difference (LSD). The SVIs were also derived based on the MSR16R spectral information, 

which was then compared with the corresponding results from the simulation.  The same 

procedure was applied to the APEX imagery. The APEX image was also used to evaluate the 

performances of ESA’s upcoming spaceborne systems based on real data. The relationships 

for each of the analysed SVIs were judged based on the Pseudo-R
2. 

The SVI-LAI relationships 

established based on MSR16R and APEX were also validated using the regression function 

already established based on the PROSAIL model. Furthermore, the sensitivity function used 

with the PROSAIL model was tested with empirical field data from MSR16R for the two 

growing seasons. This was used to examine if the sensitivity record of SVIs could be related 

to their LAI prediction power as measured by the R
2
 and RMSE values. The overall 

undertaking of the research process was summarized as presented in Figure 2. 
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Figure 2. Datasets and processing steps to derive SVIs for LAI retrieval and sensitivity analysis. RQ stands for research question to be answered at each stage of the analysis 
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3.5 Data pre-processing  

After the model parameters were set to the corresponding values as discussed earlier, the 

Python programming environment was used to run the PROSAIL simulations. The datasets 

obtained were systematically split into calibration and validation sets.  In this case the 

simulated data were split into two equally sized datasets containing 112 spectral signatures 

each. The division was based on the LAI values involved in each of the simulations where all 

spectral signatures with LAI values of 0.5, 1.0, 1.5,...8.0 were allocated to the calibration 

datasets whereas those containing LAI values of 0.25, 0.75, 1.25,...and 7.75 were assigned to 

the validation set. Then the datasets obtained in each of the simulations contained at least one 

disturbance variable with 16 spectral signatures. The selected SVIs were calculated after the 

algorithms were adapted to the different band settings. Then the derived values for each of the 

computed SVIs were normalised to the same value ranges (see section 3.6.3 equation 3). This 

was done because the large differences in the SVI values was not feasible for comparison 

using the sensitivity function (see section 3.6.3) unless the values are normalized to similar 

magnitude ranges. The classification of the datasets into model calibration and validation sets 

was instead performed systematically.  

The different datasets acquired using the aforementioned sensing techniques during 2011 and 

2012 growing seasons were pre-processed. These include checking for “no data” and 

smoothing for outliers using appropriate algorithms. For instance, there were data gaps in the 

LAI-2000 field measurements for a few weeks which were filled using interpolation 

techniques. The LAI values for the plots on 20-07-12 was, for example, filled by taking the 

average value of the data acquired on the preceding and following week, 06-07-12 and 27-07-

12, respectively. The LAI data was acquired at row level where six measurements were 

performed per row for four rows for every plot. The LAI value was therefore obtained as the 

average of all the four row values which was in turn the mean of six measurements acquired 

at every two meter interval in a row. These datasets were generated on a weekly basis which 

was combined into a time-stamped single dataset for analysis. The MSR16R data was 

acquired for the corresponding locations as where site the LAI was measured in similar time 

window. In addition, a pure soil spectra was also measured. 

Moreover, the MSR16R spectral data was not without noises which were particularly 

noticeable with the soil spectra. In some of the MSR16R datasets the soil spectra contained 

spectral characteristic of green vegetation whereas it was presumed to exhibit the spectral 

characteristic of pure soil with possible variations in moisture levels. Moreover, there should 

not be such extreme values for reasonably similar soil types whose measurement was 

performed on the same date. The distortions in soil spectra could affect SVIs derived partly 

based on pure soil spectra while correcting for canopy background effects. These distortions 

were, therefore, corrected for by taking the average values using data acquired on the same 

date for a plot while excluding the outliers.  

In addition to the LAI-2000 and MSR16R data, APEX imagery was also used which was not 

without noises. The imagery and the plots were available in different geographic projections. 

The APEX imagery was in WGS-84 which had to be transformed to the same projection as 

the plots that are in RD-New. The APEX imagery also had to be limited in extent matching 

the study area which in this case was the extent of the experimental plots for the 2011 

growing season. Then, the experimental plots were used to define the extent of the imagery. 

Moreover, the APEX imagery also had pixels affected by noises that had to be excluded to 

avoid biases in the evaluation of SVIs across sensors based on the imagery. Hence, as the 

purpose of this study was partly to test the performance of APEX as well as ESA’s upcoming 

hyperspectral sensors and not to map the LAI within the plot, those pixels with apparent noise 
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characterised by a black strip crossing over multiple plots as well as other grey line patterns 

were excluded to avoid systematic bias. To this end, new areas were digitized within each plot 

containing as many noise free pixels as possible while excluding noisy pixels within the 

experimental plots. Then the average pixel values for the entire APEX layers were extracted 

per plot using the R-statistical software from which the SVIs were derived not only for the 

APEX sensor but also simulating the band settings of S-2, VENµS and Landsat TM. This was 

done by adapting the band settings of those sensors to evaluate their performance based on the 

real data as well as to draw comparisons with the PROSAIL model.  

The other dataset regards the dry biomass acquired along with the LAI and MSR16R spectral 

information. This biomass data was destructively acquired by measuring the dried weight of 

both above and below ground potato crop. The sampling was done per every 0.75m
2
 for the 

rows for which the LAI and MSR16R data was already acquired. Like the other data 

measurements the biomass data was also taken every week coinciding with each other. 

However, this was not always the case as the date of biomass data measurement deviated 

from the date on which LAI and MSR16R were acquired. This was particularly the case for 

the 2012 growing season where the biomass data was acquired at a difference of a few days 

with the LAI as well as MSR16R data. In such cases the biomass data was compared with the 

other data measured on the closest possible date. Besides, there were weeks for which 

biomass data was not acquired at all and those weeks were excluded from the analysis of LAI-

biomass relationships.  

Given the fact that a differential nitrogen treatment might not be the only factor affecting crop 

growth particularly when variations in space and time were not accounted for. As a result, the 

 

Figure 3.APEX Imagery acquired on 27 June 2011 indicating the areas selected within the 2011 plots by excluding 

noisy pixels. 
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inclusion of weather parameters was believed to at least partly explain the differences in crop 

growth condition in addition to the variable nitrogen application. To this end, the data on 

precipitation, temperature, and total sun hours were obtained from the nearest weather station 

via the Dutch National meteorology (www.knmi.nl). These data was available on daily basis 

as daily minimum and maximum temperature in degree Celsius, rainfall in mm and sun hour 

duration in hours.  These datasets were organized in such a way that only those temporally 

covering the calendar years of the two growing seasons were considered for analysis. 

Furthermore, information regarding the soil conditions was taken into account as the two sites 

were located in different geographical locations. 

3.6 Data analysis 

3.6.1 Relationship between LAI and different spectral regions  

The simulated data was used to test the sensitivity of the different spectral regions of the 

electromagnetic spectrum for LAI variation. Relationships were established between the 

selected spectral regions of relevance to LAI mapping such as NIR, Red, Red edge and SWIR 

regions with LAI to explore possibilities for devising new indices with improved sensitivity 

over a wide range of vegetation densities. The incorporation of SWIR in any SVI 

complements the information obtained from VIS and NIR bands as suggested by (Hardisky, 

Klemas et al. 1983; Brown, Chen et al. 2000; Gonsamo and Pellikka 2012). The SWIR 

remains sensitive to variations in soil moisture (Wang, Qu et al. 2008) compared to the red 

band, which saturates at relatively low LAI values. A sensitivity of these spectral regions to 

LAI ranges were analysed using simulated data based on the PROSAIL model to support the 

assertion that SWIR mainly remains sensitive to variations in soil moisture levels. Therefore, 

a test of sensitivity of those regions to LAI was performed for different canopy backgrounds 

as simulated with bright, intermediate and moist soils with soil moisture levels of 5%, 30% 

and 55%, respectively. Then a spectral band most sensitive to LAI was identified based on 

which the proposed indices were formulated.  

3.6.2 SVI-LAI relationships based on PROSAIL model  

The SVIs were derived from the simulated data after the algorithms for each of the indices 

were adapted to the band settings of the different sensors, namely, MSR16R, APEX, S-2, 

VENµS and Landsat TM. The SVI values were then normalized to equal value ranges to 

allow the comparison of sensitivities for different SVIs (see section 3.5.2). Then non-linear 

regression analysis was performed to establish SVI-LAI relationships across the five sensors. 

This was performed by regressing SVI against the corresponding LAI values as set in the 

PROSAIL model input parameters.  The regression analysis was performed based on the 

exponential relation established following the Beer Lambert’s law of light extinction from a 

canopy (see section 3.5.2 equation 5). The SVIs derived using the calibration dataset were 

used to empirically estimate the coefficients of light extinction (α) and the asymptotically 

limiting factor (SVI∞) using the SPSS software (version 19.0). The non-linear regression 

analysis using SPSS was used to estimate model parameters to obtain the best fit model for 

estimation of LAI from spectral data by means of the derived spectral vegetation indices. 

Furthermore the best-fitting function was also used to define a SVI-LAI relationship which 

was later compared with the exponential function or Simplified Reflectance Model (SRM) 

(see section 3.6.3 for details).  

The performance of SVIs based on narrow band sensors (APEX, S-2, VENµS, and MSR16R) 

was compared to those based on the broad bands of Landsat TM using the Pseudo R2 values. 

The band settings of APEX were dense enough to allow the simulation of S-2 and VENµS 

and hence were used to evaluate the performance of upcoming ESA’s hyper spectral satellites 

http://www.knmi.nl/
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using empirical data. Then the SVIs were derived from the MSR16R and APEX datasets, 

which were then used for assessing the performance of those sensors. The selected SVIs were 

derived in each of those datasets and tested for their suitability to predict LAI for a potato 

crop.  

 

3.6.3 Sensitivity analysis  

As demonstrated by (Ji and Peters 2007) a statistical technique for computing the sensitivity 

function (S) across the LAI range for both linear and non-linear models was adapted for this 

study. The S function is defined based on a bivariate regression function where SVI is plotted 

as dependent variable on the Y-axis and LAI as independent variable on the X-axis which 

gives a fitted regression function as: 

                                               SVI = f (LAI).................................................................... (1) 

In the non-linear regression, a change in the estimated SVI’ as a function of LAI is 

approximated using a slope of the best fit regression line which indicates the change in SVI 

(Y) in response to a unit of change in LAI (X) given as:  

                                                SVI’ = d (Y’)/d(X)........................................................ (2) 

Where SVI’ is the slope of the estimated SVI (Y’) and not SVI along the regression line and 

d(Y’)/d(X) is the first order derivative of the estimated SVI in terms of LAI.  

As this study involved a comparison of multiple SVIs with different value ranges and 

magnitudes a normalized sensitivity analysis was used as suggested by (Gonsamo 2011). 

Hence, the values for different SVIs were normalized by rescaling their values in such a way 

that they fall in a range of 1 to 10 for all the SVIs. To this end, the value range standardization 

technique adapted based on Vickers and Rees (2007) was used and is expressed as follows: 

                                 SVIn = a+(SVIi-SVImin)(b-a)/(SVImax-SVImin)...................................(3) 

where SVIn is the normalized SVI, a and b denote the minimum and maximum values of the 

normalized SVIn data whereas SVImin and SVImax indicates the minimum and maximum values 

of the calculated SVI with SVIi  being the i
th

 value of the SVI values under consideration. 

Many studies have shown that SVIs reach a point where they do not increase in response to 

increasing LAI values which is often called the saturation level. All SVIs exhibit similar 

patterns although there exist differences in their levels of sensitivity across LAI ranges and 

hence saturation levels. As a result, the relationship between LAI and SVIs can be fitted to an 

exponential equation as a function of LAI following the Beer Lambert’s Law of light 

extinction from a canopy (Clevers 1988). This relationship can be expressed as: 

                              SVI = SVI∞ + (SVIg-SVI∞)*exp
 (-K*LAI)

........................................ (4) 

Where SVI is vegetation index, SVIg being vegetation index corresponding to that of bare soil, 

SVI∞ is asymptotic value of SVI when the LAI value approaches to infinity and this value can 

be practically reached for LAI > 8.0 (Baret and Guyot 1991). 

 A simplified reflectance model for vegetation derived by (Clevers 1988) and also explained 

in (Baret and Guyot 1991) was used to get the best fit model using the simulated datasets. The 

requirements for such  a model as discussed by (Clevers 1988) includes that a) it permits the 

estimation of LAI; b) relates LAI and reflectance as defined by physical parameters; c)allows 
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for multi temporal analysis by correcting for soil background effects and  d) results in a 

meaningful vegetation index.  

The model for LAI estimation based on SVIs using the relationship established between 

spectra and LAI can thus be expressed as follows:  

                                                   LAI=-1/α*Ln (1-SVI/SVI∞+).................................... (5) 

where α is a complex combination of extinction and scattering coefficients and SVI∞  being 

the asymptotically limiting value for the infrared reflectance developed by Clevers (1988) 

with a detailed derivation procedure.  This model was used to compute LAI from the SVIs 

derived from simulated data using the SPSS Software (V.19.0) where the two parameters i.e., 

α and SVI∞ are empirically estimated through an iterative process based on the simulated data. 

Moreover, the procedure yields a more realistic correlation coefficients (R
2
) and residual 

values as opposed to the pseudo-R
2
 values where the latter tells us only the goodness-of-fit of 

the model. 

The non-linear regression was performed for estimating LAI based on the rescaled SVI values 

using the simplified reflectance model following Beer’s law of light extinction from a canopy 

(Clevers 1988). Several studies confirmed the usefulness of this function (Wiegand, Maas et 

al. 1992; Broge and Mortensen 2002; Darvishzadeh, Atzberger et al. 2009; Gonsamo and 

Pellikka 2012)for retrieving LAI and hence applied in this study. 

Once the non-linear regression was performed for the estimation of LAI based on the SVIs 

analysed the inverse of the local slope could be used to indicate the rate of change in SVI in 

response to a unit of change in LAI, simply an inverse of equation (2): 

                                        SVI’ = [d (Y’)/d(X)]^-1....................................................... (6) 

 ore importantly, since the   values are estimated, the associated estimation error should be 

considered to indicate the efficiency of the SVI-LAI relationships. This estimation error 

associated with the change in the local slope of SVI-LAI regression function is equated with 

the standard error of the estimate as predicted by the different SVIs for every point or LAI 

value along the X-axis. The standard error of the estimate is expressed as:   

                                         =       ......................................................... (7)  

where     is the standard error of     or asymptotic standard error of   or standard error of 

the estimate; σ
2
  is the mean squared error ( SE);   is a matrix of the independent variables 

X; and  i is the i
th
 row of   and  ’ stands for the matrix transpose. The statistical approach to 

calculating such estimation error is complicated to approach manually unless assisted by a 

statistical software package as proposed by (Ji and Peters 2007; Gonsamo 2011). The R-

statistical software was used to compute the standard error of the estimate.                         

The S function, combining equations 6 and 7, can thus be expressed as the ratio of the first 

order derivatives of SVI’ to the standard error of SVI (   ’). From the above formulations, 

the sensitivity function is given as: 

                                                       (S) = SVI’/   ’........................................................ (8) 

where S of i
th

 observation equals t which is the Student’s t-test statistic for a given P-value 

and degree of freedom because t ≅  ’i    i  (Ji and Peters 2007). 
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3.6.4 SVI-LAI relationships based on empirical data  

The SVIs were computed from both the MSR16R and the APEX imagery. The computed 

indices were regressed against LAI-2000 measurements to judge the performance of those 

SVIs based on the Pseudo R
2
. This procedure was performed for both MSR16R data and 

APEX imagery.  The APEX imagery, on top of furnishing data for itself, was also used to 

model S-2, VENµS and Landsat TM and hence those SVIs were compared across all the five 

sensors. In doing so it was possible to evaluate the performance of SVIs across the broad 

bands of Landsat TM and the narrow band sensors. Moreover, the upcoming ESA’s 

spaceborne sensors were evaluated for their narrowly positioned red edge bands based on the 

SVI-LAI relationships.  

3.6.5 Relationships between LAI and nitrogen application 

As described in the previous section, the experimental set-up was designed based on 

differential nitrogen application at the beginning of the growing season as well as variable 

rate of fertilization throughout the growing season. The effect of such differential nitrogen 

treatment was examined by plotting the LAI values acquired for the different plots through 

the growing season. This was performed for the two growing seasons to analyse the effect of 

the variable nitrogen application on the growth of the potato crop. Furthermore, an analysis of 

variance was conducted using SPSS to see the effect between treatment groups. The analysis 

of variance (ANOVA) was performed to see the treatment effects in terms of the average LAI 

values for treatment blocks as well as initial fertilizer application during the 2011 and 2012 

growing seasons. In addition, a pairwise test of significance of the treatment effect between 

treatment groups as well as among plots was carried out using the Least Significant 

Difference (LSD) test.  

3.6.6 Comparison of weather parameters for the 2011 and 2012 growing 

seasons 

The data on weather parameters was also analysed for the two growing seasons. Daily 

temperature was computed by taking the average of daily minimum and maximum using a 

four (4
0
C) accumulated day degrees (O'Brien, Allen et al. 1983; Allen and O'Brien 1986). 

Cumulative values were calculated for rainfall, temperature and sun hours for the entire 

calendar days starting with the planting dates for the two growing seasons. As the calendar 

days and the planting dates for the two years were closely matching being 10
th

 April 2011 and 

12
th

 April 2012, the calendar dates for the computation of the parameters were set to 98 and 

100, respectively. A paired t-test was also carried out to examine the mean difference of those 

parameters between the two growing seasons.  

3.6.7 Relationships between biomass and LAI  

A relationship between fresh biomass and LAI was studied to examine whether LAI could be 

used to predict the overall biomass for the potato crop. This was analysed using a linear 

regression function with the biomass data acquired for the two sites against the corresponding 

LAI. In addition, a comparison of the mean difference of biomass for the two sites was 

performed using a t-test. Furthermore, the analysis of variance was performed to see the effect 

of nitrogen treatment, whereas the test of significance of the difference was performed using 

the Least significant difference test (LSD). 
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3.6.8 Sensitivity analysis based on MSR16R and LAI-2000 

The sensitivity function already explained (see section 3.6.3) was also implemented using the 

MSR16R data from the 2011 growing season. This was deemed necessary to compare the 

sensitivity function based on empirical data with those performed with the simulated datasets 

using the PROSAIL model, because the simulated dataset is supposed to be noise free as 

opposed to empirical data which is vulnerable to noise effects. Moreover, such sensitivity 

analysis was also used to test if there exists some degree of consistency in the performance of 

SVIs as judged by its LAI prediction power in terms of R
2
 and RMSE values and the 

sensitivity record. 

3.7 Validation 

3.7.1 Validation of SVI-LAI relationships based on PROSAIL model 

Different types of validation techniques can be used; namely, validation based on independent 

dataset, and a cross validation procedure also called the leave-one-out procedure 

(Darvishzadeh, Skidmore et al. 2008). The same study reported a comparable performance of 

both techniques. The validation method for the RTM modelling part of this study was based 

on an independent test dataset. The total of 224 spectral signatures with a particular LAI value 

under varying leaf and canopy parameters such as leaf Cab, LAD, and soil moisture levels 

were split into two independent datasets. The use of a completely independent dataset is often 

recommended to test the model’s long term stability while at the same time an arbitrary 

division of datasets into calibration and validation samples may also lead to biased results 

(Darvishzadeh, Skidmore et al. 2008). The classification of the datasets into model calibration 

and validation sets was instead performed systematically as already described in the pre-

processing part. In this case the simulated data were split into two equally sized datasets based 

on the LAI values involved in each of the simulations (see section 3.4) 

The SVIs were derived from the validation datasets using the same algorithms applied for the 

calibration datasets. Moreover, to handle the variation in value range and magnitudes among 

the different SVIs analysed, the SVI values were normalized through rescaling. The 

regression equation established based on the calibration dataset was used for LAI prediction 

using the validation datasets.  Then different statistical parameters such as the coefficient of 

determination (R
2
) and Root Mean Square Error (RMSE) were computed to validate the 

performance of SVIs based on the established relationships.   

......................................................(9) 

Where ŷi is the value of predicted LAI, yi is the measured LAI and n is the number of 

observations. 

                   RPD = St.Dv./RMSE..............................................................................(10) 

where RPD is the relative percentage difference, St. Dv. is the standard deviation of the 

measured LAI and RMSE as obtained using eq. (9). 

Then, a sensitivity analysis was performed using the sensitivity function to evaluate the 

relationship between the different SVIs and the LAI using (eq. 8). 
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3.7.2 Validation of SVI-LAI relationships using empirical field data and APEX 

imagery 

Once the SVI-LAI relationships were established based on empirical field data as well as 

APEX imagery, validation was performed using the relationship defined based on PROSAIL 

data. The parameters coefficient of light extinction from a canopy and the asymptotically 

limiting factor (see section 3.5.3 equation 5) already estimated based on the PROSAIL 

calibration dataset were used to predict LAI based on the SRM (see section 3.6.3). These were 

applied to all SVIs derived from the MSR16R as well as the APEX imagery.  In addition, the 

best fitting models from simulated datasets were also used for LAI prediction using the 

empirical data from MSR16R to compare the robustness of those models across different 

datasets. These same procedures were followed for the validation of SVI-LAI relationships 

based on APEX imagery. It includes validation of the consistency of the performance of those 

SVIs across the different sensors. This also allowed for comparing the performance of SVIs 

based on empirical field data as well as APEX imagery with apparent noise compared to the 

datasets simulated with PROSAIL modelling. 

The predicted LAI was compared with the LAI-2000 measurement for every plot as the LAI-

2000 data were available. Then statistical measures such as R
2
, RMSE and the relative 

percentage difference (RPD) were computed to compare the performance of SVI for LAI 

prediction. The RPD was used to standardize for differences in the data value range across the 

two sites. This procedure was also meant to test the robustness of the LAI retrieval method for 

crop monitoring under varying management practices as well as throughout the growing 

season. The LAI datasets obtained using the LAI-2000 instrument were used for validation as 

well as to establish empirical relationships with the different spectral vegetation indices 

derived for the different sensing techniques. The same validation procedure was followed for 

LAI predictions made based on APEX imagery where the LAI-2000 data used for the 

validation of APEX imagery based LAI predictions were those acquired on the same date as 

the APEX flight (27-06-2011).  
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CHAPTER FOUR: RESULTS  

4.1 Sensitivity analysis based on the PROSAIL Model 

4.1.1 Sensitivity of selected spectral regions to LAI for different soil moisture 

levels 
The selected spectral bands red (around 670 nm) and red-edge (around 705 nm, 710 nm and 

740 nm), NIR (780 nm) and SWIR (1650 nm) were assessed based on their sensitivity to LAI 

for bright, intermediate and moist soil backgrounds. The sensitivity of those  bands were 

evaluated using the simulated data. As demonstrated in Figure 4 the reflectance in the NIR 

(780 nm) showed high sensitivity not only to changes in LAI but also to canopy background 

effects. The background effect is most visible with the bright soil, because the reflectance 

curve for bright soil appears to be horizontal and not showing any change with LAI range. On 

the other hand, the corresponding reflectance for medium and moist soil increases with 

increasing LAI values (Figure 4a).  

It can also be seen from the same figure 4 (b) that the reflectance at 670 nm is less sensitive to 

canopy background effects even at low LAI where the contrast between the three soil 

moisture levels is minimal compared to the other three band regions. The sensitivity of the red 

band also saturates earlier than the other three as it no longer distinguishes between bright and 

moist soil at LAI = 2.5 and onwards.  As compared to the red band, the reflectance in the red-

edge around 705 and 710 nm showed not only higher gap between bright, intermediate as well 

as moist soil conditions at low LAI but also showed improved sensitivity to LAI. This trend 

improves further with the red edge at 740 nm which follows a similar pattern with the NIR 

spectra at 780 nm showing higher sensitivity over wider LAI range while distinguishing 

between bright and moist soil backgrounds better than the red and other red edge bands. On 

the other hand, the result for SWIR (1650 nm) indicated higher sensitivity to soil moisture 

levels  with the reflectance for bright soil being high at low LAI which continues to drop even 

at high LAI levels. This region also showed a better distinction even between intermediate 

and moist soil backgrounds where the reflectance for both soil moisture levels continues to 

drop up to moderately high LAI (LAI = 5). However, the reflectance for moist soil continues 

to increase at high vegetation density (LAI > 5) although this can hardly be witnessed from 

the graph (fig 4c). 
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Figure 4. The effect of canopy background and LAI on the NIR  (a), Red (b), SWIR (c) and Red-edge (d, e & f)  

reflectance for bright, intermediate and moist soil conditions. 

 

4.1.2 Results on SVI-LAI relationships  
 

The analysis of the SVI-LAI relationship was performed based on different soil, leaf and 

canopy parameters. The result of these relationships based on bright, intermediate and moist 

soil conditions is presented in the appendix 2. The effect of LADs based on planophile, 

shperical and erectophile LAD is found in appendix 3 whereas the effect of three Cab levels 

(20, 40 and 60 µgcm
-2

) can be found in appendix 4. The results showed that most of the SVIs 

were less sensitive to canopy background effects as the overlapping curves for the three soil 

moisture levels indicated homogeneity of the relationship. However, the WDVI, EVI, NDII 

and ISR showed relatively higher sensitivities  to  soil moisture levels at low LAI (LAI < 4) 

indicating the effect of soil moisture for open canopy (Appendix 2).  

It was also found that most of  the SVIs were sensitive to varying Cab levels with relationship 

being the worst at low Cab level (20 µgcm
-2

). However, WDVI, NDVI and EVI showed 

similar relationships for all the three Cab levels. Other SVIs such as IIReR1, NDII, NDII, EVI 

and ISR had similar relationships for Cab levels of 40 and 60 µgcm
-2

, whereas their 

relationship with Cab level of 20 µgcm
-2

 deviates from the other two (Appendix 3e, f, i & k). 

Other SVIs such as  NDRE1, NDRE2, MSR, SR and IIReR2 showed different relationships 
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with LAI based on the three Cab levels. The effect of Cab levels on SVI-LAI relationships 

increases at high LAI as indicated by the diverging curves corresponding to each Cab level. 

Apart from showing higher sensitivity at higher LAI, all the SVIs had different sensitivities to 

LAI ranges. For instance EVI saturates earlier (LAI < 2) followed by WDVI , NDVI, NDRE1 

and NDRE2 which appears to saturate at fairly low LAI (LAI < 3). Regardless of their 

sensitivity to varying Cab levels IIReR1, IIReR2, NDII, ISR and SR had better sensitivity to 

LAI even at high vegetation density (see Appendix 3).  

The analysis based on different LADs also reported differences in the sensitivities of the SVIs. 

The relationship was poor for most indices based on planophile LADs. The analysis also 

indicated higher sensitivities for such indices as SR, IIReR1, IIReR2 and NDVI for planophile 

LAD at lower LAI (LAI < 4) compared to the other LADs for the same SVI. For many of the 

SVIs the relationship with LAI showed a similar pattern for spherical and erectophile LADs. 

Except for WDVI and EVI the relationship based on an erectophile LAD was found to be 

more linear showing a better sensitivity of SVIs across a wider LAI ranges. 

After the SVIs were derived based on the band settings of MSR16R, the regression analysis 

based both on the best fit model and SRM gave the results plotted in Figure 5. In addition to 

the simulated spectra at every LAI value SVIs were computed based on the SVI-LAI 

relationships established following Beer’s Law (equation 5). The SRM based on non-linear 

regression model was used to empirically estimate the parameters of the model, namely, α and 

SVI∞. The result of the regression analysis showed that most of the indices had exponential 

relations while regressing SVI (y-axis) against LAI (x-axis). This was the case with SVIs such 

as NDVI, NDII and NDRE2 where the SVI-LAI relationships based on the two models were 

found to match more closely than for other SVIs.  

Based on the best fit function IIReR1, NDII, ISR, NDVI, IIReR2 and SR had better 

relationships than other SVIs based on their Pseudo-R
2
 value of 0.92, 0.90, 0.88, 0.86, 0.86 

and 0.81, respectively. On the other hand, NDRE1, NDRE2, EVI, MSR and WDVI, which had 

a pseudo-R
2
 value of 0.58, 0.79, 0.66, 0.67, 0.73, respectively, had worse relationships with 

LAI. However, the analysis based on the SRM (exponential function) indicated a more linear 

relationship for IIReR1, IIReR2, SR and MSR and the relation was also strong for the first 

three indices (R
2
=0.82, 0.81 and 0.78). The other SVIs had logarithmic relations with SVI 

being a regressor (y-axis) and they had weaker relationships compared to the first three SVIs 

(Figure 5). In general, the use of exponential function showed weaker relationships as 

compared to the Pseudo-R
2
 values obtained from the best fit functions.  

Moreover, the point clouds in the scatter plots labelled in green colours showed different 

patterns. They represent the unique SVI values derived based on the spectra generated for the 

different disturbance factors, namely, soil, leaf and canopy parameters. Those points were 

quite dispersed from each other for MSR, SR, NDRE1, and NDRE2 (Figure 5g, e, j and h) 

indicating higher sensitivity of these indices to leaf and canopy parameters, whereas NDVI, 

NDII, ISR, EVI and IIReR1 showed less sensitivity to those parameters (Figure 5, a, b, c, f. i). 
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Figure 5. SVI-LAI relationships based on SRM and simulated spectra. NDII (a), IIReR1 (b), ISR (c), WDVI (d), SR 

(e), EVI (f), MSR (g), IIReR2 (h), NDVI (i), NDRE1 (j), and NDRE2 (k). The colours indicate the equations that  

match with the point cloud and the trend line with the same colour. SS stands for best fit function, SRM stands for fit 

with the simplified reflectance model (exponential function).  
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4.1.3 SVI-LAI Relationships based on Broad and Narrow Band sensors 

SVIs that could be derived from broad bands were analysed across different sensors. This part 

presents a comparison of the relationships of those indices across the broad bands from 

Landsat TM with those derived based on narrow bands of MSR16R, APEX, S-2 and VENµS. 

The broad bands refer to the band settings of Landsat TM where a single band extends over 

60 to 200 nm widths whereas the corresponding bands from other sensors are as narrow as 2.5 

nm to 8 nm for APEX, 12 nm for MSR16R, and the band width extends up to 30 nm for S-2 

and VENµS. Therefore, in this study, the Landsat TM bands were referred to as broad while 

the rest were treated as narrow bands. 

Figure 6 depicts the relationships between six SVIs as derived from the band settings of 

different sensors. These indices are chosen for comparison because they could be derived 

from the broad bands of TM. The pattern of the relationships for all the SVIs, namely NDVI, 

SR, NDII, ISR, WDVI and EVI showed similar patterns with what was reported in Figure 5 

for the SVI-LAI relationship based on MSR16R. The graphs indicate overlapping point 

clouds for those indices although the congestion or dispersion of the points vary depending on 

the sensitivity of each SVI to the leaf, soil and canopy parameters as simulated with the 

PROSAIL model. For instance, Figure 6 (a) which has similar patterns as Figure 5(i) 

illustrates the consistency of NDVI across the five sensors regardless of the band widths of 

those sensors.  Similar comparisons could be made for the other indices with the relationship 

reported based on MSR16R (Figure 6) to gain an understanding on how consistent those SVIs 

derived from other sensors are.  

 

Figure 6. Relationships between LAI and NDVI (a), SR (b), NDII (c), ISR (d), WDVI (e) and EVI (f) for Broad and 

Narrow bands.  
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In addition, the validation datasets were used to predict LAI based on those different sensors 

to assess the degree of consistency of those SVIs. Then the predicted LAI for each SVI from 

narrow band sensors were plotted against the corresponding estimate (LAIe) from Landsat 

TM. The result in Figure 7 shows that the estimated LAI (LAIe) based on the different sensors 

could be compared. For instance, LAI estimated using the WDVI from the Landsat TM is 

more or less linearly correlated and fitted around a line through the origin with the LAIe from 

MSR16R, APEX, S-2 and VENµS. This of course follows from the consistency of the index 

which as a result estimates LAI at similar levels of accuracy. It can also be seen that LAI 

estimated based on NDVI and EVI appears to follow a linear pattern of relationship across 

sensors.  

Similar to what has been reported for other SVIs, the NDII and ISR also showed consistency 

in predicting LAI for different band settings across TM, S-2, MSR16R and APEX sensors. 

Apart from the similar pattern of performance reported between NDII and ISR, it can be seen 

that the LAIe based on MSR16R with both indices deviates from S-2 and APEX at higher 

LAI values (Figure 7 d &f ). The overlap is even more visible between S-2 and Landsat TM 

as well as between MSR16R and APEX.  On the other hand, S-2 and APEX showed a more 

linear pattern with Landsat TM for both ISR and NDII. The WDVI showed particularly linear 

relationships due to overlapping patterns for all the five sensors confirming high degree of 

consistency of the performance of the index across different band widths. SR appeared to 

show the least consistency when compared to the other indices as the plot indicated dispersed 

point clouds around the line through the origin. The EVI also exhibited some degree of 

consistency for all the sensors considered except that S-2 based LAIe appeared to deviate 

from the LAIe from TM. 

 

Figure 7. A comparison of LAI prediction power for SVIs  based on broad and narrow band sensors. LAI estimated 

(LAIe) based on NDVI (a), WDVI (b), SR (c), NDII (d), EVI (e) and ISR (f) from Landsat TM was compared with 

LAIe based on the narrow band sensors.  
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Furthermore, a statistical analysis using correlation was performed to quantify the degree of 

consistency of the performance of those SVIs across sensors. The result of the correlation 

analysis of the LAIe from those SVIs was obtained for the Landsat TM and the other four 

narrow band sensors. The correlation (R) values indicated that the LAIe from broad band and 

narrow bands were significantly related for all the six SVIs analysed (Appendix 18). The 

relationship revealed strong correlation of the performance of SVIs across the broad and 

narrow band sensors. The correlation was also found to be statistically significant at 95% 

confidence level (P-value = 0.00) for all the indices (NDVI, WDVI, SR, NDII, ISR and EVI) 

based on Landsat TM and the other four sensors (S-2, MSR16R, APEX and VENµS).  This 

confirms the consistency of those SVIs across different sensors regardless of the varying 

degree of consistency as well as sensitivity or insensitivity to different leaf and canopy 

parameters.  

4.1.4 Results on the Validation of SVI-LAI Relationships 

Relationships established using a regression analysis with both SRM and best fit function 

resulted in different relationships for the SVIs considered. As a preliminary assessment of the 

selected SVIs, the simulated data with all the disturbance parameters were combined and 

processed to derive the different SVIs from the specific band settings of the Landsat TM, 

MSR16R, APEX, S-2 and VENµS. After the LAI was estimated using the validation dataset 

statistical measures such as RMSE and R
2
 values were computed.  The procedure yielded the 

following statistics for the 11 SVIs considered (table 7).  

Contrary to the SVI-LAI relationships introduced so far where the relationships were more or 

less defined exponentially, the IIReRs-LAI relationship follows a linear curve. As these 

indices demonstrated a better R
2
 value and the smallest of all the RMSE values the linearity of 

the relationship is an indication of its better prediction power. The trend was similar for the 

different sensors (MSR16R, S-2, and APEX) where the band settings were similar. The 

results indicated that the SVIs considered best fitted to exponential functions defining their 

relations with the LAI values yielding better performances than others. The best fit functions 

for those indices were also found to be either linear or power functions instead of exponential 

relations (Figure 5).  This was the case for a few indices such as SR, MSR and IIReR1 and 

IIReR2, whose relations with LAI were best explained linearly or as power functions. The 

validation results confirmed that the performance of the newly proposed indices, IIReR2 and 

IIReR1 , hold as demonstrated by the smallest of all RMSE (i.e., 0.87 and 0.94) values based 

on MSR16R, for example,  as well as the highest R
2
 (0.81 and 0.82) values, respectively.  

They also showed consistently superior performance with R
2
 values being 0.83 and 0.84 for 

IIReR1 and 0.84 and 0.83 for IIReR2 based on APEX and S-2, respectively.  

On the other hand, NDRE1, NDRE2, WDVI, MSR and EVI had lower R
2
 values. Yet, these 

indices showed consistency across the different sensors. It is also worth mentioning that 

NDVI, SR, ISR and NDII showed not only strong consistency but also better performance 

only next to IIReRs. NDVI showed strong consistency with R
2
 value ranging between 0.72 

and 0.79 for Landsat TM and MSR16R, respectively. The statistical analysis confirmed that 

the index is consistent across the five sensors as measured by the R
2
 value being within the 

range of 0.72 (Landsat TM) and 0.79 (MSR16R). Moreover the RMSE value also confirmed 

the consistency of the index which for all the sensors was found to be between 1.0 (APEX) 

and 1.15 (Landsat TM). Similar result was reported for SR showing a consistent record across 

the narrow sensors with R
2
 value ranges of 0.75 to 0.78, although its performance 

considerably dropped with TM (R
2
 = 0.69). The SWIR based indices on the other hand saw a 

drop in performance for MSR16R with an R
2
 of 0.65 and 0.72 for ISR and NDII where both 

had R
2
 values of over 0.80 for other sensors (Table 7).   
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Table 7. Summary of statistical measures of the performance of SVIs across different sensors using the validation 

dataset (P-value < 0.01 for all SVIs). 

 

It is also interesting to note the variations in the sensitivity of those indices in response to 

varying leaf, soil and canopy parameters. The LAIe was obtained using the SRM model with 

the parameters already estimated with calibration dataset. The graphs in Figure 8 illustrate 

how the performance of those indices varies with varying parameters. It can be seen that 

many of the indices showed poor performance with low Cab (20 µg.cm
-2

) as well as with 

planophile LAD (Plano). This was particularly the case with NDVI, SR, IIReR1, MSR, 

NDRE1 and NDRE2 where they all showed clearly distinguishable patterns, though to varying 

degrees. Exception to these were the SWIR based indices such as NDII, ISR and IIReR2 as 

well as WDVI and EVI, which instead showed a different pattern in relation to the two 

parameters.  For instance, the performance of ISR, NDII and IIReR2 with Cab level of 

20µgcm
-2 

is comparable with their performance at higher Cab levels. IIReR2 instead showed 

high sensitivity to LAI at high Cab level of 60 µgcm
-2

. Moreover, IIReR1, IIReR2, ISR and 

NDII showed high sensitivity to LAI with erectophile LADs whereas the greenness indices 

such as NDVI, SR, MSR, NDRE1 and NDRE2 performed well with high leaf Cab levels. For 

instance, NDVI showed high sensitivity to leaf Cab levels with quick saturation effect with 

low level of Cab where the LAI prediction hardly exceeded four (4). On the other hand, the 

index has performed well with high leaf Cab levels where it showed a more linear pattern 

compared to its performance under other scenarios. It also showed considerable variation with 

varying LADs with the poorest performance being under planophile LAD, whereas it did well 

with an erectophile LAD.  

On the other hand, the effect of canopy background as simulated by varying soil moisture 

levels did not have much effect on the performance of many of the SVIs. In fact, the 

overlapping curves for the three moisture levels confirms that many of the SVIs did show 

little or no sensitivity to the effects of variable soil moisture. This would be further discussed 

later under sensitivity analysis where a sensitivity function was used to test if the 

responsiveness of the different SVIs to LAI could be distinguished across LAI ranges. 

Analogous to the overlap observed with moisture levels is the consistency of the performance 

of ISR, NDII and IIReR2 with varying Cab levels.  

Index MSR16R APEX Landsat 

TM 

Sentinel-2 VENµS 

R
2
 RMSE R

2
 RMSE R

2
 RMSE R

2
 RMSE R

2
 RMSE 

IIReR2 0.82 0.87 0.84 0.86 - - 0.83 0.88 - - 

IIReR1 0.81 0.94 0.83 0.91 - - 0.84 0.87 -        - 

NDVI 0.79 1.01 0.78 1.00 0.72 1.15 0.77 1.07 0.75 1.07 

SR 0.77 1.03 0.78 1.01 0.69 1.69 0.75 1.32 0.78 1.37 

NDII 0.72 1.07 0.82 0.91 0.82 0.92 0.81 0.93   

ISR 0.65 1.24 0.79 1.01 0.80 1.00 0.80 1.00 -       - 

NDRE2 0.56 1.46 0.52 1.51 - - 0.53 1.50 0.53 1.47 

MSR 0.51 2.12 0.54 1.49 - - 0.53 1.51 0.54 1.46 

WDVI 0.46 1.66 0.46 1.65 0.45 1.63 0.46 1.65 0.43 1.66 

NDRE1 0.41 1.50 0.51 1.53 - - 0.53 1.50 0.54 1.47 

EVI 0.38 1.77 0.38 1.77 0.37 1.76 0.39 1.90 0.35 1.78 
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Figure 8. Validation of the performance of SVIs using independent datasets.  NDVI (a), SR (b), IIReR1 (c), WDVI (d), 

NDII (e), IIReR2 (f), MSR (g), NDRE1 (h), EVI (i), NDRE2 (j)and ISR (k) were tested for varying leaf, soil and 

canopy parameters where the predicted LAI (LAIe) with each index is plotted against the measured or simulated 

(LAI m). In addition to the information provided in the legend the spherical LADs and bright soil (SM_5%) had the 

same value with Cab_40 µgcm-2 as these parameters were set to default in all the combinations. 

 

A further analysis of the performance of those SVIs with the different leaf, soil and canopy 

parameters was performed using the validation datasets based on MSR16R band settings. The 

result confirmed the graphical illustrations already presented (Figure 8) in that almost all the 

SVIs showed the highest RMSE values while predicting LAI with planophile LADs (figure 9). 

Exception to this was the MSR which had similar levels of accuracy, though poor, for the 

three LADs considered. It can also be seen from the graph (figure 9) that the least RMSE was 

reported with erectophile LADs followed by spherical LADs where the value for the latter 

was the same as Cab 40 µgcm
-2

. One can also see that IIReR2, IIReR1, SR, NDII and NDVI 

reported the smallest overall RMSE making them suitable for LAI prediction in the same 

order.   

A similar procedure was implemented based on variable leaf Cab levels of 20, 40 and 60 

µgcm-2. Parallel to what could be observed from Figure 8 where many of the greenness 

indices such as NDVI, SR, NDRE1, NDRE2 and MSR showed the poorest performance with 

low leaf Cab, the highest RMSE was reported with Cab level of 20 µgcm-2  for almost all the 

SVIs except for MSR. On the other hand, all of those indices excluding MSR had the lowest 

RMSE with high leaf Cab (60 µgcm-2) followed by intermediate (40 µgcm-2) Cab level.  The  
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Figure 9. Results on the validation of the performance of SVIs with varying soil moisture levels (a), LADs (b), leaf Cab 

levels (c) and all parameters combined (d) as simulated based on the MSR16R band settings  

 

gap in the RMSE values appeared to be high for those greenness indices while it was 

relatively narrow for those SVIs derived partly based on the SWIR bands. 

Contrary to expectations, the result showed more consistent performance for almost all the 

SVIs at varying soil moisture levels. However, there is still a considerable variation among 

the indices in the level of insensitivity to canopy background effects. IIReR1, IIReR2, SR and 

NDVI did not only show similar records at the three moisture levels, but also performed well 

as indicated by their small RMSE values. On the other hand, EVI and MSR showed the 

poorest performance as was the case with other leaf and canopy parameters. Furthermore, 

WDVI and EVI showed more sensitivity to bright soil background as compared to the other 

indices. 

4.1.5 Results on sensitivity analysis based on PROSAIL model 

The sensitivity functions were computed for each SVI following the SVI - LAI relationships 

defined based on both bivariate linear regression and non-linear regression models. A 

comparison was made between the exponential model based on the Beer Lambert’s model and 

the best fitting function defined from the SVI-LAI relationship established based on the 

simulated data. Hence LAI was regressed as a function of SVI which permits the computation 

of the proportion of variability of each SVI (dependent variable) in response to a unit of 

change in the LAI (independent variable). To this end, the inverse of the derivative was taken 

because the interest in this case was to examine the responsiveness of SVIs to changes in LAI. 

The ratio of the first derivative of the regression function, (dSVI/dLAI), to the standard error 

of the estimated LAI, (σ i’), was used to derive the S function across the range of LAI values.  

The S function depicted in the graph (Figure 10) demonstrates the sensitivity of the SVIs 

analysed in this study. The analysis was based on the dataset generated based on spherical 

LAD, bright soil with 5% soil moisture, and leaf Cab level being set at 40µgcm-2. These 

combinations were chosen for demonstrating the SVI-LAI sensitivity as the LAD and Cab 
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level chosen were meant to represent the potato crop best with bright soil background. The 

performance of the SVIs might vary under different circumstances making the knowledge 

about their sensitivity important for applying the appropriate SVI whenever deemed essential. 

Moreover, this assessment is based on the band settings of the MSR16R sensor and hence 

there is no guarantee regarding the consistency of the levels of sensitivity for other sensors, 

and hence need to be tested.  

The result of the analysis indicated overall a high sensitivity at a low vegetation density. After 

the LAI value reached a value of four all the indices plotted with the exception of SR and 

IIReR exhibited a quick drop in sensitivity and they eventually became insensitive after the 

point where the vegetation density reaches an LAI of 4 and beyond (Figure 10).  The degree 

of sensitivity was quite high at low LAI for most of the SVIs for which the best fitting 

function was exponential.  On the other hand, the other SVIs with more or less uniform levels 

of sensitivity such as SR, IIReR1 and IIReR2 as well as MSR showed better sensitivity than 

others over a wide range of LAI. These SVIs had a gradually increasing sensitivity with 

increase in vegetation density, reaching their peak around an LAI value of 4.5 to 5 after which 

their sensitivity started to decline with a further increase in LAI. 

Based on the sensitivity function plotted it is clearly shown that many of the SVIs, such as 

NDVI, NDII, ISR, NDRE1  and NDRE2,  were more sensitive at low LAI values of up to 2, 

beyond which the sensitivity saw a sharp decline and eventually became insensitive after LAI 

value of four. More importantly, NDVI saw quite high sensitivity at low LAI (LAI < 2) while 

its sensitivity quickly dropped at moderately high LAI eventually becoming insensitive (LAI > 

4).  The statistical analysis also indicated that SR, IIReR2, IIReR1, MSR, WDVI, and EVI 

were sensitive for the full LAI range considered at 95% confidence level. The minimum 

acceptable sensitivity level beyond which an SVI in considered insensitive as indicated by the 

solid red line in the graph (figure 10) is 2.042. This corresponds to a t-value at a p-value of 

0.05 and a degree of freedom = 30 as the number of observation was 32. Following this, a few 

indices such as NDVI, NDII, ISR and NDRE1 and NDRE2 became totally insensitive for 

higher LAI ranges as the sensitivity function crosses the threshold (S=2.402) beyond which 

the corresponding SVI was not sensitive anymore.  This indicates that any of these indices 

could be used for LAI mapping for low vegetation densities making NDVI and NDII most 

suitable for low vegetation density (LAI < 2). Similarly, IIReR1, IIReR2, SR and MSR 

appeared to be suitable for LAI ranges beyond 1.75 through higher vegetation densities.  

Moreover, they maintain considerable degree of stability in the degree of their sensitivities 

over a wider range of LAI as opposed to other SVIs which saw a sharp decline with a slight 

increase in LAI values.  Nevertheless, all SVIs might also exhibit varying levels of sensitivity 

with different models (best fit vs. SRM) as well as with the empirical field data hence 

demanding the empirical verification on the degree of sensitivities based on the analysis of 

field measurements.  Therefore, the sensitivity of the indices to different disturbance factors 

will be dealt with in the subsequent sections.  



39 
 

 

 

Figure 10. Sensitivity analysis of SVIs based on the exponential model 

 

4.1.5.1 SVIs sensitivity to different leaf Cab levels 

The analysis of SVIs based on three different leaf Cab concentrations (20 µgcm
-2

, 40 µgcm
-2

, 

and 60 µgcm
-2

) showed varying performance levels. Although many of the SVIs performed 

well with high leaf Cab concentrations, the IIReR2 followed by NDII seem to have been 

consistent in a low leaf Cab (20 µgcm
-2

) situation as well. The situation was different for 

WDVI and MSR where the RMSE value at leaf Cab value of 40 µgcm
-2  

slightly exceeded the 

corresponding RMSE value at Cab = 20 µgcm
-2

 which implies a lack of clear pattern regarding 

their performance. Nevertheless, all other SVIs had superior LAI estimation power at high 

leaf Cab concentrations with IIReR1, SR, NDVI, NDII, and IIReR2 being among the best 

performing ones.  

Table 8. Sensitivity of SVIs to different leaf Cab levels  (P-value < 0.0l for all SVIs) 

SVIs 20 µgcm
-2

 40 µgcm
-2

 60 µgcm
-2

 

 R
2
 RMSE R

2
 RMSE R

2
 RMSE 

NDVI 0.83 1.51 0.91 0.73 0.94 0.53 

WDVI 0.67 1.55 0.64 1.57 0.64 0.91 

SR 0.88 1.48 0.91 0.69 0.92 0.48 

NDII 0.86 0.95 0.85 0.96 0.85 0.57 

MSR 0.76 1.47 0.74 1.92 0.73 1.95 

NDRE1 0.72 1.72 0.71 1.36 0.71 0.94 

NDRE2 0.73 1.89 0.74 1.25 0.77 0.94 

ISR 0.90 1.11 0.89 1.14 0.89 0.68 

EVI 0.60 1.72 0.58 1.71 0.58 1.00 

IIReR1 0.89 1.39 0.91 0.71 0.92 0.40 

IIReR2 0.89 0.79 0.92 0.66 0.93 0.67 
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The analysis of all the three Cab levels using the sensitivity function indicated the presence of 

a slight difference in the sensitivity levels for the different Cab levels. Figure 11 presents the 

sensitivity analysis based on leaf Cab of 20, 40 and 60 µgcm-2. In all the three cases spherical 

LAD and bright soil moisture was assumed constituting similar modelling environment with 

the previous sensitivity threshold S (Figure 11). This was used to indicate how sensitive each 

of those SVIs was to the LAI ranges. The result could be compared to the statistical indicators 

summarized in table 8. Those SVIs with low RMSE values such as SR, IIReR1 and IIReR2 

also performed well under the sensitivity analysis as demonstrated by the high sensitivity 

values at high LAI (LAI > 1.75). Other SVIs such as NDVI, NDRE1, NDRE2, ISR, NDII, 

and EVI exhibited high sensitivity at low LAI values (LAI < 2) beyond which their sensitivity 

decayed exponentially  and eventually approaching the critical S (S= 1.96) at high LAI values 

(LAI > 5). The threshold, in this case (S = 1.96), indicates the minimum acceptable S value 

below which any SVI is considered insensitive to LAI. As already introduced, this 

corresponds to the student’s test statistic (t-value) at a chosen P-value (in this case, 0.05 or 95% 

confidence level) and at the degree of freedom (in this case, 16-2=14). Because the number of 

observations considered in this analysis contained 16 LAI values for which the corresponding 

SVI estimations as well as standard error computations were made to derive S. 

Although the sensitivity function explains the degree of performance of the indices there were 

contradictions between the RMSE values reported and the sequence in the level of sensitivity. 

This was the case for NDVI which had a smaller RMSE at least compared to NDRE1, 

NDRE2, EVI and WDVI (table 9), but reported to be the least sensitive of all the SVIs 

analysed because it became less sensitive over a wider range of LAI values (LAI > 3) (Figure 

11).   

 Figure 11.  Sensitivity analysis based on the SRM at leaf Cab level of 20 µgcm-2 (a), 40 µgcm-2 (b) and 60 µgcm-2  (c)  

with Spherical LAD and bright soil background. 
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Contrary to expectations, there was also lack of consistency regarding the performance of 

those indices as well.  NDVI, despite its relatively low RMSE compared to some other SVIs, 

saw a quick drop in its sensitivity to a point where it was not sensitive (LAI > 3.75) at 95% 

level of confidence.  However, NDVI sustained an acceptable level of sensitivity over a wider 

LAI range. NDII also had a similar pattern where it was found to be sensitive up to high LAI 

(LAI = 5) based on the SRM while it saw a dramatic drop with the best-fit-function because 

its sensitivity was limited to low LAI (LAI < 2) (Appendix 5A).   

4.1.5.2 SVIs sensitivity to canopy background effects 

The simulated spectral data with different percentages of soil moisture was also analysed 

separately. Based on the non-linear regression using the SRM the results for many of the SVIs 

were consistent across the three different soil moisture levels.  The consistency in the 

performance of the SVIs across the three soil moisture levels showed that the indices are not 

susceptible to soil moisture. However, the persistent poor performance of some of the SVIs 

such as MSR, EVI, NDRE1, and WDVI might be attributed to some other factors.  The NDVI 

and SR also proved to be consistently good as illustrated by their lower RMSE values in 

comparative terms. Contrary to expectations, the result for some SVIs indicated higher RMSE 

values for high soil moisture levels.  The summarized statistical measures regarding the 

performance of those SVIs were provided in table 9. 

The S function was also calculated to see whether the performance of the SVIs could be 

distinguished and to examine their sensitivities to the different canopy backgrounds as 

simulated by varying soil moisture levels. The overall sensitivity function revealed similar 

patterns for the three moisture levels, bright (a), intermediate (b) and moist (c) (Figure 12). 

Some of the SVIs, which had a better performance as indicated by their low RMSE values, 

also showed higher sensitivity as demonstrated in the graphs (Figure 12). This holds for SR, 

IIReR1, and IIReR2 which had a higher sensitivity curve compared to other indices 

particularly at high LAI values (LAI > 3.25). Contrary to expectations the sensitivity analysis 

showed high sensitivity for those SVIs which had reported high RMSE values as well. This 

included MSR, WDVI, NDRE1 and even EVI, which had a relatively high sensitivity for high 

LAI ranges.  Two indices, NDII and NDVI, reported high sensitivity at low LAI (LAI < 3) 

with NDVI experiencing significant drop eventually becoming insensitive at moderately high 

LAI (LAI > 4) while NDII maintained a considerable level of sensitivity until it became 

insensitive at high LAI (LAI > 6). 

 

Table 9. Sensitivity of SVIs to different soil moisture levels (P-value < 0.01 in all SVIs) 

SVIs SM=5% SM=30% SM=55% 

R
2
 RMSE R

2
 RMSE R

2
 RMSE 

NDVI 0.91 0.73 0.90 0.78 0.90 0.80 

WDVI 0.64 1.57 0.79 1.36 0.82 1.32 

SR 0.91 0.69 0.91 0.71 0.90 0.72 

NDII 0.85 0.96 0.87 0.98 0.88 1.03 

MSR 0.74 1.92 0.75 1.86 0.75 1.84 

NDRE1 0.71 1.36 0.71 1.38 0.70 1.39 

NDRE2 0.74 1.25 0.74 1.27 0.74 1.28 

ISR 0.89 1.14 0.91 1.19 0.92 1.24 

EVI 0.58 1.71 0.76 1.49 0.79 1.46 

IIReR1 0.91 0.71 0.91 0.70 0.91 0.70 

IIReR2 0.92 0.66 0.91 0.70 0.91 0.72 
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Most of the analysed SVIs reported an acceptable level of sensitivity under all soil moisture 

levels. As can be seen from the graph (Figure 13) the sensitivity function had similar pattern 

under the three soil moisture levels proving the negligible effect of variation in soil moisture 

on the performance of those SVIs. Moreover, the sensitivity function for many of  the SVIs, 

with the exception of NDVI, NDII and ISR, was found to be above the critical S (s = 1.96) for 

the entire LAI range showing their acceptable level of sensitivities to LAI. The level of 

sensitivity was also significant at 95% confidence level (P-value = 0.000) for SR, MSR, 

IIReR1, WDVI, IIReR2, NDRE1 and NDRE2, in this order of decreasing sensitivities.  The 

graphs presented in figure 12 show the consistency of the sensitivities of the SVIs under the 

different soil moisture levels. 

 

Figure 12. SVIs Sensitivity to LAI under a) bright, b) intermediate and c) moist soil conditions 

4.1.5.3 SVIs sensitivity to canopy LADs 

The analysis of the SVIs under different leaf orientations showed differences in the 

performance of those indices. All the indices relatively performed well for the vertical leaf 

orientations (erectophile) as can be seen from their low RMSE values compared to planophile. 

This particularly holds for NDVI, WDVI, SR, NDII, ISR, and IIReRs for which the RMSE is 

twice as low as the corresponding RMSE values for a planophile LAD. On the other hand, 

MSR, NDRE1 and NDRE2 maintained more or less similar values of RMSE at both leaf angle 

orientations. The same holds for WDVI, which had an RMSE value of (1.63 vs. 2.37), SR 

(0.59 vs. 1.31) and NDII (0.84 vs. 1.56), for erectophile and planophile, respectively.   

On the other hand both the IIReRs surprisingly had a better RMSE value at a planophile LAD 

compared to the other SVIs, although they followed the general trend of superior performance 

with erectophile LAD with the lowest RMSE (0.54 and 0.68). These two indices maintained 

relatively better LAI estimation margins over the other SVIs analysed. Secondly, the inclusion 

of the red edge in the derivation of these indices made them relatively resilient to vegetation 

densities as the amount of light absorbed by photosynthetically active leaves were accounted  
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Table 10. Sensitivity of SVIs to canopy leaf orientations (P-value <0.01 in all SVIs) 

SVIs Planophile Spherical Erectophile 

R
2
 RMSE R

2
 RMSE R

2
 RMSE 

NDVI 0.73 1.38 0.91 0.73 0.96 0.56 

WDVI 0.48 2.37 0.64 1.57 0.63 1.63 

SR 0.76 1.31 0.91 0.69 0.94 0.59 

NDII 0.74 1.56 0.85 0.96 0.89 0.84 

MSR 0.65 1.93 0.74 1.92 0.93 1.91 

NDRE1 0.61 1.68 0.71 1.36 0.75 1.27 

NDRE2 0.64 1.63 0.74 1.25 0.79 1.14 

ISR 0.77 1.71 0.89 1.14 0.93 1.00 

EVI 0.34 2.35 0.58 1.71 0.56 1.78 

IIReR1 0.76 1.34 0.91 0.71 0.94 0.68 

IIReR2 0.68 1.25 0.92 0.66 0.95 0.54 

 

for. Table 10 presents the statistical measures of the relative performances of those indices 

under different canopy leaf orientations.  

With regard to the sensitivities of the SVIs under different LADs the sensitivity function 

reported different levels of sensitivities. Most of the SVIs performed well with an erectophile 

LAD whereas the overall sensitivity level was lower with the planophile LADs. The pattern of 

sensitivity under spherical LAD was the same with the one discussed under Cab level of 40 

µgcm
-2

, because the spherical LAD was assigned as default PROSAIL model value under 

varying Cab and soil moisture levels. As a result, the sensitivity result presented in the 

previous section (Fig.12 b same as Fig.13b) corresponds to the spherical LAD indicating high 

sensitivity level for NDII and NDVI at low LAI while SR, MSR and IIReR1 had better 

performance than other SVIs over the higher LAI ranges. Moreover, those indices which had 

high sensitivity at low LAI saw a quick drop in their sensitivity with increase in LAI whereas 

SR, IIReR1 and IIReR2 clearly performed well across the higher LAI ranges. The better 

performance of these SVIs complies with their low RMSE values except for the MSR, which 

despite its high RMSE value, had a high sensitivity record. The sensitivity function (Fig 13) 

also indicated a decline in the sensitivity of NDVI, for example, with spherical and 

erectophile which contradicts with R
2
 measures corresponding to theses LADs. 
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Figure 13.  A comparison of sensitivity analysis for planophile (a), spherical (b) and erectophile (c) LADs based on 

SRM. 

Nevertheless, the sensitivities functions (Fig.13) also revealed the highest sensitivity for 

NDVI and NDII at low LAI for erectophile LADs. The overall assessment showed improved 

sensitivity of SVIs under the erectophile LAD. This was, for example, demonstrated by NDVI 

which maintained some degree of sensitivity up to an LAI = 4.5, a point where it lost its 

sensitivity. NDII also had high sensitivity at low LAI whereas SR, IIReR1 and IIReR2 had 

better sensitivity than others. In general the SVIs considered were most sensitive for  LAI 

under an erectophile LAD followed by spherical and least sensitive with planophile LADs .  

A further comparison of the sensitivity based on the best fit and the exponential function, 

performed for a planophile LAD also reported some differences between the two methods 

(Appendix 5B). Almost all the SVIs analyzed using the best-fit had high sensitivity at very 

low LAI followed by a steep drop of sensitivity for NDVI, EVI, WDVI, NDRE1 and NDRE2 

with slight increase in LAI values (LAI > 2). On the contrary, this same LAI level was a point 

at which the sensitivity saw an upward jump with the exponential model (Appendix 5B). The 

sensitivity result with the exponential model showed better performance for NDII, ISR, MSR, 

IIReR1 and IIReR2 in decreasing order. Moreover, most of the SVIs saw an initial raise in 

their sensitivities with increase in LAI reaching their peak at LAI = 4.25 beyond which they 

steadily declined. The overall sensitivity for most of the indices were higher with the 

exponential than what was reported with the best-fit model  On the other hand, NDRE1, 

NDRE2, WDVI and NDVI were found to be less sensitive with NDVI being below the 

critical S level from fairly low LAI (LAI = 3.25) onwards. Moreover, those SVIs derived 

partly based on the SWIR region of the spectrum performed well with the exponential model. 
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4.2 Results based on empirical data 

4.2.1 Monitoring LAI through the growing seasons 

The results from the empirical measurements of LAI for the 12 experimental plots during the 

2011 growing season on average showed an increasing trend characterized by quick take-off 

during the first sampled four weeks (Figure 13). The LAI value on average reached its peak 

around the 27
th

 June 2011 followed by an abrupt break reaching its dip during 11
th

 of July 

2011 from where it started to slightly revive during the next two weeks. This means that the 

peak LAI was sampled during the 11
th

 week since the planting date was 12
th

 April 2011. The 

trend showed that the overall LAI value saw a gradual decline starting 18
th

 of July 2011, 

eventually reaching the lowest value at the last time the measurement was performed. The 

abrupt break in the LAI value at the 11
th

 of July 2011, which is the feature of all the 12 plots 

might be attributed to certain climatic factors such as heavy storm which might have led to the 

wear down of the potato leaves when the measurement was acquired. The magnitude of the 

break during the 6
th

 week is apparently comparable across the field, which is attributed to the 

effect of heavy storm on the 28
th

 of June 2011. The gradual decline during the last couple of 

weeks should however be due to the maturity of the crop and the leaf foliage as the potato 

crops would not continue to grow anymore (Figure 14). The figure demonstrates the trend in 

the potato LAI throughout the growing season.  With regard to the plot specific records of the 

LAI acquired, three plots, namely; C, D, and K followed by A, B and L had consistently low 

records whereas the LAI for the other plots were hardly distinguishable lacking a clear pattern 

for comparison as shown in figure 14.  

4.1.1 The effect of differential nitrogen application on potato LAI  

It has been discussed that the plots were subjected to various initial nitrogen fertilizations as 

well as differential treatments during the growing season (see section 3.1). The results showed 

differences of various magnitudes particularly between the blocks that received different 

initial nitrogen application. The analysis of variance between the different set-ups and 

subsequent LSD analysis showed a statistically significant difference (p-value: 0.000) 

between the blocks given 0, and the other three with 161, 242 and 322 kg N/ha. However, the 

difference in the LAI values between those three blocks, which had certain amount of 

nitrogen, was not statistically significant at 95% level of confidence.  

 

Figure 14. Average LAI per plot for 2011 growing season 
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This implies that the LAI value for potato depends to a greater extent on the level of initial 

nitrogen fertilization regardless of treatments made during the growing season. The fact that 

the LAI for plots C, D and K was consistently low justifies the decisive role of initial fertilizer 

application. On the other hand, the difference in the average LAI measured between the 

treatment groups (CL, MB, and TTW) was not statistically significant at 95% level of 

confidence.  It can be seen from the graphs (Figure 14 and Figure 16) that plot given low or 

no initial fertilization had consistently low LAI records throughout the growing season 

regardless of the different treatment they received afterwards.  Moreover, the interaction 

effects of initial fertilization and treatment during the growing season appeared to have 

affected the crop growth (Figure 15a&b). This was however found to be not significant at 95% 

confidence level. On the other hand, Figure 15 (c) clearly illustrates the difference between 

the average LAI values based on initial nitrogen application whereas the differences in mean 

LAI introduced due to treatment during the growing season (CL, MB, and TTW) (Figure 15d) 

is negligible as was also confirmed by the statistical tests through the analysis of variance (P-

value > 0.1) (Appendix 15). 

 

Figure 15. Variation in average LAI based on initial nitrogen application and treatment during the growing season 

showing the interaction effect for initial nitrogen (a) and treatment (b) and main effects for initial nitrogen (c) and 

treatment (d). 
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A further analysis of the effect of differential nitrogen treatment was also compared with the 

additional nitrogen application during the 2011 growing season. A similar pattern was 

depicted where plots with no initial nitrogen followed by those with little fertilization 

consistently had low average LAI throughout the growing season for which samples were 

taken. The effect of treatment during the growing season still lacked a clearly distinguishable 

pattern as the curves for the three treatment classes were close if not overlapping for the entire 

period for which samples were acquired. 

Furthermore, the analysis of variance on the average LAI among the four treatment groups 

was performed to examine the impact of the interventions on the growth of the potato crop for 

the 2012 growing season based on LAI as measured by LAI-2000. This showed that zero (0) 

treatment blocks (plots G & H) which were given no fertilizer of any kind had a consistently 

low record of LAI throughout the growing season followed by treatment blocks 1 (plots A & 

B) which received the least amount of fertilizer. On the other hand, treatment blocks 3 (plots 

C & D) and 2 (plots E & F), which received higher doses of fertilizer in the same order 

reported higher LAI values in their respective order. The ANOVA also revealed a statistically 

significant difference in the mean LAI between the treatment blocks for the 2012 site 

(Appendix 16).  Accordingly a significant mean difference was revealed between plots 

without nitrogen and those with higher fertilization levels (117 and 218 kgha
-1

) with P-value 

of 0.013 and 0.005. In addition the difference in mean LAI was also significant [p-value = 

0.033] between plots with 43 kgha
-1

 and those with highest nitrogen, 218 kgha
-1

. As illustrated 

in Figure 13 the value of LAI had also similar sequence as the amount of fertilizer 

applications: meaning higher fertilizer application yielding higher LAI values. This pattern, 

however, did not last for the entire growing season as the LAI value for treatment block 1 

became higher than the value for block 2 during the last three weeks of the growing season, 

the last time the measurement was performed. This might imply that plots, which already 

received a higher fertilizer doze, grew faster and matured earlier and hence leaf foliage died 

earlier. On the contrary, under circumstances of sub optimal or low fertilizer application, 

crops might continue to experience a steady growth hence maintaining their leaves for some 

time.  This in turn might mean a slightly extended growing season due to stunted plant growth 

in cases of low fertilizer application whereas high fertilizer application enables the potato crop 

to grow faster during early growing season and hence mature earlier. 

 

Figure 16. Average LAI per plot based on nitrogen fertilization levels for 2012 growing season 
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4.1.2 Comparison of weather parameters for 2011 and 2012 growing seasons 

A comparison of the LAI curve for the two growing seasons showed significant variations, 

whereby the LAI measured during 2011 exceeded by far the corresponding values for the 

2012 growing season. As already discussed in the previous section, a significant variation in 

the mean LAI among the treatment blocks in the same growing season was attributed to 

differential nitrogen treatments. The differences in the amount of fertilizer applied did vary 

not only among treatment plots in the same year but also varied between the two growing 

seasons. Accordingly, the amount of nitrogen applied was considerably lower in 2012 than in 

2011. Obviously this could be one of the reasons for the high LAI values in 2011, which 

exceeded the LAI values of 2012 by almost two fold.  On the other hand, the overall growth 

condition of the potato crop in the 2012 growing season also showed a considerable decline,  

where the maximum LAI was only as high as the minimum LAI value at the sampling dates 

for 2011. This significant difference in LAI may not only be explained by the amount, nature 

and timing of fertilizer applied, but also the variability in the elements of weather such as 

temperature, precipitation and total sun hours might have had a significant contribution to 

affecting the crop growth.   

Apart from the level of fertilizer applied, it is also important to note that the two growing 

seasons had different physical environments, which had an important role in affecting the 

growth of crops in general and potato in particular. These include differences in soil 

conditions because the farms were located at different geographical locations. The soil 

condition for the 2012 plots being characterized as a poorly developed sandy soil with a 

thin ’A’ horizon might have affected the growth of the potato crop.   oreover, the elements 

of weather and climate such as precipitation, temperature and total sun hours were also 

different which might have contributed to the differences in the growth level of the potato 

crop between the two sites and growing seasons. The analysis of meteorological data showed 

more favourable weather for the 2011 growing season with higher total temperature and more 

sun hours as compared to the 2012 growing season (Figure 17). On the other hand the total 

rainfall amount was higher during the 2012 growing season. A statistical analysis using a 

paired t-test also indicated a significant mean difference (p-value = 0.000) in the amount of 

rainfall, temperature and sun hours between the two growing seasons (Appendix 7). However, 

the fact that the 2012 growing season was characterized by lower cumulative temperature and 

less sun hours compared to its 2011 counterpart was not favourable for the optimal growth of 

crops in general and potato in particular. 

These weather parameters as well as soil conditions coupled with the overall low nitrogen 

application during the 2012 growing season resulted in the stunted growth of the potato crop 

and hence low LAI compared to the 2011 site, which had more favourable weather, well 

developed soil as well as high nitrogen application. The cumulative values of those weather 

parameters as depicted in Figure 17 illustrate the trend through the growing season for the two 

years. Figure 17 indicates the cumulative values for the three weather parameters T 

(temperature in degree Celsius), SH (sun hour duration in hours), and RF (rain fall in mm) for 

the 2011 and 2012 calendar years. The computation of those parameters started at the calendar 

dates which correspond to the planting dates (12
th

 and 14
th

 of April 2011/2012) of the potato 

crop for the two growing seasons.   
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Figure 17. Cumulative weather parameters during the 2011 and 2012 growing seasons 

4.1.3 Relationships between LAI and biomass 

An analysis of the relationship between fresh above ground biomass and LAI for the two sites 

was performed. The result showed better relationship for the 2011 site (with Pseudo R
2 

= 0.66) 

compared to 2012 (Pseudo R
2
= 0.51). The relationship was examined across the plots as well 

as through the growing season based on the date of data acquisition. The plots with more 

nitrogen tended to show better linearity between LAI and biomass for both sites. A graphical 

illustration of such relationships by plots for the two sites was also appended (Appendix 12).  

Moreover, the scatter plots demonstrated that high LAI during the 2011 growing season 

showed sharp increase in biomass after moderately high LAI was reached (LAI > 4). On the 

other hand, the magnitude and value range in the LAI acquired during the 2012 growing 

season was lower than four below which no clear pattern could be distinguished even in the 

2011 site. This suggest that higher LAI ranges result in higher R
2

 value. 

In addition, the analysis of the LAI-biomass relationship through the growing season 

produced a more clear insight into understanding the pattern. The lowest biomass was 

measured on 30
th

 of May and 1
st
 of June for the 2011 and 2012 seasons, respectively, whereas 

the highest was measured on 20
th

 June and 22
nd

 of June in the same order. This coincides with 

the period of peak LAI for both sites making LAI a key indicator of biomass. Furthermore, 

the LAI declined after the peak as the crop matures and so does the biomass as can be seen 

from the graph (Figure 18).  Therefore, the potato leaf constitutes a considerable proportion of 

the overall biomass. Nevertheless, it is not clear whether the underground biomass continues 

to mature gaining more weight after the potato crop already reached its peak in terms of LAI.  
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Figure 18. LAI and aboveground biomass relationships for 2011 and 2012  

4.1.4 Results on SVI-LAI relationships 

4.1.4.1 SVI-LAI relationships based on MSR16R and LAI-2000 

Different SVIs tested with the simulated datasets were also analysed using the spectral 

datasets acquired for a potato field over the 2011 and 2012 growing seasons using the 

MSR16R instrument. Once those SVIs were computed, the corresponding LAI was estimated 

based on the model tested using the simulated dataset. The result of the analysis of the 

MSR16R spectral data using the selected SVIs indicated that some of the SVIs, which 

performed well with the simulated data, also maintained a comparable degree of relationships 

with LAI (Appendix 9). However, there was no consistency regarding the performance of the 

SVIs for the two growing seasons. For instance, IIReR2, SR and NDVI had better 

relationships with LAI as measured with LAI-2000. Some SVIs such as NDRE2 even 

performed better with the empirical field data from the 2011 growing season than it did with 

the simulated spectra. Some other indices such as IIReR2, SR and IIReR1 had consistent 

performances between the simulated and the empirical data for the 2011 growing season. 

These SVIs also had better sensitivity for high vegetation density as demonstrated in the 

sensitivity analysis using the sensitivity function. However, most of the SVIs showed inferior 

LAI prediction power based on the 2012 empirical data. Exceptions to these were the NDRE1, 

NDII and ISR, which all had a better performance in the 2012 growing season as indicated by 

the pseudo-R
2
 values. The Psuedo-R

2
 values increased from 0.61 (2011) to 0.65 (2012) for 

NDRE1, 0.44 (2011) to 0.64 (2012) for NDII and 0.59 (2011) to 0.65 (2012) for ISR.   

A comparison of the performance of the best performing SVIs for the two growing seasons 

alongside the corresponding performance of the same SVI in the other year is presented in 

Figure 19 for ease of comparison.  There was a large deterioration in the relationship between 

LAI and NDRE2 where the Pseudo-R
2
 dropped from 0.82 (2011) to 0.13 (2012). This value 

also saw a considerable drop for IIReR2 from 0.8 (2011) to 0.60 (2012). On the other hand, 

NDRE1 and ISR improved their relationship from 0.58 and 0.57 in 2011 to 0.61 and 0.60 in 

2012, respectively. A detailed graphical illustration of the performances of the SVIs for the 

2012 growing season is also appended (Appendix 10).  
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Figure 19. The relationship between selected SVIs and LAI-2000 for 2011(a, c, e and g) and 2012 (b, d, f and h) 

growing seasons. 

The lack of consistency in the performance of those SVIs could be attributed to differences in 

the disturbance factors, mainly soil background effect. Moreover, the difference in the 

sensitivity levels of the different SVIs might also contribute to such inconsistency under 

different vegetation densities. This was partly because the 2011 growing season was a year of 

good harvest with high nitrogen application for the growth of potato so that it had a high LAI 

compared to 2012. Moreover, those indices which had better relationship with LAI-2000 in 

the 2012 growing season were found to be more sensitive to LAI at low vegetation density as 

discussed under the sensitivity analysis based on the simulated dataset. For example NDII and 

ISR had high sensitivities only next to NDVI at low LAI. Yet NDVI, which had always been 
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most sensitive at low LAI, did not show better performance in 2012 compared to 2011. 

Nonetheless, those SVIs which were reported to have high sensitivity to an open canopy, 

maintained more or less the same relationship for the two growing seasons, whereas those 

SVIs which did well with high LAI, as was the case for 2011, had poor performance under 

low LAI in 2012. Nevertheless, this was not always the case as there were some SVIs which 

had reported high sensitivity but poorly performed under both low as well as high vegetation 

densities. MSR had the poorest relationship with LAI-2000 despite its relatively high 

sensitivity record from the sensitivity analysis. 

This implies that the performance of SVIs vary under different circumstances and so did their 

sensitivity as was analysed with the sensitivity function. However, the sensitivity function 

might not be always a useful indicator of how good an index might be, although it can still be 

a useful technique to map the general pattern of various SVIs. Despite the inconsistencies 

reported in relation to the performances of SVIs, there is a possibility to synergize the 

performance of SVIs by combining two or more indices for LAI mapping as opposed to the 

conventional use of single SVIs for LAI mapping. This could be done by employing different 

SVIs for predicting different LAI ranges based on their sensitivity function on the condition 

that one has enough information about the vegetation condition to be mapped.  

Furthermore, a comparison of the performance of SVIs based on the combination of the 

datasets of the two growing seasons shows clear distinction of the point clouds. It can be seen 

from Figure 20 that the SVI-LAI relationships were low even for those SVIs which 

demonstrated high performance based on the 2011 growing season. NDRE2 and IIReR2 were 

the SVIs with the best relationship with LAI-2000 based on the 2011 dataset whose Pseudo 

R
2 

dropped from 0.80 and 0.82 to 0.16 and 0.64, in the same order. And yet IIReR2 followed 

by WDVI and SR had the best relationship with LAI-2000 with the datasets of the two sites 

combined. 

 

Figure 20. Comparison of SVI-LAI relationships based on the combined data for the two growing seasons 
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4.1.4.2 SVI-LAI relationships based on APEX imagery 

SVIs selected on the basis of the sensitivity analysis were analysed using the APEX imagery 

acquired during the 27
th

 June 2011 flight mission. The imagery was used to test the 

performance of those SVIs based not only on APEX but also adjusted for the ESA’s 

upcoming space systems (S-2 and VENµS) as well as Landsat TM band settings. The fitted 

linear regression based on all the datasets of SVI values derived from those sensors and LAI-

2000 indicated strong linear relationships. All the SVIs considered for broad and narrow band 

sensors, except EVI and MSR which were excluded owing to their poor performance as 

evaluated with MSR16R, showed consistency across the sensors. NDVI, WDVI, SR, NDII 

and ISR showed some degree of consistency (Appendix 11). It was also found that SR, WDVI, 

NDVI and IIReR1 maintained a considerable degree of consistency in their performance. The 

first two also showed a better relationship across the broad band and narrow band sensors 

both with pseudo R
2 

= 0.86 and 0.87, respectively (Figure 22). The overlapping point 

measurements for the corresponding sensors indicate high consistency. The result was in 

agreement with the relationship established based on the simulated data where the SVIs 

showed consistency across the different sensors.  

Similar results were reported for the other SVIs. Figure 21 demonstrates the two SVIs (SR 

and WDVI) which had the best relationships with the LAI-2000. NDVI, ISR and NDII 

computed based on APEX, MSR16R, S-2 and Landsat TM had less consistency. Although 

they had pseudo R
2
 values of 0.84, 0.84 and 0.83, respectively, there were deviations among 

the derived values for the different sensors. The R
2
 values presented here, however, represent 

the goodness of fit of all the point clouds based on all the sensors for an index while the 

overlapping points imply the extent of consistency in the values of an index based on those 

sensors.  

Moreover, the results indicated that SR, WDVI, and NDVI were also consistent across the 

narrow band sensors themselves as the overlapping points for APEX, S-2, VENµS and 

MSR16R demonstrate. However, the extent of the overlap as well as clustering of points seem 

to depend on the similarity of the band settings of sensors. For instance, the overlap between 

APEX and VENµS complies with this fact. Yet, the derived values based on MSR16R 

deviated more than the corresponding values for the Landsat TM do with reference to APEX, 

S-2 and VENµS, whose values overlap more often than others. The situation was even clearer 

with NDII and ISR.  

In addition to the SVIs already mentioned, other indices such as NDRE1, NDRE2, IIReR1 and 

IIReR2 were computed for other sensors except the Landsat TM, which lacks the specific band 

settings required for their computation. These indices were used to assess the performance of 

ESA’s upcoming hyperspectral spaceborne systems based on their red edge bands. The result 

showed that the narrowly positioned red edge bands of S-2 and VENµS could be used and 

compared to indices derived based on the broad bands of TM, for example.  
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Figure 21. A comparison of the SVI-LAI  relationship for a) SR and b) WDVI c) NDRE2 and d) IIReR1 across the 

different sensors. The fitted regression line is based on whole datasets from the sensors compared. 

4.1.5 Results on validation of SVI-LAI relationships 

4.1.5.1 Validation of MSR16R-LAI-2000 relationships 

The prediction of LAI was performed using the SRM whose parameters, the coefficient of 

light extinction α and the asymptotically limiting factor SVI∞, were estimated based on the 

simulated dataset. This was done after the SVI values were normalized by rescaling to the 

same value range of 1 to 10 to be later used for sensitivity analysis. The R
2
, RMSE and RPD 

values were computed for each SVI after the LAI was predicted for both sites (table 11). The 

result confirmed that those SVIs with a better relationship maintained superior LAI prediction 

power with IIReR1 (R
2
=0.81, RMSE= 0.41) and SR (R

2
=0.79, RMSE= 0.44) being the most 

suitable SVIs based on the 2011 growing season. IIReR2 had also demonstrated superior 

performance as tested with the simulated dataset. Moreover, both IIReR2 and SR had shown 

high sensitivity to high vegetation density as demonstrated under the sensitivity analysis.  

Table 11. LAI prediction for MSR16R using SRM from the simulated data and validation results based on the LAI-

2000 

SVI LAI=f(SVI) 2011 Site 2012 Site 

R
2
 RMSE RPD R

2
 RMSE RPD 

NDVI -1/0.727*LN(1-NDVI/10.044) 0.76 0.51 2.84 0.51 0.26 2.77 
WDVI -1/0.191*LN(1-WDVI/13.448) 0.77 0.48 3.02 0.49 0.27 2.67 
SR -1/0.016*LN(1-SR/97.699) 0.79 0.44 3.30 0.58 0.22 3.28 
NDII -1/0.461*LN(1-NDII/11) 0.57 0.91 1.59 0.62 0.20 3.61 
ISR -1/0.343*LN(1-ISR/12) 0.63 0.79 1.84 0.63 0.20 3.66 
NDRE1 -1/0.328*LN(1-NDRE1/11.135) 0.58 0.89 1.63 0.67 0.17 4.15 
NDRE2 -1/0.319*LN(1-NDRE2/11.236) 0.76 0.50 2.90 0.17 0.44 1.64 
IIReR1 -1/0.029*LN(1-IIReR1/54.667) 0.81 0.41 3.54 0.54 0.25 2.94 
IIReR2 -1/0.12*LN(1-IIReR2/17.52) 0.70 0.63 2.30 0.58 0.22 3.23 
MSR -1/0.068*LN(1-MSR/26.68) 0.54 0.97 1.21 0.59 0.22 3.31 
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Figure 22. Validation of LAI prediction for the 2011 site using LAI-2000 

The RMSE values, however, yielded smaller values for 2012 than in 2011 mainly because of 

the differences in the value range of the two datasets. A cross site comparison using RMSE 

was therefore found to be misleading (table 11). As a result, the RPD was calculated to 

standardize for differences in data range. The values could indicated the relative performance 

of the SVIs next to the R
2
 values although it often lacked consistency with the R

2
 values. 

The same procedure was followed for the 2012 site measurements where the validation result 

followed a similar pattern as the relationship the SVIs had with LAI-2000 measurements. 

However, most of the SVIs had inferior performance compared to the 2011 site (table 12). A 

few exceptions to this include NDII and NDRE1 which showed improvements for the 2012 

dataset as indicated by their higher RPD and R
2
 values of 0.62 and 0.67, respectively. The 

other SVIs had either lower performances or maintained the same level for the two sites. The 

RMSE values presented in the same table should be taken with caution as direct comparison 

between the two sites might be misleading. This was because of the difference in the 

magnitude of value ranges for LAI for the two sites. The 2011 site had values with larger 

magnitudes where the maximum LAI for 2011 and 2012 was about 7.5 and 3.5, respectively. 

This made a cross-site comparison of the performance of the SVIs using the RMSE 

impractical. As a result, only the R
2
 values, not the RMSE computed for the two growing 

seasons should be used for a cross-site comparison of the performance of SVIs.  This 

shortcoming of the use of RMSE was also confirmed by (Ji and Peters 2007).  

A graphical display of the predicted LAI against LAI-2000 measurement also confirmed how 

well the SVIs could predict LAI for the two sites. Figure 22 presents the best performing SVIs 

(IIReR1 and SR) where the predicted LAI throughout the growing season was plotted against 

the corresponding LAI-2000 measured data for the 2011. The graphs showed that both IIReR1 

and SR predicted well between the LAI range of 3 and 6 as more points either overlapped or 

aggregated around the equality line through the origin.  On the other hand, the points are 

relatively further away from the line around the origin implying less accurate predictions at 

low vegetation densities. This complies with the sensitivity result where the two indices were 

found to be less sensitive at low LAI. However, their high sensitivity over the wider LAI 

ranges particularly at high LAI allowed them to make better predictions of LAI as tested with 

the 2011 site. It can also be seen from Figure 23 that SR underestimated the LAI compared to 

IIReR1. A summary of the validation results with other SVIs across the two sites can be found 

in the Appendix 14.  
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4.1.5.2 Validation of SVI-LAI-2000 relationships based on APEX imagery 

and MSR16R 

Relationships between MSR16R, APEX, S-2 and VENµS based SVIs and LAI-2000 were 

established to evaluate the added value of the red edge bands of ESA’s upcoming spaceborne 

systems (Table 13). Moreover, the consistency or lack of SVI-LAI relationships across broad 

and narrow bands were evaluated. The LAI prediction was performed based on the SVIs 

derived using APEX imagery while the algorithms were adjusted for the sensor specific band 

settings. The result of LAI prediction based on the SRM reported that IIReR1, WDVI and SR 

yielded highly consistent relationships with LAI as explained by their corresponding R
2
 

values. The WDVI, IIReR1 and SR maintained the same degree of performance for all the 

sensors whereas IIReR1 could be computed only for three sensors (APEX, MSR16R and S-2). 

NDII and ISR also demonstrated a comparable degree of consistency among the four sensors 

(excluding VENµS as it lacks SWIR bands).  The other SVIs derived from APEX, MSR16R, 

S-2 and VENµS were NDRE1 and NDRE2 and they did not show high consistency across 

those sensors. For instance, NDRE1 had an R
2
 value as high as 0.88 with MSR16R and as low 

as 0.51 with VENµS, whereas the corresponding value for NDRE2 being 0.88 and 0.70 (table 

12).  

Some of the SVIs analysed such as WDVI, SR, NDII, ISR, IIReR1 and IIReR2 revealed 

consistent performances with S-2 and VENµS. The red edge indices such as NDRE1 and 

NDRE2 did not show consistency across the narrow band sensors nor had they superior 

performances. However, they both performed well with MSR16R (both R
2 

= 0.88). On the 

other hand, those SVIs based partly on the SWIR bands maintained a considerable degree of 

consistency both within the narrow band sensors as well as with the broad band sensor.  The 

newly proposed indices, IIReR1 and IIReR2, also had comparable performances among APEX, 

MSR16R and S-2. The former consistently showed high performances (R
2
=0.88), whereas the 

latter had lower performances (R
2
=0.52). A demonstration of the performance of IIReR1at 

image level using the hyperspectral APEX image is also presented, which distinguishes well 

between different N fertilization levels as shown with LAI mapping (see Appendix 19). 

Table 12. Comparison of the performance of SVIs across sensors based on SRM (p-value <0.01 for all SVIs). 

SVIs 

  

MSR16R 

  

APEX 

  

S-2 

  

VENµS 

  

TM 

  

 R
2
 RMSE R

2
 RMSE R

2
 RMSE R

2
 RMSE R

2
 RMSE 

WDVI 0.88 0.15 0.87 0.16 0.87 0.16 0.87 0.16 0.87 0.17 

NDRE1 0.88 0.15 0.74 0.31 0.75 0.31 0.51 0.61  -  - 

NDRE2 0.88 0.15 0.68 0.39 0.70 0.37 0.70 0.37  -  - 

SR 0.87 0.16 0.88 0.15 0.88 0.15 0.85 0.18 0.89 0.14 

IIReR1 0.87 0.16 0.88 0.15 0.88 0.14  -  -  -  - 

NDII 0.72 0.35 0.90 0.12 0.88 0.15  -  - 0.90 0.12 

IIReR2 0.60 0.49 0.55 0.55 0.52 0.60  -  -  -  - 

NDVI 0.59 0.50 0.66 0.43 0.40 0.74 0.62 0.47 0.54 0.56 

ISR 0.59 0.51 0.91 0.11 0.89 0.14  -  - 0.91 0.12 
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4.1.6 Results on sensitivity analysis based on empirical data 

The sensitivity analysis performed on the basis of SVIs derived from MSR16R spectral data 

and LAI values acquired with LAI-2000 during the 2011 and 2012 growing season gave the 

following results (Figure 23). The sensitivity values were averaged for every five consecutive 

LAI values after the LAI-values were sorted in increasing order. This was done to smooth the 

sensitivity curve for ease of visualization as the actual number of observation for LAI 

measurements were 128, too large to visualize making the plots hardly informative. This 

procedure does not affect the sensitivity function. Regardless of the jumps observed with the S 

function at different LAI values the overall sensitivity pattern indicated the relative position of 

the different SVIs. NDVI, NDRE2, ISR and NDII demonstrated high sensitivity for low LAI 

ranges (LAI < 4) beyond which some of these indices, particularly NDVI and NDII, showed a 

considerable drop in their sensitivities.    

The overall sensitivity indicated that all the SVIs considered were sensitive across the entire 

LAI range of as high as 7.5. However, NDVI appeared to be the least sensitive beyond an LAI 

of six (6) and eventually losing its sensitivity as it crosses the critical sensitivity value of 1.96, 

which is a t-value below which the SVIs lose sensitivity at 95% level of confidence. 

Compared to many other SVIs, the sensitivity curve was found to be smoother than others for 

SR, IIReR2, IIReR1 as well as NDRE2. These same indices also had better LAI prediction 

power than others as tested with the same dataset. For instance, IIReR1 and SR had superior 

performance (R
2 

= 0.81 and 0.79, respectively) followed by WDVI (R
2 

= 0.77), NDRE2 and 

NDVI (0.76 each). The first two indices also had a higher and more stable sensitivity function 

across the wider LAI ranges particularly at high LAI values.  This also complies with the low 

sensitivity curve at low LAIs (LAI < 3) (figure 23a). On the other hand, those SVIs, which 

had low prediction power such as MSR, NDRE1, NDII and ISR, also performed poorly with 

their sensitivity function.   

Similarly, the result for the 2012 site showed high sensitivity for NDVI, NDII, ISR, NDRE1 

and NDRE2 at low LAI (LAI < 2) beyond which it declined. IIReR1 and IIReR2 on the other 

hand had low sensitivity records for 2012, whereas these same indices reported high 

sensitivity particularly at high LAI ranges.  Regardless of the varying sensitivity levels for the 

different indices, all the SVIs analysed reported a statistically significant sensitivity to LAI at 

95% confidence level. 

 

Figure 23. Sensitivity analysis based on MSR16R and LAI-2000 measurements during a) 2011 and b) 2012 growing 

seasons  
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5. Discussion 

5.1 Results based on PROSAIL Model  

5.1.1 Sensitivity of spectral regions to canopy background effects 

The result on the sensitivity analysis of the spectral regions to canopy background effects 

across LAI ranges based on the PROSAIL simulated data showed that the effect of canopy 

background was high at low vegetation density for individual spectral regions. As 

demonstrated through variable soil moisture levels (Figure 4) the effect is clearly visible in 

the analysed spectral regions, namely NIR, SWIR, red-edge and red bands in decreasing order. 

The reflectance was the highest for a bright soil followed by medium and the least for moist 

soil backgrounds. This is mainly because dry soil reflects more than moist soil for an open 

canopy, which was also confirmed by previous findings (Brown, Chen et al. 2000; Gonsamo 

and Pellikka 2012). The NIR reflectance showed not only high sensitivity to varying soil 

moisture levels but was also responsive over a wider range of vegetation densities. This 

confirms the assertion of Houborg and Boegh (2008) that efficient correction for background 

effect would yield a better NIR-LAI relationship. It also complies with Clevers (1989) who 

based the derivation of WDVI mainly on the correction for canopy background effects. On the 

other hand, the reflectance in the SWIR also showed high sensitivity to soil moisture over a 

considerably wider LAI range as compared to the red edge and red. The contrast between 

bright and moist soil reflectance for SWIR makes this spectral region more suitable for 

efficient correction for background effects (Gonsamo and Pellikka 2012), even compared to 

the commonly used red bands where this reflectance gap is relatively low. Moreover, the 

reflectance in the SWIR followed by red-edge region continues to respond to background 

effects while the corresponding spectra for the red become insensitive at relatively lower LAI 

values (Figure 4). This coincides with (Lee, Cohen et al. 2004) who concluded that the red 

edge and SWIR bands contain more information useful for LAI retrieval even compared to 

the NIR region. 

More important is that SWIR reflectance continues to decline as a function of LAI for a bright 

soil which confirms what previous studies revealed (Brown, Chen et al. 2000; Cohen, 

Maiersperger et al. 2003; Lee, Cohen et al. 2004; Schlerf, Atzberger et al. 2005; Gonsamo and 

Pellikka 2012).  However, the SWIR reflectance slightly rises for moist soil at high LAI (LAI > 

5) which is also in agreement with what Gonsamo and Pellikka (2012) found. This makes 

SWIR an important spectral region for possible corrections for background effects especially 

at bright soil conditions. Furthermore, the SWIR region is insensitive to variations in Cab 

levels making it potentially suitable to enhance the SVI-LAI relationship with increased 

resilience to variations in Cab levels as well as soil moisture levels.  

In addition, the spectral reflectance at 670 nm also maintains some stability in variable leaf 

Cab levels whereas the red-edge region distinguishes better between different LAI values. This 

region, however, showed considerable sensitivities to variations in Cab as compared to SWIR 

and Red around 670 nm. The Red edge as suggested by Lee, Cohen et al. (2004) has therefore 

an added-value of distinguishing between LAI ranges while its sensitivity to variations in Cab 

levels is compensated for by SWIR and Red bands. These features therefore suggest the 

potential for improving SVIs-LAI relationship based on the integration of those four regions 

of the spectrum.  

5.1.2 SVI-LAI relationships based on PROSAIL model 

Based on the results of the SVI-LAI relationship, where the different leaf, canopy and 

background soil effects were combined, it was found that SVIs showed different degrees of 
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relationship with LAI. SVIs such as IIReR1, IIReR2 and SR had strong relation with LAI 

based on the exponential function (Fig. 5). Most of the SVIs also showed a logarithmic 

relationship with LAI while regressing LAI with SVI.  Contrary to the exponential function 

used in Clevers (1988) and Baret and Guyot (1991) a linear relationship was reported for a 

few indices such as IIReR1, IIReR2 and SR.  These SVIs with linear relationship with LAI 

also had strong performance based on their R
2
 values (Figure 5). The linearity of the relations 

for some indices was also revealed by previous studies (Broge and Mortensen 2002; Schlerf, 

Atzberger et al. 2005; Darvishzadeh, Skidmore et al. 2008), which showed the linearity of 

SVI-LAI relationships based on the exponential function. Some indices also showed large 

difference between the best-fi and exponential function. This was mainly because the 

exponential function forces the curve through the origin while the SVI value starts at a value 

of 1 or more showing deviation from the exponential function around the origin. 

The analysed SVIs showed different levels of sensitivity to leaf, soil and canopy parameters. 

Almost all of the SVIs were found to be highly sensitive to low Cab and planophile LADs, 

whereas they showed less sensitivity to high Cab and erectophile LADs. However, the effect 

of canopy background was reported to be negligible as the indices revealed less variability in 

their performances under the three soil moisture levels. The degree of sensitivity always 

varied among those indices. Those SVIs based on the red edge bands, namely NDRE1, 

NDRE2, SR and IIReR1 showed high sensitivity to low leaf Cab levels with early saturation 

levels (LAI < 3). This could be due to the use of either red edge or chlorophyll absorption 

bands which led to lower values for the indices at low Cab level as the red reflectance [the 

denominator] would have a higher value than otherwise. This effect of the red edge was also 

reported in previous studies (Broge and Mortensen 2002; Darvishzadeh, Skidmore et al. 2008; 

Houborg and Boegh 2008; Clevers and Gitelson 2013) making it more suitable for 

chlorophyll estimation than for LAI.  On the other hand, those SVIs based partly on the SWIR 

region, namely, NDII, ISR and IIReR2, showed better sensitivity to LAI with low leaf Cab (Cab 

20 µgcm
-2

). This upports the idea of Lee, Cohen et al. (2004) who showed that the red edge 

and SWIR bands contain more useful information about canopy LAI than the NIR region.This 

could be explained by the less sensitivity of SWIR bands to leaf Cab levels.  On the other hand, 

the red-edge around 710 nm for IIReR2 yielded higher reflectance with low Cab (as the red 

edge shifts to the left), which was also comfirmed by others (Danson and Plummer 1995; 

Clevers and Kooistra 2012). 

The analysis of the SVI-LAI relationships based on different LADs also indicated overall 

poor performance with planophile LADs. However, there was variation in the level of 

sensitivity across the LAI ranges. This was particularly the case with IIReR1, IIReR2, ISR, SR 

and NDII, which showed high sensitivity to low LAI values (LAI < 4) with a planophile LAD. 

These SVI values saturate earlier for planophile LAD, while it still continued to increase with 

spherical and erectophile LADs. This higher sensitivity with planophile LADs at low LAI 

could be explained by a relatively high exposure of planophile LAD and hence higher 

absorption of red reflectance which in turn yields higher values for the SVIs. The effect was 

soon reversed at higher LAI (LAI > 4) possibly because spherical and erectophile LADs, with 

better exposure to illumination source, would have the same effect on red reflectance as was 

the case with a planophile LAD at low LAI. With planophile LADs the leaf layers have a 

shadowing effect overlaying each other and hence relatively higher red reflectance and 

subsequent saturation effect with increasing vegetation density was noticed. 

A further analysis of the SVI-LAI relationships based on variable soil moisture revealed 

consistent patterns. This showed that soil moisture did have a negligible effect on the 

performance of the analyzed SVIs. However, this does not mean that all the SVIs efficiently 
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corrected for background effects because the soil reflectance was fixed to 50% in the 

PROSAIL model.  

5.1.3 Performance of SVI with broad and narrow band sensors 

Based on the PROSAIL model it was found that the SVIs derived from the broad and narrow 

band sensors, namely WDVI, NDVI, EVI, NDII, ISR and SR, were strongly consistent across 

the sensors (Figure 7). The result of the correlation of the LAI estimated by those SVIs with 

measured LAIs also reported statistically significant values (P<0.01) (Table 7). This is in 

agreement with previous studies in that strong correlation was reported for NDVI and REIP 

based on continuous and VENµS bands (Herrmann, Karnieli et al. 2010). There were, 

however, contradicting reports regarding the contribution of narrow bands in relation to LAI 

retrieval. Some studies revealed a better performance of hyperspectral data than multispectral 

sensors for LAI prediction (Lee, Cohen et al. 2004; Schlerf, Atzberger et al. 2005; Liu, Pattey 

et al. 2012), whereas other studies found that hyperspectral sensors did not show better 

performance than broad band sensors (Broge and Mortensen 2002; Liu, Pattey et al. 2012). 

Lee, Cohen et al. (2004) showed that the spectral properties of MODIS did not have any 

inherent advantage over those of ETM+ for predicting LAI. They also showed that models 

based on actual ETM+ bands were generally stronger than those based on simulated data 

indicating that ETM+ data suffer no penalty for having lower radiometric quality than 

AVIRIS simulated ETM+ data for predicting LAI. Broge and Leblanc (2001) also concluded, 

based on simulated data analysis that the hyperspectral narrow bands were not better than the 

classical broad band SVIs for LAI estimation. These authors added that the broad band 

spectra are even less vulnerable to external disturbance factor, compared to the 10 nm wide 

narrow bands. Nonetheless, the high performance of the red edge for chlorophyll estimation 

was widely acknowledged (Broge and Mortensen 2002; Clevers and Gitelson 2013).  

As presented in Figure 7, NDII and ISR showed strong linearity between S-2, APEX and TM, 

while both indices showed slight deviation for MSR16R. The LAI estimation using NDII and 

ISR based on MSR16R band settings tended to be higher than the corresponding estimation 

from TM at low LAI (LAI<5) and drops below TM based estimation afterwards. This is 

mainly due to the disproportionately higher values for both NDII and ISR at low LAI for 

MSR16R than it was for TM. Because the NIR band used for MSR16R is narrow enough to 

yield a high ratio although the SWIR band width, the denominator, is comparable for both 

sensors. This is in agreement with previous findings on the sensitivity of the SWIR region 

(Brown, Chen et al. 2000; Gonsamo and Pellikka 2012). The result also revealed a deviation 

of LAIe from the narrow bands using the SR from that of Landsat TM. This could be due to 

the NIR bands, which are narrow enough to yield high NIR reflectance coupled with the 

choice of narrow red absorption bands for narrow band sensors compared to the broad bands 

from TM. The SR value for the narrow bands was therefore higher than that of TM and 

subsequently yielded higher LAIe values for the former.  Regardless of the slight deviations 

for those few indices the results revealed consistent performances for all the SVIs considered, 

which complies with  what previous studies revealed (Broge and Leblanc 2001; Broge and 

Mortensen 2002; Lee, Cohen et al. 2004; Herrmann, Pimstein et al. 2011). Moreover, 

Herrmann, Pimstein et al. (2011) found no added value of using continuous bands over the 

narrow bands of VENµS for LAI retrieval. These suggest that SVIs derived from the narrow 

bands of APEX,  SR16R or ESA’s upcoming sensors could be comparable with the broad 

bands of Landsat ETM+ for LAI estimation.  
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5.1.4 Sensitivity analysis based on PROSAIL Model 

The sensitivity analysis based on the PROSAIL model indicated that SVIs had varying 

performances with varying leaf, soil and canopy parameters. Most of the SVIs analysed had 

poor performances under low leaf Cab (Table 9), which was particularly worse for greenness 

indices such as NDVI, NDRE1, NDRE2 and EVI, as compared to their performance with high 

leaf Cab. This is in agreement with (Liu, Pattey et al. 2012) who reported high sensitivity of 

greenness indices such as NDVI to Cab level. Other indices such as IIReR1, IIReR2, NDII and 

ISR showed less variation in their sensitivity to Cab levels although they had high RMSE 

values at lower Cab level. These indices are partly based on SWIR bands which improved 

their insensitivity to variations in Cab levels. On the other hand, the result of the sensitivity 

function for the SVIs analysed showed an overall high sensitivity at low LAI values (LAI < 3) 

for many of the SVIs. This is because of the steep rise in the slope of the exponentially fitted 

functions, hence making them highly sensitive at low LAIs. After moderately high LAI value 

is reached, the S value drops asymptotically approaching zero values for these indices. This 

was the case for NDVI, which loses its sensitivity to LAI earlier than other indices. This was 

in agreement with what Herrmann, Karnieli (2010)  reported where NDVI reached a 

saturation point at fairly low LAI values. The fact that the sensitivity of NDVI drops so 

quickly could be attributed to the use of red bands, which not only decrease with small 

increase in LAI but also stabilize when the canopy closes up (LAI > 3) (Figure 4). On the 

other hand, NDII uses the spectral information from the SWIR region instead of the red bands 

to normalize for canopy background effects. The SWIR continues to respond to soil moisture 

levels as was confirmed by previous studies (Brown, Chen et al. 2000; Lee, Cohen et al. 2004; 

Gonsamo and Pellikka 2012).  

Moreover, the analysis of the performance of SVIs based on different LADs also 

distinguished between SVIs (Table 11). The effect of different leaf orientation varied across 

the indices depending on the extent to which those indices correct for either soil background 

effects or /and leaf Cab concentrations. This could be the reason why NDVI, for instance, did 

well with an erectophile LAD, because the effect of Cab is emphasized as the leaves have high 

exposure to sun light boosting the performance of NDVI. The large effect of LAD on the 

performance of SVI especially at low to moderate LAI values is well documented (Liu, Pattey 

et al. 2012). The IIReR1 and IIReR2 reported high sensitivity at high LAI values. This could 

be explained by reduced soil background effect and partly by the Cab neutrality of the SWIR 

region. In doing so the effect of soil background in open canopies was minimized because of 

high reflectance of SWIR in open canopies, particularly for bright soil which continues to 

decrease as the canopy closes. Similar results were also found by (Brown, Chen et al. 2000; 

Gonsamo and Pellikka 2012). The sensitivity result based on varying soil moisture, however, 

revealed consistent performances of SVIs. There were some deviations observed with WDVI 

based on the three moisture levels, which might be explained by the assumption of fixed soil 

reflectance of 50% in the PROSAIL model. The soil spectra were, however, subjected to 

variations in response to changes in soil moisture levels. Contrary to expectations, the result 

also showed decreasing performance of some of the greenness indices with increasing soil 

moisture. This could be due to the overestimation of those indices with decreasing red 

reflectance for moist soil. The consistently high RMSE values for SVIs, however, suggest the 

negligible effect of variation in soil moisture levels and not that the indices efficiently 

corrected for canopy background effects.  

The use of a normalized sensitivity function showed a general trend of high sensitivity at low 

LAI which decreases with increasing vegetation density. This complies with previous findings 

(Ji and Peters 2007; Wu, Wang et al. 2007; Gonsamo and Pellikka 2012) that showed a 
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decrease in sensitivity at exponentially decaying rate with increasing vegetation density. 

Despite its capability to indicate the relative sensitivity of multiple SVIs across vegetation 

densities, the S function could not yield consistent performances with other statistical 

measures such as R
2
 and RMSE (Table 9 & fig.11).  For instance, NDVI, as was the case for 

other SVIs, showed improved performance with high Cab level although the sensitivity 

function showed deteriorating S values with higher Cab levels. Similarly, Gonsamo and 

Pellikka (2012) also reported the lack of consistency in the performance of the sensitivity 

function as SVIs tested with empirical data based on their sensitivity function could not 

reproduce similar performance. Moreover, the normalized sensitivity function revealed 

inconsistent results based on the use of the best fit and exponential function with a quick drop 

of sensitivity for the former (Appendix 5A&B) although they both followed a decreasing 

pattern at high LAI values. Gonsamo and Pellikka (2012) also found similar results where the 

sensitivity records varied with the best-fit and exponential functions although in both cases 

the sensitivity decreased at exponentially decaying rate. Similarly, Wu, Wang et al. (2007), 

who used the first derivative of the slope of the fitted regression line as a measure of 

sensitivity, reported varying sensitivity of NDVI, for example, for wheat and potato crops.  

Nevertheless, the S function is a useful technique to visualize the SVI-LAI sensitivity at 

different vegetation densities. 

5.2 Results based on empirical data 

5.2.1 The effect of differential nitrogen treatments on the LAI of potato crop 

The LAI curve throughout the growing season showed a steep rise during the first 6 sampled 

weeks, meaning reaching its peak in the 13
th

 and 14
th

 week since the planting date for 2011 

and 2012, respectively. The dip noticed around 11
th

 of July 2011 was due to heavy storm on 

28
th

 June (Fig. 14). This LAI curve coincides with what Zhao, Xiong et al. (2012) reported 

showing that LAI reached its peak around 110 days after sowing in their study of potato for 

different mulching and watering environments. The variable rate application of N fertilizer 

showed significant differences in the potato crop growth as indicated by their LAI values for 

both 2011 (Fig. 14) and 2012 (Fig. 16) growing seasons. Those plots, which had low LAI 

throughout the growing season were given little or no fertilizer (Table 3 and Table 4). For 

instance, regarding the 2011 site plots C, D & K had no initial fertilization, whereas K and D 

had additional fertilizer on May 18 and June 21, 2011, respectively. These had quick effect on 

the potato growth for those plots as the LAI values acquired in the subsequent weeks 

increased for plots D & K over plot C, for example (see Appendix 7 for treatment levels). 

This shows that the effect of additional nitrogen application quickly manifested itself through 

increased LAI values acquired shortly following the fertilization dates. Ziadi, Zebarth et al. 

(2012) reported that potato crops usually requires high N fertilizer (125-200 kg/ha) based on 

soil conditions. Bélanger, Walsh et al. (2001) also revealed a significant effect of differential 

N fertilizer and supplemental irrigation on potato biomass. However, the effect of N level was 

only significant between the non-fertilized or low N and the fertilized plots and not within the 

fertilized plots. As (Ziadi, Zebarth et al. 2012) also reported the optimal N level was  between 

125 and 200 kg/ha and any additions of N would only extend the crop growth. This suggests 

that additional N on plots with already considerable fertilization does not have much effect on 

the crop growth. 

The similarity of the pattern for both sites indicated that the significant difference was 

between plots without nitrogen and the one with highest nitrogen. However, the 2012 site also 

reported a significant difference in LAI between plots with 43 kgha
-1

 and those with the 

highest nitrogen of 218 kgha
-1

. The fact that there was no significant difference between those 

plots with different fertilization rates for 2011 may be explained by the negligible marginal 
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effect of additional nitrogen on the crop growth for plots with already some N fertilizer. 

Regardless of the magnitude of difference in N level the LAI values showed a similar 

sequence as the amount of fertilizer application; meaning higher fertilizer application yielding 

higher LAI values. Apart from the level of fertilizer applied, the unfavourable weather 

conditions (Fig. 17) and poor soil conditions for the 2012 site contributed to the poor growth 

of the potato (O'Brien, Allen et al. 1983; Allen and O'Brien 1986; Mazurczyk, Lutomirska et 

al. 2003). Nevertheless, the trends in the LAI values were found to be similar in both cases 

with a steep rise at the onset of the growing season. Effects of weather parameters such as 

temperature were also confirmed by previous studies (Chirkov 1965; Hoogenboom 2000; 

Mazurczyk, Lutomirska et al. 2003). Wang, Li et al. (2005) also found that mulching 

increased soil temperature and moisture, which in turn resulted in high biomass and tuber 

yield. This suggests that the unfavourable weather parameters as well as poor soil conditions 

coupled with the overall low nitrogen application during the 2012 growing season resulted in 

the stunted growth of the potato crop and hence low LAI and low biomass compared to the 

2011 site which had more favourable weather, well developed soil as well as high nitrogen 

application. 

5.2.2 SVI-LAI relationships based on empirical data 

The result of the analysis of the MSR16R spectral data using the selected SVIs indicated that 

some of the SVIs, which performed well with the simulated data, also proved to be better 

predictors of LAI than other SVIs. However, there was no consistency regarding the 

performance of the SVIs with the two growing seasons (fig. 19). For instance, IIReR1, SR and 

NDVI had better relationships with LAI-2000 measurements. Some SVIs, such as NDRE2, 

even performed better with the empirical field data from the 2011 growing season compared 

to its performance with the simulated spectra. This could be due to the fact that the simulated 

spectra contained wide ranges of parameter values while in the actual field data the variation 

was minimal. Hence, the sensitivity of NDRE2 to Cab levels dropped while improving its 

sensitivity to LAI. This complies with the strong effect of LAD and Cab (Liu, Pattey et al. 

2012). The lack of consistency in the performance of those SVIs in general and the overall 

deterioration in the performance of SVIs for the 2012 site in particular could be attributed to 

differences in N application, soil conditions as well as weather parameters which affect the 

efficiency of an index as suggested by (Broge and Leblanc 2001). The 2011 site had high N 

fertilizer and subsequently high Cab levels. A sensitivity analysis based on the PROSAIL 

model also confirmed that the SVIs demonstrated good relationships with LAI at high Cab 

level as well as erectophile LADs, whereas they performed poorly at low Cab level and 

planophile LADs. The performance of NDII and ISR, which either improved or maintained 

the same level of relationship with LAI for 2012, could be justified by the fact that NDII and 

ISR are less sensitive to Cab levels as they are based partly on SWIR bands.  On the other 

hand, NDRE1 had better performance in 2012 than in 2011, which could be explained by the 

less Cab sensitivity of the NIR band as compared to the red-edge bands used by NDRE2 where 

the latter are more sensitive to Cab. Given the low LAI for 2012, the canopy background effect 

might also explain the overall poor performance of the SVIs.  

Furthermore, those indices derived based on MSR16R and which had a better relationship 

with LAI-2000 in the 2012 growing season were found to be more sensitive to LAI at low 

vegetation density as discussed under the sensitivity analysis based on the simulated dataset. 

For example, NDII and ISR had high sensitivities only next to NDVI at low LAI. Yet NDVI, 

which had always been most sensitive at low LAI, did not show better performance in 2012 

compared to 2011. Nonetheless, those SVIs, which were reported to have high sensitivity to 

low LAI (open canopy), maintained more or less the same relationship for the two growing 
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seasons, whereas those SVIs which did well with high LAI as was the case for 2011 had poor 

performance with low LAI in 2012. That is why SWIR based indices, such as NDII and ISR, 

had comparable performances for both sites due partly to their less sensitivity to Cab and 

partly to efficient correction for canopy background effects. As a result, it can be said that the 

choice of an index for LAI prediction depends to some extent on a priori knowledge about the 

condition of the crop. This confirms the assertion of Broge and Leblanc (2001) who 

concluded that the choice of SVI should depend on a priori knowledge of the variation of 

external parameters affecting the spectral reflectance of the canopy and the range of 

parameters to be estimated. As a result, IIReR1, SR and WDVI could be used with high 

vegetation density whereas NDII and ISR might be preferable for LAI mapping at an open 

canopy with a low Cab situation.  

Nevertheless, the sensitivity function did not show consistency with other statistical indicators 

on the performance of SVIs. Despite these inconsistencies, it could still be a useful technique 

to map the general pattern of the performance of various SVIs to synergize their performance 

by integrating two or more indices for LAI mapping as opposed to the conventional use of 

single SVIs. This could be done by employing different SVIs for predicting different LAI 

ranges based on their sensitivity function on the condition that prior knowledge is available 

about the vegetation condition to be mapped.  

5.2.3 SVI-LAI relationships based on APEX imagery 

Based on the results from the SVI-LAI relationships derived from APEX imagery all the SVIs 

had strong linear relationships with LAI-2000. A cross-sensor comparison of the relationships 

also revealed strong consistency among APEX, VENµS, S-2 and Landsat TM band settings. 

This is in agreement with a comparable LAI prediction power revealed between MODIS and 

ETM+ (Broge and Leblanc 2001; Lee, Cohen et al. 2004). However, slight deviations were 

noticed between SVIs derived from APEX and MSR16R (Appendix 11). This might be 

explained by the different parameters affecting the spectral characteristics of the two sensors. 

These include the height from which the data were acquired which is 4600m for APEX 

whereas the MSR16R measurement is performed at a close range of maximum 3m height. 

This might be one factor for higher values of SVIs derived from MSR16R data. The other 

possible justification could be the spatial resolution of the two sensors being 0.6 m radius and 

2.5m * 2.9m for MSR16R and APEX, respectively. The relatively low spatial resolution for 

APEX might be more vulnerable to measuring soil spectra, which might subsequently reduce 

the spectral values compared to the MSR16R where the potato crop is targeted at fine scale 

yielding higher spectral data. This effect might be more pronounced in this case as the potato 

was planted on 0.75 m wide rows with soil background effect being high in between rows 

unless the LAI is high enough for the canopy to close. Similar effect of the in between row 

was reported by Herrmann, Pimstein et al. (2011), where the higher RMSE for potato than 

wheat was attributed to the wider opening in between potato rows. Nevertheless, the LAI was 

large enough for the canopy to close on the date the APEX flight was acquired and hence the 

differences due to soil background effect were less likely. Moreover, the temporal aspect 

might also be an important factor as far as the time of data acquisition coupled with the 

relative position of the sun is particularly essential for APEX although MSR16R is not 

sensitive to cloud cover as well as the source of illumination. 

5.2.4 Validation of SVI-LAI  relationships based on MSR16R  and APEX  

Based on the MSR16R data the SVIs did not show consistency across sites and most of them 

had inferior LAI prediction power for the 2012 site as judged by the R
2
 values (Table 11). The 

lower RMSE values for 2012 do not mean an improved prediction power but a bias 
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introduced by the lower LAI value range in 2012 than 2011. This made a cross-site 

comparison of the performance of the SVIs using the RMSE misleading. As a result, only the 

R
2
 values, not the RMSE computed for the two growing seasons should be used for a cross-

site comparison of the performance of SVIs. This shortcoming of the use of RMSE was also 

confirmed by (Ji and Peters 2007). The RPD was computed to overcome the problem as it 

standardizes for differences in the data range and the results showed a better evaluation of the 

performance of SVI than RMSE. Yet, RPD was also found to depend on the nature of datasets 

and was influenced by the differences in the distribution of the data for the two years (fig. 20) 

where the 2012 dataset had less dispersions than the 2011. This suggests that the use of these 

statistical measures depends on the nature of datasets being compared. 

Most of the SVIs analysed revealed comparable performances across the narrow band sensors 

and broad bands of ETM+ as simulated by APEX data (table 13).  This suggests that the 

ESA’s upcoming space systems could be compared with either hyperspectral sensors such as 

APEX or broad band ETM+. This again complies with (Broge and Leblanc 2001) and (Lee, 

Cohen et al. 2004) who showed a comparable performance of hyperspectral and ETM+ bands. 

Unlike many of the SVIs, the red edge indices such as NDRE1 and NDRE2, however, did not 

yield consistent results across those sensors nor had they superior performances. This could 

partly be attributed to the reason that the data for the other sensors was a common airborne 

APEX image, whereas MSR16R data was acquired in a close range. On the other hand, those 

SVIs based partly on the SWIR bands maintained a considerable degree of consistency both 

within the narrow band sensors as well as with the broad band ones. In general, results of the 

use of the red edge bands of S-2 and VENµS were comparable to the broad bands of TM as 

well as to other narrow band sensors. The performances of the different indices also varied for 

the ESA’s upcoming space borne systems as they did vary with other sensors. Hence, the 

narrowly positioned red edge bands of those sensors could be used instead of the broad bands.  

A comparison of the performance of those SVIs based on the PROSAIL model and empirical 

data also showed a lack of consistency with most of the indices while only few demonstrated 

a similar level of performances across sensors.  Some indices such as WDVI and NDRE2 

showed big improvement with the empirical data. This could be due to the diverse disturbance 

factors assumed with the simulated data, whereas the empirical data was free from many of 

these variables such as wide range of Cab levels, different soil moisture levels and LADs.  

Furthermore, the sensitivity function indicated high sensitivities for best performing SVIs, for 

instance, IIReR1 and SR which had superior performance (R
2 

= 0.81 and 0.79, respectively) 

for the 2011 site. Moreover, as the validation graph (Figure 23) suggested both indices, 

particularly IIReR1, had less accurate LAI prediction as the points were found scattered 

further away from the equality line (x = y). This also complies with the low sensitivity at low 

LAIs (LAI < 3). However, there were inconsistencies between the S record and the 

performance of some indices such as WDVI, which had low sensitivity (fig. 24) despite its 

high LAI prediction power (R
2
=0.77) (table 12). This inconsistent performance of the S 

function was also reported by Gonsamo and Pellikka (2012). The S function based on 

empirical data also showed more fluctuations as compared to the PROSAIL model. This is 

because the field measurements in terms of both LAI-2000 as well as MSR16R might be 

prone to disturbances unlike the simulated data where every parameter value was virtually 

subjected to manipulation.  Nonetheless, the S function for both 2011 and 2012 showed a 

similar pattern with the simulated data, which revealed a high sensitivity at low LAI and a 

decrease with increasing LAI. 
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6. Conclusions and recommendations 
 

Based on the analysis of the sensitivity of selected spectral regions to LAI for different soil 

moisture levels, the NIR followed by SWIR and red-edge bands showed high sensitivity to 

LAI, while responding differently to canopy background effects compared to the red bands. 

These spectral regions can be used to improve the SVI-LAI relationships based on NIR. The 

Integrated Infrared and Red edge Ratio (both IIReR1 and IIReR2), which have been evaluated 

in this study, demonstrated better sensitivity to LAI than other SVIs based on the PROSAIL 

data. Moreover, IIReR1, which maintained superior performance with empirical data for 

potatoes from 2011, was found to be the best for LAI prediction. Hence, the integration of 

SWIR and red edge bands with the widely used NIR and red bands can improve the SVI-LAI 

relationship.  

Based on the sensitivity analysis using a normalized sensitivity function and the commonly 

used statistical measures, R
2
 and RMSE, it was found that SVIs were highly sensitive to 

canopy LADs and leaf Cab levels. They showed the poorest performance for planophile LAD 

and low leaf Cab levels, while SVI-LAI relationships improved at high leaf Cab as well as with 

erectophile LADs. The effect was more pronounced with greenness indices such as NDVI, 

NDRE1, NDRE2, WDVI and SR whereas indices partly based on SWIR bands, such as IIReR1, 

IIReR2, ISR and NDII, showed more resilience though they followed a similar pattern. 

However, all the SVIs considered showed less sensitivity to varying soil moisture levels. This 

does not mean that the SVIs minimize the background effect, because the inconsistency in 

their performance based on empirical data could be partly explained by the soil background 

effect evident from the 2012 site. The use of a sensitivity function (S) for comparing multiple 

SVIs showed high performance of SVIs at low LAI values while indicating different levels of 

S at various LAI ranges with a general decline in S with increasing LAI. Despite the 

significant sensitivity level of SVIs-LAI relations, the S function does not necessarily indicate 

the suitability of an index for LAI mapping as few SVIs with high S record reported an 

insignificant relation with LAI based on empirical data. 

From the analysis of SVIs across broad and narrow band sensors based on both PROSAIL and 

empirical data, all the SVIs considered demonstrated strongly consistent performance. 

Moreover, the broad bands of Landsat TM as simulated using APEX data yielded comparable 

results with the narrow bands of MSR16R, APEX, S-2 and VENµS. Hence, it could be 

concluded that broad ETM+ bands suffer no poor performance for its lower spectral 

resolution than the narrow band multispectral or hyperspectral sensors. However, it should be 

noted that the broad band sensors do not offer the opportunities to derive narrow band indices 

which,  unlike the conventional broad band indices, are based on multiple spectral regions.  

A further validation of the performance of SVIs for LAI prediction across the two growing 

seasons did not yield consistent performance. Most of the SVIs had better prediction power in 

2011 than in 2012, which implies that most of the indices had strong relation with LAI for 

high canopy.  The high performance of IIReR1, SR and WDVI throughout the 2011 growing 

season indicated consistent performance through crop phenological stages. However, these 

SVIs were not consistent across different management practices as evident from the poor 

performance for 2012. Based on the different performance records of SVIs between the two 

sites the choice of an index should be based on the range of parameter to be estimated and the 

priori knowledge about the factors affecting its estimation in the region of interest. IIReR1, 

SR and WDVI appear to be suitable for high LAI, whereas NDII and ISR might be preferred 

for low vegetation density or open canopies characterized by low Cab and bright soil 

background. 
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Recommendations: 

Based on the above conclusions the following recommendations can be drawn: 

 The IIReR1 index was found to be suitable for LAI retrieval among the SVIs 

considered based on the 2011 site. However, a further validation with empirical field 

data might be useful to test the robustness of the index. 

 The sensitivity function needs to be tested further for its capability to suggest SVIs 

suitable at certain LAI range. This could be tested with field data to examine the 

possibility to combine multiple SVIs for LAI mapping particularly for crop monitoring 

throughout the growing seasons.  

 The consistent performance of SVIs across different sensors allows for the possibility 

to combine spectral information to enhance the temporal resolution for crop 

monitoring. Yet, further comparison of hyperspectral narrow band and broad band 

sensors could be essential to investigate the advantage of the spectral properties of the 

former over the latter for LAI estimation for different crops.  

 The application of additional nitrogen did not have significant effect on LAI between 

fertilized plots. Further research in to the matter could be helpful to gain 

understanding on the effect of N levels by controlling for  extraneous factors such as 

soil conditions and weather parameters. 
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APPENDICES 
 

Appendix 1: Variability of the red and red-edge spectra across different leaf Cab levels. The graph presents the 

reflectance at 710 and 670 at LAI values of 1, 2, 3 and 4 beyond which the reflectance saturates for 670 nm while it 

still continues to drop for 710 with negligible effect of LAI. 
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Appendix 2: SV-LAI Relationships based on different soil moisture levels for NDVI (a), WDVI (b), IIReR1 (c), SR (d), 

NDII (e), IIReR2 (f), MSR (g), NDRE1 (h), EVI (i), NDRE2 (j) and ISR (k).  
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Appendix 3: SVI-LAI relationships based on Planophile, spherical and Erectophile LADs for NDVI (a), WDVI (b), 

IIReR1 (c), SR (d), NDII (e), IIReR2 (f), MSR (g), NDRE1 (h), EVI (i), NDRE2 (j) and ISR (k). 
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Appendix 4: SVI-LAI Relationship based on different leaf Cab levels (20µgcm-2, 40µgcm-2, and 60µgcm-2) for NDVI 

(a), WDVI (b), IIReR1 (c), SR (d), NDII (e), IIReR2 (f), MSR (g), NDRE1 (h), EVI (i), NDRE2 (j) and ISR (k). 
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Appendix 5: Sensitivity analysis using a sensitivity function (S). 

   A) Sensitivity analysis based on a) the best-fit-function and b) the exponential model at leaf Cab level of 40 µgcm-2, 

spherical LAD and bright soil background. 

 

B)  Sensitivity analysis of SVIs to LAI based on planophile LAD using best fit (a) and SRM (b) with NDVI and NDII 

showing high sensitivity at low vegetation under both models with the former showing high sensitivity at low LAI. 
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Appendix 6: Initial fertilization levels and additional nitrogen application during the growing seasons for 2011 sites 

 

 

Appendix 7.  Comparison of mean difference between the weather parameters for 2011 and 2012 growing seasons 

using a paired samples t-test 
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G  46 CL         292 

H  46 TTW         292 

I  46 MB     49 54    346 

J  34 MB     28 27    256 

K  0 MB  54   0 54   146 

L  23 MB 48 54   59 54    321 

 Paired Differences t df Sig. (2-

tailed) 
Mean Std. 

Deviation 

Std. Error 

Mean 

95% Confidence Interval of 

the Difference 

Lower Upper 

Pair 1 CumT_2011 - 

CumT_2012 

41.301 28.060 2.276 36.805 45.80 18.15 151 .000 

Pair 2 CumRF2011 - 

CumRF2012 

-84.961 37.573 3.048 -90.982 -78.94 -27.88 151 .000 

Pair 3 CumSH2011 - 

CumSH2012 

101.505 60.147 4.879 91.866 111.14 20.81 151 .000 
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Appendix 8.  Average LAI based on nitrogen treatment levels through 2011 (a & b) and 2012 (c) growing seasons. 
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Appendix 9:  SVI-LAI relationships for the 2011 growing season. Note that the values for all the SVIs were 

normalized to the same value range of 1 to 10. 
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Appendix 10: SVI-LAI Relationships for the 2012 growing season for IIReR1 (a), IIReR2 (b), WDVI (c), NDVI (d), 

NDII (e), NDRE2 (f), ISR (g), NDRE1 (h), SR (i) and MDR(j). The value ranges for SVIs as already mentioned were 

normalized to a value range of 1 to 10. 
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Appendix 11. SVI-LAI relationships based on APEX imagery indicating strong linear relationships   for SR(a), WDVI 

(b), NDRE2 (c), IIReR1(d), NDVI (e), NDRE1 (f), ISR (g), NDII (h) and IIReR1 (i)                                 
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Appendix 12: LAI-Biomass relationships for the 2011 and 2012 sites. The legends indicate the closest ( for 2012 site) or 

exact dates on which both biomass and LAI data were acquired.
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Appendix13. SVI-LAI relationships based 2011 and 2012 sites indicating clearly different patterns corresponding to 

the differences in the biophysical parameters of the potato crop which was poor in 2012 than in 2011. The point cloud 

for 2012 is more condensed with small value range compared to the 2011. 

 



85 
 

Appendix 14: Results on the validation of  SVI-LAI relationships  based on 2011 site for  IIReR1 (a), SR (b), IIReR2 

(c), WDVI (d), NDVI (e), ISR (f), NDII (g), NDRE1 (h), MSR (i) and NDRE2 (j). The legend stands for the date of data 

acquisition throughout the growing season and is valid for all the graphs. 
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Appendix 15. Results from ANOVA showing significant effect of nitrogen treatment on LAI for 2011 site 

a) Results from ANOVA 

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model 66.560
a
 3 22.187 13.723 .000 

Intercept 2785.402 1 2785.402 1722.868 .000 

Initial_N 66.560 3 22.187 13.723 .000 

Error 200.474 124 1.617   

Total 3052.435 128    

Corrected Total 267.033 127    

a. R Squared = .249 (Adjusted R Squared = .231) 

 

    b) A pair-wise comparison of the effect of different fertilization levels on LAI using the LSD  

(I) Initial_N (J) Initial_N 

Mean 

Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

0 161 -1.3852
*
 .31788 .000 -2.0143 -.7560 

242 -1.7290
*
 .31788 .000 -2.3582 -1.0998 

322 -1.7725
*
 .31788 .000 -2.4017 -1.1433 

161 0 1.3852
*
 .31788 .000 .7560 2.0143 

242 -.3438 .31788 .282 -.9730 .2853 

322 -.3873 .31788 .225 -1.0165 .2418 

242 0 1.7290
*
 .31788 .000 1.0998 2.3582 

161 .3438 .31788 .282 -.2853 .9730 

322 -.0435 .31788 .891 -.6727 .5857 

322 0 1.7725
*
 .31788 .000 1.1433 2.4017 

161 .3873 .31788 .225 -.2418 1.0165 

242 .0435 .31788 .891 -.5857 .6727 

Based on observed means. 

 The error term is Mean Square(Error) = 1.617. 

*. The mean difference is significant at the 0.05 level. 
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Appendix 16. Results from ANOVA and LSD test for significance of the effect of nitrogen treatment on LAI for 2012 

site 

 

         a)Results from ANOVA 

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model 5.440
a
 3 1.813 3.929 .012 

Intercept 278.144 1 278.144 602.616 .000 

Treatment 5.440 3 1.813 3.929 .012 

Error 30.463 66 .462   

Total 317.671 70    

Corrected Total 35.903 69    

 
       b). A pair-wise comparison of the effect of different fertilization levels on LAI using                    

               the   LSD 

(I) Treatment (J) Treatment 

Mean 

Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

0 43 -.1778 .23343 .449 -.6439 .2882 

117 -.5990
*
 .23343 .013 -1.0651 -.1330 

218 -.6719
*
 .23343 .005 -1.1380 -.2059 

43 0 .1778 .23343 .449 -.2882 .6439 

117 -.4212 .22646 .067 -.8733 .0310 

218 -.4941
*
 .22646 .033 -.9462 -.0420 

117 0 .5990
*
 .23343 .013 .1330 1.0651 

43 .4212 .22646 .067 -.0310 .8733 

218 -.0729 .22646 .748 -.5251 .3792 

218 0 .6719
*
 .23343 .005 .2059 1.1380 

43 .4941
*
 .22646 .033 .0420 .9462 

117 .0729 .22646 .748 -.3792 .5251 

Based on observed means. 

 The error term is Mean Square(Error) = .462. 

*. The mean difference is significant at the 0.05 level. 
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Appendix 17. Specifications of the CROPSACAN  MSR16R system 

 

 

 
Appendix 18.  A correlation of predicted LAI (LAIe) using narrow band sensors with LAIe from Landsat TM (broad 

band) based on NDVI,  NDII, ISR, SR, EVI and WDVI. The correlation is strong for all the indices indicating their 

consistent performance across sensors. 

 SVI MSR16R            APEX S-2           VENµS 

R P-value R P-value R P-value R P-value 

NDVI 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00 

NDII 0.98 0.00 0.99 0.00 1.00 0.00 - - 

ISR 0.98 0.00 0.99 0.00 1.00 0.00 - - 

SR 0.99 0.00 0.99 0.00 0.99 0.00 0.98 0.00 

EVI 0.99 0.00 0.99 0.00 0.94 0.00 0.99 0.00 

WDVI 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00 
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Appendix 19.  LAI Map using IIReR1 based on APEX image. The values indicate the LAI range which is the lowest 

for those plots with little or no fertilization while those regions with high N fertilizer showed high LAI values 

demonstrating the suitability of IIReR1 for LAI mapping at image level. 
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