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Abstract  

 
Benthic habitats (habitats occurring at the bottom of a water body) and coral reef ecosystems provide many 

functions. Currently, however, coral reefs are threatened by a number of factors and degrade rapidly. Benthic 

maps are important for management, research and planning. Coral communities in the Caribbean Dutch island 

of St. Eustatius are generally in a good condition, but the benthic communities around St. Eustatius have not 

been yet accurately mapped.  

Remote sensing imagery has been found to be a very useful tool in providing timely and up-to-date information 

for benthic mapping and offers an effective approach to complement the limitation of field sampling. Remote 

sensing in water, however, presents challenges mainly due to the complex physical interactions of absorption 

and scattering between water and light. Shorter wavelengths (-450 nm) penetrate deepest into the water 

column and longer wavelengths (-500-750 nm) are more rapidly absorbed and scattered. Therefore, the 

potential extent of use of remote sense imagery in the oceans relies more on shorter wavelengths (blue band), 

which have inherently noisier signals due to atmospheric effects. 

This research explores the utility of multispectral imagery to identify and classify marine benthic habitats in the 

Dutch Caribbean island of St Eustatius. These include the comparison of two sensors with different spatial and 

spectral resolution, QuickBird (2.4m, 4 bands) and WorldView-2 (2.0m, 8 bands) for mapping benthic habitats. 

The study first investigates the existing methodologies for benthic habitat classification. The benefits of 

atmospheric correction, sun glint effect correction and water column attenuation correction on the accuracy of 

classification maps are also assessed. Then, an object and pixel based supervised classifications for the 

characterization of sea grass, sand and coral are performed. This research also evaluates the possibility to 

extract water depth from multispectral satellite imagery by the use of a ratio transform method. Bathymetric 

data is important for water column correction, to improve the classification accuracy and for the study of the 

ecology of the habitats. 

Results showed that the best results for pixel-based image classification in QuickBird and WoldView-2 imagery 

were obtained after deglinting the image, with accuracies of 49.3% and 51.9% respectively. The sunglint 

removal method improved the total accuracy of benthic habitat mapping, by increasing before and after 

deglinting 3.4% for QuickBird and 6.3% for WorldView-2. Object-based classification provided slightly better 

classification results, with a 53.7% accuracy for QuickBird and 56.9% accuracy for WorldView-2. Therefore, it 

can be concluded that an object-oriented approach to image classification shows potential for improving 

benthic mapping. The classification accuracy did not increase after compensation for water column effects. 

The effectiveness of the ratio method to calculate the bathymetry using multispectral imagery has been 

confirmed. The coefficients of determination (r
2
) achieved are statistically significant, 0.66 for QuickBird, and 

0.41 for WorldView-2 (BG ratio) for a linear relation. The root mean square errors are 4.02 m for QuickBird and 

5.11 m for WorldView-2. It has been proved that this method works better for shallow areas, with a root mean 

square error of 2.32 and 2.47, respectively. Results also indicate that the ratio method is sensitive to variable 

bottom type. Overall, better bathymetric values were obtained with QuickBird than with WorldView-2.  

This research provides a baseline for future benthic habitat classification of the Dutch Caribbean islands using 

remote sensing. The results of this study are a good example of how remote sensing data can be a useful and 

cost effective method to map benthic habitats and calculate bathymetry. 

 
 
 
Keywords: Benthic habitats, Coral reefs, Remote Sensing, QuickBird, WorldView-2, Sunglint, Water Column 
Correction, Pixel-based and Object-based Classification, Bathymetry.  
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Chapter 1: Introduction 

1.1 Context 

Coral reef ecosystems provide many functions, services and goods to coastal populations (Herman, 2000) and 

its mapping is essential for management, research and planning (Miller et al., 2011). In 1997 coral ecosystems 

worldwide were estimated to provide US$ 375 billion worth of ecological services, such as disturbance 

regulation, food production, recreation or cultural goods (Costanza et al., 1997). Currently, however, coral reefs 

are being depleted rapidly due to diverse factors such as destructive fishing practices, erosion processes inland, 

coral mining, marine pollution and sedimentation, global sea level and temperature rising, among others. 

Besides, at the global level, coral bleaching has recently become an additional major threat (Cesar, 2000). For 

all this, there is a need for coral reef ecologists and managers to develop a universal standard for monitoring 

the ecological status and trends of coral reefs (Knowlton and Jackson, 2008). 

Thematic habitat maps are fundamental to characterize marine systems. For mapping purposes, habitats are 

defined as spatially recognizable areas where the physical, chemical and biological environment is distinctly 

different from surrounding areas (Kostylev, 2007). The term benthic refers to anything associated with or 

occurring on the bottom of a water body. Benthic habitat maps and/or coral cover maps provide useful 

information for the management of coastal ecosystems and are used in numerous research and monitoring 

activities of, for example, coral reef resiliency, sea-level change, climate change, and ocean acidification (Miller, 

2010). Benthic maps facilitate describing the coral reef physical environment (Andréfouët et al., 2002a), 

identify connectivity to relevant land-based and marine threats (Andréfouët et al., 2002b), and set a baseline 

reference for change detection analysis and monitoring. The common technique to map benthic habitats has 

been field sampling and aerial photography. However, this has its limitations, as it requires more time, is more 

expensive, and is labour intensive and limited over remote areas. For all these, satellite imagery is becoming 

widespread used for coastal and marine environments. 

Tropical coastal ecosystems are of high spatial complexity and temporal variability, and therefore remote 

sensing imagery has been found to be very useful tool in providing timely and up-to-date information for 

benthic and coral reef mapping and monitoring (Eakin et al., 2010). Through the development and 

commercialization of Very High Resolution (VHR) sensors, spatial capabilities of satellites have joined those of 

aircraft, providing information at the dominant benthos scale but over large areas (Collin et al., 2012). Many 

studies have used different high resolution sensors to map benthic habitats, and have proved to have 

accuracies of around 70% (Green et al., 2000; Sharma et al., 2008). However, the mapping of these submerged 

and highly heterogeneous environments also impose challenges (Chen et al., 2011). Two distinct benthic types 

at different depths (for example) may be spectrally indistinguishable in a remotely sensed image (Hedley et al., 

2012). Therefore, bathymetric data is an essential data source required for water column corrections prior to 

image classification (Sterckx et al., 2005) of marine habitats. A bathymetric map is a very important document 

for coral reef studies (Purkis, 2005) as it helps for their classification and gives an insight into the coral reefs 

ecology (Bertels et al., 2008). Some studies have shown that Object-Based Image Analysis (OBIA) improved the 

classification of benthic habitats in comparison with pixel-based classifications (Benfield et al., 2007; Leon and 

Woodroffe, 2011; Phinn et al., 2012).  
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1.2 Problem definition 

On 10 October 2010 the Caribbean Islands of Bonaire, St. Eustatius and Saba (known as the BES islands) 

became Dutch municipalities with a Special Island Status (BES stands for ‘Bijzondere Eilandelijke Status’ or 

Special Island Status). Mapping and monitoring the coastal ecosystems (including seagrasses and coral reefs) is 

essential for the biodiversity conservation of the BES islands, particularly as it is threatened by a large number 

of factors. Ecological monitoring can assist in directing management actions and conservation of natural area 

(Economic-Affairs, 2010). The coral reef communities in St. Eustatius are at this moment still relatively 

undamaged and well preserved, and are extremely important for biodiversity, protection against waves, 

conservation and tourism. 

With reduced growth rates, mortalities due to disease and bleaching, and increased damage by severe 

weather, coral reef habitats are decreasing, and so its shoreline protection. Recent studies have shown that the 

average live coral cover on Caribbean reefs has declined from more than 50% in the 1970s to just 8% of the 

reef today (Jackson, 2012). Scientists estimated that 75% of the Caribbean's coral reefs are in danger, and 

predicted that by 2050 virtually all of the world's coral reefs would be in risk (Jackson, 2012). One of the major 

threats to corals, bleaching, has been observed in the Windward Islands (including St. Eustatius) since August 

2005 (Esteban et al., 2005). Benthic habitats in the BES islands also serve as an important corridor function for 

animals that use both the land and sea. 

There is a lot of data available about the biodiversity on the BES islands, but this is held by three different 

entities, one on each island, and is in the hands of many different stakeholders (Economic-Affairs, 2010). 

Additionally, some of this data has not been yet analysed. The macro-habitats and benthic communities around 

St. Eustatius have not been properly mapped and described. There are some in situ benthic and reef 

monitoring activities taking place in the BES islands, as well as research on the status of the reefs, water quality 

monitoring, etc. Nevertheless, more coral mapping and monitoring is needed for a better protection of their 

biodiversity. The International Coral Reef Initiative (ICRI) strives to preserve coral reefs and related ecosystems 

by increasing research and monitoring of reefs to provide the data for effective management. The Netherlands 

Antilles Coral Reef Initiative (NACRI) is a response to the call to action from ICRI to form regional and national 

initiatives to preserve the coral reefs in The Netherlands (NACRI, 2010). In this sense, a good coral reef and 

bathymetric map will contribute to these initiatives.  

 

1.3 Objectives  

The main objective of this research is to use multispectral data to map and classify benthic habitats at the 

Dutch island of St. Eustatius, as an accurate habitat map will be useful for the management and protection of 

its biodiversity. Classifying benthic habitats has been done by various researchers around the world, using 

different imagery and methodology. Here, the research questions will focus on finding out the best way of 

using the available high resolution imagery (WorldView-2 and QuickBird) and apply the best classification 

procedure. The 8 spectral bands of the WorldView-2 satellite might improve the classification accuracy of the 4 

spectral bands of QuickBird.  

Overall, the purpose of this study is to help reveal the capabilities and limitations of the available data to 

categorize benthic habitats based on their spectral characteristics and ground truth data over the study area. 

Furthermore, the use of Object-Based Image Analysis (OBIA) will be evaluated, as it has shown improved 

performances over pixel based classifications. This research will also evaluate the possibility of deriving 

bathymetry using the satellite imagery. A good bathymetric map is important not only to improve the 

classification accuracy of the images, but also for the study of the ecology of the habitats.  
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For this thesis, the case study of the island of St. Eustatius has been selected among the others BES islands due 

to the availability of data, which includes two sets of satellite imagery (QuickBird and WorldView-2) and ground 

truth data. 

 

1.4 Research questions 

Based on the objectives described, the following research questions are formulated: 

1- To what extent can benthic habitats of St. Eustatius be classified and mapped using WorldView-2 and 

QuickBird imagery? 

2- Do the additional bands of WorldView-2 provide any benefits to classification accuracy in comparison 

to QuickBird bands? 

3- Does water column correction improve benthic habitat classification? 

4- What benefits to classification accuracy can the application of object-oriented classification provide 

over standard pixel based classification techniques? 

5- Can bathymetry be accurately calculated with available imagery using the ratio transform method? 

 

To answer all these questions a literature review was performed to assess the best methodology. 

 

1.5 Structure of the report 

This thesis is organized in six major sections. Chapter 2 includes a literature review of the background of 

remote sensing of shallow water coastal areas and the existing methodologies for the best classification of 

benthic habitats and bathymetric calculation. The methodology and processing of the imagery and data is 

described in Chapter 3, including the methods performed for atmospheric and bathymetric correction, image 

classification, and accuracy assessment. Results are presented in Chapter 4, in terms of the final benthic maps, 

calculated bathymetry and achieved accuracy. The most important observations derived from this study and 

suggestions on the potential of employed imagery and evaluated methods for benthic habitat mapping are 

addressed in Chapter 5 Discussion and Chapter 6 Conclusions and Recommendations.  
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Chapter 2: Literature review 

2.1 Remote sensing for shallow water coastal areas 

The reflected energy received by an optical remote sensor from shallow water areas is the result of the 

influence of the air-sea interface, atmospheric absorption and scattering, and the water column. Radiation 

passes through two media, the atmosphere and the water, and then back to the sensor, as shown in Figure 1. 

 

Figure 1. Factors influencing the amount of radiance reaching the sensor over a water mass (own elaboration based on 
Edwards, 1999). 

 

To derive information about benthic environments from remotely sensed data, the optical processes in the 

water column must be taken into account, and due to the variety of interactions that take place, these are 

considered more complex than atmospheric. The dissolved particulate matter in the sea water are optically 

significant and their concentration varies in the water column both spatially and temporally (Mobley, 1994). 

Optical remote sensing methods typically penetrate clear waters to approximately 15–30 m (Mumby et al., 

2004). Light penetration is wavelength dependent, being greater in blue wavelengths than in the red 

wavelengths. The precise degree of penetration in a spectral band will depend upon the optical properties of 

the water (e.g. the concentration of dissolved organic matter and suspended sediments) (Mumby et al., 2004). 
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Spectral signatures are the variations in reflected or absorbed electromagnetic radiation at varying 

wavelengths, which can identify particular objects. For any given material, the amount of reflectance, 

absorption, or scattering will depend on wavelength (Olsen, 2007). Each substrate type has spectral 

characteristics that can be used to distinguish it from other objects, and so does marine benthic environments 

(Lubin et al., 2001). Figure 2 illustrates some common coral reef benthic substrates. It can be observed that 

sand has a much higher reflectance at visible wavelengths than coral or algae.  

 

Figure 2. Spectral values of the reflectance for various algae, coral and sand (Maritorena, 1996) 

 

The number of classes distinguishable by remote sensing depends on many factors, including the platform 

(satellite, airborne), type of sensor (spectral, spatial and temporal resolution), atmospheric clarity, surface 

roughness, water clarity and water depth (Mumby et al., 2004). 

Many researchers (e.g. (Andréfouët, 2003; Benfield et al., 2007; Capolsini et al., 2003; Hedley et al., 2004; 

Hochberg et al., 2003b; Mishra et al., 2006; Mumby and Edwards, 2002)) have used different imagery like 

Landsat, SPOT, IKONOS or QuickBird satellite data for mapping and classifying benthic habitats. With the launch 

of WorldView-2, some researchers have also used this high resolution satellite data in the last years, e.g. (Chen 

et al., 2011). Few multi-sensor comparisons have been accomplished until now to determine the capabilities of 

existing sensors in terms of their spatial and spectral resolution, and performance over various environments 

(Andréfouët et al., 2002a; Capolsini et al., 2003; Hochberg et al., 2003b; Mumby and Edwards, 2002). These 

have demonstrated some general trends when mapping coral reef habitats. For instance, some studies have 

shown that spectral resolution (the number and width of spectral bands) is more important than spatial 

resolution for discriminating between reef communities (Hochberg et al., 2003b; Mumby et al., 1997; Mumby 

et al., 2004). Further, some authors demonstrated the advantages of considering the reef morphology and 

habitat zonation at reef level (e.g. contextual knowledge) to improve image classification accuracy (Andréfouët, 

2003; Capolsini et al., 2003; Mumby et al., 1998). Classification accuracy of coral reefs can be increased 

significantly by compensation for light attenuation in the water column and contextual editing to account for 

generic patterns of reef distribution. Both processes are easily implemented and collectively constitute an 

increment in accuracy of up to 17% for satellite sensor imagery (Mumby et al., 1998).  
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2.2 Remote sensing techniques for benthic mapping 

 

2.2.1 Pre-processing of imagery for benthic mapping 

A critical step of remote sensing imagery analysis for benthic habitats classification is the pre-processing of the 

images. This involves radiometric radiance conversion of the image from digital numbers to spectral radiance, 

atmospheric correction, sunglint removal, and correction for the water column. The pre-processed images can 

then be used for the classification and for bathymetry derivation. 

In this section, the main methods for the pre-processing steps are discussed. 

 

2.2.1.1 Atmospheric correction 

There are a variety of methods for atmospheric correction above the sea surface. These, however, usually 

require some input parameters concerning atmospheric and sea water conditions that are difficult to be 

obtained (Kerr, 2012). Therefore, many researchers used the simplified method of dark pixel subtraction for 

this kind of application (e.g. (Green et al., 2000; Mishra et al., 2006). Some studies have concluded that 

correcting the atmosphere through the empirical dark object subtraction procedure led to improved 

bathymetry retrievals (Collin and Hench, 2012).  

In the method of dark pixel subtraction the value of an object with zero reflectance, e.g. deep water, is 

subtracted from all pixels to remove the effect of atmospheric scattering. Although a minimum NIR brightness 

over deep water might be expected to be zero, in practice the minimum NIR brightness in any image is greater 

than zero. This linear correction does not change the results of a statistical classification (Capolsini et al., 2003). 

The procedure followed for this atmospheric correction is described in chapter 3. 

 

2.2.1.2 Sunglint removal 

Sunglint at the sea surface is a common problem in high resolution imagery over water, and many authors use 

techniques of sea surface roughness correction for a better classification of benthic habitats. 

Sunglint occurs in imagery when the water surface orientation is such that the sun is directly reflected towards 

the sensor; and hence is a function of sea surface state, sun position and viewing angle (Kay et al., 2009). 

Sunglint adds a radiation component to the signal registered by the sensor which does not carry any 

information about the water column, and is typically much higher than the water leaving signal in all spectral 

bands, saturating pixel values (Streher, 2013). 

A variety of glint correction methods have been developed for high resolution coastal imagery. In all cases the 

principle is to estimate the glint contribution to the radiance reaching the sensor, and then subtract it from the 

received signal (Kay et al., 2009). Previous methods for sunglint removal were designed for ocean colour 

applications on pixels at large physical scales (.1 km) (Fraser et al., 1997). More recently, Hochberg et al. (2003) 

created a new and simple method of ‘deglinting’ a high spatial resolution image (Hochberg et al., 2003a). 

Hochberg et al.’s (2003) method relies on two assumptions: (1) That the brightness in the NIR is composed only 

of sunglint and a spatially constant ‘ambient’ NIR component (no spatially variant benthic contribution to the 

NIR) and (2) That the amount of sunglint in the visible bands is linearly related to the brightness in the NIR band 

(Hedley et al., 2005). This method assumes that the near-infrared region (NIR) is totally absorbed by the water. 

Therefore, any recorded NIR upward radiance above a water body should contain the reflected sunlight as a 



Classifying benthic habitats and deriving bathymetry at the Caribbean Netherlands using multispectral Imagery.  
   Case study of St. Eustatius 

7 
 

function of geometry independent of wavelength. Assuming that the glint effect remains relatively constant 

independently of wavelength, pixels with glint contribution in NIR bands also have similar glint contribution in 

total upward radiance in visible bands. Therefore, identifying the pixels with maximum and minimum radiances 

in the NIR enables estimation of the percentage of glint contribution in each pixel. 

The method described by Hochberg et al. (2003) in effect models a constant ‘ambient’ NIR brightness level 

which is removed from all pixels. This deglint method, however, has some limitations, as it is sensitive to outlier 

pixels and requires a proper masking out of land and clouds. This prior rigorous masking is required to avoid 

that the brightest NIR pixel would be a land or cloud pixel, as this could be problematic.  

An improvement to the deglinting method that improves the robustness of the technique was presented by 

Hedley et al. (2005). This modified method establishes linear relationships between NIR and visible bands using 

linear regression based on a sample of the image pixels (Hedley et al., 2005). One or more regions of the image 

are selected where a range of sunglint is evident, and where spectral brightness would be expected to be 

consistent (areas of deep water). For each band a linear regression is made between the NIR radiance and the 

band radiance, as shown in Figure 3.  

 

Figure 3. Deglinted method developed by Hedley et al. 2005 (Hedley et al., 2005). 

 

Figure 3 shows the main concepts of this methodology. To deglint a visible band, a regression is performed 

between the NIR values and the values in the visible band using a homogenous sample set of pixels. The slope 

of the regression and the minimum value of the NIR band is used to predict the values for other pixels (Hedley 

et al., 2005). 

Each pixel is corrected by assuming its glint-free NIR radiance is the same as the minimum value in the sample 

regions and reducing the visible band accordingly, using the least squares regression slope to give the 

relationship between the visible and NIR bands. The following equation is used: 

L’i = Li – bi (LNIR - MinNIR) Equation 1 

 

where L’i is the deglinted radiance value, Li is the radiance value in band i, bi is the slope estimated by the linear 

regression, LNIR is the NIR radiance value, and MinNIR is the minimum value for the NIR band established from 

the sample. This method assumes a constant ambient signal level (MinNIR), which is subtracted from each pixel 

of the image during the process.  
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The effectiveness of the method relies on the appropriate choice of the pixel samples from an image region 

that is relatively dark, reasonably deep, and with evident glint (Green et al., 2000; Hedley et al., 2005). Ideally, 

the sample pixels should be drawn from several locations in the image including (if possible) large-scale areas 

with no sunglint at all (Hedley et al., 2005). 

WorldView-2 provides extra bands, so the definition of the proper band combination of NIR (two bands) and 

visible (six bands) that would be involved in the linear regression for sunglint removal is very important. 

Experimental results demonstrated that there was a strong linear relationship among the ‘new’ bands (band 1, 

band 4 and band 6) with the NIR2, and among the ‘traditional’ bands (band 2, band 3 and band 5) with the NIR1 

(Doxania et al., 2012). On the other hand, Deidda and Sanna (2012) show that using the coastal band (band 1) 

instead of the blue band has no noticeable effects on the results.  

Sunglint removal and atmospheric correction of remotely sensed data are essential processes prior to the 

application of a bathymetry model. There are no rules about the sequence of these two procedures. Many 

researchers begin with the sunglint removal and the atmospheric correction follows, while others apply the 

procedures vice-versa (Kay et al., 2009). 

The methodology of this process is further explained in Chapter 3: Methodology and processing. 

 

2.2.1.3 Water column correction 

When light penetrates water its intensity decreases exponentially (attenuates) with increasing depth because 

of two processes, absorption and scattering. The degree of attenuation differs with the wavelength of the 

electromagnetic radiation. In the region of visible light, the red part of the spectrum attenuates more rapidly 

than the shorter-wavelength blue part (Mumby et al., 2004).  

Absorption is wavelength-dependent and involves the conversion of electromagnetic energy into other forms 

such as heat or chemical energy. In marine environments, the main absorbers are algae, particulate matter in 

suspension, dissolved organic compounds, and water itself, which strongly absorbs red light and has a smaller 

effect on shorter wavelength blue light.  

Scattering is when the electromagnetic radiation interacts with suspended particles in the water column and 

change direction. This process increases with the suspended sediment load of the water, so in more turbid 

waters more scattering occurs. 

The spectra of a benthic habitat changes with increasing depth. As depth increases, the separability of habitat 

spectra declines, as shown in Figure 4 with the example of seagrass.  
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Figure 4. Spectra for a benthic habitat (i.e. seagrass) (Green et al., 2000). 

 

Figure 4 also proves how the spectra of the same stratum at a depth of 5 m, for example, will be very different 

to that at 15 m. Similarly, the spectral signature of one substrate at one depth could be very similar to the 

profile of another stratum at a different depth. The spectral radiances are therefore influenced both by the 

reflectance of the substrata and by depth (as well as by scattering by the sediment load of the water), and will 

create confusion when attempting to use visual inspection or multispectral classification to map habitats. 

Therefore, for benthic habitat mapping it is important to remove the influence of water depth.  

As found in literature, there are various techniques to correct for depth. Nevertheless, the removal of the 

influence of depth on bottom reflectance would require two main variables, a measurement of depth for every 

pixel, and a knowledge of the attenuation characteristics of the water column (e.g. concentrations of dissolved 

organic matter). As these two variables are difficult to obtain in most areas, Lyzenga (1978, 1981) proposed a 

simple image-based approach to compensate for the effect of variable depth when mapping bottom features 

(water column correction). This method was then expanded by Mumby et al. (1998).  

The main idea of this water column correction method is that Instead of predicting the reflectance of the 

seabed, the method produces a ‘depth-invariant bottom index’ from each pair of spectral bands. This method 

is only truly applicable to clear waters. However, where water properties are moderately constant across an 

image, the method strongly improves the visual interpretation of imagery and should improve classification 

accuracies (Green et al., 2000).  

 

The Depth Invariant Index approach follows three steps ((Lyzenga, 1981) and (Mumby et al., 1998)).  

 

1. Linearization of the depth/radiance relationship; 

The transformed radiance of the pixel Xi, is the natural log of the pixel radiance Li in band i. 

Xi = ln (Li) 
Equation 2 
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2. Calculation of the attenuation coefficient between pairs of bands; 

The ratios of attenuation coefficients, k, are calculated for band pairs. For this, bi-plots are created for 

each pair of spectral bands. The slope of the bi-plot is a representation of the attenuation coefficient 

for those bands. The gradient of the line is not calculated using conventional least squares regression 

analysis because the result will depend on which band is chosen to be the dependent variable. 

Therefore, rather than calculating the mean square deviation from the regression line in the direction 

of the dependent variable, the regression line is placed where the mean square deviation (measured 

perpendicular to the line) is minimised. The following equations were used from (Green et al., 2000):  

  

  

     √        
Equation 3 

where: 

   
          

    

  
Equation 4 

and: 

           
̅̅ ̅̅ ̅̅ ̅      

̅̅ ̅      
̅̅ ̅   

Equation 5 

where     is the variance of band i,     is the variance of band j and     is the covariance of both bands 

(Nurlidiasari and Buidman, 2005). 

 

3. Generation of the depth-invariant bottom type index. Each pair of spectral bands produced a single 

depth-invariant band using the following equation: 

                               [(
  

  

 )       ] 

 

Equation 6 

 

 

These three steps are represented by Figure 5, where two types of bottom habitats are considered (sand and 

seagrass). 

 

Figure 5. Construction of the depth-invariant index (Deidda and Sanna, 2012, Green et al., 2000). 

In Figure 5, the first step represents the linearization of the depth/radiance relationship. Step 2 represents the 

calculation of the ratio between the two bands, which results in a straight line. Step 3 shows the comparison 

between different bottom types, showing how if a different bottom type is considered, the result will be 

represented by a parallel line, since they will not have the same reflectance. The slope of the two lines is the 
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same, because the ratio of the attenuation coefficients ki/kj only depends on the band wavelengths and on the 

transparency of the water (Deidda and Sanna, 2012). 

 

Nurlidiasari (2012) mapped coral reef using QuickBird data and estimated that water column correction using 

the depth invariant method increased the accuracy of coral reef mapping from 67% to 89% (Nurlidiasari and 

Buidman, 2005). Deidda (2012) used WorldView-2 imagery and concluded that, unlike the sunglint processing, 

using the coastal band for the depth invariant index produced visually different results from the blue one 

(Deidda and Sanna, 2012). 

The exact procedure for water column correction for the study area is further explained in Chapter 3: 

Methodology and processing. 

 

2.2.2 Classification of imagery for benthic mapping 

After the pre-processing steps the classification of the images could be performed. Image classification is a 

crucial stage in remote sensing image analysis. There are two types of classifications, unsupervised and 

supervised. In this research, as there is some previous knowledge about the area due to the fieldwork 

campaign already done, a supervised classification could be performed. Two types of supervised classification 

could be done, pixel based classification and object based classifications. 

 

2.2.2.1 Supervised pixel based Image classification 

In a pixel based classification spectral signatures representative of the various habitat types are fed into a 

classifier that assigns every pixel in the image to a habitat class (Benfield et al., 2007).  
 

Coral reef mapping studies most commonly use the Maximum Likelihood Classification (MLC) per pixel 

(Andréfouët, 2003;, Mumby and Edwards, 2002; Mumby et al., 1997). This decision rule utilizes mean and 

covariance/variance data to assign pixels to a habitat class based upon training data (Benfield et al., 2007). MLC 

assumes that the statistics for each class in each band are normally distributed and calculates the probability 

that a given pixel belongs to a specific class. A statistic distance is calculated to every pixel-based on mean 

values and covariance matrix of the clusters. Then, the pixel is assigned to the class to which it has the highest 

probability. 

 

2.2.2.2 Object Based Image Classification 

Recent studies employing Object-Based Image Analysis (OBIA) to map coral reefs have successfully showed an 

improved performance across different spatial scales (Benfield et al., 2007; Leon and Woodroffe, 2011; Phinn 

et al., 2012). OBIA is particularly suited for the analysis of very high resolution (VHR) images such as QuickBird 

or WorldView-2, where the increased heterogeneity of sub-meter pixels would otherwise confuse pixel-based 

classifications yielding an undesired ‘salt and pepper effect’ (Leon and Woodroffe, 2011). Benfield et al. (2007) 

showed that the classification using OBIA was up to 24% more accurate than the MLC for Landsat and up to 

17% more accurate for QuickBird. This increase in accuracy when mapping coral reefs is attributed to the better 

representation of landforms as multi scale objects and their associated topology. Geometric and contextual 

attributes are more robust than highly variable pixel spectral properties making them more suitable for the 

analysis of very-high resolution or complex images, such as those of intertidal and underwater environments 

(Leon and Woodroffe, 2011).  
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Leon et al. (2012) used spectral and scale-dependent spatial concepts such as texture, context and shape (e.g. 

adjacency, compactness) to define conceptual rules relating the objects within a hierarchical structure. Phin et 

al. (2012) integrated existing knowledge on the biological and geomorphic structures and processes which 

make up coral reefs, with field survey data, high-spatial-resolution multi-spectral images and Object-Based 

Image Analysis (OBIA) techniques. 

Object-oriented classification is composed of two steps, segmentation and classification. The segmentation 

stage creates the image objects that are then used for further classification. In each step of the segmentation, 

pairs of neighbouring image objects are merged, which result in the smallest growth of heterogeneity. If this 

growth exceeds a threshold defined by a break-off value (scale parameter), the process stops. By varying the 

scale parameter, it is possible to create image objects of different sizes. Weighting values are defined by the 

user (e.g. colour, shape, smoothness, compactness) (Benfield et al., 2007). This process enables groups of pixels 

corresponding to reef features to be identified based on their characteristic length/width (size), spectral 

reflectance signature (colour) and shape (compactness) (Phinn et al., 2012). 

The exact classification procedure followed is further explained in Chapter 3: Methodology and processing. 

 

2.2.3 Determination of water depth 

Information of water depth is a fundamental environmental parameter in marine systems (Kerr, 2012), and it is 

important for the discrimination and characterization of coral reef habitats. Bathymetric data is ecologically 

important because benthic community composition varies with depth, as well as resources and disturbances. 

Knowledge of water depth also allows estimation of bottom albedo, which can improve habitat mapping 

(Mumby et al., 1998). However, accurate and high spatial resolution bathymetric data is often missing in 

remote coral reefs areas and is difficult and expensive to obtain. 

Sonar measurements are often used for bathymetry retrieval, but they can be difficult to mobilize in remote 

areas and for repeated surveys. Also, bathymetric Light Detection And Ranging (LiDAR) measurements are well 

suited to surveying both land and shallow waters simultaneously, but can be very expensive (Collin and Hench, 

2012).  

Water depth can also be estimated with passive satellite imagery. Lyzenga (1978, 1981) developed a theory 

using passive remote sensing for determination of water depth, that was then expanded by Philpot (1989) and 

Maritorena et al. (1994) (Maritorena et al., 1994; Philpot, 1989). This provided a cost and time-effective 

solution to accurate depth estimation (Stumpf et al., 2003; Su et al., 2008). 

The initial attempts for automatic estimation of water depth were based on the combination of aerial 

multispectral data and radiometric techniques. With the existence of high resolution imagery, the methods 

were expanded, as the spatial and spectral resolution was improving. Various authors have used IKONOS 

(Stumpf et al., 2003; Su et al., 2008), QuickBird (Lyons et al., 2011; Mishra et al., 2006) and WorldView-2 data 

(Bramante et al., 2013; Kerr, 2012) for bathymetry estimation. The use of two or more bands allows separation 

of variations in depth from variations in bottom albedo, but compensation for turbidity can be problematic 

(Stumpf et al., 2003). 

Light is attenuated exponentially with depth in the water column, with the change expressed by Beer’s Law, 

                     
Equation 7 

where k is the attenuation coefficient and z is the depth. 
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Lyzenga (1978) expressed the relationship between observed radiance or reflectance to depth and bottom 

reflectance as: 

                        
Equation 8 

where    is the water column reflectance if the water was optically deep,    is the irradiance reflectance of the 

bottom (albedo),   is the depth, and   is a function of the diffuse attenuation coefficients for both downwelling 

and upwelling light. Rearranging Eq. 8, depth z can be described as (Stumpf et al., 2003):  

   
 

 
[                    ]  

Equation 9 

The estimation of depth from a single band using Eq. 9 will depend on the albedo   , with a decrease in albedo 

resulting in an increase in the estimated depth. It assumes that the bottom is homogeneous and the water 

quality is uniform for the whole study area. Lyzenga (1978, 1985) further developed a technique to determine 

water depth if the optical properties are not uniform, showing that two bands could provide a correction for 

different bottom types in finding the depth, and created from Eq. 9 the following linear solution: 

                   
Equation 10 

where   ,    and    are derived constants for the water’s optical properties.   is the transformed radiance at a 

particular band, and since the intensity of light is assumed to be decaying exponentially with depth, radiance 

can be linearized as, 

      [          (  )] 
Equation 11 

This linear transform solution has five variables that must be determined empirically (  ,    and   ,        and 

  (  )), and this makes the method difficult to implement.  

 

A new technique was developed as an alternative where fewer parameters are required, it’s easier to use, 

more robust over variable bottom habitats, and more stable over broader geographic areas. This is the ratio 

transform method (Stumpf et al., 2003). 

This ratio transform method is based on absorption rates of different wavelengths. Different bands will be 

attenuated at different rates as energy penetrates the water column. Therefore, as the logarithmic values 

change with depth, the ratio will change. As depth increases, the band with a higher absorption rate (green) 

will decrease proportionally faster than the band will a lower absorption rate (blue). Accordingly, the ratio of 

the blue to the green will increase. This method is stated to compensate implicitly for variable bottom type 

(varying albedo), since a change in bottom albedo affects both bands similarly, but changes in depth affect the 

high absorption band more. Therefore, the change in ratio because of depth is much greater than that caused 

by change in bottom albedo, suggesting that different bottom albedos at a constant depth will still have the 

same ratio. Overall, varying bottom reflectances at the same depth will have the same change in ratio (Stumpf 

et al., 2003).  

Overall, depth can then be approximated as: 

     

       

       
      Equation 12 

where    is a tunable constant to scale the ratio to depth,   is a fixed constant, and    is the offset for a 

depth of 0 m. The fixed value of n is chosen to assure both that the logarithm will be positive under any 

condition and that the ratio will produce a linear response with depth (Stumpf et al., 2003). 
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In contrast to the linear method, the ratio method contains only two variable parameters and can be applied 

quickly and effectively over large areas with clear water. 

 

Stumpf et al. (2003) used the ratio transform method with two IKONOS wavebands, similar to QuickBird bands, 

and demonstrated its benefits to retrieve depths even in deep water (>25m). Other authors extended the 

methodology for the new bands of WorldView-2 (Kerr, 2012, Collin and Hench, 2012). These authors concluded 

that the integration of the new spectral bands of WorldView-2 into the ratio algorithm facilitates more 

accurate optical derivation of water depth from the satellite imagery (Kerr, 2012, Bramante et al., 2013). The 

purple, green, yellow and NIR3 (WV2 1st-3rd-4th-8th bands), was deemed as the most reliable model attaining 

depths to about 30 m (Collin and Hench, 2012). The ratios of the WV2 ‘coastal blue’ band (band 1) to its 

‘yellow’ band (band 4) had greater correlation with depth than the more conventional blue–green ratio 

(Bramante et al., 2013). 

Kerr (2010) modified equation 12 to expand the number of band ratios for depth derivation. Therefore, the 

model for depth estimation using the increased spectral information from WV2 becomes: 

         
̅̅ ̅̅           

̅̅ ̅̅ ̅̅           
̅̅̅̅      

Equation 13 

Where, 

   
̅̅ ̅̅   

         

         
 

 

Equation 14 

the constants   ,     , etc... are estimated through multiple linear regression and n, n-1,... represent the n-th 

band-ratio. The constant   was added within the natural log to ensure that the minimum value for either was 1. 

The equation can be re-written as: 

    ∑     
̅̅ ̅̅        

Equation 15 
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Chapter 3: Methodology and processing 

3.1 Study area 

3.1.1 Description 

Sint Eustatius (17º49’N, 62º98’W) is a volcanic island situated in the northern Leeward Islands portion of the 

West Indies, southeast of the Virgin Islands, in the Caribbean, as shown in Figure 6. The island has a surface 

area of about 21 km
2
. It has a dormant Strato Volcano called Quill, which is the highest point of the island (600 

m) (Roobol and Smith, 2004).  

 

Figure 6. Location of the study area. The image in the left illustrates the general location of Statia in the Caribbean Sea. At 
the right, a satellite image of the island of Sint Eustatius. 

 

St. Eustatius, also known as Statia, is a municipality of the Netherlands Antilles. Together with Bonaire and 

Saba, often called the BES islands, forms the Caribbean Netherlands. The Dutch government assumes 

responsibility for Statia's foreign affairs, but the island has its own Governor and internal autonomy. In the 

early 1980s the population of the island was about 2100 persons (De Palm, 1985). The actual population is 

estimated at 3400 persons (Government).  

On 10th October 2010 the BES islands signed various agreements with the Netherlands. One of them was the 

management plan for an Exclusive Economic Zone, an EEZ. A country that sets up an EEZ is responsible for 

managing nature in this area. The EEZ has been set up to guarantee the sustainable development of the marine 

areas around the new Dutch municipalities of Bonaire, Saba and St. Eustatius (Schoenmaeckers, 2011). 

Together with St. Kitts and Nevis, Statia lies on a shallow submarine plateau of maximally 180 m depth. Statia 

consists of three main geological units: North-western volcanic hills, the Quill volcano and the White Wall 

formation (Westermann and Kiel, 1961).  

The trade winds blow throughout the year from directions between East-North-East and East (Vroman, 1961). 

Statia is situated in the hurricane zone, and the hurricane season runs from June till November. The eastern 

shore of the island is exposed to heavy surf. The Western shore and generally also the Southern and Northern 

coasts are much less exposed (Vroman, 1961). The average day-temperature throughout the year varies 

between 29 and 31 degrees Celsius, and the average night-temperature ranges between 23 and 25 degrees 

Celsius. The average sea temperature varies between 26 and 29 degrees Celsius (KlimaatInfo). 
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A National Marine Park that surrounds the island was created in 1996 and extends from the high water mark 

out to a depth of 30 metres. The St. Eustatius Marine Park covers an area of 27.5 km
2
 and protects a variety of 

habitats, including pristine coral communities (drop off walls, volcanic ‘fingers’ and ‘bombs’, spur and groove 

systems), 18th century shipwrecks and modern-day artificial reefs to promote fishing and dive tourism 

(Bervoets, 2010).  The distance of the Marine Park boundary from shore varies between 1 and 3 km. Within the 

Marine Park are two well defined and actively managed reserves in which no fishing or anchoring are allowed, 

as shown in Figure 7. These reserves were established to conserve marine biodiversity, restore fish stocks and 

promote sustainable tourism, and protects a variety of habitats, including pristine coral reefs (Esteban, 2009). 

The Park is managed by a local non-governmental, not for profit foundation called the St Eustatius National 

Parks Foundation (STENAPA). STENAPA has a co-management structure with stakeholders, conservationists 

and other interested parties on the board.  

 

Figure 7. Statia National Marine Park and its reserves 

 

3.1.2 Benthic habitats of St. Eustatius 

A habitat classification scheme allows grouping habitat types based on common ecological or 

geomorphological characteristics. There are a variety of marine benthic habitat characterization schemes 

around the world. Here, considering the initial knowledge of the area, the previous fieldwork activities and the 

expected distinguishable characteristics in the images, a scheme was created by clearly identifying and defining 

discrete habitat classes. 

 

 

 

 



Classifying benthic habitats and deriving bathymetry at the Caribbean Netherlands using multispectral Imagery.  
   Case study of St. Eustatius 

17 
 

There are mainly 5 benthic habitat types in St. Eustatius: 

1- Unconsolidated Sediment 

1.1 Sand 

2- Coral Reef & Hard bottom 

2.1 Rubble 

2.2 Coral reef and gorgonian 

3- Seagrass and algae 

3.1 Seagrass and algae 

3.2 Sargassum sp. 

These habitats are complex and often mixed, and therefore its mapping classification becomes more difficult. 

Corals can show bleaching or could be dead, which increases its complexity for categorisation. 

A more detailed description of these benthic habitats is explained below (descriptions and images come from 

the fieldwork campaign carried out (Houtepen and Timmer, 2013) mainly): 

1.1. Sand. This habitat consists only of sand areas with no coverage of benthic species. It is mostly found close 

to shore, but also between coral and gorgonian patches. Sand areas exhibit some variations in colour, having 

some areas with darker sands. Some of the sand habitats in the study area are represented in Figure 8. 

   

    

Figure 8. Bare sand areas in Statia (Houtepen and Timmer, 2013) 
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2.1. Rubble. Rubble habitat is quite diverse in terms of coverage percentage and species composition. It 

consists mainly of dead coral rubble often colonized by macroalgae. Figure 9 displays an example of rubble 

habitats in Statia. 

  

Figure 9. Rubble areas (Houtepen and Timmer, 2013) 

 

2.2. Coral. There are a variety of coral community types on Statia, from shallow sloping bottoms covered by 

mixed communities of coral colonies to patch reefs through volcanic boulders of various sizes to spur and 

groove type reefs with sandy channels divided by lava fingers. Few corals are found deeper than 25 m 

(Wageningen-Imares and Deltares, 2011). This habitat is the most species-rich and has the most diverse 

composition, including species of hard coral, gorgonian corals, algae and sponges. Dictyota sp. and Lobphora 

variegata are the main algal species. Coral communities consist of individual coral colonies (which are found in 

sand, rock and rubble patches) in different densities, here called loose reef, intermediate reef (found in rubble 

and rock fields, often sand between the coral patches) and dense reef (found on lava fingers and rock), as 

observed in the images from the fieldwork shown in Figure 10. 

       



Classifying benthic habitats and deriving bathymetry at the Caribbean Netherlands using multispectral Imagery.  
   Case study of St. Eustatius 

19 
 

  

    

Figure 10. From top to bottom, loose, intermediate and dense reef (Houtepen and Timmer, 2013) 

 

In this category, also gorgonian coral reefs are considered. This is a habitat dominated by different gorgonian 

species, including sea fans, sea pens, sea plumes and sea fingers. Examples of gorgonian corals in Statia are 

illustrated in Figure 11. 

    

Figure 11. Gorgonian coral reef (Houtepen and Timmer, 2013) 
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3.1. Algae and seagrass. Algae and seagrass have been grouped together as it is expected that their spectral 

profiles will be similar. Algae refers to benthic habitats that are overgrown by different algae species. Often a 

transition phase between sand and reef regions. Seagrasses occur in sand patches, often alongside coral reefs. 

Seagrass depth distribution is from the lower intertidal zone up to about 35 m depth (Wageningen-Imares and 

Deltares, 2011). This habitat is not often found on Statia, only in the northwest part, probably because of the 

frequent tropical storms and hurricanes. The dominant species of seagrasses are Halophlia stipulacea and 

Halophila decipiens. Seagrass beds play a vital role in maintaining the health and diversity of adjacent coral 

reefs (DCNA, 2012). It can be observed in Figure 12 some examples of algae and seagrass habitats of Statia. 

    

   

Figure 12. Algae fields (top) and Seagrass fields (bottom) (Houtepen and Timmer, 2013) 

 

3.2. Sargassum sp. It is a species of brown algae that differs from most algae because it has flotation organs. 

The strands are lifted up and moving clearly with the waves. This species is mainly found on rubble. Some 

examples of images of sargassum in Statia are shown in Figure 13. 
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Figure 13. Sargassum sp. (Houtepen and Timmer, 2013) 

 
Geographically, during the fieldwork campaign the island was divided in 5 zones for the description of the main 

habitats (Houtepen and Timmer, 2013). Figure 14 shows this geographic division and the ground-truth data 

points obtained during the fieldwork. 

 North-East Atlantic coast: consists of a sandy seafloor with some rubble patches on which algae grow. 

This beach is subject to heavy winds and waves from the East. This is likely to affect the shallow areas, 

limiting new benthic species recruitment and growth.  

 North-West Caribbean coast: small strip of boulders close to shore on which coral species are growing, 

protected by the island from wind and waves. At approximately 15 m depth the habitat changes to 

sand, with seagrass patches from 20 m depth onwards.  

 East Atlantic coast: Lava fingers are a dominant feature in this area, populated by a gorgonian reef up 

to approximately 25 m depth. From 25 m onwards, the fingers are dominated by algae, including 

Sargassum sp.  

 The South Atlantic coast is a habitat dominated by lava fingers, but in front of the White Wall area 

(South) more sand was found. 

 West Caribbean coast: The Western seafloor changes from sandy areas in the shallow waters, at a 

depth of approximately 25 m, to rubble fields largely dominated by algae, but also sponges and corals 

occur. The transition between the two habitats is likely explained by the predominant wind and wave 

direction from the East. This side of the island provides the benthic habitats with a lot of shelter. 
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Figure 14. Representation of the 5 main zones where fieldwork was performed (based on (Houtepen and Timmer, 2013). 
The dots represent the field points 

 

3.1.3 Coral reefs status 

It is reported that the coral communities in Statia are generally in a good condition, with diverse fish population 

and no signs of pollution. Also, it is stated that there is very little mechanical damage to coral reefs due to the 

fact that reefs are fairly deep and beyond the depth that vessels would damage corals and because all non-

resident divers must dive with a dive guide from a local dive centre (Wageningen-Imares and Deltares, 2011). 

However, there are two factors that must be considered. First, there is significant sedimentation in the Marine 

Park due to erosion of cliffs and hillsides during heavy rainfall, but not much sediment is observed on corals 

due to the fact that it is dispersed by the time it reaches most of the coral reef (depths of >10m). Secondly, in 

2005 there was a major coral bleaching event, with 70–80% of coral colonies bleached. Subsequent mortality 

resulted in a loss of the original live coral cover from about 30% to less than 15% in 2008; a 50% decrease. 

Macro-algal cover increased from about 40% in 2005 to almost 60% in 2008 (Wilkinson, 2008). Since the early 

1980s significant decline in seagrass area is reported due to anchoring from tankers (especially in the deeper 

areas from 20-30 m), breakwater construction, pipeline deployment and hurricanes (especially in the late 

1990s) (Wageningen-Imares and Deltares, 2011). The major source of land based pollution is from the Smith’s 

Gut Landfill Site near Zeelandia Beach on the Atlantic coast. The most important threats to seagrasses are 

damages from boat anchors, pollution, dredging, coastal engineering and hurricanes.  
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The St. Eustatius National Marine Park conducted an Economic Valuation of St. Eustatius’ coral reef ecosystems 

in 2009. The findings of this study have outlined that Statia’s coral reef resources provide important goods and 

services to the economy of the island, with a low estimate for the value of Statia’s coral reefs set at USD 

$11,200,454. Therefore, as Statia has approximately 28 km
2
 of coral reef a rough calculation gives a value of 

$400 for one square meter of reef. This number highlights the importance of coral reefs to the island, it also 

suggests that there is an increased need for conservation, so that the value does not diminish (Bervoets, 2010). 

 

3.2 Data 

 Imagery:  

For St. Eustatius WorldView-2 (WV2) and QuickBird (QB) single date multi-spectral and panchromatic images 

are available. Table 1 represent their main sensor characteristics. 

Table 1. Sensors main characteristics. 

Sensor Area Acquisition data Max angle Sun elevation Cloud cover 

QB St Eustatius 06/11/2010 2.9 53.6 9.7% 

WV2 St Eustatius 18/02/2011 0.4 55.1 17% 
  

o WorldView-2  

WorldView-2 satellite provides a high resolution 0.5 m panchromatic and 2 m 8-band multispectral 

imagery. WorldView-2 satellite is owned by DigitalGlobe (Longmont, CO, USA). The image was already 

radiometrically corrected and has 16 bitsPerPixel. The satellite orbits the earth in a sun synchronous 

orbit, at an altitude of 770 km and it has an orbit period of approximately 100 minutes, and a revisit 

frequency of 1.1 days, with a swath size of 16.4 km It has a spatial resolution for panchromatic bands 

of 0.46 m at nadir (0.56 m at 20° off-nadir), while multispectral imagery is captured with a resolution 

of 1.8 m at nadir (2.4 m off-nadir). The eight spectral bands include the four traditional visible to near 

infrared bands, and an additional four spectral bands (Coastal Blue (400-450 nm), Yellow (585-625 

nm), Red Edge (705-745 nm) and another NIR2 (860-1040 nm) band (Chen et al., 2011).  

The 8 bands are designed to improve the segmentation and classification of land and aquatic features 

beyond any other space-based remote sensing platform (DigitalGlobe, 2009). The additional coastal 

band can detect more details in water; in particular the water features (corals, seagrass, etc.) in 

shallow depths in addition to the blue band. Those technical advancements have resulted in better 

discrimination among coral reef features over local areas (Collin and Hench, 2012).  

 

o QuickBird 

QuickBird is a high-resolution satellite that collects panchromatic imagery at 60 centimetre resolution 

and multispectral imagery at 2.4 and 2.8 meter resolutions. It is a product of DigitalGlobe (Longmont, 

CO, USA). The sensor acquires data in four spectral bands: blue (450-520 nm), green (520-600 nm), red 

(630-690 nm) and NIR (760-900 nm). The swath width of the sensor is 16.5 km at nadir, or a strip at 16 

km by 165 km. 
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Figure 15 and Table 2 illustrate the main comparisons between both satellite sensors. 

 

 

Figure 15. Graphical representation of the bands of WV2 and QB satellites. (DigitalGlobe) 

 

Table 2. Comparison of WV2 and QB satellites (Collin and Hench, 2012) 

Waveband 

colors 

Wavebands 

Numbers 

Wavebands 

names 

WV2 Wavelength range 

(nm) 

QB Wavelength 

range (nm) 

Purple 1 “Coastal blue” 400-450  

Blue 2 Blue 450-510 450-520 

Green 3 Green 510-580 520-600 

Yellow 4 Yellow 585-625  

Red 5 Red 630-690 630-690 

NIR1 6 “Red Edge” 705-745  

NIR2 7 Near Infrared 1 770-895 760-890 

NIR3 8 Near Infrared 2 860-1040  

  Panchromatic 400-800 450-900 

 

 

 Ground truth data 

A field campaign took place between October 2012 and January 2013 as part of an internship of the Aquatic 

Ecology and Water Quality Management department of Wageningen University and IMARES titled ”Benthic 

habitat mapping in the coastal waters of St. Eustatius” (Houtepen and Timmer, 2013). The main objective of 

this research was to find out what benthic habitats are present in the coastal waters of St. Eustatius, where 

they are located and what the species composition of these habitats is. For these, dropping video shots were 

performed every 150 meters along a transect line, running from the coastline at approximately 5 meters depth 

to a depth of approximately 30 meters. Every point where the camera was dropped, a GPS-waypoint was made 

and the footage was recorded. The depth, waypoint name and first judgment of habitat were noted after every 

drop.  

As a result, a table was obtained with 600 points, their location, depth, substrate, vegetation and coverage 

percentage. For every waypoint there are videos available. Figure 16 shows a representation in Google Earth of 

these data.  
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Figure 16. Field data points displayed over a depth map of coastal waters around Statia (Houtepen and Timmer, 2013) 

Colored dots are respectively: sand (yellow); rubble (grey); reef 0-33% (orange), reef 33- 66% (red); reef 66-100% (purple), 

gorgonian reef (blue); algal fields (light green); Sargassum sp. (brown) and seagrass (dark green). 

 

 Bathymetric data 

There are two sets of bathymetric data available for this research: 

o Bathymetric data obtained from The Netherlands Hydrographic Service (TNHS) (Defense). 

This data is only available for the Western part of the island. It consists of a XYZ file with 

4.703.598 depth points. This data was further process to obtain a Digital Elevation Model 

(DEM), as described in 3.3.  

 

o Depth data for the field campaign. Every drop shot of the field data includes its depth. To 

measure the depth, first a depth gauge attached to the camera was used. After this gauge 

was lost, the sonar fish finder from the boat used for the field campaign was employed.  

 

There is also available bathymetric data for the Dutch Caribbean Islands, obtained from the Dutch Caribbean 

Nature Alliance (DCNA). These data consist of a shapefile with contours as polygons, with a low resolution, and 

therefore was not further used in this research. A figure displaying this data is included in Appendix 3. 

 

 Benthic Habitat Map 

There is a Benthic Habitat Map available for Statia, created in 2008 by STENAPA and validated by 

Staatsbosbeheer (a Dutch organisation to control and conserve Dutch nature reserves). It includes a 

classification of coral, sand, rock/rubble and seagrass. This benthic habitat map is included in Appendix 3. The 

classification of coral and sand includes low, medium and high probability. This classification was performed 

using a QuickBird image without further corrections and using histogram classification of ArcGIS.  
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Based on this classification map by STENAPA, satellite imaging and bathymetric data, a second habitat map was 

developed by Deltares for the environmental impact assessment of the St. Eustatia harbour extension 

(Wageningen-Imares and Deltares, 2011). From this classification a rough calculation was made on the total 

surface per habitat per depth category. These are included in Appendix 3. 

These classifications could be used in further analysis for comparison. 

 

3.3 General Methodology 

The flowchart of the general methodology of this MSc thesis is represented in Figure 17. 
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Figure 17. Methodology flowchart. Blue boxes indicate available data, green boxes are outputs and black boxes are processes. 
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The methodology is based on the following working steps, as observed in the flowchart (Figure 17). 

All imagery and data was reprojected to the same coordinate system, WGS 84 / UTM zone 20N. 

 

3.3.1 Preparation of field data 

The table containing the 600 points (drops) from the field campaign (Houtepen and Timmer, 2013), their 

location, depth, substrate, vegetation and coverage percentage was prepared for its use in this research. There 

were no images available for the first 68 drops and their classification was not accurate, therefore they were 

removed. Also, points for which classification was not sure were also eliminated from the table. A final 

simplified table was prepared for the benthic classification using the bottom type (substratum) and the bottom 

community (vegetation type) only when it had more than 33% coverage. Visual inspection of the recordings 

was also performed to confirm the classification. In case of doubt, a marine ecologist expert (Erik Meesters, 

IMARES) was consulted and a reclassification was made. With this final table a feature class was created with 

all the fieldwork points. This final table with 524 records is included in Appendix 2. 

The final data points were randomly divided into two sets to be used in the classification, the training and the 

validation data. Therefore, each data set contained 262 points. However, some of this data points were located 

outside the image or in masked areas, and were not used during the classification. 

 

3.3.2 Pre-processing imagery 

Satellite sensors record the intensity of electromagnetic radiation as digital number (DN) values. The DN value 

of each image is specific to the type of sensor and the atmospheric condition during the image acquisition. The 

first step in the methodology is to pre-process the images to obtain the radiance. 

 

WorldView-2 and QuickBird products are delivered as radiometrically corrected image pixels. Top of the 

Atmosphere (TOA) spectral radiance is defined as the spectral radiance entering the telescope aperture. The 

conversion from radiometrically corrected image pixels to TOA spectral radiance is a simple process, based on a 

technical note from Digital Globe for the QuickBird (Kause, 2005) and for the WorldView-2 imagery (Updike and 

Comp, 2010). 

The equation applied is the following: 

   
                          

      
 

 

Equation 16 

where L is the satellite radiance (W m
-2

 sr
-1

 μm
-1

], absCalFactorBand is the absolute radiometric calibration factor 

(W m
-2

 sr
-1

 count
-1

) for a given band (provided in the .IMD files), qPixel,Band are radiometrically corrected image 

pixels (counts) and ∆λBand is the effective bandwidth of each band (μm), as referred by Digital Globe. 

WV2 and QB images were converted directly from DN to TOA Spectral Radiance. 
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3.3.2.1 Masking 

The purpose of the masking is to consider only the area of interest, this is the shallow waters. When extracting 

aquatic information, it is useful to eliminate all upland and terrestrial features (Mishra et al., 2006). Therefore, 

all terrestrial features, boats, piers, and clouds and its shadows were masked out of the image. The process of 

masking follows the next steps: 

1. The inland features were masked out by preparing a binary mask using ArcGIS, which was 

subsequently applied to all the bands. 

2. Radiance values of the NIR band were used to prepare a binary mask to mask clouds and waves. 

However, it was found out that better results were obtained when the sunglint correction was 

performed before masking. Therefore, atmospheric and sunglint correction were performed first, and 

then another binary mask was prepared visually using ArcGIS masking the clouds, their shadows, boats 

and breaking waves next to the coast for each of the satellite images. 

3. Previous to classification, another mask was prepared in order to mask deep waters. This mask was 

applied to the WorldView-2 image and was elaborated visually using ArcGIS by taking into account the 

spatial extent of the QuickBird image, in order for both imagery to have a similar extent. 

 

3.3.2.2 Atmospheric correction 

The images were atmospherically corrected by applying a first-order atmospheric correction (dark pixel, or 

deep water substraction) to every image. The minimum radiance value for each band was recorded and 

subtracted to all the pixels in that band. Radiance values of 0 were ignored in the calculation in order not to 

have negative values. 

 

3.3.2.3 Sunglint removal 

In both imagery used in this study (WV2 and QB) the influence of wind-driven waves could be observed, and 

these produce a sunglint effect at the sea surface. 

The method discussed in 2.2.1.2, proposed by Hedley et al. (2005), was performed for both atmospherically 

corrected images. 

The steps carried out were the following: 

1. A sample of pixels from two homogenous areas of deep water with different sunglint effect was 

selected. The minimum Near Infrared (MinNIR) value in this sample was determined. 

2. A linear regression of NIR brightness (x-axis) against the band signal (y-axis) was performed using the 

selected pixels for each band. The slope of the regression line is the output of interest for the deglint 

formula.  

3. The deglinted radiance was calculated of all the pixels using the formula of Equation 17: 

L’i = Li – bi (LNIR - MinNIR) Equation 17 

 

3.3.2.4 Water column correction 

The Depth Invariant Index method (Lyzenga (1978, 1981) and expanded upon by Mumby et al. (1998)) was 

performed for the QB and WV2 deglinted images.  

The following steps were carried out: 
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1. Groups of pixels are selected from the imagery using ROIs that have the same bottom type but 

different depths. In this case, areas of sand were selected as they were easily recognisable.  

2. The pixel values for the selected areas in all bands are converted to natural logarithms to calculate the 

transformed radiance (Xi = ln (Li)). 

3. Bi-plots of the transformed data are made and examined using the transformed radiances. 

4. The ratios of attenuation were obtained using the formulas included in chapter 2.2. The depth 

invariant Index was calculated for each pair of spectral bands producing a single depth-invariant band.  

For QB, the RGB ratios (bands 1, 2 and 3) were used to generate the depth invariant index image. 

However, as presented later on in Chapter 4, the ratios of the bands 2-3 and 3-1 proved to have very 

little linear correlation. This might be due to the larger light attenuation of band 3 (red) in the water 

column. Therefore, it could be expected that using the 2-3 and 3-1 attenuation ratios could only cause 

noise in the image. To assess this, also a depth invariant index image was created using only the bands 

1-2 (Blue-green ratio), for its accuracy comparison in the image classification. 

For WV2, to assess the possible improvement of the use of the extra “coastal blue” band (band 1) two 

depth invariant images were calculated, one for RGB (bands 2, 3 and 5) and one for RGC (bands 1, 3 

and 5) band combinations. 

 

3.3.3 Classification 

 

Supervised pixel and object based classification were performed for the images. The main steps for both of 

them are (Green et al., 2000): 

 

1. Definition of habitat classes 

In chapter 3.1.2., five main benthic habitat classes in the study are defined. However, the final 

classification was done differencing only 4 benthic habitats. This is because during the classification 

process the first results did not meet the expectations. The results showed confusion between the class 

seagrass and coral reefs. It was difficult to differentiate the spectral profile of sargassum. Also, there were 

not enough field data points for the habitat type rubble to perform a successful classification, and this 

habitat type showed a very mixed structure. Therefore, a final classification with only 4 classes was 

performed:. 

 Coral reef and gorgonian 

 Seagrass,  algae and Sargassum 

 Sand 

 Unclassified (land, intertidal areas and clouds) 

 

2. Selection of training areas 

A training area is a group of pixels that represent a known habitat. These should be representative of the 

habitat class; otherwise it will cause misclassification errors.  

The training areas used were defined using the training field points. 

 

3. Evaluation of the signatures 

The spectral signatures of the training areas were evaluated to avoid mistakes, by comparing them to 

spectral profiles of correspondent in-situ data for quality control, as it is desirable that habitat signatures 

derived from training samples are representative of the class in question and dissimilar to other classes, 

and therefore deviated spectral values within the samples were checked.  

 

4. Selection of decision rules 

A maximum likelihood classification was performed.  
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3.3.3.1 Pixel based classification 

The input for the maximum likelihood classification were the TOA radiance images, the images atmospherically 

corrected, the ones also corrected for sunglint and the depth invariant images, all of them masked for deep 

waters. It is expected that the sunglint removal and the water column correction technique can generate a 

more accurate benthic habitat map for the two available satellite images. Therefore, to evaluate the 

improvement of the proposed methodology, a classification with and without the proposed corrections has to 

be performed for comparison.  

Using the training samples and visual image interpretation, Regions Of Interest (ROI) of well-known ground 

areas were selected as training sites. The same ROIs were identified for the QB and the WV-2 images, following 

the classification scheme as defined in Figure 18. The signatures of the training areas were evaluated by 

comparing them to spectral profiles of known data. A maximum likelihood algorithm was performed using 

ENVI, with equal probabilities of the classes. The data scale factor was set to 1. However, this classification 

algorithm requires two or more image bands to produce the statistics necessary for spectral habitat separation. 

This limited the possibility of assessing the benefits of the water column correction using only one band ratio 

for QB. Therefore, a parallelepiped classification was performed for this single band image. Parallelepiped 

classification uses a simple non-parametric decision rule by establishing decision boundaries forming an n-

dimensional parallelepiped in the image data space. The dimensions of the parallelepiped are defined based on 

a standard deviation threshold from the mean of each selected class. In this case, the standard deviation was 

set to 1. 

 

Figure 18. Pixel based classification scheme 

 

3.3.3.2 Object Based classification 

An object based classification was performed using eCognition. This consisted of two main steps: 

 Segmentation: First, the images were segmented using multiresolution criteria. The segmentation is a 

very important step in object based classification, and so, an iterative process was applied by adjusting 

the segment size, shape and compactness, re-running the segmentation, and performing a visual 

assessment of the results was made until a satisfactory result was obtained that matched habitat 

features visible in the images. This resulted in different criteria for the QB and the WV2 image due to 

the radiometric resolution and the range of the radiance values.  

The composition of the homogeneity criterion selected is included in Table 3.  

Table 3. Homogeneity criterion selected in the object based classification 

Criteria QB WV2 

Scale factor 0.5 20 

Shape 0.1 0.2 

Compactness 0.5 0.5 
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It should be noted here that eCognition failed to execute the classification of the depth invariant images for QB 

and WV2. This could be due to the presence of long low decimal numbers (between -7 and 51 for QB and -103 

to 32 for WV2) and non-existing (NaN) values. To overcome this, a low pass filter (3x3) was applied, and the 

image was converted to integer values (first multiplying by 1000) and then the classification was performed. 

However, the segmentation criteria was changed to a scale factor of 20, shape 0.1 and compactness 0.5, for 

these two images. 

 

 Classification: Then, a nearest neighbour classification was performed using the mean pixel values of 

all the bands. Training areas for the different classes were selected using the training field data, as in 

the case of the pixel based classification.  

The object based classification was performed on the atmospherically corrected images, the deglinted images 

and the depth invariant image of the RGB band combination (as the 1-band ratio of QB and the RGC band 

combination for WV2 proved poorer results). The OBIA classification was not performed on the original TOA 

image, because in the pixel based classification the results obtained were the same as of the darkest pixel 

corrected image, and therefore it was estimated that it was not necessary. This classification scheme is 

presented in Figure 19. 

 

 

Figure 19. Object based classification scheme 

 

3.3.4 Comparison and accuracy assessment 

An accuracy assessment of the classification results was performed using the validation ground truth data. Only 

the validation points located in non-masked areas were used. This resulted in a different number of validation 

points for both images (205 for QB and 160 for WV2).  

 

Error matrices (or confusion matrices) were calculated for all the classified images. From the confusion matrix 

three types of accuracies are generated, overall accuracy, users accuracy and producers accuracy. Overall 

accuracy represents the number of correctly classified pixels. Users accuracy is the probability that a pixel 

classified in the image is correctly classified when compared to field data. To calculate this, the number of 

pixels correctly classified as a class is divided by the total number of pixels classified in that class. Various 

authors had used the user’s accuracy, as it is useful for assessing the accuracy of classification for the various 

habitat classes (Benfield et al., 2007, Mumby et al., 1997). Producers accuracy is the probability that any pixel 

in a given category has been correctly classified. For this, correctly classified pixels are divided by the total 

number of ground reference pixels in that class (Congalton, 1991). 

Error of commission occurs when a pixel in a class is included when it should be excluded. Error of omission will 

be to exclude a pixel that should be included in the class. The Kappa coefficient is a measure of the 

proportional improvement over a purely random assignment of classes (Congalton, 1991).  
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3.3.5 Bathymetry calculation 

The Ratio transform method, as explained in chapter 2.2, was performed for the calculation of the bathymetry 

for both images. 

 

The next steps were followed:  

1. The relative bathymetric values for both images were extracted using the expression: 

       

       
  Equation 18 

The constant   was set to 1000 to assure the algorithm was positive (Stumpf et al., 2003). For QB, the 

values of    and    used in the expression were the blue band and the green band, respectively, of the 

deglinted image. 

The bathymetry was calculated using the green/blue ratio and the green/coastal ratio for the WV2 

image, as these proved to be the best band ratios, so they were both finally used for the bathymetry 

calculation.  

 

2. These relative bathymetric values were regressed with the ground truth data to calculate the 

constants    and   . All the field data points not located in masked areas were used. 

3. The depth values were calculated for all pixel values, following the equation: 

     

       

       
      Equation 19 

 

For the accuracy assessment of the bathymetric derivation, two ground truth data sets are available, the field 

campaign data and the bathymetric data obtained from The Netherlands Hydrographic Service (TNHS) 

(Defense). This data from THNS (only available for the Western part) was converted into a Digital Elevation 

Model (DEM) using the DEM lastools, a LiDAR processing toolbox. The result is shown in Figure 20. 
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Figure 20. Bathymetry for the Western part of Statia (Ministry of Defence) 

 

3.3.6 Conversion to GIS 

Final classification results were converted into vector format. 
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Chapter 4: Results 

4.1 Sunglint removal 

The deglinting process was successfully implemented on the atmospherically corrected images. Then the 

clouds, breaking waves and boats were masked.  

Figure 21 shows an example of the deglinting method applied to the blue band of QB (NIR band regressed 

against the blue band). The sunglint correction for the blue band was therefore calculated using the slope of 

this regression and the Equation 1 in chapter 2.2.1.2, with the resulting expression: L’i = Li – 1.7144 (LNIR - 

MinNIR), being Li the blue band and LNIR the NIR band. The minimum NIR value (MinNIR) was obtained from the 

minimum value of band 4 from the regions of interest. The same process was repeated for the other bands.  

 
Figure 21. Bi-plot of the NIR band (band 4) and blue band (band 1) for the sunglint removal of QB 

 

For WV2, the same process was implemented, but the bands were regressed against the band 7 (NIR2), as it is 

the most similar band to the NIR band of QB. In this research it was also tested to use the band 6 (red edge) 

instead, but the results obtained were very similar, so finally the band 7 was chosen.  

Some examples of the resulting images are shown in Figure 22 for QB and WV2. 
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Figure 22. Results before (left) and after (right) the Sunglint removal method for QB and WV2. 

 

Because of the characteristics of this deglinting methodology, the resulting QB image has 3 bands and the WV2 

image has 6 bands (NIR bands are removed). As it can be observed, the deglinted images show a clear visual 

improvement. Previously obscured submerged features become more visible and clearer. Therefore, it is 

expected that the classification accuracy will improve.  

The spectral profiles for known pixels depicting algae/seagrass, sand and coral/gorgonian, for QB and WV2 is 

displayed in Figure 23. 

  
Figure 23. Spectral profile from the QB and WV2 image over different bottom types: coral, sand and algae. 
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4.2 Water column correction 

The water column correction technique was applied on the deglinted images. For the calculation of the ratio 

attenuation coefficients, four regions of interest were used. These were homogeneous sand areas at various 

depths. 

Bi-plots of the natural logarithm of the pixel values for those regions were created for each pair of spectral 

bands. These transformed radiances values were used in the equations included in chapter 2.2. (Equations 3, 4 

and 5) to calculate the ratio of attenuation coefficients. Then, the depth invariant index was calculated for each 

pair of spectral bands using equation 6.  

For QB, the bi-plots of the natural logarithm transformed radiances for the RGB ratios (bands 1, 2 and 3) are 

presented in Figure 24, and the results for the equations in Table 4. 

 (a) 

  (b) (c) 

 

Figure 24. Scatter plots of sand substrate ROI’s at various depths between band 1 and 2 (a), between band 2 and 3 (b) and 
between band 3 and 1 (c) for QB. 

 
Table 4. Parameter values to calculate the ratio attenuation coefficient between bands 1 (B), 2 (G) and 3 (R) for QB. 

 

Band 1 
(blue) 

Band 2 
(green) 

Band 3 
(red) 

  
 Ratio 1/2 Ratio 2/3 Ratio 3/1     

mean 0.130 -0.593 -2.494 
 

Covariance 0.025 0.036 0.025 

variance 0.015 0.049 0.192 
 

a -0.667 -1.965 3.520 

     

Attenuation Coefficient 
  

  
 0.535 0.240 7.179 
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In the scatter plots in Figure 24 it can be observed that most of the pixel values between band 1 and 2 have a 

linear correlation. However, this linear correlation does nearly not exist between band 2 and 3, and is small 

between band 3 and 1. As discussed before, it could be possible that using the 2-3 and 3-1 attenuation ratios 

could only cause noise in the image. Therefore, two depth invariant index images were created, one using the 

three ratios and another one using only the blue-green ratio.  

After calculation of the ratio attenuation coefficients (  /  ), a depth invariant image was obtained by applying 

equation 6 of Chapter 2.2.1.3. This image was therefore corrected for the water column effect. Figure 25 shows 

some results of the final depth invariant index image for the three band ratio (RGB) and one band ratio (BG) of 

QuickBird. 
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Figure 25. Two example results before (a) and after (b and c) the Depth Invariant index for QB. 

(a) Deglinted Image. (b) Three band ratio Depth Invariant index (RGB). (c) One band ratio Depth Invariant index (BG). 
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For WorldView-2, two depth invariant images were calculated, one for RGB (bands 2, 3 and 5) and one for RGC 

(bands 1, 3 and 5) band combinations. The bi-plots of the natural logarithmic transformed radiances for these 

two ratio combinations are presented in Figure 26  and the results for the equations in Table 5. 

   

    
Figure 26. Scatter plots of sand substrate ROI’s at various depths for the band ratios RGC (bands 1-3-5) (up) and RGB (bands 

2-3-5) (down) for WV2 

 

Table 5. Parameter values to calculate the ratio attenuation coefficient between bands 1-3-5 (coastal-green-red) and 
between bands 2-3-5 (blue-green-red), for WV2. 

 

Band 1 
(coastal) 

Band 3 
(green) 

Band 5 
(red) 

  
 Ratio 1/3 Ratio 3/5 Ratio 5/1     

mean 6.241 6.127 4.779 
 

Covariance 0.052 0.072 0.025 

variance 0.119 0.096 0.376 
 

a 0.218 -1.955 4.367 

     

Attenuation Coefficient 
  

  
 1.242 0.241 8.846 

 

 

Band 2 
(blue) 

Band 3 
(green) 

Band 5 
(red) 

  
 Ratio 2/3 Ratio 3/5 Ratio 5/2    

mean 6.832 6.127 4.779 
 

Covariance 0.051 0.072 0.030 

variance 0.051 0.096 0.376 
 

a -0.438 -1.955 5.513 

     

Attenuation Coefficient 
  

  
 0.654 0.241 11.117 

 

After calculation of the ratio attenuation coefficients (  /  ), the two depth invariant images were created. 

Figure 27 displays some results of the final depth invariant index image for the RGB and RGC band ratio for 

WorldView-2. As it can be observed, the depth invariant images show some visual improvement, specially the 

RGB band ratio image.  
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When solving the equation for the sunglint removal method, negative values in the deglinted image were 

created. This is because, although submerged pixels should not result in out-of range values, areas which are 

not part of the regions used in the deglinted model (e.g. isolated outlier pixels due to waves or other effects or 

shallow areas of sand) may produce negative values. Also, closely packed seagrass and macroalgae can absorb 

enough light that when the deep water signal is subtracted from total radiance, the resulting signal is negative. 

This issue should be considered when applying further post-processing steps, especially in the creation of the 

depth invariant image, as a natural logarithm of the radiance values was performed therefore creating 

imaginary values for these negative values (NaN values). Therefore, for the regions of interest used in the 

depth index method, negative radiance values were not taken into account. However, when calculating the 

depth invariant image, and because of the presence of these negative numbers, many NaN values were 

created, especially in the WorldView-2 image (probably due to the presence of more outlier values associated 

with the waves). This should be carefully taken into account for the later classification. 
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Figure 27. Two example results before (a) and after (b and c) the Depth Invariant index for the WV2 image. 

(a) Deglinted Image. (b) RGC band ratio Depth Invariant index. (c) RGB band ratio Depth Invariant index. 
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4.3 Classification 

4.3.1 Pixel-based classification 

A maximum likelihood classification was implemented on the QB and WV2 preprocessed images, as explained 

in chapter 3.3.3.1., and following the scheme of Figure 18, using 10-20 training samples for the four main 

classes based on the training field data. All the bands of each image were used for the classification.  

The resulting classified images are displayed in Figure 28 for QB and Figure 29 for WV2. Results of the TOA 

radiance image classification are not shown as they produce the same results as the atmospherically corrected 

image. 

Close-ups of these classifications are included in Appendix 4 for a better visual interpretation. 

 

 

4.3.2 Object-based classification  

An object based classification using eCognition was performed, following the methodology explained in 

in 3.3.3.2., and following the criteria explained in Table 3. The same training field points as the ones used with 

the pixel based classification were used. 

The resulting classification images of the object based classification are displayed in Figure 30 for QB and Figure 

31 for WV2.  

Close-ups of these classifications are included in Appendix 4 for a better visual interpretation. 
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Figure 28. Pixel based classification results for QB.  
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Figure 29. Pixel based classification results for WV2. 



Classifying benthic habitats and deriving bathymetry at the Caribbean Netherlands using multispectral Imagery.  
   Case study of St. Eustatius 

 

46 

 

Figure 30. Object based classification results for QB.  
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Figure 31. Object based classification results for WV2.  
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4.3.3 Comparison and accuracy assessment 

For the validation of the classification maps, error matrices (also called confusion matrices) were derived to 

compare the outputs versus reference field data (Congalton, 1991). The accuracy of the resulting classified 

images was assessed using the validation data set.  

The general results of the accuracy assessment for the pixel based classifications are presented in Table 6.  

Table 6. Pixel based classification accuracies for WV2 and QB. 

QuickBird Overall accuracy 
(%) 

Accuracy per classes (%) 

 Coral/Gorg Seagrass/Algae/Sarg. Sand 

TOA Radiance 45.9 30.6 66.7 68.8 

Darkest pixel correction 45.9 30.6 66.7 68.8 

Sunglint correction 49.3 33.9 72.2 70.8 

Depth invariant image (3 band ratio) 48.8 33.9 66.7 72.9 

Depth invariant image (1 band ratio) 31.7 19.8 50.0 47.9 

 

WorldView-2 Overall accuracy 
(%) 

Accuracy per classes (%) 

 Coral/Gorg Seagrass/Algae/Sarg. Sand 

TOA Radiance 45.6 48.2 38.7 45.7 

Darkest pixel correction 45.6 48.2 38.7 45.7 

Sunglint correction 51.9 55.4 51.6 45.7 

Depth invariant image (RGC) 41.3 42.2 29.0 47.8 

Depth invariant image (RGB) 43.8 48.2 22.6 50.0 

 

 

The total results of the confusion matrices are included in Appendix 5.  

The area calculated for the deglinted image for both imagery and per habitat class is showed in Table 7. As it 

can be observed, the total areas for both images differ, and therefore are not comparable. 

Table 7. Overall area per habitat class, in hectares. 

 Area coverage (ha.) 

 QuickBird WorldView-2 

Sand 864.83 700.77 

Algae/Seagrass/Sargassum 492.55 899.05 

Coral/Gorgonian 1,139.95 694.23 

Total 2,497.33 2,294.05 

 

The results of the accuracy assessment for the object based classifications are presented in Table 8. 

Table 8. Overall accuracy object based classification 

 Overall Accuracy (%) 

 QuickBird WorldView-2 

Darkest pixel correction 51.7 49.4 

Deglinted image 53.7 56.9 

Depth invariant image (RGB) 51.7 55.0 
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4.4 Bathymetry derivation 

QuickBird 

The relative bathymetry was obtained from the QuickBird multispectral image using the ratio between the log 

of the blue and green band (of the image atmospherically corrected for darkest pixel and sunglint removal). 

This ratio of the two logarithmic bands is shown in Figure 32a. The log transformation of the blue and green 

band was regressed with the ground truth data to obtain the values for the ratio transform equation, as 

introduced in chapter 2.2.3 (m1 and m0). Only the ground truth points not corresponding to masked values 

were used, adding a total of 416 points. Figure 32b shows this regression, obtaining a value of m1= 161.28 and 

m0=161.30.  

a)  

b)   c)  

Figure 32.  Log transformations of the green and blue band for QB (a). 
Regression bi-plot for the band ratio algorithm and depths from field data (bottom) 

with linear (b) and exponential (c) regression trendline 

 

As shown in Figure 32b, the coefficient of determination, r
2
, is 0.66 (correlation coefficient r= 0.81). However, it 

can be observed that the data fit better an exponential curve (Figure 32c), with an r
2
 of 0.75 (r=0.87). The 

reason why the estimated depth fits better an exponential curve is because, as stated in (Stumpf et al., 2003), 

this method is best suited for bathymetry calculation in shallow waters, deeper depths tend to be 

underestimated and have a larger error. 

The values of m1 and m0 were then used to determine the relative depth for QB. The resulting bathymetry 

image has some noise. This is due to the fact that the ratio combination amplifies small differences more than a 

linear transformation, and therefore, the error variability increases with depth. To reduce this noise and 

improve the image, a low pass filter 3x3 was applied. The resulting bathymetry image is shown in Figure 33.  
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Figure 33. Estimated bathymetry for QB 

 

Figure 34 shows the scatterplot of the regression of the estimated depth with the depth from field work, with 

the line in the plot indicating a 1:1 correlation. This comparison is the accuracy assessment of the bathymetric 

data. The root mean square error (RMSE) is 4.02 meters. As it can be observed in Figure 34 the data fit better a 

logarithmic curve, with larger error at deeper depths. The RMSE improves for depths lower than 20 meters to 

2.32 m.  

 

Figure 34. Validation plot for estimated depths and depths from field data (m) for QB. 
The line indicates a 1:1 correlation. 
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Residuals were calculated by subtracting estimated depths from field depths, and these are displayed in Figure 

35. It can be observed that lower depths tend to be under-estimated, while deeper depths are over-estimated.  

  

Figure 35. Histogram plot of depth residuals from the regression model versus field depth for QB. 

 

To make an accuracy assessment using an independent set for validation, the bathymetry data of The 

Netherlands Hydrographic Service (TNHS) was used, although this is only available for the west side of the 

island. As it can be observed in Figure 36, the coefficient of determination, r
2
, is 0.64 (correlation coefficient 

r=0.80). The  RMSE is of 5.11 m.  

 

Figure 36. Validation regression bi-plot for ratio algorithm and depths from the bathymetry data of The Netherlands 

Hydrographic Service (TNHS) for QB. 

 

As mentioned before, the depths are better estimated in shallow depths, and so, the data fits better a 

logarithmic curve. To quantify this variation, the validation datasets were separated to those with a depth less 

than 20 m. The correlation coefficient improves for depth lower than 20 meters to r
2
=0.83 (r=0.91), as shown in 

Figure 37, with a RMSE of 2.16 m.  
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Figure 37. Validation regression bi-plot for ratio algorithm and depths from the bathymetry data of The Netherlands 

Hydrographic Service (TNHS) for QB. Depths lower than 20 m. 

 

The different substrates seem to influence the values of the predicted depth. Results per habitat type are 

displayed in Figure 38, showing that the bathymetry estimation is best for sand areas.  

  

 

Figure 38. Relative bathymetry per habitat type regressed against the the bathymetry data of The Netherlands 

Hydrographic Service (TNHS) 

 

WorldView-2 

For WorldView-2, as commented in chapter 3.3.5, the use of multiple linear regression was explored, including 

a bigger number of band ratios, as this increase in information should improve the accuracy. This was not the 

case in this research, probably due to the characteristics of the imagery. Finally, the bathymetry was calculated 
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using the blue/green ratio (BG) and the coastal/green ratio (CG), as these proved to be the best band ratios for 

the bathymetry calculation.  

These two ratios of the logarithmic bands are shown in Figure 39. The log transformation of the coastal-green 

and blue-green band were regressed with the ground truth data to obtain the values for the ratio transform 

equations, as introduced in chapter 3.3 (m1 and m0). Only the ground truth points not corresponding to masked 

values were used, with no negative values (for the log) adding a total of 370 points. Figure 40 shows this 

regression, obtaining the following values (Table 9): 

Table 9. Tuning values for Stumpf method for WV2. 

 Coastal-Green ratio Blue-Green ratio 

m1 77.131 148.52 

m0 58.331 135.68 

 

  

Figure 39.  Log transformations of the green and coastal band (left), and of the green and blue band (right) for WV2 

 

As it can be observed in Figure 40, the coefficient of determination (r
2
) is 0.28 (r=0.53) for the CG ratio, and 

0.41 (r=0.64) for the BG ratio. 

 

  
Figure 40. Regression bi-plot for the band ratio algorithm and depths from field data (right) for WV2 

 

As in the case of QB, the estimated depth fits better a log curve (Figure 41), but the improvement on the 

correlation coefficients is much less (r
2
 of 0.29 (CG) and 0.44 (BG)).  
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Figure 41. Regression bi-plot for the band ratio algorithm and depths from field data (right) for WV2 

Linear trendline (up) and exponential trendline (bottom) 

 

Then, with the values of m1 and m0, two estimated depths were determined for WV2. A low pass filter 3x3 was 

applied. The resulting bathymetric images can be observed in Figure 42. 

 

Figure 42. Estimated bathymetry for WV2. BG (left) and CG (right) 
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 Figure 43. Validation plots for estimated depths and depths from field data (m) for WV2.  
The line indicates a 1:1 correlation. 

 

Residuals were calculated by subtracting estimated depths from field depths as displayed in Figure 44. Again, it 

can be observed that lower depths tend to be under-estimated, while deeper depths are over-estimated. The 

lower errors occur at depths between 12 and 20 m. 

  

Figure 44. Histogram plot of depth residuals from the regression model versus field depth for WV2.  
CG ratio (left) and BG ratio (right) 

 

To make an accuracy assessment using an independent set for validation, the bathymetry data from The 

Netherlands Hydrographic Service (TNHS) for the west part of the island was used. As it can be observed in 

Figure 45, the correlation coefficient is r
2
= 0.32 (r= 0.57) for the CG ratio and r

2
= 0.38 (r= 0.61) for the BG ratio. 

The RMSE is of 6.72 m for the CG ratio and 6.28 m for the BG ratio. 
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Figure 45. Validation regression bi-plot for ratio algorithm and depths from the bathymetry data of The Netherlands 
Hydrographic Service (TNHS) for WV2. 

 

For shallow depths lower than 20 m, the correlation coefficient improves to r
2
=0.40 and RMSE=3.38 m for CG 

ratio, and r
2
=0.57 and RMSE=2.83 m for the BG ratio, as shown in Figure 46.  

   

Figure 46. Validation regression bi-plot for ratio algorithm and depths from the bathymetry data of The Netherlands 
Hydrographic Service (TNHS) for WV2. Depths lower than 20 m. 
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very low, and the calculated depth showed no correlation with the field depth. It was also explored in this 

research to use the ratio of the ‘coastal blue’ band (band 1) to its ‘yellow’ band (band 4), suggested by 

(Bramante et al., 2013), but again no correlation was found. This results contradicted previous studies, were 

the expansion of the Stumpf model to a multiple linear regression provided a better resolution (Kerr, 2012). 

  

R² = 0.3231 

0

10

20

30

40

0 20 40

es
ti

m
at

ed
 d

ep
th

 (
m

) 

depth (m) (TNHS) 

Bathymetry calculation CG (WV2) 

R² = 0.3761 

0

10

20

30

40

0 20 40

es
ti

m
at

ed
 d

ep
th

 (
m

) 

depth (m) (TNHS) 

Bathymetry calculation BG (WV2) 

R² = 0.399 

0

10

20

30

0 5 10 15 20

es
ti

m
at

ed
 d

ep
th

 (
m

) 

depth (m) (TNHS) 

Bathymetry calculation CG (WV2) <20m 

R² = 0.5688 

0

10

20

30

40

0 5 10 15 20

es
ti

m
at

ed
 d

ep
th

 (
m

) 

depth (m) (TNHS) 

Bathymetry calculation BG (WV2) <20m 



Classifying benthic habitats and deriving bathymetry at the Caribbean Netherlands using multispectral Imagery.  
   Case study of St. Eustatius 

57 
 

Chapter 5: Discussion 

The final classification results and habitat determination are influenced by the physical characteristics of the 

benthic environments, the characteristics of the field data and imagery, and the methodology selected. This 

chapter will discuss these factors. 

5.1 Remote sensing of marine environments 

In general, remote sensing of water presents many challenges due to the complex physical interactions of 

absorption and scattering between water and light (Lyzenga, 1981; Mumby and Edwards, 2002). In the visible 

spectrum, longer wavelengths (green and red band ~500-750 nm) are rapidly absorbed in the water column 

and scattered, while shorter wavelengths (blue band ~450 nm) penetrate deeper (Lyzenga, 1981). The blue and 

green spectral bands provide the most important spectral information to perform submerged substrate 

mapping, since they are least attenuated by the water column (Herold et al., 2007). Water constituents such as 

dissolved organic matter or suspended particles usually strengthen the attenuation. This differential light 

penetration limits the potential use of remote sensing to describe submerged features, reducing the utility of 

the longer wavelength bands and relying more on the shorter (blue for QB and blue and coastal for WV2), 

which have inherently noisier signals due to atmospheric contaminations (Herold et al., 2007).  

Due to the multiple spatial scales of biological and physical features on coral reefs (Purkis et al., 2007), their 

driving processes and the spatial variations of water depth and clarity (Phinn et al., 2012) and varying 

environmental conditions, the mapping of benthic habitats becomes a complex procedure. 

Benthic habitats have a complex three dimensional nature and are often intermixed (e.g. sandy areas with 

variable algae cover). The pixels size of the WV2 and QB imagery is ~2 meters, and pixels will therefore 

possibly, or almost always, includes a mixture of these habitats. This complex structure impedes the 

differentiation between different marine habitats. In addition, different processes affect these habitats, 

thereby changing their spectral profiles, such as coral bleaching or death corals. As corals become stressed and 

lose their pigmentation, the underlying calcium carbonate skeletons become exposed and this highly reflective 

material can more easily be confused with the high signal return from sand and bare rock features (Mishra et 

al., 2006). Soon after the corals die, the remaining skeletons become covered with algae and pitted through 

bio-erosion (Mishra et al., 2006). These ecological changes reduce the overall albedo and may lead to confusion 

(Mishra et al., 2006). 

 

5.2 General comments about the characteristics of the data  

The characteristics and quality of the available data used in this research might have affected the results. A first 

visual inspection of the WV2 and QB images revealed a big influence of waves, resulting in a high sunglint effect 

at the sea surface, which impedes visual recognition of subsurface features. Logically, this affects all the 

benthic habitat classifications. This effect was more noticeable on the WorldView-2 image. Both images also 

show some clouds and breaking waves, which limited the extent of the application of the classification. Also, 

the waters on the study area might not be completely clear, and have some turbidity, whereas the 

methodology proposed in this thesis is applied to clear waters. Optical sensors have very limited value in high 

turbidity environments (Mumby, 2004).  

 

Another important factor in this study was the disparities in acquisition dates between both images and the 

field survey. Furthermore, both images used for this study varied in acquisition dates between them. Benthic 

habitats could change through time, especially if a strong bleaching event or hurricane occurs, and therefore 

the difference in dates affects the comparison between both satellite images and the accuracy assessment 

using ground truth data. Environmental conditions play an important role in terms of the water properties and 
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the spectral response of the material of interest. Seasonal changes have to be considered, since they exert 

control on the suspended sediments and suspended organic matter and might affect the algae habitat.  

An important limitation in this research was the inadequate number of data points collected from the 

fieldwork. The field data collected did not represent the total coastal area of the island due to some limitations 

(e.g. anchoring zones). Also, the field points were not normal distributed to the depth values and were not 

representative of all the habitat types. There were very few field points for some of the habitat types, such as 

rubble, which makes the classification of this habitat very limited. Field data acquisition is also affected by the 

criteria and interpretation of the students that collected these data. A Random Sampling pattern strategy to be 

devised prior to the field work probably would have been better for this research (Congalton, 1991), although it 

should ensure that all the habitats were surveyed, and all the depth range. Congalton (1991) recommends that 

at least 50 sites of each habitat should be surveyed for accuracy assessment purposes. Green et al. (2000) 

mentions that an additional 30 sites should be visited for use in image classification. Due to the fact that the 

sampling was done using a boat, there are no sampling points collected in shallow waters (<5m). Also, there are 

no sampling points in waters deeper than 40 meters. All these resulted in the groundtruth points not being 

representative of all bottom types and biased towards specific depths. This limited the range of values available 

to calculate the regression coefficients. In an environment with multiple bottom types and depth variations, 

the standard error is amplified when limited data are collected. Finally, this limitation in groundtruth data also 

prevented a thorough accuracy assessment.  

Further on, possible errors in the training and validation areas, due to position errors of the GPS used in the 

field campaign or misinterpretation of field data, will affect the classification results. The coordinates of the 

field data points were taken with a GPS, which has some inaccuracy associated and therefore affects the 

results.  

After all the processing steps the presence of stripes in the WorldView-2 image became noticeable, which 

profoundly affected all the results, the classification and the bathymetry calculation. An example of this effect 

is presented in Figure 47. The reason for this could be that the image is a fusion of several tiles. However, the 

xml file of the image states that the image is composed of only one tile without overlap (included in appendix 

1).  

 
Figure 47. Example of the stripes on the WorldView-2 image. 

More waves are visible on the left of the image. 

5.3 Decisions or limitations in the pre-processing methods 
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In this research it was decided to convert the raw DN values into spectral radiances. Although all the 

methodology could have been performed on raw DN values, it was decided to use the radiances as spectral 

values were used in most previous research. This ensures that the spectral signature of the habitats will be 

transferable to further research (else it will be dependent on the sensor characteristics and timing of the 

image). The spectral units could be used to compare images or to monitor change.  

In oceanic remote sensing, the total signal receive at the satellite is dominated by radiance contributed by 

atmospheric scattering processes and only 8-10 % of the signal corresponds to the oceanic reflectance (Kirk, 

1994). Therefore, the atmospheric correction is an important preprocessing step to obtain information. In this 

research, a simple dark pixel subtraction was implemented. However, this method had no effect on 

classification accuracies over the original radiance image, and so can be discarded, as only one image per 

sensor is analysed. Other atmospheric correction methods that compensate for Rayleight and aerosol 

scattering could be studied. 

Overall, the classification accuracies were not high for all the three image processing methods, probably due to 

the characteristics of the data, as discussed previously. Although there was a clear visual improvement of the 

deglinted and depth invariant images, this improvement was not translated to a high degree to the 

classification accuracies. Only for the deglinted images some improvement was found. 

For the pixel based classification, the deglinted images present a classification improvement over the 

atmospherically corrected images of about 3.4% for QB and 6.3% for WV2. This increment in accuracy was 

greater in WV2 probably due to the presence of more waves. However, no accuracy improvement is achieved 

in the depth invariant images. The reason might be the quality of the imagery or the atmospheric conditions. 

The major limitation of depth-invariant processing is that turbid patches of water will create spectral confusion 

(Green et al., 2000). As stated in Mumby et al. (1998) and Lyzenga (1981), the depth invariant index approach is 

only truly applicable in clear waters. However, in the Caribbean, and therefore in the study area, the waters are 

clear. In the creation of the Depth Invariant images, a visual inspection showed a better improvement using the 

blue band (RGB band ratio) instead of the coastal band (RGC band ratio). This could be because the coastal 

band has a lower wavelength and, therefore, is more sensitive to the atmosphere water content, which is very 

high on the tropics. 

A summary of the classification accuracies results per processing step are displayed in Figure 48 and Figure 49. 

 

Figure 48. Pixel based classification accuracies of the three methodologies for the two sensors, QB and WV2 
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Figure 49. Object based classification accuracies of the three methodologies for the two sensors, QB and WV2 

 

From the accuracy assessment per habitat type we can conclude that, as expected due to its spectral 

characteristics, the habitat class sand is best classified. However, seagrass also shows high classification 

accuracy. From a visual inspection of the classification images it seems that there is an overclassification of 

areas as seagrass, giving therefore a higher accuracy value. 

 

5.4 Comparison between classification procedures 

During the analysis of the spectral profiles there was spectral confusion between rubble, sargassum and 

seagrass/algae. There were also only limited number of groundtruth points of the habitat type rubble available 

to perform a successful classification, and this habitat type has a very mixed structure. Therefore, it was 

decided to perform the final classification only for three benthic habitat classes. 

The type of selected image classification algorithm may influence the final classification results (Andréfouët, 

2003; Capolsini et al., 2003). In the supervised classification, results are also affected by the interpreter’s skills 

and decisions. 

For the classification of the depth invariant image with one band ratio, it should be noted that a supervised 

classification of a single band is limited because the statistical separation of habitat spectra is confined to one 

dimension (Green et al., 2000). 

In this research, classification accuracies of the object-based classification over pixel-based showed some 

improvement. The classification of the deglinted image improved around 4.4% for QB and 5% for WV2. The 

improvement was lower than expected probably due to the presence of waves in the imagery, which causes 

confusion in the segmentation and classification processes. Again, no improvements were found on the Depth 

Invariant images. The resulting object based classification images (Figure 30 and Figure 31) have more 

transitional boundaries than the pixel based classification. 
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5.5 Comparison between Sensors 

Despite that the WorldView-2 sensor has a higher spectral resolution; classification accuracy results did not 

show clear advantage over QuickBird. Overall, the classification accuracy of the pixel-based classification of the 

deglinted image show better results for WV2 (51.9%) than for QB (49.3%).  

Several researches have suggested that the more significant aspect to consider for better accuracy relies then 

on the sensor’s spatial resolution (Capolsini et al., 2003; Mumby and Edwards, 2002). Here, although WV2 has a 

little better spatial resolution, the critical factor was the quality of the images. The additional coastal band for 

WV2 also did not improve the classification, probably due to a higher effect of the atmosphere on this band. 

 

5.6 Bathymetry calculation 

A number of previous studies have demonstrated the usefulness of the Stumpf et al., (2003) method to derive 

bathymetry using multispectral imagery, as stated in 2.2.3. In this research the coefficients of determination 

(r
2
) achieved are statistically significant. These r

2
 obtained for a linear fit are 0.66 for QB (r=0.81), and 0.41 

(r=0.64) for WV2 (BG ratio). The root mean square error (RMSE) is 4.02 m for QB and 5.11 m for WV2 (BG 

ratio). 

The study proved that the ratio method proposed by Stumpf et al. (2003) works better for shallow areas, as the 

RMSE for depths lower than 20 meters improved to 2.32 m and 2.47 m respectively. The reason is because the 

path length of photons increase as depth increases, thereby resulting in increased light attenuation and 

reduced light propagation (Mishra et al., 2006). Reduced propagation decreases the signal to noise ratio 

causing higher estimation error in the deep water (Mishra et al., 2006). Due to this better estimation over 

shallow areas, the estimated depth using the full range fits better a logarithmic relation, with an r
2
 of 0.75 for 

QB and 0.44 for WV2 (BG ratio).  

The independent validation using the depth data from The Netherlands Hydrographic Service provided a 

r
2
=0.64 and  RMSE = 5.11 m for QB, and r

2
= 0.38 and RMSE= 6.72 m  for WV2 (BG ratio).  

Different studies have suggested the ability of the WorldView-2 sensor to derive bathymetry to a higher degree 

of accuracy than was previously possible with existing multispectral sensors. In this research, however, and in 

contrast with previous studies, the addition of more band ratios to a multiple linear regression did not result in 

better classification results. For WV2, the blue-green ratio performed better than the coastal-green ratio (r
2
 of 

0.41 and 0.28, respectively). This could be explained because the coastal band has a lower wavelength and 

therefore is more affected by the atmosphere. 

The results in this research indicate that bathymetry accuracy varies with habitat types (sand and coral). This 

demonstrates that Stumpf et al. (2003)’s algorithm does not implicitly compensate for variable bottom type 

and albedo as was originally concluded by its authors. This limitation was already pointed out by (Clark, 2005), 

who found that the ratio method for bathymetry derivation is altered by varying albedos and produces 

inaccurate results for different substrates. This was also proved by Mishra et al. (2006), who stated that bottom 

reflectance is the most variable parameter and concluded that the regression coefficients for bathymetry 

calculation would be spurious if mixed bottom types were used because the variability in radiance from 

heterogeneous bottom would have a deleterious effect on the regression coefficients. Using a pre-classification 

and tuning the bathymetry separately for each class will, therefore, improve the depth calculation. This should 

be easy to implement, but was not tested in this research due to time constraints. Figure 38 showed that the 

bathymetry estimation was best for sandy bottoms. This could be explained as sandy areas represent a bright 

substrate with a higher reflectance. Coral and algae/seagrass areas show different variations in colour and 
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pigment concentrations which create variable reflectance values and, therefore, produce lower correlation 

coefficients. 

To record the depth of the field data, a depth gauge and later a sonar fish finder was used. These two devices 

have inherent inaccuracies and affect the final results. 

Overall, in this research, QuickBird proved to be consistently more accurate for the bathymetry derivation than 

WorldView-2. 
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Chapter 6: Conclusions and Recommendations  

This research provides the baseline for future benthic habitat classification of the Dutch Caribbean islands using 

remote sensing; it sets a start-up methodology which may be improved in the future. In general, remotely 

sensed data have proved to be useful for baseline reef habitat mapping. The data and results included in this 

research can assist and be used as a reference in the selection of the appropriate techniques and sensors to 

further study benthic habitats and accurately derive bathymetry.  

6.1 Conclusions 

Based on the outcome of this study, we can now answer the research questions defined for this research. 

1- To what extent can benthic habitats of St. Eustatius be classified and mapped using WorldView-2 and 

QuickBird imagery? 

Overall, the total accuracies of benthic habitat mapping were reasonable for all the three image processing 

methods, ranging between 46% and 58%. Besides, the classification was performed over only three habitat 

classes. The preprocessing of the images showed clear visual improvement, but this was then not translated to 

a high degree into the classification accuracies. It has been shown that environmental conditions (clouds, sea 

state, and turbidity) strongly influence the quality of the results. Nevertheless, given the number of factors that 

probably affected the results, it can be concluded that this methodology offers a relatively simple and cost 

effective way to map and classify benthic habitats over the BES islands.  

These findings may provide useful maps for the management and monitoring of benthic habitats on the BES 

islands. 

 

2- Do the additional bands of WorldView-2 provide any benefits to classification accuracy in comparison to 

QuickBird bands? 

The WorldView-2 image only proved a subtle improvement of classification accuracies. For the pixel based 

classification of the deglinted image the WV2 image showed a 2.6% increase in the accuracy over QB. This 

increase was of 3.3% for the object based classification of the deglinted image.  

The WV2 satellite provides finer spatial resolution and higher spectral information than previous satellites (like 

QB). Previous studies showed the improvement of coral reef mapping by using this satellite. However, due to 

the quality of the image, and mainly because of the presence of wind driven waves, this improvement was not 

so high in this research.  

 

3- Does water column correction improve classification? 

A water column correction was applied to normalize the influence of water depth. The results demonstrate 

that neither QB nor WV2 show major improvements in classification accuracy after water column correction. 

The accuracies for both sensors were lower than for the deglinted images.  

Despite this, it must be noted here that the sunglint removal method improved the total accuracy of benthic 

habitat mapping, by increasing before and after deglinting 3.4% for QB and 6.3% for WV2. Therefore, it is 

concluded that the sunglint removal method proposed by Hedley et al. (2005) can be applied to enhance 

bottom type information. 
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4- What benefits to classification accuracy can the application of object-oriented classification provide over 

standard pixel based classification techniques? 

The object-based classification of the deglinted image provided an increase of about 4.4% for QB and 5% for 

WV2 over the pixel based classification. It is expected that the incorporation of contextual information, 

especially depth, will provide better results.  

Overall, it can be concluded that an object-oriented classification shows potential to improve the benthic 

habitat classification. 

 

5- Can bathymetry be accurately calculated with available imagery using the ratio transform method? 

In this research the effectiveness of the ratio method proposed by Stumpf et al. (2003) to calculate the 

bathymetry using multispectral imagery has been confirmed. The coefficients of determination (r
2
) achieved 

are statistically significant, 0.66 for QB, and 0.41 for WV2 (BG ratio) for a linear relation. The root mean square 

errors are of 4.02 m for QB 5.11 for WV2. It has been proved that this method works better for shallow areas, 

as the estimated depth fits better a logarithmic relation, with an r
2
 of 0.75 for QB and 0.44 for WV2 (BG ratio). 

To prove this, a validation was made for depths lower than 20 meters, improving the coefficients of 

determination to 0.8 and 0.62, and the root mean square error of 2.32 and 2.47 respectively.  

The results in this research indicate that some habitat types (sand and coral) were represented with greater 

accuracy. This demonstrates that Stumpf et al. (2003)’s algorithm does not implicitly compensate for variable 

bottom type and albedo as was originally concluded by its authors. 

Overall, and in contrast with previous studies, better bathymetric values were obtained with QB than with 

WV2.  

In conclusion, multispectral bathymetry mapping offers a very cost-efficient means by which users can 

determine depths over large areas and remote regions with little logistical support. The methodology used to 

retrieve the bathymetry is relatively simple and provides a good and cost effective approximation to depth 

calculation over large and remote areas. This method, however, requires truth data, but these could be 

extracted from the data available from the Netherlands Hydrographic Service or other bathymetric data 

available to apply the method in other Dutch Caribbean Islands. 
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6.2 Recommendations 

During the research, limitations and dependencies have been discovered which are open to further 

investigation. This section is dedicated to providing recommendations for further research. 

 

Field Data  

 Field surveys must be planned carefully and due consideration must be given to the objectives of the study 

and the nature of habitats being surveyed. These issues will dictate most aspects of survey design, such as 

the sampling strategy, sampling technique, sampling unit, amount of replication, time to survey (e.g. 

weather conditions, date of image acquisition), ancillary data (e.g. depth, water turbidity) and the means 

of geographically referencing data (Green et al., 2000). 

 In terms of data collection, the date of collection of the ground truth habitat points should be completed 

at the same time as the date of the available images as benthic habitats are in constant change. The 

acquisition of the field data points should take into account the spatial resolution of the imagery used, and 

this is especially important for the degree of accuracy of the GNSS used.  

 Field data should include more points for reference and points dispersed along the entire area of study, at 

all depths and for all habitat types in order to reduce bias in the results and improve accuracy assessment. 

Additional field data would have to be collected in shallow (< 5m) and deep (>40m) waters. 

 Coastal areas often possess gradients of water quality and suspended sediment concentration, and 

changes in these parameters across an image can lead to spectral confusion during image classification and 

misassignment of habitat categories (Green et al., 2000). To mitigate this effect, field data surveys should 

represent each physical environment present on the study area. 

 Accuracies will improve using a more accurate Global Navigation Satellite System (GNSS) and/or an 

acoustic instrument for depth values. 

 

Methodology 

 Other methods for a better correction for waves could be studied. Lee et al. (2008) successfully applied a 

method proposed by Goodman et al. (2008) for sunglint removal in WorldView-2 imagery (Goodman et al., 

2008; Lee, 2012).  

 A more rigorous method for atmospheric correction could be applied if variables concerning the 

atmosphere and sea water conditions are known. 

 In this research, the water column correction used did not provide any improvement. In further work, an 

alternative radiometric correction could be applied by combining depth data with attenuation coefficients. 

 In this research, a simple image-based approach was used for the water column correction. However, 

other methods could be explored, although most include the need of knowledge of attenuation 

characteristics of the water column. Tassan (1996) has described a theoretical depth-invariant model for 

water of greater turbidity than specified by Lyzenga (1981). This method is mathematically complex and 

still requires field validation. 

 A spatial filter could be applied to interpolate the gaps in the spectral data created by NaN values of the 

Depth Invariant images, assuming that the surrounding substrates are present in that area.   

 Further improvements should be applied to study the classification of more habitat classes, including 

rubble and the differentiation between algae and sargassum sp. Also, the possibilities of identifying coral 

cover percentage classes (loose, intermediate and dense) could be studied.  

 For the object based classification, data fusion approaches in which data from multiple sources are 

integrated into the rules have greatly improved the performance of these classification methods (Leon and 

Woodroffe, 2011). The incorporation of the depth derived from the remote sensing imagery should 
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therefore improve the results (Gao, 2009). Also, considering the reef morphology and habitat zonation will 

increase mapping accuracies (Mumby et al., 1997; Andréfouët, 2003; Capolsini et al., 2003). Leon and 

Woodroffe (2011) have concluded that the combination of optical and terrain information improved 

classification results around 10 %. There are some contextual rules that could be used during post-

classification editing available in literature, like the ones proposed in Green et al. (2000). For example, 

seagrass is occasionally confused spectrally with coral reef patches particularly where the latter include 

significant levels of macroalgae. A decision rule could be established as seagrass is not found on the 

forereef, so that seagrass patches on the forereef should be recoded as coral (Green et al., 2000). In the 

study area of this research some of the rules that could be applied are: 

o For Coral: 

 No coral is found at depths <1 m on the leeward side (East) 

 No coral is found at depths <5 m on the windward side (West) 

o Seagrass is not deeper than 30 m. 

 To ensure that contextual editing does not create bias or misleading improvements to map accuracy, the 

decision rules must be applicable throughout an image and not confined to the regions most familiar to 

the interpreter (Green et al., 2000). For future research, other contextual editing rules could be applied, 

like water exposure, distance to land, distance to river mouths or distance to known sites of corals. 

 

 

Bathymetry 

 Subdividing the scene into its different bottom types and tuning the algorithm’s coefficients separately for 

each substrate could improve the bathymetric mapping. This was not tested in this research because of 

time constraints, but could be a topic of further research. 

 Tide modifies field depth and, therefore, the time of data acquisition is important. Ground truth depth 

data collected nearly concurrently with the remotely sensed imagery will minimize temporal variability and 

will provide a better tuning of the algorithm parameters.  

 For the calculation of the variables m0 and m1, the use of only the depth data lower than 20 m, which gave 

a higher correlation, could be studied further. 

 Sonar data and airborne LIDAR data are some examples of data that can be complementary for the 

bathymetry calculation and validation. However, as stated in section 2.2.3, these methods are expensive 

and difficult to use in remote areas. 

 It could be further explored the use of more band ratios for WV2 imagery to perform a multiple linear 

regression. 

 

General 

 The identification of more effective and practical algorithms and methodologies may lead to consensus 

among reef scientist to follow more homogeneous approaches for coral reef habitat mapping (Green et al., 

2000; Mumby et al., 1998; Andréfouët, 2003). A global methodology for other areas, that could be 

repeatable, will be very useful for benthic habitat mapping. 

 In situ spectral measurements of benthic habitats will help to improve the classification. Benthic habitat 

mapping using remote sensing could benefit from using "spectral libraries" (libraries of spectral signatures 

containing lists of habitats and their reflectance) (Hochberg et al., 2003b). 
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Appendix 1. QuickBird and WorldView-2 files 

QuickBird WorldView2 
SATID>QB02</SATID> < 

MODE>FullSwath 

SCANDIRECTION>Forward 
CATID>10100100054F6500 

FIRSTLINETIME>2006-11-10T15:10:04.339562Z 

<AVGLINERATE>1.725030000000000e+03 

<EXPOSUREDURATION>5.797000000000001e-04 
<MINCOLLECTEDROWGSD>2.431000000000000e+00 

<MAXCOLLECTEDROWGSD>2.431000000000000e+00 

<MEANCOLLECTEDROWGSD>2.431000000000000e+00 

<MINCOLLECTEDCOLGSD>2.447000000000000e+00 
<MAXCOLLECTEDCOLGSD>2.448000000000000e+00 

<MEANCOLLECTEDCOLGSD>2.448000000000000e+00 

<MEANCOLLECTEDGSD>2.439000000000000e+00 

<ROWUNCERTAINTY>3.417000000000000e+01 

<COLUNCERTAINTY>3.401000000000000e+01 
<MINSUNAZ>1.614000000000000e+02 

<MAXSUNAZ>1.614000000000000e+02 

<MEANSUNAZ>1.614000000000000e+02 

<MINSUNEL>5.360000000000000e+01 
<MAXSUNEL>5.370000000000000e+01 

<MEANSUNEL>5.360000000000000e+01 

<MINSATAZ>1.358000000000000e+02 

<MAXSATAZ>1.587000000000000e+02 
<MEANSATAZ>1.472000000000000e+02 

<MINSATEL>8.590000000000001e+01 

<MAXSATEL>8.730000000000000e+01 

<MEANSATEL>8.659999999999999e+01 
<MININTRACKVIEWANGLE>-2.700000000000000e+00 

<MAXINTRACKVIEWANGLE>-2.000000000000000e+00 

<MEANINTRACKVIEWANGLE>-2.400000000000000e+00 

<MINCROSSTRACKVIEWANGLE>1.800000000000000e+00 

<MAXCROSSTRACKVIEWANGLE>2.000000000000000e+00 
<MEANCROSSTRACKVIEWANGLE>1.900000000000000e+00 

<MINOFFNADIRVIEWANGLE>2.900000000000000e+00 

<MAXOFFNADIRVIEWANGLE>2.900000000000000e+00 

<MEANOFFNADIRVIEWANGLE>2.900000000000000e+00 
<PNIIRS>3.000000000000000e+00 

<CLOUDCOVER>9.700000000000000e-02 

<RESAMPLINGKERNEL>PS 

<TDILEVEL>13 
<POSITIONKNOWLEDGESRC>R 

<ATTITUDEKNOWLEDGESRC>R 

<REVNUMBER>28450 

</IMAGE> -<MAP_PROJECTED_PRODUCT>  

<EARLIESTACQTIME>2006-11-10T15:10:05.554420Z 
<LATESTACQTIME>2006-11-10T15:10:05.554420Z 

<DATUMNAME>WE 

<SEMIMAJORAXIS>6.378137000000000e+06 

<INVERSEFLATTENING>2.982572235630000e+02 
<DATUMOFFSETList>  

<DATUMOFFSET>0.000000000000000e+00 0.000000000000000e+00 

0.000000000000000e+00 

<MAPPROJNAME>UTM 
<MAPPROJCODE>1 

<MAPZONE>20 

<MAPHEMI>N 

<PRODUCTUNITS>M 
<ORIGINX>4.974420000000000e+05 

<ORIGINY>1.938248399999990e+06 

<ORIENTATIONANGLE>0.000000000000000e+00 

<COLSPACING>2.400000000000000e+00 

<ROWSPACING>2.400000000000000e+00 
<PRODUCTGSD>2.400000000000000e+00 

<ULX>4.974420000000000e+05 

<ULY>1.938248399999990e+06 

<ULH>-4.200000000000000e+01 
<URX>5.070204000000000e+05 

<URY>1.938248399999990e+06 

<URH>-4.200000000000000e+01 

<LRX>5.070204000000000e+05 
<LRY>1.929968399999990e+06 

<LRH>-4.200000000000000e+01 

<LLX>4.974420000000000e+05 

<LLY>1.929968399999990e+06 

<LLH>-4.200000000000000e+01 
<DEMCORRECTION>Coarse DEM 

<NUMGCP>0</NUMGCP>  

</MAP_PROJECTED_PRODUCT> </IMD>  

<TIL> <BANDID>Multi 
<NUMTILES>1 

<TILESIZEX>3992 

<TILESIZEY>3451 

<TILEUNITS>Pixels 
<TILEOVERLAP>0 

SATID:WV02  

MODE: FullSwath  

SCANDIRECTION>Forward 
CATID>10300100081BAB00 

FIRSTLINETIME: 2011-02-18 T15:07:20.621447Z 

<AVGLINERATE>5.000000000000000e+03 

<EXPOSUREDURATION>2.000000000000000e-04  
<MINCOLLECTEDROWGSD>1.848000000000000e+00 

<MAXCOLLECTEDROWGSD>1.849000000000000e+00 

<MEANCOLLECTEDROWGSD>1.848000000000000e+00 

<MINCOLLECTEDCOLGSD>1.850000000000000e+00 
<MAXCOLLECTEDCOLGSD>1.850000000000000e+00 

<MEANCOLLECTEDCOLGSD>1.850000000000000e+00 

<MEANCOLLECTEDGSD>1.849000000000000e+00 

<ROWUNCERTAINTY>2.455000000000000e+01 

<COLUNCERTAINTY>3.593000000000000e+01 
<MINSUNAZ>1.449000000000000e+02 

<MAXSUNAZ>1.449000000000000e+02 

<MEANSUNAZ>1.449000000000000e+02 

<MINSUNEL>5.510000000000000e+01 
<MAXSUNEL>5.520000000000000e+01 
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Appendix 2. Final table of field data points 

waypoint depth (m) Latitude Longitude habitat  waypoint depth (m) Latitude Longitude habitat 

69 13 17.47002 -62.94801 coral   135 26 17.45765 -62.96496 sand 

70 20 17.46874 -62.94729 gorgonian  136 29 17.45655 -62.96472 algae 

71 23 17.46754 -62.94663 sand  137 6 17.48113 -62.94464 algae 

72 25 17.46682 -62.94555 rubble  138 9 17.48155 -62.9433 gorgonian 

73 29 17.46605 -62.94428 coral  139 15 17.48125 -62.94175 gorgonian 

74 29 17.4665 -62.94355 rubble  140 28 17.48126 -62.9398 gorgonian 

75 25 17.4675 -62.94522 gorgonian  141 29 17.48145 -62.93798 algae 

76 22 17.46852 -62.94643 coral  142 30 17.48125 -62.93631 algae 

77 17 17.4708 -62.94661 gorgonian  143 30 17.48411 -62.93714 algae 

78 9 17.4724 -62.9474 gorgonian  144 28 17.48414 -62.93883 algae 

79 5 17.47326 -62.94778 coral  145 20 17.4836 -62.94092 gorgonian 

80 22 17.46957 -62.94466 coral  146 10 17.48289 -62.94295 gorgonian 

81 29 17.46733 -62.94261 algae  147 6 17.48245 -62.94428 gorgonian 

82 27 17.46943 -62.94136 algae  148 6 17.48429 -62.94488 gorgonian 

83 26 17.4702 -62.94247 coral  149 9 17.4849 -62.94336 gorgonian 

84 22 17.47125 -62.94393 gorgonian  150 13 17.48524 -62.94195 gorgonian 

85 17 17.47237 -62.94549 gorgonian  151 22 17.4852 -62.94051 gorgonian 

86 11 17.47335 -62.94647 gorgonian  152 25 17.48577 -62.93921 algae 

87 5 17.47432 -62.94742 gorgonian  153 30 17.48667 -62.93765 sargassum 

88 7 17.47593 -62.94662 gorgonian  154 28 17.48827 -62.93919 sargassum 

89 11 17.47563 -62.94499 coral  155 25 17.48775 -62.94105 gorgonian 

90 19 17.47461 -62.94349 sand  156 12 17.48731 -62.9429 gorgonian 

91 24 17.4736 -62.94206 coral  157 7 17.48681 -62.94467 gorgonian 

92 29 17.47224 -62.94005 algae  158 6 17.48849 -62.9457 gorgonian 

93 27 17.47567 -62.9399 algae  159 9 17.48879 -62.94474 gorgonian 

94 24 17.47593 -62.94136 gorgonian  160 11 17.48903 -62.94384 gorgonian 

95 18 17.47622 -62.94303 gorgonian  161 13 17.48921 -62.94293 gorgonian 

96 10 17.47711 -62.94435 gorgonian  162 17 17.48942 -62.94183 gorgonian 

97 5 17.47814 -62.94567 algae  163 26 17.48913 -62.94069 rubble 

98 5 17.46572 -62.95994 gorgonian  164 29 17.48955 -62.93976 coral 

99 12 17.46415 -62.95962 coral  165 27 17.49074 -62.94106 coral 

100 17 17.46278 -62.95845 sand  166 22 17.49041 -62.94233 gorgonian 

101 21 17.46127 -62.95729 sand  167 15 17.49006 -62.94376 gorgonian 

102 23 17.45794 -62.9578 sand  168 10 17.48972 -62.94524 gorgonian 

103 30 17.45634 -62.95733 algae  169 8 17.48956 -62.9466 gorgonian 

104 21 17.45959 -62.95862 sand  170 7 17.48922 -62.94792 sargassum 

105 18 17.46189 -62.95917 sand  171 5 17.46383 -62.96703 gorgonian 

106 5 17.46494 -62.9618 gorgonian  172 9 17.46286 -62.96722 coral 

107 13 17.46327 -62.96185 sand  173 12 17.4618 -62.96729 coral 

108 18 17.46077 -62.96112 sand  174 17 17.46081 -62.96722 gorgonian 

109 21 17.45803 -62.96065 sand  175 20 17.45978 -62.96713 coral 

110 30 17.45532 -62.96028 algae  176 21 17.45877 -62.96683 algae 

111 6 17.46415 -62.96248 gorgonian  177 21 17.45764 -62.9667 sand 

112 11 17.46318 -62.96339 gorgonian  178 26 17.45662 -62.96665 sand 

113 15 17.46182 -62.96302 gorgonian  179 34 17.45545 -62.96659 algae 

114 18 17.4609 -62.96242 algae  180 5 17.46406 -62.96968 gorgonian 

115 19 17.45984 -62.96187 sand  181 12 17.46274 -62.97033 sand 

116 22 17.45775 -62.96145 sand  182 18 17.46094 -62.97057 gorgonian 

117 26 17.45883 -62.96162 sand  183 28 17.45909 -62.9705 coral 

118 29 17.45674 -62.96156 sand  185 31 17.46043 -62.97274 coral 

120 25 17.45538 -62.96259 rubble  186 23 17.46152 -62.97236 gorgonian 

121 30 17.45647 -62.96329 sand  187 12 17.46271 -62.97264 coral 

122 25 17.45771 -62.96367 sand  188 8 17.46342 -62.97266 gorgonian 

123 20 17.45892 -62.96388 sand  189 4 17.46414 -62.97224 sand 

124 20 17.46003 -62.96411 seagrass  190 4 17.46458 -62.97515 gorgonian 

125 18 17.46111 -62.9644 coral  191 7 17.46365 -62.97528 gorgonian 

126 13 17.46224 -62.96451 coral  192 13 17.46277 -62.97522 sand 

127 9 17.46334 -62.96436 gorgonian  193 21 17.46158 -62.97512 seagrass 

128 5 17.46414 -62.96427 gorgonian  196 23 17.4615 -62.97689 sand 

129 5 17.46393 -62.96545 gorgonian  197 19 17.46167 -62.97668 sand 

130 10 17.46276 -62.96579 coral  198 17 17.46234 -62.97737 gorgonian 

131 14 17.46174 -62.9657 gorgonian  199 15 17.46288 -62.97728 coral 

132 17 17.46067 -62.96568 coral  200 9 17.46372 -62.97758 sand 

133 20 17.45938 -62.96596 sand  201 6 17.46482 -62.97707 gorgonian 

134 23 17.45852 -62.9654 algae  202 4 17.4659 -62.97826 sand 
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waypoint depth (m) Latitude Longitude habitat  waypoint depth (m) Latitude Longitude habitat 

203 8 17.46488 -62.97853 sand  270 25 17.46048 -62.98619 gorgonian 

204 13 17.46395 -62.979 coral  271 36 17.4591 -62.98647 coral 

205 16 17.46283 -62.97907 coral  273 34 17.46007 -62.98814 algae 

206 19 17.4619 -62.97911 coral  274 23 17.46076 -62.98789 coral 

207 32 17.46129 -62.97917 coral  275 20 17.46158 -62.98742 coral 

208 19 17.46165 -62.98202 coral  276 19 17.46283 -62.98712 coral 

209 21 17.46196 -62.98163 coral  277 16 17.46401 -62.98644 gorgonian 

210 20 17.46283 -62.98129 gorgonian  278 17 17.46508 -62.98559 coral 

211 16 17.46365 -62.9808 gorgonian  279 17 17.46618 -62.9847 gorgonian 

212 14 17.46448 -62.98035 gorgonian  280 11 17.46725 -62.9837 gorgonian 

213 10 17.46545 -62.98001 sand  281 9 17.46896 -62.9838 sand 

214 5 17.46638 -62.97971 sand  282 4 17.46989 -62.98291 sand 

215 5 17.48842 -62.94582 coral  283 6 17.47196 -62.98549 gorgonian 

216 9 17.48896 -62.94452 gorgonian  284 10 17.4711 -62.98588 gorgonian 

217 11 17.48923 -62.94325 gorgonian  285 14 17.47029 -62.98666 sand 

218 18 17.48944 -62.94183 coral  286 15 17.46937 -62.98708 sand 

219 27 17.48992 -62.94049 algae  287 18 17.46851 -62.98782 coral 

220 29 17.4903 -62.93929 algae  288 18 17.46747 -62.98864 coral 

221 30 17.49048 -62.93822 algae  289 20 17.46642 -62.98966 coral 

222 31 17.49268 -62.93915 algae  290 20 17.46551 -62.99062 coral 

223 29 17.49235 -62.94048 coral  291 26 17.46472 -62.99189 coral 

224 27 17.49181 -62.94184 algae  292 27 17.46413 -62.99295 algae 

225 20 17.4913 -62.94297 gorgonian  293 27 17.46295 -62.99407 coral 

226 18 17.49081 -62.94411 gorgonian  294 32 17.4623 -62.99523 coral 

227 11 17.49026 -62.94527 gorgonian  295 32 17.46085 -62.99196 coral 

228 8 17.48957 -62.94642 gorgonian  296 24 17.46215 -62.9908 coral 

229 7 17.48913 -62.94748 sand  297 21 17.46323 -62.98918 coral 

230 8 17.49101 -62.94831 gorgonian  298 18 17.46521 -62.98824 coral 

231 11 17.49151 -62.94724 gorgonian  299 19 17.46636 -62.98762 coral 

232 14 17.49169 -62.94606 gorgonian  300 18 17.46727 -62.98651 gorgonian 

233 17 17.49181 -62.94496 gorgonian  301 15 17.46881 -62.98653 sand 

234 20 17.49211 -62.94373 gorgonian  302 13 17.46993 -62.98539 sand 

235 25 17.49237 -62.9425 coral  303 6 17.47074 -62.98423 gorgonian 

236 27 17.49271 -62.94122 sargassum  304 5 17.47371 -62.98635 gorgonian 

237 29 17.49355 -62.94022 sargassum  305 11 17.47295 -62.98794 gorgonian 

238 31 17.49383 -62.93902 sargassum  306 17 17.47137 -62.98875 sand 

239 34 17.49616 -62.94009 sargassum  307 19 17.4697 -62.98952 coral 

240 30 17.49529 -62.94108 sargassum  308 19 17.46835 -62.9906 gorgonian 

241 24 17.49452 -62.94244 sargassum  309 24 17.46672 -62.99186 coral 

242 20 17.49341 -62.94472 gorgonian  310 25 17.46572 -62.9935 algae 

243 16 17.4932 -62.9459 gorgonian  311 28 17.46457 -62.995 coral 

244 17 17.4929 -62.94702 gorgonian  312 39 17.46322 -62.9966 coral 

245 13 17.49265 -62.94808 gorgonian  313 30 17.46418 -62.9991 coral 

246 7 17.49188 -62.94891 gorgonian  314 28 17.46489 -62.99802 algae 

247 6 17.49128 -62.94955 gorgonian  315 28 17.4654 -62.99728 coral 

248 5 17.46629 -62.97877 gorgonian  316 24 17.46603 -62.99668 coral 

249 9 17.46494 -62.97959 coral  317 25 17.46659 -62.99632 coral 

250 15 17.46359 -62.98067 coral  318 23 17.46732 -62.99544 coral 

251 20 17.46232 -62.98153 coral  319 24 17.46771 -62.99435 coral 

252 35 17.46043 -62.98224 coral  320 24 17.46851 -62.99341 coral 

253 21 17.46072 -62.98433 coral  321 20 17.46945 -62.99253 coral 

254 34 17.45912 -62.98489 rubble  322 19 17.47068 -62.99152 coral 

255 21 17.46111 -62.98394 coral  323 20 17.47206 -62.99102 coral 

256 18 17.46181 -62.98356 coral  324 16 17.47303 -62.99014 gorgonian 

257 19 17.46249 -62.9831 coral  325 14 17.47415 -62.98955 coral 

258 15 17.46332 -62.9826 coral  326 12 17.47497 -62.98869 sand 

259 14 17.46397 -62.98229 coral  327 7 17.47584 -62.98796 sand 

260 15 17.46472 -62.98179 gorgonian  328 6 17.47665 -62.98724 sand 

261 13 17.46552 -62.98142 gorgonian  329 7 17.50544 -63.00417 sand 

262 9 17.46621 -62.9809 sand  330 11 17.50513 -63.00536 sand 

263 6 17.46685 -62.98042 sand  331 16 17.5047 -63.0064 sand 

264 6 17.46803 -62.98201 gorgonian  332 25 17.50423 -63.00743 seagrass 

265 11 17.46676 -62.98253 gorgonian  333 34 17.50359 -63.00841 seagrass 

266 15 17.46549 -62.98354 gorgonian  334 34 17.50575 -63.0091 seagrass 

267 17 17.46402 -62.98417 coral  335 25 17.50614 -63.00766 seagrass 

268 14 17.46285 -62.98465 coral  336 14 17.50583 -63.00614 sand 

269 21 17.46166 -62.98554 coral  337 5 17.5054 -63.00365 algae 
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waypoint depth (m) Latitude Longitude habitat  waypoint depth (m) Latitude Longitude habitat 

338 7 17.50754 -63.00365 sand  406 32 17.5268 -63.00332 sand 

339 12 17.50821 -63.00499 sand  407 26 17.52592 -63.00237 sand 

340 15 17.50866 -63.00613 sand  408 21 17.52552 -63.00118 sand 

341 20 17.50914 -63.00744 sand  409 16 17.52489 -63.00034 sand 

342 26 17.50967 -63.00847 seagrass  410 10 17.52677 -62.99862 coral 

343 28 17.51033 -63.00969 sand  411 29 17.52691 -62.99986 coral 

344 32 17.51101 -63.01095 coral  412 29 17.52846 -62.99806 seagrass 

345 32 17.51255 -63.00991 sand  413 20 17.5271 -62.99712 coral 

346 24 17.51169 -63.0086 sand  414 31 17.52767 -62.99381 seagrass 

347 20 17.51111 -63.00739 seagrass  415 25 17.52675 -62.99385 coral 

348 16 17.51059 -63.00602 seagrass  416 18 17.52613 -62.99264 coral 

349 13 17.50996 -63.00473 sand  417 29 17.52706 -62.99219 sand 

350 8 17.50973 -63.00297 sand  418 24 17.52602 -62.98985 seagrass 

351 11 17.51161 -63.00213 sand  419 25 17.52561 -62.99071 sand 

352 13 17.51196 -63.00353 sand  420 28 17.52662 -62.98701 sand 

353 14 17.51236 -63.00464 sand  421 26 17.52608 -62.98794 seagrass 

354 18 17.51288 -63.00611 sand  422 24 17.52529 -62.98861 seagrass 

355 22 17.51355 -63.00753 seagrass  423 23 17.52465 -62.98939 sand 

356 28 17.51429 -63.00879 seagrass  424 20 17.52332 -62.98845 sand 

358 6 17.51292 -63.0006 coral  425 22 17.52373 -62.98749 sand 

359 11 17.51328 -63.00165 sand  426 25 17.52452 -62.98682 seagrass 

360 13 17.5133 -63.00276 sand  427 29 17.5254 -62.98571 sand 

361 15 17.51317 -63.00387 sand  428 30 17.52418 -62.98416 sand 

362 17 17.51346 -63.00485 sand  429 25 17.52338 -62.98509 seagrass 

363 18 17.51388 -63.00587 sand  430 22 17.5228 -62.98601 sand 

364 22 17.51433 -63.00699 seagrass  431 20 17.52233 -62.98703 sand 

365 25 17.51446 -63.0077 seagrass  432 18 17.52188 -62.98798 sand 

366 36 17.51534 -63.009 seagrass  433 15 17.52124 -62.9889 coral 

367 32 17.51696 -63.00812 seagrass  434 14 17.51937 -62.98787 sand 

368 26 17.51604 -63.00722 sand  435 15 17.51997 -62.98733 sand 

369 22 17.51569 -63.00619 seagrass  436 18 17.5206 -62.98648 sand 

370 19 17.51545 -63.00507 seagrass  437 20 17.52125 -62.98563 sand 

371 16 17.51504 -63.00388 sand  438 23 17.52169 -62.98463 sand 

372 14 17.51448 -63.00283 sand  439 26 17.52244 -62.98394 sand 

373 10 17.51417 -63.00155 gorgonian  440 29 17.52307 -62.9826 seagrass 

374 6 17.51434 -63.0008 coral  441 28 17.52155 -62.98138 seagrass 

375 7 17.51605 -63.00131 coral  442 24 17.52044 -62.98243 sand 

376 14 17.51616 -63.00244 sand  443 21 17.51996 -62.9834 sand 

377 16 17.51664 -63.00329 sand  444 20 17.51942 -62.98443 sand 

378 19 17.51694 -63.00439 sand  445 16 17.51877 -62.98551 sand 

379 22 17.51739 -63.00543 sand  446 14 17.51807 -62.98648 sand 

380 26 17.51787 -63.00638 sand  447 15 17.51757 -62.985 sand 

381 30 17.51864 -63.00722 sand  448 17 17.51763 -62.9839 sand 

382 30 17.52031 -63.00663 sand  449 19 17.51797 -62.98279 sand 

383 24 17.5196 -63.00575 sand  450 21 17.51858 -62.98182 sand 

384 21 17.5191 -63.00485 sand  451 23 17.51919 -62.98102 seagrass 

385 18 17.5185 -63.0039 sand  452 27 17.52033 -62.97989 seagrass 

386 16 17.51827 -63.00251 sand  453 30 17.52025 -62.97794 seagrass 

387 9 17.51775 -63.00159 coral  454 24 17.51939 -62.9785 seagrass 

388 8 17.51959 -63.00098 coral  455 22 17.51863 -62.97925 seagrass 

389 15 17.51994 -63.00201 sand  456 21 17.51793 -62.9799 seagrass 

390 19 17.52019 -63.00334 sand  458 8 17.47754 -62.9886 sand 

391 21 17.5208 -63.00417 sand  459 10 17.47693 -62.98931 sand 

392 25 17.52133 -63.00505 sand  460 14 17.47609 -62.98989 sand 

393 30 17.52175 -63.00587 sand  461 16 17.4753 -62.99085 gorgonian 

394 31 17.52416 -63.00562 sand  462 18 17.47455 -62.99166 sand 

395 25 17.5232 -63.0047 sand  463 19 17.47373 -62.99211 coral 

396 22 17.52273 -63.00381 sand  464 21 17.47293 -62.99273 coral 

397 20 17.52212 -63.00304 sand  465 24 17.47201 -62.99321 coral 

398 17 17.52164 -63.00215 sand  466 25 17.47117 -62.99392 coral 

399 14 17.5215 -63.00107 coral  467 25 17.47035 -62.99462 algae 

400 12 17.52317 -63.00023 coral  468 23 17.46952 -62.99565 rubble 

401 15 17.52354 -63.00126 seagrass  469 24 17.46865 -62.99684 coral 

402 18 17.52403 -63.00221 sand  470 24 17.46759 -62.99778 coral 

403 21 17.52443 -63.00316 sand  471 25 17.46651 -62.99875 coral 

404 25 17.52519 -63.00404 sand  472 28 17.46561 -62.99987 coral 

405 32 17.52536 -63.00501 sand  473 28 17.4646 -63.00111 coral  
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waypoint depth (m) Latitude Longitude habitat  waypoint depth (m) Latitude Longitude habitat 

474 30 17.46419 -63.00178 coral  541 15 17.48052 -62.99322 sand 

475 30 17.46323 -63.0038 coral  542 11 17.48133 -62.99195 sand 

476 27 17.46461 -63.00337 coral  543 7 17.48224 -62.9908 sand 

477 24 17.466 -63.00298 coral  544 3 17.48386 -62.99158 sand 

478 26 17.4669 -63.00187 coral  545 9 17.48258 -62.99269 sand 

479 26 17.46788 -63.00075 coral  546 15 17.48177 -62.99423 seagrass 

480 25 17.46869 -62.99971 algae  547 20 17.48038 -62.99574 sand 

481 25 17.46965 -62.99863 coral  548 22 17.47894 -62.99713 rubble 

482 23 17.47069 -62.99755 algae  549 24 17.47805 -62.99862 rubble 

483 23 17.47172 -62.99645 algae  550 24 17.47667 -63.0002 algae 

484 23 17.47304 -62.99573 algae  551 24 17.4755 -63.00165 algae 

485 22 17.47417 -62.99474 sand  552 24 17.47413 -63.00367 coral 

486 21 17.47512 -62.9935 coral  553 24 17.47268 -63.00547 algae 

487 18 17.47597 -62.99235 sand  554 24 17.47045 -63.00688 coral 

488 15 17.47697 -62.99129 sand  555 26 17.46849 -63.00769 coral 

489 10 17.47805 -62.98995 sand  556 27 17.46645 -63.00915 coral 

490 7 17.47857 -62.98895 sand  557 31 17.46434 -63.0098 coral 

491 9 17.48013 -62.99003 sand  558 4 17.4852 -62.99289 sand 

492 13 17.47954 -62.99128 algae  559 10 17.48396 -62.9941 sand 

493 16 17.4785 -62.99231 sand  560 17 17.48267 -62.99544 sand 

494 18 17.47741 -62.99346 sand  561 22 17.48155 -62.9969 sand 

495 21 17.47657 -62.99475 sand  562 23 17.48039 -62.99829 rubble 

496 23 17.47561 -62.99588 rubble  563 23 17.47937 -62.99975 algae 

497 23 17.47467 -62.99701 rubble  564 23 17.47826 -63.00132 algae 

498 22 17.47355 -62.99789 algae  565 27 17.47538 -63.00482 coral 

499 23 17.47254 -62.99872 algae  566 26 17.47429 -63.00635 coral 

500 25 17.47134 -62.99957 coral  567 28 17.47267 -63.00837 coral 

501 25 17.47047 -63.00064 coral  570 4 17.48624 -62.99447 sand 

502 24 17.46934 -63.00169 coral  571 11 17.48528 -62.99606 sand 

503 27 17.46829 -63.00272 coral  572 20 17.48367 -62.997 sand 

504 28 17.46745 -63.00374 coral  573 23 17.48238 -62.99831 coral 

505 25 17.46621 -63.00477 coral  574 23 17.47966 -63.00207 sargassum 

506 23 17.46515 -63.00514 coral  575 26 17.47851 -63.00363 rubble 

507 26 17.46384 -63.00544 coral  576 26 17.47747 -63.00538 rubble 

508 34 17.46297 -63.00578 coral  577 26 17.47597 -63.00645 coral 

509 32 17.46291 -63.00766 coral  578 27 17.47489 -63.00801 coral 

510 22 17.46453 -63.00688 coral  579 27 17.47365 -63.00943 coral 

511 24 17.46601 -63.00648 coral  580 28 17.47227 -63.01044 coral 

512 25 17.46722 -63.00559 coral  581 27 17.47059 -63.01104 coral 

513 28 17.4684 -63.00468 coral  582 28 17.46895 -63.01193 coral 

514 24 17.46965 -63.00401 rubble  583 28 17.46734 -63.01263 coral 

515 23 17.47066 -63.00299 coral  584 27 17.4659 -63.01358 coral 

516 7 17.48135 -62.99046 sand  585 28 17.46639 -63.01554 coral 

517 11 17.48066 -62.99137 sand  586 28 17.46816 -63.01484 coral 

518 13 17.47983 -62.99211 sand  587 29 17.46978 -63.01428 coral 

519 17 17.47907 -62.99313 sand  588 27 17.47133 -63.01349 coral 

520 20 17.47842 -62.99399 sand  589 27 17.47297 -63.01282 coral 

521 22 17.47754 -62.99502 sand  590 29 17.47432 -63.01168 algae 

522 22 17.47659 -62.99596 sand  591 27 17.47551 -63.01029 sand 

523 24 17.47518 -62.99717 algae  592 27 17.47665 -63.00881 algae 

524 25 17.47405 -62.9988 algae  593 27 17.47778 -63.00743 algae 

525 25 17.47297 -62.99988 rubble  594 27 17.47921 -63.0056 rubble 

526 25 17.47186 -63.00129 coral  595 25 17.48032 -63.00431 algae 

527 37 17.46293 -63.0088 coral  596 22 17.48118 -63.00259 algae 

528 30 17.46482 -63.00808 coral  597 23 17.4826 -63.00065 rubble 

529 28 17.46606 -63.00769 coral  598 25 17.48373 -62.99907 algae 

530 26 17.46774 -63.00662 coral  599 19 17.48498 -62.99787 sand 

531 25 17.46934 -63.00515 coral  600 8 17.48645 -62.99655 sand 

532 24 17.47093 -63.00453 coral  601 5 17.4872 -62.99636 sand 

533 24 17.47221 -63.00315 coral       

534 24 17.47335 -63.00153 coral       

535 24 17.47445 -63.00005 algae       

536 24 17.47555 -62.99872 algae       

537 24 17.47669 -62.99746 rubble       

538 22 17.47764 -62.99636 rubble       

539 22 17.47847 -62.99532 rubble       

540 20 17.47932 -62.99453 gorgonian       
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Appendix 3. Additional data 

 Bathymetric data for the Dutch Caribbean Islands, obtained from the Dutch Caribbean Nature Alliance (DCNA). 

 
 

 Benthic Habitat Map from STENAPA and validated by Staatsbosbeheer 
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 Habitat map developed by Deltares for the environmental impact assessment of the St. Eustatia harbour 

extension (Deltares, 2011). 

The table shows the total area per habitat in St. Eustatius per depth category. 
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Appendix 4. Classifications zooms 

 

QuickBird pixel based classification results 
Close-up of classification results superimposed to the deglinted QuickBird image 
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QuickBird pixel based classification results 

Close-up of classification results superimposed to the deglinted QuickBird image 
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Worldview-2 pixel based classification results 
Close-up of classification results superimpose to the deglinted WV2 image 
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Worldview-2 pixel based classification results 
Close-up of classification results superimpose to the deglinted WV2 image 
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QuickBird object based classification results 
Close-up of classification results superimposed to the deglinted QuickBird image 
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QuickBird object based classification results 

Close-up of classification results superimposed to the deglinted QuickBird image 
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WorldView-2 object based classification results 
Close-up of classification results superimposed to the deglinted WorldView-2 image 



Classifying benthic habitats and deriving bathymetry at the Caribbean Netherlands using multispectral Imagery.  
   Case study of St. Eustatius 

84 
 

 
 

WorldView-2 object based classification results 
Close-up of classification results superimposed to the deglinted WorldView-2 image 
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Appendix 5. Validation  

This appendix contains all the validation results in the form of error matrices (which are discussed in chapter 5). 

QuickBird Classification Results 

 Radiance classification 
Overall Accuracy = (94/205) 45.85% 
Kappa Coefficient = 0.2358 

 Ground Truth (validation points) 

 Classes algae/seag. coral sand Total Accuracy 

C
la

s
s
if

. 
r
e
s
u

lt
s
 

Unclassified   0 0 0 0 0.00% 

algae/seagrass 24 36 13 73 32.88% 

coral 6 37 2 45 82.22% 

sand 6 48 33 87 37.93% 

Total          36 121 48 205 
 

Reliability 66.67% 30.58% 68.75% 
  

 
      

 Class   Commission Omission Prod. Acc. User Acc. 
 

 algae/seagrass 67.12 33.33 66.67 32.88 
 

 coral 17.78 69.42 30.58 82.22 
 

 sand 62.07 31.25 68.75 39.93 
 

 

 Darkest pixel correction 
Overall Accuracy = (94/205) 45.85% 
Kappa Coefficient = 0.2358 

 Ground Truth (validation points) 

 Classes algae/seag. coral sand Total Accuracy 

C
la

s
s
if

. 
r
e
s
u

lt
s
 

Unclassified   0 0 0 0 0.00% 

algae/seagrass 24 36 13 73 32.88% 

coral 6 37 2 45 82.22% 

sand 6 48 33 87 37.93% 

Total          36 121 48 205 
 

Reliability 66.67% 30.58% 68.75% 
  

 
      

 Class   Commission Omission Prod. Acc. User Acc. 
 

 algae/seagrass 67.12 33.33 66.67 32.88 
 

 coral 17.78 69.42 30.58 82.22 
 

 sand 62.07 31.25 68.75 39.93 
 

 

 Sunglint correction 
Overall Accuracy = (101/205)  49.27% 
Kappa Coefficient = 0.2819 

 Ground Truth (validation points) 

 Classes algae/seag. coral sand Total Accuracy 

C
la

s
s
. 

r
e
s
u

lt
s
 

Unclassified   0 0 0 0 0.00% 

algae/seagrass 26 40 12 78 32.88% 

coral 4 41 2 47 87.23% 

sand 6 40 34 80 42.50% 

Total          36 121 48 205 
 

Reliability 72.22% 33.88% 70.83% 
  

 
      

 Class   Commission Omission Prod. Acc. User Acc. 
 

 algae/seagrass 66.67 27.78 72.22 33.33 
 

 coral 12.77 66.12 33.88 87.23 
 

 sand 57.50 29.17 70.83 42.50 
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 Depth invariant image (3 band ratio) 
Overall Accuracy = (100/205)  48.78% 
Kappa Coefficient = 0.2693 

 Ground Truth (validation points) 

 Classes algae/seag. coral sand Total Accuracy 

C
la

s
s
. 

r
e
s
u
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s
 

Unclassified   0 0 0 0 0.00% 

algae/seagrass 24 36 11 71 32.88% 

coral 6 41 2 49 82.22% 

sand 6 44 35 85 37.93% 

Total          36 121 48 205 
 

Reliability 66.67% 33.88% 72.92% 
  

 
      

 Class   Commission Omission Prod. Acc. User Acc. 
 

 algae/seagrass 66.20 33.33 66.67 33.8 
 

 coral 16.33 66.12 33.88 83.67 
 

 sand 58.82 27.08 72.92 41.18 
 

 

 Depth invariant image (1 band ratio) 
Overall Accuracy = (65/205)  31.71% 
Kappa Coefficient = 0.1104 

 Ground Truth (validation points) 

 Classes algae/seag. coral sand Total Accuracy 

C
la

s
s
if

. 
r
e
s
u
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s
 

Unclassified   2 13 14 29 0.00% 

algae/seagrass 18 64 9 91 19.78% 

coral 7 24 2 33 72.73% 

sand 9 20 23 52 44.23% 

Total          36 121 48 205 
 

Reliability 50.00% 19.83% 47.92% 
  

 
      

 Class   Commission Omission Prod. Acc. User Acc. 
 

 algae/seagrass 80.22 50 50 19.78 
 

 coral 27.27 80.17 19.83 72.73 
 

 sand 55.77 52.08 47.92 44.23 
 

 

Wv-2 Classification Results 

 Radiance classification 
Overall Accuracy = (73/160)  45.63% 
Kappa Coefficient = 0.1760 

 Ground Truth (validation points) 

 Classes algae/seag. coral sand Total Accuracy 

C
la

s
s
if

. 
r
e
s
u
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s
 

Unclassified   0 0 0 0 0.00% 

algae/seagrass 12 12 17 41 29.27% 

coral 5 40 8 53 75.47% 

sand 14 31 21 66 31.82% 

Total          31 83 46 160 
 

Reliability 38.71% 48.19% 45.65% 
  

 
      

 Class   Commission Omission Prod. Acc. User Acc. 
 

 algae/seagrass 70.73 61.29 38.71 29.27 
 

 coral 24.53 51.81 48.19 75.47 
 

 sand 68.18 54.35 45.65 31.82 
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 Darkest pixel correction 
Overall Accuracy = (73/160)  45.63% 
Kappa Coefficient = 0.1760 

 Ground Truth (validation points) 

 Classes algae/seag. coral sand Total Accuracy 

C
la

s
s
. 

r
e
s
u
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Unclassified   0 0 0 0 0.00% 

algae/seagrass 12 12 17 41 29.27% 

coral 5 40 8 53 75.47% 

sand 14 31 21 66 31.82% 

Total          31 83 46 160 
 

Reliability 38.71% 48.19% 45.65% 
  

 
      

 Class   Commission Omission Prod. Acc. User Acc. 
 

 algae/seagrass 70.73 61.29 38.71 29.27 
 

 coral 24.53 51.81 48.19 75.47 
 

 sand 68.18 54.35 45.65 31.82 
 

 

 Sunglint correction 
Overall Accuracy = (83/160)  51.88%   
Kappa Coefficient = 0.2695 

 Ground Truth (validation points) 

 Classes algae/seag. coral sand Total Accuracy 

C
la

s
s
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. 
r
e
s
u
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Unclassified   0 0 0 0 0.00% 

algae/seagrass 16 15 18 49 32.65% 

coral 4 46 7 57 80.70% 

sand 11 22 21 54 38.89% 

Total          31 83 46 160 
 

Reliability 51.61% 55.42% 45.65% 
  

 
      

 Class   Commission Omission Prod. Acc. User Acc. 
 

 algae/seagrass 67.35 48.39 51.61 32.65 
 

 coral 19.30 44.58 55.42 80.70 
 

 sand 61.11 54.35 45.65 38.89 
 

 

 Depth invariant image  (CG ratio) 
Overall Accuracy = (66/160)  41.25% 
Kappa Coefficient = 0.1595 

 Ground Truth (validation points) 

 Classes algae/seag. coral sand Total Accuracy 

C
la

s
s
if

. 
r
e
s
u
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Unclassified   5 7 4 16 0.00% 

algae/seagrass 9 11 14 34 26.47% 

coral 2 35 6 43 81.40% 

sand 15 30 22 67 32.84% 

Total          31 83 46 160 
 

Reliability 29.03% 42.17% 47.83% 
  

 
      

 Class   Commission Omission Prod. Acc. User Acc. 
 

 algae/seagrass 73.53 70.97 29.03 26.47 
 

 coral 18.60 57.83 42.17 81.40 
 

 sand 67.16 52.17 47.83 32.84 
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 Depth invariant image  (BG ratio) 
Overall Accuracy = (70/160)  43.75% 
Kappa Coefficient = 0.1797 

 Ground Truth (validation points) 

 Classes algae/seag. coral sand Total Accuracy 

C
la

s
s
. 

r
e
s
u
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Unclassified   5 7 4 16 0.00% 

algae/seagrass 7 10 14 31 22.58% 

coral 6 40 5 51 78.43% 

sand 13 26 23 62 37.10% 

Total          31 83 46 160 
 

Reliability 22.58% 48.19% 50.00% 
  

 
      

 Class   Commission Omission Prod. Acc. User Acc. 
 

 algae/seagrass 77.42 77.42 22.58 22.58 
 

 coral 21.57 51.81 48.19 78.43 
 

 sand 62.9 50.00 50.00 37.10 
 

 

 


