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Abstract 

Sun. Y. (2013). Immunogenetic analysis of natural antibody isotypes in laying hens. 

PhD thesis, Wageningen University, the Netherlands 

 

Worldwide, especially in Europe, poultry industry is undergoing important changes 

including ban of the battery housing system and prohibition of beak trimming. The 

former can facilitate more spread of infectious diseases, and the latter will 

contribute to higher mortality because of severe feather pecking. Furthermore, 

given the growing social concern about food safety and human health, abundant 

use of antibiotics will either be prohibited or restricted. These changes further 

emphasize the importance of implementing general disease resistance in layers 

breeding goals next to maintaining high production. The aim of this thesis was to 

find proper traits which are associated with laying hens survival, and reveal genetic 

architecture and background underlying the traits. Natural antibody (NAb), which 

are the antibodies present in normal healthy animals in the absence of a deliberate 

antigen exposure are an important humoral part of innate immunity. The 

relationships between survival and NAb isotype titers were firstly investigated by 

the logistic regression analysis in a population of laying hens from 12 purebred 

lines. The results indicated that NAb, especially the IgM isotype titers at young age 

was predictive for survival of a laying period. Genetic parameters of NAb isotypes 

IgM and IgG titers were estimated in the same population. The estimation showed 

that both NAb isotypes are moderate to high heritable traits which were possible to 

breed for. An association study revealed different QTL or SNP markers for NAb 

isotypes titers. The majority of the commercial laying hens are crossbred. 

Therefore, the relationships between NAb isotype titers and survival were further 

investigated in crossbred laying hens. However, a consistent relationship as in the 

purebred was not found. This confirmed the speculation that non-health-related 

causes of mortality (severe feather pecking) overruled the anticipated relationships 

between NAb isotype titers and survival in birds with intact beaks. Overall, the 

present studies indicate that it is possible to implement NAb especially the IgM 

isotype titers into the breeding goals of laying hens to improve the health-related 

survival.  
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1.1 Introduction 
 

1.1.1 Achievement of poultry breeding in the past decades 

It is not simple to state since when the human beings started to keep chickens for 

eggs and meat. However, what we observed is that, during the past decades since 

late 1930s, together with improvements in nutrition and management, commercial 

animal breeding companies have successfully and dramatically improved the 

production performance of this domestic animal, either egg production in layers or 

meat production in broilers (Havenstein et al., 2003). Specialized breeds and lines 

are also generated during the intensive and effective artificial selection process for 

many economically important traits. In laying hens, all white hens are based on the 

White Leghorn breed that originated from Livorno in Tuscany, Italy, whereas Brown 

hens are mainly based on Rhode Island Red and White Plymouth rock breeds (Muir 

et al., 2008). Many commercial laying hen breeds can now produce 300 or more 

eggs per year, which is three-fold of that at the turn of the 20th century 

(Ensminger, 1992). The industry continues to improve the efficiency of laying hens 

production by at least 1% per year. In 2009, an estimated 62.1 million tons of eggs 

were produced worldwide from a total flock of approximately 6.4 billion laying 

hens. World egg production in 2013 will likely reach a record of 65.5 million tons 

(www.wattagnet.com/Outlook_for_egg_production.html). 

 

1.1.2 Challenges for future laying hens breeding 

Eggs are an important and relative cheap food resource for good protein and other 

important nutrients like choline. Along with the continuous increasing worldwide 

population, ever growing food resource (protein) requirement, as well as the 

economic profit driving, maintaining the high level of production efficiency is still 

the major mission for the layers breeding. Genetic improvement in egg production 

is challenged by the highly canalized nature of the reproduction trait as determined 

by diurnal photoperiodic constraints (An egg is formed gradually over a period of 

about 25 hours). Increased early maturity has long been an important characteristic 

for birds to improve the production by lengthening the laying period. At the 

present time, most of the commercial laying hens are raised for laying eggs until 80 

to 90 weeks of age, depending on the breeds. For the layers breeding companies, 

an extended laying life of hens is an attractive alternative approach, as it will make 

better use of layer house facilities, reducing the financial impact and down time 

involved in replacing pullets. Recently, a new type of production cycle of 100 

weeks, during which time the laying hens will be capable of producing 500 eggs 
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without forced-molting process is expected by Institut de Sélection Animale (ISA), 

the layer breeding division of Hendrix Genetics. They also showed that there were 

pure line flocks with these characters when kept in a single-bird cage and in a 

disease-free environment under the best conditions possible 

(www.worldpoultry.net/Breeders/General/2011/3/Breeding-for-500-eggs-in-100-

weeks-WP008564W/). However, the genetically achievable objective can be 

compromised under the practical conditions their commercial progeny are 

expected to perform in. Keeping up the health status and survival ability is required 

to permit the full exploitation of genetic potential of egg laying persistency. 

Therefore, the goal for the new life cycle in laying hens also emphasizes the 

livability of the birds with aging.  

Next to the top mission of maintaining the high level of production efficiency, the 

worldwide poultry industry is currently challenged to improve animal welfare as 

well as food quality and safety. This is likely to have an impact on future laying hens 

breeding practice.  

First, consumers especially those from European Union (EU) are claimed to have 

increasing preferences for the welfare of production animals. Animal welfare in 

commercial poultry production is therefore becoming an important topic and 

receives more legislative attention. In some non-EU countries, an increasing focus 

on farm animal welfare is also driven by export opportunities for poultry meat (van 

Horneand and Achterbosch, 2008). The major concerns of welfare of laying hens in 

EU were the space allowance per hen and the status on mutilations (e.g. beak 

trimming). To accommodate societal concerns about animal welfare for the laying 

hens, the conventional cage (battery) housing system where the hens have limited 

space to express natural behavior like sand bathing and wing flapping, was banned 

prior to 2012 in Germany, the Netherlands, Austria, and Sweden (European Union 

Council Directive 1999/74/EC). As a result, all hens are kept in alternative barn 

housing systems (large enclosures with litter on the floor and freedom of 

movement for the birds within the poultry house). This system permits the laying 

hens to have contact with more mates. It is not feasible to avoid the exposure of 

chickens to (entero) bacteria such as E. coli in the floor system (Cavero et al., 2009). 

The close contact with mates can facilitate the spread of infectious diseases. 

Therefore the floor housing system will challenge the birds with an increasing 

threat from infectious diseases and an increase in mortality (Blokhuis et al., 2007). 

Furthermore, ban of beak trimming will also contribute to a higher mortality 

because intact beaks enable severe feather pecking and cannibalism.  
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Second, the close links between the triad of animal disease, food security and 

public health is more and more realized. Animal diseases affect production and 

productivity of animals. Additionally, some animal diseases transmissible to man 

(zoonosis) also affect public and human health as evidenced by outbreak of 

emerging diseases such as different strains of avian influenza. Worldwide, animal 

diseases were mainly prevented by vaccination, feed addition like probiotics or 

cured by the use of antibiotics drugs. Low dose antibiotics have, however, also 

been widely used as growth promoters in animal food. The industry does benefit 

from these measures, but also pay a high price as (1) the application of drugs are 

expensive and labor is needed, (2) the emergence of virulent and drug resistant 

pathogens call for continuous development of new drugs or vaccines, and (3) use of 

antibiotic feed additives in animals feeds may contribute to the problem of 

antibiotic resistance in human medicine (Castanon, 2007). Abundant use of 

antibiotics will either be prohibited or restricted.  

Mortality due to diseases is responsible for 10 to 20% of the gross production value 

in the poultry industry and likely higher in the developing countries (FAO, 2011). To 

some extent, the challenges mentioned above in the industry weaken the external 

protection (e.g. drug treatment) of the animals from diseases or other disturbance, 

while internal genetic merit about maintaining health is therefore highly required. 

In other words, laying hens are appreciated which are resistant to as many as 

possible diseases, maintain higher production levels, need less veterinarian and 

drug treatment and live a longer productive life are appreciated. From the farmers’ 

point of view, less disease and more healthy animals means less production cost 

and more economic profit; from the consumers’ point of view, these means more 

safe food from the production chain. More attention is urged to be paid by poultry 

breeding companies to enhancing general health or disease resistance and welfare 

of the laying hens, next to the production traits. 

 

1.1.3 Improve animal health and survival by breeding for a 

better immunity 

The basic definition of health is the absence of diseases (Gunnarsson, 2006) and 

other physiological disorders. Survival is highly related with the ability of the living 

organism to cope with the diseases or other negative environmental disturbances. 

Therefore it is the direct reflection or outcome of animal health status. However, 

survival data can only be noted when the animal died. A functional immune system 

is the individual’s defense mechanism to fight against diseases and thus of vital 

importance for the animal’s health status and survival. Besides, the involvement of 
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immune components has been established in a variety of metabolic and behavioral 

disorders (Biscarini et al., 2010a; Brunberg et al., 2011; Buitenhuis et al., 2004; 

Hughesand and Buitenhuis, 2010; Parmentier et al., 2009). Compared with 

environmental factors like management and nutrition, breeding for a better 

immunity has permanent and cumulative genetic improvement for health. Finding 

immunity parameters which are also predictive for survival to breed for is therefore 

meaningful. Better still, once the genetic variations associated with these traits are 

identified and validated, marker-assisted selection (MAS) (Landeand and 

Thompson, 1990) or genomics selection (Meuwissen et al., 2001) can accelerate 

the improvement of animal health. The identification of genetic variations in the 

causative genes, on the other hand, will facilitate a better understanding the 

biological mechanism underlying the traits. 

The immune system (Box 1.1) is complex and composed of many ingredients. 

Hence, finding immunity-related traits which are predictive for survival also 

represent some difficulties. Normally, an innate and an adaptive part of immune 

system, which perform different roles, are distinguished. Adaptive immunity has 

proven to be of considerable practical importance, as witnessed by the extensive 

use of vaccines in animal farming. The adaptive immune response to some specific 

pathogens or vaccines has been considered in selection for disease resistance and 

survival (Cavero et al., 2009). The mechanisms as well as the genetic background of 

adaptive immunity have been widely studied. To date, 420 QTL have been reported 

to be associated with health or disease related traits in chicken 

(www.animalgenome.org/cgi-bin/QTLdb/GG/index). Examples include QTL 

affecting the resistance (Heifetz et al., 2009) and susceptibility (Heifetz et al., 2007) 

to Marek’s disease in laying hens, and QTL for resistance to Salmonella in broilers 

(Ghebremicael et al., 2008). However, the cost of pathogen-challenge trials for 

these studies is very high and presents bio-security risks. The birds selected for 

resistance for one specific pathogen are not always resistance for other pathogens, 

while the laying hens delivered from the breeding company worldwide have to 

cope with different hygienic circumstances with different pathogens and disease 

pressures. Those QTL are related with some specific disease or pathogen. It is not 

practical to include all, but also difficult to make a decision about which ones 

should be considered in a genetic selection program (Lamont, 1998). In contrast to 

adaptive immunity, the innate immunity is ready to act and can stop infections 

before they cause diseases. However, the potential of improvement of innate 

immunity for health and survival was not investigated in great detail. 
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1.1.4 Natural antibody and isotypes 

Natural antibody (NAb), which are the antibodies present in the circulatory system 

of normal healthy animals in the absence of a deliberate antigen exposure like 

vaccination or infection, are claimed to be an important humoral part of innate 

immunity (Avrameas, 1991). NAb constitute a large fraction of the serum 

immunoglobulins. Every species tested so far including humans (Chou et al., 2009), 

mice (Ochsenbein et al., 1999), rats (Natori et al., 1981), rabbits (Gerencer et al., 

1998), fish (Sinyakov et al., 2002), and poultry (Neu et al., 1984) all produce NAb. It 

is widely accepted that NAb are produced by B-1 B cells in humans and mice, which 

develop early in ontogeny (Kohler et al., 2003; Ochsenbein et al., 1999), while 

specific antibodies (SpAb) are produced by B-2 B cells. The exact origin and 

development of NAb in chickens is still a mystery. They may share the similar 

mechanism as humans and mice. However, they may also possess its distinct 

mechanism of producing NAb, because CD5, which is a glycoprotein used to 

distinguish B-1 cell and B-2 cells (Kasaian and Casali 1993), has been found on all 

chickens B cells (Koskinen et al. 1998). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although NAb have often been neglected as the so-called background serum 

antibodies without significant relevance (Korver et al. 1984), an increasing amount 

Box 1.1 The immune system 

An immune system is present in all species in the animal kingdom and is a 

defense against intruding organisms, molecules and malignant cells. In a broad 

sense, the immune system in birds is no different from the immune system 

found in mammals. The immune system can be divided into two parts: the 

innate (non-adaptive) and the acquired (adaptive) immune system. The term 

“innate” refers to the fact that this type of host defense is always present in 

healthy individuals, ready to engage on blocking the entry of microbes and to 

rapidly eliminate microbes that do succeed in entering host tissues. The 

components of innate immune system include phagocytes, natural killer cells, 

complement system, cytokines, and other plasma proteins. Because of the 

property of NAb, it is also regarded as a component of innate immunity. The 

innate response compromises many functions and acts as a first line of 

defense against infections. In contrast, it takes longer time for the adaptive 

immune response to be initiated, but it is highly specific for a particular 

antigen. T and B lymphocytes and specific antibody are the main functional 

components of adaptive immunity. 
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of evidence indicates that NAb have broad reactivity against foreign antigens and 

play multiple roles in health and disease (Lutz, 2012). 

 

 

 

 

 

 

 

 

First, NAb has moderate affinity, and are typically poly-reactive (Avrameas, 1991). 

NAb may provide a pre-existing antibody reactivity that acts as an early defense 

and allows animals to rapidly recognize pathogens that animals have not previously 

encountered. This reactivity prevents and delays the spread of the pathogens to 

vital organs and improves immunogenicity through enhanced antigen-trapping in 

secondary lymphoid organs (Ochsenbein et al., 1999). Second, NAb are indicated to 

perform crucial homeostatic housekeeping functions in the maintenance of 

physiological and immunological homeostasis (Anania et al., 2010), protecting the 

body against stress-induced altered self-antigen immunity (Cheng, 1998; 

Ehrenstein and Notley, 2010; Lutz, 2007; Lutz et al., 2009). Immune surveillance of 

natural IgM by reorganization and elimination of precancerous and cancerous 

lesions was also highlighted (Vollmers and Brandlein, 2006). Third, the innate 

immunity is also the stimulus for the adaptive immunity (Iwasaki and Medzhitov, 

2004). An effective immune system often requires the coordinated action of both 

innate immunity and adaptive immunity. NAb also cooperate with and are 

additional to the specific immune system (Baumgarth et al., 2005) by capturing and 

presenting antigens to T helper cells. Various specific immune responses in 

mammals, humoral- (Kohler et al., 2003; Thornton et al., 1994; Tomer and 

Shoenfeld, 1988) as well as cellular immune responses (Stager et al., 2003) are 

enhanced by or positively correlated with titers of NAb. Similar observations are 

described in poultry (Lammers et al., 2004). In dairy cattle, the reduced presence of 

clinical mastitis is also associated with higher level of NAb detected in milk 

(Ploegaert, 2010). NAb are such a non-redundant part of the immune system that it 

is anticipated that NAb titers may reflect the ability of an animal to keep healthy 

Box 1.2 Keyhole limpet hemocyanin (KLH)  

KLH is a large metalloprotein found in the hemolymph of the giant keyhole 

limpet (Megathura crenulata), which naturally lives off the coast of California 

from Monterey Bay to Isla Asuncion off Baja California, Mexico (Harris and 

Markl, 1999). Prior exposure or sensitization to this protein is considered 

unlikely for chickens. KLH was previously used as an example of a naïve 

antigen for detecting NAb in laying hens (Parmentier et al., 2004a; Star et al., 

2007). These NAb are so-called overt NAb (Cheng and Chamley, 2008). There 

are also cryptic NAb which are usually directed to self-antigen like egg white 

protein (Parmentier et al., 2004a). 
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and survive better. In the absence of NAb, there is delayed adaptive immune 

response and increased mortality in mice caused by influenza (Baumgarth et al., 

2005). Star et al., (2007) showed that titers of total NAb binding keyhole limpet 

hemocyanin (KLH) (Box 1.2) were indicative for a higher probability that chickens 

survive a laying period. 

Alike SpAb, NAb can be either of the IgM, IgG (IgY), and IgA isotypes (Box 1.3) in 

birds. IgM is the principal isotype although IgG and IgA were also reported. 

Evolution of the various Ig classes has made a significant contribution to functional 

diversity in terms of antigen processing and recruitment of effector mechanisms 

(Janeway et al., 2001), such as a more protective preventive barrier function (IgM), 

or a responsive status (IgG) after infection or sensitization. In addition, IgM may 

modulate the production of IgG antibodies (Ehrenstein and Notley, 2010). In the 

study of Star et al. (2007), only total NAb titers were studied without distinguishing 

different isotypes. These various functions suggest that NAb isotypes may be 

differently related to health and survival. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To be used as selection criteria for health and survival, except for the immune 

merits, NAb isotypes should also be checked for the following characters: (a) large 

variation in the population, which is the basis of genetic gain; (b) are moderate to 

high heritable, so that individual selection can be applied and relevant genetic gain 

due to selection can be expected; (c) a target value or clear trend is clear. 

Experiment data are required to show if high, low or a median level of the NAb 

Box 1.3 Antibody isotype 

Antibodies are typically made of basic structural units-two large heavy chains 

and two small light chains. Antibodies in placental mammals are grouped into 

five different isotypes known as IgA, IgD, IgE, IgG, and IgM, based on which of 

the five kinds of heavy chain they possess (α, δ, ε, γ, and μ, respectively). 

Antibody isotypes differ in their biological properties, functional locations and 

ability to deal with different antigens (Crawley and Wilkie, 2003, Woof and 

Burton, 2004). In avian, three antibody isotype were recognized namely IgY, 

IgM (majority isotypes in blood), and IgA (majority isotype in lung and gut). IgY 

is the avian counterpart to mammalian IgG, although differs both structurally 

and functionally. B1 cells are a significant source of natural serum IgM. Isotype 

switching changes B cell’s production of antibody from one isotype to another 

(from IgM to IgG or IgA) by changing the constant region of heavy chain 

(Market and Papavasiliou, 2003). 
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isotype is favorable; (d) easy and accurate to measure. Although genomic selection 

is revolutionizing animal breeding by estimating the breeding value based on 

associated SNP markers instead of based on phenotype records and pedigree 

information (Meuwissen et al., 2001), phenotyping in the reference population is 

still necessary. For future routine screening of animals it is important that the 

parameters can be determined easily, and in samples that can be obtained without 

causing severe consequence; and (e) correlation with other economic traits is clear, 

this point will be further elucidated in the following paragraph.  

 

1.1.4 Balanced breeding for laying hens 

As the potential trait to be implemented into the breeding goal to improve general 

health and survival of the birds, NAb are also expected or reported to be related 

with other economics traits. First of all, the final commercial products of laying hen 

industry are eggs, which is also the reproduction trait of laying hens. In the 

breeding goal of layer dam lines the main focus is on female reproduction traits. In 

the breeding goal of layer sire lines relatively large weight is placed on egg quality 

and male reproduction traits. As two aspects of fitness of animals, reproduction 

and maintain health and survival sometimes show a negative genetic trend 

(Goddard, 2009). Second, severe feather pecking behavior is a typical welfare 

problem and causes much economic loss in laying hens. NAb titers were reported 

to be related with feather pecking (Biscarini et al., 2010a). Third, common genetic 

background for NAb isotypes titer and other adaptive immune traits was also 

revealed (Biscarini et al., 2010b). Higher levels of NAb are found in birds selected 

for high SpAb responses to sheep red blood cell (SRBC) (Parmentier et al., 2004b). 

However, the trade-off between NAb and SpAb production was clearly shown in 

reptiles (Sandmeier et al., 2012). In laying hens, long-lasting response to 

vaccination procedure are more valuable (enhanced adaptive immunity), because 

the laying hens are reared for a relative long life. Given their importance to 

profitability, these traits of concern in laying hens should not be compromised 

when trying to complement general health and survival in the breeding goals. 

Therefore, it is also necessary to study the association between the indicator traits 

to continually improve these traits, in a balanced way, for general health and 

survival and these traits of concern in laying hens. 

 

1.2 Aim and outline of this thesis 

The research described in this thesis aimed to (1) find out proper immune 

parameters which are associated with and predictive for survival of laying hens, 
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and which can be implemented in the breeding program for improved survival of 

laying hens (chapters 2 and chapter 4), (2) estimate the genetic parameters and 

reveal the associated genetic regions of the predictive parameters (chapter 3), (3) 

investigate the relationship between the parameters and feather pecking behavior 

(chapter 5).  

In chapter 2 of this thesis, serum titers of NAb isotypes IgM and IgG binding KLH in 

a population of laying hens from 12 purebred lines of two commercial breeds, 

Rhode Island Red and White Leghorn was assessed. These trait variations were 

estimated between lines as well as within an individual genetic line. Multivariable 

multilevel logistic regression models were used to investigate the relationships 

between survival and titers of NAb isotypes of laying hens during one whole laying 

period. As covariates, genetic origin (line) and body weight of the laying hens were 

also included in the analyses. The opportunity for selection on a trait depends on 

the heritability, which measures the amount of additive genetic variation in a trait. 

Therefore in chapter 3, we firstly estimated the genetic parameters of NAb isotypes 

IgM and IgG titers binding KLH. Then an association study was performed to 

identify different QTL or SNP markers for NAb isotypes titers. A population of laying 

hens from nine commercial purebred lines was used in the analysis, adopting an 

across-line approach with testing of SNP-by-line interaction. The results will help to 

better understand the genetic control of levels of innate immunity, thus disclosing 

opportunities to breed for higher survival in laying hens. The majority of 

commercial laying hens are crossbred. In chapter 4, genetic parameters of NAb 

isotypes were estimated and relationships between survival and NAb isotypes 

levels in beak trimmed and non-beak trimmed crossbred laying hens were 

investigated. The genetic link between behavioral disorders and innate immunity 

was reported. However, negative indirect select effects, for example a more severe 

feather pecking behavior is not wanted by breeders along with the selection for 

high NAb level. Therefore, in chapter 5, genetic architecture of laying hens welfare 

related traits, feather pecking was analyzed using a traditional linear model and a 

model combining direct and associative effect. Furthermore, the relationships 

between performing feather pecking behavior and NAb isotype titers were also 

investigated. Finally, in the general discussion described in chapter 6, the main 

findings of the present thesis are discussed and comments on the breeding strategy 

to meet future laying hens breeding practice for improved animal welfare and 

production traits are proposed.  
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Abstract 

To identify possible relationships between survival and titers of natural antibody 

(NAb) isotypes in serum of laying hens, birds from 12 purebred layer lines of two 

commercial breeds, Rhode Island Red (R breed, n = 524) and White Leghorn (W 

breed, n = 538), were monitored for survival during one laying period (from 20 until 

70 weeks of age). Titers of NAb isotypes IgM and IgG binding keyhole limpet 

hemocyanin (KLH) in serum were measured at 20, 40, and 65 weeks of age, 

respectively. Overall, the titers of IgM and IgG binding KLH decreased with aging. At 

the same age, lines within breed showed significantly different titers of isotypes (P 

< 0.001). Multivariable logistic regression analysis showed that NAb isotypes titers 

at 20 weeks of age were associated to survival of 20 to 40 weeks of age. In the R 

breed, odds ratios of 0.56 (P < 0.001) for IgM and 0.72 (P = 0.02) for IgG were 

estimated; in the W breed, these were 0.74 (P < 0.01) and 0.99 (P = 0.95) for IgM 

and IgG respectively. We conclude that titers of NAb especially the IgM isotype 

binding KLH at 20 weeks of age are indicative for survival during the laying period. 

The higher the titers of NAb isotypes, the higher the probability of layers to survive. 

Key words: survival, natural antibody, isotype, laying hen 
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2.1 Introduction 

A functional immune system is the individual’s defense mechanism to fight diseases 

and thus of vital importance for the animal’s survival. Antibodies are part of the 

humoral immune system. The health status of an animal when encountering an 

infectious agent is closely associated with its ability to produce specific antibodies 

(SpAb) to the infectious agent or to previous vaccination (Yonash et al., 2001). The 

drawback of SpAbs is that protection is limited to specific pathogens and specificity 

also depends on previous immunization or exposure. Every species tested so far 

including humans (Chou et al., 2009), mice (Ochsenbein et al., 1999), rats (Natori et 

al., 1981), rabbits (Gerencer et al., 1998), fish (Sinyakov et al., 2002) and poultry 

(Neu et al., 1984) produces natural antibodies (NAb). In contrast to SpAbs, NAb 

have been defined as immunoglobulins that are secreted by B-1 cells (in mammals) 

and are present in animal’s circulation system in the absence of any corresponding 

or earlier antigen exposure (Avrameas, 1991). NAb were shown to be an essential 

part of the first line of defense (Ochsenbein and Zinkernagel, 2000). NAb have low 

affinities but broad specificities to both foreign and self-structures.   

As the humoral arm of innate immunity, NAb may have been conserved by natural 

selection. They must be of benefit to the host in a general context (Chou et al., 

2008). First, NAb may provide a pre-existing antibody reactivity that acts as an early 

defense and allows animals to rapidly recognize pathogens that animals have not 

been previously encountered. This reactivity prevents and delays spread of the 

pathogen to vital organs and improves immunogenicity through enhanced antigen-

trapping in secondary lymphoid organs (Ochsenbein et al., 1999). Second, NAb are 

indicated to perform crucial homeostatic housekeeping functions in the 

maintenance of physiological and immunological homeostasis, protecting the body 

against stress-induced altered self-antigen immunity (Cheng, 1998; Lutz, 2007; Lutz 

et al., 2009; Ehrenstein and Notley, 2010). An effective immune system often 

requires the coordinated action of both innate immunity and adaptive immunity. 

Natural antibodies also cooperate with and are additional to the specific immune 

system (Baumgarth et al., 2005). Various specific immune responses in mammals, 

humoral- (Tomer and Shoenfeld, 1988; Thornton et al., 1994; Ochsenbein et al., 

1999; Kohler et al., 2003) as well as cellular immune responses (Stäger et al., 2003) 

are enhanced by or positively correlated with titers of NAb. Similar observations 

are described in poultry (Lammers et al., 2004). 

NAb are such a non-redundant part of the immune system that it is anticipated that 

NAb titers may reflect the ability of an animal to keep healthy and survive better. A 
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previous study showed that total titers of NAb binding keyhole limpet hemocyanin 

(KLH) were indicative for a higher probability that chickens survive a laying period 

(Star et al., 2007).  

Antibodies consist of different varieties or classes known as isotypes: IgG (IgY in 

aves), IgM, and IgA. In mammals, most NAb are IgM (Boes et al., 1998b; Boes, 

2000), but examples of IgG and IgA isotypes of NAb have also been reported 

(Avrameas, 1991; Boes, 2000; Simell et al., 2008). NAb isotypes may differ in 

immune functions, such as a more protective preventive barrier function (IgM), or a 

responsive status (IgG) after infection or sensitization. In addition, IgM may 

modulate the production of IgG antibodies (Ehrenstein and Notley, 2010). These 

various functions suggest that NAb isotypes may be differently related to survival.  

The aim of this study was to assess serum titers of NAb isotypes IgM and IgG 

binding KLH and use the multivariable multilevel logistic regression models to 

evaluate the relationships between survival and titers of NAb isotypes of laying 

hens during one whole laying period. As covariates, genetic origin (line) and body 

weight of the layers were also included in the analyses.   

 

2.2 Materials and methods 

 

2.2.1 Chickens, housing, and feed 

A total number of 1,062 layers were used for this study. Within this population, 12 

purebred layer lines (Hendrix Genetics, Boxmeer, The Netherlands) from 2 breeds 

could be distinguished: 6 Rhode Island Red (R breed) lines (B1, B2, B3, BA, BB and 

BE) and 6 White Leghorn (W breed) lines (W1, WA, WB, WC, WD and WF), 

respectively. The housing, feed and immune procedures were described in an 

earlier publication (Star et al., 2007). Average egg production from 25 to 69 weeks 

of age during the laying period was estimated for the 12 layer lines, ranging from 

243 (line BE) to 255 (line B3) in the R breed and 251 (line WD) to 263 (line WF) in 

the W breed (Star, 2008). The numbers of samples used for analyses at different 

ages are shown in Table 2.1. 

 

2.2.2 Study Design 

The observational period was from 20 until 70 weeks of age of the layers. For the 

chickens that died during this laying period, the day of survival was registered, but 

cause of death was not determined. Body weights of the chickens were determined 

at 22 and 40 weeks of age. Blood samples were taken by wing vein puncture at 20, 
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40, and 65 weeks of age for the measurement of IgM and IgG titers binding KLH 

which the chickens had not encountered before nor were likely to encounter 

during life. 

Table 2.1 Number of birds at the start of the laying period (17 weeks) and number of 
samples used at each sampling periods (20, 40, and 65 weeks, respectively); average BW (± 
SD) of the birds at 22 and 40 weeks; average survival days (± SD) and survival over the whole 
laying period of 12 layer lines. 

 Birds (n) Body weight (g) Survival 
days (d) 

Survival
2
 

(%) 

Line
1
 17 

weeks 
20 

weeks 
40 

weeks 
65 

weeks 
22 

weeks 
40 

weeks 
  

B1 91 80 82 70 1,525±122 1,830±179 326±78 76.9 
B2 86 72 76 66 1,461±106 1,966±220 333±84 84.9 
B3 84 57 71 79 1,560±156 2,066±183 354±49 92.9 
BA 89 88 80 68 1,541±161 2,166±205 330±83 80.9 
BB 91 91 80 64 1,536±174 1,991±240 329±76 75.8 
BE 97 69 84 73 1,610±155 2,029±165 325±81 74.2 
W1 85 83 76 64 1,219±98 1,714±152 326±81 75.3 
WA 82 79 70 60 1,282±143 1,622±151 345±67 89.0 
WB 90 37 57 53 1,345±124 1,662±192 327±83 75.6 
WC 97 74 82 61 1,290±152 1,655±149 307±99 64.9 
WD 88 88 85 69 1,215±118 1,625±157 336±70 83.0 
WF 82 54 53 52 1,244±138 1,776±165 337±80 87.8 

1
Lines B1, B2, B3, BA, BB, and BE are from the Rhode Island Red breed and lines W1, WA, 

WB, WC, WD, and WF are from the White Leghorn breed.  
2
Number of birds survived until the end of the whole laying period (69 weeks) / number of 

birds at the start of the laying period (17 weeks). 

 
2.2.3 NAb isotypes IgM and IgG 

Titers of NAb isotypes IgM and IgG binding KLH were determined in individual 

serum samples by an indirect enzyme-linked immunosorbent assay (ELISA) as 

follows. Flat-bottomed 96-well medium binding ELISA plates were coated with 100 

μL coating buffer (pH 9.6) containing KLH (2 μg/mL, MP Biomedicals Inc., Aurora, 

OH), and incubated at 4°C overnight. Duplicate standard positive serum samples 

were stepwise diluted in columns 11 and 12 per plate, respectively. After 

subsequent washing the plates were filled with 100 μL of PBS containing Tween 20 

(0.05%) and horse serum (0.5%) per well. Serum samples were stepwise fourfold 

diluted (1 : 30, 1 : 90, 1 : 270, and 1 : 810), and the plates were incubated 1 hour at 

room temperature (25 °C). After washing, plates were incubated with 1 : 20,000 

diluted rabbit-anti-chicken IgM labeled with peroxidase (RACh/IgM/PO), or 1 : 

40,000 diluted rabbit-anti-chicken IgG-Fc (RACh/IgG/Fc/PO), respectively (Bethyl 

Laboratories, Texas, U.S.A.), and incubated 1.5 hour at room temperature (25 °C). 
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After washing, binding of the antibody isotypes in the serum sample to KLH was 

visualized by adding 100 μL substrate (70 μg/mL tetramethylbenzidine and 0.05% 

H2O2). After 10 minutes, the reaction was stopped with 50 μL 2.5 N H2SO4 

solution. Extinctions were measured with a Multiskan (Labsystems, Helsinki, 

Finland) at wavelength of 450 nm. Titers were calculated based on log3 values of 

the dilutions that gave extinction closest to 50% of EMAX, where EMAX represents 

the mean of the highest extinction of the standard positive serum (column 11 and 

12) present on each plate (in general this will be at the lowest dilution). 

 
2.2.4 Statistical analysis 

Statistical analyses were performed using SAS 9.1.2 (SAS Institute, 2004). Effects 

were considered significant at P < 0.05.  

A one-way analysis of variance (ANOVA) was performed to study differences in 

titers of IgM and IgG binding KLH and body weights between breeds and between 

lines within breed. When ANOVA identified an overall difference between lines, a 

multiple comparison test (Bonferroni Test) was conducted to examine which lines 

differed significantly from each other within breed.  

Correlations between each isotype titers at 20 and 40 weeks, between 40 and 65 

weeks, and between 20 and 65 weeks of age were estimated for every line by 

Pearson product-moment correlation.  

The laying period was divided into 3 parts (20 to 40 weeks of age, 40 to 65 weeks of 

age, and 65 to 70 weeks of age) based on the time of blood sampling. Within breed, 

multivariable multilevel logistic regression analyses were used to assess the 

relationship between 1) survival (binary variable taking the values 0 for survived 

and 1 for non-survived) from 20 to 40 weeks of age and titers of IgM or IgG 

antibodies binding KLH at 20 weeks of age; 2) survival from 20 to 65 weeks of age 

and titers of IgM or IgG antibodies binding KLH at 20 weeks of age; 3) survival from 

40 to 65 weeks of age and titers of IgM or IgG antibodies binding KLH at 40 weeks 

of age. The relationship between survival after 65 weeks of age and IgM or IgG 

antibodies binding KLH at 65 weeks of age was not analyzed because of the low 

mortality (0.79%, 6 birds) in the last 5 NAb of the laying period. As covariates, line 

and bodyweight were included in the analyses. 

The continuous variables IgM, IgG titers and body weights were inspected for 

linearity in the log-odds by dividing them into classes. The Likelihood Ratio Test was 

used for the significance of variables. Non-significant effects (P > 0.05) were 

removed from the model one by one starting with the effect showing the highest P-
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value. If a removed effect was deemed a confounder (i.e. one or more regression 

coefficients of the remaining variables relatively changed over 25%) it was forced 

back into the model. We also tested the interactions terms between isotype titers 

and body weight or lines. A population averaged model (generalized estimating 

equations, GEE) was used to adjust for a potential cage effect on survival by 

specifying cage as a random effect and using an exchangeable correlation structure 

(Hanley et al., 2003). The fit of the logistic models was assessed by the Hosmer and 

Lemeshow Goodness-of-Fit Test in a model without the cage effect (Hosmer and 

Lemeshow, 1989). Outcomes of logistic regression analyses were presented as odds 

ratios, which indicate the ratio of risks to die dependent on the titers of IgM and 

IgG binding KLH, body weight and line.  

 

2.3 Results 
 
2.3.1 NAb isotypes IgM and IgG binding KLH 

Average titers of IgM and IgG binding KLH in laying hens at 20, 40, and 65 weeks of 

age differed between R breed and W breed (Figure 2.1). For IgM, significant 

differences (P < 0.001) between both breeds existed at 20, 40, and 65 weeks of age 

(Figure 2.1A); for IgG, the difference was significant (P < 0.001) at 20 weeks of age 

(Figure 2.1B). The average titers of IgM and IgG antibodies in serum binding KLH 

decreased with age in both breeds.  

 

    
Figure 2.1 Average titers of IgM and IgG antibodies in serum binding KLH in two breeds: 
White Leghorn (W breed) and Rhode Island Red (R breed). ***P < 0.001. 

Figure 2.2 shows the average titers of IgM and IgG antibodies binding KLH in laying 

hens at 20, 40, and 65 weeks of age for each line. From the six R lines, the B1 and 

BB lines presented the highest and lowest titers of IgM, respectively, and the B1 
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and BE lines showed the highest and lowest titers of IgG at each age. From six W 

lines, the WF and WB lines presented the highest and lowest titers of IgM, 

respectively; and lines WC and WB respectively, presented the highest and lowest 

titers of IgG at each age. The variation of average IgM titers between lines within 

the W breed was larger than within the R breed. In 9 of 12 lines, except for WD, BE 

and B3 from 40 to 65 weeks of age, IgM titers decreased with age. In 9 of 12 lines, 

except for lines WA and WF from 20 to 40 weeks of age, and for line W1 from 40 to 

65 weeks of age, IgG titers binding KLH decreased with age.  

Within almost all lines, significant but weak correlations were found for titers of 

IgM or IgG antibodies binding KLH between 20 and 40, 20 and 65, 40 and 65 weeks 

of age, except for the correlation of IgM or IgG between 20 and 40, and 20 and 65 

weeks for both IgG and IgM were stronger than the correlations between 20 and 40 

weeks or between 20 and 65 weeks (Table 2.2 and Table 2.3) 

 

Figure 2.2 Average titers of IgM (Figure 2.2A) and IgG (Figure 2.2B) in serum binding KLH in 
12 lines: six White Leghorn lines: B1, B2, B3, BA, BB and BE and six Rhode Island Red lines: 
W1, WA, WB, WC, WD and WF.  
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2.3.2 Body weight 

Average body weight of the 12 purebred layer lines at 22 weeks of age varied 

between 1,215 g (line WD) and 1,610 g (line BE). Average body weight of the 12 

purebred layer lines at 40 weeks of age was between 1,622 g (line WA) and 2,166 g 

(line BA) (Table 2.1). R breed birds showed significantly higher body weight than W 

breed birds at both ages (P < 0.001). 

Table 2.2 Pearson correlation coefficients (r) and P-values of IgM in serum- binding keyhole 
limpet hemocyanin (KLH) in 12 purebred lines between the 3 sampling periods (20, 40, and 
65 weeks of age). 

  20 and 40 weeks  20 and 65 weeks      40 and 65 weeks 

Line
1
  r P-value  r P-value  r P-value 

B1  0.49 < 0.001  0.49 < 0.001  0.59 < 0.001 
B2  0.49 < 0.001  0.36 < 0.01  0.62 < 0.001 
B3  0.38 < 0.01  0.31 0.02  0.66 < 0.001 
BA  0.31 < 0.01  0.21 0.09  0.42 < 0.01 
BB  0.56 < 0.001  0.36 < 0.01  0.41 < 0.01 
BE  0.46 < 0.01  0.38 < 0.01  0.59 < 0.001 
W1  0.42 < 0.01  0.39 < 0.01  0.52 < 0.001 
WA  0.33 < 0.01  0.35 < 0.01  0.77 < 0.001 
WB  0.41 0.04  0.58 < 0.01  0.43 < 0.01 
WC  0.14 0.30  0.06 0.70  0.68 < 0.001 
WD  0.56 < 0.001  0.47 < 0.001  0.58 < 0.001 
WF  0.10 0.52  0.18 0.25  0.51 < 0.01 

1
Lines B1, B2, B3, BA, BB, and BE are from the Rhode Island Red breed and lines W1, WA, 

WB, WC, WD, and WF are from the White Leghorn breed. 
 
Table 2.3 Pearson correlation coefficients (r) and P-values of IgG in serum-binding keyhole 
limpet hemocyanin (KLH) in 12 purebred lines between the 3 sampling periods (20, 40, and 
65 weeks of age). 

   20 and 40 weeks  20 and 65 weeks      40 and 65 weeks 

Line
1
  r P-value  r P-value  r P-value          

B1  0.43 < 0.001  0.49 <0.001  0.63 < 0.001 
B2  0.40 < 0.01  0.40 < 0.01  0.45 < 0.01 
B3  0.22 0.12  0.06 0.72  0.71 < 0.001 
BA  0.43 < 0.001  0.37 < 0.01  0.56 < 0.001 
BB  0.47 < 0.001  0.35 < 0.01  0.52 < 0.001 
BE  0.39 < 0.01  -0.04 0.79  0.59 < 0.001 
W1  0.12 0.30  0.06 0.61  0.73 < 0.001 
WA  0.34 < 0.01  0.52 < 0.001  0.73 < 0.001 
WB  0.35 0.08  0.02 0.93  0.56 < 0.001 
WC  0.45 < 0.01  0.43 < 0.01  0.67 < 0.001 
WD  0.37 < 0.01  0.19 0.11  0.70 < 0.001 
WF  0.30 < 0.01  0.26 0.07  0.73 < 0.001 

1
Lines B1, B2, B3, BA, BB, and BE are from the Rhode Island Red breed and lines W1, WA, 

WB, WC, WD, and WF are from the White Leghorn breed. 
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2.3.3 NAb IgM and IgG titers predictive for probability to survive 

Survival of the 12 purebred layer lines in this study varied between 64.9% (line WC) 

and 92.9% (line B3) (Table 2.1) with an overall survival of 79.8%.  

The box-whisker plots of distributions of IgM and IgG binding KLH at 20 weeks of 

age for laying hens of different longevity in the R and W breed are shown in Figure 

2.3. The layers of both breeds which lived a longer life showed higher isotype titers, 

especially IgM binding KLH at 20 weeks of age. The R breed layers which died 

between 40 and 65 weeks, and the layers which survived the laying period had 

nearly identical median values of IgM or IgG titers. However, the layers that died 

between 20 and 40 weeks of age had lower median values of IgM titers (Figure 

2.3A). 

 

Figure 2.3 Box-and-whisker plots showing the distribution of titers of IgM and IgG in serum 
binding KLH at 20 weeks of age in 1: layers that died between 20 and 40 weeks, 2: layers that 
died between 40 and 65 weeks, and 3: layers survived the laying period of R breed (Figure 
2.3A)  and W breed (Figure 2.3B). The horizontal line in the middle of each box indicates the 
median, whereas the top and bottom borders of the box mark the 75th and 25th percentiles. 
The vertical lines above and below the box extend to the 1.5 interquartile range (IQR) of the 
75th and 25th percentiles. The single points are potential outliers. 

We categorized the layers of both breeds according to isotype titers and compared 

the survivals of 20 to 40 weeks of age (Figure 2.4). In the R breed, the survival of 

layers with low titers of IgM binding KLH (< 5.0) was 70.0%, and the survival of 

layers with high titers of IgM binding KLH (9.0-10.9) was as high as 98.3% (Figure 

2.4A). The survival of layers with titers of IgG binding KLH lower than 4.0 was 

87.3%, and no animal from the layers with IgG titers binding KLH higher than 8.0 

died (Figure 2.4B). In the W breed, the survival of  layers with low IgM titers binding 

KLH (< 5.0) was 91.1%, and the survival of layers with high IgM titers binding KLH 

(9.0-10.9) was 97.3% (Figure 2.4C). The survival of layers with different range of IgG 
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titers binding KLH were quite similar (Figure 2.4D). A similar comparison was also 

carried out for the survivals of 20 to 65 weeks of age (Figure 2.5).  

 

 

Figure 2.4 Survival (+ SD) of chickens during the first laying period classified by titers of IgM 
and IgG in serum binding KLH. The numbers between the brackets indicate the number of 
chickens in each category. 

Logistic regression using a population averaged model revealed that the probability 

to survive the first period (20 to 40 weeks of age) of lay increased with increasing 

titers of both isotypes at 20 weeks of age. In the R breed, for IgM binding KLH, an 

odds ratio of 0.56 (P < 0.001) was estimated, which means that if titers of IgM in 

serum binding KLH at 20 weeks of age increase with one unit, the relative change in 

risk to die during the first period of laying decreases 44%. The odds ratio for IgG 

binding KLH was 0.72 (P = 0.02, Table 2.4), indicating a decrease of 28% in the risk 

to die per unit increase in IgG. Line had no direct effect on mortality (P = 0.17), but 

when removed from the model, the relative change of the coefficient for IgG titers 

at 20 weeks of age was large (36%). Body weight at 22 weeks of age was neither a 

significant factor (P = 0.09) nor an important confounder and was removed from 

the model. The interactions between IgM or IgG and lines were not statistically 
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significant (P = 0.20 and 0.08, respectively), and thus not included in the final 

model. Population averaged model showed that a minority (11.1%) of all 

unexplained variation in the survival was due to cage effect. The fit of the ordinary 

logistic model was sufficient (Chi-square = 10.1, P = 0.26).  

In the W breed, for IgM binding KLH, an odds ratio of 0.74 (P < 0.01) was estimated 

and for IgG binding KLH, 0.99 (P = 0.95, Table 2.4). The odds ratio of body weight 

(unit is gram) was estimated to be 1.00 (P = 0.03,). Line was also determined as a 

significant factor (P = 0.02). The odds ratio was calculated for each line with line W1 

as reference (Table 2.4). The interactions between IgM, IgG or body weight and 

lines were not statistically significant (P = 0.41, 0.38, and 0.06, respectively). 

Population averaged model showed that a minority (14.9%) of all unexplained 

variation in the survival was due to cage. The Hosmer and Lemeshow Goodness-of-

Fit test was not significant (Chi-square = 4.8, P = 0.78), which indicated that the 

model fitted well. 

Table 2.4 Multivariable multilevel logistic analysis of IgM and IgG titers in serum binding KLH 
at 20 weeks of age, line and body weight at 22 weeks of age (BW22) for survival of 20 to 40 
weeks of age in two breeds 

Breed Variable
1
 Class n Odds Ratio 95% Confidence 

Interval 
P-value 

R IgM titers  408 0.56 0.43-0.72 < 0.001 

IgG titers  408 0.72 0.54-0.95 0.02 

Line B1 68 1.00 Ref Ref 

 B2 58 0.65 0.15-2.77 0.56 

B3 54 0.41 0.071-2.40 0.32 

BA 71 0.59 0.14-2.46 0.47 

BB 91 0.16 0.03-1.03 0.05 

BE 66 0.24 0.03-1.74 0.16 

W IgM titers  371 0.74 0.60-0.92 0.01 

IgG titers  371 0.99 0.79-1.24 0.95 

Line W1 66 1.00 Ref Ref 

 WA 79 0.12 0.02-0.55 0.01 

WB 37 0.20 0.03-1.21 0.08 

WC 67 0.99 0.27-3.61 0.99 

WD 82 0.21 0.04-0.97 0.05 

WF 40 0.94 0.19-4.70 0.94 

BW22(g)  371 1.00 1.00-1.01 0.03 
1
R breed = Rhode Island Red; 11.1% of all unexplained variation in the R breed is due to cage; 

W breed = White Leghorn; 14.9% of all unexplained variation in the W breed is due to cage. 

The probability to survive the laying period (20 to 65 weeks of age) increased with 

increasing titers of both isotypes at 20 weeks of age. In the R breed, the odds ratio 

for IgM was 0.78 (P < 0.01). The titers of IgG at 20 weeks of age were not linearly 
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related to the survival of laying period (20 to 65 weeks) and were therefore 

categorized in 3 classes, With IgG titers < 4.0 as reference class, the odds ratios for 

higher IgG titers group were both larger than 1.00 (Table 2.5). This indicated that 

the chance to survive this laying period decreased when layers had higher titers of 

IgG. However the association was not statistically significant (P > 0.05). Line had no 

direct effect on mortality (P = 0.11), but was forced in the model as it was a 

confounder for the estimates of IgG. Body weight at 22 weeks of age was neither a 

significant factor (P = 0.10) nor an important confounder. The interactions between 

IgM or IgG and lines were not statistically significant (P = 0.75 and 0.79, 

respectively). Population averaged model showed that 25.1% of all unexplained 

variation in the survival was due to cage (Table 2.5). The fit of the ordinary logistic 

model was sufficient (Chi-square = 3.9, P = 0.86).  

 

 
 
Figure 2.5 Survival (+ SD) of chickens during the whole laying period classified by titers of 
IgM and IgG in serum-binding KLH. The numbers between the brackets indicate the number 
of chickens in each category. 

In the W breed, IgM and IgG titers binding KLH were both categorized in 3 classes 

(Table 2.5). Neither IgM nor IgG titers at 20 weeks of age was significantly 

associated with survival of 20 to 65 weeks of age (P = 0.17 and 0.47, respectively).  
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Table 2.5 Multivariable multilevel logistic analysis of IgM and IgG titers in serum binding KLH 
at 20 weeks of age, line and body weight at 22 weeks of age (BW22) for survival of 20 to 65 
weeks of age in two breeds. 

Breed Variable
1
 class n Odds 

Ratio 
95% Confidence 
Interval 

P-value 

R IgM titers  408 0.78 0.68-0.91 < 0.01 

IgG titers < 4.0 55 1.00 Ref Ref 

 4.0-7.9 307 1.40 0.69-2.84 0.35 

≥ 8.0 46 1.24 0.47-3.26 0.66 

Line B1 68 1.00 Ref Ref 

 B2 58 0.49 0.19-1.45 0.22 

B3 54 0.32 0.09-1.19 0.09 

BA 71 0.66 0.24-1.88 0.45 

BB 91 1.36 0.04-0.30 0.66 

BE 66 1.25 0.40-3.95 0.70 

W IgM titers < 5.0 56 1.00 Ref Ref 

 5.0-8.9 278 1.46 0.73-2.91 0.28 

9.0-10.9 37 0.60 0.19-1.82 0.37 

IgG titers < 4.0 84 1.00 Reference Ref 

 4.0-7.9 264 1.29 0.66-2.53 0.45 

≥ 8.0 23 0.75 0.26-2.14 0.59 

Line W1 79 1.00 Ref Ref 

 WA 37 0.32 0.11-0.94 0.04 

WB 67 0.99 0.33-2.94 0.99 

WC 82 1.60 0.60-4.27 0.35 

WD 40 0.74 0.29-1.89 0.53 

WF 66 0.41 0.09-1.75 0.23 

BW22(g)  371 1.00 0.999-1.003 0.38 
1
R breed = Rhode Island Red; 25.1% of all unexplained variation in the R breed is due to cage; 

W breed = White Leghorn; 23.0% of all unexplained variation in the W breed is due to cage. 

With IgM titers < 5.0 and IgG titers < 4.0 reference classes, the odds ratios for 

extremely higher IgM titers group (9.0-10.9) and IgG titers group (≥ 8.0)  were 

smaller than 1.00. But for the median groups of both isotype, the odds ratios were 

larger than 1.00. However, neither of these associations was statistically significant 

(P > 0.05). Line showed a significant effect (P < 0.01). Body weight was a 

confounder of line WA and left in the final model which fitted well (Chi-square = 

7.0, P = 0.54). 23.0% of all unexplained variation in the survival was due to cage. 

Logistic regression analysis was also carried out to study the relationship between 

the isotypes titers at 40 weeks of age and survival of 40 to 65 weeks of age in both 

breeds. Results revealed that the probability to survive this laying period was not 

significantly associated with the titers of isotypes at 40 weeks of age in both 

breeds. Line was a significant effect in the W breed (data not shown).  
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2.4 Discussion 

In the present study we evaluated the relationships between serum titers of NAb 

isotypes IgM and IgG binding KLH and survival of a laying period in the White 

Leghorn and Rhode Island Red layers. As covariates, lines and body weights of the 

animals at 22 and 40 weeks of age were also evaluated.  

 

2.4.1 Dynamics of NAb isotypes binding KLH in purebred laying 

hens 

NAb in general are believed to remain at tightly regulated levels. Nevertheless, a 

variety of factors are postulated to modulate B-1 cell functions, and thus NAb 

secretion, but in a non-cognate manner (Chou et al., 2008). Titers of total NAb in 

plasma or serum of poultry was found to increase with age (Parmentier et al., 2004; 

Star et al., 2007), which corresponds with the idea that exogenous stimulation 

enhances the formation of NAb (Prokesova et al., 1996), as is true for the 

enhancement of NAb titers by dietary probiotics (Haghighi et al., 2006). However, 

in mice IgM was found largely unaffected by external antigen (Haury et al., 1997). 

In mammals, numbers of producing B-1 cells increase from neonatal period to 

adolescence, but may decrease at later age. Increased susceptibility to infection of 

the elderly may be partly due to the decrease in NAb (Kohler et al., 2003). In 

healthy humans and patients with Werner syndrome, titers of IgM NAb may 

decline with age (Goto et al., 1982), whereas natural IgG titers were found 

significantly lower in the elderly than in younger adults (Simell et al., 2008). In the 

present study, a decrease of both NAb isotypes binding KLH in serum with aging 

(from 20, 40 to 65 weeks) was found. Especially, an abrupt decrease of IgM or IgG 

titers from 20 to 40 weeks was observed. In 9 of 12 lines, except for WD, BE and B3 

from 40 to 65 weeks of age, IgM titers decreased with increasing age. In 8 of the 9 

lines, except for line WB, IgM titers decreased significantly from 20 to 40 weeks of 

age, but only 4 lines decreased significantly from 40 to 65 weeks of age. In 9 of 12 

lines, except for WA and WF from 20 to 40 weeks of age, and for W1 from 40 to 65 

weeks of age, IgG titers binding KLH decreased with aging. In 8 of these 9 lines, 

except for line BE, IgG titers binding KLH decreased significantly from 20 to 40 

weeks of age, but only 3 lines decreased significantly from 40 to 65 weeks of age 

(Figure 2.2). Because of the long interval between the three sampling periods, it is 

not possible in our study to find out if there is an increase with advancing age 

between 20 and 40 weeks of age, or if there is a peak between age 20 and 40 

weeks, followed by a gradual decline. Within lines, both for IgM and IgG, the 

correlations between titers at 40 and 65 weeks were stronger than that between 
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20 and 40 weeks, whereas correlations between 20 and 65 weeks were the 

weakest (Table 2.2 and Table 2.3). The different correlations between different 

ages suggested that the first 20 weeks, i.e. when birds reach sexual maturity, 

represents a period of maturation and differentiation of the immune system, 

followed by a more stable period until 65 weeks of age. 

 

2.4.2 NAb isotype IgM and IgG as predictors for survival in 

purebred laying hens 

The presence and functions of NAb in chicken sera have been reported previously. 

Non-immunized, normal chickens have pre-existing circulating NAb to various 

exogenous antigens (Parmentier et al., 2004), self-antigens (Jalkanen et al., 1983; 

Neu et al., 1984; Barua and Yoshimura, 2001; Parmentier et al., 2004) and (self-) 

tissue antigens (Bergstra et al., 2010). In part, NAb also regulate specific immunity 

in poultry (Lammers et al., 2004). 

Enhanced survival during a laying period of layers was related with higher titers of 

total NAb binding KLH, but not with titers of SpAbs (Star et al., 2007). It was 

proposed that titers of total NAb reflected the individual’s capacity to mount an 

appropriate titer of natural immune defense. In the present study, both natural 

IgM and IgG binding KLH were detected in the sera. Based on the limited data set, it 

was not possible to draw conclusions within each line for IgM and IgG NAb isotypes 

in relation to survival. So the logistic regression analysis was carried out within 

breed. In both breeds, the lower titers of NAb isotypes especially IgM at 20 weeks 

of age were observed in the layers which did not survive this period (Figure 2.3). 

Multivariable multilevel logistic regression analysis indicated that serum titers of 

IgM and IgG binding KLH at 20 weeks of age were significantly related to the 

probability to survive the first period of lay (20 to 40 weeks of age) (Figure 2.4 and 

Table 2.4). If NAb IgM binding KLH at 20 weeks of age increased with one-unit titer, 

the relative change in risk to die during the first period of lay decreased with 44% in 

the R breed (odds ratio = 0.56, P < 0.001) and decreased 26% in W breed (odds 

ratio = 0.74, P < 0.01). In the R breed, serum titers of IgM (odds ratio = 0.78, P < 

0.01) at 20 weeks of age was significantly related to the probability to survive the 

laying period (20 to 65 weeks of age) (Figure 2.5 and Table 2.5). These results 

suggest that the titer of natural IgM binding KLH in serum is a protective factor 

enabling surviving, and thus could be indicative for survival. The high significance of 

IgM is noteworthy, since recently the importance of natural IgM as scavenger, 

protector and regulator of physiological and immune homeostasis has been 

highlighted and reviewed (Ehrenstein and Notley, 2010). In mammals and aves, the 
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IgM isotype is the first antibody to be produced during an immune response, the 

first to appear during ontogeny, and it is also the oldest, being the sole class of 

antibody present in all vertebrate species (Fellah et al., 1992). These findings 

indicate the important evolutionary role of IgM in the immune system. It has been 

proposed that natural IgM production is driven by endogenous antigen. The diverse 

functions of natural IgM have become increasingly clear by studying knockout mice 

that lack natural IgM (Boes et al., 1998a) instead of being regarded as random 

noise in the immune system. The poly-reactivity and its capacity to facilitate the 

removal of apoptotic cells entitle natural IgM to participate in seemingly diverse 

pathophysiologies, including infection, B cell homeostasis, inflammation, 

atherosclerosis and autoimmunity (Ehrenstein and Notley, 2010).  

In addition, IgG binding KLH at 20 weeks of age was also validated to be a 

protective factor for survival of the first laying period. In the R breed, an odds ratio 

of 0.72 (P = 0.02) for the survival of 20 to 40 weeks was estimated. The existence of 

natural IgG was reported decades ago. But fewer studies were devoted to the 

function so far, because of non-predominant character of IgG in the NAb repertoire 

(Boes, 2000). Plasma cells producing IgG are derived from isotype switched B cells, 

indicating that a relation of IgM and IgG is not unlikely. In this study, moderate 

correlations between IgG and IgM were observed (data not shown). Although the 

odds ratio showed that the titer of IgG was a less sensitive predictor than IgM for 

survival, the function of natural IgG is still worthwhile for further study.  

Average titers of IgM and IgG binding KLH at 40 weeks of age were not significantly 

related to the probability to survive the second laying period (40 to 65 weeks of 

age) (data not shown) and thus not as predictive as isotypes titers at 20 weeks of 

age.  

To get proper estimates for isotypes, line, bodyweight, interaction terms and cage 

were also analyzed when building the model within breed. For the R breed, line 

was not a significant effect, but kept as a confounder in the model. On the 

contrary, line was determined as a significant effect in the model for the W breed. 

This indicated that the chance to survive for the R breed layers was not significantly 

associated with the genetic origin of the animal. While for W breed layers, the 

association was significant. This might result from the fact that there was more 

variation in some survival-related aspects between lines in W breed layers than in R 

breed layers. In other words, the lines within the W breed were genetically diverse 

in mortality. The birds from the present W breed in general showed more fear 

response and feather pecking behavior which may induce death than birds from 
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the present R breed (Uitdehaag et al., 2008). Furthermore, the lines within the W 

breed showed varying levels of feather pecking. The line WF was characterized as a 

high-feather-pecking line in earlier experiments (Rodenburg et al., 2003),  and line 

WB was a more gentle line. In this study, the cause of death was not investigated. 

We speculate that the R breed layers may mostly die of individual health-related 

causes, while W breed layers may die of both health-related causes and social 

interaction causes, such as feather pecking. That may explain why line was a 

significant effect for survival in the W breed, but not in the R breed. This may also 

explain why isotype titers were more sensitive and acute parameters for survival in 

the R breed.  

Sustaining immune defense is usually regarded as costly in terms of energy and 

nutrients. Trade-offs between immune function and other energy-demanding traits 

are widespread (Mills et al., 2010). Therefore, we also studied bodyweight as a 

covariate, i.e. whether a trade-off could exist between maintaining NAb isotype 

titers and body growth, making body weight a potential factor or confounder for 

survival. Logistic regression analysis indicated that body weight of the layers was 

neither a significant effect nor an important confounder in the R breed. In the W 

breed, in the model that verified the relationship between isotypes at 20 weeks of 

age and survival of 20 to 40 weeks of age, body weight at 22 weeks was an 

important factor (P = 0.03). However, an odds ratio of 1.00 (95% confidence 

interval: 1.00-1.01) was estimated, meaning the risk to die changes very slightly 

due to body weight change. 

 
2.4.3 NAb as predictor of survival to be implemented into the 

layer breeding program 

The population in this study consisted of 12 lines from two breeds. Highly 

standardized experimental conditions were used: all birds were of the same age, 

gender, housed in the same facility and provided with the same diets. However, 

large variations in IgM and IgG titers among breeds, lines, and within lines among 

individuals were observed. These differences demonstrate that the humoral innate 

immunity is genetically variable. A major ongoing challenge is to find out how the 

variations in humoral innate immunity relate to variation in survival and how to 

utilize this variation (Calder, 2007). We demonstrated a relationship between 

immune parameters i.e. the NAb isotypes binding KLH and survival in layers. This 

outcome emphasizes the importance of NAb isotypes and the effect on the 

animal’s survival, especially the survival of 20 to 40 weeks of age, when the peak of 

egg-laying is also observed. Since the NAb isotype titers can be easily determined in 
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serum from young layers (20 weeks), routine screening of layers is possible. Layer 

lines divergently selected for SpAbs responses show different titers of NAb 

(Parmentier et al., 2004). Heritability of total NAb titers in layer lines was estimated 

at 0.23 (Wijga et al., 2009), while the heritability of SpAbs was 0.17, suggesting that 

it is feasible and more efficient to breed on higher NAb isotypes titers to improve 

the survival of the population.  

In conclusion, NAb isotypes IgM and IgG reactive to the foreign antigen KLH could 

be detected in serum from various layer lines. Significant lower titers of NAb 

isotypes especially IgM binding KLH at 20 weeks of age were observed in the non-

surviving individuals. Serum natural IgM titers at young age could therefore be a 

good indicator for the ability to survive a laying period. To our knowledge, this is 

the first study indicating a relationship between distinct NAb isotypes and survival 

in aves, highlighting the role of IgM. Recently, titers of natural auto-antinuclear 

antibodies (ANAs) were verified positively related with survival, and negatively 

related with reproduction in a mammal (Graham et al., 2010). Whether titers of 

IgM or IgG directed to other (auto-)antigens than KLH are related to survival and 

reproduction capacity of layers, like in mammals, is subject of current studies. 
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Abstract 

In an earlier study, serum levels of natural antibody (NAb) isotypes IgM and IgG 

binding keyhole limpet haemopcyanin (KLH) were found to be indicative for 

survival through the laying period of hens, and therefore considered as promising 

traits for future implementation in breeding programs for higher survival of layers. 

In the present study, we first estimated the genetic parameters for the two 

isotypes at 20, 40, and 65 weeks of age (IgM20, IgM40, and IgM65; IgG20, IgG40, 

and IgG65). Pooled genetic parameters were estimated from the total population 

of 2,504 hens from nine purebred layer lines, with line included in the model to 

account for admixture. Moderate heritabilities (0.14 - 0.44) indicated that selection 

for isotype titers is feasible, especially for IgM. Secondly, associations between 

1,022 single nucleotide polymorphism (SNP) markers and the above-mentioned six 

immunological traits were estimated in 650 genotyped hens from the nine lines. 

The association study was performed across lines to detect markers that are closer 

to the QTL and have the same phase of association in the entire population. Forty-

three significant associations between SNPs and isotype titers were detected. The 

SNPs of interleukins (IL) IL10 and IL19 were associated with both isotypes; SNPs of 

tripartite motif containing 33 (TRIM33) and IL6 showed significant association with 

IgG20 and IgM20, respectively; SNPs of heat shock protein 90kDa alpha (cytosolic), 

class B member 1 (HSP90AB1) was associated with IgG titers at older ages. Some 

detected SNPs were also reported associated with other immune and behavioral 

traits. 

Key words: heritability, genetic correlation, across-line association study, single 

nucleotide polymorphisms, natural antibody, isotype, laying hens 
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3.1 Introduction 

Mortality due to diseases causes substantial economic losses to animal farming, 

according to the statistics of FAO: in the poultry industry, this loss is estimated to 

be about 10 to 20% of the gross production value 

(http://www.fao.org/ag/againfo/themes/en/poultry/animal_health.html). Immune 

system is the most prominent line of defense against diseases. Compared with 

environmental factors like management and nutrition, genetic improvement of 

immunity has permanent and cumulative effects in maintaining health and 

improving the survival of farm animals. The immune system is complex with 

numerous components. Identifying measurable traits that characterize an 

individual’s immune system and having better understanding of its genetic 

background is important to improve immunity through selection.  

The immune system is composed of an innate and an adaptive part, which play 

different roles. Adaptive immunity has proven to be of considerable practical 

importance, as witnessed by the extensive use of vaccines in animal farming. The 

adaptive immune response to some specific pathogens or vaccines has been 

considered in selection for disease resistance and survival (Cavero et al., 2009). The 

mechanisms as well as the genetic background of adaptive immunity have been 

well studied. To date, 411 QTL have been reported to be associated with health or 

disease related traits in chicken (http://www.animalgenome.org/cgi-

bin/QTLdb/GG/index), of which most are QTL associated with adaptive immunity. 

Examples include QTL affecting the resistance (Heifetz et al., 2009) and 

susceptibility (Heifetz et al., 2007) to Marek’s disease in layers, and QTL for 

resistance to Salmonella in broilers (Ghebremicael et al., 2008). However, the cost 

of pathogen-challenge trials for these studies is very high and presents biosecurity 

risks. Furthermore, as these QTL are related with some specific disease, it is difficult 

to make a decision about which ones should be considered in a genetic selection 

program (Lamont 1998).  

The innate immune system is ready to act and can stop infections before they 

cause disease. Natural antibodies (NAb), which are antibodies present in the 

circulatory system in the absence of a deliberate antigen exposure, are an 

important humoral part of innate immunity (Avrameas 1991). An increasing 

amount of evidence indicates that NAbs have broad reactivity against foreign 

antigens and play multiple roles in health and disease. NAbs link innate and 

adaptive immunity (Ochsenbein and Zinkernagel 2000); prevent pathogen 

dissemination to vital organs and improve immunogenicity through enhanced 
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antigen-trapping in secondary lymphoid organs (Ochsenbein et al., 1999); maintain 

the tissue homeostasis by suppressing the development of inflammation (Anania et 

al., 2010). Star et al. (2007) found a relationship between total NAb levels and 

survival in laying hens. QTL for total NAb titers and classical and alternative 

complement activity were recently reported (Biscarini et al., 2010a). Natural, as 

well as acquired, antibodies comprise different immunoglobulin (Ig) classes known 

as isotypes: IgM, IgG (IgY), and IgA (in avian species). Evolution of the various Ig 

classes has made a significant contribution to functional diversity in terms of 

antigen processing and recruitment of effector mechanisms (Janeway et al., 2001). 

A previous study in laying hens indicated that NAb isotype titers -especially IgM at 

20 weeks of age- are significantly associated with survival through the laying 

period, and could be used as more accurate predictors of survival (Sun et al., 2011) 

compared with total NAbs titers (Star et al., 2007). QTL for -or markers associated 

with- NAb isotypes IgM and IgG have however not been reported yet.  

In the present study the genetic background of NAb isotypes IgM and IgG in laying 

hens was investigated. First, heritability and genetic correlations for IgM and IgG 

were estimated. Then an association study using 1,022 SNP markers was performed 

to identify possible QTL or candidate genes for NAb isotypes. A population of laying 

hens from nine commercial purebred lines was used in the analysis, adopting an 

across-line approach with testing of SNP-by-line interaction. To our knowledge, this 

is the first study to estimate genetic parameters and to perform an association 

study for distinct NAb isotypes (IgM and IgG) in poultry. The results will help to 

better understand the genetic control of levels of innate immunity, thus disclosing 

opportunities to breed for higher survival in laying hens. 

 

3.2 Materials and methods 

In a previous study, Biscarini et al. (2010a) used the same genotype data as in the 

current study to detect QTL for total NAbs titers. Sun et al. (2011) measured the 

NAbs isotype titers (IgM and IgG) and related them to survival through a laying 

period. In the current study, we aim at estimating the genetic parameters and 

detecting the associated chromosomal regions for NAbs isotypes levels.   

 

3.2.1 Study population 

The animal population used in the genetic parameters study consisted of 2,504 

hens from nine commercial purebred layer lines from the Institut de Sélection 

Animale (ISA) B.V., a Hendrix Genetics company (The Netherlands): four Rhode 
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Island Red lines (B1, B2, B3, and BB) and five White Leghorn lines (W1, WA, WB, 

WC, and WF). These lines were not under direct selection for the traits of concern 

in the current study. The animals were recorded progeny of 181 sire and 375 dams. 

Every rooster was mated on average with 2-3 females, while each hen was mated 

with only one male. These animals had unique barcode wing bands assigned at one 

day old, allowing for identification of individuals. For the association study, 650 

layers from the nine lines were included. The pedigree of the layers was provided 

by ISA and consisted of 267,118 animals. The laying hens were observed over the 

whole laying period, from 17 until 72 weeks of age. Housing, feed and vaccinations 

were described in Star et al. (2007). Blood samples of the hens were collected at 

20, 40, and 65 weeks of age by wing vein puncture for extracting serum and 

measuring immune traits. These time points represent birds close to sexual 

maturity (20 wk), middle age (40 wk) and birds close to the end of the laying period 

(65 wk). The isotype titers at these ages may convey different information. The 

blood sample at 40 weeks of age was also used for extracting DNA for genotyping. 

 

3.2.2 Phenotypes 

NAb isotypes IgM and IgG titers binding KLH at 20, 40, and 65 weeks of age (IgM20, 

IgM40, and IgM65; IgG20, IgG40, and IgG65) in the serum sample were measured 

using indirect enzyme-linked immunosorbent assay (ELISA) as described by Sun et 

al. (2011). The number of available observations at different ages and descriptive 

statistics are shown in Table 3.1. For some animals, it was not possible to 

determine isotype titers at each age, since their samples were exhausted when 

used previously for other analysis. 

 

3.2.3 Genotype 

Genotyping was carried out in a 1,536-plex format using the GoldenGate assay 

(Illumina, San Diego) by a commercial genotyping facility (Service XS, Leiden, The 

Netherlands). The 1,536 SNPs were selected to cover some immune and behaviour 

related-QTL regions as well as candidate genes on 24 of the 39 chicken 

chromosomes. Positions of the SNPs were derived from the NCBI database (Galgal 

2.1 build 128). In total, the population was successfully genotyped for 1,356 SNPs. 

SNPs deviating from Hardy-Weinberg equilibrium at the Bonferroni-corrected 0.05 

significant threshold, non-segregating SNPs over all lines and SNPs with a minor 

allele frequency ≤ 0.05 were discarded from the analysis, resulting in 1,022 SNPs for 

association analysis (Table 3.2). Further details on SNP screening can be found in 

Biscarini et al. (2010a). 
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Table 3.1 Number of layer hens in each line used in the study and mean and standard 
deviation of traits for the single lines and the overall population.  

  
n IgM binding KLH

1
 IgG binding KLH

1
 

Breed2 Line   20wk 40wk 65wk IgM20 IgM40 IgM65 IgG20 IgG40 IgG65 

R B1      60 66 7 8.21 6.82 6.81 7.13 5.33 5.21 

B2      57 69 80 7.42 6.71 6.47 6.42 5.05 4.78 

B3      48 61 71 8.01 6.01 6.58 6.59 4.54 4.05 

BB      63 57 63 7.11 5.55 5.35 5.97 4.20 3.22 

W W1     57 58 70 8.48 7.20 6.75 5.88 5.21 5.30 

WA     69 63 64 6.03 4.53 4.18 4.60 5.03 3.87 

WB     22 45 51 4.53 4.71 4.61 4.28 3.87 2.69 

WC     49 65 67 7.62 5.74 4.63 6.60 4.48 3.73 

WF     46 49 57 8.37 7.37 6.59 4.47 5.43 4.36 

Total 471 533 600       

mean    7.43 6.09 5.84 5.86 4.82 4.21 

SD
3
    1.68 1.43 1.54 1.80 1.49 1.66 

C.V.(%)
4
    22.6 23.5 26.4 30.7 30.9 39.4 

1 
IgM20, IgM40, IgM65 = natural antibody isotype IgM titers binding keyhole limpet 

hemocyanin (KLH) at 20, 40, and 65 wk of age; IgG20, IgG40, IgG65 = natural antibody 
isotype IgG titers binding KLH at 20, 40, and 65 wk of age. 
2
 R = Rhode Island Red, W = White Leghorn  

3 
SD = standard deviation 

4 
C.V. (%) = percentage coefficient of variation 

 

3.2.4 Genetic parameters estimation 

Heritabilities, genetic and phenotypic correlations were estimated for all six traits 

(IgM20, IgM40, and IgM65; IgG20, IgG40, and IgG65) based on the entire available 

population, including hens whose phenotype was measured but were not 

genotyped. There were 2166 animals for IgG20 and IgM20, 2,175 for IgG40 and 

IgM40, and 851 for IgG65 and IgM65, with proportionally similar sample size for 

each line. Heritabilities were estimated by restricted maximum likelihood (REML) 

with a univariate model: 

                                                     
ij i j ijY Line a e                                                   (1), 

Where 
ijY  is the observation of any given trait on animal j of line i, µ is the overall 

mean, 
jLine  is the fixed effect of genetic line (nine classes); 

ja  is the random 

additive genetic effect of the animal j; 2var( ) aa A , with A being the additive 

genetic relationship matrix; 
ije  is the residual term with 2var( ) ee I . Heritabilities 

were calculated as 2 2 2 2/ ( )a a eh     . Genetic and phenotypic correlations 

between traits were estimated based on bivariate analyses using model (1). 
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Table 3.2 Total numbers of SNPs per chromosome, numbers of fixed SNPs and number of 
SNPs with a minor allele frequency (MAF) ≤ 0.05 across-line. 

Chromosome Size (Mbp)
1
 All SNPs Used SNPs Fixed 

SNPs 

SNPs with MAF ≤ 0.05 

GGA1 201 68 61 11 4 

GGA2 155 27 23 5 5 

GGA3 114 140 121 12 11 

GGA4 94 422 371 67 34 

GGA5 62 285 265 26 17 

GGA6 37 27 22 1 3 

GGA7 38 175 149 18 14 

GGA8 31 7 7 1 0 

GGA9 26 12 10 0 1 

GGA10 22.6 4 3 0 0 

GGA11 21.9 8 6 3 1 

GGA12 20.5 7 7 2 1 

GGA13 18.9 37 32 3 2 

GGA14 15.8 7 6 0 0 

GGA15 13 7 5 1 1 

GGA16 0.43 22 16 3 0 

GGA17 11.2 7 7 0 1 

GGA19 9.9 27 20 4 1 

GGA21 7 4 4 1 0 

GGA22 3.9 3 2 0 0 

GGA23 6 4 2 1 0 

GGA24 6.4 18 17 3 1 

GGA26 5.1 59 50 7 4 

GGAZ 75 158 135 38 11 

Total  1,536 1,341 207 112 
1 

Size: size of the whole chromosome as derived from the NCBI chicken genome database. 
2
 unmapped SNP. 
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3.2.5 Association study 

For the association study, phenotypes and genotypes were available for 471 to 600 

individuals, depending on the trait. The number of observations per line ranged 

from 22 at 20 weeks of age (line WB) to 80 at 65 weeks of age (line B2), with an 

average of 59 (Table 3.1). A two-step single SNP across-line association study, as 

described in Biscarini et al. (2010a) was performed. First, each SNP was fitted 

individually as a fixed effect in a general linear model, without accounting for the 

genetic relationship between the animals. Afterwards, the potentially interesting 

SNPs detected in the first step were verified in a mixed model, taking additive 

genetic relationships into account.  

In the first step, single SNP analyses were performed across lines. The statistical 

model was: 

                          ( )ijk i j ij ijkY SNP Line SNP Line e                                         (2), 

Where 
ijkY was the observation of any given trait on animal k, µ is the overall mean, 

iSNP  was the fixed effect of SNP genotype at locus i (either AA, AB or BB), 
jLine

was the fixed effect of line (nine classes), ( )ijSNP Line was the interaction 

between SNP genotype and line, and 
ijke  was the random residual. Line effect was 

included in the model to account for the genetic difference between lines. There 

were few (1 to 3) animals with missing genotypes for a limited number of SNPs, 

whose records were not included in the analysis. This model was run twice, once 

without the ( )ijSNP Line  term to obtain significance level for the SNP effect and 

once with the ( )ijSNP Line term to determine the significance level for the 

interaction. SNPs that had a significant effect (P ≤ 0.05) but did not show a 

significant SNP-by-line interaction (P > 0.05) were considered to show significance 

across lines. The significant SNPs that met at least one of the following criteria were 

selected for the second step in which genetic relationships among the animals 

were accounted for. The selection criteria for the SNPs were: 

1. Significant SNP effect for single trait with P ≤ 0.001 and no SNP-by-line 

interaction; 

2. Significant SNP effect (P ≤ 0.05) consistent for the same isotype (IgM or IgG) over 

time (2 or 3 time points) and no SNP-by-line interaction;    

3. Significant SNP effect (P ≤ 0.05) consistent for both IgM and IgG at the same time 

point and no SNP-by-line interaction; 
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Quantitative traits may also be influenced by background genes. Accounting for 

genetic relationships among the animals in an association study is more 

appropriate (Kennedy et al., 1992), since it helps avoiding spurious associations. In 

the second step, a polygenic effect was added to the model to account for family 

relationship among animals within lines. SNPs selected in the first step were 

analysed using a mixed animal model: 

                                 
ijk i j k ijkY SNP Line a e                                                  (3), 

where all the terms were as in model (2) except 
ka , which is the random genetic 

effect of the kth animal. 2var( ) aa G A  , where A is the additive genetic 

relationship matrix, and 2var( ) ee R I  . The ratio between residual and genetic 

variances 2 2( / )e a  was fixed for each trait using the previously estimated 

heritabilities. The additive genetic relationship matrix was based on four-

generations of ancestors extracted from the pedigree file provided by ISA. The 

SNPs that still showed a significant effect (P ≤ 0.05) on the traits from model (3) 

were considered as a genomic region of interest. 

Genetic parameters with model (1), polygenic effects and SNP effects as described 

in model (3) were estimated with a REML procedure in ASReml (Gilmour et al., 

2006). The open source programming environment R was used for data editing, 

descriptive statistics, and association analysis with model (2).  

 

3.3 Results 
 
3.3.1 Descriptive statistics of the traits 

Descriptive statistics of the six traits (IgM20, IgM40, and IgM65; IgG20, IgG40, and 

IgG65) are summarized in Table 3.1. In general, IgM and IgG titers decreased with 

age (20, 40, and 65 weeks of age) in most of the nine lines, except for IgM in line B3 

and WB, and IgG in line W1, WA and WF. Especially, an abrupt decrease of IgM or 

IgG titers from 20 to 40 wk was observed. The across-line coefficient of variation 

(C.V.) ranged from 22.6% (IgM20) to 39.4% (IgG65), indicating substantial variation 

associated with these immunological traits in hens. On average, the C.V. for IgM 

was lower than that for IgG. There were substantial differences in isotype titers 

between lines: e.g. for IgG20 titers ranged from 4.28 (line WB) to 7.13 (line B1). 
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3.3.2 Genetic parameters of the traits  

Estimates for heritabilities (h
2
), genetic (rg) and phenotypic (rp) correlations for NAb 

isotypes are presented in Table 3.3. Heritability estimates ranged from h
2
 = 0.14 for 

IgG40 to h
2
 = 0.44 for IgM65. The heritabilities for IgM titers at different ages were 

around 0.4, while for IgG they varied from 0.14 for IgG40 to 0.31 for IgG20. IgM 

titres were more heritable than IgG at each age.  

Phenotypic and genetic correlations between traits were positive. Phenotypic 

correlations between the same isotype titers at different ages were generally 

moderate, but higher between 40 and 65 weeks of age: rp = 0.63 for IgG40 and 

IgG65 and rp = 0.59 for IgM40 and IgM65. Phenotypic correlations between IgM 

and IgG at the same age were around 0.25. In general, genetic correlations 

between titres of the same isotype at different ages were quite high, especially 

between IgM40 and IgM65 (rg = 0.95) and between IgG40 and IgG65 (rg = 0.99). 

Genetic correlations between IgM and IgG titres at the same age were around 0.2.  

Table 3.3 Estimates of heritabilities (bold, on the diagonal), genetic correlations (above the 
diagonal) and phenotypic correlations (below the diagonal) for the traits. Associated 
standard errors (SE) are shown in the parenthesis. 

Trait
1
 IgM20 IgM40 IgM65 IgG20 IgG40 IgG65 

IgM20 0.41(0.05) 0.57(0.08) 0.81(0.11) 0.24(0.10) 0.08(0.15) 0.52(0.19) 

IgM40 0.39(0.02) 0.42(0.05) 0.95(0.07) 0.02(0.11) 0.23(0.14) 0.35(0.17) 

IgM65 0.32(0.04) 0.59(0.02) 0.44(0.09) 0.36(0.20) 0.07(0.20) 0.24(0.17) 

IgG20 0.30(0.02) 0.04(0.02) 0.08(0.04) 0.31(0.05) 0.39(0.15) 0.78(0.20) 

IgG40 0.10(0.02) 0.24(0.02) 0.13(0.04) 0.36(0.02) 0.14(0.04) 0.99(0.12) 

IgG65 0.14(0.04) 0.13(0.04) 0.29(0.03) 0.28(0.04) 0.63(0.02) 0.26(0.09) 
1 

IgM20, IgM40, IgM65 = natural antibody isotype IgM titers binding keyhole limpet 
hemocyanin (KLH) at 20, 40, and 65 wk of age; IgG20, IgG40, IgG65 = natural antibody 
isotype IgG titers binding KLH at 20, 40, and 65 wk of age. 

3.3.3 Association study 

In the first step of the association study, 1,022 SNPs were analyzed across-line with 

model (2). There were 302 SNPs that showed significant association (P ≤ 0.05) with 

at least one of the traits, of which 275 did not show a significant SNP-by-line 

interaction (P > 0.05). After applying the established criteria, 57 of these 275 SNPs 

were selected for the next step of analysis where family structure was taken into 

account. Eventually, 43 SNPs still showed significant association (Table 3.4). The 

false discover rate (FDR) was calculated based on the P-values from model (2) for 
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association between 1,022 SNPs and each trait. The FDR for the SNPs presented in 

Table 3.4 ranged from 0.005 to 0.74, and 25% of the significant associations had a 

FDR < 0.20. Seventy-five percent of the significant SNPs identified in model (2) were 

confirmed with model (3) (43 out of 57), especially the highly significant ones. The 

Pearson’s correlation coefficient between -Log10 (P-value) of all significant 

associations with and without the polygenic effect was 0.77.  

The detected association comprised 12 SNPs for IgG20, 13 for IgG40, 10 for IgG65, 

12 for IgM20, 7 for IgM40, and 10 for IgM65. Twenty-two of these SNPs were 

associated with only one trait; the other 21 SNPs were associated with two traits. 

The strongest association was found for IgM40 (-Log10 (P-value) = 4.46) on GGA3. 

Based on the significant SNP associations, potential QTL for NAb isotypes in laying 

hens have been found. Examples include QTL for IgG20 on GGA3 (SNPs rs13503408 

and rs13503482) and GGAZ (SNPs rs16105367, rs16105275, rs16105159 and 

rs16105051); QTL for the IgM20 on GGA4 (SNPs rs13514674 and rs13514692) and 

GGA5 (SNPs rs15660844 and rs15661104). On GGA3, a potential QTL for IgM40 and 

IgM65 was detected at SNP rs13717504. 

 

3.4 Discussion 

 

3.4.1 Genetic parameters 

In the present study, we estimated genetic parameters for NAb isotypes IgM and 

IgG binding KLH at different ages based on the whole available population of laying 

hens (nine purebred lines), including the animals with isotype titers but that were 

not genotyped. Layers from different lines were not related based on the 

relationships registered in the pedigree files. Line is a known source of NAb isotype 

variation (Sun et al., 2011). Fitting ‘line’ as a random effect in the model allows for 

the estimation of between-line variation. The results showed that there was a 

substantial contribution of the between-line variation to the total phenotypic 

variance: from 17% for IgG20 to 42% for IgM20. For IgM this proportion was 

approximately twice as large as for IgG at the same age, which indicated that the 

variation of IgM NAb titres between lines was larger than that of IgG. In the present 

study, we included line as a fixed effect in model (1) to account for the between-

line variation and to avoid biased heritability estimates for the two different 

isotypes. 

The heritabilities for IgM titres at different ages were all around 0.4. For IgG, the 

heritabilities varied at different ages, ranging from 0.14 at 40 weeks of age to 0.31 
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Table 3.4 SNPs significantly associated with natural antibody isotype IgM and IgG titers binding KLH at 20, 40, and 65 wk of age. -Log10 (P-value) 
are reported in the columns. 

Chromosome    SNP kbps cM
1
 IgG20

2
 IgG40 IgG65 IgM20 IgM40 IgM65 

Candidate 

gene
3
 

Immune/Behavio

ur-related traits
4
 

GGA2 rs15937157  30892798 77.2    1.32   IL6  

GGA3 rs13775191 3920339 9.8 3.23 1.42       

GGA3 rs13773711  5093724 12.7  1.43 1.64      

GGA3 rs13504786 7469634 18.7  1.44 1.80      

GGA3 rs13504160 8503787 21.3     2.22 2.30   

GGA3 rs13503482 9694915 24.2 2.32       AFTPH BR51s 

GGA3 rs13503408 9866493 24.7 3.00        BRBC20, BR51s 

GGA3 rs13717504  19407727 48.5     4.46 1.46  Belly51s 

GGA3 rs16246580  31512500 78.8  2.70 1.92    HSP90AB1   

GGA4 rs13578397 30698644 76.7    1.36   MAML3  

GGA4 rs13512983 30896422 77.2   1.55   2.52  BR69s 

GGA4 rs13514531 34556210 86.4  1.46       

GGA4 rs13514674 34725975 86.8    1.68     

GGA4 rs13514692  34779481 86.9  1.64  1.43     

GGA4 rs13516409 39982138 100.0 3.00      NPNT   

GGA4 rs13518664  46910110 117.3   2.52    BMP3  
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Table 3.4 (continued) SNPs significantly associated with natural antibody isotype IgM and IgG titers binding KLH at 20, 40, and 65 wk of age. -Log10 
(P-value) are reported in the columns  

Chromosome     SNP kbps cM
1
 IgG20

2
 IgG40 IgG65 IgM20 IgM40 IgM65 Candidate 

gene
3
 

Immune/Behaviour 

related traits
4
 

GGA4 rs13519142 47791554 119.5     1.64    

GGA4 rs13522073 54208891 135.5  1.96       

GGA4 rs16422070  62651897 156.6 1.48   1.33    Belly51s 

GGA5 rs14513071 10513039 26.3  1.60   2.15    

GGA5 rs15658688 10635972 26.6    2.10  1.96 ST5   

GGA5 rs15660844 11445142 28.6    1.60  1.55 PDE3B   

GGA5 rs15661104 11551652 28.9    1.64     

GGA5 rs15668593 15358239 38.4    1.38     

GGA5 rs15674192 18427037 46.1  1.35 1.44      

GGA5 rs13586877 40989063 102.5      1.72 
Open Reading 
Frame  

GGA6 rs15806042  27691999 69.2   1.89    ADRA2A  

GGA7 rs13596168 25491840 63.7 3.00       Belly69s 

GGA7 rs13600494 35478765 88.7 1.30   1.43     

GGA7 rs13600581 35696491 89.2  1.40       

GGA13 rs14064896  17451586 43.6     1.32 1.92 IRF1  
NCD20, SRBC20, 
SRBC65,  BRBC65, 
LPS65 
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Table 3.4 (continued) SNPs significantly associated with natural antibody isotype IgM and IgG titers binding KLH at 20, 40, and 65 wk of age. -Log10 
(P-value) are reported in the columns  

Chromosome     SNP 
kbps cM

1
 IgG20

2
 IgG40 IgG65 IgM20 IgM40 IgM65 Candidate 

gene
3
 

Immune/Behaviour 

related traits
4
 

GGA13 rs15709619  17527265 43.8      2.05 IL13   Belly51s 

GGA26 rs13606001  2062437 5.2    1.46 1.92    

GGA26 rs14298901  2376225 5.9  2.40   2.05  IL10  SRBC20, LPS40 

GGA26 rs14298911  2385653 6.0  2.70 2.30    IL19   

GGA26 rs13606106  2461645 6.2  1.30    1.39   

GGA26 rs13606552  3679472 9.2 1.68      TRIM33   

GGAZ rs16102814 12734147 31.8   1.54 2.40     

GGAZ rs16105367 23202071 58.0 1.92        

GGAZ rs16105275 

16105275 

23335626 58.3 1.40      ANKDD1B  

GGAZ rs16105159 23468761 58.7 2.22       Belly51s 

GGAZ rs16105051 23571939 58.9 1.49  2.10    GCNT4   

GGAZ rs13795422 34067107 85.2      2.15   
 

1 
1cM = 4 × 10

5
 bp. 

2
 IgG20, IgG40, IgG65 = natural antibody isotype IgG titers binding keyhole limpet hemocyanin (KLH) at 20, 40, and 65 wk of age; IgM20, IgM40, 

IgM65 = natural antibody isotype IgM titers binding KLH at 20, 40, and 65 wk of age. 
3
 IL6 = gene encoding cytokine Interleukin 6; AFTPH = gene encoding protein Aftiphilin; HSP90AB1 = gene encoding Heat shock protein 90kDa 

alpha (cytosolic), class B member 1; NPNT: gene encoding nephronectin, also called POEM (preosteoblast EGF repeat protein with MAM domain); 
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BMP3 = gene encoding bone morphogenetic protein 3; MAML3 = gene encoding Gallus gallus mastermind-like 3 (Drosophila) (predicted); ST5 = 
gene encoding suppression of tumorigenicity 5; PDE3B = gene encoding phosphodiesterase 3B, cGMP-inhibited; ADRA2A = gene encoding 
adrenergic, alpha-2A-, receptor; IRF1 = gene encoding interferon regulatory factor 1; IL13 = gene encoding cytokine Interleukin 13; TRIM33 = gene 
encoding tripartite motif containing 33; IL10 = gene encoding cytokine Interleukin 10; IL19 = gene encoding cytokine Interleukin 19; ANKDD1B = 
gene encoding ankyrin repeat and death domain containing 1B; GCNT4: gene encoding glucosaminyl (N-acetyl) transferase 4, core 2. 
4
 BR51s, BR69s = sum of the individual feather scores for the back and rump regions at 51 and 69 wk of age (scale 0-10); Belly51s, Belly69s = 

individual feather scores for the belly region at 51 and 69 wk of age (scale 0-5); BRBC20, BRBC65 = alternative complement activity at 20 and 65 
wk of age; SRBC20, SRBC65 = classical complement activity at 20  and 65 wk of age; NCD20 = acquired antibody titers for the Newcastle disease 
virus at 20 wk of age; LPS40, LPS65 = natural antibody titers for lipopolysaccharide at 40 and 65 wk of  age. 
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at 20 weeks of age (Table 3.3). This moderate heritability for NAb isotypes indicates 

that selection for NAb isotype titres is feasible, especially for IgM.  

The heritability for specific antibodies (SpAb) against sheep red blood cells (SRBC) 

was estimated to be 0.31 (Pinard et al., 1992) and 0.18 (Bovenhuis et al., 2002), 

after divergent selection of layers for high and low antibody response for 9 and 18 

generations, respectively. Using these lines, Wijga et al. (2009) estimated a 

heritability of 0.23 for total NAbs binding rabbit red blood cells. The heritability for 

SpAb isotypes titres was reported higher than for the total SpAb response to the 

same antigen: heritability for SpAb isotypes IgM and IgG in response to SRBC 

stimulation was as high as 0.61 and 0.52, respectively (Sarker et al., 1999). This is 

the first time the heritabilities for the NAb isotypes IgM and IgG are estimated in 

poultry, so a direct comparison with literature results is not possible. In cows, IgM 

NAbs were found to be more heritable than IgG NAbs (Ploegaert et al., 2010), 

which is in line with our results in layers. 

Antibody isotypes differ in molecular structure, biological properties, location of 

production and their function. IgM antibodies are the most abundant antibodies 

circulating in the body and act as the first line of defense against a foreign molecule 

or invading organism. Natural IgM antibodies are polyreactive and participate in 

diverse physiological processes including response to infection, cell homeostasis, 

inflammation, atherosclerosis and autoimmunity (Ehrenstein and Notley 2010). 

Study with the IgM-deficient mice showed that IgMs play a role in protection 

against the influenza virus (Baumgarth et al., 2000) and bacterial infections (Boes et 

al., 1998). It is presumed that the production of the IgM isotype is driven by 

endogenous (auto) antigens and largely unaffected by external antigens (Haury et 

al., 1997). B cells can change the isotype of the antibody they express (from IgM to 

IgG or IgA) by isotype class-switch after being activated (Market and Papavasiliou 

2003). At the molecular level this process involves the orderly somatic 

rearrangement of Ig heavy chain constant region genes. It is a highly regulated 

biological process by T-helper cells and antigen-presenting cells and their cytokines 

such as interleukin (IL)4, IL5, IL10, and transforming growth factor, beta 1 (TGFB1) 

(Stavnezer and Amemiya 2004). The observed higher heritabilities for IgM than IgG 

agree with the observation that IgM NAbs are naturally present regardless of 

environmental factors, while their transformation into IgG NAbs likely occurs in 

response to the effect of stimulating factors present on the B cells.     

For either IgM or IgG, there are strong and positive genetic correlations between 

titers at older ages (40 and 65 weeks of age): rg = 0.95 between IgM40 and IgM65; 
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rg = 0.99 between IgG40 and IgG65. This suggests that NAb isotype titres at 40 and 

65 weeks of age are genetically the same trait, but differ from NAb isotype titers at 

20 weeks of age. Genetic correlations between IgM and IgG at the same age were 

around 0.2. The moderate positive genetic correlation suggests that IgM and IgG 

only partially share the same genetic background and are relatively independently 

controlled.  

 

3.4.2 Methodological aspects of the association study  

An across-line SNPs association study for NAb isotypes IgM and IgG titers binding 

KLH was performed: the main feature of the across-line association study is that 

markers close to QTL and valid in the whole population (i.e. in all lines) are targeted 

(Biscarini et al., 2010a). First, each SNP was individually fitted as a fixed effect in a 

linear model and tested for SNP by line interaction; afterwards, the potentially 

interesting SNPs detected in the first step were validated accounting for 

relationships among the animals. Finally, 43 significant SNPs associations with NAb 

isotypes were detected. 

The sample size used for the association study of each trait was different due to 

randomly exhausted serum samples (Table 3.1). To understand how sample size 

affects the results of the analysis, we carried out the association study for IgM20 in 

a randomly selected subset with 90%, 80%, 70%, 60% and 50% of the original 

population (5 replicates for each subset size). Results indicated that 87%, 77%, 

66%, 44%, and 34% of the significant SNPs detected in the original population could 

be confirmed, respectively. The strongest associations were also prone to be 

confirmed in smaller samples: SNP rs13596168, for instance, was associated with 

IgG20 with a significance level of -Log10 (P-value) = 3.40 in the original sample and 

could be detected in three of the five replicates with 50% of the sample size. This 

indicated the robustness of the model for the analysis. The associations detected in 

the present study are therefore unlikely to show relevant changes due to the slight 

differences in sample size, especially the highly significant ones.   

 

3.4.3 Patterns of association 

The patterns of association show that closely linked SNP were not always 

associated with the same isotype at the same age; the associations were not 

consistent over all 3 ages for the same isotype. Only five SNPs significantly 

associated with IgG and IgM at the same age were observed (Table 3.4). This was in 

agreement with the estimated weak genetic correlation between IgG and IgM at 
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the same age (Table 3.3). SNPs significantly associated with IgG65 tended to be 

associated also with IgG40 (5 out of 10). A similar pattern was found for IgM: 3 out 

of 7 of the significant SNPs for IgM40 were associated also with IgM65. This is in 

agreement with the observation of high genetic correlations between the same 

isotype titers at older age (Table 3.3) and hypothesis that NAb isotypes titres at 40 

and 65 weeks of age are genetically the same trait. The fact that not always the 

same SNPs were found to be associated with isotype titers at 40 and 65 weeks of 

age may be interpreted as due to 1) the genetic correlations between the isotypes 

at successive ages were high, but not as high as 1, and 2) the power of the 

association study was not equal to 1 implying that even if a SNP has an effect it 

might not appear to be significant in the present analysis (false negative). In most 

cases, the same SNP had consistent direction of effect on the isotype titers at both 

40 and 65 weeks of age (data not shown). There were fewer SNPs associated with 

IgM20 (3 out of 11) or IgG20 (2 out of 12) which also were associated with the 

same isotypes at later ages. The detected association patterns together with the 

different genetic correlations between different ages, are in line with expectations: 

NAbs are secreted by B-1 cells which, in mammals, are characterized by the 

expression of CD5 (Kasaian and Casali 1993). The origin of NAbs in chicken is 

unknown yet, due to the scarcity of information on chicken B-1 cells, but all chicken 

B cells express the CD5 marker (Koskinen et al., 1998). The bursa of Fabricius, 

where the B cells are produced, starts a regression phase from 9 weeks of age 

onwards, until nearly disappearing when sexual maturity is reached (around 21 

weeks of age for laying hens when they start laying eggs). So we speculate that 

young chickens (20 weeks of age) have not fully develop yet their immune 

repertoire as compared to older chickens (40 and 65 weeks of age), whose immune 

status is likely more developed and in equilibrium with the environment. The 

genetic background for developing a functional innate immunity to produce NAb 

isotypes is different from that for maintaining a stable isotype production until 65 

weeks of age.  

 

3.4.4 Detected associations and candidate genes 

There were 26 SNPs significantly associated with IgM (Table 3.4). On GGA2, SNP 

rs15937157 was situated in IL6 gene and was associated with IgM20. IL6 is an 

interleukin family member. The functions of IL6 range from key roles in acute-

phase protein induction to stimulation of B cell growth, proliferation and terminal 

differentiation into mature antibody producing plasma cells (Muraguchi et al., 

1988; Tackey et al., 2004). A functional homologue of mammalian IL6 is found in 
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chickens (Schneider et al., 2001) and involved in the infectious process like arthritis 

induced by staphylococcus (Zhou et al., 2007). To the best of our knowledge, this is 

the first time the IL6 was implicated in the regulation of IgM levels. Putative QTL for 

IgM20 were found on GGA4 (SNPs rs13514674 and rs13514692) and GGA5 (SNPs 

rs15660844 and rs15661104). There are no known candidate genes in these 

regions. Earlier we demonstrated that NAb titers -especially the IgM isotype at 20 

weeks of age- are predictive of survival through the laying period: odds ratios of 

0.56 (P < 0.001) for IgM20 were estimated, which means that if IgM20 titers 

increase by one unit, the relative change in risk of dying during the laying period 

decreases by 44% (Sun et al., 2011). The detected QTL and SNPs for IgM20 are 

promising targets for selection for improved survival.     

On GGA13, a QTL for IgM40 and IgM65 (SNPs rs15709619 and rs14064896) was 

suggested. Two candidate genes are found in this region: IL13 and interferon 

regulatory factor 1 (IRF1). IL13 is a cytokine secreted by many cell types, especially 

T helper type 2 cells, and is a mediator of allergic inflammation and disease (Wynn 

2003). Most of the biological effects of IL13 are the same as the closely located IL4, 

whose production requires NAb isotype IgM (Stager et al., 2003). IL4 can stimulate 

strong B-1 cell proliferative response (Tsuji et al., 2002). It is possible that the 

similar regulation mechanism also happens between IgM NAbs and IL13. IRF1 is in 

the proximity of IL4. Beyond its function as a transcription factor, IRF1 has been 

shown to play multiple roles in disease/health. It acts as tumor suppressor in breast 

cancer (Bouker et al., 2005), regulates cell apoptosis in mammary (Bowie et al., 

2004), and fights virus infections like West Nile viruses (Brien et al. 2011). In laying 

hens, IRF1 was found to be associated with Ascaridia galli worm burden (Luhken et 

al., 2011). IgM NAb was also reported to have similar functions like IRF1. Possibly 

IRF1 and IgM are involved in the same mechanism or network.  

There were 28 SNPs detected to be significantly associated with IgG (Table 3.4). The 

gene tripartite motif containing 33 (TRIM33) on GGA26 (SNP rs13606552) was 

found to be associated with IgG20. TRIM33 is involved in the regulation of TGFB1 

signal transduction (Moustakas and Heldin 2009) and in cancer suppression in 

murine (Herquel et al., 2011). The role of TRIM33 in chicken is unknown. However, 

its association with IgG titers in laying hens suggests further studies on the role of 

TRIM33 and its relation with IgG NAbs in the immune response in poultry. A QTL for 

IgG20 (SNPs rs13503408 and rs13503482) was also found on GGA3, in a region with 

no known candidate genes. On GGAZ, a QTL (SNPs rs16105367, rs16105275, 

rs16105159 and rs16105051) for IgG20 was detected. Birds have female 

heterogamety with Z and W sex chromosomes. Hens were reported to have higher 
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SpAb titers against SRBC than cocks, and the heritability for this trait was also 

higher in hens (Gross et al., 1980; Boa-Amponsem et al., 1997). This difference 

might be due to the genes located on the sex chromosome, suggesting that male 

and female antibody titers are genetically different traits. However, Bovenhuis et 

al. (2002) estimated a genetic correlation of 0.92 between male and female SpAb 

titers which is in contrast with this hypothesis. It is also not clear if NAbs isotype 

titers in male and female are the same traits. In the present study, only hens were 

examined, therefore the comparison between female and male was not possible.  

In the previous study, IgG20 were also identified to be predictive of survival during 

the laying period: the odds ratio for IgG20 was 0.72 (P = 0.02), indicating a decrease 

of 28% in the risk of dying per unit increase in IgG (Sun et al., 2011). SNPs which are 

associated with IgG20 might also be used in selection for high survival. The fact that 

different SNPs are detected for IgM20 and IgG20 might due to several reasons: e.g. 

lower genetic correlations and power of association analysis, as we discussed 

before. Biologically, since formation of antibody isotypes, and isotype switching 

from IgM to IgG are differentially regulated by various (T-cell derived) cytokines, it 

is not surprising that different SNPs related with different cytokines or other genes 

were identified. The positive genetic correlation between IgM20 and IgG20 

indicates that there are possibilities to improve both traits simultaneously. 

However, this does not exclude the presence of chromosomal regions with 

antagonistic effects on IgM20 and IgG20. Validation and good estimation of the 

SNP effects is an important step between our results and their practical application 

in breeding. Further study is indispensable. 

On GGA3, SNP rs16246580 was associated with IgG40 and IgG65. Two adjacent 

SNPs, SNP rs14334093 and rs15312051 were also associated with IgG40. The gene 

heat shock protein 90kDa alpha (cytosolic), class B member 1 (HSP90AB1) which 

encodes 90-kDa heat shock protein (HSP90) was located nearby. HSP90 is an 

important phylogenetically conserved structure and immunodominant self-antigen 

(Pashov et al., 2002). It is widely accepted that the production of NAbs rests on 

positive selection by self-antigens including heat shock protein (HSP) (Baumgarth et 

al., 2005). Shinozaki et al. (2006) found that HSP90B1, the other form of HSP90, is 

involved in B cell signaling and its relation with the expression level of IgM has been 

established. This detected association provides genetic evidence for the regulatory 

role of self-antigens on the production of IgG NAbs at older ages, although the 

association with IgM NAbs was not observed.  
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Except for IL6 and IL13 exclusively associated with IgM and IgG, respectively, some 

other interleukins members were found associated with both isotypes. On GGA26, 

a potential QTL (SNPs rs14298901 and rs14298911) for IgG and IgM at older age (40 

and 65 weeks of age) was found. SNPs rs14298901 and rs14298900 are located in 

IL10 gene. IL10 is an anti-inflammatory cytokine produced primarily by monocytes, 

T-cells and B-cells (Moore et al., 1993), and influences multiple immunological 

mechanisms. Studies in murine models showed that, in general, low levels of IL10 

increase resistance and high levels increase susceptibility to intracellular pathogens 

(Moore et al., 2001). In broilers, SNPs in IL10 were strongly associated with 

Salmonella burden (Ghebremicael et al., 2008). SNP rs14298911 was in the 

sequence of IL19, which is tightly linked to IL10, and showed association with IgG40 

and IgG65. IL19 is another cytokine that belongs to the IL10 family of cytokines 

(Yilmaz et al., 2005; Kim et al., 2009). The function of IL19 seems to be conserved in 

chickens as in mammals. IL19 plays a similar role as IL10 in response to intracellular 

poultry pathogens (Kim et al., 2009). The association of IL10 and IL19 with IgG and 

IgM at later age provides further evidence for the role of the IL10 family cytokines 

in immune response and survival at later ages.  

 

3.4.5 Detected SNPs associated with other immune and behavior 

traits 

Few of the SNPs or QTL for NAbs isotypes IgM and IgG detected in this study were 

also found to be associated with total NAbs titers (Biscarini et al., 2010a). The 

genetic correlations between total NAbs and individual isotypes are generally 

slightly positive: this can partly explain the few genetic polymorphisms found to be 

associated with both total NAbs titres and isotype titers and suggest total NAb and 

NAb isotype titers may be different traits. The total NAb (in serum) titer is a more 

comprehensive indicator for humoral innate immunity: IgM and IgG (and less IgA) 

isotypes are NAb sub-components, which offer a more focused and detailed view. 

In addition, total NAb titers were described to increase with age (Star et al., 2007), 

while the isotype titers seem to decrease with age (Table 3.1). Haghighi et al. 

(2006) found that the increase of NAb isotypes was not associated with an increase 

in total NAb in the intestines of probiotic-treated female broilers. This may further 

imply that as genetically different traits (current paper), total NAb and NAb isotype 

titers convey information about the different status of the animals’ immune 

system. 

Some SNPs or QTL found associated with IgM and IgG titers in this study were also 

reported to be significantly associated with other immune traits like SpAb response 
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and complement activity, specially the classical complement activation cascade 

(Biscarini et al., 2010b). NAbs and complement system are two interrelated 

humoral components of the innate immune defense. On one hand, the levels of 

complement and the expression of its receptors by B cells are positively correlated 

with NAb diversity and B-1 cell number (Carroll and Prodeus 1998). On the other 

hand, NAbs can activate the classical complement pathway by binding to invading 

microorganisms (Ochsenbein and Zinkernagel 2000; Austen et al., 2003; Jayasekera 

et al., 2007). In our study, a common genetic background of NAb isotype titers and 

complement activity was observed. Laying hens which were selected for high 

specific immune responsiveness also have a higher level of NAbs (Parmentier et al., 

2002; Parmentier et al., 2004). A QTL on GGA13 (SNPs rs14064896 and rs15709619) 

affecting IgM and IgG NAbs was previously found to be associated with SpAb 

response to Newcastle disease in laying hens (Biscarini et al., 2010a), although the 

functional relationship between NAb isotypes and SpAb remains unclear. Our 

results, together with previous studies, indicated genetic relationships between 

multiple immune traits, thus contributing additional evidence to the interaction 

and cooperation of different immune components in health and disease. The likely 

different roles of NAb isotypes in the regulation of immune responses need 

however further investigation. 

Biscarini et al. (2010b) found that some genetic regions associated with immunity -

for instance with IL4 and IL9- also had an effect on behavioral traits. Some of the 

SNPs or QTL for IgM and IgG titers detected in this study were reported to be 

associated with feather pecking behavior by Biscarini et al. (2010b). In particular, 

they were all reported to be associated with the associative genetic effects (genetic 

effects of cage mates on the individual phenotype) on plumage condition score (an 

indirect measure of the pecking behavior), and none with the direct genetic effects. 

Examples include rs13512983 and rs16422070 on GGA4, rs13596168 on GGA7, and 

rs16105159 on GGAZ. This suggests that NAb isotype titers may be linked with the 

propensity to express pecking, but not with the susceptibility to receive it (see 

Biscarini et al., 2010b, for details). It is worthwhile to mention that most of these 

SNPs were associated with IgG20 and plumage condition scores at 51 weeks of age. 

SNPs associated with a natural immune trait and plumage condition score reveal 

possible relationships between the immune system and social behavior, as 

described previously  (Parmentier et al., 2009; van der Poel et al., 2011).   
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3.5 Conclusions 

In this study, moderate heritabilities were estimated for two different NAbs 

isotypes: IgM and IgG. Results indicated that selection for isotypes of NAbs is 

feasible: this could be especially relevant in the case of IgM20 and IgG20, which is 

related to survival through the laying period. An association study with 1,022 SNPs 

was performed across lines and revealed 43 significant associations for NAbs 

isotype titers at different ages. The lower extent of common linkage disequilibrium 

(LD) blocks conserved across lines increases the resolution of the association study, 

implying that detected markers are bound to be closer to QTL. Some SNPs were 

located in immune-related candidate genes like IL10, IL19, HSP90AB1 and IRF1. To 

the best of our knowledge, this is the first time they are indicated to be associated 

with NAb isotype titers, regardless of species. Follow-up studies are needed to 

verify if they are causal factors for these traits in the current study. The observation 

that some detected SNPs were also associated with adaptive immune traits and 

behavioural traits, reveals a genetic basis for relationships between the innate and 

adaptive components of the immune system, and behaviour. In summary, our 

findings will provide preliminary information on the identifying of genes or related 

markers underlying of NAb isotype titers, which can be useful in genetic selection 

for higher survival in laying hens.  
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Abstract 

Natural antibodies (NAb) are important humoral components of innate immunity. 

As first line of defense, NAb provide protection to infection and support adaptive 

immunity. An earlier study indicated that serum levels of NAb isotypes IgM and IgG 

at young age were predictive for survival in non-beak trimmed purebred laying 

hens during the laying period. In the present study, genetic parameters of NAb 

isotypes were estimated and relationships between survival and NAb isotypes 

levels in crossbred laying hens were investigated. In total, 1,555 beak trimmed and 

1,169 non-beak trimmed crossbred laying hens were used. Genetic parameters of 

IgM and IgG titers binding keyhole limpet hemocyanin (KLH) at 24 weeks of age 

were estimated with a linear animal model. The heritabilities of NAb isotypes IgG 

and IgM were 0.21 (SE = 0.04) and 0.26 (SE = 0.04), respectively. The genetic 

correlation between IgG and IgM isotypes was 0.43 (SE = 0.11). These results 

indicated that NAb isotype titers were heritable traits in the crossbred laying hens. 

Both NAb isotypes can be selected for simultaneously as the detected positive 

genetic correlation (0.43, SE = 0.11) between them is positive. Both row and level 

of the cage were indicated to be associated environmental factors for NAb isotype 

titers. Different from an earlier study with purebred hens, survival analysis showed 

no significant associations of survival with NAb isotype titers in beak trimmed or 

non-beak trimmed crossbred hens. Non-health-related causes of mortality, 

especially in birds with intact beaks, overruled the anticipated relationships 

between NAb isotype titers and survival.  

Key words: IgM, IgG, heritability, beak treatment, mortality   
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4.1 Introduction 

Antibodies are defined as immunoglobulins produced by plasma cells after naïve B 

lymphocytes recognize antigen during infection or immunization with antigens 

including vaccines. Therefore, conventionally, antibodies are antigen-triggered and 

characterized by their antigen-specificity. In contrast, natural antibodies (NAb) are 

defined as antibodies being present in healthy individuals without any previous 

antigen exposure (Avrameas, 1991; Haury et al., 1997).  

NAb are found in every species tested so far, like humans (Guilbert et al., 1982), 

mice (Ochsenbein et al., 1999), fish (Sinyakov et al., 2002), and chicken (Neu et al., 

1984). This conservation during evolution suggests that NAb are not simple non-

specific by-products of exogenous immunization but may play a vital physiological 

role (Cohen, 2007). Alike specific antibodies (SpAb), NAb can be either of the IgM, 

IgG (IgY), and IgA isotypes in birds. The broad reactivity of IgM, the principal NAb 

isotype, provides pre-existing defense which enables animals to rapidly recognize 

and protect against infection by pathogens that have not been encountered 

previously (Baumgarth et al., 2000). This protection fills the gap between the onset 

of infection and the emergence of the adaptive immune response (Baumgarth et 

al., 2000). For example, the antigen-induced antibodies to influenza virus can be 

detected in the serum at 5 days after infection (Baumgarth, 2000), whereas the 

pre-existing NAb can prevent major viral replication and consequent virus-induced 

tissue destruction (Ochsenbein et al., 1999). NAb facilitate specific immunity by 

activating the classical complement pathway (Ochsenbein et al., 1999), and capture 

and present antigen to T helper cells (Elluru et al., 2008). It was proposed that 

screening for NAb against pathogens may predict the strength of an antigen-

induced immune response and could be used as a tool for vaccine development 

(Kohler et al., 2003). NAb were reported to react with self or foreign novel 

molecules (Quintana and Cohen, 2004). Keyhole limpet hemocyanin (KLH) is large 

metalloprotein and used as an example of a naïve antigen for detecting NAb in 

laying hens (Parmentier et al., 2004; Star et al., 2007). 

In an earlier study with non-beak trimmed laying hens from multiple purebred 

White Leghorn lines and Rhode Island Red lines, serum levels of NAb, especially 

IgM binding KLH at 20 weeks of age, were found to be significantly associated with 

and predictive for survival during the laying period, i.e. the higher the titers of NAb 

at young age, the higher the probability of layers to survive (Sun et al., 2011). The 

odds ratios estimated for the isotypes IgM and IgG as factors in the survival analysis 

also indicated that distinguishing isotype titers is less predictive for the survival in 
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White Leghorns than in the Rhode Island Red layers. A hypothesis for different 

prediction power of NAb isotype titers in the two breeds was that NAb isotype 

titers are associated with the health-related survival but in non-beak trimmed 

White Leghorns, part of death may be caused by non-health-related reasons, such 

as severe feather pecking and cannibalism. Therefore, in the present study, we 

investigated the relationships between NAb isotype titers binding KLH and survival 

in beak trimmed and non-beak trimmed crossbred laying hens. Genetic parameters 

for the NAb isotype titers were also estimated. Crossbred laying hens are more 

common as commercial product than purebred ones in the poultry industry. 

Identifying the predictive parameters for survival and better understanding of the 

genetic parameters in crossbred hens will be valuable for designing a breeding 

strategy for improved survival. 

 

4.2 Materials and methods 
 

4.2.1 Study population 

Female crossbred offspring of two commercial purebred White Leghorn layer lines 

(W1 and WB) with pedigree information was provided by the Institut de Sélection 

Animale (ISA) B.V., the layer breeding division of Hendrix Genetics (Boxmeer, The 

Netherlands). Fifty sires of line W1 were randomly chosen and mated with 908 

dams of line WB. Dams and sires were housed individually. Each sire was mated to 

approximately 18 dams, and each dam contributed on average 3 female offspring, 

resulting in 2,859 offspring. 

 

4.2.2 Housing and management 

All chickens from the cross between W1 and WB lines were hatched, sexed and 

wing-banded, respectively, at the same time. Only female chicks were kept for this 

study. The offspring of 25 sires were beak trimmed whereas the offspring of 

another 25 sires were kept with intact beaks. Chicks were trimmed manually at day 

old using a hot blade to remove and cauterize the tip of the beak. Hens were 

allocated to rearing cages randomly with respect to beak trimming, 60 individuals 

per cage. From 5 weeks of age onwards, the hens were housed with 20 individuals 

per cage. At 17 weeks of age, all hens were transported to a high-light intensity 

laying house with battery cages. There were three double rows of cages in the 

laying house, with rows in between to allow employees to have access to the cage. 

The outer two double rows consisted of three levels (top; middle, closest to the 

light; and bottom). The inner double rows consisted of four levels (super top; top; 
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middle, closest to the light; and bottom). Hens were only placed in the top and 

middle levels (Figure 4.1). Five half-sibs or full-sibs with the same beak treatment 

were allocated to a single cage. Water and standard commercial layer diet was 

provided ad libitum. The chickens started with a 9L : 15D light scheme, and 

increased 1 hour per week until 16L : 8D was reached when the hens were 26 

weeks of age. The hens received routine vaccinations for Marek’s disease (day 1), 

infectious bronchitis (day 1, week 2, 10, 12 and 15), Newcastle disease (week 2, 6, 

12 and 15), infectious bursal disease (week 3 and 15), turkey rhinotracheitis (week 

8 and 18), fowl pox (week 15), chicken anaemia virus (week 15) and avian 

encephalomyelitis (week 15). 

 
Figure 4.1 The division of the stable. 
 

4.2.3 Study design 

All hens were observed daily from 17 until 83 weeks of age. Hens that died were 

removed from the cages and not replaced. Wing-band number, cage number, and 

date of death were recorded. Cause of death was not determined. For each hen, 

information was collected on survival and number of survival days. Survival was 

defined as dead (0) or alive (1) at the end of the study. From these data, survival 

rate was calculated as the percentage of laying hens still alive at the end of the 

study. Survival days were defined as the number of days from the start of the 

observation until either death or termination of the study, with a maximum of 457 

days (actual age of 581 days, since the date of hatch). 

 

4.2.4 NAb isotypes IgM and IgG titers binding KLH  

At 24 weeks of age, blood samples from all hens were taken from the wing vein for 

measurements of titers of NAb isotypes IgM and IgG binding KLH in the serum 

using ELISA as described earlier (Sun et al., 2011). 
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4.2.5 Data analysis 

Descriptive Statistics. Descriptive statistical analyses were performed using SAS 

9.1.2 (SAS Institute, 2004). Effects were considered significant at P < 0.05. A 

multiple comparison test (Bonferroni) was conducted to study the differences in 

NAb isotype IgM and IgG titers binding KLH in contrast groups.  

Genetic Parameters Estimation of NAb Isotype Titers Binding KLH. A linear animal 

model was used to estimate variance components, heritability of NAb isotype IgM 

and IgG for the whole population including both beak trimmed and non-beak 

trimmed laying hens, using the ASReml program (Gilmour et al., 2006). Fixed 

effects were established using GLM with SAS 9.1.2 (SAS Institute, 2004). Fixed 

effects considered in this study were beak treatment, row and level of the cage. 

The final model for the variance components estimation was: 

                                     
ijk i j k ijky row level a e                                           (1),    

where 
ijky  was NAb isotype IgM or IgG titers binding KLH; was the overall mean,   

irow was the fixed effect of row of the cage ( i = 1, 2, 3). There were six rows as 

shown in Figure 4.1. Row 1 and 6, row 2 and 5, and row 3 and 4 were treated as the 

same row, respectively); 
jlevel was the fixed effect of level of the cage ( j  = 1, 2); 

ka  was the random additive genetic effect of the animal k (direct genetic effect); 

and 
ijke  was the residual term. (Co)variance structures of model terms are 

2var( ) a a A , with A being the additive genetic relationship matrix based on four 

generations of ancestors extracted from the pedigree file provided by ISA, and 2

a
   

is the additive genetic variance and 2var( ) e e I  , in which I is an identity matrix, 2

e   

is the residual variance. Genetic and phenotypic correlations between traits were 

estimated based on bivariate analyses using equation (1). The heritability for NAb 

isotype titers was calculated as 2 2 2 2/ ( )a a eh      , and phenotypic variance was 

2 2 2

P a e      .  

Survival Analysis with NAb Isotype Titers as Explanatory Variables. Multivariable 

multilevel logistic regression analyses were used to assess the relationships 

between survival (binary variable taking the values 0 for survived and 1 for dead) 

from 24 to 83 weeks of age and NAb isotypes IgM or IgG titers binding KLH at 24 

weeks of age in beak trimmed hens and non-beak trimmed laying hens, 

respectively. The original logistic regression model for both populations was:  
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0 1 1 2 2 3 3 4 4log ( )it x x x x                                                (2),    

where log ( ) ln( / (1 ))it     , π = probability to die between 24 and 83 weeks of 

age given a set of explanatory variables: 1x = effect of IgM titers binding KLH at 24 

weeks of age, 2x  = effect of IgG titers binding KLH at 24 weeks of age, 3x  = effect 

of row of cage, 4x = effect of level of cage. β0 is the intercept from the equation 

(the value of the criterion when the explanatory variables are equal to zero), β1, …, 

β4 are the regression coefficients indicating the relative effect of a corresponding 

explanatory variable ( 1x , …, 4x ) on the outcome. The continuous variables IgM, 

IgG titers were inspected for linearity in the log-odds by dividing them into classes. 

The Likelihood Ratio Test was used for the significance of variables. The other 

covariates included row and level of the cage where the laying hens were located. 

Non-significant covariates (P > 0.05) were removed from the model one by one 

starting with the effect showing the highest P-value. If a removed covariate was 

deemed a confounder (i.e. one or more regression coefficients of the remaining 

variables relatively changed over 25%) it was forced back into the model. The fit of 

the logistic models was assessed by the Hosmer and Lemeshow Goodness-of-Fit 

Test (Hosmer and Lemeshow, 1989). Outcomes of logistic regression analyses were 

presented as odds ratios, which indicate the ratio of risks to die dependent on the 

titers of IgM and IgG binding KLH (Sun et al., 2011). 

 

4.3 Results 
 
4.3.1 NAb isotype titers in beak trimmed and non-beak trimmed 

laying hens 

Before the serum samples were collected at 24 weeks of age, 135 laying hens died. 

In total, NAb isotype IgM and IgG titers were determined in 1,555 beak trimmed 

and 1,169 non-beak trimmed hens (Table 4.1). The NAb IgG titers in non-beak 

trimmed hens were significant higher than that in beak trimmed ones. There was 

no significant difference for IgM titers between two populations. There were no 

significant differences for IgM titers between the surviving and non-surviving hens 

within either population. However, in beak trimmed hens, IgG titers in non-

surviving was significant higher than that in the surviving hens (Table 4.1).  

Average IgG and IgM isotype titers of both beak trimmed and non-beak trimmed 

hens located at top level were significantly higher than the hens located at middle 

level. A significant difference of the average IgG and IgM isotype titers of both beak 
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trimmed and non-beak trimmed hens was also observed among the row categories 

where the cages were located: the hens located in the middle two rows (row 

category 3) of the house had higher NAb isotype titers (Table 4.1). 

Table 4.1 Number (n), average natural antibody (NAb) isotype IgM and IgG titers binding 
keyhole limpet hemocyanin (KLH) with SD

1
 in beak trimmed and non-beak trimmed laying 

hens.  

a b
 Different superscripts indicate there is significant difference between different classes 

within the same variable (P < 0.05). 
x y

 indicate there is significant difference for all beak trimmed and non-beak trimmed laying 

hens (P < 0.05). 
1
 SD are in parentheses. 

 

4.3.2 Survival of beak trimmed and non-beak trimmed crossbred 

laying hens 

Table 4.2 shows the survival and average survival days of beak trimmed and non-

beak trimmed hens. The beak trimmed hens had high survival rate of 93.1% and 

average survival days of 447.8 days. The hens with intact beaks had low survival 

Population Variable Class n IgM titers IgG titers 

Non-beak 

trimmed 

Survival Survival 813 8.17 (1.06) 6.69 (1.16) 

Non survival 356 8.18 (1.10) 6.77 (1.24) 

Level Middle 578 8.02 (1.01) 
b
 6.47 (1.13) 

b
 

Top 591 8.33 (1.11) 
a
 6.95 (1.18) 

a
 

Row category 1 398 8.13 (1.14) 
b
 6.55 (1.12)

 b
 

2 398 8.03 (1.10) 
b
 6.42 (1.19) 

b
 

3 373 8.38 (0.94) a 7.20 (1.09) 
a
 

Total  1,169 8.17 (1.07) 6.71 (1.18) 
x
 

Beak trimmed 

Survival Survival 1,447 8.24 (1.05) 6.59 (1.22) 
b
 

Non survival 108 8.30 (1.03) 6.86 (1.16) 
a
 

Level Middle 802 8.13 (0.95) 
b
 6.44 (1.22) 

b
 

Top 753 8.36 (1.13) 
a
 6.79 (1.19) 

a
 

Row category 1 525 8.18 (1.04) 
b
 6.51 (1.16) 

b
 

2 513 8.11 (1.11) 
b
 6.39 (1.22) 

b
 

3 517 8.42 (0.95) 
a
 6.93 (1.22) 

a
 

Total  1,555 8.24 (1.05) 6.61 (1.22) 
y 
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rate of 69.5% and average survival days of 383 days. The difference for survival and 

survival days in the two populations was significant. Kaplan-Meier survival function 

( ( ) ( )S t P T   ) curves also show significant different survival experience versus 

time for beak trimmed and non-beak trimmed laying hens (Figure 4.2). In Figure 

4.3, the probability density function curve for non-beak trimmed laying hens 

increased sharply from 18 to 26 weeks of age, and from 34 to 36 weeks of age (at 

the peak of egg production). This indicates that the death rate increased during 

these time periods. The increase from 18 to 26 weeks of age might be because the 

laying hens were moved to new cages, meeting unfamiliar cage mates and 

experiencing increased light intensity. The increase from 34 to 36 weeks of age 

might be caused by the increasing production of eggs. In beak trimmed laying hens, 

the probability of death was highest at 63 weeks of age, which might be caused by 

aging. 

Table 4.2 Number (n), survival and average survival days (day) with SD
1
 for beak trimmed 

and non-beak trimmed crossbred laying hens.  

Population Animals n Survival (%)
2
*** Survival days (day)

3
*** 

Non-beak 

trimmed 

Total 1,169 69.5 (1.4) 383.0 (4.0) 

Survival 813 -- 457.0 (0.0) 

Non survival  356 -- 214.2 (7.3) 

Beak trimmed 

Total 1,555 93.1 (0.6) 447.8 (1.2) 

Survival 1,447 -- 457.0 (0.0) 

Non survival  108 -- 324.3 (11.6) 
*** P < 0.0001 
1
 SD are in parentheses.  

2
 Survival is the percentage of hens still alive at the end of the study (83 weeks of age).  

3 
Survival days are the average number of days from day of observation (17 weeks of age) till 

death or the end of the study, with a maximum of 457 days.  
 

4.3.3 Genetic parameters estimation for NAb isotype titers 

binding KLH  

In beak trimmed and non-beak trimmed laying hens, heritability of NAb isotypes 

IgG and IgM titers binding was 0.21 (SE = 0.04) and 0.26 (SE = 0.04), respectively 

(Table 4.3). Genetic and phenotypic correlations between IgG and IgM titers were 

estimated to be 0.43 (SE = 0.11) and 0.28 (SE = 0.02), respectively, based on 

bivariate analyses using equation (1).  
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4.3.4 Relationship between NAb isotype titers and survival in 

beak trimmed and non-beak trimmed laying hens 

The final variables for survival analysis in beak trimmed and non-beak trimmed 

laying hens are shown in Table 4.4. In beak trimmed hens, row of the cage was 

neither a significant factor (P = 0.29) nor an important confounder and thus was 

removed from the logistic model. The fit of the ordinary logistic model was 

sufficient (Chi-square = 2.86, P = 0.90). Level was a significant factor (P = 0.002). 

Preliminary analysis indicated that IgM and IgG titers at 24 weeks of age were not 

linearly related to the survival of laying period and were therefore categorized into 

5 classes, with IgG titers < 5.0 and IgM titers < 7.0 as reference class, respectively. 

The odds ratios for higher IgM or IgG titers groups (except for the IgM titers group 

8.0-8.9) were smaller than 1.00, but not significant (P > 0.05) (Table 4.4).  

 

 
Figure 4.2 Kaplan-Meier survival function ( ( ) ( )S t P T   ) curves for beak trimmed 
and non-beak trimmed laying hens. Vertical axis represents estimated probability of survival. 
Horizontal axis is the actual survival days of the laying hens. Any point on the curve gives the 
percentage surviving at a particular time. The Log-rank test and Wilcoxon test were used to 
compare survival curves which both indicate significant difference of survival experience of  
beak trimmed and non-beak trimmed laying hens.   
 

In non-beak trimmed laying hens, row and level of the cage had no direct 

significant effect on survival (P = 0.08 for both variables). However, when removing 

them from the model, the relative change of the coefficient for IgM and IgG titers 

at 24 weeks of age was larger than 25%. So row and level of the cage were both 

included in the final model to get proper estimation for NAb isotype titers. The fit 

of the ordinary logistic model was not sufficient (Chi-square = 6.31, P = 0.61). The 

IgM and IgG titers at 24 weeks of age were not linearly related to the survival of 

laying period and were therefore categorized in 5 classes, with IgG titers < 5.0 and 
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IgM titers < 7.0 as reference class, respectively. The odds ratios for higher IgM 

titers groups (except for the group 9.0-9.9) were smaller than 1.00, but not 

significant (P > 0.05). The odds ratios for higher IgG titers groups were larger than 

1.00, but not significant either (P > 0.05) (Table 4.4).  

 
Figure 4.3 Probability density function curves of beak trimmed and non-beak trimmed laying 
hens. The probability density function is the first derivative of the cumulative probability 
function (f(t) = dF(t) / d(t) = -dS(t) / d(t). For a given interval the surface underneath the 
curve gives the probability that the time it takes to die within that interval. Alternatively, it 
can be thought of as the instantaneous probability of dying at specific time.  
 
Table 4.3 Estimates of genetic parameters1 with SE2 for natural antibody (NAb) isotype IgM 
and IgG titers binding keyhole limpet hemocyanin (KLH) at 24 weeks of age in crossbred 
laying hens. 
 

 IgG titers IgM titers 

2

a  0.29 (0.06) 0.28 (0.05) 

2

e  1.06 (0.05) 0.81 (0.04) 

2

P  1.35 (0.04) 1.10 (0.03) 

h
2
 0.21 (0.04) 0.26 (0.04) 

rg 0.43 (0.11) 

rp 0.28 (0.02) 

1
 

2

a is the additive genetic variance, 
2

e is the random residual variance, 
2

P is the 

phenotypic variance: 
2 2 2

p a e    , h
2 

is the heritability: 
2 2 2 2/ ( )a a eh     , rg is the 

genetic correlation and rp is the phenotypic correlation. 
2
 SE are in parentheses. 
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Table 4.4 Multivariable multilevel logistic regression analysis of IgM and IgG titers in serum 
binding keyhole limpet hemocyanin (KLH) at 24 weeks of age, for survival of 24 to 83 weeks 
of age in beak trimmed and non-beak trimmed laying hens. 

Population Variable Class n Odds Ratio 95% Confidence Interval P-value 

Beak 

trimmed 

IgM titers < 7.0 174 1.00 Ref 
1
 Ref 

7.0 – 7.9 399 0.69 0.33-1.44 0.33 

8.0 – 8.9 583 1.29 0.60-2.76 0.51 

9.0 – 9.9 337 0.79 0.37-1.70 0.54 

> 10.0 62 0.86 0.27-2.69 0.79 

IgG titers < 5.0 91 1.00 Ref 0.45 

5.0 – 5.9 377 0.62 0.18-2.15 0.23 

6.0 – 6.9 441 0.47 0.14-1.59 0.11 

7.0 – 7.9 443 0.37 0.11-1.26 0.27 

> 8.0 203 0.48 0.13-1.76 0.45 

Level 

 

Middle 802 1.00 Ref Ref 

Top 753 0.50 0.31-0.77 0.002 

Non-beak 

trimmed 

IgM titers < 7.0 142 1.00 Ref Ref 

7.0 – 7.9 329 0.76 0.49-1.19 0.24 

8.0 – 8.9 426 0.82 0.53-1.27 0.37 

9.0 – 9.9 228 1.21 0.73-1.99 0.46 

> 10.0 44 0.80 0.38-1.68 0.55 

IgG titers < 5.0 52 1.00 Ref Ref 

5.0 – 5.9 274 1.47 0.77-2.81 0.24 

6.0 – 6.9 323 1.15 0.60-2.18 0.68 

7.0 – 7.9 347 1.04 0.55-1.99 0.90 

> 8.0 173 1.07 0.54-2.15 0.84 

Row 

category 

1 398 1.00 Ref Ref 

2 398 0.74 0.54-1.01 0.06 

3 373 0.72 0.52-1.00 0.05 

Level Middle 578 1.00 Ref Ref 

Top 591 0.80 0.61-1.03 0.08 
1 

Ref  indicated a reference class. 
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4.4 Discussion 

 

4.4.1 Genetic analysis of NAb isotype titers binding KLH in 
crossbred laying hens 

In crossbred laying hens, moderate heritabilities were found for NAb isotypes: 0.21 

(SE = 0.04) for IgG and 0.26 (SE = 0.04) for IgM. This indicated that NAb isotype 

titers in crossbred birds show genetic variation. In a previous study, the heritability 

for IgG and IgM titers binding KLH at 20 weeks of age was estimated as 0.31 and 

0.41, respectively in purebred laying hens (Sun et al., 2013). The difference may 

rest on different populations, and slight differences of the traits studied (isotype 

titers at 24 week in the present and 20 weeks in the previous study). The 

heritability for IgM was higher than IgG in our study. This is in accordance with our 

previous study, and the possible explanations were discussed by Sun et al. (2013). 

The positive genetic and phenotypic correlation between IgM and IgG isotype was 

also observed in the previous study with purebred birds (Sun et al., 2013). The 

moderate genetic correlation suggests that IgM and IgG share partially the same 

genetic background but are relatively independently controlled. However, the 

positive genetic correlations indicated that two isotypes may be selected for 

simultaneously. Selection for improved NAb isotype titers is possible by selection in 

the purebred lines based on NAb measured in crossbreds, if the genetic correlation 

between the traits in purebred and crossbred lines is high. Our dataset only 

contained NAb isotype titers measured on crossbred offspring, it was, therefore, 

not possible to estimate this genetic correlation. It is, however, important to 

estimate the genetic correlation before developing a strategy to breed for 

enhanced NAb titers in crossbred birds. 

Direct heritability can be overestimated when maternal effects exist but are 

neglected in model analysis (Clement et al., 2001; Kruuk and Hadfield, 2007). 

Transfer of maternal immune functions across generations was suggested 

(Grindstaff et al., 2003; Staszewski and Siitari, 2010). In poultry, 10% of the NAb 

levels variation was attributed to maternal environmental effects by Wijga et al 

(2009). In the present study, the limited number (2 to 5) of offspring per dam made 

it difficult to detect a maternal effect. However, heritabilities estimated for NAb 

isotype titers from the dam model (with dam effect being the only random effect in 

the model besides the residual, assuming dam unrelated) were higher than those 

from traditional animal models (data not shown). This indicated that a fraction of 

the variation could be attributed to maternal environmental effects.  
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Row and level of the laying hens cage were established as fixed effect for NAb 

isotype titers to avoid overestimated heritabilities for the traits. Laying hens 

located in top level had significant higher isotype titers than those in middle level 

(Table 4.1). Laying hens located in two middle rows (row category 3) had significant 

higher isotype titers than those in the four side rows (row category 1 and 2) (Table 

4.1). The laying hens located in different levels and row categories may receive 

different light intensity which affected the production of a hormone like melatonin. 

The bilateral interactions between the hormone and immune system were 

reported before (Guerrero and Reiter, 1992; Skwarlo-Sonta, 1996). Furthermore, 

the laying hens located in different row categories may receive different extent of 

employee intervention as employee had access to the cage through rows in 

between which could cause stress for the birds. Effects of stress on the immune 

system were reported before (Gross and Siegel, 1983; Poliak et al., 1997). The 

finding of these associated environmental factors (housing) for NAb isotype titers 

show that these factors should not be ignored in future studies (Gross and Siegel, 

1983). 

 

4.4.2 NAb isotype titers is not predictive for survival in beak 
trimmed or non-beak trimmed crossbred laying hens 

Total NAb titers and isotype IgM and IgG titers binding KLH at 20 weeks of age were 

shown to be significantly associated with and predictive for survival in purebred 

hens in the laying period in previous studies (Star et al., 2007; Sun et al., 2011). In 

egg-production industry, commercial laying hens are usually crossbred. To 

investigate the predictive value of NAb isotype titers for survival in crossbred hens, 

a population of crossbred female offspring from purebred W1 (male) and WB 

(female) lines was used. W1 line was typed to be a “high” NAb line, whereas WB 

line was a “low” NAb line (Star et al., 2007; Sun et al., 2011). The survival of W1 line 

was higher than that of WB line (Ellen et al., 2008). These observations were in line 

with our previous study that high NAb isotype IgM and IgG titers were associated 

with higher survival of laying hens. In the present study, the survival of non-beak 

trimmed laying hens was significantly higher than that of beak trimmed laying hens 

(Table 4.2 and Figure 4.2, 4.3). There was no significant difference of IgM titers in 

the two populations, but the IgG titers in non-beak trimmed laying hens were 

significantly higher (Table 4.1). We performed multivariable multilevel logistic 

analysis of IgM and IgG titers at 24 weeks of age for survival of 24 to 83 weeks of 

age. In beak trimmed laying hens, odds ratios of smaller than 1.00 were found for 

all IgG and IgM isotype groups (except for the IgM titer group 8.9-9.9), which 
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indicated that survival was higher in animals with higher antibody titers, but the 

associations were not significant, and titers and survival were not completely linear 

related. In the non-beak trimmed laying hens, odds ratios of lower than 1.00 were 

found for IgM titer groups (except for the titer group 9.9-10.0), which indicated 

that the survival was lower for the hens with lowest IgM titers. Different from the 

finding in beak trimmed laying hens, odds ratios larger than 1.00 were found for all 

IgG titer groups. This indicated that survival was higher for animals with lower IgG 

titers, although all the associations were not significant and there was no 

completely linear relationship between survival and isotype titers. In the present 

study, we also estimated the breeding value (EBV) of the 50 sires for NAb isotype 

titers and investigated the linear regression between sire EBV and the survival of 

their offspring. Beak trimmed laying hens showed high survival irrespective of the 

sire EBV for NAb isotypes. Sires with higher EBV for NAb isotype titers did not 

always predispose their non-beak trimmed offspring for higher survival either. 

However, the regression indicated that survival of offspring was higher for the sires 

with higher EBV for IgM, whereas survival was lower for the sires with higher EBV 

for IgG (see Appendix). This was in agreement with the logistic regression analysis.  

In general, the observations from logistic regression analysis were not consistent 

with our previous findings, where odds ratio of 0.56 (P < 0.0001) and 0.72 (P = 0.02) 

was found for IgM and IgG, respectively in Brown purebred laying hens and odds 

ratio of 0.74 (P = 0.01) and 0.99 (P = 0.99) was found for IgM and IgG, respectively 

in White Leghorn purebreds (Sun et al., 2011). As we hypothesized previously, 

different causes of mortality in two populations may account for this. In non-beak 

trimmed laying hens, death rate increased from 18 to 26 weeks of age, and from 34 

to 36 weeks of age. The increase from 18 to 26 weeks of age might be because the 

laying hens were moved to new cages, meeting unfamiliar cage mates and 

experiencing increased light intensity. The increase from 34 to 36 weeks of age 

might be caused by the increasing production of eggs. These reasons were causing 

factors of feather pecking. Therefore, mortalities in non-beak trimmed laying hens 

are likely mainly due to cannibalism, which is considered the ultimate phase of 

severe feather pecking. In the study of Peeters et al. (2012), as high as 99.7% (6,683 

out of 6,706 crossbred laying hens with intact beak) of dead animals was related 

with feather pecking behaviour or cannibalism. Beak trimming is an effective way 

of preventing the severe feather pecking and thus improve the survival of laying 

hens (Table 4.2 and Figure 4.2). Based on our observation, the feather condition of 

beak trimmed laying hens was also significantly better than those in non-beak 

trimmed ones (data not shown). Analysis of survival days for the two populations in 
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the present study using direct-associative effect animal models (Bijma et al., 2007) 

indicated that in non-beak trimmed laying hens, the heritable variation for survival 

days was 6-fold larger than that in beak trimmed laying hens, and almost all 

variation was contributed by the associative effect (data not shown). Therefore, 

while some of the deaths of non-beak trimmed laying hens may be due to health-

related causes, the majority of death in this population was caused by harmful 

social interactions, such as feather pecking and cannibalism. In the earlier study, 

NAb isotype titers were also shown to be more sensitive and acute parameters for 

survival in the Brown laying hens, which show much less feather pecking behavior 

than White Leghorn laying hens (Uitdehaag et al., 2008). These results indicate 

more complex relationships between NAb isotype titers and survival of the layers 

population when the cause of mortality is also complex. 

In beak trimmed crossbred hens in the present study, mortality was less likely 

caused by severe feather pecking. The survival was significantly higher than that in 

non-beak trimmed hens (Table 4.2 and Figure 4.2). However, the association 

between the NAb isotype titers and survival was not significant either (Table 4.4). 

This different observation from that in purebred laying hens, may rest on crossing. 

In the present study, a survival of 93.1% was found for beak trimmed crossbred 

offspring. In the study of Star et al. (2007), a survival of 89.6% and 87.1% was found 

for paternal W1 and maternal WB line, respectively. The higher survival of 

crossbred offspring indicated a heterosis for survival. It is possible that heterosis 

has a more prominent effect on survival than the NAb isotypes levels in the 

offspring.  

 

4.5 Conclusions 

NAb isotypes IgM and IgG titers binding KLH at 24 weeks of age are heritable traits 

in crossbred laying hens. Maternal environmental effects on isotype titers are also 

indicated. Environmental factors including row and level of the cage (light intensity) 

were associated with NAb isotype titers. Different from purebred laying hens, there 

was no significant association between NAb isotype titers and survival in beak 

trimmed or non-beak trimmed crossbred laying hens. The present results 

confirmed our previous hypothesis that non-health-related causes of mortality 

(severe feather pecking) overruled the anticipated relationships between NAb 

isotype titers and survival in birds with intact beaks. 
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4.7 Appendix 

The breeding value (EBV) of the 50 sires for IgM and IgG titers, respectively was 

estimated form the following sire model implemented in the ASReml software 

package (Gilmour et al., 2006): y = Xb+ Zs+ e , where y is a vector of IgM or IgG 

titers, b is a vector of fixed effects, with incidence matrix X linking IgM or IgG titers 

to fixed effects; s is a vector of the sire effect (half of breeding values), with 

incidence matrix Z linking IgM or IgG titers to the sire effect; 2var( ) s ss A , with A 

being the sire additive genetic relationship matrix, 2

s  being the sire genetic 

variance; 2var( ) ee I , with I being an identity matrix, 2

e being the residual 

variance.  

The survival of the offspring of the 50 sires was linearly regressed on the EBV of the 

sires for IgM (Figure 4.4A) and IgG (Figure 4.4B) titers. The linear regression models 

were also shown on the trend lines.  
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Figure 4.4 The regression of survival of the offspring on the estimated breeding value (EBV) 
for NAb isotype IgM titers (Figure 4.4A) and IgG titers (Figure 4.4B) binding keyhole limpet 
hemocyanin (KLH). Linear regression model was shown on the trend line. 
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Abstract 

Natural antibodies (NAb) are important humoral components of innate immunity. 

As first line of defense, NAb provide protection to infection and support adaptive 

immunity. An earlier study indicated that serum levels of NAb isotypes IgM and IgG 

at young age were predictive for survival in non-beak trimmed purebred laying 

hens during the laying period. In the present study, genetic parameters of NAb 

isotypes were estimated and relationships between survival and NAb isotypes 

levels in crossbred laying hens were investigated. In total, 1,555 beak trimmed and 

1,169 non-beak trimmed crossbred laying hens were used. Genetic parameters of 

IgM and IgG titers binding keyhole limpet hemocyanin (KLH) at 24 weeks of age 

were estimated with a linear animal model. The heritabilities of NAb isotypes IgG 

and IgM were 0.21 (SE = 0.04) and 0.26 (SE = 0.04), respectively. The genetic 

correlation between IgG and IgM isotypes was 0.43 (SE = 0.11). These results 

indicated that NAb isotype titers were heritable traits in the crossbred laying hens. 

Both NAb isotypes can be selected for simultaneously as the detected positive 

genetic correlation (0.43, SE = 0.11) between them is positive. Both row and level 

of the cage were indicated to be associated environmental factors for NAb isotype 

titers. Different from an earlier study with purebred hens, survival analysis showed 

no significant associations of survival with NAb isotype titers in beak trimmed or 

non-beak trimmed crossbred hens. Non-health-related causes of mortality, 

especially in birds with intact beaks, overruled the anticipated relationships 

between NAb isotype titers and survival.  

Key words: laying hen, beak trimming, feather pecking, feather condition score, 

NAb 
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5.1 Introduction 

During the past decades, poultry breeders have successfully improved the 

production performance, either egg production in layers or meat production in 

broilers. However, considering the ever-increasing social concern, future animal 

husbandry is also required to pay more attention to enhancing animal welfare. In 

laying hens, animal welfare is particularly focused on feather pecking behaviour. 

Feather pecking is defined as pecking towards the plumage of other birds. Two 

major forms of feather pecking can be distinguished: gentle and severe feather 

pecking (Keeling 1995). Severe feather pecking causes damage to the birds, results 

in bald patches, denuded area, haemorrhage, wounds, is painful for the birds, and 

can even lead to death (Gentle and Hunter 1991). Feather pecking is not only a 

welfare but also a serious economic problem (Rodenburg et al., 2008). Decreased 

egg production caused by feather pecking was observed (Johnsen et al., 1998). 

Feather loss because of feather pecking can lead to heat loss, which results in 

higher maintenance energy requirements (Blokhuis and Wiepkema, 1998). 

Mortalities due to cannibalism, which is considered the ultimate phase of severe 

feather pecking, can be substantial. Hill (1986), for example, found up to 15% 

mortality in laying hens housed in aviaries, while Peeters et al. (2012) and Ellen et 

al. (2008) found around 32-48% mortality due to cannibalism in cage-housed birds. 

Prohibition of both cage housing system and beak trimming because of animal 

welfare concern in many European Union member countries increase the risk of 

feather pecking and cannibalism.  

Better understanding of the genetic and biological mechanisms of feather pecking 

is needed to find alternative ways of preventing this unfavorable behaviour. 

Feather condition score (FCS) is a measure of feather damage, which has been 

shown to be closely related to feather pecking behavior in hens housed in groups 

(Bilcik and Keeling, 1999; Uitdehaag et al., 2008). Different from ordinary traits, FCS 

is a so-called interacting phenotype, a trait whose value is also affected by the 

behaviour of an individual’s conspecifics (the cage mates which are kept with the 

focal individual in the same cage in case of laying hens) (Moore et al., 1997). In 

contrast to the direct genetic effect of an individual on its own phenotype, the 

heritable effect of an individual on the phenotype of a conspecific is known as 

associative effect or indirect genetic effect (Griffing, 1967; Wolf, 2003; Bijma et al., 

2007). Associative effects influence a trait’s inherence and contribute to heritable 

variation (Moore et al., 1997; Bijma, 2011). For the genetic parameters estimation 

of survival days in non-beak trimmed laying hens, the inclusion of associative 

effects in the model gave higher heritable variation than a traditional linear animal 
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model (Muir, 2005; Ellen et al., 2008; Peeters et al., 2012). Consequences of 

feather pecking behaviour in beak trimmed and non-beak trimmed laying hens are 

different, and therefore FCS can be a different trait in both types of birds. In the 

first part of the present study, we estimated genetic parameters for FCS in beak 

trimmed and non-beak trimmed laying hens, respectively, with two variance 

components models: a traditional linear model and a linear animal model 

combining direct and associative effects. 

approach can help to understand the biological mechanism of social interactions 

(Moore et al.,1997; Wolf et al., 1998). Knowledge of the traits that underlie the 

interacting phenotype is, however, needed for the trait-based approach 

(Kirkpatrick and Lande, 1989). Brain serotonergic levels (Chaouloff, 2000) and some 

neurotransmitters like dopamine and hormones (Cheng et al., 2003) were 

correlated with feather pecking. El-Lethey et al. (2003) found that feather pecking 

was related with corticosterone levels, which also reduced immune responses. 

Recently, the effects of immunity on feather pecking behavior were suggested by 

several studies. Buitenhuis et al. (2004) reported a significant genetic and 

phenotypic correlation between feather pecking and primary antibody response to 

keyhole limpet hemocyanin (KLH). Parmentier et al. (2009) found that when 

chickens were challenged intratracheallly and repeatedly at a young age with 

different doses of endotoxin lipopolysaccharide (LPS) and the protein human serum 

albumin (HuSA), they showed different levels of feather damage at an older age. In 

addition, some SNPs or QTLs which were associated with FCS (Biscarini et al., 

2010b) were also significantly associated with levels of serum natural antibody 

(NAb) isotypes IgM and IgG binding KLH (Sun et al., 2013). These variations were 

mostly reported to be associated with the associative genetic effects on FCS, and 

few with the direct genetic effect (the genetic effect of the individual’s own 

genotype on its FCS). This suggests that the NAb isotypes titers may not only be 

related with the susceptibility to be pecked at, but particularly with the propensity 

to perform feather pecking. In our previous study, NAb isotype titers were reported 

to be associated with survival of laying hens (Sun et al., 2011). As mentioned 

previously, severe feather pecking and cannibalism may also induce mortality. It is 

possible that the NAb isotype is associated with survival by regulating the feather 

pecking behaviour. Therefore in the second part of the present study, we model an 

individual’s FCS as a function of the NAb isotype titers of the individual and those of 

its cage mates, to investigate the possible relationship between feather pecking 

behaviour and levels of NAb isotype IgM and IgG in beak trimmed and non-beak 

trimmed laying hens. 
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5.2 Materials and methods 

 

5.2.1 Study population 

Female crossbred offspring of two commercial purebred White Leghorn layer lines 

(male W1 and female WB) were provided by Institut de Sélection Animale (ISA) 

B.V., the layer breeding division of Hendrix Genetics (Boxmeer, The Netherlands). 

The two purebred lines and the crossbred show high mortality with intact beaks 

(Ellen et al., 2008; Peeters et al., 2012). The W1 and WB lines were verified as “high 

and low natural antibody isotype” lines, respectively (Star et al., 2007; Sun et al., 

2011). Uitdehaag et al. (2008) showed that birds of the W1 lines have more severe 

feather pecking behaviour and feather damage than birds of the WB line 

(Uitdehaag et al., 2008), whereas Ellen et al. (2008) found a higher mortality in the 

WB line. Fifty sires of line W1 were randomly chosen and mated with 908 dams of 

line WB, where dams were nested within sires. Each sire was mated to 

approximately 18 dams, and each dam contributed on average 3 female offspring, 

resulting in 2,724 offspring. 

 

5.2.2 Housing and management 

All chickens were hatched, sexed and wing-banded in the right wing for individual 

identification. Only female chicks were kept for this study. Offspring of 25 sires 

were beak trimmed, whereas offspring of another 25 sires were kept with intact 

beaks. Chicks were trimmed manually at day old using a hot blade to remove and 

cauterize the tip of the beak. Hens were allocated to rearing cages randomly with 

respect to beak trimming, 60 individuals per cage. From 5 weeks of age onwards, 

the hens were housed with 20 individuals per cage. The cage in which an individual 

was reared was not recorded. The cage number for each hen was not recorded. At 

17 weeks of age, all hens were transported to a high-light intensity laying house 

with conventional 5-bird cages (44 cm height × 40 cm depth × 55 cm width). Each 

pair of back-to-back cages shared two drinking nipples. A feeding through was in 

front of the cages, with a length of 55 cm per cage. After placing the birds in the 

cages, hen were wing-banded in the left wing as well, to avoid loss of data. There 

were six rows (three double rows) of cages in the laying house, with corridors in 

between to allow employees to have access to the cages (Figure 5.1). The outer 

two double rows consisted of three levels (top; middle, closest to the light; and 

bottom). The middle double rows consisted of four levels (super top; top; middle, 

closest to the light; and bottom). Hens were only placed in the top and middle 

levels. Five hens, which were a mix of half sibs and full sibs were allocated to the 
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same cage. The hens in each pair of back-to-back cages had received the same 

treatment regarding to beak trimming and could contact with their back neighbors 

through the wire mesh. Contact with hens in adjacent cages was impossible 

because of the closed wall in between. Water and standard commercial layer diet 

was provided ad libitum. Rearing started with a 9L:15D light scheme and increased 

1 hour per week until 16L:8D was reached when the hens were 26 weeks of age. 

The hens received routine vaccinations for Marek’s disease (day 1), infectious 

bronchitis (day 1, week 2, 10, 12 and 15), Newcastle disease (week 2, 6, 12 and 15), 

infectious bursal disease (week 3 and 15), turkey rhinotracheitis (week 8 and 18), 

fowl pox (week 15), chicken anaemia virus (week 15) and avian encephalomyelitis 

(week 15). 

 

Figure 5.1 The division of the stable, showing the light arrangement, numbers of the cages 
per row and level (Sun et al., 2013). 
 

5.2.3 Study design 

All hens were observed daily from 17 until 83 weeks of age for survival. Hens that 

died were removed from the cages without replacement. Wing-band number and 

date of death were recorded. Cause of death was not determined. For each hen, 

information was collected on survival and survival days. Survival was defined as 

dead (0) or alive (1) at the end of the study. From this data, survival rate was 

calculated as the percentage of laying hens still alive at the end of the study. 

Survival days were defined as the number of days from the start of the observation 

until either death or termination of the present study, with a maximum of 457 

days. At 24 weeks of age, 2 mL blood samples of all birds were taken from the wing 

vein using the plastic vacuum blood collection tubes containing sodium heparin. 

The bleeding procedure for each bird was 15 to 30 seconds. The plasma samples 

were collected after the centrifugation of the blood and used to measure NAb 

isotype IgM and IgG titers binding KLH. At 53 weeks of age, the individual feather 

condition of neck, back, rump and belly areas was scored. 
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5.2.4 NAb isotypes IgM and IgG titers binding KLH  

There are no antigens in the environment of laying hens that show immunological 

cross-reactivity with KLH based on the literature and pilot experiments. Thus, prior 

exposure or sensitization to this protein is considered unlikely. According to 

definitions, NAb are immunoglobulins present in animals in the absence of earlier 

(deliberate) immunization, vaccination or infection (Avrameas 1991). Therefore the 

antibodies detected in the serum binding KLH were regarded as NAb. Indirect 

enzyme-linked immunosorbent assay (ELISA) as described earlier (Sun et al., 2011) 

was performed to measure levels of serum NAb isotypes IgM and IgG binding KLH 

at 24 weeks of age by the same person on different days. NAb isotypes titers were 

only measured once for each sample. However, each plate was run with two 

duplicated positive plasma samples of eight step wised dilutions. The inter-assay CV 

and intra-assay CV was calculated as 5.1% and 4.2%, respectively. 

 

5.2.5 Feather Condition Scoring 

In the present study, feather damage of the laying hens was assessed by evaluating 

the individual’s feather condition at 53 weeks of age of four body areas: neck, back, 

rump and belly, which are the frequent targets of feather pecking. The scoring was 

performed by four persons, following the classification of Bilcik and Keeling (1999), 

as modified by Uitdehaag et al. (2008). In a pilot study, the average correlation 

between persons performing the scoring was estimated 0.82 for neck, back, and 

rump, and 0.72 for belly by E. D. Ellen (Wageningen University, Wageningen, The 

Netherlands, personal communication). There were 6 classes for FCS,  ranging from 

0 (intact feathers) to 5 (almost all feathers missing), with higher score indicating 

more damage. The sum of scores of four areas was used as an overall parameter of 

feather condition. Sum = individual neck score + individual back score + individual 

rump score + individual belly score (ranging from 0 to 20). Birds that died before 53 

weeks of age (252 out of 1,169 non-beak trimmed, and 31 out of 1,555 beak 

trimmed laying hens) did not receive their FCS. 

 

5.2.6 Data analysis 

Descriptive statistical analyses were performed using SAS 9.1.2 (SAS Institute, 2004). 

Effects were considered significant at the level of P < 0.05. A general linear model 

(GLM) was used to study the differences in FCS between beak-trimmed and non-

trimmed birds, and the differences in IgM and IgG titers binding KLH between both 

groups. The correlations between FCS of four different body areas were estimated 



5 Feather pecking and natural antibody isotypes in laying hens 

 

 

110 
 

by Pearson product-moment correlation. The average IgM and IgG titer of cage 

mates of every individual laying hen was also calculated.  

 

5.2.6.1 Variance Components Estimation of FCS 

A traditional linear animal model and a direct-associative effect model were used 

to estimate the variance component of FCS. FCS of beak trimmed and non-beak 

trimmed laying hens were analysed separately using the GLM procedure of the SAS 

program (SAS Institute, 2004). To correct for systematic non-genetic differences 

among observations, factors with P < 0.10 from the GLM were included as fixed 

effects in the model for estimating genetic parameters. Fixed effects for FCS in 

beak trimmed laying hens were (1) row of cages, (2) level of the cages where the 

laying hens were located to account for infrastructural effects like light intensity 

difference (Kjaer and Vestergaard 1999), and (3) person who scored the feather 

condition. In non-beak trimmed laying hens, only person who scored the feather 

condition was included as fixed effects.  

In order to compare genetic parameters for FCS between beak trimmed and non-

beak trimmed laying hens, a bivariate model was used by treating FCS as different 

traits for both populations.  

(1) Traditional Linear Animal Model  

Genetic parameters of FCS were first estimated using a traditional linear animal 

model as implemented in the ASReml software package (Gilmour et al., 2006): 

                   
              

              

1_D 1_D1 1 1 1 1 1

2_D 2_D2 2 2 2 2 2

Z 0 ay X 0 b V 0 cage e
= + + +

0 Z ay 0 X b 0 V cage e
 (1), 

where subscript 1 indicates beak trimmed laying hens and subscript 2 indicates 

non-beak trimmed laying hens; y is a vector of individual sum of FCS at 53 weeks of 

age, b is a vector of fixed effects, with incidence matrix X linking FCS to fixed effects; 

a is a vector of usual breeding values, with incidence matrix ZD linking FCS to the 

breeding value; cage is a vector of independent random cage effects; V is an 

incidence matrix linking observations to random cage effects; e is vector of random 

residuals. The direct genetic (co)variance structure was:  

var
  
  
    

1_D 12_D

12_D 2_D

2

A A1_D

2
2_D A A

σ σa
= A

a σ σ

,                           

where 
1_D

2

Aσ  is the direct genetic variance for beak trimmed laying hens, 
2_D

2

Aσ
 is the 

direct genetic variance for non-beak trimmed laying hens, 
12_DAσ

 is the direct genetic 
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covariance between beak trimmed and non-beak trimmed laying hens. 
indicates the Kronecker product of matrices. A is the additive genetic relationship 

matrix generated from a five-generation pedigree. Phenotype variance was 

calculated as 2 2 2 2

DP A cage e      . Heritabilities were calculated as /2 2 2

DA Ph   .  

(2) Direct-associative effect model 

To estimate genetic parameters for both direct and associative effects, the 

following model extended from Muir (2005) was used:  

                  
                  

                  

1_D 1_D 1_S 1_S1 1 1 1 1 1

2_D 2_D 2_S 2_S2 2 2 2 2 2

Z 0 a Z 0 ay X 0 b V 0 cage e
= + + +

0 Z a 0 Z ay 0 X b 0 V cage e

   (2), 

where the vectors and incidence matrices correspond to those in the traditional 

linear animal model; ZS is an incidence matrix linking an individual’s FCS to its cage 

mates’ breeding value vector. aS is a vector of social breeding values for all cage 

mates. The direct-associative genetic (co)variance structure was: 

var

 
   
   
   
   
        

1_D 12_D 1_DS 1_D_2_S

12_D 2_D 2_D_1_S 2_DS

1_DS 2_D_1_S 1_S 12_S

1_D_2_S 2_DS 12_S 2_S

2

A A A A
1_D

2

A A A A2_D

2
1_S A A A A

2
2_S

A A A A

σ σ σ σa

σ σ σ σa
= A

a σ σ σ σ

a σ σ σ σ

 

where 
1_D

2

Aσ
, 

2_D

2

Aσ
, and 

12_DAσ  are the same as in the traditional linear animal model. 

1_S

2

Aσ
 is the associative genetic variance for beak trimmed laying hens; 

2_S

2

Aσ
 is the 

associative genetic variance for non-beak trimmed laying hens; 
12_SAσ is the 

associative genetic covariance between beak trimmed and non-beak trimmed 

laying hens; 
1_DSAσ

is the direct-associative genetic covariance in beak trimmed laying 

hens; 
2_DSAσ is the direct-associative genetic covariance in non-beak trimmed laying 

hens; 
1_D_2_SAσ

is the genetic covariance between the direct effect of beak trimmed 

and the associative effect of non-beak trimmed laying hens; 
2_D_1_SAσ

is the genetic 

covariance between the associative effect of non-beak trimmed laying hens and 

the direct effect of beak trimmed laying hens. The total heritable variance for 

response to selection was 2 2 2 22( 1) ( 1)
D DS STBV A A An n         (Bijma et al., 2007). 

2

P  is the phenotypic variance, 2 2 2 2 2( 1)
D SP A A cage en         . n is the number of 
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laying hens kept in the same cage, and n = 5 in the present study. T
2
 expresses the 

total heritable variance relative to the phenotypic variance: 2 2 2/TBV PT   . 

Likelihood ratio tests were used to test the significance of the random associative 

effect in univariate model in beak trimmed and non-beak trimmed laying hens, 

respectively.  

 

5.2.6.2 Trait-based Approach 

To investigate whether NAb can explain variation in FCS among individuals, a trait-

based analysis for FCS was conducted by fitting a linear mixed model, following 

Moore et al. (1997). The fixed effects were the same as those detected in the 

variance components approach. Therefore, the model for beak trimmed laying 

hens was: 

                
ijkl i j k ly row level person bx cage                              (3), 

where yijkl is individual sum FCS at 53 weeks of age; μ is the overall mean; rowi is the 

fixed effect of row of the cage (i = 1, 2, 3, 4, 5, 6);  levelj is the fixed effect of level of 

the cage (j = 1, 2); personk is the effect of the k
th 

(k = 1, 2, 3, 4) person who scored 

the feather condition; cagel  is the random effect of cage l, x is the fixed effect of 

individual IgG or individual IgM or average IgM titers of the cage mates or average 

IgG titers of the cage mates, b is the estimated parameter for the covariable x . The 

model for non-beak trimmed laying hens was: 

                    
ikl i k ly row person bx cage                                 (4),  

where all the terms are the same as those specified in model (3). The sum FCS for 

beak trimmed and non-beak trimmed laying hens was tested for normality before 

model (3) and (4) were run with a MIXED procedure of SAS program (SAS Institute, 

2004). 

 

5.3 Results 
 
5.3.1 FCS of beak trimmed and non-beak trimmed crossbred 

laying hens 

The average individual FCS of the four body areas (neck, back, rump, and belly) at 

53 weeks of age for beak trimmed and non-beak trimmed laying hens is shown in 

Table 5.1. In both populations, the score for belly was the lowest among the four 

areas, indicating that the belly area was less pecked at. In contrast, the neck and 

rump were areas with highest scores, indicating more damage in these areas. The 
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coefficient of variation (C.V.) ranged from 23% to 48% for non-beak trimmed, and 

ranged from 31% to 70% for beak trimmed laying hens. This indicated considerable 

variations for the FCS of both populations. GLM analysis showed that the FCS for 

different body areas and the sum of the FCS in beak trimmed laying hens was 

significantly lower than that in non-beak trimmed laying hens, indicating that non-

beak trimmed laying hens had more feather damage (Table 5.1).  

Table 5.1 Number of observations (n), and average feather condition score (FCS)
1
 (± SD) of 

four body areas and sum FCS
2
 for surviving and non-surviving of beak trimmed and non-beak 

trimmed crossbred laying hens. 

*** P < 0.0001, which indicates that FCS for beak trimmed and non-beak trimmed laying 
hens is significantly different 
1
 There are 6 classes for FCS, ranging from 0 (intact feathers) to 5 (almost all feathers 

missing), with higher score indicating more damage. 
2
 Sum FCS = individual neck score + individual back score + individual rump score + individual 

belly score (ranging from 0 to 20). 
3
 Survival indicated the animals survived until the end of the observation period (83 weeks of 

age). 
4
 Non-survival indicated the animals died between 53 weeks of age (when feather condition 

scoring performed) and the end of the observation period (83 weeks of age), as the birds 
died before were not scored. 
5
 C.V. (%), coefficient of variation = (SD / Mean)*100% 

Both in beak trimmed and non-beak trimmed laying hens, as expected, the 

correlation coefficients between the scores of different body areas were positive 

(Table 5.2). The correlations between the areas which were close to each other, 

like back and rump, neck and back, were higher than those between the areas 

which were further away from each other, like neck and belly. The sum of scores of 

these four body areas was used as the aggregated FCS. 

 

Population                           N           Neck***        Back***         Rump***      Belly***         Sum*** 

 
Non-beak 

trimmed 

Survival3                  813      3.78±0.91     3.54±1.04      3.76±1.03     2.77±1.31       13.77±3.48 

 
Non survival4    104      3.69±0.85     3.70±1.16      3.92±1.12      2.92±1.44       14.32±4.10 

 
Total                 917      3.70±0.85     3.56±1.05      3.78±1.04      2.79±1.33       13.83±3.55 

C.V. (%)5                                            23                  29                   28                    48                    26 

Beak  

trimmed 

Survival           1,447    2.97±0.91     2.64±1.20      2.84±1.35       1.79±1.25       10.23±3.80 

Non survival    77        2.94±1.13     2.78±1.17       3.13±1.28      1.86±1.31        10.70±4.02 

Total                1,524   2.96±0.92     2.65±1.20       2.85±1.35       1.79±1.25       10.25±3.81 

C.V. (%)                             31                   45                   47                      70                    37 
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Table 5.2 Pearson correlation coefficients1 between the feather condition scores of four 
body areas (neck, back, rump, and belly) in beak trimmed (above the diagonal) and non-beak 
trimmed crossbred laying hens (below the diagonal) 

 Neck Back Rump Belly Sum
2
 

Neck -- 0.66 0.44 0.37 0.73 

Back 0.65 -- 0.71 0.46 0.88 

Rump 0.50 0.71 -- 0.52 0.85 

Belly 0.40 0.60 0.62 -- 0.75 

Sum
2
 0.73 0.89 0.86 0.83 -- 

1
 All the correlations were significantly different from 0 (P < 0.0001). 

2
 Sum = sum of the individual feather condition scores of neck, back, rump, and belly areas.    

 

5.3.2 Genetic parameters of FCS 

The estimated genetic parameters for FCS in beak trimmed and non-beak trimmed 

laying hens, using either a bivariate traditional linear animal model or a bivariate 

direct-associative effect model, are given in Table 5.3. Using a traditional linear 

animal model, similar and significant additive genetic variance (
2

A ) were found in 

both populations. The proportion of phenotypic variance explained by direct 

genetic variance was denoted as h
2
. The estimated h

2
 of FCS was slightly higher in 

non-beak trimmed laying hens (0.20, SE = 0.06) than in beak trimmed laying hens  

(0.17, SE = 0.05). Using a direct-associative effect model, direct (
2

DA ) and  

associative genetic variance (
2

SA
) for FCS were estimated in beak trimmed and 

non-beak trimmed laying hens, respectively. Total heritable variance relative to the 

phenotypic variance (T
2
), and genetic correlations between the direct and 

associative effect (rDS) for FCS were also calculated based on those estimations. 

Likelihood ratio tests were used to statistically compare the traditional linear 

animal model and the direct-associative effect model. In the beak trimmed laying 

hens, final log-likelihoods as reported from traditional linear animal model and 

from the direct-associative effect model were -1334.52 and -1332.12, respectively. 

The test statistics
2

2 2 [ 1332.12 ( 1334.52)] 4.8df      
, which corresponds to P = 0.09. 

In the non-beak trimmed laying hens, final log-likelihoods as reported from the 

traditional linear model and direct-associative effect model were -2258.99 and -

2261.48, respectively. The test statistics 
2

2 2 [ 2258.99 ( 2261.48)] 4.98df       , which 

corresponds to P = 0.08. Therefore, using the common criterion of P < 0.05, the 
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associative effect for FCS was not a significant random effect in both beak trimmed 

or non-beak trimmed laying hens, and including this random effect did not 

significantly improve the models. This observation agrees with the standard errors 

of the estimated associative genetic variance and the direct-associative genetic 

covariance, which were not significantly different from zero (Table 5.3).  

 

5.3.3 NAb Isotype Titers in beak trimmed and non-beak trimmed 

laying hens 

Table 5.4 shows the average NAb isotypes IgM and IgG titers binding KLH in beak 

trimmed and non-beak trimmed laying hens. For IgG binding KLH, the titers in non-

beak trimmed hens were significantly higher than that in beak trimmed hens. 

Furthermore, in beak trimmed laying hens, IgG titers in the non-surviving birds 

were significantly higher than that in the surviving birds. For IgM binding KLH, there 

was no significant difference between beak trimmed and non-beak trimmed laying 

hens. There was no significant difference for IgM between the surviving and non-

surviving birds within beak trimmed nor non-beak trimmed group. Overall, the IgM 

and IgG titers were higher in laying hens with higher FCS, although the difference 

was not significant. 

 

5.3.4 Direct and associative effect of NAb isotypes on FCS 

In both populations, the direct effects of IgM and IgG on FCS were not significantly 

different from zero, which indicated that an individual’s FCS was not significantly 

affect by its own isotype titers (Table 5.5). In non-beak trimmed laying hens, the 

estimated parameters for average titers of IgM and IgG titers of the focal 

individual’s cage mates were not significantly different from zero. In beak trimmed 

laying hens, the averaged IgG titers of cage mates was a significant factor for the 

individual’s FCS (P = 0.03). The estimated parameter for averaged IgG was 0.36 (SE 

= 0.16), which indicated that when its cage mates had higher IgG titers, the 

individual may have worse feather condition. Averaged IgM titers of cage mates 

was not (P = 0.83). 
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Table 5.3 Estimated parameters with standard error from traditional and direct-associative 

animal model for beak trimmed and non-beak trimmed laying hens 

 Traditional linear animal model Direct-associative effect model  

 Non-beak trimmed Beak trimmed  Non-beak trimmed Beak trimmed  

Log-likelihood
1
 - - 2.40 2.49 

2

cage
 

6.95 ± 0.78 7.18 ± 0.68 6.14 ± 0.88 6.50 ± 0.75 

2

DA
 

2.31 ± 0.79 2.16 ± 0.60 1.46 ± 0.85 1.99 ± 0.77 

DSA
 

  -0.30 ± 0.30 0.24 ± 0.24 

2

SA
 

  0.36 ± 0.20 0.07 ± 0.15 

2

e  
2.40 ± 0.52 3.11 ± 0.39 2.34 ± 0.60 3.44 ± 0.38 

2

P
 

10.76 ± 1.08 12.46 ± 0.71 11.39 ± 0.81 12.22 ± 0.71 

2

TBV
 

  4.84  ± 2.73 5.03 ± 2.15 

h
2
 or T

2
 0.20 ± 0.06 0.17 ± 0.05 0.42 ± 0.24 0.41 ± 0.17 

rDS   -0.41 ± 0.40 0.63 ± 1.06 

12_DAσ  
1.41 ± 0.75 1.24 ± 0.89 

12_SAσ  
 -0.05 ± 0.32 

2_D_1_SAσ  
 -0.006  ± 0.56 

1_D_2_SAσ  
 0.21 ± 0.59 

rD 0.63 ± 0.29 

64 

0.73 ± 0.48 

rS  -0.33 ± 2.02 

rT  0.24 ± 1.41 

1
 Log-likelihoods for the direct-associative model are expressed as a deviation from those of 

the traditional linear animal model. In the traditional linear animal model, 2

DA is the direct 

additive genetic variance, 2

P  is the phenotypic variance, 2 2 2 2

DP A cage e      , h
2
 is the 

direct heritability, /2 2 2

DA Ph   . 2

SA  is the associative genetic variance, 
DSA is the direct-

associative genetic covariance. In the direct-associative effect model, the total heritable 
variance 2 2 2 22( 1) ( 1)

D DS STBV A A An n        (Bijma et al., 2007). 2

P  is the phenotypic 

variance, 2 2 2 2 2( 1)
D SP A A cage en         , n is the number of laying hens kept in the 

same cage, n = 5 in the present study. T2 is the total heritable variance relative to the 

phenotypic variance: 2 2 2/TBV PT   . rD is the genetic correlation between the direct and 
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associative effect. 
12_DAσ

is direct genetic covariance between beak trimmed and non-beak 

trimmed laying hens, 
12_SAσ

is the associative genetic covariance between beak trimmed and 

non-beak trimmed laying hens. 
1_D_2_SAσ

is the genetic covariance between the direct effect of 

beak trimmed and the associative effect of non-beak trimmed laying hens. rD is the genetic 
correlation between direct effect of beak trimmed and non-beak trimmed laying hens, 

12 _ 1_ 2 _

2 2/
D D DD A A Ar    . rS is the genetic correlation between associative effect of beak trimmed 

and non-beak trimmed laying hens, 
12 _ 1_ 2 _

2 2/
S S SS A A Ar    . rT is the genetic correlation between 

total heritable variance beak trimmed and non-beak trimmed laying hens,

12 _ 1_ _ 2 _ 2 _ _1_ 12 _

1_ 1_ 1_ 2 _ 2 _ 2 _

2

2 2 2 2 2 2

( 1) ( 1) ( 1)

2( 1) ( 1) 2( 1) ( 1)

D D S D S S

D DS S D DS S

A A A A

T

A A A A A A

n n n
r

n n n n

   

     

     


       

 (Peeters et al., 2012).     

 

Table 5.5 Parameter estimates with standard error and the significant level (P-value) of the 
fixed effects of individual IgG titers, individual IgM titers, averaged IgG titers of cage mates, 
and average IgM titers cage mates, on individual feather condition score. 

 Non-beak trimmed  Beak trimmed 

Fixed effect Estimate (SE) P-value  Estimate (SE) P-value 

IgG 0.09 (0.07) 0.20  -0.07 (0.06) 0.21 

IgM 0.09 (0.10) 0.38  -0.08 (0.08) 0.32 

Cage mates IgG -0.15 (0.19) 0.43  0.36 (0.16) 0.03 

Cage mates IgM 0.05 (0.19) 0.80  0.04 (0.18) 0.83 

 

5.4 Discussion 

In the present study, we compared FCS in beak trimmed and non-beak trimmed 
crossbred laying hens. Variance component estimation indicated that there was 
relevant heritable variation for FCS in both populations using a traditional linear 
animal model. Using a linear animal model combining the direct and associative 
effects, there were no significant social genetic effects. A possible link between the 
NAb isotype titers binding KLH and feather pecking behaviour was also 
investigated.   
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Table 5.4 Number (n), and average titers (± SD) of NAb isotypes IgM and IgG binding KLH of 

beak trimmed and non-beak trimmed laying hens 

a
 The total IgG titers in beak trimmed and non-beak trimmed laying hens is significantly 

different with P < 0.05. 
b
 The IgG titers for the survived and non-survived beak trimmed laying hens is significantly 

different with P < 0.05.  
1
 Surviving indicated the animals survived until the end of the observation period (83 weeks 

of age), non-surviving indicated the animals died between 24 weeks of age and the end of 
the observation period. 
2
 Sum FCS = the sum of feather condition score of four body areas. 

 

 

Population   n IgM titers IgG titers 

Non-beak 

trimmed 

Total   1,169 8.17±1.07 
a
6.71±1.18 

Survival
1
 Surviving 813 8.17±1.06 6.69±1.16 

Non 

surviving 

356 8.18±1.10 6.77±1.24 

Sum FCS
2
 0-4 6 8.38±1.30 7.92±1.60 

5-8 60 7.93±0.99 6.46±1.13 

9-12 251 8.06±1.10 6.53±1.19 

13-16 377 8.18±1.04 6.81±1.16 

17-20 223 8.40±1.05 6.76±1.07 

NA 252 8.18±1.10 6.77±1.27 

Beak 

trimmed 

Total  1,555 8.24±1.05 
a
6.61±1.22 

Survival
1
 Surviving 1,447 8.24±1.05 

b
6.59±1.22 

Non 

surviving  

108 8.30±1.03 
b
6.86±1.16 

Sum FCS
2
 0-4 89 8.30±1.06 6.35±1.42 

5-8 436 8.23±0.97 6.58±1.24 

9-12 594 8.20±1.09 6.62±1.19 

13-16 308 8.30±1.10 6.64±1.22 

17-20 97 8.32±0.98 6.80±1.19 

  NA 31 8.19±1.00 6.59±1.13 
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5.4.1 FCS in beak trimmed and non-beak trimmed laying hens                          

Beak trimming is the removal of the tip of the beak of a bird. This treatment is 

performed as part of an overall strategy to reduce feather pecking and cannibalism, 

especially in laying hens. In the present study, the feather condition in beak 

trimmed birds was significant better than that in non-beak trimmed laying hens 

(Table 5.1). Thus, as expected, beak-trimming reduces feather damage. The 

variation of FCS was, however, larger than that in non-beak trimmed laying hens. 

This indicated that beak trimmed laying hens still have feather damage problems 

due to different extent of feather pecking behaviour. Beak trimming only reduces 

the mortality instead of preventing the feather pecking propensity. 

Among the four body areas, the belly received the least feather damage, while the 

neck and rump received the most. Similar patterns were also found in non-beak 

trimmed purebred laying hens (Biscarini et al., 2010b). Bright et al. (2006) also 

found that the rump area of  free-ranged laying hens were most damaged. The fact 

that back and rump are the areas most exposed to other cage mates could be an 

explanation. However, in laying hens raised in floor pens, Bilcik and Keeling (1999) 

observed that the belly region became denuded first. The difference may be caused 

by the difference in housing systems. Both in beak trimmed and non-beak trimmed 

laying hens, the Person correlations between the scores of different body areas 

were positive and high, especially between the areas which were close to each 

other, back and rump, for example (Table 2). Feather condition scoring as a 

behavioural measurement at the individual level is a labour-intensive and time-

consuming work. Given the extent of damage and correlations between the FCS for 

different body areas, it may be efficient and sufficient to only score one 

representative body area, like back or rump.  

The survival of beak trimmed laying hens was significantly higher than non-beak 

trimmed laying hens (Sun et al., 2013). This suggests that severe feather damage 

maybe a causing factor for the mortality afterwards. However, neither in the beak 

trimmed nor in the non-beak trimmed laying hens, a significant difference was 

detected for the FCS between non-surviving and surviving birds. This might rest not 

only on the limited number of non-surviving hens after 53 weeks of age (the age for 

feather scoring), but also on the fact that the laying hens died before 53 weeks 

were not scored (in non-beak trimmed laying hens, a high death rate was observed 

from 18 to 26 weeks of age, and around 35 weeks of age (Sun et al., 2013)). 

Unfortunately, these hens did not receive a FCS. Feather damage due to feather 

pecking cumulates over time. Feather pecking has been observed as early as one 
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day after hatching (Roden and Wechsler 1998) with sudden increases of 

cannibalism frequencies in the brooding period of 4 to 11 weeks of age (Hughes 

and Duncan 1972), and around the onset of egg laying at 20 weeks of age 

(McKeegan and Savory 1998). It could be speculated that the animals that died 

before the scoring had a poor feather condition. Peeters et al. (2012) detected a 

substantial associative effect for survival days in non-beak trimmed laying hens. 

This together with our analysis on FCS supports the argument that severe feather 

pecking contributed to the mortality in non-beak trimmed laying hens.  

 

5.4.2 Direct and associative effect for FCS  

Similar to other interaction phenotypes, like survival days in laying hens (Ellen et 

al., 2008; Peeters et al., 2012), FCS of an individual hen is affected by both the 

individual and its conspecifics when kept in groups. Ignoring the social interaction 

among individuals which generate additional heritable variation may result in 

biased genetic parameters estimation. In the present study, we estimated the 

genetic parameters for FCS in beak trimmed and non-beak trimmed laying hens, 

using the traditional linear animal model, and a model combining the direct and 

associative effect, respectively. Using the traditional linear model, the heritability 

(h
2
) for FCS in non-beak trimmed laying hens was estimated to be 0.20 (SE = 0.06), 

and in beak trimmed laying hens was estimated to be 0.17 (SE = 0.05). Using a 

direct-associative effect model, the estimated associative genetic variance was 

substantial, causing the total heritable variation (T
2
) to be 2-fold greater than 

ordinary heritability (Table 5.3). Nevertheless, the estimated associative genetic 

variance was not significantly different from zero. This also agrees with the results 

from the likelihood ratio test for the significance of random associative genetic 

effect (P = 0.09 in beak trimmed birds, and P = 0.08 in non-beak trimmed birds). 

Hence, our results suggest that associative genetic effects may be important in 

those populations, but lacked the statistical power to accurately estimate those 

effects, probably due to a limited number of records (Table 5.1). T. Brinker 

(Wageningen University, Wageningen, The Netherlands, personal communication) 

showed that social effects had a substantial effect on the total heritable variation 

of FCS in purebred non-beak trimmed laying hens (n = 6,276 and 6,916 for two 

purebred layer lines). Using large data sets, Ellen et al. (2008; n = 3,988 to 6,916 for 

different purebred layer lines) and Peeters et al. (2012; n = 15,012 for crossbred 

laying hens) found large and strongly significant social effects on survival time in 

non-beak trimmed laying hens. However, a suggestive heritable variation from the 

associative effect for FCS was still indicated from the comparison of analysis with 
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two models in the present study. Ignoring the associative effect and the genetic 

correlation between direct and associative effect may induce underestimation of 

heritable variation for FCS and inappropriate breeding strategies for less feather 

damage in laying hens. Behavioural measurement on individual level is a real effort. 

Hence, our results also illustrate the difficulty of collecting sufficient data to 

accurately estimate genetic parameters for behavioural traits. As we discussed 

before, to get proper estimation for genetic parameters for FCS, enlarging the 

numbers of birds involved maybe more valuable than scoring for multiple body 

areas, because of the high and positive correlation between the FCS of closely-

located body areas. Further improvement of statistical power may come from 

optimizing the cage composition, as results in Bijma (2010) indicate that the 

standard error of the estimated associative genetic variance is minimized when 

each cage consist of members of two families, each family contribution half. 

 

5.4.3 Direct and associative effect of NAb isotype IgM and IgG 
titers binding KLH on FCS  

Several studies showed links between feather pecking and immune system. NAb is 

claimed to be an important parameter of the immune system. To investigate the 

possible relationship between receiving feather pecking and NAb isotype titers 

(direct effect of individual NAb on individual FCS), and the relationship between 

performing feather pecking and NAb isotype titers (associative effect of individual 

NAb on cage mates’ FCS), a mixed model with either the focal individual’s or cage 

mates’ average isotype titers as fixed effects was fitted for FCS of the individual in 

beak trimmed (model 3) and non-beak trimmed laying hens (model 4), respectively.  

In both populations, the direct effects of IgM and IgG for individual FCS were not 

significant (Table 5). This indicated that the individual’s own isotype titers may not 

affect its FCS, although Biscarini et al. (2010a) detected a link between receiving 

feather pecking and the individual’s innate and adaptive immune parameters.  

A link between performing feather pecking and the immune parameters was 

detected (Buitenhuis et al., 2004; Parmentier et al., 2009; Biscarini et al., 2010b; 

Hughes and Buitenhuis, 2010; Brunberg et al., 2011). In non-beak trimmed laying 

hens, significant associative effect of NAb titers on feather damage was not 

detected. However, in beak trimmed laying hens, the parameter estimates for 

average titers of IgG of the cage mates was 0.34 (SE = 0.16, P = 0.03). This indicated 

that when the cage mates have higher IgG titers, the individual may have higher 

suffer from more feather damage. However, multiple hypothesis testing will 

increase the false positive results. As a statistical method used to correct for 
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multiple comparisons, false discovery rate (FDR) adjusted P-value was 0.43. This 

suggested that the relationship between the individual FCS and the average IgG 

titers of its cage mate may need to be replicated for further confirmation. The 

relationships were also fitted for the two populations together, by adding beak 

treatment as an extra fixed effect. Still the relationships were not significant (data 

not shown).  

In our previous study about the relationship between NAb isotype titers and 

survival in laying hens, NAb isotypes especially IgM was shown to be a protective 

factor for health-related survival (Sun et al., 2011), and therefore a promising trait 

to be bred for higher survival of the population. However, the non-significant 

relationship between NAb isotype titers and individual FCS, the non-significant 

relationship between NAb isotype titers of the cage mates’ and the individual FCS 

as shown in the present study suggest that the improvement of individual NAb 

levels does not result in more feather damage. 

 

5.5 Conclusions 

To the best of our knowledge, this is the first time that FCS of the laying hens was 

modelled by direct and associative effect model, and the first time that the direct 

and associative effects of NAb isotype titers on individual FCS were investigated. 

The estimated associative genetic variance for FCS was substantial, but not 

significantly different from zero, probably due to the limited number of records. 

Results suggested, however, that including associative effects in the model, both in 

the beak trimmed and non-beak trimmed laying hens, is important to estimate 

genetic parameters for FCS. Although the effects of immunity on feather pecking 

behavior were suggested by several studies. NAb isotypes titers did not show 

significant direct effects or associative effect for individual FCS in the present study. 

However, further studies are needed to confirm the suggestive relationship 

between IgG titers and feather pecking.    
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6.1 General introduction 

Breeding goals indicate the direction of a breeding program, or in other words in a 

breeding goal, the traits to be improved are specified. During the past decades, 

animal breeders have made great genetic improvement in egg production 

efficiency of laying hens: on average +2.3 eggs per year from 1990 to 2008 

(personal communication with Frans van Sambeek from Hendrix Genetics). 

However, market requirements and social concerns about the products are 

changing. New legislations in this industry arises accordingly (van Horne and 

Achterbosch, 2008). Worldwide, but especially in Europe, poultry industry is 

undergoing substantial changes such as a ban of battery cage housing systems and 

beak trimming. The alternative floor housing systems, may facilitate the spread of 

infectious diseases, while the ban of beak trimming can contribute to higher 

mortality due to feather pecking and cannibalism. Furthermore, given the growing 

concern about developing of microbes in humans resistance to antibiotics, 

abundant use of antibiotics in poultry will either be prohibited or restricted 

(www.bloomberg.com/news/2012-01-04/antibiotic-use-restricted-in-cattle-swine-

poultry-by-u-s-regulators.html). These changes or challenges further emphasize the 

importance of disease resistance and survival in laying hen breeding goals next to 

maintaining egg production and feed efficiency. Since it takes several years before 

considerable changes are visible at the commercial population level, breeding goals 

of the livestock therefore should look ahead, and take both current and future 

market demands and the consequence of upcoming legislation into account.  

Different from the classical production traits that are already included in the 

breeding goals (e.g. egg number, egg weight, and shell strength), (general and 

specific) disease resistance, and survival are difficult and expensive to measure. 

Therefore, breeding the laying hens which are favorable for farmers and consumers 

requires substantial investment in data collecting and technology. Health can be 

implemented in the breeding goals just like production traits by (1) defining proper 

traits which are associated with animals’ health status and survival, and (2) 

understanding the genetic architecture and biological principles underlying the 

traits, which may support selection. These two points are also the main aims of the 

present thesis.  

 

6.2 General disease resistance or specific disease 

resistance? 
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There are many diseases of great concern that cause substantial economic losses to 

the poultry industry globally, including viral infections such as Newcastle Disease 

(NCD) (Irvine et al., 2011), Marek’s Disease (MD) (Biggs and Nair 2012), Infectious 

Bursal Disease (IBD) (Toro et al., 2009), and bacterial infections such as 

colibacillosis (Goren 1991). In addition, some zoonoses like avian flu (Ungchusak et 

al., 2005), Salmonella (Loharikar et al., 2013), and Campylobacter infections 

(Fearnley et al., 2008) severely threaten human health. Preventative vaccine 

programs and antibiotics are used worldwide to prevent or control diseases in 

poultry flocks. However, various pathogens developed resistance against drugs and 

antibiotics (Carraminana et al., 2004). Different individuals respond differently to 

vaccinations. Vaccines are never 100% protective, and achieving 80% protection in 

a vaccinated population is considered an effective vaccine (Kohler et al., 2003). For 

some infectious diseases like colibacillosis, vaccination is not widely practiced 

because of the large variety of serogroups (Dho-Moulin and Fairbrother 1999). 

Vaccination of chickens also causes a decrease in the rate of skeletal muscle 

protein deposition (Hentges et al., 1984). Furthermore, vaccination and drug 

treatment often require a considerable amount of labor and are relatively 

expensive as compared to the profit on eggs. From an economical as well as social 

point of view, reduction in usage of antibiotics and vaccines is a necessary step. As 

such strategies for protection of the birds from diseases suffer from limitation, 

breeding laying hens with internal genetic merit for maintaining health is therefore 

highly desired by the future egg-production industry.  

The basic definition of health is the absence of disease (Gunnarsson 2006) and 

other physiological disorders. Because of the basic function of animal protein 

production, different from pet animals or wild animals, healthy livestock can be 

defined as animals that are resistant to diseases, need less drug treatment, and live 

a longer productive life. Survival is highly related with the ability of the animals to 

cope with various diseases or other negative environmental disturbances. 

Therefore survival is the direct reflection of animal health status or homeostasis. 

The most prominent line of defense against pathogens is provided by the immune 

system. Environmental factors such as general management, hygiene measures, 

nutrition, medication, and vaccination schemes have a big influence on -and can 

modulate- the immune system. They are therefore important components of 

comprehensive disease prevention and control programs in the modern animal 

production industry. Because of the complexity of immunity, much slower progress 

in time is made for genetic improvement. However, genetic improvement of 

immunity has permanent and cumulative effects in a breeding population, and is a 
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valid complement to traditional disease management strategies like vaccinations 

and therapeutic treatments, especially for the diseases where no effective 

vaccination is available. Therefore, breeding for disease resistance is a fundamental 

method of improving the health and survival of livestock (Lamont 1998b).  

As first distinguished in plants (van der Plank, 1968), but also generalized later in 

animals including poultry, there are two major types of disease resistance namely 

specific disease resistance and general disease resistance (Gavora and Spencer 

1978). They are different in mechanism as well as genetic background. Specific 

disease resistance can be defined as resistance against a single or a limited group of 

related pathogens, normally controlled by a single major gene or a small number of 

related genes. For some specific disease, which is also the major threat for survival 

in a species, breeding for specific disease resistance is feasible and essential to 

improve survival. For example, infectious pancreatic necrosis (IPN) is a severe viral 

disease of salmon fish. A single gene which is responsible for 70% percent of 

variation for the resistance characteristic and animals with the resistance genotype 

can be selected based on genetic information (Houston et al., 2008). 

Specific disease resistance mechanisms seem to be the most targeted and 

effective. However, in chickens, there are various major infectious diseases, viral or 

bacterial in nature. Great efforts have also been spent on studying the underlying 

mechanisms for different diseases. Improvement in resistance against each of 

these diseases would require a large program of testing for resistance and devotion 

of a significant portion of selection pressure to this purpose. Furthermore, the 

expense for the challenge experiments required for breeding for specific disease 

resistance purpose is high (valuable breeding animals and equipment). Challenge 

trials also present bio security risks. Studies also indicated that the animals which 

are resistant to one pathogen are not always resistant to other pathogens (Carson 

1951; Calnek et al., 1975; Lamont 1998a), because of the different pathogenicity 

mechanisms involved. The chicken major histocompatibility complex (MHC), also 

designated as the B complex, is a group of closely linked polymorphic regions: BF 

(class I), BL (class IIβ), and BG (Ig-superfamily genes) (Kaufman et al., 1999). MHC 

cell-surface proteins play an important role of regulation of cellular communication 

(Dietert, 1987), are known for strong genetic associations with disease resistance 

and susceptibility to many pathogens including MD virus (Dalgaard et al., 2003), 

Rous sarcoma tumour virus (Bacon et al., 1981; Plachy and Benda 1981), 

autoimmune thyroiditis (Kuhr et al., 1994) and Salmonella (Cotter et al., 1998) and 

so on. However, no single MHC haplotype performs optimally in all genetic 

backgrounds in response to all important diseases (Lamont 1998a).  
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Given the different mechanisms involved for disease resistance against various 

pathogens, it becomes impractical to include them all in a breeding program. 

However, if breeding for disease resistance is highly specific, for example, limited to 

a strain of E. coli (Cavero et al., 2009), it may protect animals from the strain under 

study, but provide little or no protection for variants of the same E. coli strain. 

Additionally, (pathogenic) viruses and bacteria usually have high rates of mutation 

therefore the potential to evolve rapidly (Suzuki et al., 2007; Su et al., 2008). 

According to the present laying hen breeding programs, it takes 4 years to permit 

the transmission of genetic improvement from the nucleus breeding populations 

(where all selection takes place) to the crossbred progeny (commercial layers) 

(Cavero et al., 2009). It is difficult and even impossible to predict 4 years 

beforehand how the new strain of pathogens like E. coli may mutate or evolve. The 

breeding response from the previous selection for specific disease resistance can 

thus be outdated after 4 years. This is similar to the difficulty in developing vaccines 

effective for all strains.  

In contrast to specific disease resistance, general or non-specific resistance to 

disease could be defined as the ability to resist any alteration of the state of the 

body by external causes including pathogens and stress, which interrupt or disturb 

proper performance (Gavora and Spencer 1978). In other words, the general 

resistance grants the animal with the ability to cope with a wider spectrum of 

pathogens and stress. The general resistance also indicates the ability of animals to 

recover from the diseases or disorder (Gavora and Spencer 1978).  

Commercial laying hens are now reared for about 80 to 90 weeks for egg 

production. To maximize the usage of housing facilities, it is the aim of some laying 

hen breeding companies to extend this period to be as long as 100 weeks for 

Brown egg layers and 110 weeks for White egg layers by 2020 

(www.worldpoultry.net/Breeders/General/2011/3/Breeding-for-500-eggs-in-100-

weeks-WP008564W/). This aim also challenges the laying hens’ ability to cope with 

prolonged disease pressure and other disturbances. Laying hens receive standard 

routine vaccinations in the first 16 weeks of their life to prepare their specific 

immune response system well for the most common diseases including MD, IBD, 

and NCD, and survive the laying period. Still, 3 to 20% (depended on lines) of the 

purebred laying hens (non-beak trimmed) will not survive till the end of laying 

period (Star, 2008). In commercial crossbred White leghorns, a survival of 89.6%  

was observed (unpublished data from Esinam Amuzu). This indicated that the 

vaccination to activate the specific immunity does not provide the animals with full 

protection. Therefore, except for more complex vaccination procedure, the general 
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disease resistance is also crucial for the laying hens. Except for diseases, 

environmental stress such as improper ventilation, temperature, light, and dust 

burden, stress from peak egg production also may contribute to disorders like 

respiratory system diseases in laying hens.  

There are wide discussions between the immunologists and breeders about what is 

more important, specific disease resistance or general disease resistance for 

improved health and survival in poultry. Specific and general resistance supplement 

each other. Only focus on the specific disease resistance will not fulfill the present 

or future requirement for general healthy animals. Ochsenbein and Zinkernagel 

(2000) argued that non-specific immunity (innate immunity) facilitates and adds to 

specific immunity. NAb may play an important role in enhancing survival of the 

host by providing early resistance against infection. Therefore, breeding for general 

disease resistance can be an alternative or additional way to breed for disease 

resistance. However, potential of improvement of innate immunity for health and 

survival has not been investigated in great detail. Traits that characterize such 

general disease resistance (indicator traits) should be defined first.  

 

6.3 Potential of NAb isotype titers as indicators for general 

disease resistance 

The immune system is complex, involving many components playing different roles. 

For the general disease resistance, some innate immune components, for example, 

natural resistance associated macrophage protein 1 (NRAMP1) (Zaharik et al., 

2002; Liu et al., 2003; Hu et al., 2011), interferon-gamma (IFN-γ) (Yun et al., 2000; 

Zhou et al., 2002), and Toll-like receptor (TLRs) (Bernasconi et al., 2003; Temperley 

et al., 2008; Kannaki et al., 2010) attracted much research attention. NAb, which 

are the antibodies present in the circulation of normal healthy individuals in the 

absence of a deliberate antigen exposure like vaccination (Avrameas 1991), is an 

important humoral part of innate immunity. NAb were reported but only regarded 

as the “background” and “noise” of the immune system before (Korver et al., 1984; 

Vollmers and Brandlein, 2006). Now it becomes more widely acknowledged for 

their multiple functions in immunology (Ehrenstein and Notley 2010). NAb are 

emerging as a potential trait which may be used to characterize general disease 

resistance and predictive for survival, according to the comparison with other 

immune parameters including SpAb binding NCD vaccine and haemolytic (classical 

and alternative) complement activity (Star et al., 2007).  
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Three NAb isotypes were identified in chickens, named IgM, IgG (IgY), and IgA. The 

levels of IgA antibodies were not studied since levels of IgA binding KLH in serum 

are very low. IgA is important in lungs and intestinal tract, providing protective 

roles against pathogens (Mestecky et al., 1999). This thesis focused on IgM and IgG, 

their relationship with survival of laying hens, genetic background, and their 

relationships with other behaviour or growth-related traits. The potential of NAb 

isotype titers as indicators for general disease resistance which can be 

implemented into a breeding program for improving general health and survival of 

laying hens are further discussed in the following sections of this chapter.  

 

6.3.1 Measuring NAb isotypes  

Compared with measurement of SpAb responses to a vaccination (e.g. NCD and 

MD) or antigenic stimulation (e.g. E. coli and SRBC), NAb isotype titers in the serum 

samples are easy and fast to measure on large scale, at a low cost. In addition,  

blood sample was only collected once for measuring NAb titers, thus less stress 

from stimulations was caused for the animals which may have large effect on 

production performance.  

In this thesis, antigen KLH was used as a model antigen to measure NAb isotype 

titers. Prior exposure or sensitization to KLH is considered unlikely for chickens. 

Except for KLH, NAb binding many different self-antigens and exogenous antigens 

in chickens were also detected (likely representing NAb idiotypes) (Parmentier et 

al., 2004). The “idiotype” refers to the unique antigenic determinants recognized by 

individual antibody molecules on molecules of identical specificity, and reflects the 

antigen-binding fragment (Fab) of the antibody molecule. It is important to note 

that enhanced levels of one NAb idiotype may be accompanied by decreased levels 

of other NAb idiotypes. The latter was suggested (Haghighi et al., 2006) and 

strengthened (Berghof et al., 2010) earlier. Yet maybe different antigens other than 

KLH can be identified, which represent superior idiotypes in relation to definition of 

NAb populations and indicative of greater health potential. KLH is an extremely 

large, heterogeneous glycosylated protein. Thus it is difficult to distinguish which 

part of KLH molecular is recognized by an antibody. Using alternative pure proteins 

can be more specific. For example, proteins resulting from apoptotic processes like 

actin, ubiquitin, other cellular compartment specific glycoproteins, a lipids might 

even present better (cryptic) NAb definitions. Shaw et al. (2000) found that NAbs 

with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and 

protective immunity (Shaw et al., 2000).  
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In previous studies in our lab, including this thesis, “titer”, which is calculated based 

on a mathematical conversion of Logit-log method (Wild 2005), was used widely as 

a way of expressing relative concentration of the antibody. The difference of 1 titer 

unit equals a 2 times real concentration difference. Earlier, Ploegaert (2010) 

recommended developing the ELISA test from a titer determination further into the 

detection of the absolute amounts of antibodies present in samples for future use. 

Although this may face some technical challenges, measuring the absolute amounts 

of NAb isotypes can make the results from different populations of different time 

points and different studies better comparable. Furthermore, the absolute 

amounts of antibodies between animals or multiple samples of the same animals at 

different time points are more accurate and sensitive than the titers difference.   

Furthermore, in the previous studies about NAb in chickens, “total NAb” titers were 

studied without distinguishing different immunoglobulin isotypes. Biologically, 

measurement of NAb isotype titers is more accurate. In the ELISA test for 

measurement of total NAb titers, rabbit-anti-chicken IgG H+L (RACh/IgGH+L/PO; 

Bethyl Laboratories, Texas, U.S.A.) was used as second antibody (Parmentier et al., 

2004; Star et al., 2007). In chickens, the isotypes IgG, IgM, and IgA share the same 

light chain, but carrying different heavy chains. The antibody with the same heavy 

chain of IgG (only IgG) and the same light chain of IgG (IgG, IgM, and IgA) will be 

detected using this second antibody. Therefore, the exact component measured is 

not clear. Fc (Fragment, crystallizable) region of the antibody includes the isotype-

specific heavy chain. In this thesis, rabit-anti-chicken IgG-Fc antibody 

(RACh/IgG/Fc/PO), and rabbit-anti-chicken IgM antibody (RACh/IgM/PO) were used 

as second antibody for the measurement of IgG and IgM isotype titers, 

respectively. Compared with the measurement of total NAb titers, the 

measurement for NAb isotype is more specific. Therefore, NAb isotypes are 

technically and biologically more appropriate as selection criteria than the total 

NAb. Besides the technical advantage of measuring NAb isotypes over the total 

NAb levels, more evidence will be listed to support this in the following discussion 

sections. 

 

6.3.2 Genetic variation of NAb isotype titers  

One of the prerequisites for the traits to be implemented in the breeding programs 

is the existence of genetic variation. Without genetic variation, there is no 

possibility for the improvement of the traits by selection. Estimation of genetic 

parameters for the traits of interest is also important for predicting the selection 

response, setting up correct breeding program and estimating individual breeding 
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value. Lower heritability suggests that greater environmental components were 

present and selection progress will be slow. On the contrary, higher heritabilities 

are indication for larger selection response. 

In chapter 2, we determined the NAb IgM and IgG isotype titers from the serum 

samples of 12 purebred layer lines (six White Leghorn lines and six Rhode Island 

Red lines) at 20, 40, and 65 weeks of age, respectively. These animals were housed 

in standardized commercial environmental conditions. However, significant 

differences in IgM and IgG titers among breeds, lines, and among individuals within 

lines were observed. These differences demonstrate that the humoral innate 

immunity is determined partly by genetic factors. On average, the coefficient of 

variation for IgM was lower than that for IgG. Heritabilities for NAb isotype titers 

were then estimated in purebred (chapter 3) and crossbred laying hens (chapter 4), 

respectively. The presence of genetic variation in NAb isotype titers between laying 

hens was proven. In the purebred laying hens, the heritabilities for IgM titers at 

different ages (20, 40, and 65 weeks of age) were around 0.4, while for IgG they 

varied from 0.14 for IgG40 (IgG titers at 40 weeks of age) to 0.31 for IgG20 (IgG 

titers at 20 weeks of age) (chapter 3). In the crossbred laying hens, the heritabilities 

for IgM and IgG titers at 24 weeks of age was 0.26 and 0.21, respectively (chapter 

4). Both NAb isotypes displayed moderate to high heritabilities, indicating that 

variability of NAb isotype titers is partly due to genetic differences, and that mass 

selection may be effective.  

The estimated heritabilities for NAb isotype binding KLH were higher than those for 

total NAb titers by Wijga et al. (2009). This can be explained by the fact that the 

NAb isotype IgM and IgG are factually existing in the animals serum, while the total 

NAb (in serum) titer is a more comprehensive but vague indicator for humoral 

innate immunity including IgM and IgG (and less IgA) isotypes. Furthermore, the 

isotype IgM is more heritable than IgG (chapter 3). These results indicated that IgG 

level might be very dependent on presence of environment triggers. In contrast, 

differences in IgM titers are affected to a large extent by genetic factors. This is in 

accordance with the speculation that the production of the IgM isotype is driven by 

endogenous (auto) antigens and largely unaffected by external antigens (Haury et 

al., 1997). B cells can change the isotype of the antibody they produce (from IgM to 

IgG or IgA) by isotype class-switch after being activated (Market and Papavasiliou 

2003). The observed higher heritabilities for IgM than IgG agree with the 

observation that IgM NAb are naturally present regardless of environmental 

factors, while their transformation into IgG NAb likely occurs in response to the 

effect of stimulating factors affecting B cells. NAb isotypes titers show an 
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advantage over total NAb titers because of the higher heritabilities, especially for 

the IgM isotype.  

A maternal effect is a situation where the phenotype of the offspring is not only 

determined by its genotype and the environment it experiences, but also by the 

genotype and/or environment of its mother (Willham 1972). In birds like American 

Coot, mothers may pass down hormones in their eggs that affect an offspring's 

growth and behaviour, and social interactions (Reed and Vleck 2001). Maternal 

antibody also can be transferred through the egg yolk (IgG) in the ovary and 

albumen (IgM and IgA) in the oviduct (Brown et al., 1989; Hammouda et al., 2012). 

These antibodies provide the young chicks with protection against pathogens 

before their own immune system is fully developed. In addition to the passive 

protection transferred to the chick, maternal immune factors may affect the 

development of the juvenile’s immune system (Zinkernagel 2003; Lemke et al., 

2009). In humans, the autoantibody IgG isotype repertoires of each mother and 

baby were very closely related and distinct for each mother-newborn pair (Madi et 

al., 2009). These studies suggested transfer of maternal immune functions across 

generations (Grindstaff et al., 2003; Staszewski and Siitari 2010). In laying hens, 

respectively 15% and 10% of the SpAb and NAb levels variation at 5 weeks of age 

was attributed to maternal environmental effects, (Wijga et al., 2009).  

The maternal effect is important to consider in (1) estimation of genetic 

parameters: direct heritability can be overestimated when the maternal effect 

exists but is neglected (Clement et al., 2001; Kruuk and Hadfield 2007), (2) more 

accurate prediction of breeding values, and (3) usage of these genetic effects in 

selection, e.g. crossbreeding. Crossbreeding has become a standard practice in 

poultry breeding programs. In the present project (chapter 3 and 4), because of the 

population structure, it was not feasible to detect a maternal effect for NAb isotype 

titers. Therefore, before the breeding program involving selection for NAb isotype 

titers, I suggest to set up a population that allows estimation of maternal effect. 

 

6.3.3 Relationship between NAb isotype titers and breeding goal   

Besides the genetic variation for the traits to be implemented into the breeding 

program, another prerequisite for traits is the correlations with the breeding goals 

Therefore, the relationship between NAb isotype titers and survival need to be 

investigated.  

There are two lines of defense in a bird’s immune system: the innate, responding 

instantly to all antigens, and the adaptive, which will be initiated if the innate 
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immunity does not succeed in blocking the entry of pathogens or when activated 

by the innate immunity. Antibodies classically are the prime representatives of 

adaptive immunity. Different antibodies are highly specific to different antigens, so 

called idiotype. However, assigned to the innate immune system, NAb supposedly 

do not increase or adapt (change their idiotype) to antigenic challenge (Nawata et 

al., 1990). As component of the first line of defense, NAb are indicated to perform 

crucial homeostatic housekeeping functions in the maintenance of physiological 

and immunological homeostasis, protecting the body against stress-induced altered 

self-antigen immunity (Cheng 1998; Lutz 2007; Lutz et al., 2009; Ehrenstein and 

Notley 2010), as well as induction of a normal adaptive response (Baumgarth et al., 

2000). Therefore, a sufficient NAb levels might be crucial for survival of animals.  

In chapter 2, the relationships between the NAb isotype titers at 20, 40, and 65 

weeks of age and the survival afterwards were investigated using logistic 

regression. These time points represent birds close to sexual maturity (20 weeks of 

age), middle age (40 weeks of age), and birds close to the end of the laying period 

(65 weeks of age), respectively. It is true that birds are most susceptible at the first 

weeks of their life. The NAb isotype titers were not determined to investigate their 

relationship with the early survival, because the isotype titers at young age (5 

weeks) were too low to be measured accurately (data not shown).  

The data indicated that the NAb isotype titers decreased with age based on the 

three time points in the study (chapter 2). The number of B-1 cells, which likely 

produce NAb, is not fixed over the life span of an individual. From the neonatal 

period to adolescence, B-1 cells (in mammals) first increase and then decrease at 

older age. In human, it is thus tempting to speculate that the increased 

susceptibility to infection of elderly people may be, in part, due to the decreased 

number of B-1 cells and the decrease in NAb levels (Kohler et al., 2003). The 

commercial laying hens reach sexual maturity around 20 weeks of age. Poultry B 

cells proliferate extensively within the bursal follicles, until the bursa starts to 

involute as the bird approaches sexual maturity (Jolly, 1915). Therefore, the NAb 

isotype levels at 20 weeks of age maybe the peak of NAb isotype levels of the birds’ 

lifetime and represent the overall development of the immune system. In the 

logistic regression analysis in chapter 2, in Rhode Island Red laying hens, odds 

ratios of 0.56 (P < 0.001) for IgM20 were estimated, which means that if IgM20 

titers increase by one unit, the relative change in risk of dying during the first 

period of laying decreases by 44%. The odds ratio for IgG20 was 0.72 (P = 0.02), 

indicating a decrease of 28% in the risk of dying per unit increase in IgG. These 
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results indicated that isotype, especially IgM titers at 20 weeks of age, was 

predictive for survival of the laying period afterwards in the purebred laying hens.  

Compared with an odds ratio of 0.80 (P = 0.008) estimated for total NAb titers 

binding KLH in an earlier study (Star et al., 2007), NAb isotype titers are thus more 

accurate predictors for survival. The odds ratios for IgM and IgG were not the same, 

either (chapter 2). This further emphasizes the necessity of distinguishing NAb 

isotypes and studying the diverse isotype-related functions.  

Three NAb isotypes are presently identified in chickens, named IgM, IgG, and IgA. 

All previous studies in chickens as well as this thesis, focused only on IgM and IgG 

levels in serum or plasma. The levels of IgA antibodies were not studied since levels 

of IgA binding KLH in serum are very low. In milk samples, IgA was widely present 

and proved to be functional: heifers without clinical mastitis or high somatic cell 

count (SCC) history, but with high NAb titers of the IgA and IgM isotypes in their 

milk show a tendency towards a reduced risk to develop clinical mastitis later in 

lactation (Ploegaert 2010). IgA is of prime importance for gut health and shaping 

the microflora population. A large amount of intestinal IgA is either nonspecific or 

of low affinity for a broad range of antigens (Kroese et al., 1989; Kroese et al., 1993; 

Thurnheer et al., 2003; 2005). Pathogenic bacterial infections of the intestinal tract 

are also a major cause of suffering and death of the chickens. The natural IgA 

located in the gut may play a similar or different role in mucosal immunity as 

natural IgM and IgG in serum is an interesting area.  

 

6.3.4 Genetic markers associated with NAb isotypes titers  

Marker-assisted selection (MAS) was proposed as a method of selecting the 

animals with superior performance using DNA markers, especially for the traits 

which are labor-intensive and expensive to measure (for instance, behavioral 

measurements and immunological parameters). These DNA markers do not 

necessarily represent causative variations (Fulton 2012). Association studies are 

necessary before MAS can be applied. 

In chapter 3, an association study was performed across lines to detect SNP 

markers that are closer to the QTL than using a single line, and have the same 

phase of association in the entire population. Although in chapter 2, only NAb 

isotype titers at 20 weeks of age were predictive for survival afterwards, the 

association studies were performed for all traits (IgG and IgM titers at 20, 40, and 

65 weeks of age, respectively). Forty-three significant associations between SNPs 

and isotype titers were detected. The 12 SNPs which were detected for IgM20 and 
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the 12 SNPs which were detected for IgG20 can be used as markers for selection. 

The associations between SNPs and mortality could be of interest e.g. by using 

logistic regression with survival as response variable and SNP genotype as 

explanatory variable. However, the DNA for genotyping was extracted from the 

blood sample taken at 40 weeks of age. Animals that died before that age were 

thus not included in the association analysis. This makes the current data not 

optimal for associations between SNPs and survival. 

Based on the estimated genetic correlations between the traits in the association 

study (chapter 3), these traits were genetically related with each other. Therefore, 

except for looking at the associated SNP markers for each trait independently, the 

detected association pattern was also informative for understanding the 

relationships of NAb isotypes traits at different time points or the relationships 

between different isotypes at the same time point. First, different SNPs were 

detected for IgM and IgG. This might be due to methodological reasons as well as 

biological reasons. We estimated a positive genetic correlation (0.24, SE = 0.10) 

between IgM20 and IgG20 which indicates that there are possibilities to improve 

both traits simultaneously. However, this does not exclude the presence of 

chromosomal regions with antagonistic effects on IgM20 and IgG20. Furthermore, 

the genetic correlations between the NAb isotype at older age (40 and 65 weeks) 

were higher. More SNPs associated with isotype titers at 40 and 65 weeks of age 

were also found. The genetic correlations between the NAb isotype at young age 

(20 weeks) and older age (40 or 65 weeks) were lower. Less SNPs were found 

associated with isotypes at both young and older ages. These results indicate that 

the genetic backgrounds for developing a functional innate immunity to produce 

NAb isotypes at young age is different from that for maintaining a stable isotype 

production until 65 weeks of age. As we discussed before, at 20 weeks of age, the 

commercial laying hens reach their sexual maturity. That is also the age when the 

bursa of Fabricius, the organ producing B cells in chickens start to involute. 

Therefore, the NAb isotype levels at 20 weeks of age maybe the peak of NAb 

isotype levels of the birds’ lifetime and represent the overall development of 

immune system.  This may be an explanation why only isotype titers at 20 weeks of 

age were predictive for survival. 

The association study indicated that some known immune trait-related genes may 

interact with NAb isotypes. For example, the interleukins (IL) IL10 and IL19 were 

found to have a role in regulating the production of both isotypes. The tripartite 

motif containing 33 (TRIM33) showed significant association with IgG20; heat shock 

protein 90 kDa alpha (cytosolic), class B member 1 (HSP90AB1) affected IgG titers 
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at older ages. IL6 was associated with IgM20. These genes may not be the actual 

genetic regions determining the NAb isotype titers. However, based on their 

reported functions in literature, we think it is worthwhile to mention some of the 

listed genes that may have a direct or indirect (network) effect on regulating the 

isotype titers.  

In the present association study for NAb isotype titers, only limited numbers of 

SNPs were included. The genetic gain from MAS that uses only fewer SNPs in LD 

with QTL for the interested traits is likely to be small (Dekkers, 2004; Hayes and 

Goddard 2010). The SNP numbers detected in chickens genome has increased from 

2.8 million (Wong et al., 2004) to more than 11 million in 2010 

(www.ncbi.nlm.nih.gov/projects/SNP/). These SNPs information provide large 

numbers of potential markers both for research (QTL mapping, association studies) 

and commercial application. The rapid reduction in sequencing cost as well as the 

development of 60K (Groenen et al., 2011) and 600K (Kranis et al., 2013) chicken 

SNP genotyping array enables the genomic selection, i.e. using a genome-wide 

panel of denser markers to contributing to the variation in complex traits and 

predict the genomic breeding value (Meuwissen et al., 2001; Hayes and Goddard 

2010). Genomic selection will also have a profound impact on breeding companies 

about optimizing the breeding programs and improving selection efficiencies for 

the important traits.  

In this genomics era, animals with genetic merit can be selected without knowing 

the underlying mechanism relating genetic variation and phenotype variation. The 

chicken is not only a major livestock species but also an important model organism 

for biological studies. Studies in birds have contributed greatly to the development 

of immunological understanding. The birds have many immunological mechanisms 

in common with mammals, but also possess their distinct strategies. Furthermore, 

because of the potential importance of NAb isotype titers in laying hens as proved 

in the present thesis, a better understanding of the mechanisms of NAb isotypes is 

necessary. Genome-wide association study (GWAS) is acknowledged for some 

advantages, like the power to detect causal variants with modest effects and in 

defining narrower genomic regions that harbor causal variants (Hirschhorn and 

Daly, 2005).  GWAS and further validation study are therefore indicated to confirm 

the SNPs detected in the previous study, discover genes or detect causative variant 

contributing to these traits, reveal the immune pathways that the NAb isotypes are 

involved, and facilitate their practical understanding in artificial breeding program.  

 

6.3.5 NAb isotypes titers and survival in crossbred laying hens 
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In chapter 2, we presented the prediction of NAb isotype titers for survival of 

purebred laying hens. In egg-production industry, commercial laying hens are 

usually crossbred. Therefore in chapter 4, we investigated the predictive value of 

NAb isotype titers for survival in crossbred laying hens. A population of crossbred 

female offspring from purebred W1 (male) and WB (female) lines was used. The 

offspring of 25 sires were beak trimmed, whereas the offspring of another 25 sires 

were kept with intact beaks. Different from purebred laying hens, there was no 

significant association between NAb isotype titers and survival in beak trimmed or 

non-beak trimmed crossbred laying hens. These inconsistent results request a 

careful check for the possible reasons, for example, survival difference in different 

populations, genetic correlations of NAb isotype titers in the purebred and 

crossbred laying hens.  

Selection for improved NAb isotype titers is possible by selection in the purebred 

lines based on NAb measured in crossbreds, if the genetic correlation between the 

traits in purebred and crossbred lines is high. Our dataset used in chapter 4 only 

contained NAb isotype titers measured on crossbred offspring. It was not possible 

to estimate this genetic correlation. It is, however, important to estimate the 

genetic correlation before developing a strategy to breed for enhanced NAb titers 

in crossbred birds.  

Survival is highly related with the ability of a living organism to cope with the 

diseases or other negative environmental disturbances. Therefore it is the direct 

reflection of animal health status. It is certain that ability to survive is determined 

by the individual’s genetic background. The higher survival of crossbred offspring 

indicated a heterosis for survival. It is possible that heterosis has a more prominent 

effect on survival than the NAb isotypes levels in the offspring (chapter 4).  

In this thesis, when we talk about survival earlier, we only refer to the health-

related survival. However, apparently in poultry especially the laying hens housed 

in groups, survival or survival days is a so-called interacting phenotype, a trait 

whose value is not only determined by individual genetic background, but also 

affected by the behaviour of an individual’s conspecifics (Moore et al., 1997), for 

example, severe feather pecking and cannibalism for the laying hens with intact 

beaks (Peeters et al., 2012). Using a traditional linear animal model (model 1) and 

direct-associative effect model (model 2), we could estimate the direct and 

associative effect for survival days. The traditional linear animal model was   

                                            y = Xb+ Za+Vcage+ e                                              (1), 
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where y is a vector of survival days, b is a vector of fixed effects, with incidence 

matrix X linking survival days to fixed effects; a is a vector of the usual breeding 

values, with incidence matrix Z linking survival days to the breeding value; cage is a 

vector of independent random cage effects; V is an incidence matrix linking 

observations to random cage effects; e is vector of random residuals. 
2var( ) aa A , 

with A being the additive genetic relationship matrix, 
2

a  being the genetic 

variance; 
2var
cage

cage I  
, with I being an identity matrix, 

2

cage


 being the cage 

variance; 
2var( ) ee I , with 

2

e  being the residual variance. Phenotype variance was 

calculated as 
2 2 2 2

P a cage e     
. Direct heritabilities were calculated as 

2 2 2/a Ph    . 

To estimate genetic parameters for both direct and associative effect, the following 

model extended from (Muir 2005) was used: 

                                  
D D S S y = Xb+ Z a + Z a Vcage + e                                          (2), 

where y is a vector of individual survival days at 53 weeks of age, b is a vector of 

fixed effects, with incidence matrix X linking survival days to fixed effects; aD is a 

vector of the usual breeding values, with incidence matrix ZD linking FCS to the 

breeding value; as is a vector of the associative breeding values of the individual’s 

cage mates, with incidence matrix ZS linking survival days to the breeding values of 

the individual’s cage mates; V is an incidence matrix linking observations to random 

cage effects; cage is a vector of independent random cage effects; e is vector of 

random residuals. The covariance structures of genetic terms is:  
 

 

D

S

a
var = C A

a

 , 

where  
 
  

D DS

DS S

2

A A

2

A A

σ σ
C =

σ σ

,  indicates the Kronecker product of matrices, 2

DA is the direct 

genetic variance, 2

SA is the associative genetic variance, and 
DSA  is the direct-

associative genetic covariance. The total heritable variance for response to 

selection was 2 2 2 22( 1) ( 1)
D STBV A An n        (Bijma et al., 2007). 2

p  is the 

phenotypic variance, 2 2 2 2 2( 1)
D AP A A cage en         . n is the number of laying hens 

kept in the same cage, and n = 5 in the present study. T
2
 expresses the total 

heritable variance relative to the phenotypic variance: 2 2 2/TBV PT   . The estimated 

variance components and genetic parameters for survival days in beak trimmed 

and non-beak trimmed laying hens using two models are presented in Table 6.1. 
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Table 6.1 Estimate of parameters for survival days with standard error from traditional and 
direct-associative animal model for beak trimmed and non-beak trimmed laying hens. 

 Traditional linear animal model  Direct-associative effect model 

                  

Non-

beak 

trimmed 

Non-beak trimmed 

trimmed 

Beak trimmed   Non-beak trimmed Beak trimmed  

2

cage
 

7026 ± 875 74 ± 43  6281 ± 923 77 ± 50 

2

DA
 

768 ± 786 0.0004±0.00002  0.004 ± 0.0002 54 ± 91 

DSA
 

   ~0.00 ± 0.00 -0.05 ± 15.85 

2

SA
 

   203 ± 134 ~0.00 ± 0.00 

2

e  
10480 ± 725 2032 ± 82  10842 ± 522 1985 ± 113 

2

P
 

18273 ± 950 2105 ± 76  17937 ± 926 2116 ± 81                                  

2

TBV     3256 ± 2150 54 ± 89 

h2 or T
2
 0.04 ± 0.04 ~0.00 ± 0.00  0.18 ± 0.12 0.03 ± 0.04 

DSr     -0.00 ± 0.00 0.63 ± 1.06 

In the traditional linear animal model, 2

DA is the direct additive genetic variance, 2

P  is the 

phenotypic variance, 2 2 2 2

DP A cage e      , 2h is the direct heritability, /2 2 2

DA Ph   . 2

SA is 

the associative genetic variance, 
DSA is the direct-associative genetic covariance. In the 

direct-associative effect model, the total heritable variance
2 2 2 22( 1) ( 1)

D DS STBV A A An n         (Bijma et al., 2007). 2

P  is the phenotypic variance, 

2 2 2 2 2( 1)
D SP A A cage en          , n is the number of laying hens kept in the same cage, n = 5 

in the present study. 2T  is the total heritable variance relative to the phenotypic variance: 
2 2 2/TBV PT   . 

Dr  
is the genetic correlation between the direct and associative effect.  

 

These results indicated that for the non-beak trimmed laying hens, including the 

associative effect resulted in a substantially larger heritable variation: increased 

from 0.04 (SE = 0.04) to 0.18 (SE = 0.12). Most of the increased variation came from 

the associative effect. In the beak trimmed laying hens, including the associative 

effect also resulted in an increased heritable variation, whereas, most increase 

came from the direct effect. These results indicated that in the non-beak trimmed 

laying hens, survival was more affected by the associative effect, i.e. the 

individual’s survival was largely determined by the behaviour of cage mates. On the 

contrary, the survival of beak trimmed crossbred laying hens was more determined 

by the direct effect, i.e. individual’s genetic background underlying ability of 
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keeping health and survival. Therefore, the survival in beak trimmed and non-beak 

trimmed laying hens are different traits. 

In chapter 5, we showed that the individual’s NAb isotype titers of both beak 

trimmed and non-beak trimmed laying hens were not related to feather pecking 

behaviour which contributed to mortality. Therefore, the NAb isotype titers were 

only related with health-related survival. I suggest to check for the cause of 

mortality before the relationships between NAb isotype titers and survival was 

studied, especially in the non-beak trimmed laying hens. In chapter 2, the logistic 

regression analysis within breed (White Leghorn and Rhode Island Red, 

respectively) indicated that the odds ratios for IgM and IgG in brown birds were 

less than those in white ones, and that line was a significant effect for survival in 

white birds. This might result from the fact that the lines within the white birds 

were genetically diverse in mortality. The birds from the present white birds in 

general showed more fear response and feather pecking behavior which may 

induce death than birds from the present brown birds (Uitdehaag et al., 2008). 

Furthermore, the lines within the white birds showed varying levels of feather 

pecking. The line WF of white birds was characterized as a high-feather-pecking line 

in earlier experiments (Rodenburg et al., 2003), and line WB was a more gentle line. 

In this study, the cause of death was not investigated. We speculated that the 

brown layers may mostly die of individual health-related causes, while white birds 

layers may die of both health-related causes and social interaction causes, such as 

feather pecking. That may explain why line was a significant effect for survival in 

the white birds, but not in the brown layers. This may also explain why isotype 

titers were more sensitive and accurate parameters for survival in the brown layers 

(based on the odds ratios). Therefore in chapter 4, the offspring of 25 sires were 

beak trimmed whereas the offspring of another 25 sires were kept with intact 

beaks. So that the relationships between NAb isotype titers and survival in beak 

trimmed and non-beak trimmed laying hens can also be compared to confirm our 

previous hypothesis that non-health-related causes of mortality (severe feather 

pecking and cannibalism) may overrule the anticipated relationships between NAb 

isotype titers and survival in birds with intact beaks. 

For the birds used in chapter 2, they were housed in cage system with intact beak 

(not beak trimmed). A population of the same lines was also housed in cage system, 

but the laying hens were beak trimmed. For the same purebred laying line, the 

survival difference between beak trimmed and non-beak trimmed laying hens was 

generally small (Table 6.2). For most of the lines, survival of beak trimmed is higher 

than the non-beak trimmed. However, some layer lines, B3, for example, survival of 
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non-beak trimmed is higher. However, the survival of beak trimmed is significantly 

different from that of non-beak trimmed crossbred, based on the observation of 

crossbred female offspring of W1 line and WB line (chapter 4). The beak trimmed 

hens had high survival of 93.1% and survival days of 447.8 days. The hens with 

intact beaks had low survival rate of 69.5% and average survival days of 383 days. 

Therefore, we speculated that part of non-survival caused by feather pecking in 

purebred laying hens was much less than that in crossbred laying hens. The 

relationship between NAbs isotype titers and survival detected in chapter 2 was 

still valid to a large extent.  

Table 6.2
1
 Survival and survival days in beak trimmed and non-beak trimmed laying hens. 

  Beak trimmed  Non-beak trimmed  

Breed Line n 
Survival 
 (%) 

Survival  
days 

 n 
Survival 
 (%) 

Survival  
days 

Survival 
Difference2(%) 

Rhode 

Island 

Red 

B1 235 89.8 477  200 86.5 478±58 3.3 

B2 340 93.8 486  200 92.0 484±57 1.8 

B3 144 88.9 486  180 95.6 493±34 -6.7 

BA 488 90.4 484  200 91.0 482±58 -0.6 

BB 266 87.6 478  244 87.3 481±57 -0.3 

BE 385 88.6 483  230 82.2 471±75 6.4 

White  

Leghorn 

W1 249 89.6 484  197 86.3 480±57 3.3 

WA 250 97.6 492  210 94.8 490±43 2.8 

WB 340 87.1 479  204 85.8 476±68 1.3 

WC 378 87.0 474  233 81.5 472±72 5.5 

WD 279 92.1 487  206 92.3 485±49 -0.2 

WF 212 92.4 483  200 93.0 484±58 -0.6 
1
 Adapted from Star et al. (2007) 

2
 Survival difference = survival of beak trimmed – survival of non-beak trimmed 

 

6.3.6. Trade-off between NAb isotype titers with other traits of 

concern in laying hens 

Research exploring the energetic basis for immunity in an evolutionary context has 

focused on the humoral or cell-mediated branches of the adaptive immune system 

(Lochmiller and Deernberg 2000). Adaptive immune defenses are costly in terms of 

energy and nutrient (Lochmiller and Deerenberg 2000). Because of limited nutrient 

and energy resources, trade-offs are expected between immune system and other 
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energy-consuming traits like reproduction and body growth (Klasing and Austic 

1984b, a; Klasing et al., 1987; Mills et al., 2010). Antibiotics were used for a long 

time as growth promoters to stimulate growth by keeping the immune system 

from being activated.  

Immune competence could very well be the most important determinant of health 

and survival for many species. However, as immune systems stimulated for defense 

channel nutrients away from growth (Soler et al., 2003) and reproduction 

(Bonneaud et al., 2003), an intermediate immune response in wild animals may 

often be advantageous (Martin and Coon 2010). At the present stage when the 

health and welfare problems of the livestock are widely recognized by the breeders 

who also committed to improve, however, the compromised production efficiency 

is unwanted, either. In practice, it is necessary to check the trade-off situation 

between the selection criteria (representive of immunity) and production. 

Furthermore, as selection criteria, a target selecting value or breeding trend should 

be clear. 

With the overall goal of enhancing animal health, several direct selections for 

adaptive immune response in poultry were performed for many years (Gross et al. 

1980; Pinard et al., 1992; Kean et al., 1994). Correlated responses of production 

traits were also observed. For example, from White leghorn birds selected for 

antibody responses to SRBC (Gross et al., 1980), body weight of the high antibody 

response line at 28 days of age was 10% less than the low line from generation 3. 

The difference increased to 20% in generation 20. Furthermore, the sexual 

maturation of the low line birds was 30 days earlier than high line birds (Pinard et 

al., 1998). This shows the SpAb levels response to a stimulation may negatively 

affect the growth by taking the nutrient away. A similar selection was performed in 

a Rhode Island Red laying hens population (Pinard et al., 1992). Body weight at 5 

and 17 weeks of age of high antibody line birds from generation 14 was 10% less 

than the birds from low line (Parmentier et al., 1996). Hens of the low line sexually 

matured earlier, starting to lay their first egg one week earlier than the high line 

birds. This result was in line with the finding by Gross et al. (1980) and also support 

the view that trade-off existed between adaptive immune response and growth 

and reproduction.  
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Figure 6.1 Scatter plot illustrating the relationship between average body weight at 22 
weeks of age and IgG (A) or IgM (B) titers in serum binding KLH at 20 weeks of age in the 12 
purebred layer lines.  
 

     
Figure 6.2 Scatter plot the illustrating the relationship between average body weight at 16 
weeks of age and IgG (A) or IgM (B) titers in serum binding KLH at 16 weeks of age in the 
second generation of laying hens which were divergently selected for total NAb titers 
binding KLH.  

However, it is worthy to mention that the real trade-off relationships between NAb 

and production efficiency might be complex. The birds which maintain a higher 

level of NAb isotype titers which cost energy and nutrient may show lower 

production efficiency. On the other hand, these birds may also show higher 

production efficiency, because the higher level of NAb isotype will protect the 

animals from initiating the even more costly adaptive immune response by 

providing first line of defense.  

A B 

A B 
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In the study described in chapter 2, all laying hens were housed in cages with 4 

chickens of the same line in each cage. It was not possible to monitor the egg-

production of each laying hen. We therefore investigated if the higher NAb isotypes 

levels negatively affected the body growth instead. In contrast to the predicted 

energetic trade-offs between immune system and body growth, our data showed 

that the layers with higher levels of IgM or IgG were not accompanied by less body 

weight at 22 wk of age (Figure 6.1). Since 2009, divergent selection for total NAb 

titers binding KLH was started. In the second generation, the high NAb line birds 

showed significantly high body weight than low NAb line birds (Figure 6.2). These 

results supported the idea that different from the selection for adaptive immune 

response, the selection for naturally present antibody of innate immunity may be 

accompanied by larger body size. The less energy or nutrients required for maintain 

higher NAb isotype level, or the speculation that higher NAb isotype level prevents 

the costly adaptive immunity from being initiated can be explanations. As yet the 

trade-off between NAb levels and egg-production still awaits further study.  

 

7.4 Conclusions 

In summary, the present and future legislation regarding housing system, welfare, 

and veterinary treatment in the global laying hen industry encourages the breeders 

to put more emphasis on the health of the birds in addition to production 

efficiency.  As an important component of innate immunity, NAb may reflect the 

overall level of defense the laying hens build up genetically for the disease 

resistance. Especially IgM isotype has shown its protective effect on risk of dying (of 

health-related reasons) in clinically healthy birds. Diminishing of production 

efficiency or feather pecking is less likely accompanied with selecting for higher 

NAb isotype titers. Therefore, NAb, especially IgM isotype titers is a promising trait 

for future study and implementing into the breeding goal for laying hens for 

improved health.    
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Summary 

Worldwide, especially in Europe, poultry industry is undergoing important changes 

including ban of the battery housing system and prohibition of beak trimming of 

the laying hens. The former can facilitate more spread of infectious diseases, and 

the latter will contribute to higher mortality because of severe feather pecking. 

Furthermore, given the growing global social concern about food safety and human 

health, abundant use of antibiotics will either be prohibited or restricted. 

Furthermore, it is the layer breeding companies’ ambition to develop a longer egg 

production cycle of 100 weeks, during which time the laying hens will be capable of 

producing 500 eggs without forced-molting process. Breeding goals are the 

characteristics specified for genetic improvement. These changes or challenges 

further emphasize the importance of implementing general disease resistance in 

layers breeding goals next to maintaining high production. The research described 

in this thesis aimed to (1) find out proper immune parameters which are associated 

with and predictive for survival of laying hens, and which can be implemented in 

the breeding program for improved survival of laying hens (chapters 2 and chapter 

4), (2) estimate the genetic parameters and reveal the associated genetic regions of 

the predictive parameters (chapter 3), (3) investigate the relationship between the 

parameters and feather pecking behavior (chapter 5 and chapter 6).  

Natural antibody (NAb), which are the antibodies present in normal healthy 

animals in the absence of a deliberate antigen exposure are an important humoral 

part of innate immunity. Previous studies showed that titers of total NAb binding 

KLH were indicative for a higher probability that chickens survive a laying period. 

However, only total NAb titers was studied without distinguishing different 

isotypes. These various functions suggest that NAb isotypes may be differently 

related to health and survival. In chapter 2 of this thesis, to identify possible 

relationships between survival and titers of NAb isotypes in serum of laying hens, 

birds from 12 purebred layer lines of two commercial breeds, Rhode Island Red (R 

breed, n = 524) and White Leghorn (W breed, n = 538), were monitored for survival 

during one laying period (from 20 until 70 weeks of age). Titers of NAb isotypes IgM 

and IgG binding KLH in serum were measured at 20, 40, and 65 weeks of age, 

respectively. Overall, the titers of IgM and IgG binding KLH decreased with aging. At 

the same age, lines within breed showed significantly different titers of isotypes (P 

< 0.001). Multivariable logistic regression analysis showed that NAb isotypes titers 

at 20 weeks of age were associated to survival of 20 to 40 weeks of age. In the R 

breed, odds ratios of 0.56 (P < 0.001) for IgM and 0.72 (P = 0.02) for IgG were 
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estimated; in the W breed, these were 0.74 (P < 0.01) and 0.99 (P = 0.95) for IgM 

and IgG respectively. We conclude that titers of NAb especially the IgM isotype 

binding KLH at 20 weeks of age are indicative for survival during the laying period. 

The higher the titers of NAb isotypes, the higher the probability of the layers to 

survive. Therefore, we showed in chapter 2 that serum levels of natural antibody 

(NAb) isotypes IgM and IgG binding KLH promising traits for future implementation 

in breeding programs for higher survival of layers. Another prerequisite for the 

traits to be implemented into the breeding program is the existence of genetic 

variation for the traits. Without genetic variations, there is no space for the 

improvement of the traits by selection. Furthermore, estimation of genetic 

parameters for the traits of interest is also important for predicting the selection 

response, setting up correct breeding program and estimating individual breeding 

value. Therefore in chapter 3, we first estimated the genetic parameters for the 

two isotypes at 20, 40, and 65 weeks of age (IgM20, IgM40, and IgM65; IgG20, 

IgG40, and IgG65). Pooled genetic parameters were estimated from the total 

population of 2,504 hens from nine purebred layer lines, with line included in the 

model to account for admixture. Moderate heritabilities (0.14 - 0.44) indicated that 

selection for isotype titers is feasible, especially for IgM, which show higher 

heritabilities than IgG. To better understand the genetic control of NAb isotypes, 

thus disclosing opportunities to breed for higher survival in laying hens, in the 

second part of chapter 3, associations between 1,022 single nucleotide 

polymorphism (SNP) markers and the above-mentioned six immunological traits 

were estimated in 650 genotyped hens from the nine lines. The association study 

was performed across lines to detect markers that are closer to the QTL and have 

the same phase of association in the entire population. Finally, forty-three 

significant associations between SNPs and isotype titers were detected. The SNPs 

of interleukins (IL) IL10 and IL19 were associated with both isotypes; SNPs of 

tripartite motif containing 33 (TRIM33) and IL6 showed significant association with 

IgG20 and IgM20, respectively; SNPs of heat shock protein 90kDa alpha (cytosolic), 

class B member 1 (HSP90AB1) was associated with IgG titers at older ages. Some 

detected SNPs were also reported associated with other immune and behavioral 

traits. The majority of commercial laying hens are crossbred. Genetic parameters of 

NAb isotypes were estimated and relationships between survival and NAb isotypes 

titers in beak trimmed and non-beak trimmed crossbred laying hens were 

investigated in chapter 4. In total, 1,555 beak trimmed and 1,169 non-beak 

trimmed crossbred laying hens were used. Genetic parameters of IgM and IgG 

titers binding KLH at 24 weeks of age were estimated with a linear animal model. 

The heritabilities of NAb isotypes IgG and IgM were 0.21 (SE = 0.04) and 0.26 (SE = 
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0.04), respectively. The genetic correlation between IgG and IgM isotypes was 0.43 

(SE = 0.11). These results indicated that NAb isotype titers were heritable traits in 

the crossbred laying hens. Both NAb isotypes can be selected for simultaneously as 

the detected positive genetic correlation (0.43, SE = 0.11) between them is positive. 

Furthermore, both row and level of the cage were indicated to be associated 

environmental factors for NAb isotype titers. Different from an earlier study with 

purebred hens, survival analysis showed no significant associations of survival with 

NAb isotype titers in beak trimmed or non-beak trimmed crossbred hens. Non-

health-related causes of mortality, especially in birds with intact beaks, overruled 

the anticipated relationships between NAb isotype titers and survival. The genetic 

link between feather pecking and NAb isotype titers was indicated in chapter 3. 

However, more severe feather pecking behavior is not wanted by breeders along 

with the selection for high NAb titers. Therefore, in chapter 5, genetic architecture 

of laying hens welfare-related traits, feather pecking was analyzed using a 

traditional linear model and a direct- associative effect model. Furthermore, the 

relationships between performing/receiving feather pecking and NAb isotype titers 

were also investigated. The results indicated that individual’s NAb isotypes titers 

did not related with receiving feather pecking, but individual’s IgG titers showed a 

suggestive effect on performing feather pecking to the cage mates which need 

further confirmation. Finally, in the general discussion described in chapter 6, 

important points of the thesis are highlighted and discussed. It is argued that 

breeding for general resistance by selecting for innate immunity traits are a good 

supplementary strategy for improving the survival of the laying hens and prepare 

the laying hens for the present and future challenges in the industry. The 

advantages of using NAb isotypes instead of total NAb titers as selection criteria 

were discussed from the respects of measuring technique, biological meaning of 

the traits, genetic background. The inconsistence relationships between NAb 

isotype titers in purebred and crossbred laying hens were mainly attributed to the 

different cause of non-survival. Future studies about NAb were also suggested.  

Overall, the present studies indicate that it is possible to implement NAb especially 

the IgM isotype titers binding KLH into the breeding goals of laying hens to improve 

the health-related survival. 

 

 

 

 

 



Summary 

 

 

164 
 

 

 

 



 

 

 

 
 

 
 
 
 

S 
 

Samenvatting 
 
 
 
 
 
 
 
 
 

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Samenvatting 

 

 

167 

 

Samenvatting 

Wereldwijd, maar vooral in Europa, ondergaat de pluimvee-industrie belangrijke 

veranderingen, waaronder het verbod op het gebruik van het batterij 

huisvestingssysteem en het verbod op het snavelkappen van leghennen. Het 

verbod op het gebruik van batterijen kan de verspreiding van besmettelijke ziekten 

vergemakkelijken, en het verbod op snavelkappen zal bijdragen aan een hogere 

mortaliteit als gevolg van ernstig verenpikken. Bovendien zal, gezien de groeiende 

mondiale maatschappelijke bezorgdheid over voedselveiligheid en de gezondheid 

van de mens, overvloedig gebruik van antibiotica worden verboden of beperkt. De 

veredelingsbedrijven van legpluimvee hebben de ambitie voor een langere 

eierproductie cyclus van 100 dagen, gedurende welke tijd de legkippen in staat 

moeten zijn 500 eieren zonder een geforceerde rui te leggen. Fokdoelen zijn de 

voor genetische verbetering in aanmerking komende kenmerken. Deze fokdoelen 

of uitdagingen benadrukken het belang van de algemene weerstand van leghennen 

naast behoud van een hoge productie. Het in dit proefschrift beschreven 

onderzoek is gericht op (1) het vinden van goede immuun-parameters die 

geassocieerd worden met en voorspellend zijn voor overleving van legkippen, en 

die in het fokprogramma kunnen worden geïmplementeerd voor een betere 

overleving van legkippen (hoofdstuk 2 en hoofdstuk 4) , (2) een schatting van de 

genetische parameters, en het identificeren van genetische regio’s die gerelateerd 

zijn met de voorspellende (immuun) parameters (hoofdstuk 3), (3) het 

onderzoeken van de relatie tussen de immuun parameters en het gedrag van 

verenpikken (hoofdstuk 5 en hoofdstuk 6). 

Natuurlijke antilichamen (NAb) zijn de antilichamen die aanwezig zijn in normale 

gezonde dieren in afwezigheid van een opzettelijke blootstelling aan antigeen. Zij 

vormen een belangrijk humoraal deel van het aangeboren immuunsysteem. 

Eerdere studies toonden aan dat de titers van het totaal gehalte aan NAb dat bindt 

aan KLH indicatief waren voor een hogere kans dat kippen  een legperiode 

overleven. Echter, alleen de totale NAb titers werden bestudeerd zonder 

onderscheid te maken tussen de verschillende antilichaam isotypen. De  

verschillende functies van isotypen suggereren dat NAb isotypen verschillend 

gerelateerd kunnen zijn aan de gezondheid en overleving. In hoofdstuk 2 van dit 

proefschrift, waar mogelijke relaties tussen overleven en titers van NAb isotypen in 

serum van legkippen werd bestudeerd, werd de overleving bepaald van kippen van 

12 zuivere elite lijnen afkomstig van twee oorspronkelijke (commerciële) rassen, 

Rhode Island Red (R ras, n = 524) en Witte Leghorn (W ras, n = 538) tijdens een 
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legperiode van 20 tot 70 weken oud. Titers van de NAb isotypen IgM en IgG in 

serum die bonden aan KLH werden gemeten op 20, 40 en 65 weken leeftijd. Over 

het algemeen namen de titers van IgM en IgG, die KLH binden, af met het ouder 

worden. Op dezelfde leeftijd hebben lijnen binnen een ras hebben zeer 

verschillende titers van de isotypen (P < 0,001). Uit multivariabele logistische 

regressie analyse bleek dat NAb isotype titers op een leeftijd van 20 weken 

geassocieerd werden met overleving in de periode van 20 tot 40 weken. In het R 

ras, werden Odds ratio’s van 0,56 (P < 0,001) voor IgM, en 0,72 (P = 0,02) voor IgG, 

respectievelijk, geschat. In het W ras, waren de Odds ratio’s 0,74 (P < 0,01) en 0,99 

(P = 0,95) voor IgM en IgG, respectievelijk. We concluderen dat de van de NAb 

titers vooral het IgM isotype dat bindt aan KLH op 20 weken leeftijd indicatief is 

voor overleving tijdens de legperiode. Hoe hoger de titers van de NAb isotypen, 

hoe hoger de waarschijnlijkheid van overleving. Daarom toonden we in hoofdstuk 2 

aan dat de serumspiegels van de natuurlijke antilichaam (NAb) isotypen IgM en IgG 

die KLH binden veelbelovende eigenschappen hebben voor toekomstige 

implementatie in fokprogramma’s gericht op een betere overleving van leghennen. 

Een andere voorwaarde voor het opnemen van kenmerken in fokprogramma’s is 

het bestaan van genetische variatie. Zonder genetische variatie, is er geen ruimte 

voor de verbetering van de gekozen eigenschappen via selectie. Bovendien is het 

schatten van genetische parameters van eigenschappen ook belangrijk voor het 

voorspellen van de selectierespons, het opzetten van een correct fokprogramma, 

en schatten van de individuele fokwaarde. Daarom hebben we in hoofdstuk 3 de 

genetische parameters geschat voor de twee isotypen op 20, 40 en 65 weken oud 

(IgM20, IgM40 en IgM65; IgG20, IgG40 en IgG65). Gepoolde genetische parameters 

werden geschat op basis van de totale populatie van 2.504 kippen uit negen 

raszuivere leglijnen, met lijn opgenomen in het model om rekening te houden met 

vermenging. Matige erfelijkheidsgraden (0,14-0,44) gaven aan dat selectie voor 

isotype titers haalbaar is, vooral voor IgM, die een hogere erfelijkheidsgraad 

vertoonde dan IgG. Om beter inzicht te krijgen in de genetische controle van NAb 

isotypen, wat zou bijdragen aan de mogelijkheden om te fokken voor een hogere 

overlevingskans bij legkippen, werden in het tweede deel van hoofdstuk 3, 

associaties tussen 1022 single nucleotide polymorfisme (SNP) merkers en de 

hierboven genoemde zes immunologische eigenschappen geschat in 650 

gegenotypeerde kippen uit de negen lijnen. De associatie studie werd over lijnen 

uitgevoerd om merkers te vinden die dichter bij de Quantitatief Trait Locus (QTL) 

liggen, en dezelfde fase van associatie hebben in de hele populatie. Uiteindelijk 

werden drieënveertig significante associaties tussen SNPs en isotype titers 

gedetecteerd. De SNPs van de interleukines (IL) IL10 en IL19 waren geassocieerd 
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met beide isotypen; SNPs van het tripartite motief met daarin 33 (TRIM33) en IL6 

toonde significante associaties met IgG20 en IgM20, respectievelijk; en SNPs van de 

heat shock eiwitten 90kDa alpha (cytosol), klasse B lid 1 (HSP90AB1) werden 

geassocieerd met IgG titers op oudere leeftijd. Sommige gedetecteerde SNPs 

werden ook vermeld vanwege hun verband met andere immuun- en 

gedragskenmerken. De meerderheid van de commerciële legkippen bestaat uit een 

kruising. Genetische parameters van NAb isotypen werden geschat, en relaties 

tussen overleven en NAb isotype titers bij snavel gekapte en niet-gekapte legkippen 

van een kruising werden in hoofdstuk 4 onderzocht. In totaal 1,555 gekapte en 

1,169 niet-gekapte dieren werden gebruikt. Genetische parameters van IgM-en 

IgG-titers gericht tegen KLH op 24 weken leeftijd werden geschat met een lineair 

diermodel. De erfelijkheidsgraad van IgG en IgM was 0,21 (SE = 0,04) en 0,26 (SE = 

0,04), respectievelijk. De genetische correlatie tussen IgG en IgM isotypen was 0,43 

(SE = 0,11). Deze resultaten gaven aan dat NAb isotype titers ook in een kruising 

erfelijk zijn. Voor beide NAb isotypen kan gelijktijdig worden geselecteerd vanwege 

de gedetecteerde positieve genetische correlatie (0,43, SE = 0,11). Verder lijken 

zowel rij en het niveau van de kooi waarin de dieren waren gehuisvest mogelijke 

geassocieerde omgevingsfactoren voor NAb isotype titers. Anders dan in een 

eerdere studie met raszuivere kippen, toonde een survival analyse geen 

significante associaties aan tussen overleving en NAb isotype titers in gekapte of 

niet-gekapte kippen. Sterfteoorzaken die niet gerelateerd zijn aan gezondheid 

hebben, vooral bij vogels met intacte snavels, meer impact dan de verwachte 

relaties tussen NAb isotype titers en overleving. Het genetische verband tussen 

verenpikken en NAb isotype titers werd aangeduid in hoofdstuk 3. Echter, ernstig 

verenpikgedrag dat samen gaat met selectie voor hoge NAb titers is niet gewenst. 

Daarom is in hoofdstuk 5 de genetische architectuur van welzijn-gerelateerde 

kenmerken van legkippen en verenpikken geanalyseerd met behulp van een 

traditioneel lineair model en een direct-associatief effect model. Bovendien 

werden ook de relaties tussen de uitvoerende / ontvanger van verenpikken en NAb 

isotype titers onderzocht. De resultaten gaven aan dat individuele NAb isotype 

titers niet gerelateerd zijn met het gepikt worden, maar individuele IgG titers 

suggereerden wel een effect op het uitvoeren van verenpikken op kooigenoten, 

echter verdere bevestiging is daarvoor nodig. Ten slotte zijn in de algemene 

discussie in hoofdstuk 6 belangrijke punten van dit proefschrift gemarkeerd en 

besproken. Er wordt betoogd dat fokkerij op algemene weerstand door het 

selecteren op eigenschappen van aangeboren immuniteit  een goede aanvullende 

strategie is ter verbetering van de overleving van leghennen en de voorbereiding 

van leghennen om te kunnen gaan met de huidige en toekomstige uitdagingen in 
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de legpluimvee industrie. De voordelen van het meten van NAb isotypen in plaats 

van het meten van totale NAb titers als selectiecriteria werden besproken vanuit 

het gezichtspunt van de meettechniek, de biologische betekenis van de 

kenmerken, en de genetische achtergrond. De inconsistente relaties tussen NAb 

isotype titers en overleving in raszuivere en gekruiste legkippen werden 

hoofdzakelijk toegeschreven aan de verschillende oorzaken van sterfte. 

Toekomstige studies aan NAb werden ook voorgesteld. 

Samengevat, de huidige studies tonen aan dat het mogelijk is NAb, vooral de titers 

van het IgM isotype dat KLH bindt, te implementeren in fokdoelen om de 

gezondheid gerelateerde overleving van leghennen te verbeteren. 
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