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The Rider
Every once in a while someone along the road lets us know how far
behind we are. A man shouts: ‘Faster!’ He probably thinks bicycle

racing is about going fast.
—Tim Krabbé





A B S T R A C T

Vegetation exerts friction on water and obstructs flow, limiting the
capacity of river floodplains to discharge water. Predictions of the
discharge capacity of river systems require data on the state and dis-
tribution of river floodplain vegetation. Very high resolution aerial
images and lidar (ahn2) datasets with a national coverage provide
opportunities to produce vegetation maps automatically. As such the
entire area of the river floodplains in the Netherlands may be mapped
with high accuracy and regular updates, capturing the dynamic state
of the vegetation.

In this study, the novel datasets are used to map the vegetation
of 936 ha of the floodplain on the north-side of the river Nederrijn
near Wageningen into ten vegetation structure classes. The method
follows object-based image analysis principles. Objects are defined in
fnea segmentation and subsequently labeled using the ensemble-tree
classifier random forest. The mapping scale is controlled by selecting
segmentation parameters from quantified discrepancies between ref-
erence polygons and segmented objects. Effects on the mapping scale
of different reference polygons and different segmentation data is in-
vestigated.

The results show that it is important to be able to select the right
segmentation parameters to control the mapping scale. A discrepancy
measure with reference polygons is a suitable method to do this objec-
tively. The use of the same reference polygons on different data selects
different segmentation parameters which result in a similar mapping
scale. The application of random forest on the objects resulted in an
estimated classification accuracy of 43% on the basis of an indepen-
dent field validation and 86% on the basis of the built-in out-of-bag
estimate of random forest. Variable importance measures of random for-
est showed that the ahn2 lidar dataset is a valuable addition to the
spectral information contained in the aerial images in the classifica-
tion.
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Once we act, we forfeit the option of waiting until new information
comes along. As a result, no-acting has value. The more uncertain

the outcome, the greater may be the value of procrastination.

— Peter L. Bernstein (Bernstein, 1996)

F O R E W O R D A N D A C K N O W L E D G M E N T S

A couple of weeks ago I was playing scientist in the form of gathering
data in the floodplain along the Rhine nearby Wageningen. I created
a bunch of stratified random sampling points behind my computer to
test the quality of my work. I took my hiking boots and my gps
device and took off, determined to visit all the points and describe
the vegetation present.

The first couple of points went ok. I ordered the points from west
to east to cut travel time. At around point twenty six I ran into trou-
ble. A fence. And a sign: no trespassing, nature area. I stood there for a
while, but in the name of science I decided to climb the fence and con-
tinued in the direction of point twenty seven and twenty six. I quickly
learned, not deep into the nature area, why this field was fenced. The
field contained horses. Three horses. Running around single file like
maniacs. At visual contact they grinned and came running towards
me. At first I did not felt scared and thought that if I expressed this
self-esteem, the horses would back-off soon. Well, they did not back-
off. The horses, more looking like large ponies at close sight, kept
on coming towards me and I started to feel they might be planning
on running me over. Now feeling scared I ran into the safe haven of
spiky bush vegetation.

The spiky bush vegetation was not at all a desirable place to be. It
was spiky. The ponies chose not to follow the subject of their terror in
there and continued running on a different bearing. And I continued
my quest towards twenty seven and twenty six. I can tell you now:
twenty seven was a sandy river-shore and twenty six was a difficult
boundary case between shrubs and grass.

When I returned to the fence to get out of napoleon-complex-pony-
territory, I had to face one more encounter. The same horses were
standing between me and the fence.

They stood still and looked at me, but let me through.

I would like to thank the ponies from refraining to molest me. Al-
though I had to save myself at the incident with the ponies in the
field, this thesis would have been very different without the help of
others.

I am thankful to my supervisors Sander Mücher and Lammert
Kooistra. When I needed it, they supplied me with guidance and
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confirmed that I was on the right track without infringing any major
brain contamination.Brain

contamination:
contaminating the

thoughts in your
brain and spoiling
original ideas, is a
concept I learned

from the artistic duo
Gilbert & George

The cover page is a photograph provided by my room-mate Tesse
Bijlsma1. It contains the old brick factory near wageningen, a distinct
feature of Dutch floodplains. If you watch closely you will find this
brick factory in some of the aerial images in the chapters to follow.

This document is typeset in the open source document prepara-
tion system LATEX. This particular document looks so great because
of André Miede’s ClassicThesis template2 which is designed around
Robert Brinhurst’s The elements of typographic style (Bringhurst, 1992).

A great feature of LATEX and this template are the references. If you
are reading this thesis in digital form: the colored text contains links.
Blue directs you to figures, sections or the acronym list. Green directs
to the bibliography and red to the outside world.

All the graphs are made in the open source statistical environment
R (R Core Team, 2012) and the ggplot2 package (Wickham, 2009). gg-
plot2 is greatly recommended for making nice looking graphs in R.
Before printing, the graphs have been slightly touched in the vector
graphics editor Inkscape3, another great opensource application.

Most of the data used in this study has been provided by the
geodesk at the laboratory of geo-information and remote sensing of
Wageningen University. Rijkswaterstaat has supplied me with their
ecotope map and the pilot vegetation legger.

Before you start reading the content, one more thing. Written sci-
entific products are not generally appreciated by a broad audience.
This thesis is no exception, it contains specific information which can-
not be easily converted to knowledge for the broader audience. Since
you have got this far in reading this particular chapter, you are prob-
ably not overenthusiastic about the scientific content. To prevent you
the broader audience from feeling lost I have split my thesis in three
bite-sized chunks. These parts are introduced by easy to understand
paragraphs containing the principles of the content. If you feel like
you are a representative of the broader audience, please read those
paragraphs, I have written them for you.

1 http://www.tessebijlsma.nl/

2 available at: http://www.ctan.org/tex-archive/macros/latex/contrib/

classicthesis/

3 available at: http://inkscape.org/
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Part I

I N T R O D U C T I O N

Situated between the river and the dikes are the river
floodplains. An area home to valuable land. The land con-
tains soils with the perfect mixture of sand and fine clay
for agriculture. It features stunning sceneries making it a
desirable place to live. A major transport line is always
close by and it gets increasing attention from nature con-
servationists for its ability to connect one nature reserve
with the other. Most of all we expect it to handle increas-
ing amounts of water, preventing it from spilling over the
dikes to areas with increasing economic activity and an
increasing amount of people. This calls for management
based on detailed and up to date information.





1
S I T U AT I O N

Floodplains of the Dutch rivers; the Rhine, the Meuse and their trib-
utaries, serve several potential conflicting functions. Currently the
Rhine tributaries should have the capacity to discharge and store
16 000 m3/s entering the Netherlands from Germany (Silva et al., 2001).
This figure is expected to be increased to 18 000 m3/s due to climate
change in the near future (Makaske et al., 2011). Simultaneously the
present nature value of the floodplains are institutionalized by EU
legislation (European Union, 1992) and national laws (Department of
LNV, 2000). EU birds directive and the more recent habitat directive
serve as the basis for the creation of Natura 2000 areas.

Although the current Dutch government decided to suspend invest-
ment in the National Ecological Network (Rijksoverheid, 2011), many
of the Dutch nature areas and particularly the floodplains are already
part of the National Ecological Network or Natura 2000. Legislation
states that existing species and habitats in these areas should be main-
tained or improved and floodplains have to serve as nature corridors
connecting national and international nature reserves.

1.1 vegetation and discharge capacity

Vegetation structure and its seasonal and non-seasonal succession
dynamics play an important role in the discharge capacity. Hydro-
logical discharge is the amount of water flow, commonly defined as
Q = A · µ̄. With Q the discharge in m3/s, A the cross-sectional area in
m2 and µ̄ the average flow velocity in m/s. The cross sectional area A
of rivers consists of the river bed and in case of high water, the area
between the dikes: the floodplains. The channel bed (Warmink, 2012),
the soil, anthropogenic obstructions and vegetation exert friction on
water flow. Obstructions lower A and friction lowers µ̄, limiting the
discharge capacity of river floodplains.

Vegetated areas make up most of the floodplain area in the Nether-
lands and therefore have a great contribution on the total hydraulic
roughness. This is a dynamic component. When vegetation grows,
its hydraulic roughness increases, lowering the discharge capacity
(Makaske et al., 2011; Järvelä, 2002).

1.2 current mapping practice

To determine the hydraulic roughness for hydrological models and
to serve several spatial planning and ecological studies, Rijkswater-
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4 situation

staat (the Dutch river authority) constructs an ecotope map. The map
contains spatially explicit ecological units based on biotic, abiotic and
anthropogenic aspects (Rijkswaterstaat, 2008). By manually digitizing
the vegetation structure from a dedicated aerial imaging campaign a
Photo Interpretation (PI) map is created.

This construction follows two steps. First the individual objects
such as grass areas, forests and water bodies are digitized on the ba-
sis of previous digitizations. The outlines of previous years are only
changed when the change is greater than a certain threshold.

Second, the digitized plots are taken into the field were they are
assigned labels. This controlled and robust mapping method aims
at very stable-in-time maps. Changes in the maps of different years
reflect actual physical changes and are not the result of the mapping
methodology.

The PI map consists of 18 classes (Appendix A) and is combined
with information about management, flood frequencies, inundation
depth and morphological dynamics to create the ecotope map. Rijks-
waterstaat has made the ecotope map twice, in 1997 and 2005, and is
planning on making one every six years to connect to the EU water
directive (Rijkswaterstaat, 2008).

Uncertainty

Knotters et al. (2008) estimated the 2005 map accuracy of 46 ecotopes,
excluding urban, water or non-inundated areas. They estimated that
the overall map accuracy of the ecotope map of 2005 was low at 47.8%
with a standard error of 3.5%. The estimate was based on a stratified
random sampling of 1041 validation points. The validation dataset
was assumed to be perfect, there was no correction for possible acqui-
sition errors. This causes a slight underestimation of the real accuracy.

Uncertainty in vegetation presence and state propagates to incor-
rect roughness coefficients. Monte Carlo simulations showed that in
the case of the Dutch river system the uncertainty in vegetation maps
leads to uncertainty in expected flood levels in the order of decime-
ters (Straatsma and Huthoff, 2011).

Previous boundary method

The sensitivity of the models to the roughness parameter also means
that changes in the mapping result have great effects on the outcome.
Hydrological models with the vegetation state as input are calibrated
against flood levels. To prevent an unrealistically fluctuating flood
level estimate, changes in the map should reflect physical vegetation
changes. Distortions to such calibrations are soft boundaries between
for instance a natural bush area and a grass field with shrub encroach-



1.3 vegetation management 5

ment. Shifts in the delineation and labeling of these areas between
different mapping years may occur without any physical change.

To accurately calibrate the models and prevent fluctuations in flood
levels, it is important that such areas are consistently delineated and
labeled. In other words, overall reliability is more important than spa-
tial and thematic accuracy.

This is implemented in the ecotope maps by the Previous Boundary
Method (PBM) (in Dutch: “Oude Grenzen Methode”). This method op-
timizes the trade-off between accuracy and reliability by only chang-
ing the outline of a mapping unit if the mapper believes a border has
shifted more than 10 m compared to the boundaries of the previous
map. (Janssen, 2001).

1.3 vegetation management

To prevent a decrease in discharge capacity due to vegetation growth,
vegetation needs to be periodically removed. Periodic removal of veg-
etation is costly and many actors in the floodplains are unwilling
to cover the expenses. Therefore alternative measures such as cyclic
rejuvenation have been developed (Baptist et al., 2004). These mea-
sures aim at lowering the management costs while sustaining the
nature value and discharge function of floodplains by applying ac-
tivities such as biomass production, high standard meat production
and fiber harvesting.

The alternative measures cause additional uncertainty about the
floodplains discharge capacity due to dynamically changing vegeta-
tion. Further, the effect on vegetation of sudden events such as floods
cannot be monitored with the current monitoring approach, limiting
the implementation of cost effective management measures (Baptist
et al., 2004).

1.4 developments in mapping techniques and data

Combining structural information from airborne Light Detection and
Ranging (LiDAR) with spectral information from either airborne or
spaceborne sensors has proven to be a suitable method to monitor
floodplain vegetation for hydrological models (Forzieri et al., 2010,
2011; Geerling et al., 2009; Straatsma and Baptist, 2008).

Geerling et al. (2009) and Straatsma and Baptist (2008) aimed at
creating a PI map of a floodplain with an automated segmentation
method of LiDAR data and spectral information from a Compact Air-
borne Spectral Imager. Geerling et al. (2009) concluded that such an
approach results in a faster, repeatable and more accurate floodplain
roughness map which enabled regular updates of hydrological mod-
els. They estimated the accuracy of the classification of a relatively
small floodplain into eight classes (Appendix A) at 74% based on a



6 situation

348 random validation points. The validation dataset was acquired
by manually interpreting the data used to classify and as such not
completely independent.

Geerling et al. (2009) tested their method on a floodplain along the
river Waal as a proof of concept. Nation-wide datasets such as the
high point-density elevation dataset for structural information: the
Actual Dutch digital elevation model (AHN2) and aerial photographs
provide opportunities for up scaling to nation-wide products. Map-
ping products with enhanced thematic detail, more frequent updates
and the possibility to incorporate regional data for the monitoring of
sudden and regional change.



2
P R O B L E M D E F I N I T I O N

This research aims at bridging a knowledge gap between reliable and
robust manual mapping of floodplain vegetation structure, and auto-
mated monitoring with increased accuracy and detail. High resolu-
tion aerial images and LiDAR data with a national coverage is avail-
able to be used with well developed techniques to correctly classify
the data into vegetation structure classes.

The problem to be tackled lies in the lack of controllability. Users
are in control in a manual process, both over the delineation of bound-
aries as over assigning labels to the delineated areas. Although being
in control does not necessarily give better results, it does give reliable
results. Stable mapping products over time, with the right mapping
scale independent of the used data. Current (semi-) automated meth-
ods lack this control, resulting in mapping products of one dataset,
which differ more than the physical change from mapping products
of another dataset. This currently makes (semi-)automated mapping
products less robust and thus less suitable for hydrological models.

2.1 data fusion

Nowadays, very-high resolution satellite data with a spatial resolu-
tion of less than one meter (ikonos, Quickbird, Worldview-2) and
aerial images with resolutions of half a meter and less are widely
available for the whole of the Netherlands. This data may be supple-
mented with regional images after specific events such as floods or
land use changes.

Stereo-aerial images may be substituted by the Dutch AHN2, a very-
high resolution nation-wide LiDAR dataset which provides informa-
tion about the ground elevation and the structure of vegetation. Fu-
sion of these datasets towards time-stable vegetation structure infor-
mation is difficult. Besides differences in amount and width of spec-
tral bands, and differences in the moment when the data was cap-
tured, there are differences in spatial resolution.

For a review of the concepts underlying the problems and oppor-
tunities related to the fusion of multi-sensor, multi-temporal, multi-
resolution and multi-frequency data for remote sensing applications,
please refer to Pohl and Van Genderen (1998) and Zhang (2010). This
thesis fuses data at the decision level. Data layers of different sensors,
acquisition time and resolution are combined into classification vari-
ables. Insights in the importance of these variables provides knowl-
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8 problem definition

edge about the value and suitability of datasets for mapping of flood-
plain vegetation structure.

2.2 object-based versus pixel-based

Instead of analyzing individual pixels, Object Based Image Analy-
sis (OBIA) groups pixels into meaningful objects and analyses the ob-
jects for classification. On top of the information contained in the
individual pixels, objects contain information about the relevant con-
text of a pixel. Alternative to OBIA is to use a moving window to
incorporate contextual information of pixel’s direct neighborhoods.
Downside of such an approach is that the neighborhood of a pixel
is not necessarily meaningful and thus not necessarily relevant for
classification (Stuckens et al., 2000), it does not embrace spatial con-
cepts (Blaschke and Strobl, 2001). Besides this, OBIA gives the user
control over the mapping scale and can handle the implicit variabil-
ity that comes with very-high resolution imagery (Jyothi et al., 2008;
Liu and Xia, 2010). More important for applications where reliabil-
ity is more important than accuracy, OBIA separates the identification
from the classification which is in line with the manual approach of
delineation of boundaries and the assignment of labels in the field.
The user has more control over the final mapping result since it has
choices in both steps. Simultaneously, this means that there should
be objective mechanisms to identify objects of the right scale, and
consistently assign the correct labels.

2.3 identifying objects of the right scale

The larger an object, the better the contextual information of pixels
and thus the more accurate the classification result. As shown by Liu
and Xia (2010), this relation holds until the objects include too many
pixels and lose their physical meaning. In example, pixels belonging
to a grass area are grouped to pixels of a forested area. If the mapping
goals is to map the area in vegetated and non-vegetated areas, this
would be correct. Though if the goal is to map the grass and forest
areas, this would result in a classification error. Therefore, a common
problem in OBIA is identifying objects of the right scale in the image
segmentation step.

Research has primarily been focused on finding an optimum scale
for the data at hand in respect to accuracy: maximizing intra-segment
homogeneity and inter-segment heterogeneity (Espindola et al., 2006;
Gao et al., 2011; Johnson, 2011). Möller et al. (2007) developed a
promising tool for comparing manually digitized areas with gener-
ated objects to asses segmentation accuracy.

Although all these measures give objective results which are opti-
mized to the data, they are not designed to result in consistent bound-
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aries comparable to a method such as PBM . Thus, whereas previous Section 1.2 contains
an introduction to
PBM:
Rijkswaterstaat’s
solution to
consistently
delineate soft
boundaries

research defined the right scale as the scale where the map accuracy
is maximized, this research focuses on objectively finding a segmen-
tation scale which is relevant for the mapper and could be kept con-
sistent in following years, independent of the data.

2.4 assigning labels

The outlines of the PI map are manually assigned one of the 18 classes
(Appendix A). Together the manual delineation from stereo-aerial im-
ages and the classification in the field produces the PI map which
relies heavily on human interpretation. This dependence makes the
process labor intensive and prone to human error, resulting in a map
with low accuracy and high uncertainty (Knotters et al., 2008).

An automated classification method lowers the dependence on ex-
pert knowledge about the mapped objects, potentially lowers the sub-
jectivity and may include information about the uncertainty of the
assigned label.

Research has shown that fusing data layers and deducting variables
from it, provides additional value to the differentiability of the objects
(Yu et al., 2006). These variables include textural features (Haralick
et al., 1973), and color-space transformations (Koutsias et al., 2000).
Conventional parametric classification techniques are not appropri-
ate for classification of multi-source and multi-type data (Gislason
et al., 2006). More important for this purpose is that the classification
should be reproducible and consistent and that the classification accu-
racy increases. To keep the mapping procedure robust to changes in
data, there is a need to understand the importance of the data layers
and variables for classification. As such it is possible to monitor the
effects of the used data layers on the classification result.





3
R E S E A R C H O B J E C T I V E S A N D Q U E S T I O N S

segmentation

To develop an objective (semi-)automated approach for the segmentation of
very high resolution spectral and LiDAR derived elevation and surface data
to map river floodplain vegetation structure

1. Could manually delineated reference plots be used to objec-
tively determine segmentation parameters?

2. Could previous mapping results be used as reference objects to
objectively determine segmentation parameters?

3. How do manually delineated reference plots compare to previ-
ous mapping results in determining segmentation parameters?

4. How do manually delineated reference plots compare to previ-
ous mapping results in determining segmentation parameters?

5. Could a comparison with reference objects be used to select
segmentation results of different datasets with similar mapping
scales.

classification

To investigate the robustness of object-based random forest classification with
added secondary variables for floodplain vegetation structure mapping

1. What is the effect of optimal and sub-optimal segmentation pa-
rameters on the classification result?

2. Which datasets are important in the classification of the objects?

3. Which derived variables are important in the classification of
the objects?

4. How accurate is the classification of the objects?

11





4
I M A G E S E G M E N TAT I O N

OBIA, or Geo Object Based Image Analysis (GEOBIA) as some argue
(Ardila et al., 2012; Chen and Hay, 2011), is an emerging paradigm
in remote sensing. A paradigm driven by fine resolution imagery. Of-
ten such imagery results in high resolution situations, situations where
pixels are significantly smaller than the objects of interest. This is the
case in floodplain mapping, where objects of interest are several me-
ters wide and long, and the spatial resolution of modern aerial data
is half a meter or less.

The goal of OBIA is to intelligently describe the imaged reality using
spectral, textural, spatial and topological characteristics. Intelligent in
the delineation of spatial units, including implicit information, and
intelligent in creating an output that is an understandable summary
of the complex content of the data. Segmenting an image to create
objects is the prerequisite step of OBIA.

This chapter continues with a literature review of image segmenta-
tion aimed to serve as an introduction on the performed analysis. For
an extensive literature review on the emergence of OBIA in the geo
domain since the 2000’s, the readers is referred to Blaschke (2010).

4.1 segmentation algorithm

Image segmentation has its roots in machine vision of the 1980’s (Fu
and Mui, 1981; Haralick and Shapiro, 1985). These algorithms are less
suitable for earth observation data due to the inherent nature of the
data and goals of the algorithms. The algorithms are used to recog-
nize patterns and ease for instance product quality control with artifi-
cial surfaces and discrete objects. This differs from the aim of earth ob-
servation to identify and discrete spectrally homogeneous segments
to map the inherent features of remote sensed images (Blaschke et al.,
2004).

The segmentation used for this thesis is Fractal Net Evolution Ap-
proach (FNEA) (Baatz and Schäpe, 2000). FNEA can be applied in the
commercially available software package eCognition, which generally
gives good segmentation results (Meinel and Neuber, 2004), and is
widely used in scientific studies (Geerling et al., 2009; Zhang and
Huang, 2010; Myint et al., 2011; Benz et al., 2004).

13



14 image segmentation

Types of algorithms

Segmentation algorithms commonly used for earth observation are
divided in point-based, region-based or edge detection (Schiewe, 2002).

point based or threshold-based segmentation involves two steps.
The first step groups pixels according to their position in the the fea-
ture space. The second step spatially defines the segments by combin-
ing the members of a group based on their spatial connectivity. For
natural scenes, this approach generally gives similar salt and pepper
effects as a pixel-based approach (Schiewe, 2002).

common edge-based approaches employ a filter to map bound-
aries. The edges are connected by a contour generating algorithm to
create objects (Schiewe, 2002). Edge detection is especially useful for
the mapping of discrete features which contain clear boundaries such
as urban areas (Stuckens et al., 2000).

region based approaches are required for the classification of
floodplain vegetation with its continuous nature. Region based algo-
rithms create objects by merging or splitting regions based on the
homogeneity of the pixels and shape of the region. These types of
segmentation algorithms use region growing, merging and splitting
or combined techniques to create the segments.

Region growing starts with seed points. The neighboring pixels are
pairwise joined to the seed points. New seed points are added and
the process is repeated until a threshold is exceeded or the whole
image is segmented. Common thresholds are a maximum allowed
heterogeneity of the region, sometimes combined with a shape crite-
rion (Blaschke et al., 2004). These algorithms depend on a set of seed
points, which determine the start initial regions. As such, results are
only reproducible when the same same points are used (Blaschke
et al., 2004).

Region merging and splitting starts with respectively individual
pixels or the whole scene and either merges the pixels or splits the
objects until a certain maximum homogeneity is met. The challenge
for these algorithms is to let the merges or splits happen simultaneous
or pseudo-simultaneous for the whole scene to ensure an even growth
of objects.

Fractal net evolution approach

The FNEA algorithm used for this study is of the region merging type
(Baatz and Schäpe, 2000). It may either start with existing objects,
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functioning as ’seeds‘ or it starts with individual pixels, objects con-
sisting of 1 pixel.

Merging does not happen simultaneously, instead object pairs are
considered local. It starts with an arbitrary object A, to find the neigh-
boring object B which is most comparable to A. Do the same for B
to find C. If C 6= A, B is better merged wit another object than A,
continue by repeating the loop with B for A and C for B. In this local
mutual best-fitting, the most homogeneous merge in the vicinity of A
is chosen in every step.

Since objects are not considered simultaneous, a distributed treat-
ment order is necessary to prevent growth of objects unequally over
the scene. This distributed treatment order chooses the A objects
which are used as seeds for the search of the best local merge can-
didate.

The treatment order in FNEA is not completely random, instead it
ensures that every object is handled ones every cycle and distributes
subsequent merges as far as possible from each other (Baatz and
Schäpe, 2000). The results of subsequent merges are influencing the
heuristics decisions of subsequent merges. InitialA pixels are selected
random and search for a mutual best-fit in their surrounding. When
the segmentation is run again from scratch, other pixels become the
initial A pixels.This historicity makes the segmentation not fully re-
producible (Blaschke et al., 2004). According to Baatz and Schäpe
(2000) this can be seen at objects of low contrast where the precise
edges are arbitrary and might fluctuate between segmentations.

4.2 the issue of scale

Figure 1 shows an aerial image containing objects of different scale.
Segmentation of this image may create objects consisting of individ-
ual trees and shrubs, hedges, forested areas or the image may be seen
as only a couple of objects: one industrial, two water and one big
vegetated object.

Thus, the same data may give different results depending on the
scale and aggregation of the analysis. This is known as the issue of
scale (Lam and Quattrochi, 1992) and was first recognized by Gehlke
and Biehl (1934). They investigated the effect of geographic and ran-
dom grouping of census data and subsequently raised the question
whether a geographic area is an entity with certain characteristics or
merely a property of the characteristic itself.

In remote sensing this translates to the Modifiable Aerial Unit Prob-
lem (MAUP) (Marceau and Hay, 1999). Traditionally, the modifiable areal
units are pixels and the problem is associated to data with varying res-
olutions. In OBIA, the problem is shifted from data to the segmenta-
tion. The higher the resolution of the image the smaller the objects of
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Figure 1: True-color aerial image of 2008 containing objects of different scale

interest may be. Simultaneously, the higher the resolution, the more
heterogeneous objects of similar scale will be.

OBIA has two scale related boundaries, objects must consist of more
than one pixel and less than the whole image. Between that, space is
relative, there is generally no reference or sense of scale incorporated
in the segmentation step of OBIA. Scale becomes a choice fed by intu-
ition about the features under observation (Marceau, 1999).

Hall et al. (2004) showed that landscapes are complex and scale
dependent. They performed segmentations and classification of high
resolution satellite images to demonstrate that presence and distribu-
tions of classes differs between scales. A practical result for floodplain
mapping is that the resulting mapping units have an arbitrary scale
and the hydraulic roughness deducted from it become arbitrary and
thus has little validity. Different degrees of floodplain roughness can
be found at different scales.

4.3 over and under segmentation

The amount of information contained in an object is subject to the
amount of pixels and thus a result of the segmentation scale and the
resolution of the data. Over segmentation creates too many and tooTwo definitions of

scale are used in this
study: segmentation
scale, defined as the

heterogeneity of
pixel values in the

objects (Section 4.4)
and mapping scale,

the degree of clutter
and aggregation of

the mapped features
(Section 4.2)

small objects, under segmentation creates too few and too big objects.
Independent of data resolution, the chance a pixel to be correctly

classified, increases with scale until objects contain too many pixels
of multiple classes. Liu and Xia (2010) illustrate this from a data per-
spective. They show that the highest classification accuracy is found
at the scale where the errors due to the inclusion of the wrong pixels
in an object, equalizes to the increase in information from inclusion
of the right pixels.
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According to Gao et al. (2011) the loss of accuracy is higher with
under-segmentation than with over-segmentation. In other words, it
is more harmful to the classification accuracy to make objects too big,
than to make objects too small.

4.4 parameters

Region based segmentation requires user-specified parameters to con-
trol the heterogeneity and shape of the objects. These settings implic-
itly define the map-scale. The basis for the settings are the users desire
to map objects of a certain scale, the resolution and dimensionality of
the data and the resulting accuracy of the classification.

Scale

FNEA looks for the local mutual best fit, as such it complies to fuzzy
set theory. An object belongs to a set of objects but its relation to the
set is fuzzy instead of binary (Maiers and Sherif, 1985).

The degree of fit between two objects is defined according to the
increase in heterogeneity as a result of a merge of two objects.

∆f = (1−w) ·∆hcolor +w ·∆hshape

where
∆f Increase in heterogeneity or scale

w Weight to shape

∆hcolor Increase in color heterogeneity

∆hshape Increase in shape heterogeneity

To control the growth of objects, there is a least degree of fit as
a homogeneity constrain, f. Since the least degree of fit indirectly
controls the scale of the objects, this is called the scale parameter.
Figure 2 gives two examples of the possible scale settings. Figure 2a
shows many more segmented objects than a human would perceive, a
case of over segmentation. In Figure 2b the contrary happens, under
segmentation. Part of the water body on the right of the image is
grouped to the bush and grass area below of it.

Color

Color heterogeneity constitutes to the heterogeneity of the data lay-
ers which may consist of many more data layers than just Red Green
and Blue (RGB). Research has successfully included LiDAR data (Her-
mosilla et al., 2011), combined with hyperspectral data (Geerling et al.,
2009), or data layers from data reduction methods such as principal
components (Zhang and Huang, 2010).
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(a) Scale 100

(b) Scale 1000

Figure 2: Segmentation results of true-color aerial image of 2008 with scale
100 and 1000

The data layers have a user-defined weighted effect on the change
in color heterogeneity.

∆hcolor =
∑
l

wl(nmerge · σlmerge − (n1 · σl1 +n2 · σl2))

Increase in color heterogeneity (∆hcolor) of an object is defined
as the weighted (w) sum over all the data layers (l) of the standard
deviation (σ) weighted by the number of pixels (n) of the merged
(nmerge) object minus that of the two merge candidate objects (n1 ·
σl1 and n2 · σl2).
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Shape

Color is the only source of information for the segmentation and is
thus also the most important, but there is a need to keep the shape of
objects resembling those of the real world to keep the result appeal-
ing.

Figure 3 shows the effects of no recognition of the shape of natural
objects by a segmentation with a weight of zero assigned to weight
in Figure 3a. Figure 3b shows the contrary with objects which are
almost circular.

(a) Shape 0%

(b) Shape 80%

Figure 3: Segmentation results of true-color aerial image of 2008 with shape
10% and 80%

∆hshape = (1−wcomp) ·∆hsmooth +wcomp ·∆hcomp
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This is implemented in FNEA by the user-defined shape heterogene-
ity criterion (∆hshape) which is built-up of smoothness (∆hsmooth)
and compactness (∆hcomp).

∆hsmooth = nmerge ·
lmerge

bmerge
−
(
n1 ·

l1
b1

+n2
l2
n2

)

∆hcomp = nmerge ·
lmerge

sqrtnmerge
−
(
n1 ·

l1√
n1

+ · l2√
n2

)
∆hsmooth reflects the deviation of the perimeter of the object(l)

and the perimeter of the smallest bounding box around the object.
∆hcomp comprises the compactness of an object, the ratio between
the size and the length of the perimeter.

The effects of a zero weight assigned to compactness and 100%
weight to compactness is illustrated by Figure 4. A low compact-
ness setting gives smooth, more rectangular objects (Figure 4a). With
the same scale and shape, a high compactness setting gives compact,
square or circular objects (Figure 4b).

4.5 measures to select optimal parameter values

Objectively selecting the optimal parameter values of segmentation al-
gorithms has become its own sub-field within OBIA (Blaschke, 2010).
Zhang (1996) distinguishes three types: analytical, empirical good-
ness and empirical discrepancy measures.

analytical methods involve the inner workings of the algo-
rithm and are unavailable for common region growing algorithms
including FNEA due to their complex nature and heuristic decisions.

empirical goodness measures are based on objective mea-
sures of "goodness" such as intra-segment heterogeneity and auto-
correlation (Espindola et al., 2006; Gao et al., 2011). They are set apart
from empirical discrepancy measures because they do not require ex-
pert knowledge such as reference segments.

empirical discrepancy aims at quantifying the differences be-
tween reference objects and segmented objects. This is described as
the problem of matching objects (Zhan et al., 2005). Many of such mea-
sures have been developed recently. For a non-exhaustive comparison,
please see Liu et al. (2012). Not included in Liu et al. (2012), but used
in this study in adapted form, is the empirical discrepancy method of
Möller et al. (2007).

All the measures use reference polygons, these can be individual
objects or digitized regions. The measures then quantify the degree of
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(a) Compactness 0%

(b) Compactness 100%

Figure 4: Segmentation results of true-color aerial image of 2008 with com-
pactness 0% and 100%

over and under segmentation of the segmentation result. In the case
of over segmentation there are more objects than the reference object,
the reference object may overlap and they may not lay in the same
position.

The reference polygons enable the user to explicitly define the de-
sired mapping scale and is as such independent of the resolution of
the data and considered a partial solution to the MAUP (Hall et al.,
2004).

Möller et al. (2007) does not compare individual segments to ref-
erence objects since a segment may touch and overlap multiple refer-
ence polygons and vice versa. Instead the segments and the reference
are intersected to get combined polygons, smaller or equal to those
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of the reference and the segments alone. In other words the segments
and the reference have a one-to-many relationship to the intersected
polygons.

The intersected polygons are compared on size and position of its
center of gravity.

RASO =
Ai

ASO

where
RASO Relative area to super object, with either segment or refer-

ence object as super object

Ai Area of intersected polygon

ASO Area of super object

RPSO =
d

dmax

where
RPSO Relative position to super object

d Distance of intersected polygon’s center of gravity to the
center of gravity of the super object

dmax Maximum d of the intersected polygons belonging to the
super object

Combined, these metrics give a comparability called the compari-
son index. The comparison index gives the alikeness of the intersec-
tions to the segments and to the reference, corresponding to the under
and over segmentation.

The comparison between intersected polygons and reference gives
over segmentation, while the comparison between intersected poly-
gons and segments gives under segmentation. When the whole im-
age is one segment, the intersection will fully resemble the reference
and the under segmentation is none and the over segmentation is
full. Similarly, when all the pixels are one segment, the intersections
will fully resemble the segments and the under segmentation is full
and the over segmentation is none. So, when scale increases, the seg-
ments will become bigger, under segmentation will become less and
over segmentation will become greater. The reference most resembles
the segments when over and under segmentation are equal (Möller
et al., 2007).

4.6 alternative approaches

Region merging and splitting may also be performed on existing seg-
mentation results. As such it is possible to create a work flow that
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simulates that of the PBM. Objects of previous floodplain vegetation
maps may be used as seed objects in a segmentation algorithm. Ex-
isting segments are only altered if the new data shows significant
more or less heterogeneity than certain user-specified thresholds. Or
a user may decide to only alter segments belonging to certain classes.
As such the methodology becomes a multi-scale analysis and involves
object-relationship modelling. With segments of the re-segmented ob-
jects of a different scale than the original. For this the reader is ref-
ered to Burnett and Blaschke (2003) who performed such an analysis
using the FNEA algortihm.
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O B J E C T- B A S E D C L A S S I F I C AT I O N

Segmentation of the source data creates objects. Within the frame-
work of OBIA, the objects may be further refined in subsequent seg-
mentation steps, regression may be applied, or the objects are catego-
rized into predefined classes (supervised) or a number of undefined
groups (unsupervised).

The machine learning algorithm Random Forest (RF) (Breiman, 2001)
is used in this study to perform a supervised classification of the seg-
mented objects into ten vegetation structure classes. Such a classified
map is valuable for several spatial planning and ecological studies in
the river floodplains.

5.1 the curse of dimensionality

Objects contain more information than the digital numbers of the
pixels alone. Up to hundreds of additional object features provide ad-
ditional means to differentiate between classes. The object features
may be summaries of the data sources, including texture metrics but
also geometric characteristics of the objects and relations of objects to
other objects.

The object features, or variables (v) once used in classification, vio-
late the assumptions of parametric statistical techniques. Variables are
often not normally-distributed and may be categorical. Additionally,
the high amount of variables often leads to a small n, large v situation,
where the amount of variables is smaller than the amount of observa-
tions (n) used to train the classifier. This is called the curse of dimen-
sionality and a major cause of overfitting with parametric or simple
non-parametric classification techniques such as k-nearest neighbors
(Verleysen and François, 2005). For these reasons common paramet-
ric classifiers such as maximum likelihood are deemed inappropriate
(Duro et al., 2012).

5.2 random forest classifier

RF makes no assumptions on the distributional characteristics of the
independent variables nor the response variables and may handle
situations where v greatly exceeds n (Cutler et al., 2007). This makes
RF a suitable classifier to perform an object-based classification with
limited amount of training data and a high amount of object-features.

RF builds trees by taking a random subset of variables and a ran-
dom subset of training data. The amount of trees, the number of vari-

25
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ables and the number of training objects of each tree are all parame-
ters of the algorithm, though their settings have little influence on the
result (Breiman, 2001; Gislason et al., 2006; Liaw and Wiener, 2002).

The data is recursively split into increasingly homogeneous regions.
At each step the most optimal variable and value is selected that re-
sults in subgroups of the data with the least impurity. This impurity is
defined by the gini measure, similar to Classification and Regression
Tree (CART). The splitting continues until all the variance is explained
(Cutler et al., 2007).

During classification, all the objects are pushed through the trees
and the trees cast a vote according to the class of the terminal node.
The objects get classes assigned on the basis of a majority vote. For
a more thorough review of RF please refer to the 15

th chapter of
Friedman et al. (2001).

Additional information about the forest

Breiman (2001) states that:

A forest of trees is impenetrable as far as simple interpreta-
tions of its mechanism go.

There is no way to fully interpret the trees or the functioning of the
variables and observations within the trees. Though RF has build
in functions to get a grip on the forest. Observations and variables
which were not part of the subset of the tree are considered Out-Of-
Bag (OOB). The OOB observations are used to cross-validate the trees,
which results in a confusion matrix for the total forest (Cutler et al.,
2007).

A similar approach is used to asses the importance of individual
variables. The values of the variable is randomly changed for the OOB

observations, the modified OOB’s are pushed down the tree the re-
sulted prediction. This is compared to the original OOB observations
to get a measure of the importance of the variable (Cutler et al., 2007).

Random forest compared to other classifiers

RF is a modern machine learning classifier using an ensemble of de-
cision trees (Breiman, 2001). Ensemble decision trees are among a
couple of modern popular alternatives to the traditional maximum
likelihood classification.

For a comparison based on several datasets of the practically avail-
able alternatives including RF and the popular support vector ma-
chines, please refer to Meyer et al. (2003). For a comparison between
the ensemble decision tree methods such as RF and a method with an
individual decision tree CART, please see Gislason et al. (2006). And
for a comparison between RF and other ensemble tree methods using
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bagging and boosting, tested on land cover datasets, please refer to
Chan and Paelinckx (2008).

All authors agree that RF generally ranks high concerning classifica-
tion accuracy and that RF is relative insensitive to its parameters and
computationally fast.

Breiman (2001) states that a forest is constructed with double ran-
domness of the subset, both random v and random n. In addition, a
high amount of trees in the forest, makes the law of large numbers ap-
plicable. As such, RF is theoretically insusceptible to issues commonly
associated with decision trees (Breiman, 2001). Though there is some
debate about the tendency of decision trees to overfit (Segal, 2004)
and poor performance of RF with high class-imbalance (Lusa et al.,
2010).

Random forest and regression

Specifically hydrologists will need a lookup table to attach roughness
values to the classes. An alternative would be to use the objects with
regression and create a roughness map directly, superseding the use
of a lookup table. This has been proven to be a viable approach by
Forzieri et al. (2011) and for a Dutch floodplain by Straatsma and
Middelkoop (2007).

Although RF is used in supervised classification mode in this study,
RF may also be used to perform such calibrated regressions. RF has
for example successfully been used to model biomass from high res-
olution satellite imagery (Mutanga et al., 2012).

5.3 variables

Instead of using individual pixel values, OBIA uses the object means of
the different bands, which lowers the noise and salt and pepper effect.
Besides the color and elevation means, over a hundred other features
are included: variance of spectral bands, a vegetation index, color-
space transformations, texture measures, and geometric features.

Similar features have been used by Yu et al. (2006), who also ranked
the features by using CART. For their classification of tree species in
a mountainous area, they found three texture features in the top 16.
Yu et al. (2006) also included ancillary data to calculate topographic
features such as distance to nearest water body. These features were
also present in the top 16 among elevation and slope derived from
LiDAR.

Color-space transformation

Color is often presented as RGB, consisting of the reflection in the red,
green and blue parts of the spectrum. There are many other models
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which describe light in the visible spectrum. Several of these models
have been tested on artificial images by Alata and Quintard (2009).

Specifically an Intensity Hue and Saturation (IHS) transformation
has been successfully used in mapping burned areas of landsat im-
ages (Koutsias et al., 2000). With IHS, spatial characteristics of compos-
ite images are separated to the intensity and the spectral information
is kept with the saturation and hue.

Texture

Next to color and shape, texture is one of the main components hu-
mans use to recognize objects. It is defined as the spatial frequency
of tonal changes within certain area (Ke et al., 2010). These areas are
commonly moving windows or in case of OBIA objects and are thus
only applicable in high resolution situations.High resolution

situations: cases
were the objects of

interest are smaller
than the resolution

of the data
(Chapter 4)

Texture in this study is quantified using Gray Level Co-occurrence
Matrix (GLCM) and Gray Level Difference Vector (GLDV) (Haralick
et al., 1973). GLCM is a matrix of frequency of band values at a spec-
ified distance in an object. GLDV is the sum of the diagonals of the
matrices (Ke et al., 2010). Different metrics may be deduced from the
matrices and vectors, common are mean; variance; homogeneity; con-
trast; dissimilarity; and entropy.

Texture may be calculated of different bands. Yu et al. (2006) suc-
cesfully used these texture metrics of the near-infrared band, while
Ke et al. (2010) calculated the metrics on four different spectral bands
and on transformations and indices such as principal components
and Normalized Difference Vegetation Index (NDVI) (Johansen and
Phinn, 2006). Johansen and Phinn (2006) found positive relationships
between these texture bands and vegetation parameters such as leaf
area index. This suggests that these texture metrics provided valuable
information in predicting the class of objects.



Part II

M E T H O D O L O G Y

The human mapping capacity sets the bar high when it
comes to precision, flexibility and overall map quality. Au-
tomating the manual process introduces reproducibility
and provides relative cheap opportunities for more up to
date information. More important, it may improve the con-
sistency of the maps. Time-consistent mapping methods
lead to precise predictions of the maximum amount of wa-
ter to flow between the dikes. The goal of the automated
method is to mimic the human mapping process while
adding the benefits of an automated mapping procedure.
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S T U D Y A R E A

Figure 5: True-color aerial image of 2008 of the study area (north to the right)
with the position of the study area in the Netherlands in the insert
(north up)
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Figure 5 gives the boundaries of the study area. Please note that the
north of the image is to the right of the page. The area is confined by
a small river port in the west and a railway bridge over the Nederrijn
in the east. The acquisition of AHN2 data is not fully completed for
this area of the Netherlands, therefore the study area is confined to
the floodplains north of the river Nederrijn, including fifty meters of
the river. The dikes are not considered part of the floodplains, which
is in correspondence to the current ecotope maps.

Classes and landmarks

10 classes are identified within the study area. Representations are
depicted in Figure 6. The area is characterized by three major built-
up areas (Figure 6f): a small river port west of Wageningen, a paper
factory south of Renkum, a major highway bridge (the A50) east of
Heteren and the locks and weirs to the north of Driel.

Diversity

The area to the west of the highway near Heteren consists of managed
natural vegetation, mainly grazed grass with herbaceous vegetation
and patches of bush. This area also contains some old river arms and
restored oxbow lakes. To the east of the hightway, the patches are
bigger and consist of meadows and agricultural fields.

Size

The study area covers 936 ha which is significantly greater than ex-
perimental study areas of previous attempts to map floodplain vege-
tation structure (Geerling et al., 2009; Straatsma and Baptist, 2008) (<
100 ha). This makes it possible to study the spatial variability of scale
at which vegetated objects occur and to investigate the possibility to
apply an automated mapping methodology nation-wide.

Class orchard

There are only two fruit orchards present in this area. This makes
selecting enough training objects to accurately train the classifier dif-
ficult. All the other classes are sufficiently present in the study area
to classify correctly and to validate the method.
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(a) Water (b) Forest

(c) Orchard (d) Bush

(e) Field (f) Built-up

(g) Sand (h) Herbaceous

(i) Grass (j) Pioneer

Figure 6: True-color aerial image of 2008 of the 10 classes distinguished in
this study, Scale 1:5,000
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Two datasets are used as information sources to mimic the manual
digitization and classification of river floodplain vegetation according
to the flowchart of Figure 7. Spectral data from two high resolution
airborne sensors, a Color InfraRed (CIR) of 2008 and a Green Red
red-Edge and Near-infrared (GREN) of 2012. Both datasets are used
in conjunction with the LiDAR AHN2 data, providing information on
elevation and the structure of vegetation.

AHN2 2011CIR 2008 GREN 2012

perform
segmentations

select
optimal
param-
eters

compute
variables

classify

map result
AHN2

CIR 2008

map result
AHN2

GREN 2012

Section 8.1

Section 8.2

Section 9.1

Section 9.2

Figure 7: Flowchart from data to classified results using either the color in-
frared data of 2008 or the green red red-edge and near-infrared
data of 2012

The CIR image of 2008, which is nationally available, is used to test
the method on the full study area. The GREN dataset only covers a
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subset of the study area. This dataset is used to test the robustness of
the method to different datasets.

Ancillary data was used in the selection of segmentation parame-
ters and to pre-process data. To fill up holes in the AHN2 products,
digital topographic information of the Dutch kadaster’s TOP10NL
dataset was used. The segmented objects were compared to a pilot
vegetation map product of Rijkswaterstaat and digitized reference
plots.

7.1 ahn2

As the first country in the world, the Netherlands is fully covered
by airborne laser scanning altimetry in the Actueel Hoogtebestand
Nederland (van der Sande et al., 2010). The sequel of this project is
AHN-2 and is currently carried out to be completed in 2012. This
dataset has an average point density of 10 points per square meter.

Accuracy assessments of a strip in the South-West of the Nether-
lands showed vertical offsets of up to 4 cm and horizontal offsets of
up to 34 cm (van der Sande et al., 2010). Filter algorithms are applied
to filter out all the points which are not part of the ground area. Both
the remaining points as the filters points are used to construct a grid
with a spatial resolution of 0,5 m. Making a digital elevation model
Digital Elevation Model (DEM) and a digital surface model Digital Sur-
face Model (DSM). During classification an additional layer is used to
characterize the vegetation height, the Digital Canopy Model (DCM).
This is created by subtracting the pixel values of the DEM of the DSM.

(a) DEM (b) DSM

(c) Interpolated DEM (d) Interpolated DSM

Figure 8: Digital elevation and surface models as provided and after inter-
polation, gray values indicate no data pixels
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Figure 8a and Figure 8b show a small part of the DEM and DSM as
provided. As can be seen, these datasets have missing pixels (gray pix-
els in Figure 8a and Figure 8b). To ensure a high degree of data qual-
ity, many points are filtered out during the creation of the datasets.
Especially with scattering surfaces such as water, there are many miss-
ing pixels. In order to use these layers in the segmentation process,
the holes have to be filled. This has been done in esri’s ArcGIS.

A simple interpolation gives unrealistic results at boundaries be-
tween land and water. Therefore land and water areas were handled
different. Polygons of the water bodies part of the top10nl dataset
were used to assign the lowest value of the pixels within the poly-
gons to the water bodies.

Pixels surrounding the other holes were converted to points and
interpolated using natural neighbors. Computing time has been re-
duced by selecting only two rows of pixels surrounding a hole. The in-
terpolated values were only used where no original data was present.
A subset of the results are depicted in Figure 8c and Figure 8d.

7.2 aerial images

CIR aerial images have been made by Cyclomedia commissioned by
the Kadaster in 2008. They are made yearly and available in four
bands: Blue, Green, Red and Infrared. Spatial resolution is 0.25 cm
with a jpeg 2000 compression. A false color subset is shown in Fig-
ure 9a.

The GREN dataset used to test the method’s robustness to data is
a completely different dataset as depicted in Figure 9b. It does not
contain a blue band but instead measures in the red-edge region of
the spectrum. It has a higher resolution and a greater bit depth of 16-
bit compared to 8-bit of CIR. During the processing by the provider,
the contrast of the vegetation is enhanced which creates saturated
pixels in high reflectance areas, as visible in the build-up area in the
lower left corner of Figure 9b. This makes for a more textured image
with higher contrast in vegetated areas.

Figure 10 also shows the increase in vegetation between 2008 and
2012 in this part of the study area. With greater areas covered by
bush and more individual shrubs in the grass areas. This shows the
relevancy of an increased mapping frequency. But it also makes com-
paring classification results between the different datasets difficult.
Changes in the distribution between different classes are not neces-
sarily due to the use of different data and a different mapping scale
but may also be due to actual change of the vegetation.
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(a) 2008

(b) 2012

Figure 9: False color aerial images of the 2008 and 2012 datasets

7.3 reference plots

Two types of reference datasets were used in the selection of opti-
mal segmentation parameters. One reference dataset, Figure 10a is
acquired according to the methodology of Möller et al. (2007). The
other dataset, Figure 10b is a polygon map made by Rijkswaterstaat
as a pilot to map vegetation in the Dutch river floodplains.

Manually digitized circular reference plots

According to the method of Möller et al. (2007), 19 randomly selected
points were used to create circular reference plots with a radius of
150 m.

Figure 11 shows an example, the digitization of plot number seven.
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(a) Manually digitized circular reference plots according to Möller et al. (2007), indi-
cating the location of plot 7

(b) Rijkswaterstaat’s pilot vegetation legger (Knotters, 2011)

Figure 10: Reference polygons used to select segmentation parameters, as
positioned in the study area against the true-color 2008 back-
ground

Figure 11: Plot 7 of the 19 circular reference plots used to select segmen-
tation parameters, with false-color aerial image of 2008 as back-
ground

The rectangular objects are the result of elevation differences in de
DEM. Not all plots were completely situated inside the study area
and some covered extensive built-up areas which were deleted from
the reference dataset. Many off the data layers have a high variabil-
ity in pixel values in built-up areas. This heterogeneity results in a
high amount of separate objects after segmentation which affect the
result of the selection. Since the selection is aimed at mapping the
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vegetation, these areas are considered of lower importance and have
therefore been removed.Plot 7 of the 19

circular digitized
circular reference

plots, is consistently
used as an example
in the remaining of

this research. It is
positioned in the

middle of the
western part of the
study area, part of

the legger and
contains both

naturally shaped as
rectangular objects

The other areas have been manually digitized with the CIR of 2008

and the AHN2 of 2011 as a background. Totaling 206 objects covering
103 ha, around 11% of the study area.

Rijkswaterstaat’s pilot vegetation legger

Figure 12: Rijkswaterstaat’s pilot vegetation legger (Knotters, 2011) used to
select segmentation parameters, with true-color aerial image of
2008 as background

Rijkswaterstaat is in the process of altering the monitoring of river
floodplain vegetation. To provide insights in the effects of a different
monitoring on their hydrological models they manually mapped a
pilot area between the Nederrijn and the town of Wageningen on the
basis of stereo-aerial images of the summer 2008 (Knotters, 2011).

Figure 12 shows the outlines of the pilot study which lie within the
study area of this research. The 294 objects are being used as reference
polygons.
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S E G M E N TAT I O N B Y F N E A

The optimal segmentation result has been selected of 25 segmenta-
tion results. The 25 segmentations are unique combinations of five
shape settings and five scale settings. All other parameters influenc-
ing the identification of objects are kept constant, the effects of these
parameters has not been analyzed in this study.

8.1 segmentation

Segmentation is performed in Definions eCognition developer 8 (Baatz
and Schäpe, 2000). It involves two steps. A multi-resolution segmen-
tation and subsequently a spectral difference merge.

Data layers

Table 1 shows the data layers as used with the corresponding weights
assigned to it. The GREN image, used in this study does not contain a
blue band and has been substituted by the red-edge band.

Table 1: Data layers and associating weights used in segmentation

type layer weight

Aerial images Blue or red-edge 1

Green 1

Red 1

Infrared 1

AHN2 DEM 2

DSM 2

Only primary data and no secondary layers such as NDVI or DCM

have been included. Adding more layers will make the already heavy
computations of the segmentation heavier. Second, these layers essen-
tially contain the same information as the layers which are included
and are believed to have no beneficiary effects on the segmentation.

Equal weights have been assigned to the CIR and AHN2 data. The
spectral information of the CIR has the same influence to the increased
heterogeneity of a merge of two objects as the structural information
of the AHN2. Altering these weights might have a positive effect on
the segmentation but this has not been pursued in this study.

41
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Multi-resolution segmentation

The FNEA algorithm is implemented in eCognition’s tool called multi-
resolution segmentation. This algorithm creates the initial objects.

Table 2 shows all the parameter settings used in this study. Com-
pactness is left constant. All the other combinations of shape and scale
have been run.

Table 2: Parameters used in the segmentation

dataset scale shape compactness

CIR + AHN2 50-450 incre-
mented with
100

10%-30% in-
cremented
with 5%

50%

GREN + AHN2 50-950 incre-
mented with
100

10%-30% in-
cremented
with 5%

50%

Spectral difference merge

Multi-resolution segmentation creates the objects. FNEA creates ob-
jects around seed points. As a result even homogeneous areas suchFor more

information about
the algorithm of

FNEA, please refer to
Section 4.1

as grass fields or the river, become multiple objects. To make the ob-
jects more meaningful, these objects are merged on the basis of color
heterogeneity only. This is done via a tool called spectral difference seg-
mentation included in eCognition. Color here stands for the digital
numbers in all of the data layers and therefore the weights of Table 1

are used here as well. After visual inspection, the allowed spectral
heterogeneity has been set at 2.

8.2 selection

The selection of the optimum segmentation is done with a method
similar to that of Möller et al. (2007). The difference between the com-Möller et al. (2007)

methodology is
explained in-depth

in Section 4.5

parability measure of this study and the comparison index used by
(Möller et al., 2007) is only computational. They reduced the dimen-
sionality due to the combination of the position and size by a k-means
algorithm to one index between 0 and 1. To simplify the implementa-
tion, the measure used in this study did not incorporate such a data
reduction method but simply added-up the metrics.

The metrics RASO and RPSO are included in eCognition (Definiens,
2009). These metrics are calculated for every intersection polygon of
segmented object and reference objects with either the segments or
the reference polygons as super objects. Every objects RASO and RPSO
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to both the reference as the segments are exported to R (R Core Team,
2012).

Within R the RASO and RPSO are added up and weighted with the
polygons area.

C =
∑
i

Ai(RASOi
− RPSOi

)

A

where
C The average comparability

i The intersected polygon

RASO Relative area to super object, with either segment or refer-
ence object

RPSO Relative position to super object

A The total area

This gives a C of the segmentation intersection to the reference
(over segmentation) and to the segmentation (under segmentation). See Section 4.3 for

more information on
the concepts over
and under
segmentation and
see Section 4.5 for a
description of RASO

and RPSO

The optimum segmentation parameter is the scale and shape where
under and over segmentation are equal and the comparability is high-
est. This point is selected visually from plots of over and under seg-
mentation.
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C L A S S I F I C AT I O N B Y R A N D O M F O R E S T

The objects have been classified into ten vegetation structure classes
on the basis of 181 variables (Table 4) and 113 observations (Table 3).
Classification is done by RF (Breiman, 2001) which is implemented
in the statistical language R (R Core Team, 2012) via the the package
randomForest (Liaw and Wiener, 2002).

9.1 variables

Table 4 shows all the variables used in classification. The variables
have been computed using eCognition for all the objects of the seg-
mentations which have been classified. Gray level co-occurence matri-
ces and gray level difference vectors have been calculated for all the
data layers used in the segmentation.

9.2 classes

The classes are defined according to Figure 13. It is similar but not
completely to the class definition of the PI map of Rijkswaterstaat.
Some classes were left-out because these do not occur in the study
area, others have been merged to get to a class definition which is
simpler to implement and more compliant to Rijkswaterstaat’s pilot
vegetation legger. For a list of the classes used in this study and those
used by Geerling et al. (2009) and by Rijkswaterstaat in the vegetation
legger and the PI map, please see Appendix A.

9.3 training data

The forest is based on 113 training objects. These objects have been
manually selected and labeled according to the class definition of
Figure 13. Labelling has been done manually on the basis of visual
interpretation of the RGB layers of the CIR dataset. The 113 training
objects are from a segmentation of the CIR and AHN2 with scale 150

and shape 25%.
The distribution of the different classes within the training set is

given in Table 3. The abundance of some classes was low in the study
area which made it impossible to get an even amount of training
objects for every class.

45
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Table 3: Training object and validation point distribution

class training objects validation points

water 18 5

pioneer 7 3

sand 9 4

built-up 22 4

grass 17 9

field 6 1

herbaceous 13 6

forest 10 3

bush 9 6

orchard 2 2

9.4 validation data

The training data is used in conjunction with the OOB cross-validation
of RF to estimate the accuracy of the forest, additionally a field vali-
dation has been performed. The distribution of the field observations
used to perform the validation is also given in Table 3.

Five objects of every class of the classified result depicted in Ap-
pendix C were selected randomly. With the exception of orchard, since
there were only two objects classified as such. The center of gravity
of every object has been determined and visited using a conventional
Garmin eTrex handheld GPS. One area predicted to be pioneer, one
to be sand and two built-up points could not be visited due to access
difficulties. These were removed from the dataset.
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Table 4: The 181 object features used as variables in the classification. Unless
indicated different, the features have been calculated for all the data
layers of the color-infrared and the AHN2

category description

Spectral Mean, Min, Max, Standard devi-
ation, Ratio and Skewness of the
four CIR bands

Intensity, Hue and Saturation
transformation of the RGB val-
ues

Brightness, as in the total of the
mean values of CIR

Topographic Mean and Standard deviation of
DEM, DSM and DCM

Textural GLCM Homogeneity

GLCM Contrast

GLCM Dissimilarity

GLCM Entropy

GLCM Standard deviation

GLCM Correlation

GLDV Angular Second Moment

GLDV Entropy

GLDV Contrast

GLDV Mean

Geometric Area

Length

Width

Compactness

Rectangular fit

Border index

Border length

Shape index

Density

Main direction asymmetry

Elliptic fit

Length/Thickness

Length/Width

Relative border to image border

Roundness
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>50% Water

>50% Woody vegetation

no

>5 m Vegetation height
yes

Forest

Water
yes

yes

Crowns in rows

no

Bush

Orchard
yes

no

<25% Vegetation

no

Plowed or parcel shape
yes

Field
yes

Hardened or paved

no

Built-up
yes

Sandno

>25% Shrubs

no

Herbaceous
yes

Homogeneous green

no

Production grass

yes

Pioneer

no

Figure 13: Class definition key adapted from Rijkswaterstaat (1998)



Part III

R E S U LT S

The automated mapping methodology follows the same
two steps a human mapper would. The boundaries of dis-
tinct objects are identified and sequentially classified to
the most probable vegetation structure class. Since the au-
tomated method lacks the flexibility of identifying objects
of the right scale and shape straight away, this step is done
many times. The resulting boundaries that show the most
resemblance to reference boundaries are chosen for clas-
sification. Following, manually classified-objects form the
basis for many automatically created decision trees which
together choose the most probable class to assign. As such
the structure of the floodplain vegetation is mapped in
a reproducible, time-consistent manner, with maintained
precision, flexibility and overall map quality.
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S E G M E N TAT I O N

The segmentation parameter selection method has been tested on the
19 circular reference plots and the CIR 2008 and AHN2 2011 dataset.
The results are presented in three levels of abstraction. Two abstract
levels in graphs, both the aggregation as the individual values of the
19 plots in Figure 14. To illustrate the behavior of the segmentation
and the selection method, one of the 19 circular plots is separately pre-
sented in graphs (Figure 15) and concrete graphical form (Figure 16).

The chapter continues by presenting results of the selection with
the legger, an alternative reference dataset, both abstract (Figure 17,
Figure 18) as graphical (Figure 19) and the results of an alternative
source dataset, the GREN, abstract (Figure 20, Figure 21) and graphical
(Figure 22).

10.1 manually delineated reference plots
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Figure 14: Average comparability between circular reference plots and seg-
mentation result for five shape settings between 10% till 30% (in-
dicated at the top) and scale between 50 and 450 (indicated at the
right) of the 2008 color-infrared and 2011 AHN2 dataset

The total allowed heterogeneity of the objects was set between 50

and 450, incremented with 100 for every segmentation. This was done

51
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five times with emphasis on shape of the objects between 10% till 30%.
In total 25 segmentations were performed.

To select the segmentation with the most resemblance to the de-
sired size and shape, the objects were compared to the manually dig-
itized reference plots. This resulted in comparability as depicted by
Figure 14. The dark bold lines show the average comparability.

Bold red and blue lines

The segmented objects have been intersected with the 206 reference
objects of the 19 plots distributed over the study area. The averageThe relative size and

position are
quantifications of the
discrepancy between

the reference
polygons and the

segments. The
concept is explained

in Section 4.5 and
the implementation

used in this study in
Section 8.2

relative position of the gravity centers and the average size of the
intersections are compared to the segmented objects to get the un-
der segmentation, indicated in red in Figure 14. The blue line in
Figure 14 shows over segmentation: the comparability between the
intersections and the reference polygons.

As the total allowed heterogeneity increases, the segmented objects
gradually grow larger such that the intersection resembles more the
reference polygons. The same holds the other way around. When the
total allowed heterogeneity increases, the segmented objects gradu-
ally grow larger, such that the comparability between the intersection
and the segmented objects decreases.

As can be seen in Figure 14 the lines intersect around the param-
eter setting with a scale of 150 and shape 25%. This means that the
segmentation of this dataset with scale 150 and shape 25% shows the
most resemblance to the reference plots in size, shape and position.

Red and blue dots

19 circular reference plots with a radius of 150 m were digitized. The
plots were randomly selected. In total 206 objects were distinguished
with an average size of 0.5 ha.

The over and under segmentation of the 19 individual plots is de-
picted in Figure 14 by red and blue dots, connected by gray lines. Ap-
pendix B shows the 19 plots individually. Even with scale and shape
settings that result in almost equal over and under segmentation, the
deviation between the plots remains large.

Segmentation parameters that work for certain reference plots in
certain areas of the study area, do not for others. While the 150 scale
and 25% shape setting functions well on average, some areas might
consist of objects which are larger or smaller and have a very differ-
ent shape than the pursued objects of the manually drawn reference
plots.
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Figure 15: Comparability between circular reference plot seven and segmen-
tation results for five shape settings between 10% till 30% (indi-
cated at the top) and scale between 50 and 450 (indicated at the
right) of the 2008 color-infrared and 2011 AHN2 dataset

Reference plot 7

Figure 11 of
Section 7.3 shows
plot 7 on a
false-color
background

One of the gray lines connecting red and a blue dots of Figure 14 and
in Appendix B represents reference plot 7, these lines are depicted
separately in Figure 15. To concretely illustrate the relationship be-
tween the segmentation parameters and the comparability, plot num-
ber seven is taken as a representative case. As can be seen in Ap-
pendix B, the behavior of plot seven resembles that of the averages in
Figure 14 best, compared to the other plots depicted in Appendix B.

As can be seen in Figure 15, plot seven follows a clear increase in
over segmentation and decrease in under segmentation with higher
scale setting for a shape setting of 25%.

Figure 15 can be seen as an abstraction of the discrepancies between
the reference polygons and the generated segments as depicted in Fig-
ure 16. Every square of Figure 16 shows the result of one combination
of segmentation parameters and corresponds to one point on the blue
and red lines of Figure 15. As such Figure 16 gives a representative
insight in how polygons created with optimal and sub-optimal pa-
rameter settings visually compare to the reference plots. With a lower
scale setting there are more and smaller objects and with less empha-
size on shape, these objects are more oddly shaped.

It can be seen that some objects contained in the reference plot are
clearly identified from the source data, while others are not. This is
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Figure 16: Representation of segmentation results of 2008 color-infrared and
2011 AHN2 dataset with optimal (center, shape 25% and scale
150) and sub-optimal (periphery) parameter settings with the cir-
cular reference plot 7 as reference

the case for every shape and scale setting. As in Figure 15, Figure 16,
shows that the 150/250 scale and 25% shape gives the most compara-
ble result. Visually this seems due to the two square reference-objects
in the middle of the plot, which are reasonably bounded by the seg-
mentation results of 150/250 and shape 25%.

All results contain a lot of small noise objects and all except the
150/250 scale and shape 25% do not segregate between two square
reference-objects.

10.2 vegetation legger as reference

Instead of using specifically digitized objects for use as reference, it
might be possible to use an existing map product as reference. This
is investigated by substituting the reference plots by Rijkswaterstaats
pilot vegetation legger.

As can be seen in Figure 17 the complete Rijkswaterstaat pilot veg-
etation legger as a reference does not give satisfactory results.
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Figure 17: Comparability between the full vegetation legger and segmenta-
tion result with shape 10% till 30% and scale between 50 and 450

of the color-infrared 2008 and the AHN2 2011 datasets
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Figure 18: Comparability between the vegetation legger the largest polygon
and segmentation result with shape 10% till 30% and scale be-
tween 50 and 450 of the color-infrared 2008 and the AHN2 2011

datasets

Figure 18 shows the same reference plots excluding the large natu-
ral grass polygon. Figure 18 shows that the legger without this poly-
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gon gives clearly increasing over segmentation and decreasing under
segmentation with increasing scale. This trend is observable for all
the five shape settings. Although the sensitivity to shape is low, a
low shape setting seems to be favorable. The segmentation of this
dataset with scale 300 and shape 10% shows the most resemblance
to Rijkswaterstaats pilot vegetation legger in size, shape and position
(Figure 18). Note that this holds true for the area which is mapped
in the pilot project, objects in the rest of the study area might be less
comparable to the size and scale of the vegetation legger.

Representative area around plot 7

Nine segmentation results of the same area around plot seven are
depicted in Figure 19. Figure 19 clearly shows that a higher scale
setting gives more comparable results than low scale settings. It is
also visible that a low shape setting leads to a better identification of
the small square areas in the middle of this subset.
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Figure 19: Representation of segmentation results of 2008 color-infrared and
2011 AHN2 dataset with optimal (shape 10% and scale 250/350)
and sub-optimal parameter settings with the Rijkswaterstaat pilot
vegetation legger as reference
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Differences between the legger and the manual reference

The Rijkswaterstaat pilot vegetation legger consist of very connected
objects. This gives large and oddly shaped areas. The generated seg-
ments are generally a lot smaller, even with a high scale setting. Fig-
ure 14 and Figure 18 show that comparability at the intersection point
is lower for the legger than the manually delineated reference plots.

10.3 an alternative dataset

The previous section showed results of the comparison between seg-
mentation results with varying parameter values and two different
maps used as reference. This section shows results of the comparison
between reference plots and two different datasets, the CIR from 2008

and the Unmanned Aerial Vehicle (UAV) GREN image of 2012. Both
the CIR as the GREN were used in conjunction with the AHN2 dataset
since there was no substitute for structural information of 2012.

scale (-)

co
m

p
ar

ab
il

it
y

 (
-)

10% 15% 20% 25% 30%

1.0

0.5

0.0

-1.0

25
0

50
0

75
0

25
0

50
0

75
0

25
0

50
0

75
0

25
0

50
0

75
0

25
0

50
0

75
0

segmentation

under

over

Figure 20: Comparability between the vegetation legger excluding the largest
polygon and segmentation results with shape 10% till 30% and
scale between 50 and 950 of the AHN2 and the UAV image

Segmentation results of the GREN image and the AHN2 data, with
varying scale and shape settings are compared to 170 objects of the
pilot vegetation legger which lie within the area covered by the GREN

image.
As can be seen in Figure 20 the over and under segmentation of

the GREN image in comparison to the vegetation legger equalize at a
scale setting of 950 for the 15%, 20% and 25% shape. This is a higher
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scale value than the optimum value of 250, deducted from Figure 18

for the CIR image.
The same insensitivity to the shape parameter for the GREN image

is observed in Figure 20 as for the CIR in Figure 18.

CIR 2008 GREN 2012 Legger 2011

area (ha)

co
u

n
t

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

150

100

5

0

Figure 21: Histogram of object size for the segmentation of color-infrared
2008 with scale 250 and shape 10%, green red red-edge 2012 with
scale 950, shape 15% and the manually delineated Rijkswaterstaat
vegetation Legger excluding the largest polygon

Figure 22 shows the segmentation results of the parameter values
showing the optimum comparability to the reference plots for the
area of the GREN 2012 image. The lowest plot shows the 170 manually
drawn vegetation legger objects which are used as reference to find
the optimum segmentation parameter values used to segment the
GREN 2012 and CIR 2008 image, which are depicted in the above two
plots of Figure 22. Ideally, all three plots would consists of objects of
similar size and shape, differences between the top two would only
be due to physical changes between 2008 and 2012. Visually it seemsSection 7.2 includes

images (Figure 10)
and a short

description of the
change in the part of

the study area
covered by the GREN

image

that there are less small objects present in the segmentation of the
GREN image than the CIR image. Figure 21 confirms this.

Figure 21 shows the density of objects grouped on the size of the
objects. It shows that size of the objects of the different datasets is
reasonably comparable, with more small objects for the CIR image of
2008 than the GREN of 2012. Although the segmentation of GREN did
not segregate the small objects of Legger well, the comparability at
the intersection of the under and over segmentation of the GREN in
Figure 20 and the CIR in Figure 19 are both around 0.25. This means
that the scale, shape and position of the segmented objects of both
images equally compare to the reference plot on average. Small objects
on the GREN image are not identified well, but medium sized objects
are identified better which on average gives an equal comparability to
the objects of the Legger.
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Figure 22: Visual representation of optimal segmentation of the CIR2008
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950 and shape 15% and the reference objects of the legger exclud-
ing the largest polygon





11
C L A S S I F I C AT I O N

To investigate the effects of segmentations with different parameter
settings and different datasets on the final map product, RF was ap-
plied on the objects. Additional information from RF is analyzed to
further understand the function of the datasets in the classification
and the workings of RF.

For a study wide classification result, please see Appendix C.

11.1 classifier performance

A forest of 1000 trees with 15 of the 181 variables per tree has been
constructed on the basis of 113 training objects. RF includes an esti-
mate of the error of the forest based on a cross-validation with the
OOB objects. The estimated error of the forest used to classify the ob- Section 5.2 describes

that the trees of RF
are constructed on
subsets and objects
not part of a tree are
considered OOB

jects in this study was 14.16%. This value showed no sensitivity to
number of trees and number of variables of each tree.
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Figure 23: Heatmap of the confusion matrix of the random forest and the
OOB objects of a the forest constructed with 1000 trees and 15 of
the 181 variables deduced from the 2008 color-infrared and 2011

AHN2 data
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A heatmap of the confusion matrix is given in Figure 23. Figure 23

shows that except for the classes field and pioneer all the classes are
well distinguishable and the cross-reference of the OOB objects show
that the performance of the forest is high. On average 85.84% of the
OOB objects are predicted correctly.
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Figure 24: Heatmap of the confusion matrix of the random forest prediction
and the field validation observations

The results of the field validation show much lower accuracies. On
the basis of 44 randomly stratified validation object center points with
classes as strata, the overall accuracy was estimated to be 43%.

Figure 24 shows the confusion matrix of the predictions and the
actual class. The validation data is of September 2012 while the source
and training data is of 2008 and 2010.

11.2 classification of optimal and suboptimal segmen-
tation results

Figure 25 shows the result of a prediction of the forest on the area
around plot number seven. The area is the same as in Figure 16,
though slightly larger.

Figure 25 clearly shows that the same dataset may be used to map
the area for different map scales. At a scale of 50, there are a lot
of small patches of grass within the herbaceous area. These areas
are all mapped as herbaceous for a higher scale setting. The same is
observed for patches of forest within the bush areas.
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Figure 25: Representation of classification results of 2008 color-infrared and
2011 AHN2 dataset with optimal (center, shape 25% and scale
150) and sub-optimal (periphery) segmentation parameter set-
tings

For the low scale setting it is also clearly visible that more emphasis
to shape leads to more compact patches while a lower shape setting
results in more irregularly shaped patches.

11.3 classification of an alternative dataset with op-
timal segmentation parameters

Figure 18 and Figure 20 showed that the CIR with scale 250 and shape
10% and the GREN with scale 950 and shape 15% are both on average
the most comparable to the vegetation legger. This should result in
map results with similar mapping scale. Figure 26 shows the classi-
fied results of two datasets in conjunction with AHN2 and the refer-
ence objects.

Scale and shape of the patches

Irrespective to the labels, the patches of the GREN image of Figure 26

seem larger, less detailed than those of the CIR image. The old brick-
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Figure 26: Classification results of the CIR 2008 dataset, the GREN 2012 and
the rijkswaterstaat vegetation legger which has been used as ref-
erence in the segmentation

works, in the middle of the image near the river is labeled correctly as
built-up in all three maps. Though, in the GREN image it has become
one big object, while in the reference and the CIR image it is a built-up
patch surrounded by bush and grass patches. On the contrary, small
features such as houses in the west of the image and roads, are identi-
fied correctly in all three images. Overall it might be that both images



11.4 variable importance 65

compare to the reference equally on average, concerning scale and
shape. This is backed up by Figure 19 of Section 10.3 which showed
that the GREN image contains less small objects, but more medium
sized objects.

Class distribution

Since the GREN image contains different data (other spectral bands
and a different bit depth), a new forest had to be constructed. The
quality of this forest is limited by the small amount of objects and the
thereby low amount of training data of 26 of the 110 objects in total.

It is clear from Figure 26 that Rijkswaterstaat definition of grass is
wider than the definition used in this study. This is also illustrated
by Figure 27 which shows the total area per class for every dataset.
The biggest difference between the legger and the classified images
are due to this broader definition of grass. Next, it is clear that the
area has shrub encroachment, the bush area has become bigger and
woodier. The Rhine has not been included in the legger, this explains
the higher area of water for the classified images. Between 2008 and
2012, the water area has increased which is visible in the North-East
area of Figure 26 and also in a slightly higher bar in Figure 27.

a
re

a
 (

h
a) 60

40

20

0

CIR 2008 GREN 2012 Legger 2011

h
er

b
ac

eo
u

s
g

ra
ss

w
at

er
b

u
sh

b
u

il
t−

u
p

fo
re

st
o

rc
h

ar
d

fi
el

d
sa

n
d

p
io

n
ee

r

h
er

b
ac

eo
u

s
g

ra
ss

w
at

er
b

u
sh

b
u

il
t−

u
p

fo
re

st
o

rc
h

ar
d

fi
el

d
sa

n
d

p
io

n
ee

r

h
er

b
ac

eo
u

s
g

ra
ss

w
at

er
b

u
sh

b
u

il
t−

u
p

fo
re

st
o

rc
h

ar
d

fi
el

d
sa

n
d

p
io

n
ee

r

Figure 27: Area per class of the CIR 2008 dataset, the GREN 2012 and the
rijkswaterstaat vegetation legger which has been used as refer-
ence in the segmentation

11.4 variable importance

To further investigate the value of all the variables for the classifica-
tion, Figure 28 gives the 28 most important variables in respect to the
increase of the Out of Bag of object classification error as calculated
by random forest.

The dots in Figure 28 indicate the average for all classes. As can be
expected from an image with many vegetated features, infrared is the
most important variable in the classification. After around the tenth
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Figure 28: Decrease in Out of Bag object classification accuracy for the 280

most important variables colored according to the source data
layer

most important variable, the next variable has very low effect on the
OOB decrease in accuracy. This indicates that the variables are very
correlative.

The bars indicates the minimal and maximal importance for a class.
the bars indicate that many features of the AHN2 are not important
for the distinction of all classes but are for some. For example the
majority of the difference between forest and bush is captured by the
DCM and the standard deviation of the DSM.

The colors of Figure 28 indicate the source of the variable. The top
seven variables are all deducted from the infrared or a combination
of the infrared and the color data.

This is also illustrated by which shows the decrease in accuracy
aggregated per data source. This shows that CIR is the most valu-
able information for classifying the study area in vegetation structure
classes. It also shows that the AHN2 is a valuable dataset to include
and that geometry of objects contains very little information.
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D I S C U S S I O N

The results of Chapter 10 show that manually delineated reference
plots may serve to parameterize a region growing segmentation al-
gorithm. The resulting parameter settings are, as expected, sensitive
to the used reference areas. The more detailed and more realistically
shaped vegetation legger of Rijkswaterstaat, covering a portion of the
study area, results in lower shape settings and a higher scale setting
compared to the coarser reference plots. Synchronously, a different
dataset, with a higher spatial resolution, results in a higher scale set-
ting and a comparable shape setting when used in conjunction with
the vegetation legger as reference.

Chapter 11 presented results concernign the classification of the
objects. It showed that RF is well able to distinguish the 9 out of 10

vegetation structure classes used in this study. Both with the CIR as
the GREN dataset with structural information of AHN2. The variable
importance measures from RF showed that vegetation indicators such
as NDVI or Red-Edge, and structural information has a great influence
on the accuracy of the classification. Additionally, including textural
transformations seem to be beneficiary to the classification result.

12.1 segmentation parameter selection

The parameter selection method was tested on two sets of reference
objects and on two datasets. The method tested on the CIR data and
the manually digitized reference plots gave an optimal scale param-
eter of around 150 and a shape parameter of 25%, as shown by Fig-
ure 14 and scale 950, shape around 20% for the GREN dataset (Fig-
ure 20).

the scale settings found in this study are high in com-
parison to FNEA scale settings found in most other studies. Möller
et al. (2007) found a scale setting of 56 with a similar method on a dif-
ferent dataset. Liu et al. (2012) found optimum scales in the range of
50-200 with different methods based on reference polygons. Johnson
(2011) found an optimum of 70 based on a global intra- and inter-
segment empirical goodness measure.

The absolute difference can be explained by the differences in the
used datasets. Möller et al. (2007) tested their method on 18 landsat
multi-spectral and multi-temporal bands with a resolution of 30 m.
Johnson (2011) used four CIR bands with a 30 cm resolution. And
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Liu et al. (2012) used a 2.5 meter panchromatic band and four 10 m
spectral bands.

The data in this study includes six high-resolution spectral bands
and additional high resolution elevation data. Such a high amount
of complex data is also used in FNEA segmentation by Geerling et al.
(2009) who used 10 2 m spectral bands and four 2 m LiDAR layers.
Their adapted version of the Möller et al. (2007) comparison index,
selected scales between 200 and 600 for different areas of a river flood-
plain. The high sensitivity of the scale to the datasets used to segment,
is also observed in results of varying datasets in Figure 18 and Fig-
ure 20 of this study.

the irregular behavior of the average under and over seg-
mentation observed in Figure 14 is also observed in similar figures
of Möller et al. (2007). Both Figure 14 as Möller et al. (2007) presents
results obtained by comparing manually digitized circular reference
plots with a low amount of relative rectangular objects (400 (Möller
et al., 2007) and 206 in this study).

A much more linear behavior can be seen when the vegetation leg-
ger is used as a reference in Figure 18 and Figure 20.This more linear
behavior gives a much clearer intersection between over and under
segmentation and is therefore possibly better in selecting the optimal
parameters. Though the linear result may also be due to the smaller
portion of the study area covered by the legger. As such the segmen-
tation parameters found with the legger as reference may not be ap-
plicable to the rest of the study area.

by plotting the 19 reference plots individually in Fig-
ure 14 and Appendix B, more insight is gained on the variability of
the comparison. The linear results of Figure 18 and Figure 20 are from
the segmentation results and the vegetation legger as reference. The
vegetation legger covers only the most western part of the study area.
Contrary, the circular reference plots are well distributed over the full
1000 ha and the small dots, connected by grey lines in Figure 14 show
that optimal settings in one area are far from optimal in other areas.
This partially explains the irregular behavior of the average under
and over segmentation, of both Figure 14 as results of Möller et al.
(2007).

emphasis on shape is high for the circular reference plots (Fig-
ure 14), while much lower when the vegetation legger is used as ref-
erence (Figure 18). The CIR dataset segmentations compared to the
circular plots result in a shape setting of 25% while it results in 10%
with the vegetation legger.

The relative high emphasize on shape (40%) is also observed by
the method with circular reference plots of Möller et al. (2007). This
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is contradicted by other authors who kept the shape parameter low
and constant since the result was not sensitive to it (Geerling et al.,
2009; Johnson, 2011).

Liu et al. (2012) looked into the shape factor after finding the opti-
mal scale setting. This is in compliance with Figure 18, which showed
little susceptibility to shape. Though, Figure 14 showed that it is im-
portant to consider both parameters integrally. This even suggests
that it is worthwhile to include the parameter compactness into the
analysis, at the cost of tripling the complexity of the analysis.

Reference objects

Liu et al. (2012) used individual reference polygons and compared
these with the corresponding segmented object. A corresponding seg-
ment has more than half of its area within the reference polygon or
contains more than half of the reference polygon within itself. They
created 30 reference polygons for every landcover class in the study
area, totalling 120 polygons. These polygons had a total of 2106 cor-
responding segments which belonged to one of the 120 reference
polygons. Plots of the comparability metrics resulted in scatter plots
which depicted the scale and the metric value with a high amount of
spread between the values of individual segments.

This approach of using reference digitization is different from those
of circular plots used for Figure 14 in this study and used by Möller
et al. (2007). And both approaches differ from the use of a complete
map used for Figure 18 and Figure 20. And in between is Geerling
et al. (2009) who manually selected representative polygons from an
existing complete map and calculated the Möller et al. (2007) com-
parison index based on the relative size only for the corresponding
segments.

The method of non-touching reference objects (Liu et al., 2012; Geer-
ling et al., 2009) seems to be favorable to the method of this study and
the method of Möller et al. (2007). With the non-touching method,
corresponding segments belong to one reference object. In other words,
there is a one-to-many relationship between the reference and the
segments. With the method of random circular plots of Möller et al.
(2007), the reference plots are more objective since there is no choice
involved in which areas are selected. But there is a many-to-many re-
lationship between segments and reference polygons. This requires a
middle layer. Which is created by intersecting the reference polygons
with the segments. Then both the segments as the reference have a
one-to-many relationship with the intersection. This is the source of
the two metrics describing segmentation quality: over and under seg-
mentation. With the method of Möller et al. (2007) these metrics can-
not be considered separately, with the non-touching polygons of Liu
et al. (2012) they can.
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When making or selecting reference polygons, it seems to be impor-
tant to distribute these well over the full area. Figure 14 showed that
spatial variability in optimum parameter setting is high and to get an
accurate average, a high amount of reference polygons are required.

Figure 18 and Figure 20 in comparison to Figure 14 shows that
detailed and realistically shaped polygons are preferred above man-
ually drawn compact and simplified objects. Figure 18 and Figure 20

and results from Geerling et al. (2009) combined, suggests that it is
beneficiary to the selection, to use a stratified random sample of non-
touching polygons from a high quality manually drawn map as a
reference. With strata of the classes in the map. As such a both spa-
tially as thematically well-distributed set of high quality reference
polygons may reliably select an optimum mapping scale.

Different datasets and the issue of scale

Figure 20 showed that is possible to find an optimum parameter com-
bination to segment a different dataset with the same reference infor-
mation. The hypothesis was that this would result in objects of similar
mapping scale. To test this hypothesis Figure 22 and Figure 21 have
been created.

From these results it is difficult to conclude whether the hypothe-
sis holds true. The CIR 2008 as the GREN 2012, segmented with FNEA

and the selected parameter settings, theoretically both result in objects
which best match the polygons of the legger reference given the prop-
erties of the data and the the algorithm. Additionally, the almost
equal comparability at the intersection of under and oversegmenta-
tion of Figure 18 and Figure 20 mean that the match is both equally
good.

Though, Figure 22 shows that the resulting objects are very differ-
ent. This is better illustrated by the size of the objects as shown by
Figure 21. On average both segmentations are equally comparable to
the reference, but still, this does result in very different objects.

Comparability measure

This study as the study of Möller et al. (2007) compared the intersec-
tion of the segmentations and the references to the references and the
segmentations. This results in two metrics which show the similarity
between the intersection and both the reference as the segmentation.
Both metrics are a combination of relative size and relative position.
As such both the topological as the geometric differences are taken
into account.

Geerling et al. (2009) stated that calculating the geometric errors
did not provide additional value to the selection for ecotope delin-
eation but provided no evidence of this. Intuitively it seems important



12.2 classification results 73

to include both metrics in order to get a realistic delineation, not one
with the lowest amount of objects within a reference area. Though
the combination of the metrics in this study and that of Möller et al.
(2007) obscure information about the functioning of the separate met-
rics and provide no clues to the value of the individual metrics.

Liu et al. (2012) evaluated seven metrics to find the best match
between individual reference plots and segmented objects, though
none of these included geometric errors such as the relative distance
between gravity centers. They concluded that a combination of topo-
logical and arithmetic metrics are best used. Though this is focused
on preventing under-segmentation as this error definitively propa-
gates to the classification result (Liu et al., 2012). The combination of
metrics of Möller et al. (2007) used in this study is more complex to in-
terpret, but does make the workings transparent. Metrics of Liu et al.
(2012) are very reliant on the assumption that the optimum segmen-
tation parameters are there where the under and over segmentation
intersect. The method of (Möller et al., 2007) is also relying on this as-
sumption, but by plotting under and over segmentation as separate
metrics, the effects of this assumption are made transparent. For in-
stance, Figure 14 shows that for shape 15% under segmentation goes
down with increasing scale, instead of over segmentation going up.
With a very high scale setting, the line eventually will intersect, at a
very low comparability. A combined metric, such as those of Liu et al.
(2012), will obscure that this comes at the cost of under segmentation,
making objects too large.

12.2 classification results

Appendix C shows the possibility to map river floodplain vegetation
structure on a wide scale with AHN2 and CIR aerial images. These
datasets are available for all of the Dutch river floodplains and are
frequently updated.

A validation with 44 random stratified field observation points in
2012 of this map showed a relative low overall accuracy of 43%. This
value is in stark contrast to the validation accuracy of 74% found by
Geerling et al. (2009) with similar data and 348 randomly selected
validation points deducted from aerial images and expert knowledge.
The value of 43% is similar to the field validation of the ecotope map
(Knotters et al., 2008). The full ecotope map consists of more classes
and covers a much wider area. Though they found an accuracy of
48%.

The relative low accuracy has to do with inaccuracies in the vali-
dation set due to a high temporal offset of four years and a relative
high spatial offset due to inaccuracies in the gps device used to locate
the points. The four years difference between image acquisition and
point observation is especially influential in the estimate of classes
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which generally change rapidly, such as agricultural fields and pio-
neer vegetation. This is reflected in the confusion matrix of Figure 24.

The relative high spatial detail of the map and low gps accuracy
caused difficulties in finding the exact center points of the strati-
fied randomly sampled objects. The inaccuracy of the device often
exceeded the dimensions of the objects.

Liaw and Wiener (2002) experienced accurate accuracy estimates of
RF OOB estimates. Gislason et al. (2006) found that the OOB estimate of
the accuracy is generally lower than the accuracy estimated based on
a separate validation set. This is logically due to the fact that each tree
is constructed on a subset of training data and the accuracy estimate
is therefore based on only a small amount of the total trees in the
forest. As expected a subset of the forest has a lower performance the
the complete forest. The RF OOB estimate of the object classification
accuracy was 86%. This constitutes to the average of the correctly
classified objects.

The high difference between the low field validation and the high
OOB accuracy is believed to mainly show the high degree of change
in the study area between 2008 and 2012 and that river floodplain
vegetation is highly dynamic.

Scale and the Modifiable Aerial Unit Problem

Figure 25 gives a representative insight in the function of scale on
the resulting map. With a finer analysis scale especially grass objects
emerge within areas classified as herbaceous at coarser scales. This be-
havior is also observed with multi-scale OBIA of IKONOS data by Hall
et al. (2004). Floodplain landscape is complex and composed of ob-
jects at different scales. As with other vegetation parameters (Addink
et al., 2007), the roughness deducted from maps with a coarse analy-
sis scale will differ from maps with a finer analysis.

OBIA, contrary to pixel based analysis, is believed to be a partial way
out of the MAUP (Marceau, 1999). Hay et al. (2003) acknowledge that
this is true when there is an objective way to determine segmentation
parameters and consistently create objects of similar map-scale. Fig-
ure 26 shows that it is possible by selecting appropriate segmentation
parameters by using reference polygons to control the analysis scale,
independent of the data. Figure 27 shows that the effect in area distri-
bution between the classes is limited to increase in bush area. This is
compliant with expert knowledge about the shrub encroachment of
the area.
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Data layers and classification variables

The use of RF as a classifier supplied additional information on the
importance of the used data layers and computed classification vari-
ables. This has been shown in Figure 29 and Figure 28 respectively.

As expected Figure 29 shows that CIR data contains a high distinc-
tion potential for different vegetation classes. It clearly shows that
RGB alone will have a negative impact on classification accuracy. Ad-
ditionally the AHN2 data ranks second and contains valuable infor-
mation especially to distinct specific classes such as bush vegetation
from forests and herbaceous as is visible in Figure 28. This is acknowl-
edged by Geerling et al. (2009) who found that including LiDAR with
hyperspectral data has beneficiary effects on classification accuracy of
river floodplain vegetation. Though it is also widely recognized that
LiDAR data cannot be used solely and is of a lower importance than
spectral information when it comes to classifying floodplain vegeta-
tion (Forzieri et al., 2010; Gislason et al., 2006; Geerling et al., 2009).

It is widely ackowledged that RF is not negatively affected by a high
number of highly correlating and possibly noisy variables (Friedman
et al., 2001; Liaw and Wiener, 2002). Though Figure 29 showed that
there is little value in incorporating geometric features in the classifi-
cation.

The color-space transformation of RGB into IHS did not showed up
in the top 28 variables of Figure 28. Although successfully used with
remote sensing data to for instance map burned areas with Landsat
data (Koutsias et al., 2000), such a transformation did not showed ben-
eficiary effects for mapping of floodplain vegetation. Though, these
features might contain valuable information during the segmentation
stage of OBIA. This has not been done in this study, but has been
proved to be a successful method when segmenting scenes contain-
ing vegetated objects (Trias-Sanz et al., 2008).

Haralick’s texture features, proved to be beneficiary to the classifi-
cation accuracy of Figure 28. The rank of these features was similar to
the sub-top ranks of these features found by Yu et al. (2006). The total
decrease in classification error due to the inclusion of texture has not
been investigated, but a similar study of riparian vegetation found a
decrease of 2-19% by including texture depending on the vegetation
class (Johansen et al., 2007).





13
C O N C L U S I O N A N D R E C O M M E N D AT I O N S

The CIR aerial images with the LiDAR dataset: AHN2, will both have
national coverage for the Netherlands in the near future. This research
has shown that these novel datasets may serve as input into an object-
based procedure to map river floodplains into vegetation structure
classes and that a high map accuracy is feasible.

figures of map results with different scales and datasets (Fig-
ure 25, Figure 26 and Figure 27), emphasize that it is important to
choose an appropriate analysis scale and be able to consistently ap-
ply that scale to different datasets. Without being able to do so, the
analysis becomes arbitrary, loses validity and the resulting map prod-
ucts become unfit to use in hydrological models.

The empirical goodness measure used in this study has shown to
be a suitable method to select segmentation parameters. By quantify-
ing the discrepancies between reference polygons and segmentation
results, the optimal scale and shape parameter may be selected. As
such it is possible to objectively select appropriate segmentation pa-
rameters on the basis of reference polygons.

Comparing different datasets with the same reference (Figure 26)
has shown that this is a generic method. It results in a similar map-
ping scale with aerial images of a different sensor and with different
specifications.

a field validation of 44 observations four years after the
data acquisition date resulted in an overall accuracy of 43%. The
study wide map was created by classifying segments created with
FNEA scale 15, shape 25% and compactness 50%.

Although the overall accuracy is low, RF in combination with the
datasets used in this study has shown to be a capable classifier. The in-
ternal validation measure of RF showed a producers accuracy of 86%
on the basis of the OOB training samples. Previous research suggests
that this value is generally lower than the actual object-classification
accuracy (Gislason et al., 2006). The great difference is therefore ex-
plained to be due to the low amount of validation observations, high
spatial uncertainties during the acquisition of the validation set and
high degree of change in the four years between image acquisition
and validation.

the variable importance measure of RF (Figure 28 and Fig-
ure 29) has shown that CIR is by far the most important source of in-

77



78 conclusion and recommendations

formation to distinct different vegetation objects. Including structural
information of a LiDAR dataset has proven to be beneficiary, especially
in the classification of high and woody vegetation such as forest and
bush. Vegetation types which exert a high amount of friction on water
flow.

The importance measure depicted that including an IHS color trans-
formation or geometric object features does not increase classification
accuracy. While including GLCM and GLDV derived texture metrics
did show to have slight positive effect on the classification accuracy.
This suggests that texture of vegetated objects is a valuable part of
the information contained in high resolution data.

it is recommended to include other parameters such as com-
pactness and the degree of spectral difference merging. Though it
is also recommended to consider segmentation parameters simulta-
neous as has been done in this study. Doing both will drastically in-
crease the computational burden since all possible combinations have
to be tested.

When using reference polygons it is recommended to use individ-
ual non-touching polygons as done by Liu and Xia (2010). This makes
it possible to directly compare reference to corresponding segments,
without having to intersect both. As such the analysis becomes better
understandable and enables visualizations (maps) of the discrepan-
cies and its spatial distribution. Additionally, the difference between
the two reference datasets used in this study emphasize that these
polygons should be of high quality and well distributed over the area.

When operationalizing the mapping process on a national scale,
there is a trade-off between analysis complexity and the quality and
labeling of the segments. Keeping some parameters constant and us-
ing a simpler classifier such as a k-nearest neighbor classifier will
slightly lower the overall accuracy but will keep the analysis under-
standable and the results reliable. This might be of priority to maps
used in models predicting the discharge capacity of floodplains and
the required flood defenses.
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A
A P P E N D I X C L A S S E S

Classes
distinguished by
Rijkswaterstaat
Photo Interpretation
map,
Rijkswaterstaat pilot
vegetation legger,
Geerling et al.
(2009) and this
study

pi map legger geerling et al . 2009 this study

Summer
bed 1

Water Water Water

Pioneer
vegetation

not present not present Pioneer

Gravel2 Bare Bare Sand

Built-
up/hardened

Built-
up/hardened

Built-
up/hardened

Built-up

Production
grassland

Grass Production
grassland

Grass

Structure
rich grass-
land

Grass Structure
rich grass-
land

Grass

Agricultural
field

not present Agricultural
field

Field

Bulrush not present Bulrush Herbaceous

Reed and
other helo-
phytes

Reed Reed and
other helo-
phytes

Herbaceous

Herbaceous
vegetation

Herbaceous
vegetation

Herbaceous
vegetation

Herbaceous

Natural
forest

Natural
forest

Natural
forest

Forest

Production
forest

not present Production
forest

Forest

Tidal
forest

not present Tidal
forest

Forest

Bush Bush Bush Bush

Orchard
and tree
nursery

Orchard
and tree
nursery

not present Orchard

1 Along summer bed, the PI map consisted of other water classes: Side channel and
Artificial or oxbow lake.

2 Along gravel, the PI map consisted of other sand and shore classes: Natural shell
bank; Hard clay or peat bank; Beach or shelf; Bare shore levee and Rest (often tem-
porarily bare soil).



B
A P P E N D I X C O M PA R A B I L I T Y O F 1 9 I N D I V I D U A L
R E F E R E N C E P L O T S

Average
comparability

between the
reference objects of

the 19 individual
circular manually
digitized reference
plots (indicated at

the top) and
segmentation results
of the 2008 CIR and

the 2011 AHN2
dataset. Scale is set

between 50 and 450
(horizontal axis) and

repeated for the five
scales settings

between 10% till
30% (indicated at

the right).

segmentation

under

over

%
%

%
%

%
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C
A P P E N D I X C L A S S I F I C AT I O N

Western part of the
study area, North is
to the right of the
paper. Floodplains
around Wageningen
and Renkum
classified into
floodplain vegetation
structure classes.
Objects created by
segmentation in
eCognition’s
multiresolution
segmentation with
scale 150 and shape
25%, spectral
difference
segmentation 2 and
classified by random
forest with 1000
trees and 15
variables each

agriculture

sand

built-up

bush

herbaceous

forest

pioneer

grass

water

orchard

441000

442000

443000

174000

176000

178000

180000

agriculture
sand

build−
up

bush
herbaceous

forest
pioneer

productionn grassland
w

ater
orchard
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Eastern part of the
study area, North is

to the right of the
paper. Floodplains to

the east of Renkum
and west of Arnhem

classified into
floodplain vegetation

structure classes.
Objects created by

segmentation in
eCognition’s

multiresolution
segmentation with

scale 150 and shape
25%, spectral

difference
segmentation 2 and

classified by random
forest with 1000

trees and 15
variables each

agriculture

sand

built-up

bush

herbaceous

forest

pioneer

grass

water

orchard

441000

442000

443000

180000

182000

184000

186000

agriculture
sand

build−
up

bush
herbaceous

forest
pioneer

productionn grassland
w

ater
orchard
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