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Abstract 

 

To reduce environmental pollution from agricultural activities, a reliable indicator of crop 

nitrogen status is needed for site specific fertilization management in agricultural fields. 

To characterize the spatial variability of nitrogen over large fields, using traditional 

methods such as soil testing, plant nutrient analysis and SPAD meter many point 

samples are required. Because of the strong correlation between leaf chlorophyll and leaf 

nitrogen content in green vegetation, remote sensing techniques have the potential to 

evaluate spatial variability over large agricultural fields with lower costs than the 

traditional plant destructive methods. The main objectives of this research were to: (a) 

test the ability of hyperspectral vegetation indices to estimate nitrogen and chlorophyll 

content and to compare it with indices calculated from broad band sensors (Landsat TM 

and Sentinel-2); (b) to calibrate and validate simple regression models relating 

vegetation indices and in situ measurements. The hyperspectral data were gathered for 

grassland, potato and maize crops for 10 fields in Noord- Brabant, the Netherlands using 

the Airborne Prism Experiment (APEX) sensor. The data was subsequently simulated to 

the spectral bandwidths of Sentinel-2 and Landsat TM. Field measurements of nitrogen 

and chlorophyll concentrations were sampled in the investigated agricultural fields. 

Various vegetation indices were calculated based on the original APEX bands and also 

based on the simulated spectra from Sentinel-2 and a Landsat TM. Subsequently the 

hyperspectral and broadband indices were tested for estimating nitrogen and chlorophyll 

content using regression analysis. In the regression model linear and exponential 

relationships were investigated. On the subject of nitrogen estimation in grassland the 

best performance was achieved by REP model (R2 =0.61 linear and R2 =0.71 

exponential); in potato by MTCI (R2 = 0.65 linear and R2 =0.75 exponential); in maize 

there were no significant correlation for any of the tested indices. The best chlorophyll 

correlation was with MTCI (R2 = 0.9 linear and R2 =0.93 exponential). Coefficients 

obtained by the best performing indices per crop were used for calculation of nitrogen 

maps, showing the spatial variability of nitrogen content over agricultural fields. 

There was no general index able to predict the nitrogen variability for all crops, hence the 

choice of explanatory variable should be crop specific. However the best results for both 

potato and grassland were obtained from indices estimating the red-edge position (REP 

and MTCI). Despite the non- linear correlation, nitrogen maps can be calculated using 

exponential relationships as long as they are in the range of the observed values used for 

model calibration. The resulting nitrogen maps could be a valuable input for precision 

farming applications, taking into account the accuracy of the estimated nitrogen and the 

spatial accuracy. The correlations between vegetation indices based on Sentinel-2 in 

terms of R2 and RMSEP values were similar to APEX indices and proved the utility of the 

upcoming sensor for estimation of canopy properties. Results also confirmed the 

importance of red-edge bands, which absence in Landsat TM makes the estimation of 

chlorophyll and nitrogen insufficient. 
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1. Introduction 

The first chapter of the thesis will provide brief information about the research topic. The 

relevance of the research will be discussed and what has already been done in the 

scientific community. These topics will be further elucidated in chapter 2. The main 

research objectives and the connected research questions will be outlined, finally in the 

last section of this chapter we will discuss how the rest of thesis will lead to an answer of 

the posed research questions. 

1.1 Context and Background 

Nitrogen is of particular interest in ecological and agricultural studies, because nitrogen 

availability can affect the rate of key ecosystem processes, including primary production 

(Vitousek and Howarth 1991). Plants need at least seventeen elements to grow. Three of 

these elements- carbon, oxygen and hydrogen are referred to as ‘building blocks’. The 

other fourteen elements, such as nitrogen (N), potassium (K) and phosphorus (P) are 

referred to as ‘nutrients’. Nitrogen has traditionally been considered one of the most 

important nutrients. It is an essential component of the proteins that build cell material 

and plant tissues (Henry, Sullivan et al. 1999). In addition,  it is necessary for the 

function of other essential biochemical agents, including chlorophylls A and B; 

chloroplast enzymes of the Calvin cycle which are dominated by ribulose-1,5-

bisphosphate carboxylase oxygenase (RuBisCO); high energetic compounds such as ATP 

and NADPH (Evans 1989); and the nucleic acids DNA and RNA. 

The absorbed solar radiation by a leaf is a function of the photosynthetic pigment 

content. Thus chlorophyll content can directly determine the photosynthetic potential 

and primary production (Filella, Serrano et al. 1995). Chlorophylls A and B are essential 

pigments in the light-dependent reactions of photosynthesis for the conversion of light 

energy to chemical energy. One molecule of chlorophyll absorbs one photon and loses 

one electron, which leads to reduction of NADP to NADPH and synthesis of ATP. These 

compounds take part next within the Calvin cycle where the enzyme RuBisCO captures 

CO2  in bounds of sugars. It has been estimated that RuBisCO accounts for a quarter of 

leaf nitrogen and it is probably the most abundant protein of the world (Portis Jr and 

Parry 2007). Chlorophylls can give an indirect estimation of the nutrient status, because 

part of the leaf nitrogen is incorporated in chlorophyll. Despite the relatively  low 

nitrogen content of chlorophyll (4 mol /mol -1), strong correlations are found between 

chlorophylls and nitrogen in green leaves, because of the large amount of protein that 

complexes the photosynthetic pigment (Evans 1989).  Furthermore, leaf chlorophyll 

content is indicative for health status evaluation and is closely related to plant stress and 

senescence (Merzlyak, Gitelson et al. 1999; Carter and Knapp 2001). 

Of all the major plant nutrients, N is often the most important determinant of plant 

growths and crop yield (Henry, Sullivan et al. 1999). The productivity and dynamics of 

many unmanaged terrestrial and marine ecosystems, and most agricultural and 

managed-forestry ecosystems, are limited by the supply of biologically available nitrogen 

(Vitousek and Howarth 1991). Although an artificial supply of nitrogen to crops is 

fundamental to optimize crop yields, mismanagement of N and its excessive application, 

causes many negative effects which has dramatically altered the global nitrogen cycle. 

Combined N in the atmosphere and precipitation fertilizes in natural ecosystems result in 

eutrophication, lowered biodiversity, N leakage, while acidity from nitric oxide and 

ammonia oxidation results in acid lakes and streams, and declining health of forests 

(Keeney and Hatfield 2008). The effect of anthropogenic activities on the N cycle has 

been addressed to some extent. Europe has had some success using rules and fines to 

modify the fertilizer and animal farm waste. Educational programs need to be further 

developed to modify human behaviour including the way farmers manage N fertilizers in 

their farms (Tilman, Cassman et al. 2002). 
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One of the largest challenges facing the agricultural sector is to produce enough food for 

the growing population while at the same time protecting the environment and human 

health from excess supply of fertilizers. This challenge requires knowledge about the 

crop status and good understanding for the responsible biological processes (Matson, 

Naylor et al. 1998). Precision agriculture or precision farming is a management strategy 

aiming to improve the decision making process related to crop and pasture management 

by farmers using integrated information technologies (e.g. ,GIS, GPS, remote sensing 

etc.) next to traditional practices. The variable rate technology adopted by this 

management practice aims to maximize the productivity applying specific inputs, such as 

fertilizers, for specific conditions at specific location and specific time (Moran, Inoue et 

al. 1997). Among the fertilizers, nitrogen is essentially the most important one.  

Different methods have been developed and implemented for assessment of crop 

nitrogen status. Traditionally, nitrogen content has been estimated through soil testing 

and plant tissue analysis, which involves destructive field sampling and laboratory 

chemical analysis (Daughtry, Walthall et al. 2000). Improved non-destructive 

technology, such as SPAD meter (Minolta Osaka Co., Ltd. Japan), is based on measuring 

leaf transmittance in two wave bands centred at 650 and 940 nm, which well correlate to 

leaf chlorophyll content (Uddling, Gelang-Alfredsson et al. 2007). These methods require 

laborious field measurements and are costly in terms of time and money. Even though 

SPAD is a great improvement in the non-destructive analysis it can be hardly extended 

to cover large areas. Ideally a method is required that is accurate, non-destructive, 

simple to use, covering large areas (Curran, Windham et al. 1995). 

Remote sensing techniques satisfy these requirements by measuring the optical 

properties of leaves and canopy that are driven by the biochemical and biophysical 

properties of the plant. Field experiments on leaf and canopy level with multispectral 

sensors demonstrated the sensitivity of visible (VIS), near infrared (NIR) and short wave 

infrared (SWIR) part of electromagnetic spectrum to pigments and nitrogen content. The 

development of hyperspectral instruments boosted the use of remote sensing data for 

biochemical quantification (Hansen and Schjoerring 2003). Hyperspectral remote sensing 

has large amount of spectral information measured by using narrow contiguous bands 

(Figure 1A), which can provide a new means for non-destructive, fast, and real-time 

monitoring of plant biochemical parameters. Remote sensing images are capable to 

provide spatial information of vegetation features and have the potential to sense 

various biophysical and biochemical parameters of plants. This is possible due to specific 

interactions of solar light and vegetation along the electromagnetic spectrum, this 

interaction is due to  the relationships between the optical, morphological and 

physiological properties of vegetation (Knipling 1970).  

In optical remote sensing for vegetation monitoring (400-2500 nm), three parts of the 

spectrum are of particular interest: VIS-NIR 400-700 nm; NIR 700-1100 nm; and SWIR 

1100- 2500 nm. Every region is characterized by specific radiation- vegetation 

interactions influenced by leaf biochemical and structural canopy characteristics. In the 

visible region of electromagnetic spectrum the reflection of light is mainly regulated by 

the pigment absorption within the leaves. Thus the reflection in VIS provides information 

about the chlorophyll content in plants. Chlorophylls absorb radiation mainly in the blue 

(≈450 nm) and red (≈680 nm) wavelengths. In the NIR wavelengths the reflectance is 

caused by the internal cellular structure (Knipling 1970) and provides information for 

biomass and leaf area index (LAI).  

Between the red and NIR wavelengths, leaf reflectance is associated with the transition 

from chlorophyll absorption to leaf scattering. This position of the maximum slope of 

reflectance is called red-edge position (REP) (Horler, Dockray et al. 1983). In the third 

region of interest SWIR reflection of solar light is influenced by the major absorption 

features of water and minor absorption features related to foliar biochemical including 

nitrogen. Determination of N content in this SWIR is very complex, due to the strong 

effect of water absorption and the impossibility to associate a specific nitrogen 

absorption feature among the abundance of biochemicals (Kokaly and Clark 1999).  
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Figure 1. (A) Contiguous spectrum of healthy green vegetation using handheld 

GER 3700 spectrometer and (B) the same spectrum re-sampled to 6 bands of 

Landsat TM (Cho and Skidmore 2006) 
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1.2 Problem definition 

 

Estimates of biochemical and biophysical parameters over large areas may be obtained 

using remote sensing data acquired from air and space platforms. Most of the remote 

sensing products for quantifying those parameters are derived from the conventional 

broadband (multispectral) sensors such as SPOT, Landsat TM, MODIS, NOAA- AVHRR, 

DMC and others. The multispectral scanners can collect data in multiple spectral bands in 

the range from 300 to approximately 1400 nm (Lillesand, Kiefer et al. 2004p. 325). 

Broadband sensors collect data in discrete channels with fairly wide bandwidths over 

which the reflectance data is averaged. A major limitation of the broadband remote 

sensing products is that due to the averaging over certain wave widths of interest, 

information is lost which is available in specific narrow bands (Figure 1). Even though 

remote sensing has proven to be reliable source for estimating biochemical and 

biophysical properties of green vegetation variables, broadband sensors rather deliver 

inadequate or supplied information for this purpose (Thenkabail, Enclona et al. 2004). 

The limitations of broadband data analysis can be illustrated by vegetation indices (VIs), 

which saturate beyond certain level of biomass and leaf area index (LAI) (Thenkabail, 

Smith et al. 2000). 

Normalized difference vegetation index (NDVI) is one of the most commonly used 

vegetation indices for crop growth monitoring calculated by broadband sensors (Huang 

et all 2004). It combines NIR spectral band, representing scattering of solar radiation by 

the canopy, with red band, representing absorption by chlorophyll. The problem using 

NDVI for chlorophyll estimation is that NDVI saturates at higher chlorophyll levels, 

because the absorption in the red bands is too prominent and this results in loss of 

sensitivity. Due to lower absorption by chlorophyll in the red-edge region (referred 

earlier to as REP), use of such a band reduces the saturation effect, and reflectance still 

remains sensitive to chlorophyll absorption at it moderate to high values (Gitelson and 

Merzlyak, 1996). Red-edge bands are not available at the current operational 

multispectral devises and the VIs calculated based on this data suffer from the 

‘saturation effect’. 

Recent advances in hyperspectral remote sensing or (imaging spectroscopy) 

demonstrate great utility for variety of vegetation monitoring applications. Hyperspectral 

data analyses are superior to traditional broadband analyses in spectral information. 

Many studies explore hyperspectral remote sensing of vegetation and agricultural 

croplands and its utility for monitoring purposes. Some examples include (a) detecting 

plant stress (Thenkabail, Enclona et al. 2004), (b) measuring chlorophyll content of 

plants (Haboudane, Miller et al. 2002), (c) extracting biochemical variables such as 

nitrogen (Chen, Haboudane et al. 2010; Clevers and Kooistra 2012), (d) modelling 

biophysical and yield characteristics of crops (Thenkabail, Smith et al. 2000), etc.  

Hyperspectral sensors (sometimes referred to as imaging spectrometers) are 

instruments that acquire images in many, very narrow, contiguous spectral bands 

throughout the visible near-IR, mid-IR and thermal IR portions of the spectrum. These 

systems typically collect 200 and more bands of data (Lillesand, Kiefer et al. 2004).  

Examples of these sensors are: the Airborne Visible-infrared Imaging Spectrometer 

(AVRIS); Compact Airborne Spectrographic Imager (CASI); Airborne Prism Experiment 

(APEX). Although most of the sensors are airborne, the potential of hyperspectral 

sensors has motivated also the launch of spaceborne sensors for example Hyperion on 

board of Earth observing-1 (EO-1).The  APEX imaging spectrometer is a development of 

Swiss-Belgian consortium on behalf of ESA. It is intended as a validation and calibration 

device for future spaceborne hyperspectral imagers. 

It should be noted that the use of hyperspectral data is much more complex and 

extensive than the multispectral data. As mentioned before imaging spectrometers 

usually gather data in hundreds of near- contiguous narrow bands and the data volume 

is vast. The increase in data volume poses challenges in data storing and handling. This 
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issue makes it essential to develop methods to handle the high-dimensional data or build 

specialized optimal sensors to gather data for specific applications in optimal band 

selection, excluding the redundant bands. (Thenkabail, Enclona et al. 2004) Therefore 

prior knowledge of specific, optimal bands is crucial to reduce costs in data storing and 

handling. Methods and approaches of hyperspectral data analysis need to be established 

in order to achieve highest accuracies, indices and wavebands should be developed that 

best model biochemical quantities and identify and eliminate redundant bands. In hyper 

spectral data analysis (Thenkabail 2012) advocate quick elimination of redundant bands 

and identification of most useful bands on a first place. This process should establish 

categorization to achieve higher accuracy and to develop indices that best model 

biophysical and biochemical quantities. The process involves review of performance of 

VIs that will help to establish the wavebands associated with these indices in the study 

of vegetation and agricultural crops. 

Future generation of sensors will address the issues posed by conventional broadband 

sensors and the limited spectral information they provide next to the vast and mostly 

redundant data offered by hyperspectral acquisition methods. These sensors will have 

more than 10 and less than 50 bands, these bands are narrower than broadband, but 

they are not contiguous. In this sense they will have an intermediate position between 

broad and hyperspectral remote sensing. They aim at high quality precision agricultural 

red-edge applications and should introduce a unique combination of spectral and spatial 

resolutions (Herrmann, Pimstein et al. 2011). The upcoming satellites Sentinel-2 and 

Venµs are about to be launched in 2014. They are intended for environmental and 

agricultural applications. Both sensors have four red-edge bands which are particularly 

sensitive to biochemical content and vegetation stress, they will be particular suitable for 

precision agriculture tasks, such as site specific management. 
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1.3 Research objectives  

 

The aim of this study was to investigate the possibilities to derive nitrogen and 

chlorophyll content of potato, maize and grassland using data derived from APEX 

imaging spectrometer. For this purpose a statistical approach using regressive models 

were adopted, relating in situ measurements and different hyperspectral vegetation 

indices (HVIs). The study was targeted to the following objectives: 

A. To test the ability of hyperspectral data analysis to estimate nitrogen and chlorophyll 

content and compare with the potenential of Landsat TM and Sentinel-2. 

B. To calibrate and validate empirical model relating hyperspectral data and in situ 

measurements. 

 Perform literature review and report narrow bands and HVIs which are sensitive 

to chlorophyll and N. 

 Calculate HVIs which are either chlorophyll or nitrogen related as reported in the 

literature. 

 Establish quantitative model for monitoring canopy nitrogen and chlorophyll 

content for potato, maize and grassland. 

 To validate the model and test ability of the model to predict nitrogen or 

chlorophyll in other locations. 

 

1.4 Research questions 

 

The following research questions will be addressed in order to meet the objectives of this 

study: 

1. Are broadband VIs able to assess nitrogen and chlorophyll content for the specific 

crops and locations? 

2. Which narrow bands have highest correlation with nitrogen and chlorophyll in 

potato, maize and grassland according to the literature? 

3. Which HVIs best characterize nitrogen and chlorophyll with the specific crops? 

4. Are the results crops specific? 

5. Is the model valid to predict biochemical contents in other locations?  

 

1.5 Thesis outline 

 

The thesis report consists of 6 chapters. So far in Chapter 1, context and background of 

the research were discussed and the problem definition was introduced. In Chapter 2 the 

physical properties of light which determine its behaviour in interaction with vegetation 

and the mechanics of photosynthesis will be explained. Consequently, how these 

processes can be quantified with remote sensing techniques. Chapter 3 takes a closer 

look at the methodology using the background research from Chapter 2, while chapter 4 

will discuss the achieved results with the proposed methods. The gathered results are 

discussed in broader context and linked to scientific literature in chapter 5. Finally, in 

chapter 6 the conclusive remarks and the recommendations for further study are 

synthesised.  
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2. Theoretical framework 
 

In this chapter, we will take a closer look at the theoretical framework of this study. 

Section 2.1 presents the physical and physiological basis of remote sensing. Section 2.2 

discusses the plants characteristics and studies dealing with remote sensing of 

vegetation. Section 2.3 will discuss the bands found to be sensitive to chlorophyll and 

nitrogen in other studies. Section 2.4 discusses the core of the current study: the 

retrieval approaches for nitrogen and chlorophyll. 

 

2.1 Physical and physiological basis of remote sensing 

 

The domain of optical remote sensing used for vegetation monitoring is usually between 

400 and 2500 nm range in the electromagnetic spectrum. It can be divided  into three 

spectral regions of interest :  Visible region (VIS) in the range between 400- 700 nm; 

near infrared region (NIR) between 100 – 1100nm; and short wave infrared (SWIR), 

between 1100 and 2500 nm. These regions are characterized by specific light- 

vegetation interactions, which are influenced by leaf biochemical and structural canopy 

characteristics. The amount of radiation reflected by vegetation in the photosinthetically 

active radiation region (PAR) of the electromagnetic spectrum (400- 700 nm) is 

regulated by pigment absorption within leaves. Chlorophyll-a and chlorophyll- b absorb 

the greatest proportion of radiation and provide energy for the reactions of 

photosynthesis, while the carotenoids protect the radiation centres from excessing light 

back to the environment (Blackburn 1999). 

The absorbed solar radiation by a leaf is a function of the photosynthetic pigment 

content. Thus chlorophyll content can directly determine the photosynthetic potential 

and primary production (Filella, Serrano et al. 1995). Chlorophylls A and B are essential 

pigments in the light-dependent reactions of photosynthesis for the conversion of light 

energy to chemical energy. One molecule of chlorophyll absorbs one photon and loses 

one electron, which leads to reduction of NADP to NADPH and synthesis of ATP. These 

compounds take part next within the Calvin cycle where the enzyme RuBisCO captures 

CO2  in bounds of sugars. It has been estimated that RuBisCO accounts for a quarter of 

leaf nitrogen and it is probably the most abundant protein of the world (Portis Jr and 

Parry 2007). Chlorophylls can give an indirect estimation of the nutrient status, because 

part of the leaf N is incorporated in chlorophyll. Despite the relatively  low nitrogen 

content of chlorophyll (4 mol /mol -1), strong correlations are found between chlorophyll 

and nitrogen in green leaves, because of the large amount of protein that complexes the 

photosynthetic pigment in vivo (Evans 1989).  Furthermore, leaf chlorophyll content is 

indicative for health status evaluation and is closely related to plant stress and 

senescence (Merzlyak, Gitelson et al. 1999; Carter and Knapp 2001). 

Carotenoids usually are represented by two type of carotens (α and β) and xantophyles 

(lutein, zeaxantin, violaxantin, antheraxantin and neoxantin), which have strong 

absorption in the blue region of the spectrum. Several specific and important 

physiological functions have been attributed to carotenoids because of their unique 

physiochemical and photophysical properties: structural role in the organisation of 

photosynthetic membranes, participation in light harvesting, energy transfer 

(Lichtenhaler, 1989). Chlorophylls absorb the solar radiation mainly in the blue 

(~450nm) and the red (~680nm) wavelengths, whereas carotenoids have an absorption 

feature in the blue region overlapping with the chlorophyll (Hatfield, 2008). The red 

absorption peak is solely due to the presence of chlorophylls but low concentrations 

might saturate at the red region, thus making it insensitive to high chlorophyll contents. 

Longer wavelengths red edge (~ 700 nm), or shorter (~550) wavelengths in the green 
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part of the spectra are therefore preferred because the reflectance id more sensitive to 

moderate to high chlorophyll content (Hatfield, 2008). 

In the NIR wavelengths (700-1100nm), the high reflectance is caused by the internal 

leaf structure. Between the red and near infrared wavelengths, the leaf reflectance is 

associated with the transition from chlorophyll absorption to leaf scattering (Knipling 

1970). The position referred to this point is the so called red edge. The red edge is the 

maximum slope of the reflectance spectrum between 650 and 800 nm. An increase of 

amount of chlorophyll in the canopy, results in broadening of the red absorption feature 

and shifting the red edge position towards linger wavelengths (Curran 1989). The SWIR 

(1100- 2500nm) is dominated by water absorption and minor absorption features related 

to other biochemicals, including nitrogen(Curran 1989) .However, determining the 

nitrogen content from content from reflectance measurements on fresh leaves or 

canopies is extremely complex due to the strong effect of water and due to impossibility 

to associate specific absorption features with the chemical abundance which influences 

the SWIR part of the spectra (Kokaly and Clark 1999).  

The relationship between nitrogen supply and chlorophyll has long been observed. Since 

part of the leaf nitrogen is contained in chlorophyll molecules, the amount of available 

nitrogen determines the amount of chlorophyll formed in green vegetation, if the other 

requirements for chlorophyll formation such as light, iron supply, magnesium etc. are 

present in sufficient quantities. The nitrogen/chlorophyll relation can be influenced also 

by environmental conditions (nutrients and water stress), leaf position of the canopy, 

temperature, and growth stage and most important it is crop specific (Hatfield, Gitelson 

et al. 2008) .Since nitrogen availability influence chlorophyll production, which actually 

produces changes in leaf and canopy spectra, reflectance can be used to assess both 

nitrogen and chlorophyll concentrations. 

 

2.2 Investigated plants 

 

The investigated plants in this study are potato (Solanum sp.), grass ( Loium sp.) and 

maize (Zea sp.) (Figure 2). Most of the recent literature for crops focuses on nitrogen 

status assessment of rice (Oriza sativa), maize (Zea mays) and wheat (Triticum sp.) 

(Hansen and Schjoerring 2003; Hatfield, Gitelson et al. 2008; Chen, Haboudane et al. 

2010) as they are the most common produced cereals worldwide and are staple food for 

the global population . Other crops that have been relatively widely studied are cotton, 

sorghum, sunflowers and sugarcane. Potato has been also mentioned in recent studies 

(Thenkabail, Smith et al. 2000; Jain, Ray et al. 2007; Herrmann, Pimstein et al. 2011; 

Clevers and Kooistra 2012), but the number of studies focusing on potato is rather 

limited. Leaf scale measurements have been used to understand the physiological 

processes governing plant growth and to estimate leaf nitrogen content as an indicator 

of crop nutritional status (Curran 1989). The use of canopy reflectance has shown good 

results for deriving crop nitrogen status for precision agriculture and yield estimation. 
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Figure 2. Investigated Plants (A) Zea sp. (B) Lollium sp. (C) Solanum sp. 

 

Some authors have more specifically addressed the issue of estimating photosynthetic 

content concentrations as indicators of physiological vegetation conditions due to their 

direct relationship with reflectance (Haboudane, Miller et al. 2002).  Principally statistical 

approaches such a simple linear and non- linear regression and multiple linear regression 

have been used with calculation of vegetation indices. Partial least square regression has 

also been shown to be promising (Hansen and Schjoerring 2003). Finally, Artificial 

Neural Networks were found suitable for crop nitrogen assessment (Yi, Huang et al. 

2007). Concerning pastures, the majority of studies have been performed in 

monoculture pastures, mainly bermudagras (Cynodon dactylon) (Starks, Zhao et al. 

2008) and ryegrass (Lollium sp.) (Mutanga, Skidmore et al. 2003) besides their 

economic relevance, monoculture pastures are particularly suited for reflectance 

spectroscopy experiments, since their canopy structure is vertically and horizontally 

homogeneous compared to mixed species and canopies.  

 

2.3 Review of bands sensitive to nitrogen and chlorophyll content 

 

Thenkabail 2012 performed exhaustive literature review regarding hyperspectral 

narrowbands in the study of vegetation and agricultural studies. This general term 

includes monitoring of biochemical and biophysical properties; water content and 

sensitivity; physiological properties. The authors identified 28 optimal bands which are 

based on frequency of occurrences in numerous studies discussed later. For the purpose 

of this study only the bands which are sensitive to chlorophyll and nitrogen in table 3 are 

listed. The optimal hyperspectral narrowbands determined by (Thenkabail 2012)are 

based on (a) identifying redundant bands, (b)modelling by linking crop biophysical and 

biochemical variables, (c) identifying wavebands, through statistical and other 

approaches, that best separate vegetation characteristics. 

These prominent wavebands include (i) two blue bands that are specially sensitive to leaf 

chlorophyll and senescing conditions (Thenkabail, Smith et al. 2000; Thenkabail, Smith 

et al. 2002; Thenkabail, Enclona et al. 2004; Thenkabail, Enclona et al. 2004); (ii) four 

green bands: cantered at  515, 520 nm (Thenkabail, Enclona et al. 2004; Thenkabail, 

Enclona et al. 2004) 525, 550 and 575 nm(Thenkabail, Smith et al. 2002; Chan and 

Paelinckx 2008). These bands are overwhelmingly sensitive to biochemical properties  

550 nm is strongly correlated with total chlorophyll. The green band  cantered at 520 nm 
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provides the most rapid positive change in reflectance per unit change in wavelength 

anywhere in the visible portion of the spectrum. The green band centred at 575 nm 

provides the most negative change in reflectance per unit change in wavelength 

anywhere in the visible portion of the spectrum. Overall, the green bands are very 

sensitive to plant nitrogen and pigment; (iii) two red bands:cantered at 675 nm 

(chlorophyll absorption maxima) and 682 nm (most sensitive to biophysical quantities 

and yield) (Thenkabail, Enclona et al. 2004; Thenkabail, Enclona et al. 2004; Chan and 

Paelinckx 2008). 

The NIR part of the spectrum is highly sensitive to changes in biophysical quantities and 

plant structure for biochemical assessment the (iv), however red-edge bands offer more 

information in biochemical analysis,  cantered at 700 and 720 nm (sensitive to 

vegetation stress) and 740 nm (sensitive to nitrogen content). The red-edge bands are 

especially sensitive to crop stress and changes in total chlorophyll and have the potential 

to form useful indices. They are also sensitive to senescing rates, chlorophyll changes, 

browning, ripening, carotenoids (Thenkabail, Smith et al. 2002; Thenkabail, Enclona et 

al. 2004; Chan and Paelinckx 2008; le Maire, François et al. 2008). The SWIR bands (v) 

are  overwhelmingly sensitive to moisture and biochemical properties (Thenkabail, Smith 

et al. 2002; Chan and Paelinckx 2008), although determining the nitrogen content from 

reflectance measurements on fresh leaf or canopies is extremely complex, due to water 

absorbing features (Kokaly and Clark 1999). 

 

 

Table 1. Optimal hyperspectral narrowbands recommended in the study of 

nitrogen and chlorophyll in agricultural crops. Taken from (Thenkabail 2011, 

p.28) 

Wave band 
Waveband 

centre 
(nm) 

Importance 

Blue band 
466 Chlorophyll: chlorophyll a and b 

490 Senescing and loss of chlorophyll, ripening, crop yield 

Green bands 

515 Nitrogen: leaf nitrogen, wetland vegetation studies 

520 Pigment, biomass changes 

525 Vegetation vigour, pigment, nitrogen 

550 
Chlorophyll and biomass: total chlorophyll; chlorophyll/carotenoid ratio, 
vegetation and nutritional and fertility level 

575 Vegetation vigour, pigment, nitrogen 

Red bands 
675 

Chlorophyll absorption maxima: greatest crop-soil contrast is around this band 
for most crops in growing conditions. 

682 Biophysical quantities and yield and chlorophyll absorption. 

Red edge bands 

700 
Stress and chlorophyll: nitrogen stress, crop stress, crop growth and stage 
studies 

720 
Stress and chlorophyll: nitrogen stress, crop stress, crop growth and stage 
studies. Red shift for healthy vegetation, blue shift for stressed vegetation. 

740 
Nitrogen accumulation: leaf nitrogen an accumulation. Red shift for healthy 
vegetation, blue shift for stressed vegetation. 

SWIR bands 

1316 Nitrogen: leaf nitrogen content of crops 

2173 Protein, nitrogen 

2359 Cellulose, protein, nitrogen: sensitive to crop stress, lignin and starch 
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2.4 Retrieval approaches 

 

Hyper spectral data has the potential to measure the reflected radiation from many 

plants, thus making N assessment feasible on canopy level. The most widely used 

approaches for nitrogen and chlorophyll estimation are based on regressive models. 

They relate in situ measurements and Vegetation Indices (VIs). Vegetation indices are 

mathematical transformations of the original spectral reflectance that are designed to 

reduce the additive and multiplicative errors associated with atmospheric effects, solar 

illumination, soil background effects, and sensor viewing geometry (Huete 1988) . 

Spectral VIs can be computed by using broadband data as well narrowband data. Even 

though both VIs are computed using the same algebraic equations, the Hyperspectral 

Vegetation Indices (HVIs) have greater dynamic range and offer greater opportunity in 

finding the right index to predict certain biophysical or biochemical variable.  

There are two significant limitations of broadband derived VIs. As mentioned before 

broadband vegetation indices tend to saturate beyond certain level of LAI or canopy 

cover. Secondly most of the indices for monitoring biochemical properties of plants are 

constructed with red and NIR spectral measurements and offer only a few VIs. The 

broadband indices are significantly correlated with crop agronomic variables, such as 

chlorophyll content and LAI, however a large proportion of variability in modelling 

biochemical quantities is not explained by broadband indices. The HVIs overcome these 

limitations to a certain degree. They have a larger dynamic range and the larger number 

of HVIs offers greater opportunity to find the right index for studying certain vegetation 

variables. For example the derivative analysis used for calculation of the red edge 

position (REP) is developed for continuous spectra. It identifies the steep transition 

between the reflectance in red wavelengths and the NIR reflectance. It has been 

recognised as good estimator of plant chlorophyll and nitrogen content (Curran, 

Windham et al. 1995; Richardson, Duigan et al. 2002). 

The relationship between nitrogen and chlorophyll amount in vegetation needs to be 

further explored, because the remote sensing observations are gathering information 

mainly on chlorophyll content, not directly on nitrogen content. It is assumed that both 

are significantly correlated.  Also it should be further investigate to which extend the 

correlations are crop and place specific and if the results from one location could be 

transferred to another location (Clevers and Kooistra 2012). Simple ratio (SR) and 

normalized difference (ND) indices have been used and are still widely used for many 

applications mainly due to their simplicity. These indices are usually based upon the 

contrast between two spectral bands. The challenge is to discover combination of two 

narrow bands providing essential information to the target parameters. Common 

approach is to calculate all possible combinations and to identify the combination that 

has highest coefficient of determination (R2) with the target variable at this approach the 

index is valid only for the specific dataset (Thenkabail, Smith et al. 2002). 

Chlorophyll and soil sensitive indices have been developed to enhance sensitivity to 

photosynthetic pigments and to reduce the influence of canopy architecture and the 

background. The Chlorophyll Absorption Reflectance Index (CARI) was proposed by (Kim 

et al.1994) To reduce the effect of the non-photosynthetic parts of plants. Modified 

Chlorophyll Absorption Reflectance Index (MCARI) was introduced by (Daughtry, Walthall 

et al. 2000) It was intended to reduce the combined effect of non-photosynthetic parts 

and soil background. (Haboudane, Miller et al. 2002) found it is still influenced by non-

photosynthetic elements at low chlorophyll concentrations and proposed the 

Transformed Chlorophyll Absorption Reflectance Index (TCARI). The family of Soil 

Adjusted Vegetation Indices (SAVI) introduced by (Huete 1988) is intended to further 

reduce the contribution of background soil reflectance and includes Optimized Soil 

Adjusted Vegetation Index (OSAVI) and the Transformed Soil Vegetation Adjusted Index 

(TSAVI). Since neither sensitivity to chlorophyll, nor intensity of the background was 
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achieved with the above mentioned indices (Haboudane, Miller et al. 2002) proposed 

MCARI/OSAVI and TCARI/OSAVI ratios. The red edge identifies the steep transition 

between the absorption feature in red wavelengths and the high NIR reflectance. The 

Red Edge Position (REP) has been used to estimate plant N content in crops and 

pastures and several techniques have been proposed to locate REP. The main drawback 

of this model is the saturation effect at higher chlorophyll contents. Range of 

hyperspectral vegetation indices was tested in this study for nitrogen and chlorophyll 

estimation, they are listed in Table 2. 

Physically based reflectance models are increasingly being applied to describe the 

interactions between solar radiation and the biochemical vegetation parameters. They 

can be numerically inverted to retrieve canopy parameters from radiometric 

measurements. These models can be applied only to parameters directly involved in the 

radiative transfer and in this case for chlorophyll rather than N. The models are very 

complex and computational demanding. In general statistical approaches are the 

simplest way to predict N and are suitable when the goal is prediction of in situ 

quantities then understanding the radiative process. For the purpose of this study 

regressive models based on HVIs are preferable to physically based models that are 

complex to design. 
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Table 2. Vegetation indices evaluated in this study. 

 

Index Formulation Reference 

REP (((R670 + R780)/2 - R700)/(R740 - R700))*40 + R700 (Guyot and Baret 1988) 

MTCI (R754 - R709)/(R709 - R681) (Dash and Curran 2004) 

MCARI/OSAVI (((R700 - R670)- 0.2*(R700 -R550))*(R700/R670))/(1.16*(R800 - R670)/(R800 + R670 +0.16)) 
(Daughtry, Walthall et al. 

2000) 

MCARI/OSAVI RE (((R750 - R705)- 0.2*(R750 -R550))*(R750/R705))/(1.16*(R750 - R705)/(R750 + R705 +0.16)) (Wu, Niu et al. 2008) 

TCARI/OSAVI ((R700 - R670) - 0.2*(R700 - R550)*(R700/R670))*3/(1.16*(R800 - R670)/(R800 + R670 + 1.16)) 
(Haboudane, Miller et al. 

2002) 

TCARI/OSAVI RE  ((R750 - R705) - 0.2*(R750 - R550)*(R750/R705))*3/(1.16*(R750 - R705)/(R750 + R705 + 1.16)) (Wu, Niu et al. 2008) 

CI red edge (R780/R709) - 1 
(Gitelson, Keydan et al. 
2006) 

CI green  (R780/R550) - 1 
(Gitelson, Keydan et al. 

2006) 

NDNI (log(1/ R1510) - log(1/R1680))/(log(1/ R1510) + log(1/R1680)) 
(Serrano, Penuelas et al. 

2002) 

SIPI (R800 - R445)/(R800 - R681) 
(Penuelas, Filella et al. 

1995) 

DCNI (R720 - R700)/(R700 - R670)/(R720 - R670 + 0.03) 
(Chen, Haboudane et al. 

2010) 

NDRE (R790 - R720)/(R790 + R720) 
(Tilling, O’Leary et al. 

2007) 

NDRE1 (R740 - R705)/(R740 + R705) 
(Gitelson and Merzlyak 

1994) 

NDRE2 (R780 - R705)/(R780 + R705) 
(Barnes, Clarke et al. 

2000) 

NDVI (R800 - R670)/(R800 + R670) (Rouse, Haas et al. 1974) 

CCCI  ((R790 - R720)/(R790 + R720))/((R800 - R670)/(R800 + R670)) 
(Barnes, Clarke et al. 

2000) 

WDRVI (0.2*R800 - R670)/(0.2*R800 + R670) (Gitelson 2004) 

R XXX refers to the reflectance factor wavelength XXX nm 
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3. Materials and methods 
 

In the previous chapter the theoretical background of the thesis research has been 

discussed, aiming to investigate and test the opportunities of vegetation spectral indices 

to assess crop nitrogen and chlorophyll content in potato, maize and grassland. In this 

chapter the analysed data will be introduced and the pre- processing steps will be 

explained. The following chapter contains also detailed description of the methodology 

and the analysis steps, which address the research objectives and questions. 

 

3.1 Study area 

 

The study area is located in the South of the Netherlands in the province of Noord 

Braband, close to the village of Reusel (Figure 3). The APEX image is covering area of 

11.4 km2 which extends over the Dutch state border. Parts of the image cover Belgium 

territory. However the study area is situated only in the borders of Netherlands since the 

field sampling doesn’t cover any areas in Belgium. Three types of agricultural crops are 

sampled and tested in the study area: grassland, maize and potato. 

In one of the potato fields was prepared experimental design with 12 plots (30*30 m). 

They were supplied with different levels of fertilization. Before the planting four levels of 

fertilization were applied and after planting three types of treatments were performed 

during the growing season (Figure 4). CL treatment was the first type, there was no 

additional fertilization applied. In plots with TTW fertilization treatment, additional 

nitrogen was applied few times during the season and at MB only ones at the growing 

season, at a specific point when the crop vegetation closes its canopy. 

 

 

 

Figure 3. Left: Location of the study 

area indicated with star. Right: Studied 

agricultural fields overlay with APEX 

image. Top right : Experimental field 

(No 28) with different fertilization 

levels 
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3.2 Available data 

 

3.2.1 APEX dataset 

APEX is an airborne (dispersive push broom) imaging spectrometer. It is developed and 

constructed by a Swiss-Belgian consortium on behalf of the European Space Agency 

(ESA). It is intended as a future simulator and also as calibration and validation device 

for future spaceborne (hyperspectral) imagers of ESA. APEX sensor is operational as an 

advanced scientific instrument on board of an aircraft for the European remote sensing 

community. It records hyperspectral information in over 300 bands between ~400 nm 

and 2500 nm. The spectral resolution varies for different bands: over VIS-NIR range 

bands vary between 0.55 and 8 nm, over SWIR between 6.2 - 11 nm. The APEX imaging 

flight above the study area was performed by VITO on Monday 27- 06- 2011 around 17: 

45 local time. VITO is an independent research and advisory organisation based in 

Flanders, Belgium. VITO acts as APEX co- investigator and is providing the geometrically 

and atmospherically corrected hyperspectral data in ENVI format. For the current study, 

ground measurements were performed both by WUR and BLGG research. They were 

used for higher level of image processing. 

The geometric correction was performed by VITO’s own developed C++ module and the 

data was projected to geographic coordinate system WGS84 with pixel size of about 7 

m2. The atmospheric correction of the acquired APEX data was done by the radiative 

transfer code following algorithms given in (de Haan, Hovenier et al. 1991; de Haan and 

Kokke 1996). Wavelength depended spectral smoothing of the data was performed to 

remove noise and spikes remaining after atmospheric correction. There were two bold 

black lines along the image. They were due to presence of wires placed on the entry slit 

of the airplane during the acquisition flight. Unfortunately some data were lost as the 

lines are going through the studied fields (Sindy Sterckx 2011 ). 

Figure 4 Experimental 

field No 28. On the left 

hand side is depicted 

a map representing 

the initial fertilization 

levels and plots with 

different treatments. 

On the right hand side 

is shown the legend 

and the corresponding 

amounts of fertilizer 
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Figure 5 Averaged potato, maize and grass spectral reflectance obtained by 

APEX sensor illustrated for (A) along the full spectra without water absorbing 

bands (B) along VIS spectra (C) along red edge region 

 

The available hyperspectral data derived from APEX consists of 288 bands in the range 

between 399 nm and 2461nm. These data in hundreds of bands were composed into a 

single hyperspectral ‘data cube’. Click on any pixel will provide continuous spectrum of 

vegetation categories (Figure 5). The band setting and the many narrow contiguous 

bands along VIS, NIR and SWIR makes APEX dataset particularly suitable for vegetation 

and crops monitoring. At Figure 5 are depicted the averaged reflectance signatures from 

the studied crops. As discussed before (Section 1.2) the hyperspectral narrowband data 

has many benefits but also drawbacks due to the large storage volumes and long 

computation time required for analysis, due to the high interband correlation, which 

results in multiple measurements of the same quantity. To coop with these challenges, 

data high dimensionality can be reduced. Thereby one of the key steps in the 

hyperspectral data pre-processing is to indicate and to remove redundant bands from 

future analysis. In this study bands removal wasn’t required due to calculation of HVIs, 

where only few sensitive bands from specific already known wavelengths were used. 
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With visualisation purposes Lambda (λ1 = 399 – 2460 nm) by Lambda (λ1 = 399 – 2460 

nm) plots of R2 values are calculated and plotted. Figure 6 shows an interband 

correlation of the reflection of all potato samples analysed in this study gathered by 

APEX. It represents a matrix where all 288 APEX bands are plotted against the same 288 

bands. In each cell of the matrix was depicted the resulting R2 between each band pair 

responses. In the figure least redundant bands (R2 values < 0.01) are shown in magenta 

to green. Bands with higher than R2 > 0.01 correlation are shown in white. Since the 

correlations above and below the diagonal mirror each other it will suffice to consider the 

correlations that are either below or above the diagonal of a matrix (Thenkabail, Smith 

et al. 2000).  
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Figure 6 Redundant bands and distinctly unique bands. This matrix represents 

all APEX bands from potato plotted against the same bands on x and y axis. In 

the cells are depicted the R2 values between bands.  This Lambda (λ1) by 

Lambda (λ2) plot of APEX bands shows redundant bands (higher correlation 

higher redundancy) and distinctly unique bands (lower redundancy and greater 

the uniqueness). The R2 values on the right side are corresponding to the 

colours in the plot.  
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3.2.2 Field data collection 

For the purpose of this study selective field sampling was performed over the study area 

in 7 agricultural fields and in 3 pastures. The field campaign was carried out in June 

2011 in two consecutive days (27 and 28 June). Samples were taken in 4 potato, 3 

maize fields and 3 pastures. In each field five different locations were examined, 

exception was the field with the experimental fertilization levels, where 12 locations were 

sampled. The locations were chosen taking into consideration the plant condition in 

different sites of each agricultural field, estimation was done by inspecting Google Earth 

images and choosing suitable locations for measurements. As much diverse plant 

condition was targeted, thus differences in the nutrient status. The range of nutrient 

values is assumed to lead to better correlation with the reflection data derived from 

APEX.  

In each of the five locations per field, two samples (A and B) were taken, close to each 

other. These paired samples were selected with respect of the plant condition as well, 

but they were aimed to be similar in contrast to the locations choice. Both A and B 

samples were weighted in fresh condition for above ground mass. Each A sample was 

analysed in BLGG laboratory, estimating dry mass (g/kg product) and nutrient quantities 

including total nitrogen (g/kg dry mass). The nutrient readings from A samples were be 

used for calculations, correlating nitrogen status and the reflectance data. B samples 

were weighted, but only the B samples from the experimental field with different 

fertilization levels (No 28) were analysed for nutrients. These B samples from field No 28 

were later used for independent validation of prediction model for potato fields (Section 

3.6), rest of the B samples weren’t further analysed.  

Every sample position was located using Differential Global Positioning System (DGPS) 

and projected in Rijks Driehoekstelsel (RD). The field data was organized in two separate 

datasets: one including biomass and nutrient characteristics and second including the 

positions of all samples. The chlorophyll readings are estimated using SPAD meter (SPAD 

models 501 Minolta corporation, Ltd., Osaka, Japan) in potato field No 28 only. The 

chlorophyll is measured at the same locations, where the measurements for nutrient 

analysis are taken, for both A and B samples which results in total 24 measurements. 

 

3.3 Data pre- processing 

 

In the following section the pre-processing steps and the resulting dataset will be 

described. The data was obtained by different sources and most of it didn’t follow the 

same format, structure and projections. The first step in the methodology was to extract, 

structure, transform and match all the data together to derive the final data set required 

for the analysis. 

 

3.3.1 APEX  

APEX data as described (section 3.2.1) was atmospherically corrected and geometrically 

rectified by the data provider VITO. The assigned geographic coordinate system WGS 84 

wasn’t changed to the metric RD projection, because any kind of raster image 

transformation causes data lost, due to pixel resampling. However vector 

transformations, especially point dataset can be transformed to another projection with 

less inaccuracy. The vector dataset with all the locations of the field samples was 

transformed to the source APEX image projection. After the transformations of the field 

samples, which will be discussed in the next section, all the data were fitted together in 

ArcGIS and visually inspected for misplacements and distortions. 
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Figure 7 Distorted area in APEX image in compared to TOP10NL road network 

 

Severe distortions were noticed in the geometry of the image, namely a rotation in the 

lower parts of the image. The distortion was increasing rapidly in south-east direction. 

The distortion is proved by comparing with other independent sources: aerial 

photography and NL Top 10 road network (Figure 7). Further geometrical correction of 

the image was not feasible with respect of time schedule and available resources. The 

alternative was to adapt the ground measurements to the image distorted areas, which 

will be described in the next section. 

 

3.3.2 Field data 

DGPS locations 

During the field campaign all the sampled locations were located using DGPS, with 

spatial accuracy of about 50 cm. The data was projected to RD from the data provider. 

The dataset available was a dbf file consisting of all sample locations with an appropriate 

naming per sample. The dbf file was converted to shp file in ArcGIS and transformed to 

WGS84. For the purpose the ‘project’ tool from ESRI was used with geographic 

transformation ‘Amersfort to WGS 2’. The inaccuracy of the DGPS was taken into account 

buffering the point locations with 1 m radius. 

As already mentioned, it was noticed that some of the points didn’t correspond with the 

expected locations overlaying the APEX image. Some of the points in the lower part of 

the study area were manually corrected. The main distorted field was No 28 – a potato 

field, which was essential for the analysis as there were 12 pairs of samples tested for 

nutrients and also for chlorophyll. The sampling plan in this particular field included 
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samples along the tractor driving path on the left and right hand side at distance of 3 m. 

This expert knowledge was the leading guide to match the points with the right position 

with respect to the image, and later on to extract the information at the right location 

where actually the sampling occurred. The remaining points were not manually corrected 

as no information was available for their locations. Small shifts were assumed not to 

cause large effects, unless they don’t fall into trenches between rows, where soil 

reflectance is disturbing the results. 

 

Biomass and nutrients 

Information about the fresh biomass (FB) of each sample (A and B) in each location was 

available from BLGG. All the samples were weighted and then with respect to the area 

coverage of the field sampling plots, calculations were made to estimate the fresh 

biomass in kg per hectare. The nitrogen (g/kg dry matter) and dry matter (DS) (g/kg 

product) were derived from laboratory analysis. To make the link between nitrogen 

concentrations per volume and remote sensing measurements, first the nitrogen content 

per area should be calculated. Because the nitrogen measurements were estimated per 

unit dry matter, not per fresh biomass and some transformations were required first. 

Equations 1 and 2 were used to make the necessary calculations. After estimating the 

nitrogen concentrations in the corresponding units, they were merged with the buffered 

DGPS locations together in one dataset. This dataset was used in the further steps of 

data pre-processing. 
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Extracting remote sensing information 

Next logical step was to join the field data via the spatial coordinates of the buffered 

locations to the reflection measurements gathered by the APEX sensor. The locations of 

field samples were with radius of 1 m2, that means much less than the APEX pixel which 

was ~ 7 m2.   

Each buffered location spatially matched with 1 to 4 pixels from the image. When more 

than 1 pixel corresponds to a location then the average of all the matching pixels was 

extracted to a table, using ‘raster’ package in R. The merge of all the tables resulted in 

one table for each crop. Each table consists from:  

1. Name of the Field- Sample location – indication of A or B sample 

2. Crop 

3. Nitrogen concentration 

4. Chlorophyll concentration in field No 28 only 

5. 288 bands measurements derived from APEX 

With this step the data volume was decreased considerably and only the few target 

pixels were extracted from the massive hyperspectral image. 
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3.3.4 Sentinel -2 and Landsat data simulations 

One of the main research objectives of this study was to test the ability of hyperspectral 

data analysis in estimating nitrogen and chlorophyll content and to compare with the 

potenential of the new generation of multispectral sensors such as Sentinel-2 and the 

broadly used Landsat TM. This sensor is expected to be lounched in 2014 and the 

ambitions are to provide band setting suiting vegetation monitoring. The main 

improvement over sensors as for instance Landsat TM, SPOT, DMC etc are the bands 

centered around the Red Edge position, which are cantered at 705 nm and 740 nm and 

band width of 15 nm. These wavelengths are essential for estimating biochemical 

quanities (Dash and Curran 2004) 

Sentinel-2 bands were simulated calculating simple averaged reflectance of APEX bands 

over the band width of the respective Sentinel- 2 bands (Clevers and Kooistra 2012). 

The 6 bands from Landsat TM, without the thermal one were used for the simulation, 

using the same principle as for Sentinel- 2 simulations. The resulting datasets were used 

for further calculations including vegetation broadband indices.   

 

Table 3 Specification of Multi Spectral Instrument (MSI) on the Sentinel- 

satellite system with the corresponding APEX bands used for simulations 

 

 

3.4 Vegetation indices 

The data analysis was divided in two main parts. The first step (Section 3.4.1) was to 

calculate nitrogen and chlorophyll suitable HVIs based on literature review. In addition 

(Section 3.4.2) the same broadband VIs were calculated based on Sentinel-2 and 

Landsat TM simulations, derived from the hyperspectral dataset. In step two (Section 

3.5) the results from the calculations were further analysed in regression models aiming 

to determine the best predictors (HVIs and BVIs) for nitrogen and chlorophyll content.  

3.4.1. HVIs 

A number of spectral indices have been developed to measure chlorophyll content and 

nitrogen content. They were considered as a good estimator of these properties. There 

are indices which better correlate with nitrogen and as well indices that better correlate 

with nitrogen concentrations. All the listed indices in Table 2 were calculated, using the 

wavebands as reported in the literature. The indices evaluated in the study can be 

grouped based on their characteristics. There are chlorophyll sensitive indices, nitrogen 

Sentinel-2
Sentinel-2 Band 

center (nm)

Band  width 

(nm)

Spatial 

resolution (m)

Spectral range of 

Sentinel-2 (nm)

APEX range used (nm) 

for simulation

Band 1 443 20 60 433:453 438:450

Band 2 490 65 10 457,5:522,5 461:517

Band 3 560 35 10 542,5:577,5 546:574

Band 4 665 30 10 650:680 652:677

Band 5 705 15 20 697,5:712,5 701:713

Band 6 740 15 20 732,5:747,5 733:745

Band 7 783 20 20 773:793 777:792

Band 8 842 115 10 784,5:899,5 787:894

Band 8a 865 20 20 855:875 857:869

Band 9 945 20 60 935:955 936:950

Band 10 1375 30 60 1360:1390 1366:1386

Band 11 1610 90 20 1565:1655 1573:1663

Band 12 2190 180 20 2100:2280 2103:2275
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sensitive indices and structural indices as for example the commonly used NDVI and its 

modification WDRVI. The last two indices were tested because they are commonly used 

and can be calculated for most of the existing optical sensors, not because they had 

proved significant correlation with nitrogen or chlorophyll. The chlorophyll indices are 

utilizing the bands in the red- edge position which was proved by previous research 

(Horler, Dockray et al. 1983; Curran, Windham et al. 1995; Dash and Curran 2004; 

Clevers and Kooistra 2012) to be particularly suitable for chlorophyll estimation. Because 

of the strong correlation between chlorophyll and nitrogen these indises are suitable for 

nitrogen as well. There is one more peculiar index NDNI, index claimed to be suitable for 

nitrogen and utilizing bands in SWIR region. SWIR bands are often mentioned in 

literature as sensitive directly to nitrogen concentration. The sensitivity of those indices 

will be compared to the sensitivity of broadband spectral indices, comparing R squared 

values, RMSE and RMSEP. Broad band vegetation indices were calculated based on the 

simulated data from previous step.  

 

3.4.2. Broad band VIs 

All the discussed indices were calculated based on data simulated from APEX spectral 

responses for the future Sentinel- 2 and Landsat TM. Often the indices cannot be 

calculated with the exact wavelengths as mentioned in the literature, because they are 

hyperspectral indices and require very specific bands, most of the cases not available by 

the multispectral sensors. For the multispectral sensors approximately close wavebands 

were chosen to calculate each index. As for instance NDNI was impossible to calculate 

with the bands available from Sentinel- 2; other indices are calculated with small shifts 

in the wavelengths of bands. The shifts vary from 3 nm to 14 nm.  

For example the original formula of MTCI (Dash and Curran 2004)and NDVI (Rouse, 

Haas et al. 1974) was transformed to match with the spectral bands from Sentinel- 2 

and Landsat TM. Most of the hyper spectral indices were not suitable for Landsat TM 

bands, only CI green, SIPI, NDVI and WDRVI, were calculated based on Landsat bands. 

Based on Sentinel bands all the indices except NDNI were calculated. In Equations 3 to 8 

R stands for reflectance in a certain wavelength of the spectra, expressed in 

nanometres. 

 

Formulations for index calculations on APEX data:  

MTCI = (R754 - R709)/(R709 - R681)  Equation 3 

NDVI = (R800 - R670)/(R800 + R670) Equation 4 

Indices calculated on Sentinel-2 bands, indicating the band centre, they look like: 

MTCI = (R740 - R705)/(R705 - R665) Equation 5 

NDVI = (R783 - R665)/(R783 + R665) Equation 6 

Indices calculated on Landsat TM bands, MTCI cannot be calculated: 

MTCI = NA Equation 7 

NDVI = (RNIR – RRED)/(RNIR + RRED) Equation 8 

The index values for each sensor were scatter-plotted against nitrogen contents (kg/ha) 

to provide general sensitivity examination and to obtain the R2 (Tables 6 and 9, Section 

4) values and equations for simple linear regression between each index and nitrogen 

content. 
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3.5 Regression analysis 

 

Comparison of the results derived from previous steps namely VIs calculations were 

performed fitting linear and exponential regression models. Regression analysis was 

performed on the same way for broadband vegetation indices and also hyperspectral 

vegetation indices. The comparison between them was essential to test the hypothesis, 

that HVIs can predict better biochemical properties of crops and explain a significantly 

higher proportion of their variability, overcoming the limitations posed by broadband VIs.  

The accuracy of all indices was assessed for each crop individually.  The judgment of all 

results was performed by comparing coefficients of determination (R2) and calculation of 

root mean square error Root mean square of prediction (RMSE). In addition normalize 

root mean square of prediction was be calculated (Appendix 1 and 2). Scatter plots 

derived from the models are depicted in Appendix 4 and 5. 

Root mean square error (RMSE) or also called root mean square of deviation (RMSD) is a 

frequently used measure of the difference between values predicted by a model and the 

values actually observed from the environment that has been modelled. These individual 

differences are also called residuals, and the RMSE serves to aggregate them into a 

single measure of predictive power. The RMSE of a model prediction with respect to the 

estimated variable y is defined as the square root of the mean squared error (Equation 

9) where y are observed values and ŷ is modelled value at place i. The calculated RMSE 

values will have the same units as the estimated variable. Respectively RMSE for 

nitrogen/chlorophyll concentrations can be directly compared to the average values and 

standard deviation of observed values. The RMSE values can be used to distinguish 

model performance in a calibration period with that of a validation period as well as to 

compare the individual model performance to that of other predictive models. Non 

dimensional form of RMSE was be also calculated, because often RMSE isn’t easy to 

compare with other units or crops in our case. The approach is to calculate a normalized 

root mean square error (NRMSE) (Equation 10). It normalizes RMSE to the range of the 

observed data, it can be also normalized to the mean of the observed data. 
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3.6 Model Validation 

 

After the calibration of the models we had to validate the predictive ability of the models. 

In order to do the validation two approaches were used. For potato enough data was 

available to perform external validation. In potato crop, independent dataset from the 

available B samples from field No 28 can be spared for validation. For grass and maize 

samples are available only 15 samples and external validation isn’t feasible, there cross-

validation can be carried out. The independent validation denoted as root mean square 

error of prediction (RMSEP). Is defined from Equation 11 by taking a validation sample 

y(i) and the prediction for the validation sample based on calibration ŷ(i). 
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It should be noted that calculation of RMSE based on the calibration sample only gives 

too optimistic results for prediction error, because a model may fit the calibration data 

well without being valid for new data. Hence it is crucial to have a realistic validation 

sample in order to judge the true performance of the predictors and calculate RMSEP. 

For grass and maize samples proper validation sample weren’t available and leave- one- 

out cross- validation were used.  The formula for calculation root mean square error of 

cross validation (RMSECV) is the same as for external validation (RMSEP). With the 

difference that ŷ is a prediction of y (i) based on a n-1 remaining samples in such a way 

that each sample is left out exactly once, if n is the number of all samples. Error is 

estimated for each point left out of the model. Subsequently the resulting error is 

summed and averaged to a single RMSECV value. 

 

3.7 Nitrogen maps 

 

The regression analysis was performed in order to give an indication of vegetation 

indices able to give a good of prediction of nitrogen content for the investigated crops. 

The judgement of the best fit can be done based on R2 and RMSE values. However more 

important is not how model fits the available data but to which extent it is able to predict 

nitrogen content for external samples. The validation of the models and the resulting 

RMSECV and RMSEP values were very important because based on them can be decided 

which estimator to use for upscaling the model and to transfer the regression coefficients 

to other locations. The best models were assessed using both R2 and RMSEP values.  

The functions derived from the best performing regression models with relatively 

low error of the prediction were utilized for calculation of nitrogen maps, to show the 

spatial variability of nitrogen over the fields. The maps were calculated in two steps. The 

first step was to calculate vegetation index map using the spectral band values of the 

original APEX image. In the second step nitrogen map was calculated using the 

coefficients derived from the regression analysis. The calculation of the nitrogen maps 

was executed for potato fields, mainly because the knowledge about the fertilization 

levels in the experimental field, which provided the opportunity for visual comparison 

and inspection of the emerging patterns. 
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4. Results  

The results obtained from the regression analysis will be discussed in this chapter. Firstly 

the results obtained for the grassland sites will be presented and secondly the results 

from the potato sites. The results for maize site will not be discussed in this chapter, as 

all the vegetation indices regressed against nitrogen content resulted in statistically 

insignificant models. However, the summary statistics for maize is presented in Appendix 

3.4; results for maize regression models are presented in Appendices 1 and 2; the 

scatter plots are depicted in Appendix 4. Results for the relations between vegetation 

indices and nitrogen at grassland (Section 4.1) and potato (Section 4.2) will be 

presented and compared between the three types of sensors investigated in the study. 

In addition, the results of the relationships between VIs and chlorophyll will be presented 

for the potato fields (Section 4.3). The comparison will be followed by the results from 

model validation and the corresponding RMSEP values. Finally nitrogen maps derived 

from the APEX image are presented to show the spatial variability of nitrogen for the 

potato fields (Section 4.4). 

 

4.1 Performance of vegetation indices in grassland for nitrogen 

estimation 

For grassland, three fields were examined. Each field was sampled in 5 locations, 

resulting in a total of 15 plots. During the field campaign, fresh biomass and nutrient 

content were analysed for each plot.  From all the measured nutrients the most 

prominent for plant development is nitrogen. Following Equations 1 and 2 (Section 3.3.2) 

the total nitrogen content was calculated in kilogram per hectare. This unit is often used 

in agricultural studies and by farmers to calculate amounts for field fertilisation practices. 

In the case of grassland plots, the range of nitrogen content varies between 23.77 kg/ha 

and 100.64 kg/ha. Other summary statistics regarding the grass samples are listed in 

Table 5. For grassland samples no measurements of chlorophyll are available and the 

results are shown only for nitrogen content.  

An overview of the R2 values of the relation between nitrogen and the selected 17 VIs for 

both linear and exponential models can be found in Table 6. Indicated with an asterisk 

are the corresponding significance levels from the F statistics. More detailed information 

about other model diagnostics can be found in Appendix 1 and 2, including R2 adjusted,  

RMSE, F statistics, and the exact probability values.  The model diagnostics are 

calculated for all the investigated indices and their correlation with nitrogen content 

based on the spectral information delivered from the APEX image and the simulated 

reflectance for Sentinel-2 and Landsat TM (Section 3.3.4). The band setting of Sentinel-2 

and Landsat TM didn’t allow calculation of some of the hyperspectral vegetation indices. 

The number of vegetation indices calculated re respectively: 17, 16 and 4 (Table 6). 

 

4.1.1 Hyper spectral vegetation indices based on APEX data 

To examine the relationship between nitrogen content as a quantitative outcome and a 

vegetation index as a single quantitative explanatory variable, simple linear regression 

was considered as the most simple and prominent approach. To investigate non- linear 

relationships also exponential models were calculated, using log transformation of the 

independent variable and linear fitting. The index providing the strongest linear 

relationship with nitrogen content was REP (R2 = 0.612, significant at p < 0.001).  
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Table 4 Summary statistics for the 15 plots of the grassland sites (harvested in 

June 2011) 

Grass Minimum Maximum Mean 
Standard 

deviation 

Coefficient of 

variation (%) 

Fresh weight (kg/ha) 2840,00 23640,00 11026,67 7896,44 71,61 

Dry weight (kg/ha) 445,88 3049,56 1436,34 992,05 69,07 

N content (kg/ha) 23,77 100,64 54,06 27,08 50,10 

 

 

 

Figure 8 shows that the three grassland fields were in a different range of development 

but that the combined dataset shows a significant correlation. The exponential model 

performed with a higher value of the coefficient of determination (R2 = 0.713, p < 

0.001). The strong non- linear relationship was expected and reported before in 

literature. Clevers and Kooistra 2012 found a strong  non-linear relationship based on 

PROSAIL simulations (Figure 10) in broad range of REP values between 670 and 740 

units of REP (R2 =0.92). The strong linear relationship gained in the current study could 

be explained by the relatively short range of REP values between 720 and 722 of 

measured grassland canopy. In this narrower range a linear relation could be more 

prominent. The MTCI performed comparably well to REP for both linear and the 

exponential model (Table 6). The two indices are designed to locate the red-edge-

position. MTCI was proposed as a better index then REP, because of its sensitivity to a 

wider range of chlorophyll and respectively nitrogen content. MTCI is an index based on 

the specifications of MERIS sensor (Dash and Curran 2004). 

 

 

 

  

Figure 8 Relationship between REP and nitrogen 
content for the grassland sites. 

Figure 9 Relationship between CI red edge and 
nitrogen content and for the grassland sites. 
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Figure 10 Relationship between REP and chlorophyll content (PROSAIL simulations) The solid line shows the 
exponential fit and the dashed line shows a linear fit. (taken from Clevers, Kooistra 2012) 
 

The model using MCARI/OSAVI ratio index suggested by (Daughtry, Walthall et al. 2000) 

was insignificant despite it is a chlorophyll model and insensitive to confounding factors 

as a soil background.  Reason could be the state of the grasslands, where no soil fraction 

was exposed due to the canopy structure. Similar results are obtained for TCARI/OSAVI. 

The modified ratios of MCARI/OSAVI and TCARI/OSAVI proposed by (Wu, Niu et al. 

2008) including bands at 705 and 750 nm were stronger correlated with nitrogen, 

confirming results from previous studies (Clevers and Kooistra 2012) Furthermore, the 

MCARI/OSAVI red edge index explains in the exponential model the largest portion of 

variation in the response variable, with R2= 0.736, significant at p <0.001. The 

chlorophyll sensitive indices is CI green and CI red edge, showed strong correlations with 

nitrogen, stronger for the index including the red edge (Figure 9), which also showed 

stronger exponential behaviour (R2=0.627, p <0.001), than linear (R2=0.501, p <0.01) 

Another group of indices including red edge bands was the group of ‘normalized 

difference red-edge’ (NDRE or red-edge NDVI). Three versions were evaluated in this 

study as reported in the literature: NDRE 1 using 740 and 705 nm (Gitelson and 

Merzlyak 1994) NDRE 2 is utilizing 780 and 705 nm (Barnes, Clarke et al. 2000) and 

NDRE using 790 and 705 nm (Tilling, O’Leary et al. 2007). The best prediction in terms 

of R2 was achieved by the last version mentioned, both for linear and for the exponential 

fit of the regression model.  Two structural indices were also tested for nitrogen 

prediction despite the fact they are not reported to be sensitive to plant pigments. NDVI 

is one of them and is broadly used in broad range of remote sensing applications. 

However, the regression model for estimation of nitrogen content showed insignificant 

results (Figure 12). The ratio of NDRE and NDVI index (CCCI) was proposed by (Barnes, 

Clarke et al. 2000). This ratio (Figure 11) showed a strong linear correlation with 

nitrogen (R2 = 0.604, p <0.001) and stronger exponential (R2 = 0.717, p <0.001). 

Three more indices were tested, which are more peculiar in respect to the indices 

mentioned before. The Structure Intensive Pigment Index (SIPI) is an index developed 

by (Penuelas, Filella et al. 1995). It was intended as a biochemical index, sensitive to 

chlorophylls and carotenoids, exploiting bands in NIR, blue and red part of spectra. The 

regression resulted in insignificant linear model and exponential model with relatively 

low R2 value.  The normalized difference nitrogen index (NDNI) is the only index 

proposed which utilises bands in SWIR wavelengths. They are claimed to be sensitive to 
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nitrogen contents and more specifically to the first and second overtone to N-H band 

vibration. NDNI includes two bands in this region, namely 1510nm and 1680nm. 

Unfortunately none of the models showed any statistical significance (Table 6).  

 

Table 5 Overview of R2 values of the linear and exponential relationships 

between indices and nitrogen content for grassland. For Sentinel-2 and Landsat 

TM not all values are given as they could not be calculated due the limited 

number of bands of the sensors. 

 

Grass APEX Sentinel_2 Landsat TM 

Index name R2 linear 

model 

R2 exponential 

model 

R2 linear 

model 

R2 exponential 

model 

R2 linear 

model 

R2 exponential 

model 
REP 0,612*** 0,713*** 0,606*** 0,717*** 

  

MTCI 0,599*** 0,711*** 0,525** 0,642*** 

MCARI/OSAVI ns ns ns ns 

MCARI/OSAVI RE 0,607*** 0,736*** 0,597*** 0,726*** 

TCARI/OSAVI ns 0,339* ns ns 

TCARI/OSAVI RE 0,416** 0,546** 0,331* 0,451** 

CI red edge 0,501** 0,627*** 0,487** 0,612*** 

CI green 0,348* 0,472** 0,355* 0,478** 0,29* 0,407* 

NDNI ns ns     

SIPI ns 0,348* ns 0,291* 0,276* 0,386* 

DCNI ns ns ns ns 

  

NDRE 0,523** 0,646*** 0,65*** 0,501** 

NDRE1 0,363* 0,493** 0,377* 0,564** 

NDRE2 0,422** 0,551** 0,439** 0,755*** 

NDVI ns 0,316* ns 0,316* ns 0,313* 

CCCI 0,604*** 0,717*** 0,712*** 0,801***   

WDRVI ns 0,318* ns 0,319* ns 0,315* 

Notes: *p < 0.05; **p < 0.01; ***p < 0.001 

 

  

Figure 11 Relationship between CCCI and nitrogen 
content for the grassland sites. 

Figure 12 Relationship between NDVI and nitrogen 
content for the grassland sites. 
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4.1.2 Performance of VIs based on Sentinel- 2 and Landsat TM for grassland 

The simulated Sentinel- 2 and Landsat TM band reflectance values don’t suffice 

calculation of all the mentioned indices investigated (Table 2, Section 2.4). However 

most of the vegetation indices can be calculated using Sentinel-2 simulations, with only 

one exception, namely the NDNI, because the required bands in the SWIR are not 

available from Sentinel-2. Landsat did not provide a sufficient number of bands so only 4 

indices were calculated (SIPI, CI green, NDVI, WDRVI). Results from the regression 

analysis of the available indices are also summarized in Table 6 in terms of R2 values 

with the corresponding probability value derived from F test marked with an asterisk. 

They are compared with the values of the coefficients of determination derived from 

regressions based on APEX based hyperspectral VIs. 

The results for the grassland indices, based on Sentinel-2 band positions, all had similar 

performance in terms of R2 values to the indices based on APEX. Some of them (REP, 

MTCI, MCARI/OSAVI red edge, TCARI/OSAVI red edge, CI indices) had slightly less 

accurate predictions of the linear models. Surprisingly the group of ‘Normalized 

Difference Red-Edge’ NDRE indices performed with even higher accuracy judged on R2 

values, where the CCCI achieved the impressive R- squared for linear model of 0.712; 

for the exponential R2 = 0.801, both significant at p < 0.001. 

The results achieved from Landsat regressions performed with relatively lower accuracy 

than APEX and Sentinel-2 (Table 6). This could be expected taking into account the 

lower spectral resolution of the broad band sensor. Exception in this respect makes SIPI 

which attain statistically significant results for linear (R2 = 0.276, p < 0.05) and 

exponential model (R2 = 0.386, p < 0.05). The relationship isn’t strong but is better than 

the relationship gained by APEX and Sentinel-2. 

 

4.1.3 Validation of grassland models 

For validation of nitrogen prediction models in grassland a leave one out cross validation 

approach (LOOCV) was adopted. The results in terms of RMSECV values are summarized 

in Table 7. The results from the validation of maize fields are also available in Appendix 1 

and 2, however they all weren’t significant. The LOOCV is a method suitable for datasets, 

which are relatively small (15 grass samples). RMSECV was calculated for the 15 

iterations and then averaged for all the cases. The results from LOOCV in terms of 

RMSECV showed slightly larger error then the RMSE from the calibration model using all 

the samples for its prediction (Appendix 1 and 2).  

The lowest error for a linear model was achieved by MTCI with 17.3 kg/ha. This value 

can be compared to the average value of standard deviation value measured for nitrogen 

content of 27.08 kg/ha and average value of 54.06 kg/ha (Table 5). The corresponding 

value of the exponential model was 14.9 kg/ha. The REP achieved very similar results as 

for linear model RMSECV = 17.4 kg/ha and RMSECV =14.6 kg/ha for the exponential 

model. The indices from the NDRE group resulted in larger errors, which is in accordance 

with the estimated goodness of fit diagnosed by R2 values. The prediction error 

estimated by the indices based on simulated data, were slightly larger than the original 

indices based on APEX. Structural indices as NDVI and WDRVI had the largest error 

values and were both not insignificant for linear model (p >0.5) but significant for the 

exponential model. 
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Table 7 Overview of RMSECV values of the linear and exponential model 

validation in grassland. Leave one out cross validation. 

Grass APEX Sentinel-2 Landsat TM 

Index name RMSECV linear 

model 

RMSECV 

exponential 

RMSECV 
linear 

model 

RMSECV 

exponential 

RMSECV 
linear 

model 

RMSECV 

exponential 
REP 17.437 14.608 17.844 14.583 

  

MTCI 17.322 14.904 18.788 16.472 

MCARI/OSAVI na na na na 

MCARI/OSAVI RE 16.616 14.586 16.990 14.726 

TCARI/OSAVI na ns na na 

TCARI/OSAVI RE 19.753 18.905 20.925 20.458 

CI red edge 19.035 17.046 19.088 17.365 

CI green 20.682 20.356 20.589 20.351 21.336 21.588 

NDNI na na     

SIPI na 21.268 24.571 23.926 21.829 20.720 

DCNI na na na na 

  
NDRE 19.343 16.446 15.955 13.847 

NDRE1 22.124 19.501 22.193 19.274 

NDRE2 21.620 18.409 21.559 18.082 

NDVI na 22.116 na 22.082 na 22.123 

CCCI 17.483 14.697 14.252 12.894   

WDRVI na 22.228 na 22.179 na 22.240 

 

4.2 Performance of vegetation indices in potato site for nitrogen 

estimation 

 

Distributed over two consecutive days in June 2011, four potato fields (27 locations) 

were sampled twice (A and B sample) on a relatively small distance. The corresponding 

A samples were analysed for total nitrogen concentration, dry matter and fresh weight. B 

samples are only weighted for fresh biomass. Field 28 was an exception in the sampling 

plan, where all 12 locations were sampled, both A and B samples. In this field 

experimental design was conducted with four different fertilization levels, which resulted 

in higher variation in nitrogen content of the potato plants sampled in the field, than 

other fields. The summary statistics of the potato field measurements are presented in 

Table 8. The range of potato samples is larger compared to the grass samples, with 

mean value of 202.5 kg/ha and standard deviation of 77.48 kg/ha. At potato field No 28 

also chlorophyll measurements from SPAD are available. The chlorophyll readings are 

summarized in Table 8, it should be noticed that these measurements are from one field 

only (both A and B samples) and are in different units than nitrogen statistics (g/m2). 
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4.2.1 Hyper spectral vegetation indices based on APEX data for nitrogen 

estimation 

At almost all potato plots spectral data was available, but because there were two wires 

in front the slit of the APEX sensor during the acquisition flight, regions with no data 

occurred in the image.  These no-data regions coincided with three field measurements 

in the potato fields, these locations were not further analysed. Following the same 

methodology as for the grassland sites, hyperspectral and broadband vegetation indices 

were calculated. The regression analysis explored linear and also non- linear 

relationships. Table 9 provides a summary of R2 values for linear and exponential 

estimators. The significance levels are marked with an asterisk. More detailed 

information is listed in Appendix 1 and 2; all the calculated scatter plots are depicted in 

Appendix 4. The strongest linear correlation between nitrogen and vegetation indices 

was found for MTCI (R2= 0.655, significant at p < 0.001). However the exponential 

relationship yielded stronger correlation (R2 = 0.746). Scatter plot is depicted in Figure 

13. Again the REP showed a significant linear relationship for the observed values 

between 720 and 727 nm for nitrogen content by potatoes, but as expected even 

stronger exponential relationship. These two indices are exploiting bands along the red- 

edge point and had also a significant correlated with grassland samples. 

 

Table 8 Summary statistics for the 27 plots (only A samples) of the potato sites 

(harvested in June 2011), chlorophyll readings are available in field No 28 (A 

and B samples) 

Potato Minimum Maximum Mean 
Standard 
deviation 

Coefficient of 
variation (%) 

Fresh weight (kg/ha) 18400,00 80264,66 47950,18 17143,55 35,75 

Dry weight (kg/ha) 2208,00 6020,80 4220,68 1128,35 26,73 

N content (kg/ha) 81,66 356,43 202,52 77,48 38,26 

Chlorophyll content (g/m2) 0.41 0.73 0.59 0.09 15,69 

  

  

Figure 13 Relationship between REP and nitrogen 
content for the grassland sites. 

Figure 14 Relationship between CI red edge and 
nitrogen content for the grassland sites.  
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The MCARI/OSAVI ratio index resulted in a significant linear model for potato (R2 = 

0.276, p <0.01). Compared to the grassland model, which wasn’t significant for both 

linear and exponential model. The reason could be that more data is available for potato 

and the larger variation due to the fertilization levels in the potato field No 28 (Appendix 

3.4). However the explanatory power of this index is low. The modified MCARI/OSAVI RE 

version using 705 and 750 nm wavelengths gave again much stronger correlation also at 

higher significance level compared to the original formulation of the index. TCARI/OSAVI 

also performed better in the modified version proposed by (Wu, Niu et al. 2008). It 

resulted in a linear relationship of R2 = 0.653, very close to the best prediction of MTCI 

and exponential model of R2 = 0.733. 

The chlorophyll indices CI red edge and CI green were strongly linear correlated with the 

nitrogen content. CI red edge (R2 = 0.653, p <0.001) (Figure 14) and CI green (R2 = 

0.638, p <0.001), however the exponential models were better correlated. The results 

again prove the tendency discovered by grassland for better performance of exponential 

models. From the group of normalized difference red-edge indices, the best prediction 

was obtained from NDRE, with R2 = 0.626 and R2 = 0.731 for linear and exponential 

relation respectively. The ratio between NDRE and NDVI was also very successful in this 

respect (Figure 15), especially when compared to the results obtained, using NDVI and 

WDRVI. The last two indices resulted in significant models but the saturation effect of 

the red band is still present (Figure 16). NDNI and SIPI were also used in linear nitrogen 

content regression models, but similar to the grassland models they resulted in 

insignificant models or with very low prediction power. 

 

 

  

Figure 15 Relationship between CCCI and nitrogen 
content for the grassland sites. 

 

Figure 16 Relationship between NDVI and nitrogen 
content for the grassland sites. 
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Table 9 Overview of R2 values of the linear and exponential relationships 

between indices and nitrogen content. For Sentinel-2 and Landsat TM not all 

values are given as they could not be calculated due the limited number of 

bands of the sensors. 

Potato APEX Sentinel-2 Landsat TM 

Index name R2 linear 

model 

R2 exponential 

model 

R2 linear 

model 

R2 exponential 

model 

R2 linear 

model 

R2 exponential 

model 
REP 0,619*** 0,724*** 0,621*** 0,729*** 

  

MTCI 0,655*** 0,746*** 0,654*** 0,748*** 

MCARI/OSAVI 0,276** 0,31** ns ns 

MCARI/OSAVI RE 0,553*** 0,627*** 0,505*** 0,578*** 

TCARI/OSAVI 0,549*** 0,666*** 0,437*** 0,547*** 

TCARI/OSAVI RE 0,653*** 0,733*** 0,651*** 0,734*** 

CI red edge 0,653*** 0,735*** 0,647*** 0,729*** 

CI green 0,638*** 0,726*** 0,632*** 0,719*** 0,609*** 0,693*** 

NDNI ns 0,155*     

SIPI ns ns ns ns 0,199* 0,203* 

DCNI 0,312** 0,364** 0,238* 0,276** 

  
NDRE 0,626*** 0,731*** 0,645*** 0,671*** 

NDRE1 0,559*** 0,657*** 0,574*** 0,69*** 

NDRE2 0,577*** 0,678*** 0,59*** 0,738*** 

NDVI 0,261** 0,307** 0,277** 0,33** 0,326** 0,388*** 

CCCI 0,619*** 0,728*** 0,633*** 0,727***   

WDRVI 0,273** 0,318** 0,291** 0,342** 0,344** 0,404*** 

Notes: *p < 0.05; **p < 0.01; ***p < 0.001 

 

4.2.2 Performance of VIs based on Sentinel- 2 data and Landsat TM at potato 

site 

The results from the nitrogen regression models based on indices calculated from 

simulated spectra are presented in Table 9 next to the results from the original data 

acquired by the APEX sensor. Similar to the grassland examples, all the indices were 

related in a linear and exponential way. In general, the exponential relationships showed 

higher R2 values. Most of the indices based on Sentinel- 2 had similar performance in 

terms of R2 values compared to APEX indices. MTCI, MCARI/OSAVI RE, TCARI/OSAVI, 

TCARI/OSAVI RE, CI had similar results and only slightly less accurate than the 

calculations based on APEX. Surprisingly all the NDRE indices, NDVI, REP and MTCI, 

showed better predictions than the models based on the original data. There are only 

few indices based on Landsat but the results for CI green turned out to be promising (R2 

= 609, p <0.001) for the linear model. Also the regression models of SIPI are significant 

at p < 0.05 with a higher R2 value than the original APEX and the simulated Sentinel-2 

indices. 
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4.2.3 Validation of potato models 

Independent validation was used to assess the predictive power of models for the potato 

sites, because the data size, allowed to spare measurements as an independent test 

dataset. The samples in field 28 were all nutrient analysed, both A and B samples. The B 

samples were used as test data set and all A samples including the A samples from fields 

No 11, 19, 30, 28 were used as training data. In total 27 observations are used for 

model training and 10 for model testing. The results from the independent validation are 

the most unbiased test for the model prediction power, because the predictions of the 

model are compared with real values not used by the model for calibration (Arboretti 

Giancristofaro and Salmaso 2007). The RMSEP values for the validation of nitrogen in 

potato are summarized in Table 10. 

The results from the independent validation resulted in much larger values of RMSEP 

then the calculated RMSE values. The difference between RMSE and RMSEP value in 

some cases was almost double. For example, CI green had a RMSEP of 77.1 kg/ha 

compared to a RMSE of 41.0 kg/ha (Appendix 1.1). For REP and MTCI the estimated 

RMSEP was respectively 82.2 kg/ha and 81.6 kg/ha from a linear model. The 

corresponding RMSE values for REP and MTCI were: 42 kg/ha and 40 kg/ha (Appendix 

1.1). The errors estimated for the models based on simulated data had similar values as 

the errors gained by the original indices (Appendix 1 and 2). 

After further analysis of the validation result the testing data set (B samples from the 

field with fertilization experiment), one sample stood out with an extremely high 

nitrogen content (474.4 kg/ha). Compared to the maximum nitrogen value in the 

calibration samples for the potato samples (356.4 kg/ha; Table 8) this was considerably 

higher. The very large value was caused by the large biomass and the relatively low dry 

matter of the sample. When replacing the values in equations 1 and 2 (Section 3.3.2) 

the resulting nitrogen content was extremely high. The high nitrogen sample was located 

in a plot with high fertilization and the high content can be explained to certain degree. 

As the nitrogen concentration for this test sample was outside the nitrogen range of the 

calibration set it was decided to also calculate the RMSEP for the corrected test set 

without the sample with the high nitrogen concentration. If we exclude the sample, the 

RMSEP values from the validation model the RMSEP value decreased rapidly (Table 10), 

comparable with the RMSE derived from the calibration model. The outlying observation 

was very influential because only 10 samples were available for the validation of the 

nitrogen models of the potato samples. 
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Table 10 Overview of RMSEP values for the independent validation of the linear 

and exponential model in potato. Both results for original test set (n=10) and 

after correction for outliers (n=9) are presented. 

Potato APEX (n=10) APEX Corrected (n=9) 

Index name 
RMSEP linear 

model 

RMSEP 

exponential 

RMSEP linear 

model 

RMSEP 

exponential 

REP 82,293 82,871 44,409 47.991 

MTCI 81,514 83,210 43,139 48.554 

MCARI/OSAVI 106,027 112,639 68,763 75.298 

MCARI/OSAVI RE 77,961 78,571 32,850 35.851 

TCARI/OSAVI 88,862 91,728 49,804 54.578 

TCARI/OSAVI RE 77,498 77,576 38,185 42.272 

CI red edge 78,096 78,408 39,656 44.175 

CI green 77,117 76,605 38,361 42.09 

NDNI 105,987 109,378 65,971 66.839 

SIPI 106,877 111,503 71,837 74.6 

DCNI 105,391 113,044 67,711 76.13 

NDRE 80,558 80,309 41,688 44.218 

NDRE1 83,476 85,200 41,120 44.718 

NDRE2 82,640 83,766 41,142 44.275 

NDVI 94,562 98,505 53,165 56.816 

CCCI 82,723 83,519 44,607 48.396 

WDRVI 93,003 96,810 51,439 55.197 

 

 

4.3 Performance of vegetation indices in potato for chlorophyll 

estimation 

The estimation of the chlorophyll content was a main objective of the study next to the 

retrieval of nitrogen content, because the two variables are strongly correlated and 

furthermore the chlorophyll is the driving force of the photosynthesis, which provides the 

primary productivity in all ecosystems (Vitousek, Cassman et al. 2002). The same 

comparison as for potato and grassland results was prepared for the diagnostic statistics 

form chlorophyll predictive models based on potato canopy reflectance (Table 11). All 

the results are summarized in Appendix 1.4 and 2.4 and all the scatter plots are depicted 

in Appendix 5. As expected the correlation between chlorophyll and remote sensing data 

is stronger than the correlation between spectral data and nitrogen. The reason is that 

the vegetation- light relationships are influenced mainly of the photosynthetic active 

pigments, such as chlorophylls and carotenoids. They absorb light in the visible spectra, 

namely in blue and red region. The best fit of a model correlating chlorophyll content and 

vegetation index was achieved by MTCI, REP, TCARI/OSAVI RE and CI indices in 

exponential models. The linear and exponential models gave also high R2 values, 

especially TCARI/OSAVI and MTCI. The NDRE group of vegetation indices performed also 

with good results, for instance CCCI, with R2 = 0.883 in linear model and R2 = 9.14 for 

exponential model. The structural models as NDVI and WDRVI had a poorer fit. The 

lowest fit was observed between NDNI and chlorophyll, which was expected as only 

bands in SWIR range are used for the index calculation and they are not sensitive to 

chlorophyll content.  



43 

 

 

Table 11 Overview of R2 values of the linear and exponential relationships 

between indices and chlorophyll content in potato samples (n = 21). For 

Sentinel-2 and Landsat TM not all values are given as they are not tested due 

the limited number of bands of the sensors. 

Potato Chlorophyll APEX Sentinel_2 Landsat TM 

Index name R2 linear 

model 

R2 exponential 

model 

R2 linear 

model 

R2 exponential 

model 

R2 linear 

model 

R2 exponential 

model 
REP 0,872*** 0,906*** 0,872*** 0,907*** 

  

MTCI 0,905*** 0,927*** 0,909*** 0,934*** 

MCARI/OSAVI 0,64*** 0,596*** 0,248* 0,199* 

MCARI/OSAVI RE 0,79*** 0,839*** 0,742*** 0,797*** 

TCARI/OSAVI 0,9*** 0,929*** 0,76*** 0,814*** 

TCARI/OSAVI RE 0,893*** 0,923*** 0,892*** 0,921*** 

CI red edge 0,881*** 0,913*** 0,885*** 0,917*** 

CI green 0,892*** 0,92*** 0,888*** 0,916*** 0,874*** 0,905*** 

NDNI 0,261* 0,323**     

SIPI 0,362** 0,413** 0,388** 0,439** 0,46*** 0,525*** 

DCNI 0,881*** 0,853*** 0,766*** 0,723*** 

  
NDRE 0,864*** 0,902*** 0,874*** 0,899*** 

NDRE1 0,817*** 0,868*** 0,824*** 0,873*** 

NDRE2 0,826*** 0,875*** 0,833*** 0,879*** 

NDVI 0,602*** 0,668*** 0,614*** 0,68*** 0,65*** 0,714*** 

CCCI 0,883*** 0,914*** 0,878*** 0,896***   

WDRVI 0,623*** 0,688*** 0,638*** 0,703*** 0,674*** 0,737*** 

Notes: *p < 0.05; **p < 0.01; ***p < 0.001 

 

 

 

 

 

Figure 17 Relationship between MTCI and chlorophyll content for potato 

samples in field 28 
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4.4 Nitrogen maps based on the best model predictions 

 

The regression models were assessed using the R2 values, RMSEP. The best models were 

used for calculation of nitrogen maps for the investigated fields. MTCI was the index with 

highest R2 value among other indices for potato and the RMSEP showed relatively low 

error of 43.1 nitrogen kg/ha (as a relative to an average measured N content of 202.5 

kg/ha). The maps were calculated in two steps. First a vegetation index map using the 

spectral band values of the original APEX image was calculated and second a nitrogen 

content map was calculated, using the coefficients derived from the regression analysis. 

The resulting in MTCI index values were in the range between 0.4 and 5.3. In the second 

step the coefficients from the linear and exponential model and the MTCI maps were 

used for calculation of the nitrogen content map (Figure 19).  The resulting map 

consisted of one layer, whereby each pixel in the map had a value for the predicted 

nitrogen content.  

The values for the map based on the linear coefficients of the MTCI relation (Figure 19 

(A, B, C)) ranged between -75.5 and 332.6 kg/ha as it can be seen in the associated 

map histogram for the map (Figure 18 (A)). Negative nitrogen content is of course not 

possible in the reality, the values were result of a simple linear mathematical function 

(Figure 13). However a small fraction of the pixels had negative nitrogen value which 

can be attributed to pixels with exposed soil cover. The values computed using 

exponential coefficients of the MTCI relation were between 35 kg/ha and 414.6 kg/ha. 

(Figure 18 (B)). It should be pointed out that the RMSEP for the exponential model is 

larger than the RMSEP from the linear model. If we compare the mean values of the 

predicted nitrogen from linear, exponential model and actual observations (Table 8 and 

Table 12), the linear model had better prediction, also with respect to the maximum 

value. 

Nitrogen maps of the different fields (Figure 19) showed clear nitrogen patterns. Field 28 

(Figure 19 A) was an experimental field with 3 initial fertilization levels (Figure 4, Section 

3.1) and 4 different treatments during the growing season. There is a clear pattern 

showing the stripes of plots with different levels of initial fertilization. The purple stripe 

shows the plot with lowest nitrogen content which was expected because this plot didn’t 

get any initial fertilization. There was not much knowledge about the fertilization in other 

fields but in field 19 (Figure 19 B and E) is also a clear pattern dividing the field in two 

parts with lower nitrogen content on the west side. Field 11 (Figure 19 C and F) was a 

homogeneous in terms of nitrogen content and only the tractor driving paths are shown 

with low nitrogen concentration. The driving paths should have value 0 of nitrogen 

content but because of the scattered reflection from neighbouring pixels they have 

higher index values and respectively higher nitrogen concentration. 
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Table 12 Summary of the predicted nitrogen content maps based on MTCI 

  Linear prediction  Exponential prediction 

Minimum -75.51 35.88 

Median 207.7 196 

Mean 195.6 189.4 

Maximum 332.6 414.6 

 

 

 

 

 

 

 

 

 (A) (B) 

Figure 18 Histograms of predicted nitrogen content maps distribution from 

MTCI. On the left hand side is depicted the histogram based on linear 

coefficients and on the right hand side is the histogram based on exponential 

coefficients. The mean value is marked with a dashed line, the zero value with 

blue line and the maximum value with red line.
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(A) (D) 

 
 

(B) (E) 

  

(C) (F) 

Figure 19 Predicted nitrogen content (kg/ha) maps for potato. On the left hand side are the prediction maps based on 
linear coefficients and on the right hand side are the exponential.  
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5. Discussion 
 

In this research a range of different types of vegetation indices was tested to explore 

their potential in estimating the content of either chlorophyll or nitrogen for three 

different crops. The potential of the indices was tested using remote sensing data 

acquired by the image spectrometer APEX on board of an aircraft at 27 June 2011 and 

field observations gathered in two consecutive days coinciding with the date of the 

acquisition flight. The remote sensing data and the field measurements were correlated 

and regression models were built to calculate linear and nonlinear functions aiming to 

predict nitrogen and chlorophyll from the vegetation indices. There was little agreement 

in literature over which vegetation indices have the strongest relationship with 

chlorophyll and nitrogen (Chen, Haboudane et al. 2010). This study confirmed that there 

was no general index, showing best results for all crops. However, the group of indices 

calculating the red- edge position (REP and MTCI) had the most robust predictions. Other 

indices utilizing red- edge bands also showed good potential for nitrogen and chlorophyll 

estimation. The vegetation indices were tested for three types of crops: maize, grassland 

and potato. Unfortunately all the regression models for maize samples showed 

insignificant results (Appendix 1 and 2). The reason for the poor performance in the 

maize site was the lack of spread of observations as visible in the scatter plots in 

Appendix 4. The samples from maize had very low variation in terms of nitrogen content 

and in terms of reflectivity and vegetation index values. The standard deviation of 

nitrogen in maize was 13.6 kg/ha and for grassland and potato it was respectively: 27 

kg/ha and 77.5 kg/ha (Appendix 3.3).  The small variation caused lack of correlation with 

the vegetation indices.  

Regressions for grass resulted in significant models for REP, MTCI, MCARI/OSAVI RE, 

TCARI/OSAVI RE, CI indices, NDRE indices. In potato the performance was slightly better 

and there almost all indices except NDNI and SIPI were significant. The grassland parcels 

were in different management stages as apparent from the scatter plots presented at 

Appendix 4. The samples in each field were clustered in groups as they had similar 

properties regarding spectral reflectance and nitrogen content values. The best 

performing index at grasslands was REP, next to it also MCARI/OSAVI RE and CI red edge 

performed with high values of R2. For potato the best performing index was MTCI and the 

second best with the same value of R2 were CI red edge and TCARI/OSAVI RE. The 

fertilization levels at potato fields were the major reason of the much higher variation at 

physiological properties of potato crops (Table 8, Section 4.2.1; Appendix 3.4). The 

higher variation was a reason for larger spread and better fit of the regression models for 

the potato fields. The results were crop specific and the main reason is the structure of 

the canopy, because it can significantly influence changes in canopy spectra (Stroppiana, 

2009). Another reason was that nitrogen content range varies among crops and 

coefficients from regression model derived from potato model cannot be used to predict 

nitrogen at grassland. 

The visible and red- edge position were reported as important spectral regions for 

nitrogen assessment. The red-edge region could be better suited than the red bands, 

which are strongly influenced by structural canopy parameters. The de-correlation of 

vegetation indices to factors other than nitrogen content had proved to be rather difficult 

to achieve (Stroppiana 2009). Canopy architecture can significantly influence changes in 

canopy spectra. Since NIR wavelengths are mainly influenced by fresh biomass, 

vegetation indices that use visible and red-edge position should be preferred (Stroppiana 

2009). The red edge position was a good estimator of chlorophyll and respectively 
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nitrogen content, but being less sensitive at higher contents of chlorophyll (Figure 10, 

Section 4.1.1). This saturation effect is still a problem for predictions at higher 

concentration levels (Clevers and Kooistra 2012). Results from the current study 

confirmed that the indices utilising bands in the red- edge position have greater 

correlation to vegetation indices than indices using red and NIR positioned bands. The 

modified versions of TCARI/OSAVI and MCARI/OSAVI proposed by (Wu, Niu et al. 2008), 

composed of bands positioned at 705 nm and 750 nm showed better linearity than the 

original versions utilizing band lengths at 670 nm and 800 nm. Major reason was that the 

reflectance at 670 nm was getting quickly saturated at relatively low chlorophyll content. 

Despite the observed linear relationships between the modified vegetation indices by Wu 

et al 2008, they performed with higher correlation at exponential models for grassland 

and potato sites. Results were summarized in table (Table 6 and Table 9, Section 4). The 

non- linearity of the regression models was a general trend regarding all indices 

incorporating red-edge position bands. 

Strong non-linear relationship between REP and chlorophyll was reported by (Clevers and 

Kooistra 2012), using PROSAIL simulations, with large range of REP values. In the 

current study REP had the strongest linear correlation among all indices with respect to 

nitrogen in grassland site, also strong linear prediction at potato fields in terms of 

nitrogen and also chlorophyll. The reason for the good linear prediction could be that 

narrower range of REP values was used in this study for model calibration. Also the 

results obtained by PROSAIL simulations are only describing chlorophyll and REP 

relationship, they cannot be directly compared to the nitrogen models. MTCI is a 

vegetation index designed to be sensitive to wide range of chlorophyll content (Dash and 

Curran 2004) and in this study it performed better than REP in respect to linearity, for 

chlorophyll and also nitrogen estimation. The chlorophyll indices presented by (Gitelson, 

Keydan et al. 2006)are using simple equation incorporating NIR band and red- edge band 

(710 nm) or green band (550 nm). These two indices were expected to have linear 

relation to chlorophyll and their major advantage was be the absence of the saturation 

effect obtained with REP indices (Clevers and Kooistra 2012). However in, grassland and 

potato, again stronger exponential relationship was observed than linear. In the potato 

crops regarding nitrogen content CI green and CI red edge performed with similar 

accuracy (Table 9, Section 4.2.1). But with respect to chlorophyll fit of CI green was 

better, both at linear and exponential model. 

The NDRE indices using red- edge bands, also called ‘red-edge NDVI’ showed promising 

results in this study. There were different bands used in the calculation of this type of 

index. In this study three versions of NDRE were tested and their predictive power was 

compared (Table 2, Section 2.4) The best prediction was achieved for all the tests by the 

version proposed by (Tilling, O’Leary et al. 2007). The same formulation of NDRE was 

incorporated in the NDRE/NDVI ratio, called canopy chlorophyll content index, which 

turned out to be a robust index with performance similar to the performance achieved by 

REP and MTCI. NDVI, WDRVI saturated at very low nitrogen levels and could not be used 

for estimation of chlorophylls as they are related to the physical properties of the canopy. 

NDNI is the only one index investigated for direct nitrogen estimation from SWIR 

wavelengths, but it didn’t showed satisfactory results in this aspect. The water content in 

the SWIR range is obscuring any relation with nitrogen (Curran 1989).  Another point for 

discussion is the spatial resolution and the accuracy of geometry of the APEX image. The 

image was found to be distorted, especially in the south- east part. There the DGPS 

locations and the hyperspectral image had a shift of few pixels (Figure 7). Despite the 

correction there is still an uncertainty in the exact positions of field measurements with 

respect to the image. Furthermore the pixel size of APEX is about 7 m2 and the sample 

size of the field measurements was 0.25 m2 for the grassland and about 1m2 for potato 

and maize. This point makes the relation between nitrogen readings and spectral 

reflectance per pixel also uncertain, because the effect of mixed pixels. 
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The results from the current study showed that REP, MCARI/OSAVI and CCCI performed 

best at grassland sites. For the potato the results were slightly different and there the 

best performance was achieved by MTCI. These results were in accordance with previous 

research (Clevers and Kooistra 2012). Based on the prediction of MTCI, nitrogen maps 

were created of the potato field (Figure 11) with the fertilization experiment (Field 28) 

and two others (Field 11 and Field 19) as the fertilization levels would be helpful for 

visual comparison of the predicted nitrogen content in the field. Both linear and 

exponential functions were used to upscale the prediction of the regression models and 

to calculate the nitrogen maps. The calculations based on linear models resulted in 

negative values of predicted nitrogen content at lower values of the vegetation index 

(Figure 19 (A, B, C)). After investigation of the pixels with negative values it was 

concluded that they coincide with the tractor diving paths where bare soil is exposed. 

These locations were not part of the regression model and respectively the predictor (the 

vegetation index) is outside of the range, which makes the prediction uncertain. The 

negative values derived from index predictions are another clear indication of the strong 

non-linear relationship between vegetation indices and chlorophyll. The choice of index 

and model in prediction of nitrogen content should be based on careful consideration of 

model diagnostics, taking into account validation results on a first place, because in the 

calibration period the model diagnostics may be over positive. That means that the 

model will very likely work better for the data used to fit it than for any other data. 

Analysts usually refer to this fact as the “principle of optimism” (Picard and Cook 1984).  

Although we can make a prediction of the true mean for any pixel value of the vegetation 

index  value it will be unwise to use extrapolation to make predictions outside the range 

of the index value that we have available for study. On the other hand it is reasonable to 

interpolate, to make predictions for unobserved values in between the range of the index 

values. That means that the linear model can still be used if the low index values are 

removed from the map, which can be easily done by excluding the bare soil pixels using 

a NDVI threshold. The predicted values from the exponential model were all positive also 

for low values of the explanatory variable, but they were overestimating the prediction at 

high index values. MTCI was shown to have strong linear relationship with chlorophyll in 

PROSAIL simulations and obtained the strongest linear relationship with chlorophyll and 

nitrogen in the current study in terms of R2 values (Table 9 and Table 11). Despite that, 

the prediction maps had negative results for low index values. However, the linear model 

was predicting better according to the independent validation, it also better models the 

mean and maxim values (Table 12), if we don’t use the vegetation index values falling 

outside the range from observed locations, we can consider linear predictions of MTCI as 

better then exponential . It is hard to say which prediction model works better for every 

index, since the results from the independent validations are very similar between the 

linear and exponential models (Appendix 3). The results from independent validation are 

claimed to be the best way to evaluate performance of regression models (Arboretti 

Giancristofaro and Salmaso 2007). However the choice and the proper use of validation 

samples can be tricky and very influential as the validation at potato crops proved. In 

this case only one outlier changed the RMSEP dramatically.  

Earlier studies have shown that red-edge bands are highly significant for chlorophyll 

retrieval (Horler, Dockray et al. 1983; Daughtry, Walthall et al. 2000; Dash and Curran 

2004; Clevers and Kooistra 2012). This point was also confirmed by the current study, 

other sources of data were explored to further investigate the red– edge bands. Recently 

the significance of the red edge bands on Sentinell-2 for estimating chlorophyll content 

has been shown through simulations studies (Herrmann, Pimstein et al. 2011). In this 

study we further elaborated the utility of Sentinel-2 bands for calculation of vegetation 

indices.  When calculating the indices mentioned (Table 2, Section 2.4) using the 

simulated Sentinel-2 data, all these indices performed on similar way to the indices 

calculated on APEX bands. See table (Table 6 and Table 9, Section 4).  
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When the index values, calculated by continuous spectra, were related to those 

calculated by Sentinel- 2, the correlation was almost perfect (r >0.99). This result was 

also confirmed by (Herrmann, Pimstein et al. 2011). It reassures the high similarity of R2 

values for the tested indices for the two formations of data and that there is no 

advantage for the continuous over the superspectral data. The correlation with indices 

calculated on Landsat were also with very high correlation coefficient, for example NDVI 

(r >0.98), but this has no practical merit since NDVI was not a good predictor of 

chlorophyll and nitrogen. The absence of red-edge indices on board of Landsat TM makes 

the sensor with very limited value for nitrogen and chlorophyll retrieval.  However CI 

green index can be calculated based on NIR and Green Landsat TM bands and to be used 

for chlorophyll prediction with the impressive result with R2 = 0.9, significant at p <0.001 

(Table 11, Section 4.3). Apparently the exact position of the bands and the band width is 

not critical in estimating the chlorophyll content or nitrogen content. 
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6. Conclusions and recommendations 

 

Results from this study indicate that the hyperspectral vegetation indices are a promising 

tool to derive biochemical characteristics from arable crops, such as chlorophyll and 

nitrogen. The best performing vegetation indices regarding all investigated crops in this 

study were REP, MTCI, CI red edge and also NDRE. In the formulation of those indices 

mainly bands from the red-edge region are used. This proves again the relevance of this 

spectral region for agricultural applications in accordance with the literature review. The 

index with highest correlation with nitrogen for grassland was REP (R2 =0.612 linear and 

R2 =0.713 exponential), for potato MTCI (R2 = 0.655 linear and R2 =0.746 exponential), 

for maize none of the indices showed statistically significant results. The best fit for 

chlorophyll model was achieved by MTCI (R2 =0.905 linear and R2 =0.927 exponential). 

The results were crop specific and main reason could be the influence by the canopy 

architecture as shown in previous studies using PROSAIL modelling.  

Compared to multispectral sensors like Landsat TM the availability of narrow and 

contiguous bands is fundamental for retrieving nitrogen content. There is vast literature 

available, most of which has focussed on the use of field spectrometers and few studies 

have used airborne hyperspectral sensors, whereas space-borne instruments still suffer 

from problems for this type of applications: atmospheric correction, spatial resolution and 

signal to noise ratio. The upcoming Sentinel- 2 system has 12 bands, two of which are 

centred at the red-edge region (705 nm and 740 nm). They have good potential of 

retrieving canopy nitrogen and chlorophyll with high spatial resolution (20 m) and short 

revisit time. This study confirmed in accordance with previous studies the strength of the 

relation between vegetation indices based on Sentinel-2 band setting with chlorophyll 

and nitrogen. 

Statistical regression methods, based on the use of vegetation indices, have been the 

most widely exploited approaches for retrieving nitrogen content from leaf and canopy 

spectra. However several studies shown that the performance of vegetation indices could 

be a function of site and vegetation characteristics and none of the indices appears to be 

robust enough the sites. Empirical models remain therefore applicable mainly at local and 

regional scale. The high correlation observed between chlorophyll and nitrogen is the 

basis for using spectra for nitrogen assessment and the relation between spectral 

changes and physiological processes should be further investigated. 

In summary there are also some other priorities to be addressed by further research. 

There is a need for further understanding of the physiological processes involved in the 

relation between plant nitrogen content and canopy spectra by exploiting simulations 

from radiative transfer modelling. Also more knowledge is needed to evaluate the 

influence of vegetation indices of canopy architecture, other nutrients and other crop 

growing conditions, such as moisture, soils, irrigation. In this study one nitrogen index 

utilizing wavelengths in SWIR was tested (NDNI), which resulted in insignificant results, 

however the potential of SWIR for nitrogen motoring should be further explored. Nitrogen 

content prediction models should be further investigated for maize, experimental design 

with fertilization levels could considerably improve the prediction for this crop. 
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Appendix 1: Linear Model Summary 

 

1.1 Nitrogen Linear Model Summary APEX 

 

  

Index name R2 AdjR2 RMSE RMSEP NRMSE (%) F - statistic DF p-value:

REP 0.619 0.603 42.084 82.293 60.500 38.982 (1, 24) 0.000001878

MTCI 0.655 0.641 40.021 81.514 57.600 45.640 (1, 24) 0.000000548

MCARI.OSAVI 0.276 0.246 58.002 106.027 83.400 9.156 (1, 24) 0.005835000

MCARI.OSAVI.RE 0.553 0.535 45.569 77.961 65.500 29.717 (1, 24) 0.000013320

TCARI.OSAVI 0.549 0.530 45.770 88.862 65.800 29.245 (1, 24) 0.000014850

TCARI.OSAVI.RE 0.653 0.638 40.164 77.498 57.800 45.147 (1, 24) 0.000000598

CI.red.edge 0.653 0.639 40.153 78.096 57.800 45.186 (1, 24) 0.000000721

CI.green 0.638 0.623 41.001 77.117 59.000 42.351 (1, 24) 0.000001189

NDNI 0.114 0.077 64.157 105.987 92.300 3.099 (1, 24) 0.091080000

SIPI 0.137 0.101 63.329 106.877 91.100 3.812 (1, 24) 0.062650000

NDRE 0.626 0.610 41.688 80.558 60.000 40.184 (1, 24) 0.000001489

NDRE1 0.559 0.541 45.273 83.476 65.100 30.422 (1, 24) 0.000011337

NDRE2 0.577 0.560 44.316 82.640 63.700 32.798 (1, 24) 0.000006693

NDVI 0.261 0.230 58.617 94.562 84.300 8.463 (1, 24) 0.007693000

CCCI 0.619 0.603 42.102 82.723 60.600 38.928 (1, 24) 0.000001898

WDRVI 0.273 0.242 58.140 93.003 83.600 8.998 (1, 24) 0.006210000

Index name R2 AdjR2 RMSE RMSEP(LOOCV) NRMSE (%) F - statistic DF p-value:

REP 0.612 0.582 13.999 17.437 60.200 20.529 (1,13) 0.000564500

MTCI 0.599 0.568 14.234 17.322 61.200 19.431 (1,13) 0.000707100

MCARI.OSAVI 0.003 -0.074 22.453 25.302 96.500 0.033 (1,13) 0.858300000

MCARI.OSAVI.RE 0.607 0.577 14.092 16.616 60.600 20.088 (1,13) 0.000617300

TCARI.OSAVI 0.235 0.176 19.662 22.226 84.500 3.996 (1,13) 0.066960000

TCARI.OSAVI.RE 0.417 0.372 17.171 19.753 73.800 9.286 (1,13) 0.009349000

CI.red.edge 0.502 0.464 15.866 19.035 68.200 13.103 (1,13) 0.003112000

CI.green 0.348 0.298 18.147 20.682 78.000 6.952 (1,13) 0.020530000

NDNI 0.008 -0.068 22.392 26.003 96.200 0.105 (1,13) 0.751600000

SIPI 0.245 0.187 19.536 21.235 83.900 4.216 (1,13) 0.060720000

NDRE 0.523 0.486 15.525 19.343 66.700 14.260 (1,13) 0.002309000

NDRE1 0.364 0.315 17.931 22.124 77.100 7.435 (1,13) 0.017288490

NDRE2 0.422 0.378 17.087 21.620 73.400 9.505 (1,13) 0.008728697

NDVI 0.206 0.145 20.027 22.543 86.100 3.382 (1,13) 0.088880000

CCCI 0.604 0.574 14.147 17.483 60.800 19.830 (1,13) 0.000650900

WDRVI 0.206 0.145 20.028 22.208 86.100 3.380 (1,13) 0.088950000

Index name R2 AdjR2 RMSE RMSEP(LOOCV) NRMSE (%) F - statistic DF p-value:

REP 0.067 -0.005 13.043 15.134 93.300 0.934 (1,13) 0.351300000

MTCI 0.111 0.043 12.731 14.684 91.100 1.628 (1,13) 0.224300000

MCARI.OSAVI 0.002 -0.075 13.489 15.615 96.500 0.028 (1,13) 0.868600000

MCARI.OSAVI.RE 0.178 0.115 12.242 13.745 87.600 2.818 (1,13) 0.117100000

TCARI.OSAVI 0.059 -0.014 13.101 15.184 93.700 0.812 (1,13) 0.383800000

TCARI.OSAVI.RE 0.121 0.054 12.659 14.391 90.600 1.793 (1,13) 0.203500000

CI.red.edge 0.117 0.049 12.687 14.502 90.800 1.728 (1,13) 0.211400000

CI.green 0.101 0.032 12.806 14.591 91.600 1.456 (1,13) 0.249100000

NDNI 0.144 0.078 12.496 14.132 89.400 2.182 (1,13) 0.163500000

SIPI 0.171 0.108 12.293 13.927 87.900 2.687 (1,13) 0.125100000

NDRE 0.102 0.033 12.795 14.669 91.500 1.481 (1,13) 0.245200000

NDRE1 0.136 0.070 12.549 14.166 89.800 2.053 (1,13) 0.175493800

NDRE2 0.120 0.052 12.669 14.389 90.600 1.771 (1,13) 0.206090800

NDVI 0.113 0.045 12.718 14.291 91.000 1.657 (1,13) 0.220400000

CCCI 0.092 0.022 12.866 14.792 92.000 1.322 (1,13) 0.270900000

WDRVI 0.110 0.042 12.738 14.324 91.100 1.610 (1,13) 0.226700000

Corn

Potato

Grass
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 1.2 Nitrogen Linear Model Summary Sentinel-2 

 

 

  

Index name R2 AdjR2 RMSE RMSEP NRMSE (%) F - statistic DF p-value:

REP 0.621 0.606 41.953 82.179 60.300 39.375 (1, 24) 0.000001740

MTCI 0.654 0.639 40.124 83.612 57.700 45.283 (1, 24) 0.000000584

MCARI.OSAVI 0.140 0.104 63.215 114.392 90.900 3.913 (1, 24) 0.059505610

MCARI.OSAVI.RE 0.505 0.484 47.961 80.130 69.000 24.493 (1, 24) 0.000047307

TCARI.OSAVI 0.437 0.414 51.142 87.015 73.600 18.647 (1, 24) 0.000235143

TCARI.OSAVI.RE 0.651 0.636 40.303 79.074 58.000 44.671 (1, 24) 0.000000651

CI.red.edge 0.647 0.632 40.514 78.482 58.300 43.957 (1, 24) 0.000000740

CI.green 0.632 0.616 41.373 77.082 59.500 41.163 (1, 24) 0.000001237

SIPI 0.147 0.112 62.949 105.101 90.500 4.149 (1, 24) 0.052833860

NDRE 0.645 0.630 40.632 83.277 58.400 43.561 (1, 24) 0.000000794

NDRE1 0.574 0.557 44.483 82.547 64.000 32.372 (1, 24) 0.000007343

NDRE2 0.590 0.573 43.666 77.978 62.800 34.501 (1, 24) 0.000004652

NDVI 0.277 0.247 57.958 93.488 83.400 9.206 (1, 24) 0.005722528

CCCI 0.633 0.618 41.304 79.674 59.400 41.381 (1, 24) 0.000001187

WDRVI 0.291 0.261 57.420 91.867 82.600 9.831 (1, 24) 0.004487910

Index name R2 AdjR2 RMSE RMSEP(LOOCV) NRMSE (%) F - statistic DF p-value:

REP 0.606 0.576 14.103 17.844 60.600 20.034 (1, 13) 0.000624150

MTCI 0.525 0.489 15.493 18.788 66.600 14.374 (1, 13) 0.002243950

MCARI.OSAVI 0.000 -0.077 22.481 25.447 96.600 0.000 (1, 13) 0.983209000

MCARI.OSAVI.RE 0.597 0.566 14.267 16.990 61.300 19.282 (1, 13) 0.000729490

TCARI.OSAVI 0.101 0.032 21.313 23.713 91.600 1.465 (1, 13) 0.247755900

TCARI.OSAVI.RE 0.331 0.279 18.393 20.925 79.000 6.421 (1, 13) 0.024933430

CI.red.edge 0.487 0.448 16.097 19.088 69.200 12.359 (1, 13) 0.003798874

CI.green 0.355 0.305 18.060 20.589 77.600 7.145 (1, 13) 0.019155450

SIPI 0.198 0.136 20.133 24.571 86.500 3.210 (1, 13) 0.096468290

NDRE 0.650 0.623 13.305 15.955 57.200 24.116 (1, 13) 0.000284555

NDRE1 0.377 0.329 17.747 22.193 76.300 7.861 (1, 13) 0.014923410

NDRE2 0.439 0.395 16.844 21.559 72.400 10.159 (1, 13) 0.007139028

NDVI 0.208 0.147 20.012 22.582 86.000 3.406 (1, 13) 0.087837020

CCCI 0.712 0.690 12.066 14.252 51.800 32.134 (1, 13) 0.000076850

WDRVI 0.208 0.147 20.007 22.215 86.000 3.416 (1, 13) 0.087450060

Index name R2 AdjR2 RMSE RMSEP(LOOCV) NRMSE (%) F - statistic DF p-value:

REP 0.081 0.010 12.945 14.974 92.600 1.146 (1, 13) 0.303805700

MTCI 0.107 0.038 12.764 14.617 91.300 1.551 (1, 13) 0.234932800

MCARI.OSAVI 0.003 -0.074 13.487 15.696 96.500 0.033 (1, 13) 0.857603600

MCARI.OSAVI.RE 0.186 0.124 12.181 13.613 87.100 2.978 (1, 13) 0.108050800

TCARI.OSAVI 0.073 0.002 12.998 14.878 93.000 1.031 (1, 13) 0.328426900

TCARI.OSAVI.RE 0.119 0.051 12.678 14.350 90.700 1.749 (1, 13) 0.208775100

CI.red.edge 0.110 0.042 12.738 14.564 91.100 1.612 (1, 13) 0.226536300

CI.green 0.094 0.025 12.852 14.614 91.900 1.354 (1, 13) 0.265521700

SIPI 0.180 0.117 12.227 13.820 87.500 2.857 (1, 13) 0.114800300

NDRE 0.081 0.010 12.949 14.982 92.600 1.138 (1, 13) 0.305391700

NDRE1 0.133 0.067 12.571 14.203 89.900 2.001 (1, 13) 0.180714900

NDRE2 0.120 0.052 12.667 14.414 90.600 1.774 (1, 13) 0.205774000

NDVI 0.137 0.071 12.545 14.049 89.700 2.065 (1, 13) 0.174362400

CCCI 0.068 -0.003 13.035 15.128 93.200 0.954 (1, 13) 0.346617900

WDRVI 0.134 0.067 12.567 14.088 89.900 2.010 (1, 13) 0.179738200

Potato

Grass

Corn
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1.3 Nitrogen Linear Model Summary Landsat TM 

 

 

 

  

Index name R2 AdjR2 RMSE RMSEP NRMSE (%) F - statistic DF p-value:

CI.green 0.609 0.593 42.621 76.527 61.300 37.403 (1, 24) 0.000002565

SIPI 0.199 0.165 61.027 101.686 87.800 5.950 (1, 24) 0.022480080

NDVI 0.326 0.298 55.978 90.667 80.500 11.597 (1, 24) 0.002326145

WDRVI 0.344 0.316 55.237 88.879 79.500 12.558 (1, 24) 0.001653534

Index name R2 AdjR2 RMSE RMSEP(LOOCV) NRMSE (%) F - statistic DF p-value:

CI.green 0.290 0.235 18.944 21.336 81.400 5.308 (1,13) 0.038374230

SIPI 0.276 0.221 19.125 21.829 82.200 4.964 (1,13) 0.044168370

NDVI 0.206 0.144 20.038 22.483 86.100 3.363 (1,13) 0.089645720

WDRVI* 0.205 0.144 20.041 22.191 86.100 3.359 (1,13) 0.089816000

Index name R2 AdjR2 RMSE RMSEP(LOOCV) NRMSE (%) F - statistic DF p-value:

CI.green 0.110 0.041 12.743 14.933 91.200 1.600 (1,13) 0.228097800

SIPI 0.275 0.219 11.497 14.176 82.300 4.934 (1,13) 0.044715560

NDVI 0.144 0.078 12.492 13.678 89.400 2.191 (1,13) 0.162629200

WDRVI 0.141 0.075 12.515 13.912 89.500 2.136 (1,13) 0.167638000

Potato

Grass

Corn
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1.4 Chlorophyll Linear Model Summary APEX 

 

 

 

1.5 Chlorophyll Linear Model Summary Sentinel-2 

 

 

 

1.6 Chlorophyll Linear Model Summary Landsat TM 

 

 

  

Index name R2 AdjR2 RMSE RMSEP(LOOCV) NRMSE (%) F - statistic DF p-value:

REP 0.872 0.865 0.034 0.037 34.900 129.147 (1, 19) 0.000000001

MTCI 0.905 0.900 0.029 0.031 30.100 180.853 (1, 19) 0.000000000

MCARI.OSAVI 0.640 0.621 0.057 0.063 58.500 33.820 (1, 19) 0.000013312

MCARI.OSAVI.RE 0.790 0.779 0.043 0.047 44.700 71.624 (1, 19) 0.000000072

TCARI.OSAVI 0.900 0.895 0.030 0.032 30.800 171.549 (1, 19) 0.000000000

TCARI.OSAVI.RE 0.893 0.887 0.031 0.033 31.900 158.468 (1, 19) 0.000000000

CI.red.edge 0.881 0.875 0.033 0.035 33.600 140.918 (1, 19) 0.000000000

CI.green 0.892 0.886 0.031 0.033 32.100 156.274 (1, 19) 0.000000000

NDNI 0.261 0.222 0.082 0.088 83.900 6.703 (1, 19) 0.018005220

SIPI 0.362 0.328 0.076 0.081 78.000 10.772 (1, 19) 0.003920312

NDRE 0.864 0.856 0.035 0.038 36.000 120.296 (1, 19) 0.000000001

NDRE1 0.817 0.808 0.041 0.046 41.700 85.105 (1, 19) 0.000000019

NDRE2 0.826 0.817 0.040 0.044 40.700 90.095 (1, 19) 0.000000012

NDVI 0.602 0.581 0.060 0.068 61.500 28.765 (1, 19) 0.000035547

CCCI 0.883 0.877 0.032 0.035 33.400 143.653 (1, 19) 0.000000000

WDRVI 0.623 0.603 0.058 0.065 59.900 31.439 (1, 19) 0.000020875

Potato

Index name R2 AdjR2 RMSE RMSEP(LOOCV) NRMSE (%) F - statistic DF p-value:

REP 0.872 0.865 0.034 0.037 35.000 128.954 (1, 19) 0.000000001

MTCI 0.909 0.904 0.029 0.031 29.500 189.095 (1, 19) 0.000000000

MCARI.OSAVI 0.248 0.208 0.082 0.092 84.600 6.265 (1, 19) 0.021600220

MCARI.OSAVI.RE 0.742 0.729 0.048 0.052 49.600 54.681 (1, 19) 0.000000528

TCARI.OSAVI 0.760 0.748 0.046 0.051 47.800 60.213 (1, 19) 0.000000263

TCARI.OSAVI.RE 0.892 0.886 0.031 0.034 32.100 156.262 (1, 19) 0.000000000

CI.red.edge 0.885 0.879 0.032 0.035 33.100 146.650 (1, 19) 0.000000000

CI.green 0.888 0.882 0.032 0.034 32.700 150.388 (1, 19) 0.000000000

SIPI 0.388 0.356 0.074 0.080 76.300 12.045 (1, 19) 0.002560711

NDRE 0.874 0.867 0.034 1.909 34.700 131.593 (1, 19) 0.000000001

NDRE1 0.824 0.815 0.040 0.103 40.900 89.180 (1, 19) 0.000000013

NDRE2 0.833 0.824 0.039 0.683 39.900 94.434 (1, 19) 0.000000008

NDVI 0.614 0.594 0.059 0.067 60.600 30.282 (1, 19) 0.000026182

CCCI 0.878 0.871 0.033 0.036 34.100 136.606 (1, 19) 0.000000000

WDRVI 0.638 0.619 0.057 0.064 58.700 33.465 (1, 19) 0.000014215

Potato

Index name R2 AdjR2 RMSE RMSEP(LOOCV) NRMSE (%) F - statistic DF p-value:

CI.green 0.874 0.867 0.034 0.036 34.700 131.611 (1, 19) 0.000000001

SIPI 0.460 0.432 0.070 0.089 71.700 16.190 (1, 19) 0.000725940

NDVI 0.650 0.631 0.056 0.075 57.800 35.242 (1, 19) 0.000010277

WDRVI 0.674 0.657 0.054 0.071 55.700 39.303 (1, 19) 0.000005094

Potato
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Appendix 2: Exponential Model Summary 
 

2.1 Nitrogen Exponential Model Summary APEX 

 

  

Index name R2 AdjR2 RMSE RMSEP NRMSE (%) F - statistic DF p-value:

REP 0.724 0.713 41.434 82.871 59.600 62.983 (1, 24) 0.000000036

MTCI 0.746 0.736 39.789 83.210 57.200 70.612 (1, 24) 0.000000013

MCARI.OSAVI 0.310 0.281 60.653 112.639 87.200 10.780 (1, 24) 0.003137207

MCARI.OSAVI.RE 0.627 0.611 44.100 78.571 63.400 40.274 (1, 24) 0.000001464

TCARI.OSAVI 0.666 0.652 45.200 91.728 65.000 47.922 (1, 24) 0.000000370

TCARI.OSAVI.RE 0.733 0.722 39.096 77.576 56.200 65.997 (1, 24) 0.000000024

CI.red.edge 0.735 0.724 39.688 78.408 57.100 64.952 (1, 24) 0.000000028

CI.green 0.726 0.715 40.763 76.605 58.600 62.493 (1, 24) 0.000000039

NDNI 0.155 0.120 65.834 109.378 94.700 4.401 (1, 24) 0.046626400

SIPI 0.127 0.091 64.354 111.503 92.600 3.506 (1, 24) 0.073362050

NDRE 0.731 0.719 40.156 80.309 57.800 65.113 (1, 24) 0.000000027

NDRE1 0.657 0.643 42.056 85.200 60.500 45.980 (1, 24) 0.000000516

NDRE2 0.678 0.665 41.258 83.766 59.300 50.604 (1, 24) 0.000000236

NDVI 0.307 0.278 58.595 98.505 84.300 10.607 (1, 24) 0.003345319

CCCI 0.728 0.717 41.162 83.519 59.200 64.290 (1, 24) 0.000000030

WDRVI 0.318 0.289 58.136 96.810 83.600 11.181 (1, 24) 0.002705650

Index name R2 AdjR2 RMSE RMSEP(LOOCV) NRMSE (%) F - statistic DF p-value:

REP 0.713 0.691 13.011 14.608 55.900 32.308 (1, 13) 0.000074911

MTCI 0.712 0.690 13.329 14.904 57.300 32.126 (1, 13) 0.000076947

MCARI.OSAVI 0.002 -0.075 23.007 25.648 98.900 0.024 (1, 13) 0.878750800

MCARI.OSAVI.RE 0.737 0.717 13.046 14.586 56.100 36.387 (1, 13) 0.000042191

TCARI.OSAVI 0.339 0.289 19.979 21.906 85.900 6.679 (1, 13) 0.022664480

TCARI.OSAVI.RE 0.547 0.512 17.179 18.905 73.800 15.671 (1, 13) 0.001634517

CI.red.edge 0.627 0.598 15.332 17.046 65.900 21.868 (1, 13) 0.000433407

CI.green 0.472 0.432 18.423 20.356 79.200 11.634 (1, 13) 0.004644953

NDNI 0.033 -0.042 22.976 26.300 98.700 0.438 (1, 13) 0.519693200

SIPI 0.349 0.299 19.873 21.268 85.400 6.966 (1, 13) 0.020420400

NDRE 0.647 0.620 14.745 16.446 63.400 23.812 (1, 13) 0.000300728

NDRE1 0.493 0.454 17.733 19.501 76.200 12.656 (1, 13) 0.003505138

NDRE2 0.551 0.517 16.632 18.409 71.500 15.984 (1, 13) 0.001517622

NDVI 0.316 0.264 20.403 22.116 87.700 6.018 (1, 13) 0.029036080

CCCI 0.718 0.696 13.127 14.697 56.400 33.056 (1, 13) 0.000067162

WDRVI 0.318 0.266 20.506 22.228 88.100 6.073 (1, 13) 0.028436320

Index name R2 AdjR2 RMSE RMSEP(LOOCV) NRMSE (%) F - statistic DF p-value:

REP 0.066 -0.005 13.073 15.146 93.500 0.925 (1, 13) 0.353621000

MTCI 0.112 0.043 12.776 14.743 91.400 1.634 (1, 13) 0.223532500

MCARI.OSAVI 0.001 -0.076 13.519 15.650 96.700 0.007 (1, 13) 0.933636500

MCARI.OSAVI.RE 0.189 0.127 12.279 13.749 87.800 3.032 (1, 13) 0.105256000

TCARI.OSAVI 0.057 -0.016 13.141 15.230 94.000 0.786 (1, 13) 0.391550300

TCARI.OSAVI.RE 0.125 0.057 12.704 14.426 90.900 1.852 (1, 13) 0.196722100

CI.red.edge 0.121 0.053 12.731 14.544 91.100 1.782 (1, 13) 0.204868800

CI.green 0.107 0.039 12.846 14.610 91.900 1.565 (1, 13) 0.232915400

NDNI 0.161 0.096 12.549 14.151 89.800 2.495 (1, 13) 0.138242600

SIPI 0.186 0.124 12.370 14.035 88.500 2.976 (1, 13) 0.108187000

NDRE 0.101 0.032 12.828 14.699 91.800 1.461 (1, 13) 0.248233600

NDRE1 0.139 0.073 12.600 14.213 90.100 2.107 (1, 13) 0.170336300

NDRE2 0.122 0.055 12.713 14.426 90.900 1.809 (1, 13) 0.201663500

NDVI 0.121 0.053 12.758 14.298 91.300 1.782 (1, 13) 0.204837000

CCCI 0.089 0.019 12.898 14.829 92.300 1.267 (1, 13) 0.280756300

WDRVI 0.118 0.050 12.779 14.330 91.400 1.734 (1, 13) 0.210600300

Potato

Grass

Corn
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2.2 Nitrogen Exponential Model Summary Sentinel-2 

 

  

Index name R2 AdjR2 RMSE RMSEP NRMSE (%) F - statistic DF p-value:

REP 0.729 0.717 40.459 82.809 58.200 64.455 (1, 24) 0.000000030

MTCI 0.748 0.737 38.752 85.988 55.700 71.188 (1, 24) 0.000000012

MCARI.OSAVI 0.150 0.114 65.548 120.205 94.300 4.231 (1, 24) 0.050713340

MCARI.OSAVI.RE 0.578 0.560 46.744 81.391 67.200 32.833 (1, 24) 0.000006642

TCARI.OSAVI 0.547 0.528 49.368 88.250 71.000 28.980 (1, 24) 0.000015796

TCARI.OSAVI.RE 0.734 0.723 39.076 79.484 56.200 66.288 (1, 24) 0.000000023

CI.red.edge 0.729 0.718 39.582 79.030 56.900 64.657 (1, 24) 0.000000029

CI.green 0.719 0.707 40.906 76.591 58.800 61.424 (1, 24) 0.000000045

SIPI 0.140 0.104 63.974 109.693 92.000 3.901 (1, 24) 0.059866580

NDRE 0.671 0.657 41.516 84.770 59.700 48.971 (1, 24) 0.000000310

NDRE1 0.690 0.677 40.869 83.519 58.800 53.518 (1, 24) 0.000000148

NDRE2 0.738 0.727 41.583 77.511 59.800 67.567 (1, 24) 0.000000019

NDVI 0.330 0.302 57.781 97.411 83.100 11.813 (1, 24) 0.002152031

CCCI 0.727 0.716 42.661 80.044 61.400 63.888 (1, 24) 0.000000032

WDRVI 0.342 0.315 57.257 95.629 82.400 12.494 (1, 24) 0.001690687

Index name R2 AdjR2 RMSE RMSEP(LOOCV) NRMSE (%) F - statistic DF p-value:

REP 0.717 0.696 12.976 14.583 55.800 32.978 (1, 13) 0.000067923

MTCI 0.642 0.615 14.871 16.472 63.900 23.339 (1, 13) 0.000328091

MCARI.OSAVI 0.013 -0.063 23.051 25.653 99.100 0.165 (1, 13) 0.690930600

MCARI.OSAVI.RE 0.726 0.705 13.134 14.726 56.400 34.437 (1, 13) 0.000055160

TCARI.OSAVI 0.187 0.125 22.032 23.979 94.700 2.999 (1, 13) 0.106980800

TCARI.OSAVI.RE 0.451 0.409 18.622 20.458 80.000 10.672 (1, 13) 0.006127523

CI.red.edge 0.612 0.582 15.673 17.365 67.400 20.489 (1, 13) 0.000569030

CI.green 0.478 0.438 18.354 20.351 78.900 11.890 (1, 13) 0.004323310

SIPI 0.291 0.237 20.572 23.926 88.400 5.341 (1, 13) 0.037869170

NDRE 0.501 0.463 17.464 13.847 75.000 13.066 (1, 13) 0.003142294

NDRE1 0.564 0.530 16.278 19.274 69.900 16.787 (1, 13) 0.001259893

NDRE2 0.755 0.736 12.333 18.082 53.000 40.050 (1, 13) 0.000026232

NDVI 0.316 0.264 20.372 22.082 87.500 6.013 (1, 13) 0.029095790

CCCI 0.801 0.786 11.366 12.894 48.800 52.369 (1, 13) 0.000006585

WDRVI 0.319 0.266 20.465 22.179 87.900 6.083 (1, 13) 0.028326610

Index name R2 AdjR2 RMSE RMSEP(LOOCV) NRMSE (%) F - statistic DF p-value:

REP 0.081 0.010 12.976 14.985 92.800 1.148 (1, 13) 0.303449100

MTCI 0.107 0.038 12.804 14.654 91.600 1.550 (1, 13) 0.235146000

MCARI.OSAVI 0.006 -0.071 13.518 15.720 96.700 0.076 (1, 13) 0.786483200

MCARI.OSAVI.RE 0.203 0.141 12.224 13.606 87.500 3.303 (1, 13) 0.092277750

TCARI.OSAVI 0.075 0.003 13.037 14.900 93.300 1.047 (1, 13) 0.324769000

TCARI.OSAVI.RE 0.123 0.056 12.721 14.375 91.000 1.831 (1, 13) 0.199080400

CI.red.edge 0.113 0.045 12.776 14.589 91.400 1.661 (1, 13) 0.219986400

CI.green 0.101 0.032 12.888 14.620 92.200 1.459 (1, 13) 0.248639700

SIPI 0.196 0.134 12.310 18.911 88.100 3.174 (1, 13) 0.098171470

NDRE 0.138 0.071 12.616 14.987 90.300 2.076 (1, 13) 0.173277400

NDRE1 0.123 0.056 12.708 14.236 90.900 1.828 (1, 13) 0.199463900

NDRE2 0.081 0.011 12.979 14.442 92.800 1.150 (1, 13) 0.303028000

NDVI 0.145 0.079 12.588 14.066 90.100 2.207 (1, 13) 0.161237500

CCCI 0.068 -0.004 13.062 15.128 93.400 0.949 (1, 13) 0.347859100

WDRVI 0.142 0.076 12.611 14.103 90.200 2.152 (1, 13) 0.166168200

Potato

Grass

Corn
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 2.3 Nitrogen Exponential Model Summary Landsat TM 

 

 

  

Index name R2 AdjR2 RMSE RMSEP NRMSE (%) F - statistic DF p-value:

CI.green 0.693 0.680 41.738 75.991 60.000 54.178 (1, 24) 0.000000133

SIPI 0.203 0.170 61.603 106.356 88.600 6.122 (1, 24) 0.020813480

NDVI 0.388 0.362 55.288 94.337 79.500 15.184 (1, 24) 0.000683782

WDRVI 0.404 0.379 54.567 92.294 78.500 16.266 (1, 24) 0.000484622

Index name R2 AdjR2 RMSE RMSEP(LOOCV) NRMSE (%) F - statistic DF p-value:

CI.green 0.407 0.361 19.461 21.588 83.600 8.913 (1, 13) 0.010529100

SIPI 0.386 0.339 19.210 20.720 82.600 8.184 (1, 13) 0.013377450

NDVI 0.313 0.260 20.418 22.123 87.700 5.930 (1, 13) 0.030041270

WDRVI 0.315 0.262 20.519 22.240 88.200 5.974 (1, 13) 0.029534770

Index name R2 AdjR2 RMSE RMSEP(LOOCV) NRMSE (%) F - statistic DF p-value:

CI.green 0.117 0.049 12.784 14.563 91.500 1.719 (1, 13) 0.2125005

SIPI 0.292 0.238 11.529 13.862 82.500 5.368 (1, 13) 0.03745984

NDVI 0.152 0.087 12.537 14.561 89.700 2.338 (1, 13) 0.1502158

WDRVI 0.149 0.084 12.560 14.387 89.900 2.282 (1, 13) 0.1548209

Potato

Grass

Corn
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2.4 Chlorophyll Exponential Model Summary APEX 

 

 

 

2.5 Chlorophyll Exponential Model Summary Sentinel-2 

 

 

 

2.6 Chlorophyll Exponential Model Summary Landsat TM 

 

 

 

Index name R2 AdjR2 RMSE RMSEP(LOOCV) NRMSE (%) F - statistic DF p-value:

REP 0.906 0.901 0.032 0.034 32.600 182.449 (1, 19) 0.000000000

MTCI 0.927 0.924 0.027 0.029 27.900 242.890 (1, 19) 0.000000000

MCARI.OSAVI 0.596 0.575 0.055 0.061 56.700 28.063 (1, 19) 0.000041086

MCARI.OSAVI.RE 0.839 0.831 0.042 0.045 43.100 99.334 (1, 19) 0.000000006

TCARI.OSAVI 0.929 0.926 0.027 0.029 27.600 249.875 (1, 19) 0.000000000

TCARI.OSAVI.RE 0.923 0.919 0.028 0.030 29.100 227.198 (1, 19) 0.000000000

CI.red.edge 0.913 0.909 0.030 0.032 30.900 200.224 (1, 19) 0.000000000

CI.green 0.920 0.916 0.028 0.030 29.100 219.822 (1, 19) 0.000000000

NDNI 0.323 0.287 0.083 0.089 85.200 9.065 (1, 19) 0.007187041

SIPI 0.413 0.382 0.077 0.082 79.100 13.387 (1, 19) 0.001669156

NDRE 0.902 0.897 0.033 0.035 33.500 175.196 (1, 19) 0.000000000

NDRE1 0.868 0.861 0.037 0.040 37.900 125.312 (1, 19) 0.000000001

NDRE2 0.875 0.868 0.036 0.039 37.200 132.649 (1, 19) 0.000000001

NDVI 0.668 0.650 0.058 0.075 59.700 38.198 (1, 19) 0.000006134

CCCI 0.914 0.909 0.030 0.595 31.200 201.453 (1, 19) 0.000000000

WDRVI 0.688 0.672 0.057 0.458 58.300 41.891 (1, 19) 0.000003342

Potato

Index name R2 AdjR2 RMSE RMSEP(LOOCV) NRMSE (%) F - statistic DF p-value:

REP 0,907 0,902 0,032 0,034 32,400 184,218 (1, 19) 0,000000000

MTCI 0,934 0,930 0,026 0,028 27,000 267,764 (1, 19) 0,000000000

MCARI.OSAVI 0,199 0,157 0,083 0,094 85,100 4,721 (1, 19) 0,042656850

MCARI.OSAVI.RE 0,797 0,787 0,047 0,051 48,500 74,731 (1, 19) 0,000000052

TCARI.OSAVI 0,814 0,805 0,044 0,047 45,200 83,391 (1, 19) 0,000000022

TCARI.OSAVI.RE 0,921 0,917 0,029 0,031 29,400 220,841 (1, 19) 0,000000000

CI.red.edge 0,917 0,912 0,029 0,032 30,300 208,891 (1, 19) 0,000000000

CI.green 0,916 0,912 0,029 0,031 29,900 208,366 (1, 19) 0,000000000

SIPI 0,439 0,410 0,075 0,081 77,600 14,880 (1, 19) 0,001061020

NDRE 0,899 0,894 0,032 0,034 32,900 169,747 (1, 19) 0,000000000

NDRE1 0,873 0,867 0,036 0,039 37,500 130,858 (1, 19) 0,000000001

NDRE2 0,879 0,873 0,036 0,039 36,700 138,287 (1, 19) 0,000000000

NDVI 0,680 0,663 0,057 0,074 58,600 40,416 (1, 19) 0,000004240

CCCI 0,896 0,891 0,032 0,034 32,500 164,065 (1, 19) 0,000000000

WDRVI 0,703 0,687 0,055 0,060 56,900 44,878 (1, 19) 0,000002101

Potato

Index name R2 AdjR2 RMSE RMSEP(LOOCV) NRMSE (%) F - statistic DF p-value:

CI.green 0.905 0.900 0.031 0.033 32.000 181.105 (1, 19) 0.000000000

SIPI 0.525 0.500 0.070 0.089 72.100 21.033 (1, 19) 0.000201666

NDVI 0.714 0.699 0.054 0.070 55.500 47.429 (1, 19) 0.000001438

WDRVI 0.737 0.723 0.052 0.067 53.600 53.138 (1, 19) 0.000000648

Potato
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Appendix 3: Independent validation correction 
 

3.1 Independent validation result before correction 

 

 

3.2 Independent validation result for potato after correction 

 

  

Potato

Index name
RMSEP linear 

model

RMSEP 

exponential

RMSEP linear 

model

RMSEP 

exponential

RMSEP linear 

model

RMSEP 

exponential

REP 82.293 82.871 82.179 82.809

MTCI 81.514 83.210 83.612 85.988

MCARI/OSAVI 106.027 112.639 114.392 120.205

MCARI/OSAVI RE 77.961 78.571 80.130 81.391

TCARI/OSAVI 88.862 91.728 87.015 88.250

TCARI/OSAVI RE 77.498 77.576 79.074 79.484

CI red edge 78.096 78.408 78.482 79.030

CI green 77.117 76.605 77.082 76.591 76.527 75.991

NDNI 105.987 109.378

SIPI 106.877 111.503 105.101 109.693 101.686 106.356

DCNI 105.391 113.044 107.390 114.537

NDRE 80.558 80.309 83.277 84.770

NDRE1 83.476 85.200 82.547 83.519

NDRE2 82.640 83.766 77.978 77.511

NDVI 94.562 98.505 93.488 97.411 90.667 94.337

CCCI 82.723 83.519 79.674 80.044

WDRVI 93.003 96.810 91.867 95.629 88.879 92.294

APEX Sentinel_2 Landsat TM

Potato

Index name
RMSEP linear 

model

RMSEP 

exponential

RMSEP 

linear 

model

RMSEP 

exponential

RMSEP 

linear 

model

RMSEP 

exponential

REP 44,409 47.99165 43,711 47.27601

MTCI 43,139 48.55494 44,997 50.57939

MCARI/OSAVI 68,763 75.29856 79,713 84.28920

MCARI/OSAVI RE 32,850 35.85171 33,824 36.59070

TCARI/OSAVI 49,804 54.57876 45,795 47.93020

TCARI/OSAVI RE 38,185 42.27279 40,322 44.36829

CI red edge 39,656 44.17593 39,672 44.32670

CI green 38,361 42.09532 38,198 41.94839 37,231 41.11673

NDNI 65,971 66.83930

SIPI 71,837 74.60016 69,636 72.49675 64,592 68.07821

DCNI 67,711 76.13777 71,425 78.90766

NDRE 41,688 44.21893 41,328 44.58928

NDRE1 41,120 44.71873 41,410 44.34732

NDRE2 41,142 44.27583 41,344 45.58874

NDVI 53,165 56.81686 51,631 55.56296 48,128 52.39030

CCCI 44,607 48.39629 43,599 48.64386

WDRVI 51,439 55.19730 49,886 53.93214 46,335 50.68385

APEX Sentinel_2 Landsat TM
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3.3 Summary statistic for the 15 plots of the maize sites 

 

 

 

 

3.4 Summary statistic of nitrogen content in potato sites per field 

 

 

 

 

Maize Minimum Maximum Mean
Standart 

deviation

Coeficient of 

variation (%)

Fresh weight (kg/ha) 29182.22 56435.56 41823.59 8149.79 19.49

Dry weight (kg/ha) 2655.58 5453.32 3661.07 673.31 18.39

N content (kg/ha) 90.82 132.48 109.92 13.68 12.44

Potato per field Minimum Maximum Mean
Standard 

deviation

Coefficient  of 

variation (%)

N content field 11 (kg/ha) 145.12 255.27 195.77 48.02 0.25

N content field 19 (kg/ha) 87.83 258.08 158.66 63.32 0.40

N content field 30 (kg/ha) 220.40 258.32 239.44 15.10 0.06

N content field 28 (kg/ha) 81.66 356.43 196.12 88.48 0.45
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Appendix 4: Scatter plots of nitrogen models 
 

 

 

 

Grassland  Maize Potato  

 

       

 



65 

 

Grassland  Maize Potato  

       

Grassland  Maize Potato  

 

       



66 

 

Grassland  Maize Potato  

       

Grassland  Maize Potato  

 

       



67 

 

Grassland  Maize Potato  

       

Grassland  Maize Potato  

 

       



68 

 

Grassland  Maize Potato  

       

Grassland  Maize Potato  

 

       



69 

 

Grassland  Maize Potato  

       

Grassland  Maize Potato  

 

       



70 

 

Grassland  Maize Potato  

       

Grassland  Maize Potato  

 

       



71 

 

Grassland  Maize Potato  

       

Grassland  Maize Potato  

    

 



72 

 

Grassland  Maize Potato  

       

Grassland  Maize Potato  

       



73 

 

Appendix 5: Scatter plots of chlorophyll models 
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