
 

Spectroscopy-supported digital soil mapping 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V.L. (Titia) Mulder 
 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thesis committee 
 
Promotor 
Prof. Dr M.E. Schaepman 
Professor of Remote Sensing, University of Zürich, Switzerland 
Professor of Geo-information Science and Remote Sensing,  
Wageningen University 
 
Co-promotor 
Dr S. de Bruin 
Assistant professor, Laboratory of Geo-Information Science and Remote Sensing 
Wageningen University 
 
Other members 
Prof. Dr P.C. de Ruiter, Wageningen University 
Prof. Dr J. Wallinga, Wageningen University 
Dr P. Lagacherie, UMR LISAH, INRA, Montpellier, France 
Prof. Dr A. Stein, University of Twente, Enschede, The Netherlands 
 
This research was conducted under the auspices of the C.T. de Wit Graduate School of 
Production Ecology & Resource Conservation (PE&RC) 
  



 

Spectroscopy-supported digital soil mapping 

 
 
 
 
 

V.L. (Titia) Mulder 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thesis 
submitted in fulfilment of the requirements for the degree of doctor 

at Wageningen University 
by the authority of the Rector Magnificus 

Prof. Dr M.J. Kropff, 
in the presence of the 

Thesis Committee appointed by the Academic Board 
to be defended in public 

on 21 October 2013 
at 4 p.m. in the Aula. 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
V.L. (Titia) Mulder 
Spectroscopy-supported digital soil mapping 
188 pages 
 
PhD thesis, Wageningen University, Wageningen, NL (2013) 
With references, with summaries in Dutch and English 
 
ISBN 978-94-6173-690-1 



Table of contents 

 
         Page 
 
Chapter 1 General introduction     1 
 
Chapter 2 The use of remote sensing in soil and terrain   15 
 mapping – A review      

 
Chapter 3 Representing major soil variability at regional scale  51 
 by constrained Latin Hypercube Sampling of remote 
 sensing data      

 
Chapter 4 Retrieval of composite mineralogy by VNIR spectroscopy 69 
 
Chapter 5 Quantifying mineral abundances of complex mixtures  79 
 by coupling spectral deconvolution of SWIR spectra 
 (2.1 µm – 2.4 µm) and regression tree analysis    

 
Chapter 6 Characterizing regional soil mineral composition using 107 
 spectroscopy and geostatistics    
 
Chapter 7 Synthesis      137 
 

References      149 
Summary/Samenvatting     174 
Acknowledgements     180 
List of publications     182 
Short biography      185 
PE&RC Education certificate    187 

  



 



 

1 

 

Chapter 1 
 
 

General introduction 

 
 
  



2 

 



Introduction 

3 

1.1 General introduction 
In the epoch of the Antropocene, humans have become the main driver to global 
environmental change (Steffen et al., 2004). Human-driven changes such as 
population growth, land use change and greenhouse gas emissions have affected the 
functioning of the Earth system. This has resulted in pressure on food security and 
the necessity to adapt to climate change. As part of the Earth’s spheres, the 
pedosphere is responding and contributing to these environmental changes (Macías 
and Arbestain, 2010). Observed changes in the functioning of the pedosphere 
renewed the recognition that soil resources provide key ecosystem services. Soils 
play a fundamental role for assuring food security and are essential to be considered 
in climate change adaptation (Global Soil Parnership, 2011; Grunwald, 2011). These 
recent developments also led to the establishment of the Global Soil Partnership 
(Global Soil Parnership, 2011). This partnership aims to enhance and apply 
knowledge of soil resources, improve their global governance and standardization. 

The return of soils on the political and global research agenda (Hartemink, 2008) 
is also reflected by recent initiated research efforts which aim to respond to the need 
for up-to-date and high resolution soil information, thereby exploring new techniques 
and methodologies (Hartemink and McBratney, 2008). iSoil (van Egmond et al., 
2009) and Digisoil (Grandjean and DIGISOIL Team, 2011) are examples of projects 
that focused on method development. Their main aim was to integrate new sensor 
technologies with soil science and digital soil mapping (McBratney et al., 2003). 
Research was conducted at small scale in order to fully exploit the data richness 
offered by both the sensors and soil legacy data. Other research efforts were more 
tailored to large-scale soil property mapping and harmonizing available soil data. 
Such research is crucial to the identification of threats to soil resources as identified 
by e.g. UN Convention to Combat Desertification (UNCCD) (United Nations, 1994) 
and the EU Soil Thematic Strategy (Commission of the European Communities, 
2006). Currently available continental or global soil data are incomplete and only 
indirectly relate to problems of environmental change (Grunwald et al, 2011). For 
example, the information content of the digital soil map of the world (Fig. 1.1) 
provides the soil type along with specific profile descriptions that typifies the soil 
unit. Opposite to soil properties, it is generally found that this information does not 
provide direct information on soil resources. As a result, the GlobalSoilMap.net 
project (Sanchez et al., 2009) and e-SOTER (van Engelen, 2008) were initiated as the 
first steps to provide soil information for addressing the described current large-scale 
environmental issues. The GlobalSoilMap.net project aimed to make a new digital 
soil map of the world using state-of-the art technologies.  
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The research presented in this thesis was carried out in the context of the EU 

Seventh Framework Programme (FP7) project e-SOTER (van Engelen, 2008). The 
Group on Earth Observation (GEO) initiated a Global Earth Observation System of 
Systems (GEOSS). Within this framework, e-SOTER delivered a web-based regional 
pilot platform with soil and terrain data, methodologies and applications (Battrick, 
2008). The project had two major research objectives. The first objective was to 
improve the current SOil and TERrain (SOTER) methodology (van Engelen and 
Wen, 1995) at scale 1:1 million, focusing on harmonization of existing soil legacy 
data and creating exhaustive soil maps using moderate-resolution optical remote 
sensing (RS) combined with existing soil legacy data. The second objective aimed to 
develop advanced RS applications within 1:250.000 scale study areas, including 
geomorphic landscape analysis and RS of soil attributes. This thesis is the result of 
the latter objective and contributed to the improvement of SOTER spatial and 
attribute data by developing methods to obtain semantic soil data from remote and 
proximal sensing (PS) data.  

The remainder of this chapter describes the framework in which the work of this 
thesis was done. Section 1.2 introduces conventional and digital soil mapping (CSM 
and DSM respectively). Section 1.3 provides the basic principles of RS and PS with 
emphasis on the added value for DSM. In section 1.4, the objectives and research 
questions are defined while the final section provides the outline of this thesis. 

Figure 1.1: Digital soil map of the world, (FAO, 2007). 
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1.2 Conventional and digital soil mapping 

1.2.1 Conventional soil mapping (CSM) 

One of the first soil scientists was perhaps Olivier Serries (1539 - 1619), who wrote 
Théâtre d'Agriculture (1600), a famous textbook of French agriculture. Vasily 
Dokuchaev (1846 - 1903) has been credited for laying the foundations of soil science 
at the end of the 19th century. Early 20th century, the expert on pedology Eugene 
Hilgard (1833 - 1916), was considered to be the father of ‘modern’ soil science in the 
USA. This modern soil science is nowadays referred to as CSM which matured in the 
second half of the 20th century (Schelling, 1970). The original methodologies were 
refined over time. At the end of the 20th century, the major principles and practices 
for making and using soil surveys were described in the standard from the Soil 
Survey Division Staff – the soil survey manual (Soil Survey Division Staff, 1993). 
CSM typically employs the free survey method to create soil maps. First, a mental 
soil-landscape model is made. Soil boundaries are defined based on landscape 
features from aerial photograph interpretations. Next, sample locations are selected 
that are likely to be most informative. The mental model is refined based on these 
field observations. Additional samples might be obtained and finally the map unit 
composition is determined. The map is a general-purpose map with soil classes and 
additional soil profile descriptions characterizing each map unit (Bregt, 1992). The 
CSM approach can result in accurate maps if the survey is well performed but there 
are some major limitations to CSM. The practical limitation to CSM, especially for 
large or inaccessible areas, is the intensive field work required to produce accurate 
and detailed maps (Bui et al., 1999). Apart from that, the soil surveyor’s mental soil-
landscape model is difficult to reproduce. Also, the discrete homogeneous polygons 
mapping units have a qualitative nature and lack quantified measures of accuracy 
(Kempen, 2011). Central to CSM is the description of the soil by a soil classification 
system (IUSS Working group WRB., 2006), which is a hierarchical and inflexible 
system. To address current environmental issues, more flexible and quantitative 
methods are required to study soils and their relation or function to environmental 
factors and threats (Bouma et al., 2012; Hartemink and McBratney, 2008).  

1.2.2 Digital soil mapping (DSM) 

DSM relies on field, laboratory and RS and PS soil observations, integrated with 
quantitative methods to infer spatial patterns of soils across various spatial and 
temporal scales (Grunwald, 2010). Using a broad range of data sources and methods, 
DSM aims to provide up-to-date and accurate soil maps to meet the current and 
future need for soil information. The DSM approach is both data and environmental-
centred and so uses the data as a starting point to study the spatial distribution of 
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soils and soil properties. This makes DSM flexible and more suitable in providing 
soil information for specific applications compared to CSM.  

The basis of DSM is the application of pedometric methods that predict the spatial 
and temporal distribution of soil types and soil properties. The conceptual framework 
in which the pedometric methods are applied is the State Factor Equation of soil 
formation, first introduced by Jenny (1941). This work states that soils can be 
described by the main environmental soil forming factors, which are: climate, 
organisms, relief, parent material and time (CLORPT). DSM uses this concept to 
develop empirical models that relate observations of soil properties with 
environmental variables that describe the main soil forming factors (i.e. CLORPT). 
Refinements of this modeling framework were made over the years, including the 
SCORPAN (McBratney et al., 2003) framework which is spatially explicit, and the 
STEP-AWBH (Grunwald, 2011) which is both spatially and temporally explicit. 
Typically, the environmental variables are exhaustive georeferenced data layers, 
including digitized geological and soil maps, satellite images and derivatives of the 
latter. There are no prerequisites on the type of model; regression models, regression 
trees and various other data mining techniques have been proven successful in 
establishing the statistical relations. Overall, DSM is indeed flexible, quantitative 
and accurate (Chapter 2 and references in there). Nevertheless, there are some critical 
points to consider. First, the models are typically not easy to transfer to other regions 
because the prediction models are based on the feature space of the study area which 
may not be applicable in another area. Secondly, compared to CSM products, DSM 
maps are developed for specific purposes rather than for general applications, which 
reduces its use to a limited public. Finally, DSM is not standardized and the use and 
interpretation of models by other users requires a clearly written report with 
supplementary information and instructions.  

1.2.3 Spatial modeling of soil properties at regional scale 

DSM successfully delivers up to date soil information at smaller scales (Gomez et 
al., 2012; Kempen, 2011). Still, difficulties remain for large-scale assessment with 
respect to data availability and scaling issues (Minasny, 2012; Minasny et al., 2013). 
In this work the following definitions of scale were used; local is smaller than 104 
km2, regional varies between 104 km2 and 107 km2 and global is larger than 107 km2 
(Mulder et al., 2011b). Larger spatial scales or studies refer to studies which are done 
at a scale that reaches beyond the local scale. Typically, large-scale assessments rely 
on relative sparse samples which impede the development of soil prediction models. 
The relation between the target and predictor variable tends to decrease with 
increasing scale and extent of the study area. Large-scale DSM is not straight 
forward and involves more than simply applying existing methods to large scale 
areas. Grunwald et al. (2011) emphasized that the assessment of spatial and temporal 
autocorrelations depend on the density and distribution of soil observations within a 
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landscape. Accordingly, the sample size of target variables and the sampled 
variability of the soil and environmental observations influence the accuracy of soil 
prediction models (Vasques et al., 2012). Advanced soil collection methods, suitable 
for large-scale studies, are needed to advance DSM predictions in space and time. It 
is expected that datasets, where the density and scale of soil observations more 
closely resemble the spatial resolution of the CLORPT factors, can elucidate the 
scaling behaviour of soil properties and processes across spatial and temporal scales. 
Apart from that, advancements to quantify soil properties and processes are expected 
in improved inference methods and less so on improved methodologies or models for 
predicting soil properties.  

The use of geostatistical methods has some advantages as compared to the 
“CLORPT”-approach. Geostatistical methods are data driven rather than knowledge 
driven, and deal with geographical space rather than feature space. This allows for 
transferability to other areas, as a result. Furthermore, in addition to the structural 
part (drift or trend) that is modelled by the “CLORPT”-approach, the spatially 
correlated random part of variation is modelled. Here, the trend-component can be 
estimated using the auxiliary variables, using e.g. regression kriging (Hengl et al., 
2007a). Modelling both the structural part and the random part of variation generally 
results in a higher prediction accuracy; kriging provides the best linear unbiased 
estimator of an unknown location along with the prediction uncertainty (Goovaerts, 
1999). Overall, geostatistical methods allow for more in-depth analysis of prediction 
uncertainties and spatial processes compared to the ‘CLORPT’ approach. Despite the 
many pros for using geostatistical methods some major limitations for large-scale 
mapping exist. Calibration of geostatistical models, generally requires higher 
sampling densities and spatial dependence of the observations (Hengl et al., 2003). 
Furthermore, geostatistical methods involving kriging have practical limitations for 
large scale assessments. The most important limitation, besides data collection, is the 
computational feasibility for large datasets. Currently, promising research is done to 
ensure computation feasibility for large datasets (Katzfuss, 2011), which was 
especially helpful for global environmental and climate change studies (Cressie and 
Johannesson, 2008; De Jong et al., 2013; Furrer and Genton, 2011). They showed 
that the computational requirements are not necessarily the limiting factor. So far, 
few studies have used such approaches for soil prediction models and the soil science 
community could take such methods into consideration. 

Concluding, to make large-scale DSM successful: (I) advanced sampling and 
inference methods are needed, (II) improving soil predictions requires compatibility 
between the variability within the sample and the predictor variables, (III) data 
driven geostatistical methods should be used to improve spatial predictions, and (IV) 
the methods must be both time and cost efficient. RS and PS methods could provide 
essential information to make regional-scale DSM successful, as this thesis will 
demonstrate. 
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1.3 Remote and proximal sensing of soils 

1.3.1 Remote sensing 

RS is about obtaining information from an object through the analysis of data 
acquired by a device that is not in direct contact with the object of interest. Examples 
of sensors used for such purpose include gravity meters measuring variations in force 
distributions, and sonar measuring variations in acoustic wave distributions. This 
thesis relied on sensors measuring variations in the emission and reflectance of 
electromagnetic (EM) energy by objects. EM energy sensors collect data about the 
emission and reflection of EM energy from objects. Sensors operating from satellite 
and airborne platforms can provide information on various earth surface features. 
This information supports inventorying, mapping and monitoring of earth resources, 
including soils. Note that in this thesis, the term RS refers to EM RS while other 
types of RS are not further discussed (Lillesand et al., 2008). The EM spectrum 
ranges from gamma (γ) rays at the shortest wavelengths to radio-waves at the longer 
wavelengths (Fig. 1.2). Most common sensing systems operate in one or several of 
the visible, infrared (IR) or microwave portions of the spectrum. Each part of the 
spectrum provides typical information for various earth resources. Sensors obtaining 
information from the γ-rays (Wilford et al., 1997), X-rays (Bish and Plötze, 2011) 
and the Mid-IR (Viscarra Rossel et al., 2006b) successfully retrieve soil information, 
especially soil mineralogy. However these sensors are not fully operational for 
spatial modelling at large scales. In this thesis, I limit myself to the use of the visible 
and near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) 
wavelength ranges. Sensor data covering these wavelengths are readily available 
from both satellite and airborne platforms (Lillesand et al., 2008). 
 
 
 
 
 
 
 
 
 
 
 
 

                                             Figure 1.2: Electromagnetic spectrum (Lillesand et al., 2008). 
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1.3.2 Remote and proximal sensing methods 

Deriving information from spectral data typically relies on methods such as 
(un)supervised classification (Friedl et al., 2002), spectral unmixing (Keshava and 
Mustard, 2002), band ratios (Hewson et al., 2012), absorption features analysis 
(Clark et al., 2003) and partial least squares regression (PLSR) (Viscarra Rossel et 
al., 2006b). Some spectral signatures, such as those from soil, water and vegetation, 
can be easily discriminated and (un)supervised classification usually results in 
reliable outputs. Nevertheless, satellite images take pixel-based measurements. These 
pixels seldom consist of a single constituent but represent a mix of multiple 
constituents. Fractional coverage estimates of pixel-constituents have been obtained 
using spectral unmixing (Keshava and Mustard, 2002). Alternatively, information 
from band ratios have been used for those constituents that show clear differences 
between spectral bands in relation to some physical property, e.g. vegetation 
properties (Tucker, 1979). Vegetation differentiates itself from other earth surface 
resources by the major difference in reflectance between the red and near-infrared 
wavelengths (Fig. 1.3a). Based on the difference between these spectral regions, 
several indices have been developed to retrieve specific information for vegetation 
properties (Tucker, 1979).  

Quantitative information is typically retrieved from spectral data using radiative 
transfer modeling (Laurent et al., 2011) or absorption feature analysis (Clark et al., 
2003; Sunshine and Pieters, 1998). This requires high-resolution spectral data to 
ensure correct detection of the specific spectral characteristics. Absorption feature 
analysis uses the continuum removal (CR) of the isolated feature to relate changes in 
depth, width or surface of these features to physical properties, e.g. clay content (Fig. 
1.3b). An alternative statistical approach is PLSR, where spectral bands are used to 
model the relation between physical properties and reflectance (Viscarra Rossel et 
al., 2011). This has been useful for the retrieval of various soil properties but 
limitations occur when absorption features of constituents tend to overlap. In case 
absorption features overlap, the relation towards the physical property of interest 
becomes non-linear due to e.g. complex scattering behaviour of the constituents.  

 
 
 
 
 
 
 
 
 
 

Figure 1.3: a) Spectra of soil, vegetation and water, (b) CR of SWIR reflectance of smectite spectra of varying 
abundances, (c) Spectra of various minerals (Clark et al., 2007). 
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Mineralogy is a clear example of a soil property for which the retrieval of 
quantitative information is limited using a strictly linear approach (Clark and Roush, 
1984). Many mineral diagnostic absorption features occur in the SWIR (Fig. 1.3c); 
methods estimating mineralogy from a natural sample consisting of various minerals 
need to account for the non-linear behaviour in reflectance and overlapping 
absorption features. To do so, specialized modeling approaches are needed to obtain 
an estimate of abundance or characterization of the constituents.  

 

1.3.3 Remote and proximal sensing for DSM 

In this thesis, data collection by sensors on board of satellite or airborne platforms is 
referred to as remote sensing (RS). Those measurements that are taken at the field or 
laboratory level are referred to as proximal sensing (PS). An extensive review on the 
potential of RS and PS for soil attribute retrieval is given in Chapter 2 of this thesis. 
It was found that, RS provides exhaustive coverage of large areas, but with low 
spectral resolution. RS and derived products are therefore very suitable as predictor 
variables in DSM but less so to measure distinct absorption features. Satellite 
products such as Landsat Thematic Mapper (TM), Advanced Spaceborne Thermal 
Emission and Reflection radiometer (ASTER) and Moderate Resolution Imaging 
Spectroradiometer (MODIS) have been used as representatives for the soil forming 
factors soil, vegetation and parent material (CLORPT). In contrast, PS provides high 
spectral resolution data from individually sampled sites (Fig. 1.4). RS and PS are 
considered a cost and time efficient alternative compared to chemical and physical 
laboratory measurements to obtain soil property information from sampled sites. RS 
and PS are especially suitable for large-scale studies where soil legacy data is sparse.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   Figure 1.4: Spectral resolution of ASTER compared to laboratory spectroscopy  (Clark et al., 2007).  
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Despite the many benefits that RS and PS methods provide for DSM, some 
critical issues need consideration. Optimal retrieval of detailed soil information 
requires operational methods and high spectral resolution imagery, yet, both criteria 
have not been met. Most state-of-the-art methods to retrieve soil properties are not 
publicly available. Suitable high spectral and spatial resolution imagery are currently 
not provided by satellite platforms. That is to say, no sensors are available with 
spectral bands covering the wavelengths required for optimal soil property retrieval. 
Using RS and PS is not straightforward and expert knowledge is required to maintain 
quality control. Incorrect measurements and pre-processing of data may easily lead to 
inaccurate results. Apart from these technical problems, a common criticism is that 
RS observations are limited to the first few centimetres of the surface. It is well 
known that many soil processes are best quantified using the full soil profile. 
Nevertheless, RS allows spatial explicit characterization of soil properties at the 
surface. Using pedotransfer functions, properties have been predicted for the full 
profile (Hong et al., 2013; McBratney et al., 2002). A combination of the latter two 
could result in a more refined description of soil properties within an area. Besides, 
agricultural activities surely benefit from estimated topsoil parameters to optimize 
crop growth conditions (White et al., 2012).  
 
Following from sections 1.2 and 1.3, soil mineralogy became the central soil property 
of this thesis for two reasons. First, the retrieval of soil mineralogy from PS is known 
to be difficult due to the complex scattering behaviour within a sample (Clark and 
Roush, 1984). Improving methods for such properties would substantially improve 
the perspectives of using PS for DSM. Second, the presences of medium and long-
scale dependent spatial processes were assumed necessary to model the major soil 
variability at regional scale using RS (section 1.2.3). Mineralogy meets the 
requirements to test this hypothesis. It is known that in large areas the spatial 
processes of mineral variability manifest themselves at shorter and longer spatial 
scales (Jaquet, 1989). 

1.4 Objective and research questions 
The soil science community is expected to deliver large-scale soil information maps 
that readily allow addressing the related environmental questions raised on the 
political agenda of countries, continental and global organizations. Soil scientists 
debate how to meet the demands from outside the community. Prominent soil 
scientists have provided the community with envisions of research in the near future 
(Bouma, 2009; Grunwald, 2011; Hartemink and McBratney, 2008). The ultimate goal 
would be to develop a global soil model which is sufficiently flexible to predict 
various soil properties at different spatial and temporal scales and in which existing 
soil data and environmental data are integrated in a holistic fashion. To achieve this 
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goal research priorities are among others, efficient data collection, spatial and 
temporal modeling of soil properties and solving scaling issues affecting large-scale 
assessments. Apart from that, harmonization of existing legacy data and improved 
transferability over different areas is needed. RS and PS could take a key position in 
providing data for the development of methods for large-scale modeling of soil 
properties. Especially with the advancement in computer and sensing technologies, 
methods for data collection and spatial modeling for large-scale areas might benefit 
from using spectral data. From this, the main objective of this thesis is to exploit the 
use of remote and proximal sensing methodologies for digital soil mapping in order 
to facilitate soil mapping at larger spatial scales.  

To achieve this objective, an experiment at regional scale was designed. In this 
experiment, each step involved in the process of data collection, data retrieval from 
spectral data and spatial modeling of soil properties, was critically reviewed. 
Temporal modeling of soil properties and harmonization of legacy data was left 
aside. This stepwise approach allowed for the identification of the major bottlenecks 
which are addressed by the research questions outlined below. 
 
1: What is the current state-of-art in the use of remote sensing for soil and terrain 
mapping? 

This question is addressed by reviewing recent findings on the use of optical and 
microwave data for soil science applications with the emphasis on (I) spatial 
segmentation of the landscape, (II) measurements or prediction of soil properties by 
means of physically-based and empirical methods and (III) supporting spatial 
interpolation of sparsely sampled soil property data as a primary or secondary data 
source. 
 
2: Can major soil variability at regional scale be represented by a sparse remote 
sensing-based sampling approach? 

The collection of a representative soil sample for a large area, in the absence of 
legacy data and limited acquisition resources, demands flexibility and adaptation of 
sampling strategies. The challenge is to adequately plan the data collection within a 
sound theoretical framework using the full potential of the available RS data.  
 
3: Which methods allow retrieval of mineralogy from complex mixtures using 
proximal sensing? 

It was deemed necessary to demonstrate two recently proposed methods that 
allow advanced modeling of soil mineralogy using proximal sensing. The complex 
scattering behaviour of minerals within a soil sample may be addressed by model 
approaches that assume either linear or non-linear reflectance of the constituents. In 
this thesis, the opportunities and limitations for spectroscopic analysis of minerals 
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were evaluated under the assumptions of both linear and non-linear reflectance 
behaviour. 
 
4: Can scale-dependent variability be extracted from remote sensing and do model 
predictions improve by using scaled remote sensing data that match the variability of 
the sample? 

The aim is characterizing regional soil mineral composition using predictor 
variables derived from RS data. The sparse sample used in this work represents the 
major variability of soils but bears few compatibility in variability with the high-
resolution RS data. The feasibility to predict soil properties using such a sample is 
likely to increase if the RS data represent a similar spatial scale of variability. The 
latter might be achieved by smoothing the RS data to medium- and long-range spatial 
structures, using a geostatistical approach.   

1.5 Structure of this thesis 
The key principles about soil mapping and RS and PS were described in this 
introductory chapter. Chapters 2 to 6 constitute the core of this thesis and address the 
objective and research questions presented in section 1.4.  

Chapter 2 reviews previous studies related to DSM and RS and PS of soil 
properties. Here, the major opportunities and limitations of using spectral 
information for DSM were identified. This review was used as the starting point of 
this thesis. Chapter 3 describes a RS-based sampling approach for data collection in 
large areas. The sampling was constrained by lack of accurate soil legacy data and 
limited acquisition resources. This chapter shows how, despite these limitations, RS 
data allowed collecting a sample representing major soil variability at regional scale. 
This sample was further used for the research carried out in this thesis. Chapters 4 
and 5 demonstrate two methods to retrieve soil mineralogy from PS. These chapters 
demonstrate advances in soil spectroscopy and also raise awareness to acquire soil 
information from PS. In Chapter 6, the previously described methods were integrated 
which allowed to characterize the regional soil mineral composition using 
spectroscopy and geostatistics. This chapter demonstrates the full potential of RS and 
PS for large-scale DSM. Chapter 7 concludes this thesis by summarizing and 
discussing the main findings in relation to the problem setting discussed in this 
chapter. Literature references have been combined in the References section at the 
end of the thesis.  
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The use of remote sensing in soil and terrain 
mapping – A review 
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This chapter is based on: 
V.L. Mulder, S. de Bruin, M.E. Schaepman, T.R. Mayr (2011). The use of remote 
sensing in soil and terrain mapping – A review. Geoderma, 162 (1-2), 1-19.  
DOI: 10.1016/j.geoderma.2010.12.018 

Abstract 
This article reviews the use of optical and microwave remote sensing data for soil 

and terrain mapping with emphasis on applications at regional and coarser scales. 
Remote sensing is expected to offer possibilities for improving incomplete spatial 
and thematic coverage of current regional and global soil databases. Traditionally, 
remotely sensed imagery have been used to support segmentation of the landscape 
into rather homogeneous soil–landscape units for which soil composition can be 
established by sampling. Soil properties have also been inferred from optical and 
microwave data using physically-based and empirical methods. Used as a secondary 
data source, remotely sensed imagery may support spatial interpolation of sparsely 
sampled soil property data. Soil properties that have been measured using remote or 
proximal sensing approaches include mineralogy, texture, soil iron, soil moisture, 
soil organic carbon, soil salinity and carbonate content. In sparsely vegetated areas, 
successful use of  spaceborne, airborne, and in-situ measurements using optical, 
passive and active microwave instruments has been reported. On the other hand, in 
densely vegetated areas, soil data acquisition typically relied on indirect retrievals 
using soil indicators, such as plant functional groups, productivity changes, and 
Ellenberg indicator values. Several forms of kriging, classification and regression 
tree analyses have been used jointly with remotely sensed data to predict soil 
properties at unvisited locations aiming at obtaining continuous area coverage. We 
expect that remotely sensed data from existing platforms and planned missions can 
provide an important data source supporting digital soil mapping. Yet, most studies 
so far have been performed on local scale and only few on regional or smaller map 
scale. Although progress has been made, current methods and techniques still bear 
potential to further explore the full range of spectral, spatial and temporal properties 
of existing data sources. For example, spaceborne spectroscopy has been of limited 
use in retrieving soil data when compared to laboratory or field spectroscopy. To 
date, there is no coherent methodology established, where approaches of spatial 
segmentation, measurements of soil properties and interpolation using remotely 
sensed data are integrated in a holistic fashion to achieve complete area coverage. 
Such approaches will enhance the perspectives of using remotely sensed data for 
digital soil mapping. 
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2.1 Introduction 
Soil and terrain information is needed for policy-making, land resource management, 
and for monitoring the environmental impact of development. Lack of comprehensive 
information about global, national or local land resources increases the risk of 
releasing uninformed policy decisions, avoidable continued degradation of land and 
water resources, and excessive carbon emission to the atmosphere and renders it 
finally less likely that the Millennium Development Goals will be achieved. The 
viability and cost of vital infrastructure is affected by this information shortage just 
as much as the food and water security and response to environmental change (van 
Engelen, 2008). Global and regional models that address climate change, land 
degradation and hydrological processes need soil input parameters with complete 
area coverage, but currently there are only few spatially exhaustive datasets available 
(Anderson et al., 2008; Bastiaanssen et al., 2005).  

In recent decades the soil science community has made great efforts to develop 
regional and global soil and terrain databases. Currently, there are several 
georeferenced soil databases available at map scales smaller than 1: 250.000; namely 
the Harmonized World Soil Database at a map scale of 1:5 M (million) developed by 
the FAO-UNESCO (FAO et al., 2008); The European Soil Database at a map scale of 
1:1 M, which is part of the European Soil Information System — EUSIS (Le Bas et 
al., 1998). The latter is the product of a collaborative project involving all the 
European Union and neighbouring countries, that has been active for the past 20 
years (King et al., 1994). Further, the latest version of the European Soil Database 
(v2.0) includes an extended geometric component ‘The Soil Geographical Database 
of Eurasia’ (Lambert et al., 2002), which also covers the Russian Federation, 
Belarus, Moldova and Ukraine (Morvan et al., 2008); The Soil and Terrain Digital 
Database (SOTER), which incorporates quantitative information on soils and terrain 
at map scales 1:1 M and 1:5 M (Oldeman and van Engelen, 1993); Although partly 
implemented, the geo-referenced Soil Database for Europe at a map scale of 
1:250.000, is an extendable database to which users can submit their local soil and 
terrain databases. For the latter, there is a manual aiming for consistence among soil 
surveyors (Finke et al., 2001). Other examples of soil databases with a continental 
scale are the SOTER database for different parts of Africa at a scale of 1:2 M 
(Dijkshoorn, 2003; van Engelen et al., 2006) and the SOTER database for Latin 
America and the Caribbean at a scale of 1:5 M (Dijkshoorn et al., 2005). There are 
many national soil databases such as the American Web Soil Survey (WSS) (Soil 
Survey Staff - Natural Resources Conservation Service) and the Soil Survey 
Geographic Data Base (SSURGO) from the Natural Resources Conservation Service 
(NRCS) (Soil Survey Staff - Natural Resources Conservation Service); the Australian 
Soil Resource Information System (ASRIS) from CSIRO Australia (Australian 
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Department of Agriculture Fisheries and Forestry); Available from the Agriculture 
and Agri-Food Canada: the Canadian Soil Information System (CANSIS) and the 
National Soil Database (NSDB) of Canada (Agriculture and Agri-Food Canada., 
2010); and the Russian Soil map at a scale of 1: 2.5 M (Stolbovoi and McCallum, 
2002). For an extended inventory of available soil databases we refer to Rossiter 
(2004) and Nachtergaele (1999). 

The above suggests there is already much soil information available. 
Nevertheless, a major problem is inconsistency in data acquisition because the data 
have been collected nationally at various scales, using different standards and 
methods. Apart from that, developing and transitional countries typically lack digital 
and accessible soil information. Available data sets for these countries are mostly at 
small to medium scales and have been produced through international projects. 
Larger scale digital soil data are limited in availability to the USA, Canada, Australia 
and Europe. However, available soil databases mapped at large scale often have 
inconsistencies, e.g. the present geographical coverage for the European continent is 
uneven between and even within countries. National and regional European networks 
are much denser in northern and eastern regions than in southern Europe (Morvan et 
al., 2008).  

Remote sensing (RS) may offer possibilities for extending existing soil survey 
data sets. The data it provides can be used in various ways. Firstly, it may help 
segmenting the landscape into internally more or less homogeneous soil–landscape 
units for which soil composition can be assessed by sampling using classical or more 
advanced methods. Secondly, RS data can be analysed using physically-based or 
empirical methods to derive soil properties. Moreover, RS imagery can be used as a 
data source supporting digital soil mapping (DSM) (Ben-Dor et al., 2008; Slaymaker, 
2001). Finally, RS methods facilitate mapping inaccessible areas by reducing the 
need for extensive time-consuming and costly field surveys.  

Although RS and soil spectroscopy have been recognized as a potentially 
effective and cost-efficient technology, they are not yet routinely used in soil 
surveys. Our knowledge of how to apply advances in RS to soil and terrain mapping 
is still incomplete (Ben-Dor et al., 2008). The ability to apply RS methods and 
improve coherence in soil and terrain mapping on a global scale, could contribute to 
the Global Soil Observing System, which is planned by the Global Earth Observation 
System of Systems (GEOSS) to meet the need for land resources information 
(Battrick, 2005). Using more coherent data sets with exhaustive coverage would also 
improve the identification of threats to soil quality as identified by e.g. UNCCD 
(United Nations, 1994), the EU Soil Thematic Strategy (Commission of the European 
Communities, 2006), the Canadian Soil Quality Program (Spiess, 2003), the United 
States Natural Resources Conservation Service (United States Department of 
Agriculture, 2006 ) and the Australian natural resource management (NRM) 
programs (Australian Government, 2010). RS has been used to identify these threats 
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and to support soil functional mapping such as water and nitrogen stress (Liaghat and 
Balasundram, 2010; Yi et al., 2008) and soil erosion (Ben-Dor et al., 2009; 
Metternicht and Fermont, 1998). 

This paper aims to review publications from a wide range of sources and outlines 
a methodological framework that facilitates soil and terrain mapping from a soil 
survey-oriented view in combination with remote and proximal sensing (RS and PS) 
methodologies. The review focuses on the use of optical and microwave data for soil 
science applications. Airborne geophysical (e.g. magnetic, electromagnetic and 
radioactive) surveys have been used in geological and soil mapping (Martelet et al., 
2006; Saunders et al., 1999; Wilford et al., 1997). However, the data used in these 
surveys are not as extensively available as optical and microwave data, which makes 
them less suitable for regional soil and terrain mapping.  

The structure of this paper is based on the well-known State Factor Equation of 
soil formation, where soil is described as a function of CLimate, Organisms, Relief, 
Parent material and Time, referred to as CLORPT (Jenny, 1941) and its closely 
related SCORPAN soil spatial prediction function (SCORPAN – SSPFe). SCORPAN 
includes the same factors as CLORPT but also spatial (cross) correlation of soil 
properties and presence of spatially autocorrelated errors (McBratney et al., 2003). 
Several factors of soil formation can be derived from RS (Buis et al., 2009; French et 
al., 2005; Schmidtlein et al., 2007; Singhroy et al., 2003).  

We review the use of RS and PS for (1) identifying any of the factors of soil 
formation to stratify the landscape, i.e. into large relatively homogeneous soil-
landscape units which can be used as covariate for DSM or whose soil composition 
can be determined by classical sampling, (2) allowing measurement or prediction of 
soil properties by means of physically-based and empirical methods, and (3) 
supporting spatial interpolation of sparsely sampled soil property data as a primary or 
secondary data source. Note that in this review we use the term proximal sensing 
(PS) for laboratory and field measurements. The following definition of DSM is 
adopted: ‘the creation and population of spatial soil information by the use of field 
and laboratory observational methods coupled with spatial and non-spatial soil 
inference systems (Lagacherie et al., 2007; McBratney et al., 2003)’ (Carré et al., 
2007). 

2.2 Spatial stratification of the landscape 
A common way of spatially segmenting the landscape is to divide it into internally 
more or less homogeneous and mutually contrasting landform units (Hewitt, 1993; 
Hudson, 1992). Soil–landform units are specialized landform units expected to be 
relatively homogeneous in terms of the main factors including parent material (Hengl 
and Reuter, 2009; McBratney et al., 2003). Soil-landform maps thus provide a tool 
for identifying locations where different geomorphic processes dominate. Landform 
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maps are typically suitable predictors of soil types because soil development often 
occurs in response to the underlying lithology and water movement in the landscape 
(Ballantine et al., 2005; McKenzie and Ryan, 1999). For classical soil mapping, such 
as the SOTER methodology, the landform maps can be used to draw soil boundaries. 
Within these units, soil samples can be taken and a soil type or soil association can 
be assigned to the different units (van Engelen and Wen, 1995). In DSM, soil 
landform maps may be used as auxiliary data source (discussed later).  

2.2.1 Landform mapping 

Traditionally, landform mapping is done by visually interpreting aerial photographs 
(Dent and Young, 1981). Nowadays, with access to fast computers and digital 
sources such as Digital Elevation Models (DEMs) – typically acquired by RS – it can 
be done digitally. Typically, the surface is parameterized by attributes such as 
elevation, slope, aspect, plan and profile curvature, and flow accumulation (Moore et 
al., 1993) to obtain relief or surface topography units (Fig. 2.1). These attributes 
quantify the role of topography in redistributing water in the landscape and in 
modifying the amount of solar radiation received at the surface which may affect the 
pedogenesis and thereby the soil characteristics (Wilson and Gallant, 2000). There 
are many definitions for landform mapping, as is described by Dehn et al.  (2001).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1: (Left) Landform delineations: red hatch – mountains, yellow hatch - alluvial fans, green hatch – 
valleys, blue hatch - wash drainage areas, unshaded - unclassified areas and (right) the corresponding shaded 
relief : 4x vertical exaggeration (right). (Reprinted with permission, Leighty (2004)) 
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In this review the description of landform mapping given by Minár and Evans (2008 
p. 1) is being adopted; Hence, the main objective of landform mapping is “The 
identification of the most specific geometrical geomorphic elements with maximal 
change of genetic, geometric and process character” (Minár and Evans, 2008 p. 1). In 
other words, the internal homogeneity and external contrasts of landforms in terms of 
their geometry should reflect their genesis and recent dynamic (Minár and Evans, 
2008). Consequently, the land surface form is characterized by a complex structure 
of nested hierarchies of relief units (Dikau, 1989). Three types of relief units are 
distinguished, based on increasing complexity. Firstly, elementary forms, which 
represent the smallest and simplest geometric units. Secondly, the landforms that are 
composites of elementary forms and thirdly, the landform patterns which are 
associations of landforms (Minár and Evans, 2008). Most of these topographic 
attributes are calculated from directional derivatives of a DEM (Florinsky, 1998). 
Supervised or unsupervised classification for landscape segmentation can be 
performed using crisp or fuzzy clustering methods, ranging from local up to global 
studies (Dobos et al., 2005; Klingseisen et al., 2008; Moore et al., 2003; Prima et al., 
2006; Schmidt and Hewitt, 2004; Tribe, 1992; van Asselen and Seijmonsbergen, 
2006), as well as object-based landform mapping (Otto et al., 2010a;b; Raper and 
Livingstone, 1995). 

There are several general problems which occur with the use of most automated 
landform classification methods. One of these problems concerns scale-dependence 
of the geomorphic elements that can be recognized. To determine the scale on which 
the desired elements can be retrieved, the algorithms should be applied over DEMs at 
various resolutions. Secondly, the definition of class boundaries and semantics may 
differ for different classification methods, which makes it difficult to compare them 
(Dehn. et al., 2001). Furthermore, the recognition of geomorphic elements is strongly 
dependent on the input data used, and it is influenced by DEM accuracy (outlined 
below). Separation of small geomorphic units and recognition of different 
geomorphic elements in flat areas is often hindered by the presence of vegetation; 
therefore research is on-going for the correction of DEM’s for vegetation cover 
(Gallant and Read, 2009; Hofton et al., 2006; Petersen et al., 2009). Another problem 
is that segmentation methods developed for mountainous areas do not work well in 
flat areas. Therefore, when dealing with large heterogeneous landscapes, methods for 
different terrain types have to be combined (Dobos et al., 2005; Ehsani and Quiel, 
2008; 2009; Klingseisen et al., 2008; Moore et al., 2003; Prima et al., 2006; 
Rasemann et al., 2004; Schmidt and Hewitt, 2004). The LandMapR program 
developed by MacMillan et al. (2004) has been very successful in classifying a 
hierarchy of landform entities over a full range of spatial scales. Iwahashi and Pike 
(2007) developed a global terrain map with an automated nested-means classification 
of topography. Their map of terrain classes for the world is freely available online 
[http://gisstar.gsi.go.jp/terrain/front_page.htm]. 
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2.2.2 Landform mapping based on combined data sources 

The combination of a DEM with spectral data can improve landform classification in 
complex landscapes. From a DEM the basic morphometric identifying parameters are 
derived, as described in section 2.1, and additional spectral segmentation has been 
used to refine morphometrically similar landforms (Saadat et al., 2008). Different 
landform models have been developed for using spectral data in combination with 
data from SRTM and Landsat Thematic Mapper+ (TM+). The combination of these 
data sources resulted in better classification of landform types which are dominated 
by slope processes (Ehsani and Quiel, 2009; Martin and Franklin, 2005; Taramelli 
and Melelli, 2009). Other satellites whose data have been used for landform 
recognition in combination with a DEM are e.g. ASTER (Glasser et al., 2008; Saadat 
et al., 2008; Schneevoigt et al., 2008), Satellite Pour l'Observation de la Terre 
(SPOT) (Hansen et al., 2009) and Compact High Resolution Imaging Spectrometer 
(CHRIS) (Ulrich et al., 2009). All studies referred to above concluded that spectral 
data improved classification, because of increased distinction between 
topographically similar landforms. Unlike these studies, which were carried out at 
local scale, Ballantine et al. (2005) and Iwahashi and Pike (2007) used MODIS 
(Moderate Resolution Imaging Spectroradiometer) – and SRTM30 data respectively 
as the sole data source for producing a general landform map at global or regional 
scale.  

Applications of Synthetic Aperture Radar (SAR) data and combinations of SAR 
and multispectral data have also been extensively studied within the context of 
improved landform recognition on a local scale (Madhavan et al., 1997; Singhroy and 
Molch, 2004). Different wavelengths of the SAR signal enable structural analysis of 
elements in specific size classes, while polarization angles are particularly sensitive 
for directional structures. The lineament orientations or faults of geomorphological 
units are enhanced by different single polarized images and multipolarization 
combinations from SAR (Fig. 2.2). Moreover, SAR is cloud-penetrating while the 
strength of backscatter depends on the dielectric properties of surface materials (e.g. 
soil water content), and the copolarization sensitivity to surficial sediments, both 
improve the classification of exposed surficial sediments (Singhroy and Molch, 
2004). 

Singhroy et al. (2003) fused RADARSAT with TM images and employed spectral 
classification for distinguishing surficial deposits, moisture conditions and vegetation 
cover, which facilitated the interpretation and delineation of terrain units within an 
area of about 4800 km2 (Singhroy et al., 2000; 2003). Subsequently, C-band SAR 
images were used in densely vegetated areas to produce an image of the surface 
envelope of the canopy enhanced by highlights and shadows related to surface 
structures and erosional features. The above examples illustrate how automated 
analyses can benefit from complementary information provided by radar and spectral 
imagery. Combinations of SAR and multispectral images have also  
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been visually interpreted for identifying geological structural features. However, 
visual interpretation is time consuming and it is sensitive to human interpretation 
errors (Madhavan et al., 1997). 

2.2.3 Digital elevation models  

The most widely used sources of DEM data are Light Detection and Ranging 
(LIDAR) and SAR and stereo-correlation of images. Dependent on the sensor flight 
altitude, LIDAR allows highly accurate and very densely sampled elevation points 
(Woolard and Colby, 2002). Processing of LIDAR data involves filtering irregularly 
spaced data points to obtain terrain elevation projected onto a regular grid (Brennan 
and Webster, 2006; Hodgson et al., 2003). SAR data are typically processed using 
interferometric techniques. SAR data are either airborne or spaceborne; near-global 
coverage, between approximately 60° northern latitude and 56° southern latitude has 
been achieved with the Shuttle Radar Topography Mission (SRTM) (Farr, 2000). 
Compared to typical LIDAR data sets, SRTM has much poorer spatial resolution, but 
unlike the former, SRTM data is easily accessible and even available for free (Farr, 
2000). Recently, the ASTER Global Digital Elevation Map (GDEM), created by 
stereo-correlation of ASTER imagery, has been made available for free to the public. 
The ASTER GDEM has a spatial resolution of 30m and has near global coverage 
(METI/ERSDAC, 2009). A fine resolution (2.5 m) DEM can be generated with the 
ALOS/PRISM which is a panchromatic RS instrument specially designed for stereo 
mapping (Earth Observation Research Center, Japan Aerospace Exploration Agency, 
2010).  

Figure 2.2: (Left) Original map of geological setting and (right) different structural orientation interpreted from 
each polarization.  (Reprinted with permission, Singroy and Molch (2004)) 
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A main limitation for both, LIDAR and SAR based approaches is vegetation cover 
density. For LIDAR, too small gap fractions in the canopy prevent the laser pulse to 
reach the ground, for SAR decorrelation of moving foliage is the main issue. Further, 
in rugged terrain, the observational geometry of SAR limits assessing continuous 
DEMs. Vertical and horizontal accuracies vary for the different data sets. For 
example, SRTM is claimed to have a vertical absolute accuracy, which is a measure 
of how accurate elevation is at each pixels, less than 16m, and an absolute horizontal 
accuracy of 20m (Farr, 2000). For the ASTER GDEM the estimated absolute 
accuracies are 20m vertically and 30m horizontally (METI/ERSDAC, 2009). For 
ALOS/PRISM the estimated absolute vertical accuracy is about 6m and the absolute 
horizontal accuracy is 2.5m (Earth Observation Research Center, Japan Aerospace 
Exploration Agency, 2010). The estimated absolute accuracies for the Ice, Cloud and 
land Elevation Satellite (ICEsat) Geoscience Laser Altimetry System (GLAS) are 
16.1m horizontally and 13.2m vertically. GLAS offers global coverage of raw 
altimetric data, but processed DEM’s are available only regionally owing to the 
necessity of specific corrections for surface types (Pagnutti and Ryan, 2009). There 
are many different airborne LIDAR sensors on the market; for example, the Airborne 
Laser Terrain Mapper (ALTM) of Optech has a vertical accuracy of 8-11 cm and a 
horizontal accuracy of 2-3 cm on the ground (Rayburg et al., 2009). 

2.2.4 Vegetation patterns and indices 

Spatial and temporal variations in vegetation indices have been have been found to 
be linked to prevailing climate, ecosystem, terrain and physical soil properties (Singh 
et al., 2004); The Normalized Difference Vegetation Index (NDVI) is one of the most 
common indicators of crop growth characteristics and, indirectly, of specific site 
qualities (Sommer et al., 2003; Sumfleth and Duttmann, 2008). Tucker (1979) 
introduced NDVI and the Global Inventory Modeling and Mapping Studies (GIMMS) 
data set, the latter of which provides a time series of NDVI data (Julien and Sobrino, 
2009; Los et al., 1994). A serious problem in partly vegetated areas is the influence 
of soil background reflectance on NDVI, which produces decreasing NDVI values 
with increasing soil brightness under otherwise identical circumstances (Huete, 1988; 
Tucker et al., 1985). Therefore, several variations on the NDVI have been developed, 
e.g. the Soil Adjusted Vegetation Index (SAVI) (Huete, 1988; Rondeaux et al., 
1996), the Transformed SAVI (TSAVI) (Baret et al., 1989; Rondeaux et al., 1996), 
the Modified SAVI (MSAVI) and the Global Environment Monitoring Index (GEMI) 
(Qi et al., 1994; Rogan and Yool, 2001; Rondeaux et al., 1996). For a more extensive 
overview of vegetation indices the reader is referred to Dorigo (2007) and Huete 
(1988). 

Examples of soil properties that have been related to monotemporal NDVI 
imagery in local scale studies are root zone soil moisture (Wang, 2008), soil colour 
(Singh et al., 2006), soil texture and water-holding capacity (Lozano-Garcia et al., 
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1991) and soil carbon and nitrogen content (Sumfleth and Duttmann, 2008). 
Alternatively, NDVI time series have been used to derive soil patterns by analysing 
changing NDVI values during a growing season and the onset of senescence during a 
dry season, for example Lozano-Garcia et al. (1997). Hansen et al. (2009) found 
larger changes in vegetation greenness and canopy water absorbance on steeply 
sloping valley sides with sandy soils than in nearly flat, waterlogged valley bottoms. 
Dobos et al. (2000) found that the use of spectral indices such as NDVI in 
combination with a DEM often produced soil pattern delineations comparable to 
existing regional scale soil and terrain data. To our knowledge, in regional studies 
NDVI data have been related to soil type patterns rather than to specific soil 
properties. 

The use of bio-geographical gradients in non-linear ordinations combines the 
information from vegetation ecology and RS methods (Schmidtlein et al., 2007). The 
approach entails analysing trends present in sets of floristic variables and 
establishing the nature of interrelationship between them (Armitage et al., 2004). 
Reflectance values have been related to ordination axes by PLSR and the resulting 
regression equations were then applied on the spectral image. By this method the 
compositional variation was mapped for an area of 25 ha (R2 = 0.79), using 
continuous fields (Schmidtlein et al., 2007). Such bio-geographical patterns can be 
related to precipitation, temperature and soil conditions on a regional scale (Mahecha 
and Schmidtlein, 2008; Schmidt and Hewitt, 2004). Alternatively, stratification using 
indicator species of vegetation for specific habitats enables soil types to be allocated 
to specific strata, and vice versa (Mücher et al., 2009). However, the success of the 
latter method is limited to the availability of data for potential natural vegetation 
(PNV) and indicator species, and has been unsuccessful in ecoregions significantly 
altered by humans. 

Obviously, vegetation does not allow direct measurement of pure soil spectra. 
Removing the spectral influence of vegetation from the signal may improve the 
mapping of soil attributes (Bartholomeus, 2009). Both Bierwirth (1990) and Luo et 
al. (2005) describe a spectral unmixing technique which is based on the assumption 
that pixel reflectance is a linear mix of component reflectance. With the unmixing 
technique the abundance of the different endmembers were determined. Then the 
signature of vegetation corresponding to its abundance fraction was eliminated, and 
other endmember signatures covered by vegetation were replaced by scaling their 
abundance fractions to sum the original pixel total.  
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2.3 Measurement of soil properties on bare soil 
Stoner and Baumgardner (1981) identified five characteristic soil spectral reflectance 
curve forms which they considered representative of the diversity of soil reflectance 
found in wide ranges of naturally occurring surface soils. These curve forms were 
identified by curve shape and the presence or absence of absorption features 
representing distinctive organic matter and iron content, as well as texture. Several 
decades later it was demonstrated that many soil attributes can be measured by 
spectral analysis of soil samples under laboratory conditions. Examples include sand, 
silt and clay (Chang, 2002; Hahn and Gloaguen, 2008; Minasny and McBratney, 
2008; Nanni and Demattê, 2006; Salisbury and D'Aria, 1992), Fe2O3, SiO2, Al2O3 
(Boardman, 1994; Genú and Demattê, 2006; Nanni and Demattê, 2006; Stoner and 
Baumgardner, 1981), soil organic matter (Ben-Dor et al., 2002; Chang, 2002; Gomez 
et al., 2008b; McCarty et al., 2002; Metternicht, 2003; Stoner and Baumgardner, 
1981; Viscarra Rossel et al., 2006b), soil moisture, salt and carbonates (Ben-Dor et 
al., 2002; Farifteh et al., 2006). McBratney et al. (2006) introduced the use of 
pedotransfer functions for predicting functional soil properties such as water content 
and pH buffering capacity from spectrally analysed soil samples. Demattê and Garcia 
(1999) related spectral reflectance to soil weathering state associated to different 
forms of iron and the texture of soils developed from basaltic rock. 

The above shows that under laboratory conditions several soil attributes can be 
determined by spectral analysis. However, airborne or  spaceborne spectroscopy 
complicates the measurement owing to atmospheric influences (Gail et al., 1994; 
Richter and Schläpfer, 2002), structural effects, lower spectral and spatial resolution, 
geometric distortions and spectral mixture of features (Kriebel, 1978; Richter and 
Schläpfer, 2002). For soil applications, (partial) coverage of the soil with 
photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and lichens 
can be a limitation as well; in densely vegetated areas the cover of PV and NPV can 
be up to 100%. In tundra and open woodland habitats, lichens and mosses can cover 
as much as 70 % of the surface (Solheim et al., 2000).  

In the following subsections we review the different soil attributes that can be 
determined by laboratory and field spectroscopy (i.e. proximal sensing) as well as 
airborne and spaceborne spectroscopy (i.e. remote sensing) of bare or sparsely 
vegetated soil. Unlike globally important soil properties such as texture, organic 
matter, moisture and mineralogy, other soil properties are particularly of local or 
regional relevance. Examples are iron content which is pertinent to significantly 
weathered soils, soil salinity which affects semi-arid to arid climates and carbonates 
that are indicative of specific parent materials. Furthermore, the spatial coverage of 
different RS products varies from near global coverage to local areas up to single 
scattered images. 
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Table 2.1(p.28) gives an overview of various soil and terrain attributes that have 
been retrieved from RS and PS data. The feasibility of the retrieval has been scaled 
between ‘low’ and ‘high’. This feasibility rating is based on a multi-criteria analysis 
of the reviewed literature cited in this paper. The criteria taken into account are the 
quality of the dataset i.e. being the number of samples and the research methodology, 
the accuracy of obtained results, the number of studies reported and the applicability 
to field surveys. Each criterion was assigned separately and weighed equally to 
obtain the final rating. Accompanying tables (Table 2.2a, b and c, p. 29) give the 
specifications of the different sensors used in the reviewed work. 

2.3.1 Mineralogy 

The analysis of mineralogy with spectral PS has made great progress over the last 
years. Nowadays, several institutes provide spectral libraries with comprehensive 
collections of a wide variety of materials. For example, the ASTER spectral library 
version 2.0, which is a collection of contributions from the Jet Propulsion 
Laboratory, Johns Hopkins University and the United States Geological Survey, is a 
widely used spectral library which contains over 2400 spectra of a wide variety of 
minerals, rocks, vegetation and manmade materials covering the wavelength range 
0.4-15.4 μm (Baldridge et al., 2008). Methods such as partial least square regression 
(PLSR) can be used to match collected spectral samples to those in the spectral 
libraries (Viscarra Rossel, 2008; Viscarra Rossel et al., 2009). 

With RS, mineralogy can be determined from the spectral signature of rock 
outcrops or from the mineral composition of bare in-situ soils. In order to 
discriminate between different minerals, subtle differences in the spectral signature 
throughout the VNIR (Visible and Near Infrared) – TIR (Thermal Infrared) are used. 
Therefore, satellite data with a fine spectral resolution are needed, as only with a fine 
spectral resolution can subtle spectral differences be detected in the signal. 
Additionally, fine spatial resolution is beneficial, as it reduces the number of 
elements represented within a pixel, which enhances the unmixing results and 
thereby the detection of minerals. The spatial and spectral resolutions of Landsat TM 
and MODIS have been found to be too coarse for determining mineral composition 
(Dobos et al., 2000; Kettles et al., 2000; Teruiya et al., 2008). However, the 
combination of Landsat TM data and ASTER data has been useful because the 
general lithological variability is mapped with Landsat TM whereas ASTER maps the 
different mineral groups.  
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Attributes Radar Lidar Optical 
Passive Active Multispectral Spectroscopy 

Terrain attributes      
Elevation 
Slope  
Aspect 
Dissection 
 
Landform unit 
 
Digital Soil Mapping 
 
Soil type 

- 
- 
- 
- 
 
- 
 
- 
 
- 

high 
high 
high 
medium-high 
 
medium-high 
 
high 
 
- 

high 
high 
high 
medium-
high 
medium-
high 
medium-
high 
- 

medium 
medium 
medium 
low-medium 
 
medium-high 
 
medium-high 
 
medium 

- 
- 
- 
- 
 
low-medium 
 
medium 
 
high 

Soil attributes – proximal 
sensing 

     

Mineralogy 
Soil texture 
Iron content 
Soil organic carbon 
Soil moisture 
Soil salinity 
Carbonate content 
Nitrogen content 
Lichen 
Photosynthetic vegetation 
Nonphotosynthetic  

- 
- 
- 
- 
high 
- 
- 
- 
- 
- 
- 

- 
high 
- 
- 
high 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

high 
high 
medium-high 
high 
high 
medium 
medium 
high 
medium-high 
medium-high 
medium-high 

Soil attributes – remote 
sensing 

     

Mineralogy 
Soil texture 
Iron content 
Soil organic carbon 
Soil moisture 
Soil salinity 
Carbonate content 
Nitrogen content 
Lichen 
Photosynthetic vegetation 
Nonphotosynthetic 
vegetation 
Ellenberg indicator values 
Plant functional type 
Vegetation Indices 
Land cover 
Land degradation 

- 
- 
- 
- 
medium-high 
- 
- 
- 
- 
- 
- 
 
- 
- 
- 
- 
- 

- 
medium 
- 
- 
medium-high 
medium-high 
- 
- 
- 
- 
- 
 
- 
- 
- 
low-medium 
low-medium 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
 
- 
- 
- 
- 
- 

medium 
medium 
low 
low 
medium 
low-medium 
low-medium 
- 
low-medium 
medium 
medium 
 
- 
low-medium 
high 
medium-high 
high 

medium-high 
medium 
medium 
high 
low-medium 
medium 
low-medium 
medium 
medium 
medium-high 
medium-high 
 
low 
low 
medium 
high 
low-medium 

*Feasibility (1-5) = weighted average of scores for the number of studies reported, dataset quality, obtained result 
and applicability to field surveys. Low = 1, low-medium = 2, medium = 3, medium-high = 4 and high = 5. 

 
 

Table 2.1 Feasibility* of determining soil and terrain attributes with RS and PS instruments. 
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* Local: <104 km2, regional: >104 km2, <107km2 and global = >107 km2 
 

Radar Subsystem* Data 
collection 

Spatial 
resolution (m) 

Spatial** 
coverage  

Spaceborne      
 SRTM 

RADARSAT2 
ASAR Envisat 
PALSAR scansar 
PALSAR 
Polarimetric 
SMOS 

C-, X-band 
C-band 
C-band 
L-band 
L-band 
L-band 

active 
active 
active 
active 
active 
passive 

30 
3-100 
30-1000 
100 
24-88 
1000 

Global 
Global 
Global 
Global 
Global 
Global 

Airborne       
 E-SAR (3-85 cm) 

GeoSAR 
MIRAMAP 

X-, C-, L-, P-
band 
X-, P-band 
X-, C-, L-band 

active 
active 
passive 

2-4 
3 
5-50 

Local 
Local 
Local  

*X-band: 2.5-4 cm L-band: 15-30 cm       ** Local: <104 km2, regional: >104 km2, <107km2 and global = >107 km2 
 C-band: 4-8 cm P-band: 30-85 cm     
        
 

LIDAR Spectral range 
(nm) 

Spatial resolution 
(m) Spatial coverage 

Spaceborne     
 ICEsat GLAS 532, 1064 70 Global 
Airborne     
 ALTM Gemini 1064 2-3.5 Local 
 ALTM Orion 1064 <1.5 Local 
* Local: <104 km2, regional: >104 km2, <107km2 and global = >107 km2 

Table 2.2a: Current systems providing optical data for soil and terrain mapping. 

Optical Subsystem Spectral 
bands 

Spectral 
range (μm) 

Spatial 
resolution (m) 

Spatial* 
coverage 

Spaceborne       
 Landsat 

MODIS 
MERIS 
ASTER 
Hyperion 
ALOS/PRISM 

VNIR -TIR 
VNIR-TIR 
VNIR 
VNIR-TIR 
VNIR-SWIR 
VIS 

8 
36 
15 
15 
242 
1 

0.45-12.50 
0.40-14.40 
0.39-1.040 
0.52-11.65 
0.40-2.500 
0.52-0.77 

15-60 
250-1000 
300 
15-90 
30 
2.5 

Global 
Global 
Global 
Global 
Regional  
Local 

Airborne       
 AVIRIS 

HyMap 
ROSIS 
DAIS-7915 

VNIR 
VNIR -SWIR 
VNIR 
VNIR-TIR 

224 
128 
115 
79 

0.38-2.500 
0.45-2.480 
0.42-0.873 
0.45-12 

4-20 
2-10 
2 
3-10 

Local 
Local 
Local 
Local 

Table 2.2b: Current systems providing radar data for soil and terrain mapping. 

Table 2.2c: Current systems providing LIDAR data for terrain mapping. 
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Hyperion (Mahoney et al., 2002), airborne AVIRIS (Fig. 2.3) (Green et al., 1998; 
2003; Kruse et al., 2003) and Hymap (Martini et al., 2004) spectrometers may be 
better suited because of their higher spatial and spectral resolution. For example, 
AVIRIS data has been used to analyse the variation in soil type and their 
mineralogical and chemical compositions. This is achieved by mapping SiO2 and 
Al2O3 in order to estimate the Ki-index, an indicator of the degree of soil weathering 
(Galvão, 2008). However, the spatial extent of the latter products is smaller, and this 
limitation applies also to Hyperion and airborne products (Table 2.2a and b). 

Several methods relying on spectral RS data have been developed for geological 
mapping. The spectral features of typical rocks on Earth are mostly found in the TIR 
region, where quartzoze, carbonate, silicate and mafic minerals can be discerned. 
Several indices have been developed, such as the Quartz Index, Carbonate Index and 
Mafic Index (Ninomiya et al., 2005). They are claimed to be suitable for regional to 
global mapping, but so far they have only been tested in arid and semi-arid regions 
with ASTER data. Results suggest robustness of the indices for detecting rock types 
under different climatic circumstances and elevations which applied to reported case 
studies (Ninomiya et al., 2005).  

In local studies, advanced methods for deriving minerals from ASTER data have 
resulted in classification accuracies up to 86%. Examples of powerful sub-pixel 
unmixing analysis tools are the Successive Projection Algorithm (SPA) (Zhang et al., 
2008), Spectral Angle Mapper (SAM), Constrained Energy Minimization (CEM) and 
spatial-spectral endmember extraction (SSEE) tool (García-Haro et al., 2005; Rogge 
et al., 2007; Rowan and Mars, 2003; Zhang et al., 2007). The Tetracorder tool, on the 
other hand, consists of a set of algorithms within an expert system decision-making 
framework for soil and terrain mapping. The expert system rules are implemented in 
a decision tree in which multiple algorithms are applied to the spectral data. The 
system contains a large spectral library with soil mineral properties and land cover 
types from all over the world. The results obtained with the Tetracorder show that 
many different minerals can be identified, as has been shown in figure 2.3 (Clark et 
al., 2003).  

A comparison of the spaceborne Hyperion and airborne AVIRIS spectrometers 
revealed that Hyperion provides similar basic mineralogical information, but that it is 
unable to distinguish subtle spectral differences due to its much lower signal-to-noise 
ratios (Kruse et al., 2003; Kruse et al., 2002). Cudahy et al. (2001) evaluated the 
impact of the characteristic low signal-to-noise ratio (S/N < 40:1) of Hyperion. They 
minimized the influence of noise and improved diagnostic spectral signatures using 
radiative transfer-based atmospheric correction of Hyperion radiance to surface 
reflectance. Even though the derived surface composition maps generated from 
endmember images were noisy, they showed the same spatial patterns and correlated  
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well with known geology (Cudahy et al., 2001). Also, in another study in which 
Hyperion data were used in combination with additional information obtained from 
spectral analysis of field samples, the resulting classification accurately mapped 
different types of rock outcrop (Mahoney et al., 2002). When Hyperion imagery is 
used in combination with multispectral images such as ALI (Advanced Land Imager) 
(Beck, 2003) or ASTER, both the calibration of the multispectral data and the 
mapping accuracy can be improved. The three sensors offer complementary 
capabilities: ALI is well suited for distinguishing iron oxides, iron hydroxides and 
iron sulphates, whereas ASTER enables distinctions to be made between clay and 
sulphate mineral species (Hubbard et al., 2003; Hubbard and Crowley, 2005).  
 
 
 
 

Figure 2.3: (Left) True color composite of Cuprite, Nevada and (right) the corresponding mineral map derived 
from AVIRIS data (Reprinted with permission, Clark et al. (2003)). 
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2.3.2 Soil texture  

In PS, soil texture is typically determined by multiple linear regression or PLSR. 
Calibration of these models is mostly done using data from a sample. Results show 
that these methods are useful tools for predicting soil texture, but calibration of the 
models is based on local conditions and therefore these models will typically not 
work outside the studied areas (Demattê et al., 2007; Minasny et al., 2008; 
Thomasson et al., 2001; Viscarra Rossel et al., 2006b).  

Apan et al. (2002) used ASTER bands 2, 8 and the first principal component of 
ASTER imagery for determining broad texture classes. Differences between clay-rich 
and quartz-rich soils can be locally or regionally mapped based on specific 
absorption features. Clay minerals have typical hydroxyl absorption at 2200 nm, 
referred to as the SWIR Clay Index (Chabrillat, 2002). This feature can be captured 
with bands 5 and 6 of ASTER. The presence of quartz can be detected using thermal 
bands between 8000 nm and 9500 nm in which the restrahlen feature occurs, which 
correspond with bands 10 to 14 of ASTER. The combination of ASTER bands 5 and 
6 and thermal infrared bands 10 and 14 can then be used to discriminate both dark 
clayey soils and bright sandy soils from nonphotosynthetic vegetation on a local 
scale, but results are influenced by organic matter (Breunig et al., 2008; Salisbury 
and D'Aria, 1992).  

AVHRR (Advanced Very High Resolution Radiometer) has been used to map the 
spatial extent of clay content by means of multivariate prediction models (Odeh and 
McBratney, 2000). Landsat TM, SPOT and airborne spectroscopy have been used to 
determine different soil texture classes by correlation of image data with laboratory 
analysis (Barnes and Baker, 2000). The different soils were classified with accuracy 
from 50% up to 100%. Note however that this study was conducted on a plot-scale 
with an exhaustive soil sample dataset; due to the availability of this large dataset 
higher accuracies were obtained compared to other studies. Only few researchers 
explored Hyperion data for mapping soil texture; the main reason for this is the 
earlier mentioned low signal-to-noise ratio and additionally required heavy pre-
processing. Even so, Chabrillat et al. (2002) successfully identified, after noise 
reduction, expansive clays in the Colorado Front Range Urban Corridor when 
vegetation cover was less than 10%.  

In contrast with the use of optical imagery, there is little experience in using radar 
to retrieve soil texture. Singh and Kathpalia (2007) developed a modelling approach 
based on a genetic algorithm, which included empirical modelling to simultaneously 
retrieve soil moisture, roughness and texture from the dielectric constant derived 
from ERS-2 SAR backscatter data. Although the results were in agreement with field 
observations, they concluded that there are problems with the retrieval of input 
variables of the model. 
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2.3.3 Soil moisture 

Microwave RS of soil moisture content is based on the contrast in dielectric 
properties between dry soil and water. Currently, the most advanced index on soil 
moisture is the Soil Water Index (SWI) (Wagner et al., 2007), in which the METOP 
ASCAT and ENVISAT ASAR GM data are combined into one layer with a 
resolution of 1 km. ENVISAT ASAR GM provides backscatter data on a monthly 
basis, at best, with a resolution of 1 km on a regional scale. The ERS 2 scatterometer 
and METOP ASCAT provide global backscatter data at a coarser spatial resolution 
(25 km) but on a finer temporal resolution. Surface soil moisture is derived from the 
backscatter data and then used to compute the SWI, which gives relative values of 
soil water content over the rooting depth. The boundaries of the backscatter data 
related to soil moisture are set on the basis of a long-term change detection approach. 
The temporal resolution of the SWI is 2 weeks. The index is particularly useful for 
monitoring changes in soil water content over time, and is unsuitable to quantify the 
soil water content (Wagner et al., 2007; Wagner and Scipal, 2000). 

The recently launched passive microwave SMOS (Soil Moisture and Ocean 
Salinity) and future satellite SMAP (Soil Moisture Active Passive) will have a global 
coverage with 1 km resolution and a temporal resolution up to approximately 3 to 5 
days. The algorithms devised for the retrieval of soil moisture data from SMOS are 
promising. The core of the SMOS L2 processor is the inversion of the L-MEB (L-
band Microwave Emission of the Biosphere) model (Wigneron et al., 2007), which is 
used as a forward emission model to simulate the L-band emission from the soil–
canopy layer. The L-MEB model uses a simplified (zero-order) radiative transfer 
equation to predict the surface brightness temperature. The modelled surface soil 
moisture (0-3 cm) is expected to be accurate to within 4.0% volumetric water content 
(Panciera et al., 2009; Wigneron et al., 2007). 

A different approach to estimating soil moisture is the use of surface energy 
balance models. These studies are typically done on plot to local scale and produce 
spatiotemporal predictions of actual evapotranspiration (ET) which can be linked 
with soil water. There are several models available; the most widely used are (1) the 
Soil Energy BALance (SEBAL), in which soil and vegetation contributions to ET are 
aggregated (Bastiaanssen et al., 2005); (2) the Two-Source Energy Balance (TSEB) 
modelling approach, which discriminates between soil and vegetation (Anderson et 
al., 2008); (3) the Surface Energy Balance System (SEBS) (Su, 2002) which uses 
both the optical and thermal parts of the electromagnetic spectrum to estimate 
turbulent atmospheric fluxes and surface evaporation (Van Der Kwast, 2009). 
ASTER and MODIS images have been used for retrieving the surface variables 
required as inputs for energy balance modelling (French et al., 2005; Su et al., 2005). 
The main difficulties using surface energy balance models are obtaining all the 
necessary data at the proper spatial resolution and the calibration of the model.  
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Currently, the most advanced approaches used for estimating root-zone soil 
moisture are based on assimilation of RS observations into soil–vegetation–
atmosphere transfer (SVAT) models. These models can be divided into thermal RS 
and water and energy balance (WEB) approaches. The WEB-SVAT (Water and 
Energy Balance – Soil Vegetation Atmosphere Transfer Modeling) model uses 
measured precipitation and predicted evapotranspiration. The model is based on 
forcing a prognostic root-zone water balance model with observed rainfall and 
predicted evapotranspiration. In RS SVAT approaches, the radiometric temperature is 
derived from thermal RS and combined with vegetation information obtained at the 
VNIR wavelengths in order to solve the surface energy balance; this method does not 
explicitly quantify soil moisture but uses a thermal-based proxy variable for the 
availability of soil water in the root zone and the onset of vegetation water stress 
(Crow et al., 2008).  

Under laboratory conditions, spectral PS with statistical methods has been used 
for quantifying soil water content. Examples of such methods are the soil line which 
plots near infrared as a function infrared reflectance (Baret et al., 1993; Demattê et 
al., 2006) and multiple regression with the water absorption features centred at 1400 
nm, 1900 nm and 2200 nm as the independent predictors. However, the latter method 
will most likely not work under field conditions owing to strong absorption of 
radiance by water vapour in the atmosphere.  

2.3.4 Soil organic carbon 

Most research on the determination of soil organic carbon (SOC) with RS has been 
performed at plot scale (< 1km2). The spectral data is usually obtained from PS so 
vegetation does not disturb the signal. Correlation coefficients in the range of 
0.87<R2<0.98 between spectrally measured and chemically analysed samples have 
been obtained using mid infrared and combined diffuse reflectance spectroscopy 
(Barnes et al., 2003; Chang, 2002; McCarty et al., 2002; Viscarra Rossel et al., 
2006b).  

One of the indicators used for soil organic carbon mapping with RS is soil colour; 
dark soils typically contain more soil organic matter than pale soils. This darkening 
of soil with higher organic carbon content is due to the effect of saturated organic 
matter and to variations in the composition and quantity of black humic acid and soil 
moisture (Viscarra Rossel et al., 2006a). This is why the visible part of the spectrum 
has often been used to map SOC by soil colour. However, the relationships are not 
sufficiently robust for practical application on a wide variety of soils (Viscarra 
Rossel et al., 2006a). 

Used techniques employ the shape of the reflectance spectrum, for example using 
band depth analysis and principal component analysis (Palacios-Orueta et al., 1999; 
Palacios-Orueta and Ustin, 1998). Alternatively, multivariate regression modelling 
such as Partial Least-Square Regression (PLSR) and multiple linear regression can be 



Remote and proximal sensing for soil and terrain mapping 

35 

used. By means of these methods, different topsoil parameters are determined from 
the spectral signature contained in a single imaging spectrometer image, where the 
various variables are represented by different combinations of absorption features 
across the spectra. Applying multiple linear regression to an airborne DAIS7915 
calibration dataset obtained satisfying results for soil organic matter; results could be 
improved by use of better quality of spectroscopy data (Ben-Dor et al., 2002). Selige 
et al. (2006) used both multiple linear regression and PLSR, with the latter having 
the highest predictive power. Spaceborne imaging spectrometer data have not been 
often used for predicting soil organic carbon; but Gomez et al. (2008b) applied 
advanced spectral unmixing methods to Hyperion data for a 16 km2 study area and 
obtained similar SOC fractions as those in field observations. 

When mapping soil organic carbon on a large mapping scale without extensive 
calibration by soil samples, a solution could be to use indices based on spectral 
reflectance for quantifying soil organic carbon. The amount of SOC is then detected 
with reflectance spectroscopy based on the constituents of SOC: cellulose, starch and 
lignin. Good relations have been found for indices based on the visible part of the 
spectrum (R2=0.80) and for the absorption features related to cellulose (around 2100 
nm) (R2=0.81). The best index-based relations were compared to results for PLSR 
(R2=0.87). PLSR proved to be much less sensitive towards extrapolation of the model 
beyond the mineralogy and SOC levels used during the calibration. Although, the 
indices seem promising, they must still be tested on spaceborne sensors which have 
lower signal-to-noise ratio. Application in areas that have significant vegetation 
cover will be a challenge as well (Bartholomeus et al., 2008). 

2.3.5 Iron content 

Soil iron can be seen as an indicator of soil fertility and the age of the sediments 
(Bartholomeus et al., 2007). Over the years, PS has proven to be useful for 
determining soil iron content in soil samples and at plot scale (Demattê, 2002; Nanni 
and Demattê, 2006). But also, RS has been successfully used for determining the 
presence of iron over areas up to 500 km2. Both soil colour (Escadafal, 1993) and 
absorption features have been used to derive iron content (Farrand and Harsanyi, 
1997; Palacios-Orueta and Ustin, 1998; Warell, 2003). Iron oxide and iron 
hydroxides have specific absorption features that are located in the VNIR and can be 
measured from multispectral or imaging spectrometer images (Abrams and Hook, 
1995). However, these features are confounded if there is vegetation cover (Xu et al., 
2004).  

Only a few methods have been developed to quantify soil iron content. Though 
Landsat TM has been used for this purpose, the low spectral resolution means that 
the absorption features are not unequivocally discernible and therefore the results are 
not accurate (Deller, 2006). Bartholomeus et al. (2007) were among the first to 
quantify soil iron content on the basis of airborne optical data. They determined the 
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iron content in Mediterranean soils in partly vegetated areas, using ground-based 
spectral reflectance and airborne imaging spectroscopy. The use of two iron-related 
absorption features as well as a ratio-based Redness Index, which is the ratio of the 
reflectance in the red part of the spectrum divided by the sum of total visible 
reflectance, gave fairly good correlations (R2=0.67 and R2=0.51, respectively) on 
samples measured under laboratory conditions. Unfortunately, the relations were 
weak (R2 = 0.26) when applied to airborne ROSIS (Reflective Optics System 
Imaging Spectrometer) data. The relations appeared to be sensitive to vegetation 
cover, but a combination of the Redness Index and relations based on the absorption 
feature made the model more robust against the influence of vegetation cover 
(Bartholomeus et al., 2007). 

2.3.6 Soil salinity 

In arid and semi-arid climates, precipitation is insufficient to maintain a regular 
percolation of rainwater through the soil, so soluble salts accumulate, with 
consequences for soil properties such as structure. Both radar and optical RS have 
been used for mapping soil salinity. Microwave RS of salinity is based on the 
dielectric properties of the soil, since salinity is a key element of the electric 
conductivity (Aly et al., 2007). The dielectric constant is a complex number 
consisting of a real part, which is related to soil moisture, and an imaginary part, 
which is related to salinity. Using inverse modelling, the imaginary part can be 
calculated and calibrated with soil salinity (Bell et al., 2001; Taylor et al., 1996; Yun 
et al., 2003). Soil salinity classes have been successfully derived on a local scale (< 
500 km2) with the C-, P-, and L-bands of airborne and spaceborne radar systems; best 
results are obtained using L-band data because long wavelengths penetrate soil and 
vegetation to a greater extend than higher frequencies (Bell et al., 2001; Lasne et al., 
2008; Taylor et al., 1996).  

The spectral response patterns of saline soils are a function of the quantity and 
mineralogy of the salts they contain (Mougenot et al., 1993). Using spectral 
absorption features, spectral PS can be used to provide information on the presence 
of salt minerals and it enables salt-affected soils to be quantified (Weng et al., 2008). 
Salinized soils have distinctive spectral features in the VNIR parts of the spectrum, 
related to water in hydrated evaporite minerals. They show absorption features at 505 
nm, 920 nm, 1415 nm, 1915 nm and 2205 nm. However, laboratory spectral analyses 
revealed that salt-affected soil samples did not exhibit all of the diagnostic 
absorption features that were found in the spectra of the pure salt minerals. Though 
the regression models had accuracies up to R2 = 0.8 (Farifteh et al., 2008). Salt scalds 
and highly salinized soil show additional absorption features at 680 nm, 1180 nm and 
1780 nm. These features enable the recognition of minerals such as gypsum, 
bassanite, and polyhalite, which can be used as indicators. Another informative 
property is that at approximately 2200 nm hydroxyl features become less pronounced 
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when samples are more saline. The reduction of the 2200 nm absorption intensity 
may be a result of a loss of crystallinity in clay minerals. Yet another potentially 
usable characteristic is that the overall slope of the reflection curve between 800 nm 
and 1300 nm decreases as samples become more saline (Taylor and Dehaan, 2000).  

Using RS on a local scale (< 104 km), broad salinity classes can be mapped with 
ASTER (Melendez-Pastor et al., 2010), Hymap (Dehaan and Taylor, 2003), Landsat 
TM and ALI imagery – the latter two using the Salinity Index (SI) and the 
Normalized Salinity Index (NSI) (Bannari et al., 2008; Jabbar and Chen, 2008; Odeh 
and Onus, 2008). Weng et al. (2008) were able to discriminate 5 classes of saline 
soils with Hyperion data for an area of about 1200 km2. Alternative methods for 
mapping saline areas are based on detecting the presence of salt scalds and 
halophytic vegetation. However, spectral resolution must be high in order to detect 
the different vegetation types (Dehaan and Taylor, 2001). 

A major constraint to using PS and RS data for mapping salinity is related to the 
fact that there is a strong vertical, spatial and temporal variability of salinity in the 
soil profile. Spectral data acquisition does not allow information to be extracted from 
the entire soil profile, since only the soil surface is observed. This can be overcome 
by integrating RS with simulation models and geophysical surveys (Farifteh et al., 
2006; Metternicht, 2003; Mougenot et al., 1993). Direct and precise estimation of salt 
quantities is difficult using satellite data with a low spectral resolution because these 
fail to detect specific absorption bands of some salt types and the spectra interfere 
with other soil chromophores (Mougenot et al., 1993).  

2.3.7 Carbonates 

RS allows distinction between common carbonate minerals on the basis of unique 
spectral features found in the SWIR, and especially in the TIR region. In that region 
the minerals have a low emissivity from 1095 up to 1165 nm and high emissivity 
from 8125 to 1095 nm. The Calcite Index, for example, is based on this difference in 
emissivity and has been used on a single ASTER image of 60*60 km (Yoshiki et al., 
2002; Yoshiki et al., 2004). Alternatively, the specific absorption features of 
carbonate have been analysed with derivative analysis on PS data. Derivatives of 
second order or higher should be relatively insensitive to variations in illumination 
intensity whether caused by changes in sun angle, cloud cover, or topography (Hu, 
2007; Plaza et al., 2008). Under laboratory conditions this method worked well (R2 = 
0.64), but when applied to airborne data with a pixel size of 25m2, the performance 
decreased (R2= 0.46). This was attributed to radiometric and wavelength calibration 
uncertainties as well as possible residual atmospheric effects (Lagacherie et al., 
2008). 
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2.3.8 Nonphotosynthetic vegetation 

Nonphotosynthetic vegetation (NPV) such as crop residues, woody stems and forest 
litter influences the spectral response of bare soil and thus the accuracy of 
determined soil properties. For example, the presence of senescent vegetation and 
litter affects the relationship between reflectance and several soil attributes such as 
total Fe, TiO2 and Al2O3 in the transition from the red to the near-infrared interval. 
The lignin/cellulose spectral feature of the crop residues also effects the appearance 
of the 2200-nm absorption band related to clay minerals (Galvão, 2008).  

Imaging spectrometers and advanced multispectral sensors potentially allow 
discrimination between crop residues and soil. Attempts to measure crop residue 
cover using RS have had mixed success, however. In areas having strongly 
contrasting soil and residue reflectance, Landsat TM-based indices such as the simple 
ratio-type vegetation indices (SRTVI) and normalized difference-type vegetation 
indices (NDTVI) successfully identified broad crop residue cover classes for a 
coverage ranging from small plots up to 1500 km2 (Serbin et al., 2009). However, 
these indices were less effective when used in regions with different soil types 
because of the poor contrasts between crop residues and many soils (Qi et al., 2002). 
This poor performance was partly ascribed to the broadness of the bands of Landsat 
TM, which are unable to discriminate between specific material absorptions that 
occur in the 1000 to 2500 nm wavelength region (Mirik et al., 2005). By contrast, 
ASTER has been successfully used to discriminate NPV from bare soil by means of 
band ratios (Breunig et al., 2008). Spectral unmixing of AVIRIS data (Asner and 
Heidebrecht, 2003; Galvão et al., 2001; Roberts et al., 1993) and Hyperion data 
(Asner and Heidebrecht, 2003; Huete et al., 2003) in areas up to 100 km2 produced 
even better results.  

The imaging spectrometer Cellulose Absorption Index (CAI) and the 
multispectral Lignin–Cellulose Absorption (LCA) index are reflectance band height 
indices that use three spectral bands between 2000 and 2400 nm to estimate crop 
residue cover (Daughtry et al., 2005; Serbin et al., 2009). Whereas CAI showed a 
clear separation of values between common soil minerals and crop residues, LCA did 
not. Spectral confusion may occur because common soil minerals such as 
amphiboles, chlorites, iron hydroxides, and – especially – carbonate have LCA 
values similar to those of crop residues (Daughtry and Hunt Jr, 2008; Serbin et al., 
2009).  

2.3.9 Lichens  

Exposed bedrock is often partly covered with lichens varying in colour, from 
blackish-brown to orange. Lichens might prevent the transmission of light to the 
underlying rock substrate and effectively mask the mineral substrate (Bechtel et al., 
2002). They may increase, decrease or not influence the spectral reflectance of a rock 
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surface, depending on the spectral contrast between the lichen and the bare rock 
(Satterwhite et al., 1985). Zhang et al. (2005) and Bechtel et al. (2002) found that, 
under laboratory conditions, a single lichen endmember allowed for spectral 
unmixing of lichens and rock, due to the spectral similarity of various 
crustose/foliose lichen species in the short-wave IR. For both the reflectance and 
normalized reflectance data, spectral mixture analysis results correlated well (R2> 
0.9) with endmember abundances estimated from digital photography (Zhang et al., 
2005). A number of minerals (clay and carbonates, for example) also have absorption 
bands in the SWIR, but the shapes and positions of the mineral bands differ from 
those of the lichen. The absorption at 1700 nm might be most useful in determining 
areal lichen cover because this is not significantly affected by common mineral 
absorption bands (Cloutis and Edward, 1989). Moreover, the discrimination of 
different lichen types is possible in the visible spectral region, but there the inference 
of mineral absorptions may be problematic (Bechtel et al., 2002; Cloutis and Edward, 
1989; Kiang et al., 2007). Kiang et al. (2007) studied the full reflectance spectrum of 
lichen under laboratory conditions and found that the ‘red edge’, which is typical for 
photosynthetic species, is negligible in lichen and that the overall influence of lichen 
on the NIR is a lowering of the overall reflectance. Therefore, we expect that it is 
likely that the overall influence of lichen on the retrieval of soil properties is much 
lower compared to other vegetation types. But, in areas with exhaustive lichen cover, 
the overall lower reflectance has to be accounted for. We are not aware of any RS-
based lichen mapping study on a plot or local scale. 

2.3.10 Soil proxies 

The efficiency of using RS to map soil properties in densely vegetated areas depends 
on indirect relations between vegetation and soil attributes. As already outlined in 
section 2.2.4, vegetation indices and time series can be used to delineate soil 
patterns. To retrieve soil properties, more detailed information on the vegetation 
cover is needed. Two useful but prospective proxy indicators have been used to 
retrieve soil properties from RS: Plant Functional Types (PFT) and Ellenberg 
indicator values.  

A central tenet in the concept of PFT is that morphological and physiological 
adaptations are linked in predictable ways by resource limitations, responses to 
disturbance, biotic factors or other aspects of the environment. The extent to which 
such linkages are generalized will determine the ability to detect functional types 
with RS (Ustin and Gamon, 2010). For example, abiotic factors that affect 
biodiversity are the nutrients available, such as nitrogen, and the prevailing climatic 
conditions. In some cases, low levels of nutrients lead to high levels of biodiversity 
(Forde et al., 2008). Diekmann (2003) shows that the relation between nutrient 
requirements of plants and nutrient availability in soils can be used to derive soil 
attributes. Accordingly, the concept of plant functional types (PFT) can be used to 
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derive the specific type or group of species that grow on typical soils. Schaepman et 
al. (2007) showed that PFT may be derived from high resolution imaging 
spectrometer data on a plot level. Sun et al. (2008) developed the current global 
MODIS PFT product, which is a map with the distribution and abundance of major 
plant functional types. Ustin and Gamon (2010) proposed the new concept of 
‘optical’ types. They argue that functional types can be distinguished largely on the 
basis of optical properties detectable by RS. To fully utilize the potential of RS, data 
must be combined with ecological models linking structural, physiological and 
phenological traits based on resource constraints. See Ustin and Gamon (2010) for an 
overview of different sensors and their implications for assessing PFT’s. Hence, PFT 
regulate or are regulated by ecosystem processes and have discrete different 
functions within the ecosystems. 

Different PFT have a particular distribution in relation to geography or 
environment, e.g. species of ultramafic soils or acidophilous bog species (Wilson, 
1999). Therefore, PFT could be explained by the DEM-derived terrain variables 
which describe the landscape structure. Buis et al. (2009)) found that PFT strongly 
depended on bedrock cover, which emphasizes the dominance of local water 
redistribution processes for the PFT. However, for soil and terrain mapping the 
method should be inverted since the PFT should indicate soil attributes.  

For the same reasons as the PFT, Ellenberg indicator values can be used to 
retrieve soil attributes. Originally, the Ellenberg indicator values were calculated for 
flora mapped on the basis of intensive fieldwork (Ellenberg, 1988). However, 
Schmidtlein (2005) showed that imaging spectroscopy can be used as a tool for 
mapping Ellenberg indicator values for soil water content, soil pH and soil fertility. 
The Ellenberg indicator values scale the flora of a region along gradients reflecting 
light, temperature, moisture, soil pH, fertility and salinity. This way, the flora can be 
used to monitor environmental change and thereby changes in the soil (Diekmann, 
2003; Hill et al., 2000).  

2.4 The use of remote sensing in digital soil mapping 
It is unlikely that the variables measured using RS will exhaustively cover the area to 
be mapped. Accurate estimation of soil attributes is hampered if the pixels have a 
vegetation cover over 20% (Bartholomeus et al., 2007). Another problem is that the 
spectral signatures of urban areas, roads and water surfaces do not contain 
information relevant for soil and terrain mapping. Therefore, these areas should be 
masked, but this produces incomplete coverage of the remaining area from which RS 
estimates of soil attributes can be obtained. Finally, RS typically provides 
information about only the surface layer. 

However, by combining RS, DEM’s and soil sample data using DSM methods, a 
complete coverage can be produced and the accuracy of the estimated soil properties 
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can be improved. Over the past decade many research papers have dealt with DSM, 
which has been defined as ‘the creation and population of spatial soil information by 
the use of field and laboratory observational methods coupled with spatial and non-
spatial soil inference systems (Lagacherie et al., 2007; McBratney et al., 2003)’ 
(Carré et al., 2007). It allows for the prediction of soil properties or classes using soil 
information and environmental covariates of soil (Carré et al., 2007; Dobos et al., 
2006). As this paper concerns applications of RS, the reader is referred to Boettinger 
et al. (2010), Grunwald (2009), McBratney et al. (2003) and Scull et al. (2003) for 
reviews on DSM.  

RS and PS can provide data sources to be used in DSM. There are different ways 
in which the data can be used to obtain complete coverage. One way is to fill the 
gaps by directly interpolating RS-based measurements of soil properties, using these 
data as primary data source. This approach is suitable if legacy soil data is scarce or 
unavailable. Alternatively, if legacy soil data are available, soil and terrain attributes 
derived from RS or soil proxies can be used as secondary variables to improve the 
interpolation of existing soil data (McBratney et al., 2003). 

2.4.1 Soil spatial prediction 

In this section some methods which can be used for soil spatial prediction using RS 
and PS are briefly discussed. A distinction is made between the use of RS and PS as 
primary data source and the use of RS as secondary data source. The single use of RS 
retrievals as primary data is possible if the spatial coverage is high and well 
correlated in space, e.g. in sparsely vegetated areas. If the spatial coverage is sparse, 
e.g. in case of RS in vegetated areas, or PS with a field spectrometer, then the data 
can be used as a primary data source but other secondary exhaustive data sources, 
such as a DEM, a geological map, or RS images have to be used to obtain full area 
coverage and improve the interpolation results. RS retrievals have been used both as 
primary or secondary variables by Ben-Dor et al. (2002), Castrignanò et al. (2000), 
Knotters et al. (1995), McBratney et al. (1991) and Odeh et al. (1994).  

2.4.1.1 Remote sensing as primary data source 
When mapping spatial patterns, pixels can be treated as regionalized variables using 
geostatistical techniques (Heuvelink and Webster, 2001; McBratney et al., 2003). In 
this way, an exhaustive coverage of RS retrievals can be used as a primary data 
source for mapping soil attributes in areas which are, for example, covered by 
vegetation or masked by clouds. Using univariate kriging it is possible to map 
continuous soil properties and classes by accounting for spatial correlation between 
sampled and nearby unsampled locations. Simple kriging may not be the method of 
choice in heterogeneous areas because the mean is deemed constant and known 
throughout the area. Ordinary kriging is often regarded more appropriate, because 
using a restricted search neighbourhood, it adapts to local fluctuation of the mean by 
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limiting the domain of stationarity of the mean to the local neighbourhood 
(Goovaerts, 1999). 

Also (generalized) linear models with independent variables such as slope, 
curvature, wetness-index and soil profile information have been used to derive soil 
attribute maps. Despite satisfactory results obtained in homogenous landscapes, 
multiple regression has its limits in complex heterogeneous areas (Gessler et al., 
1995; Moore et al., 1993; Odeh et al., 1994). However, the same limitation applies to 
ordinary and simple kriging. 

2.4.1.2 Remote sensing as secondary data source 
When measurements are sparse or poorly correlated in space, the estimation of the 
primary attribute is generally improved by accounting for secondary information 
from other related categorical or continuous attributes such as a digital elevation 
model, RS data or land use maps. PS can be used as a primary data source and RS 
can be used as one of the secondary data sources to predict soil properties from PS. 
This way, the large spectral resolution of the PS data can be combined with the 
spatial coverage of the RS data. In any case, with PS, either field or laboratory 
measurements are taken which generates a relatively sparse sample that can be used 
as primary data source or as a covariable (in co-kriging) for soil spatial prediction on 
a dense grid. The primary attribute can be predicted with kriging within strata, or 
some combination of regression analysis and kriging or cokriging (Heuvelink and 
Webster, 2001; Knotters et al., 1995). If the secondary information is not 
exhaustively sampled, the estimation can be done by cokriging (Knotters et al., 
1995). In contrast to the previously described methods, regression kriging does not 
assume a stationarity of the observations themselves but rather of the residuals 
between observations and a modelled trend (Cressie, 1991). The advantage of 
regression kriging is the ability to extend the method to a broader range of regression 
techniques and to allow separate interpretation of the two interpolated components 
(Hengl et al., 2007).  

2.4.2 Classification and regression trees  

The technology involved in collecting and analysing data has become more and more 
powerful in recent years. Stimulated by the need to analyse massive amounts of data 
efficiently, data mining was born and has recently developed rapidly. When 
multisource data are used in a classification, advanced non-parametric classifiers 
such as neural network, classification tree, evidential reasoning, or knowledge-based 
approaches are typically preferred over parametric classification algorithms. The 
underlying assumption is that the relation between soil types and the additional 
attributes is expected to be non-linear (Hahn and Gloaguen, 2008; Lu and Weng, 
2007; Zhai et al., 2006). These methods have given good results when used to extract 
geographical information, such as land cover, from RS on a local scale and these 
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methods appeared to be more flexible and robust to non-linear relations. However, 
the use of too many additional attributes appeared to be limiting the performance for 
univariate decisions trees (Friedl and Brodley, 1997; Pal and Mather, 2003; Santos 
and Amaral, 2004)). 

Classification and regression tree analysis is a data mining technique which splits 
a full data set in a sequence of binary splits on dependent (RS) variables aiming for 
pure nodes with respect to the target variable. The input variables are environmental 
variables that are believed to reflect the properties integrated by a soil surveyor when 
making the source map. A tree model is trained and tested by growing and pruning it, 
using only a proportion of the available data. The model is then used to predict the 
full extent of the original map (Quinlan, 1993; Salford-Systems, 2002). Classification 
trees have been used to estimate soil properties and to create soil maps (Lagacherie 
and Holmes, 1997; McBratney et al., 2000; McKenzie and Ryan, 1999; Omuto and 
Shrestha, 2007; Scull et al., 2005; Xu et al., 2005). Based on the Soil–Landscape 
paradigm, explicit links have been made between data, information and knowledge 
(MacMillan et al., 2007; Moran and Bui, 2002). Accordingly, Quinlan (1993) 
concludes that there is sufficient predictive capacity in the environmental correlation 
attributes representing geology, terrain, and soil/water/vegetation interactions to 
model a known soil map. Note that regression tree analyses may also be used within 
a regression kriging context (see above) (Hengl et al., 2004; McBratney et al., 2000). 

2.5 Conclusions and outlook 
This article reviewed the use of remote sensing (RS) for soil survey. To summarize: 
RS provides data (1) supporting the segmentation of the landscape into rather 
homogeneous soil-landscape units whose soil composition can be determined by 
sampling or that can be used as a source of secondary information, (2) allowing 
measurement or prediction of soil properties by means of physically-based and 
empirical methods, and (3) supporting spatial interpolation of sparsely sampled soil 
property data as a primary or secondary data source. Table 2.3 gives an overview of 
the various methods discussed in this paper. Spatial segmentation by automated 
segmentation of the landscape to support soil–landscape mapping is typically based 
on first- and second-order derivatives of DEMs, observed parent material and 
vegetation patterns. Spatial and temporal changes in vegetation indices and 
biogeographical gradients have been used to improve spatial segmentation.  

Extended spectral libraries are available which aid the research on soil attribute 
retrieval with PS (Abrams and Hook, 2001; Clark et al., 2003). A wide variety of soil 
attributes have been derived with use of statistical and chemometric analysis of 
spectroscopic data (Minasny and McBratney, 2008; Viscarra Rossel and McBratney, 
2008) which can be used for DSM (Minasny et al., 2009). However, as can be seen in 
Table 2.1, the feasibility to derive these soil attributes is on average ‘medium’ which 
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means that current methods are not fully developed yet. The retrieval of soil 
attributes with RS has made progress, particularly since the launch of advanced 
multispectral sensors and imaging spectrometers such as ASTER and Hyperion, 
which have made it possible to detect subtle differences between spectral signatures. 
Either indices, proxies, quantities or patterns for many soil attributes that are 
important for deriving soil and terrain maps have been derived from RS. However, 
the number and feasibility of soil attributes that have been derived from RS images is 
much lower compared to the use of PS (Table 2.1). Due to the heterogeneity of 
landscapes and the spatial resolution of the imagery (Table 2.2a, b and c) it is often 
difficult to find pure pixels representing soil or bare rock. Advanced unmixing tool 
methods, such as Tetracorder (Clark et al., 2003) are needed to extract sub-pixel soil 
and rock composition. Finally, the spatial extent of most reported work was restricted 
to local studies (Table 2.3). 

RS data have been used in DSM as covariates for the prediction of soil classes or 
soil properties. Often, the use of spectral imagery for the spatial prediction of soil 
properties is based on the spatial relation between existing soil data and observed 
patterns in the imagery, and not on physically based retrievals, such as soil moisture 
(Dobos et al., 2000; Stoorvogel et al., 2009). Over the last years spectral PS showed 
to be useful as part of DSM (Minasny et al., 2009; Viscarra Rossel and McBratney, 
2008). Dependent on spatial and spectral resolution, spatial coverage and the 
availability of legacy data, RS and PS data are either used as primary or secondary 
data source for the spatial prediction of soil properties. In vegetated areas soil 
proxies, such as NDVI, plant functional type or Ellenberg indicator values, have been 
used to derive soil properties, but with mixed success. Alternatively, data mining 
techniques such as classification trees – which are generated from a matrix of 
environmental variables – have been used to estimate soil properties and to create 
soil maps.  

Although much progress has been made, current PS methods are not readily 
implemented at spaceborne level. There are, however, space-based instruments that 
partially support such approaches (Pieters et al., 2009) or will be available soon 
(Stuffler et al., 2009). The spectral band settings and improved signal-to-noise 
performance of upcoming spectrometers in space will certainly improve the retrievals 
of soil based information using advanced spectral mixing approaches. Secondly, most 
methods used for retrieving soil attributes have been developed using local or 
regional correlation approaches, and may not scale for operational use over vast 
areas. Considering the use of RS for regional DSM, research is needed on extending 
current methods beyond the plot. Indications are that perspectives exist to develop 
methods for large scale mapping as indicated in Iwahashi and Pike (2007), Ballantine 
et al. (2005), Wagner et al. (2007) and Ninomiya et al. (2005). Thirdly, although 
experiments retrieving soil information work well when using PS, their accuracy 
drops when (larger-scale) RS methods are being used. This accuracy drop is mainly 
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caused by sensor noise (Phillips et al., 2009), directional reflectance (Kriebel, 1978), 
topographic (Richter and Schläpfer, 2002), atmospheric distortions (Gail et al., 1994; 
Richter and Schläpfer, 2002), and increased mixture of soil properties with 
decreasing mineral abundances. Since advances in PS have evolved much faster than 
in RS, a technology gap still has to be bridged.  

Future studies will therefore focus on the improved integration of PS and RS 
using scaling-based approaches in order to make optimal use of all data sources 
available. Revisit time or temporal approaches are still limited by satellite orbital 
constraints and/or data download capacity. Soil moisture based retrievals have 
become increasingly feasible with the launch of SMOS (Soil Moisture Ocean 
Salinity), but its spatial resolution is still too coarse for soil plot-size retrievals. 
Certainly, the planned availability of SMAP will further contribute to improved 
retrievals, including freeze/thaw status of the surface. 

This review has shown that future research will aim for the integrated use of RS 
methods for spatial segmentation, as well as measurements and spatial prediction of 
soil properties to achieve complete area coverage. In-situ or PS methods are readily 
available and we will be seeing future instruments launched soon supporting these 
methods at larger spatial scales finally enhancing the perspectives of DSM. 
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Soil attributes Sensor class Method Reference Spatial extent* 
Carbonate 
 

Remote sensing 
 
Proximal 
sensing 

Calcite index 
 
Continuum removal 

Yosiki et al. (2002) 
Yosiki et al. (2004) 
Lagacherie (2006 

Local  
Local  
Laboratory, Plot,  
 

Soil Salinity Remote sensing 
 
 
 
 
 
 
 
Proximal 
sensing 

Characterization by salt 
scalds 
SAR C-,P- and L-bands  
 
Salinity Index 
Normalized Salinity 
index 
Matched Filtering 
Multivariate regression 
and VNIR signatures 

Bell et al. (2001) 
 
Taylor et al. (1996) 
Jabbar (2008) 
Odeh (2008) 
Dehaan and Taylor 
(2003) 
Weng et al. (2008) 
Melendez-Pastor et al. 
(2010) 
Farifteh et al. (2008) 
 

Local  
 
Local  
Local  
Local  
Local 
 
Local  
Local 
 
Laboratory 

Soil iron content Remote sensing 
 
 
 
Proximal 
sensing 

Principal component 
analyses  
Redness Index 
 
Soil colour 
Constrained Energy 
Minimization 
Continuum removal 

Xu et al. (2004) 
 
Bartholomeus et al. 
(2007) 
Escadafel (1993) 
Farrand and Harsanyi 
(1997) 
Bartholomeus et al. 
(2007) 

Local  
Plot 
 
Laboratory, Plot 
Local 
 
Plot 

Soil organic 
carbon (SOC) 

Remote sensing 
Proximal 
sensing 

SOC indices  
Multivariate regression 
modeling 
 
PLSR 

Bartholomeus et al. 
(2008) 
Ben-Dor et al. (2002) 
Selige et al. (2006) 
Gomez (2008b) 

Plot 
 
Local 
Plot 
Local 

Soil moisture Remote sensing 
 
 
 
 
 
 
Proximal 
sensing 

Soil Water Index 
 
 
Surface energy balance 
models 
 
 
Soil line technique, MLR 
of absorption dip 

Wagner et al. (2007) 
Wagner and Scipal 
(2000) 
Su et al. (2005) 
Bastiaanssen et al. 
(2005) 
Crow et al. (2008) 
Dematte et al. (2006) 
 

Regional  
Regional  
 
Local  
Local  
 
Plot 
Local 

  

Table 2.3: Summary of retrieval methods for soil and terrain attributes (* Laboratory = 0 m, Plot = > 0 – 1 km2, 
Local = > 1 km2 – 104 km2, Regional = > 104 km2 – 107 km2, Global = > 107 km2). 
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Soil attributes Sensor class Method Reference Spatial extent 
Clay/sand 
fraction – texture 

Remote sensing 
 
 
 
 
Proximal 
sensing 

Merged radar and 
spectral data 
Band ratios from 
ASTER data 
 
SWIR Clay Index 
Matched filtering 
algorithm  
 
Regression equations 
field/lab 
 
Multiple linear 
regression 
 
Partial Least Square 
Regression 

Singhroy et al. (2003) 
Apan et al. (2002) 
Breunig (2008) 
Datt et al. (2003) 
Chabrillat (2002) 
Dematte et al. (2007) 
Selige et al. (2006) 
Barnes and Baker 
(2000) 
Thomasson et al. 
(2001) 
Sullivan et al. (2005) 
Viscarra Rossel et al. 
(2006b) 
Minasny and 
McBratney (2008)  

Local 
Local (60*60km) 
Local (60*60km) 
Local (7.5*100km) 
Local  
Local (plot/laboratory) 
Local (88 ha) 
Local (20*40 km) 
 
Plot 
 
Plot 
Plot 
 
Plot 

Mineralogy Remote sensing Quartz Index, 
Carbonate Index, 
Mafic Index in TIR 
Spectral Angle 
Mapper 
 
 
Constrained Energy 
Minimization 
technique 
Pixel Purity Index on 
MNF image 
 
SMA, MESMA, 
VMESMA, SSEE, 
SPA 
Spectral Feature 
Fitting 

Ninomiya et al. 
(2005) 
 
Kruse et al. (1993) 
Rowan (2003) 
Farrand and Harsanyi 
(1997) 
Chabrillat (2002) 
 
 
Boardman (1994) 
Rogge et al. (2007) 
Garcia-Haro (2005) 
Zhang (2008) 
 
 
Galvão et al. (2001) 

Local  
 
 
Local 
Local  
Local  
 
Local  
 
 
Local (plot/laboratory) 
Local  
Local  
Local  
 
 
Local 

Soil proxies Remote Sensing Plant Functional Type 
 
 
 
Ellenberg’s indicator 
values 
 
 
NDVI 

Mücher et al. (2009) 
Schaepman et al. 
(2007) 
Sun (2008) 
Ustin and Gamon 
(2010) 
Diekmann (2003) 
Schmidtlein (2005) 
Wang et al. (2007) 
Singh et al. (2006) 
Lozano-Garica et al. 
(1991) 
Sumfleth and 
Duttmann (2008) 

Regional 
Plot 
 
Global 
Local – global  
 
Local (plot) 
Local 
Local 
Local 
Local 
 
Local 

Table 2.3 continued: Summary of retrieval methods for soil and terrain attributes. 
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Terrain attributes Sensor class Method Reference Spatial extent* 
Elevation Remote sensing Summary statistics Florinsky (1998) 

Wilson and Gallant 
(2000) 

Local – Regional 
Local – Global 

Slope gradient Remote sensing Directional derivatives  Florinsky (1998) 
Wilson and Gallant 
(2000) 

Local – Regional 
Local – Global 

Relief intensity Remote sensing Directional derivatives  Florinsky (1998) 
Wilson and Gallant 
(2000) 

Local – Regional 
Local – Global 

Major landform Remote sensing Automated 
classification, DEM 
 
Fuzzy classification, 
DEM 
 
 
 
 
Object-based 
classification  
 
Expert driven multi-
level approach, LIDAR 
DEM 
Semi-automatic based 
on Topographic 
Position Index  
Combination of DEM 
classification and 
spectral data 
 
 
 
 
DEM classification and 
backscatter data 

Tribe (1992) 
MacMillan et al. (2004) 
Irvin et al. (1997)  
Iwahashi and Pike 
(2007) 
Schmidt and Hewitt 
(2004) 
Klinkseisen (2008) 
Rasemann et al. (2004) 
Otto et al. (2010b) 
Raper and Livingstone 
(1995) 
van Asselen and 
Seijmonsbergen (2006) 
Tagil and Jennes 
(2008) 
 
Saadat et al. (2008) 
Ehsani and Quiel 
(2008a) 
Ehsani and Quiel 
(2008b) 
Kettles (2000)  
Teruiya (2008) 
Ballantine (2005) 
Singhroy (2003) 
Singhroy (2004) 

Local 
Local  
Plot 
Global 
 
Regional 
 
Local  
Plot, Local 
Local 
Local 
 
Local 
 
Local  
 
 
Local  
Local  
 
Regional 
 
Local  
Local  
Regional 
Local 
Local 

Regional slope Remote sensing Directional derivatives 
DEM 

Dobos et al. (2005) Regional  

Hypsometry Remote sensing Directional derivatives 
DEM 

Dobos et al. (2005) Regional 

Dissection Remote sensing Directional derivatives 
DEM 

Florinsky (1998)  Local – Regional 

Permanent water 
surface 

Remote sensing Pixel Purity Index 
Spatial Spectral 
Endmember Extraction 

Boardman (1994) 
Rogge et al. (2007 

Laboratory 
Local 

Texture non-
consolidated material 

Remote sensing / 
Proximal sensing 

Spectral unmixing Apan et al. (2002) 
Breunig (2008) 

Regional  
Local  

Table 2.3 continued: Summary of retrieval methods for soil and terrain attributes. 



Remote and proximal sensing for soil and terrain mapping 

49 

Vegetation Sensor class Method Reference  Spatial extent 
Vegetation 
patterns 

Remote sensing 
 

NDVI 
 
Biogeographical 
ordination 
 

Tucker (1979) 
Huete (1988) 
Schmidtlein et al. 
(2007) 
Mahecha and 
Schmidtlein (2008) 

Global 
Global 
Plot 
 
Regional 

Photosynthetic 
vegetation 

Remote sensing 
 

Vegetation Indices 
 
 
Spectral unmixing 

Tucker (1979) 
Huete (1988) 
Qi et al. (1994) 
Luo et al. (2005) 

Global 
Global 
Plot 
Local 

Nonphotosynthetic 
vegetation 

Remote sensing 
/ Proximal 
sensing 
Remote sensing 
/ Proximal 
sensing 
Remote sensing 
 

Cellulose Absorption 
Index (CAI) 
 
Lignin Cellulose 
Absorption index 
(LCA) 
Simple ratio-type 
vegetation indices 
(SRTVI) 
Normalized 
difference-type 
vegetation indices 
(NDTVI) 
Probalistic spectral 
mixture model 
Spectral unmixing 

Daughtry et al. (2005) 
Serbin et al. (2009) 
Daughtry et al. (2005) 
Serbin et al. (2009) 
Mirik et al. (2005) 
 
Mirik et al. (2005) 
 
 
Asner and Heidebrecht 
(2003) 
 
 
Heute et al. (2003) 
 
Souza et al. (2003) 

Local  
Local 
Local  
Local 
Plot 
 
Plot 
 
 
Local 
 
 
 
Local 
 
Plot 

Lichens Remote sensing 
/ Proximal 
sensing 

Spectral unmixing Zhang et al. (2005) 
Bechtel et al. (2002) 

Laboratory 
Laboratory 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.3 continued: Summary of retrieval methods for soil and terrain attributes. 
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This chapter is based on: 
V.L. Mulder, S. de Bruin, M.E. Schaepman (2012). Representing major soil 
variability at regional scale by constrained Latin Hypercube Sampling of remote 
sensing data. International Journal of Applied Earth Observation and 
Geoinformation, 21(1), 301-310. DOI: 10.1016/j.jag.2012.07.004 

Abstract 
This paper presents a sparse, remote sensing-based sampling approach making use of 
conditioned Latin Hypercube Sampling (cLHS) to assess variability in soil properties 
at regional scale. The method optimizes the sampling scheme for a defined spatial 
population based on selected covariates, which are assumed to represent the 
variability of the target variables. The optimization also accounts for specific 
constraints and costs expressing the field sampling effort. The approach is 
demonstrated using a case study in Morocco, where a small but representative sample 
record had to be collected over a 15.000 km2 area within 2 weeks. The covariate 
space of the Latin Hypercube consisted of the first three principal components of 
ASTER imagery as well as elevation. Comparison of soil properties taken from the 
topsoil with the existing soil map, a geological map and lithological data showed that 
the sampling approach was successful in representing major soil variability. The 
cLHS sample failed to express spatial correlation; constraining the LHS by a distance 
criterion favoured large spatial variability within a short distances resulting in an 
overestimation of the variograms nugget and short distance variability. However, the 
exhaustive covariate data appeared to be spatially correlated which supports our 
premise that once the relation between spatially explicit remote sensing data and soil 
properties has been modelled, the latter can be spatially predicted based on the 
densely sampled remotely sensed data. Therefore, the LHS approach is considered as 
time and cost efficient for regional-scale surveys that rely on remote sensing-based 
prediction of soil properties. 
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3.1 Introduction 
Soil and terrain information is needed for many purposes including policy-making, 
land resource management, and for monitoring environmental impact of development 
(Battrick, 2005). Especially in developing countries, information about soils is sparse 
while at the same time resources for data acquisition are limited (Rossiter, 2004). 
Therefore, these resources should be used efficiently which means that acquisition 
plans have to be effectively fulfilling the goals; usually only few sites can be visited 
while they should represent the variability present in the area. Fortunately, often 
auxiliary data is available (e.g. remote sensing (RS) data) serving as a proxy 
representing the environmental conditions under which the soils have developed 
(Mulder et al., 2011b). In case of strong correlation, these data can be used in 
combination with a small sample of primary data to predict soil properties. Based on 
the soil-landscape paradigm (de Bruin et al., 1999; Hudson, 1992; Jenny, 1941), we 
postulate the existence of a relation between surface reflectance and soil properties 
and present a purposive sampling approach using RS data to select sites that are 
expected to represent major soil variability. The aim of sampling is to model the 
above-mentioned relation; however model selection and calibration fall outside the 
scope of the current paper. Examples of methods used for such purpose are linear 
regression (Gessler et al., 1995; Odeh et al., 1994) and regression trees (Lagacherie 
and Holmes, 1997; Scull et al., 2005). Both the selection and the calibration of 
regression models benefit from data covering the full range of the explanatory 
variables, for example to avoid extrapolation and decide upon the polynomial order 
(Rawlings et al., 1998). Any voids in the surface predicted by the regression model 
(e.g. because of partial cloud cover) will be interpolated, using a geostatistical 
method (Hengl et al., 2007; Heuvelink and Webster, 2001). 

Over the past decades, extensive work has been published on sampling schemes 
for soil mapping. De Gruijter et al. (2006) distinguish two fundamentally different 
statistical approaches for sampling and inference, the design-based (DB) strategies 
and the model-based (MB) strategies. The DB strategies involve probability sampling 
and design-based inference and aims to estimate the population parameter. That is, a 
pre-specified number of sample locations are randomly selected from the area with 
known probabilities, and the population parameters are estimated from the sample 
data based on the selection probabilities. Examples include (Stratified) Simple 
Random Sampling. Without prior knowledge, simple random sampling is typically 
chosen. If there are strata delineating more or less homogeneous subgroups, these can 
be used to increase efficiency of the estimate (Brus, 1994; Cochran, 1977). 
Alternatively, regression models can be used to increase efficiency at the estimation 
stage (Brus, 2000). MB strategies can be used for predicting population statistics 
such as global means, but their most common application is in mapping some target 
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variable. MB strategies do not require probability sampling; the spatial distribution 
of the target variable in the study area is modelled as a realization of a stochastic 
process. For MB strategies, purposive sampling is in general more efficient than 
probability sampling (Brus and de Gruijter, 1997). Sampling may be guided by a 
geometric criterion leading to spatial coverage sampling (Walvoort et al., 2010) or 
may aim to minimize the variance of the prediction error or more precisely the 
kriging variance (van Groenigen and Stein, 1998) or universal kriging variance (Brus 
and Heuvelink, 2007; Zhu and Stein, 2006). For an extensive discussion of DB and 
MB strategies the reader is referred to Brus and de Gruijter (1997). 

In our work the situation considered is one where the affordable sampling density 
is expected to be far too low for geostatistical interpolation (kriging). Rather, spatial 
prediction will be based on a modelled relation between spectral data obtained over a 
vast area by using both, RS data and measured target soil properties. The shape and 
coefficients of this relation are yet to be established using the collected data. 
Furthermore, given budgetary constraints, we set conditions on the sample size, the 
time spend on acquisition and the difficulty of reaching individual locations. This 
renders response-surface designs such as discussed by Meyers et al. (2011), Lesch 
(2005) and an equal range design as discussed by Hengl et al. (2003) infeasible, since 
we need to collect the sample data while minimising some cost-distance and we do 
not yet know the shape of the regression model; even a regression tree (Breiman et 
al., 1984) belongs to the possibilities. We aim to sample the feature space such that it 
will enable us to both select and calibrate a regression (tree) model of the relation 
between RS spectral data and target soil properties. A candidate sampling strategy is 
Latin Hypercube Sampling (LHS). If n is the desired sample size, LHS stratifies the 
marginal distributions of the covariates into n equally probably intervals and 
randomly samples the multivariate strata such that all marginal strata are included in 
the sample. While LHS is probability sampling, conditioning the LHS on any 
constraints and sampling costs leads to a purposive sampling strategy since the 
inclusion probabilities of locations are modified by the conditioning criteria. For 
example, remote sites may have zero inclusion probability while they do belong to 
the population. Conditioned Latin Hypercube Sampling (cLHS) has recently been 
proposed as an efficient sampling approach (Minasny and McBratney, 2006). 
Adamchuk et al. (2011) assessed the approach for an application in precision 
agriculture on a plot scale. 

In this paper we apply and evaluate cLHS as proposed by Minasny and 
McBratney (2006), using auxiliary data from RS data to optimise a small sample 
(maximum of 100 points) of multiple soil properties covering a 15,000 km2 area in 
Morocco. The optimization was conditioned by a cost function which accounts for 
accessibility and travel time in combination with accomplishment of an LHS. Section 
two entails a detailed description of the method which is next demonstrated by the 
case study in section three. The approach is evaluated by (1) comparing the coverage 
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of the covariate space and the cost of the cLHS with those of two alternative 
sampling strategies, (2) by comparing the thematic data obtained by the cLHS with 
the existing soil map, a geological map and lithological data and (3) variogram 
analysis of both the sparse and the exhaustive dataset. The paper concludes with a 
reflection on the proposed methodology.  

3.2 Methods 

3.2.1 Conditioned sampling  

In this paper, thematic space refers to the space spanned by the target soil variables 
while covariate space refers to the space spanned by the covariates used for the 
(constrained) LHS. The aim of our sampling is to create a dataset covering the 
covariate space, while honouring constraints and minimizing costs related to sample 
size, time spent on sampling and accessibility. Assuming a relation between the two 
spaces, the sample would also cover thematic space. For the design of this sampling 
we made use of cLHS (Minasny and McBratney, 2006). Each of the marginal 
distributions of the covariate space is divided into equiprobable intervals that are 
each targeted to be sampled once. Conditioned LHS aims at allocating individual 
sites to each of the intervals while simultaneously honouring constraints and 
minimizing the costs of sampling. In doing so, costs associated with failure to cover 
the covariate space are weighed with the constraints on sampling. Based on Minasny 
and McBratney (2006) the following objective function was used (Eq. 3.1): 
 

𝐽 = 𝑤1 ∗  ∑ ∑ �𝜂𝑖𝑗 − 1�  +  𝑤2 ∗ ∑ 𝑐𝑝𝑛
𝑝=1  𝑘

𝑗=1
𝑛
𝑖=1  

where n denotes the sample size, k is the number of variables, ŋij is the number of 
times that an interval i for variable j is sampled and cp is the cost associated with 
sampling point p. The weights w1 and w2 specify the relative weight of the cLHS 
component and the sampling costs, respectively.  
 
The method was implemented by the following steps: 
(1) Define the spatial population. i.e. the spatial population comprises the 

exhaustive sample of locations within the study area.  
(2) Select the covariates.  

The main criteria for selecting covariates include: (1) representative 
covariates are expected to have high correlation with the target variable, (2) 
the number of locations where predictive covariates are available needs to be 
much larger than the intended sample size and (3) covariates are cheaper to 

Equation 3.1 



Chapter 3 

56 

measure than the target variable itself (Davis, 2002; Webster and Oliver, 
2007).  

(3) Parameterize the objective function (Eq. 3.1). 
Constraints are modelled by setting high costs to a site violating the 
constraints. Potential constraints are the maximum distance to travel off-
road, maximum slope steepness, water bodies and areas which are 
inaccessible or forbidden to enter. Cost may for example, increase linearly 
with increasing distance from the road and increasing steepness of the 
landscape. In this study the weights w1 and w2 were based on a series of 
trials, as explained below (see par. 3.3.1.4.).  

 (4) Implement and decide on optimizer. 
The objective function (Eq. 3.1) eventuates the following problem: Given 
population N with covariate data (X), select n sites (n <N) so that the 
multivariate distribution of X is maximally stratified while the cost 
component is minimized. To solve this combinatorial problem, a heuristic 
optimiser such as simulated annealing is required (Kirkpatrick et al., 1983).  

(5)  Run the optimization and evaluate. 
The suggested sampling scheme should be evaluated carefully since the 
weights w1 and w2 influence the scheme strongly, so some experimentation 
may be required to obtain satisfactory results (see step 3).  

The final sample will be an (approximate) LHS representation of the covariate space. 
Implementation of the resulting sampling strategy is assumed to provide a sample 
representing the major soil variability within the study area.  

3.2.2 Auxiliary data from remote sensing 

Several soil forming factors (climate, organisms, relief and parent material) of the 
State Factor Equation of soil formation (Jenny, 1941) have been found to be 
expressed in spectra such as recorded by RS satellites (Buis et al., 2009; French et 
al., 2005; Schmidtlein et al., 2007; Singhroy et al., 2003). The use of RS data as 
proper covariates for soil mapping has a proven track record (Boettinger et al., 2010) 
and previous research on vegetation monitoring demonstrated the usefulness of RS 
data as covariates for cLHS (Lin et al., 2011). These findings strengthen our premise 
that RS imagery provides useful covariates for sampling soil variability. Also, the 
extent and spatial coverage of RS data as well as their relatively low cost indicate 
their potential usefulness as covariates (see step 2 above). The first few Principal 
Components (PC) of spectral image data do represent the major orthogonal axes of 
variability in the reflectance data but using reduced dimensionality (Wold et al., 
1987). PC analysis is one of the most common methods to reduce data dimensionality 
arising from high resolution spectrometers (Mulder et al., 2011b and references 
therein). Digital elevation data can be used as a proxy for the factor ‘relief’ (Debella-
Gilo and Etzelmüller, 2009; McBratney et al., 2003).  



Soil sampling by constrained Latin Hypercube Sampling  
 

57 

3.3 Case study 

3.3.1 Implementation of the RS-based cLHS approach  

In this section the procedure as described in section 3.2, is demonstrated step-by-step 
with a case study in Morocco.  

3.3.1.1 Study area 
The regional case study is located in Northern Morocco, centred at around 34.0º N, -
4.5º W and covers an area of 15.000 km2 (Fig. 3.1). While the Rif Mountains, an area 
of highlands, form the northern border, the Anti-Atlas mountain range is the southern 
border with areas of plateaus and intermountain valleys in between. Elevation ranges 
between +4 and + 2350 meters a.s.l. The climate is typically warm temperate with 
dry and hot summers (Kottek et al., 2006). The main land use is dominated by a 
mosaic of vegetation and croplands, bare areas, sparse vegetation and open evergreen 
forest (European Space Agency GlobCover Project, 2008).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: Study area, located in North Morocco, grey shades refer to elevation (Cartography by Navteq Inc., 
2011). The pre-defined sub-areas are indicated by the striped areas. 
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3.3.1.2 Selection of predictive covariates  
The covariate space used in cLHS consisted of the first three principal components 
from the Advanced Spaceborne Thermal Emission and Reflectance radiometer 
(ASTER) imagery and the ASTER GDEM (digital elevation model). Compared to 
other multispectral sensors offering a global coverage, ASTER has a relative high 
spatial and spectral resolution and favourable positions of the spectral bands for the 
retrieval of soil properties (METI/ERSDAC, 2009). ASTER has been proven to be a 
useful data source for the retrieval of various soil properties and NDVI (Mulder et 
al., 2011b; Tucker et al., 1985).  

The ASTER sensor records data in 15 spectral bands of which 4 in VNIR with a 
resolution of 15 m, 6 in the SWIR with a resolution of 30 m and 5 in the TIR region 
with a resolution of 90 m (Abrams and Hook, 2001). A mosaic of these images was 
taken in the same season over the years 2005 and 2007. The ASTER GDEM is a 
digital elevation model (DEM) at 30 m resolution generated by image matching of 
ASTER imagery (METI/ERSDAC, 2009). The first three Principal Components (PC) 
of ASTER VNIR-SWIR (30 m resolution) were used because they represented the 
major variance (>90%) present in the reflectance data in 3 uncorrelated variables. 
The latter, however, is not required for LHS (McKay et al., 1979). 

3.3.1.3 Parameterization of constraints and cost 
The field campaign was to be completed within two weeks. Considering the size of 
the study area, sparseness of the road network and the available transport, it was 
estimated that 100 sites could be visited during the campaign. To accomplish a 
sample size of 100 sites within two weeks, the following constraints/conditions were 
set: (1) the cost to travel off-road was set to increase linearly (1000 units/km) with 
increasing distance up to a maximum of 5.5 *105 units, that is the maximum cost 
reached by the maximum distance from a road within the area; (2) the costs for 
slopes steeper than 450, rivers and lakes were set to 1.0*106, to prevent these sites 
from being selected during the optimization for the cLHS. Areas which are 
inaccessible or forbidden to sample were masked out.  

3.3.1.4 Optimization of the constrained LHS 
The weights of w1 and w2 were set after running a series of trials, as follows; by 
systematically increasing w2 from 0 to 0.5 in steps of 0.1 and with w1 = 1 – w2, the 
spatial distribution of the points within the subareas was visually assessed and the 
distance to the road network was calculated. By setting w1 and w2 to 0.9 and 0.1, 
respectively, all sites were located within 5 km distance to the road network, which 
was deemed feasible. The subareas shown in figure 3.2 were chosen for practical 
reasons, i.e. computational feasibility (simulated annealing is computationally heavy) 
and accessibility of the terrain. The Latin hypercube computed over the full image 
was to be realized within these subareas. For computational reasons, histogram 
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computations of the marginal distribution were based on data from the central cells 
of a 3x3 moving-window. Within the subareas the cLHS was obtained by sampling 
the n equiprobable intervals of the covariates while accounting for the costs of 
sampling (Eq. 3.1). Optimization was achieved by simulated annealing using the 
cooling schedule described by Press et al. (1992), Equation 3.2: 
 

𝑝 = 𝑒
−∆𝐸𝑇𝑖    

where p is the probability of accepting a solution that worsens the objective function 
(configurations improving the objective function are always accepted), ΔJ is the 
change in the objective function, k a constant factor decreasing the temperature at 
each iteration and Ti is the temperature in iteration i. The initial value for T was set to 
1 and k was fixed to 0.95. The maximum number of iterations was set to 1*105. 
Small changes in ΔJ were observed after 55000 iterations which provided good 
confidence that the optimum was found. The software for cLHS optimization was 
implemented in Matlab (Mathworks, 2009). 

To evaluate the effectiveness of optimizing the objective function (Eq.3.1) with 
cLHS, both components of the function were calculated for a sample realized by 
simple random sampling and systematic random sampling (de Gruijter et al., 2006). 
These sampling strategies are, similar to the cLHS sample, realized within the 
defined subareas (Fig. 3.2).  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

with Ti=Ti-1 * k Equation 3.2 

                                 Figure 3.2: Selected sub-areas for fieldwork, as indicated by the striped areas. 
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3.3.2 In-situ data collection 

At each site a 5x5 m plot was laid out. To sample the variability within the plot, a 
composite soil sample was taken from the top 5 cm of the soil at the corners and the 
centre of the plot. Sampling the top 5 cm is sufficient because ASTER data provides 
information of the material composition of the surface. Also, a sample of the local 
parent material was collected from nearby rock outcrops; this material was used for 
comparison with information from the Geological Map of Africa (Association of 
African Geological Surveys, 1963). At each location the soil profile, vegetation and 
landscape properties were described. Additionally, to georeference the sites, GPS-
coordinates were recorded and photos were taken. The soils were classified according 
to the French soil classification “Classification des Sols, 1967” (Aubert et al., 1967). 
In the laboratory, the soil samples were dried at 70° C, sieved at 2 mm and analysed 
on organic matter (OM) content, pH, CEC, EC, texture and mineralogy (Baize and 
Jabiol, 1995; Bergmann, 1998). 

3.3.3 Evaluation  

3.3.3.1 Field conditions 
During the fieldwork campaign, some sites could not be visited due to unforeseen 
accessibility problems and delays, leading to loss of time and consequently to a 
reduced sample of 73 sites. On some occasions, local experts suggested alternative 
locations where similar soils that could otherwise not be reached could be sampled. 
To assess the effects of these adaptations in the field, the realized sample was 
compared to the original sample by analysis of the marginal distribution of each 
covariate. Ideally, every interval of the marginal distributions of the covariates 
should have a frequency of 1.  

3.3.3.2 Variogram analyses 
Variograms may provide essential information for future modelling of the target 
variables sampled with the cLHS. We anticipate that the variograms of data obtained 
from the cLHS will exaggerate short-distance spatial variability since the cLHS 
approach favours high variability at short distances. On the other hand, variograms of 
exhaustively sampled covariates are expected to provide insight into the potential use 
of geostatistical interpolation of any voids in the surface predicted by the regression 
model. For calculation of the variograms, the soil property data were log transformed 
when deemed necessary. To assess the spatial correlation of the full spatial 
population, a large sample (75000) was randomly taken from the covariate space of  
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Table 3.1: Auxiliary data available for data comparison. 

Legacy data Scale / resolution Coverage 
Local soil maps (INRA Maroc, 2010) 1: 50.000 Partial 
Soil map of Morocco (Cavallar, 1950) 1: 2M Full 
Geological Map of Africa (Association of African 
Geological Surveys, 1963) 

1: 5M Full 

ASTER imagery 30m x 30m Partial 
ASTER GDEM 25m x 25m Full 
 
the complete research area, their variograms were computed and compared to the 
variograms of the covariates from the cLHS data. Calculations were performed using 
the R language and environment for statistical computing (R Development Core 
Team, 2011) and contributed packages gstat and sp (Didier et al., 2011; Pebesma, 
2004). 

3.3.3.3 Coverage of the thematic space 
To verify whether the cLHS sample covered the thematic space, the collected soil 
data were compared with ‘known variability’ from available legacy soil data. Note 
that the legacy data is by no means intended as a reference data set; it is only used to 
verify whether reported variability is also represented by the cLHS sample. Data 
quality differs strongly among the data sets, especially concerning resolution and 
extent (Table 3.1). 

Information on soil mineralogy was not directly available, however, based on the 
Geological Map of Africa (1:5M) and lithological data obtained from drillings, a 
basic map of the surface mineralogy was made. It was assumed that the geological 
map units relate to the lithological classes. The dominant minerals representing these 
lithological classes were used to determine the surface mineralogy within the 
geological mapping units (Table 3.2).  

 
 
 

Thematic data    
Lithological classes Basalt 

Conglomerate 
Dolomite 

Granite 
Limestone 
Slate 

Shale 
Marlstone 
 

Sandstone 
Schist 

Minerals associated to 
the lithological classes 

Calcite 
Dolomite 
Quartz 

Chlorite 
Smectite 
Muscovite 

Microcline 
Kaolinite 
 

Feldspars 
Hematite 
 

Representative mineral 
classes for surface 
mineralogy 

Calcite / Clay mineral 
Calcite / Clay mineral / Quartz 
Feldspar / Muscovite / Clay minerals 
Feldspar / Muscovite / Quartz 
 

Quartz / Calcite / Clay 
minerals 
Quartz / Chlorite / Feldspar 
Quartz / Feldspar 

Table 3.2: Lithology obtained from drillings with associated minerals (Source: Kauffman, 2011). 
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These were compared to the determined mineralogy at the sampled sites. 248 
drillings with classified lithology were made available from the ‘Green Water 
Credits’-project (Kauffman, 2011). By definition, the first unweathered layer was 
used as main lithology representing surface mineralogy.  

3.4 Results and discussion 
Figure 3.3 shows the sites after optimization of the sampling scheme. The 100 points 
were distributed all over the sub-areas in the study area. Figure 3.4 shows the 
coverage of the covariable elevation, where the optimal cLHS is represented by the 
horizontal line. With respect to the first component of the objective function (Eq. 
3.1), where the cLHS is optimized to sample each interval of the covariate space, 
both the systematic and the simple random sample resulted in a sample not fully 
covering the covariate space. The second component of the objective function, the 
associated cost for the cLHS, was at least a factor 10 less compared to the systematic 
and simple random sample. These results confirm in contrary to cLHS, that these 
sampling strategies are suboptimal in fulfilling our sampling goals with respect to (1) 
coverage of the covariate space and (2) minimization of cost.  
 
3.4.1 Data collection of the cLHS covariate space 
Following the objective function (Eq. 3.1) and optimization as discussed in section 
3.3, the results of the realized cLHS are presented in figure 3.5 a-d, where the 
horizontal line represents the optimized LHS. Due to missing points some intervals 
remained unsampled while relocation of sites caused oversampling of other intervals. 
The histogram of elevation shows some large gaps at higher altitudes because of the 
accessibility problems. Despite the relocation of sites, the histograms of the first 
three principal components of the ASTER imagery show less oversampling of 
intervals compared to the histogram for elevation. In all cases, the sample covered 
the full range of the marginal distributions. The gaps are expected to have only minor 
influence on the calibration of the prediction models described in the introduction 

Figure 3.3: Sites selected by the LHS. 

Figure 3.4: Sampled intervals for the covariate elevation for 
(a) simple random sampling and (b) systematic random 
sampling, the cLHS sample is represented by the horizontal 
line. 
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because the unsampled intervals are spread rather than clustered over the full range 
of the marginal distributions. 

3.4.2 Coverage of thematic space 

3.4.2.1 Soil classes 
In Table 3.3 the comparison of the sampled soil classes with the Soil map of 
Morocco (Cavallar, 1950) and local soil maps (INRA Maroc, 2010) is shown for the 
single class mapping units (classes des sols). Unfortunately, eighteen field 
classifications could not be compared with mapped data since they were located 
outside the area covered by available soil maps. Twenty nine locations could be 
identified by a single mapped soil class and the other locations are within soil 
association on the Soil Map of Morocco (1:1.5M). However, these twenty nine sites 
do cover most of the mapped soil classes. The ‘Sols hydromorphes’ and ‘Sols 
Sodiques’ which are included in the legacy data set were missed by the constrained 
LHS sample. This might be contributed to the lack of spectral differentiation due to 
spectral mixing and their restricted occurrence. The two classes are reported to 
occupy a small proportion of the study area (1.96%). On the other hand, spectra and 
samples were collected of a sodic soil and a salt crust which were not included in the 
legacy dataset.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5: Realized samples (a) DEM, (b) PC1, (c) PC2 and (d) PC3, the optimal LHS is represented by the 
horizontal line. 
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Classes des sols Explanation No. of sites 
Classe de sols minéraux bruts Shallow soils without well- defined 

horizons 
3 

Classe de sols peu évolués Juvenile soils 9 
Classe des vertisols Vertic properties 4 
Classe des sols calcimagnésiques Soils enriched in Ca2+ and Mg2+  5 
Classe des sols isohumiques Isohumic properties 3 
Classe des sols brunifiés Brunified soils 1 
Classe des sols à sesquioxydes de fer Soils with sesquioxidic 

concretions of iron 
1 

Classe des sols ferrallitiques Soils with evidence of fersiallitic 
weathering 

3 

Classe des sols hyromorphes Hydromorphic properties 0 
Classe des sols sodiques Salt affected soils 0 

3.4.2.2 Lithology 
The lithology for the rocks collected in the field was in agreement with the lithology 
obtained from the drillings (Table 3.2). A total of 57 sites were correctly assigned to 
the representative mineral classes for surface mineralogy, as described in section 
3.3.3.3 (Table 3.4). The remaining 20 sites did not correctly represent the mapping 
unit at the specific site, however, this might be caused by the coarse resolution of the 
geological map, which fails to represent local variability. 

3.4.2.3 Soil properties 
Table 3.5 shows that the sampled soil properties covered the range of soil texture, 
OM, pH, CEC and EC reported for the soil types (IUSS Working group WRB, 2006) 
present in the area according to the legacy data. Figure 3.6 shows that the sampled 
texture classes were in agreement with the legacy data (Aubert et al., 1967). These 
results show that both the spectral (section 3.4.1) and thematic space were well 
covered by the cLHS sample.  
 

 
 
 

Table 3.3: Total number of sites within each mapped soil class (Aubert et al., 1967) in the study area. Comparison 
based on the Soil map of Morocco (1: 1.5M) (Cavallar, 1950) and local maps (INRA Maroc, 2010). 

Mineral class No. of sites 
Calcite / Clay mineral 1 
Calcite / Clay mineral / Quartz 16 
Feldspar / Muscovite / Clay 
minerals 

12 

Feldspar / Muscovite / Quartz  2 
Quartz / Calcite / Clay minerals 1 
Quartz / Chlorite / Feldspar  24 
Quartz / Feldspar  1 

Soil properties Range 
Clay (%) 5.0 - 47.5 
Silt (%) 2.5 – 53.0 
Sand (%) 0.7 - 75.1 
pHH2O 5.3 - 8.6 
pHKCl 4.0 - 8.7 
Organic Matter (%) 0.28 - 9.30 
CEC (meq%) 6.50 - 77.20 
EC (ms/cm) 0.23 – 248.0 

Table 3.4: Total number of sites within each mapped 
soil class (Aubert et al.,1967) in the study area. 
Comparison based on the Soil map of Morocco (1: 
1.5M) and local maps. 

 

Table 3.5:Range of sampled soil properties from 
laboratory analysis. 
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3.4.3 Variogram analysis  

3.4.3.1 Variogram analysis of the sampled soil property data 
Figures 3.7 a-f present the variograms calculated for the soil property data. Please 
note the differences in the y-axes used, caused by the different measurement units 
and variances. None of the figures show evidence of spatial correlation, i.e. the 
semivariance does not systematically increase with increasing distance between the 
pairs of points considered. Accordingly, all variograms lack a clear structural 
component and they can be modelled by a pure nugget effect. These results are no 
surprise: the cLHS approach favoured sampling high variability within short distance 
from the road network.  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 3.6: Ternary diagram of soil texture with the sampled texture classes. The shaded area represents the 
texture classes according to legacy data; points represent the individual samples. 
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3.4.3.2 Variogram analysis of the cLHS covariate space 
Figure 3.8 (left) shows the variograms for the realized cLHS covariate space. 
Contrary to expectations, the semivariances for PC3 attain higher values than those 
of PC2. This can be attributed to the sampling effect; the sample has one or a few 
observations in a far tail which affects the semivariance in several (notably short) 
distance classes. Unlike our expectations, figure 3.8a does suggest spatial structure of 
elevation data in the cLHS. However around a lag distance of 30 km the experimental 
semivariances show erratic behaviour, which did not disappear when manipulating 
the bin sizes (not shown here). Similar behaviour can be observed in figures 3.8c and 
g. Summarizing, most variograms in figure 3.8 (left) show weak spatial structure at 
best, particularly when compared to the variograms of the large sample (Fig. 3.8 
right). Again this behaviour can be contributed to the set distance criteria which 
resulted in an overestimation of the variograms nugget and short distance variability.  
 
 

Figure 3.7: Variograms calculated for the soil property data from the LHS sample, (a) clay (%), (b) total silt (%), 
(c) Log (total sand (%)), (d) Log (Organic Matter (%)), (e) pH-H2O and (f) Log (Electric Conductivity). 
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The variograms of the large sample indicate that RS-data are strongly spatially 
correlated (Fig. 3.8 right). In contrast to the approximate cLHS sample, the 
variograms of the largely sampled first three principal components follow the 
theoretical pattern of decreasing variances (Wold et al., 1987; see the sills of the 
variograms). The strong correlation of the covariate data supports our premise that 
once the relation between RS and soil properties has been modelled, the RS data can 
provide the spatial basis for mapping soil properties. 

Figure 3.8: Variograms calculated for the LHS covariates : (a) DEM LHS sample, (b) DEM large sample, (c) 
PC1 LHS sample, (d) PC1 large sample, (e) PC2 LHS sample, (f) PC2 large sample, (g) PC3 LHS sample and 
(h) PC3 large sample. 
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3. 5 Conclusions  
 
The RS-based sparse sampling approach presented and evaluated in this paper aims 
to sample variability in soil properties. Subsequently, the sample data will be used to 
characterize the relationship of the chemical and physical properties with their 
spectral characteristics measured with PS and RS.  

The main findings of this paper are; (1) Latin Hypercube Sampling constrained on 
the accessibility of sites can produce a relatively small sample that represents the 
spectral variability within the considered covariate space, (2) the dataset obtained by 
the constrained LHS, represented variability in soil properties when compared to 
legacy data and  (3) the constrained LHS sample lacked spatial correlation, because 
the procedure favoured large spatial variability within a constrained neighbourhood. 
This implies that a LHS sample constrained on accessibility is unsuitable for 
variogram estimation. Consequently, the data are unsuitable for spatial prediction 
models using kriging, which makes sense because no criteria on spatial coverage and 
distribution are included in the target function.  

However, the acquired dataset is expected to provide information for studying 
soil-landscape relationships originating from the State Factor Equations of soil 
formation (Jenny, 1941) based on spectral data. The imagery is then used for 
providing spatial and spectral information on a regional scale, which makes sense 
because the variograms of the large sample showed that the RS data are strongly 
spatially correlated with ranges up to several decades of kilometres. The cLHS 
sample provides the data needed for fitting quantitative relationships between the 
target soil properties and the covariates (McBratney et al., 2003).  

It is therefore expected that the RS-based sparse sampling approach is time and 
cost efficient for regional-scales soil survey. If data availability is scarce, this 
approach provides a small dataset with soil properties that can next be used for 
mapping soil properties using modelled relations between properties and spectra; 
once the relation between RS and the soil properties has been modelled the latter can 
be spatially predicted, based on the densely sampled RS data.  
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Abstract 
This research analyses the complexity of retrieving composite soil mineralogy from 
proximal sensed data. Using measured spectra from soil mixtures, retrieval of 
composite mineralogy is hampered by the co-occurrence of absorption features at 
similar wavelengths. Complex interactions between different mineral components 
may further limit retrieval of separate endmembers. Accounting for the co-
occurrence of absorption features but eluding the complex interaction between the 
components, an advanced classification routine for spectroscopic measurements was 
tested to assess composite mineralogy in terms of presence and absence of minerals. 
This was done by linearly forward modelling of the spectrum from the fraction of the 
constituents within the sample. The classification routine was applied both to the 
modelled and the measured spectra. Results show that by using the modelled spectra 
more minerals can be retrieved with higher accuracy because the diagnostic 
absorption features of the minerals were manifested. Due to the complex interaction 
between the minerals, features were less distinct or even absent in the measured data 
which hampered the classification routine to correctly retrieve composite mineralogy. 
Post-classification indicates that the measured samples can be grouped by dominant 
mineralogy due to the high spectral similarity between the modelled and measured 
spectra. This method is deemed particularly useful for regional-scale studies after 
generalization of the minerals into mineral groups. 
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4.1 Introduction 
Visible and Near Infrared (VNIR) spectroscopy has proven to be an efficient method 
for the determination of various soil properties (Mulder et al., 2011b). From these 
properties, soil mineralogy is an important indicator for soil formation and parent 
material characterization. The standard determination of mineralogy by powder 
diffraction is costly and labour-intensive and VNIR spectroscopy might be an 
efficient alternative. Currently, individual soil minerals can often be determined by 
their characteristic absorption features and using spectral unmixing techniques 
(Mulder et al., 2011b). Nevertheless, simultaneous retrieval of multiple minerals is 
limited by the co-occurrence of absorption features at similar wavelengths, nonlinear 
mixing (or scattering) phenomena (Singer, 1981; Sunshine et al., 1990), and 
measurement noise (Stenberg et al., 2010). The question of whether linear or 
nonlinear processes dominate the spectral signatures of mixed spectra is still an 
unresolved issue. The linear approach has been demonstrated to be an useful 
technique for interpreting the variability of mineralogy in remote sensing (RS) data 
(Clark et al., 2003; Rezaei et al., 2011). Although these methods seem to be working 
to a certain quality, when using proximal sensing (PS) data the linear approach 
becomes invalid. Because, the linear approach is only strictly valid for the situation 
where the endmembers are arranged in discrete, segregated patches on the surface. 
This condition is never met when unmixing soil constituents since they exist in 
intimate association with one another (Singer, 1981; Sunshine et al., 1990).  

Linear unmixing approaches, such as Multiple Endmember Spectral Unmixing 
Analysis (MESMA), have difficulties with deriving multiple endmembers for mineral 
mixtures because they assume the reflectance being a combination of linear functions 
as required for these analysis routines (Mulder et al., 2011a). Alternatively, the 
methods based on Tetracorder aim to match diagnostic absorption features with 
spectra from a large spectral library (Clark et al. 2003). As such, it does do not 
directly account for non-linearity but reduces the influence of non-linear behaviour. 
The results obtained with the Tetracorder show that many different minerals can be 
identified, however, the retrieval of mixtures with the current approach remains 
limited (Clark et al., 2003).  

Therefore, in this paper we analyse if the retrieval of composite mineralogy with 
the Material Identification and Characterization Algorithm (MICA) (Kokaly, 2011) is 
improved by using linearly modelled spectra. By linearly modelling the spectrum 
from the fraction of the constituents within the sample the complex interaction 
between the components is avoided while the co-occurrence of absorption features is 
accounted for. The performance of PRISM in retrieving composite mineralogy is 
evaluated by comparing the results from the modelled spectra with measured spectra.  
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4.2 Material and methods 

4.2.1 Materials 

The study area was located in Northern Morocco, centred at 34,0ºN, -4,5ºW and 
covers an area of 15,000 km2, with the Rif Mountains being the northern border and 
the Anti-Atlas Mountains being the southern border. At 73 sites, a mixed soil sample 
from the corners and the centre of a 15*15 meter plot was taken of the top 5 cm of 
the soil. The soil samples were dried at 70° C, sieved and crushed to a powder (<65 
µm). The total sample of 77 observations was collected by a predefined sampling 
scheme which was designed in such a way that the variability in soil properties, 
including mineralogy, was fully sampled (Mulder et al., 2012a). 

Mineralogy of the samples was determined on non-oriented powder specimens 
with X-ray diffraction analysis. A second sample preparation for clayey materials 
produced oriented specimens, thereby facilitating their identification. The changes in 
the reflex positions in the XRD pattern by intercalation of ethylenglycol were used 
for identification of smectite. X-ray measurements were made using a Bragg-
Brentano Theta-2-Theta diffractometer Philips PW1820 using Cu Kalpha radiation. 
The qualitative phase composition was determined in comparison to the ICDD PDF 
database using the software DIFFRACplus (Bruker AXS, 2012). The quantitative 
mineral composition of the samples was calculated by Rietveld analysis using the 
Rietveld program AutoQuan (Bergmann, 1998; GE SEIFERT; Kleeberg, 2005). 

Spectral measurements were taken under laboratory conditions with an ASD 
Fieldspec Pro FR spectroradiometer covering the 350-2500 nm wavelength region. 
The samples were illuminated using a stabilized quartz-tungsten light source with a 
condenser and Koehler illuminator, securing isotropic illumination within the field-
of-view. In order to obtain a measurement field-of-view of 2 cm, a 50 foreoptics was 
used and the sensor was placed 23 cm above the sample. The powdered samples were 
placed in pure crystal sample holders to reduce scattering from the sample holder, 
since crystal lacks distinct absorption features. Preprocessing of the spectral data was 
done in IDL ENVI. The determination of composite mineralogy was performed with 
the MICA module that is part of the ‘USGS Processing Routines in IDL for 
Spectroscopic Measurements’ (PRISM) software (Kokaly, 2011) which includes the 
processing routines of Tetracorder (Clark et al. 2003).  

4.2.2 Methods 

Linearly modelling the spectrum from its components eludes complex interaction 
between the minerals and therefore it is expected that the diagnostic features of 
individual constituents remain apparent. In contrast, soil samples may represent an 
intimate mix of mineral constituents, which implies that specific spectral properties 
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combine in a complex way which affects features that are diagnostic of the individual 
minerals (Singer, 1981). The linear model is described by:  
 

𝑅𝑚 =  ∑   𝜌𝑖 ∗  f𝑖𝑛
𝑖=1    

Where n denotes the mineral components within the sample, ρi the reflectance curve 
of component i, fi the fraction of component i and Rm the modelled reflectance curve 
of the measured sample. 

The complex interaction between constituents could influence the reflectance curve 
significantly. Although, the linear model does not include these effects, the final reflectance 
curve (Rm) must be representative for the measured reflectance; if the two spectra appear to 
be uncorrelated, further analysis concentrating on the relation between the measured and 
modelled spectra will not contribute to an operational method for the retrieval of composite 
mineralogy. Therefore, their spectral similarity was judged based on the spectral angle 
between the two spectra (Kruse et al., 1993). A spectral angle smaller than 0.1 radians was 
considered as the threshold, indicating similarity. 

The classification routine is based on the current expert system decision-making 
framework of Tetracorder (Clark et al., 23). The central concept of the system is the 
detection of diagnostic absorption features; these features are unique to particular materials 
in shape. The features were isolated by continuum removal, then the shape of the 
absorption features were modelled and matched to references features from a spectral 
library. 
 
The similarity between the diagnostic features of the sample with library spectra was 
quantified by using modified least squares calculation, the resulting coefficient of 
determination (R2) was used as the final “fit” value, that is, the measure of agreement 
between the spectra. To discriminate between materials having similar diagnostic 
absorption features, constraints were included to rule out the co-occurrence of other 
materials (Clark et al. 2003) (Fig. 4.1). The following steps have been taken for 
mineralogical classification: 
• Calculation of the continuum removal spectra for the spectra of (a) pure minerals, (b) 

the measured reflectance of the soil samples and (c) the linear modelled spectra of the 
minerals within the soil samples. 

• Defining and selection of the diagnostic absorption features by determination of the 
shoulders and the depth of the absorption features from a, b and c.  

 
 
 
 
 

Equation 4.1 
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• Defining and selecting the ‘not features’ (Clark et al., 2003) by analyzing the unique 

and co-occurring diagnostic features from c.  
• Defining the weights of the diagnostic absorption features. The weights which are 

known to be represented poorly in the measured soil samples, as judged from the 
comparison of the linear mixed mineral spectra, do get a higher weight in order to be 
detected.  

• Run the classification routine for (1) the measured spectra (b) and (2) the linear 
modelled spectra (c) with a spectral library containing the pure minerals (a). Then, 
match the measured samples with the modelled samples with use of the Spectral Angle 
Mapper (Kruse et al. 1993). 

4.3 Results 
The approach is demonstrated by sample no. 41. This sample consists of 44% quartz, 
31% calcite and 7% kaolinite, 7% muscovite and 11% of residual minerals. Most of 
the diagnostic features occur in the SWIR and many of these features of the 4 
minerals co-occur at similar wavelengths (Fig. 4.2). However, unique diagnostic 
features were found around 956 nm (kaolinite), 910 nm (muscovite), 1998 nm 
(calcite) and 1943 nm (quartz). From this figure it becomes clear that the shape and 
depth of the features are not a strictly linear representation of the co-occurring 
minerals within the measured spectra. For example, the spectra of calcite and 
muscovite, as well as the mixed spectra, show clear absorption  

Figure 4.1. The continuum removed spectra from 4 minerals are compared to the reference spectra “Calcite” by a 
modified least squares calculation, the best match (Fit) to “Calcite” is calcite with a R2 of 1. 
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features at 2340 nm, however the measured spectrum shows presence of the 
absorption features, but less wide and deep. This can be contributed to the coating of 
the mineral by calcium carbonate or iron oxide thereby reducing the depth of the 
diagnostic absorption features of the coated mineral. Also, the spectrum of quartz 
does not depict distinct absorption features which will likely limit detection of its 
presence.  

The results show the limitation of Tetracorder to retrieve the presence of 
minerals, with similar diagnostic absorption features within a soil mixture, by the 
pure minerals included in the spectral library (Table 4.1). From the measured 
reflectance of sample 41, quartz and chlorite were not detected in the spectrum by 
their absorption features, while especially quartz has a high abundance. The best 
match for the measured reflectance was obtained for calcite (R2 = 0.84) and 
muscovite (R2 = 0.72). Results for the modelled spectra demonstrate that more 
minerals were retrieved, including quartz, with higher coefficients of determination. 
However, the expected limitations such as coating of minerals and lack of absorption 
features, indeed limit the retrieval of e.g. quartz. For the complete dataset, the total 
and correctly observed minerals by PRISM were compared to the determined 
mineralogy extracted by the XRD method (Table 4.2). This table shows that the 
correct detection with respect to the total detected minerals was higher using the 
modelled spectra. In addition, the dominant mineral within the sample was correctly 
assigned as primary match 58 of overall 77 samples for the modelled spectra against 
39 of overall 77 samples for the measured spectra.  

 
 

Figure 4.2. (top) Reflectance of the linear mixed and measured reflectance of sample 41, (bottom) Reflectance of 
the pure minerals (abundance > 5%) present in sample 41. The vertical lines indicate absorption features of the 
various minerals. 
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X-ray diffraction PRISM  
Mineral Abundance 

(%) 
Mineral Measured 

R2 
Modelled 

R2 
Quartz 44 Quartz - 0.62 
Calcite 31 Calcite 0.84 0.87 
Kaolinite 7 Kaolinite 0.58 0.80 
Muscovite 7 Muscovite 0.72 - 
Chlorite 4 Chlorite - 0.69 
Feldspar 4 Feldspar 0.56 0.63 

Minerals XRD Measured Modelled 
Total Total Correct Total Correct 

Quartz 77 1 1 36 22 
Montmorillonite 35 10 4 52 35 
Kaolinite 49 63 37 58 41 
Plagioclase 67 66 59 49 46 
Muscovite 66 73 62 34 26 
Goethite 13 18 4 5 4 
Calcite 62 61 51 61 52 
Chlorite 50 8 6 30 24 
 
 
Quartz does not have diagnostic absorption features in the VNIR, which results in 
poor detection especially for the measured data. Goethite was overestimated by the 
measured dataset which might be contributed to its nature to form layers around other 
materials instead of small grains. Plagioclase does not manifest diagnostic features 
related to the vibrational absorption processes in the longer wavelengths (2000-2500 
nm). Instead, we used the diagnostic features in the 400-1500 nm region which arise 
from the electronic absorption processes of its weathering products. The 
underestimation of plagioclase for the modelled data can be contributed to the 
absence of weathering products in the pure spectra used for the model. The same 
arguments partly explain the difference in both data sets for muscovite. In addition, 
montmorillonite was overestimated while muscovite was underestimated for the 
modelled spectra. This can be contributed to the presence of calcite within those 
samples; the strong increase in reflectance of calcite at 2336 nm flattens the 2355 nm 
diagnostic feature of muscovite which results in a spectrum similar to 
montmorillonite. Concerning the measured spectra, montmorillonite did not clearly 
manifest the diagnostic features originating from the vibrational absorption 

Table 4.1: Comparison of minerals determined by X-ray diffraction with the best match (R2) of minerals from the 
PRISM classification routine applied on the measured and modelled reflectance of sample 41. 

 

Table 4.2: Comparison of mineral detection by PRISM for the measured and modelled reflectance with 
mineralogy as determined by X-ray diffraction (XRD) for the complete data set of 77 samples. 
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processes. This might well be a nonlinear mixing (or scattering) phenomena of the 
minerals, resulting in underestimation of the presence of montmorillonite.  

Despite the high spectral similarity (average spectral angle < 0.04 rad.) of the 
continuum removed spectra, the modelled and measured spectra were not matched 
exactly with each other. However, the top five best matches of the measured spectra 
with the modelled spectra were in most cases samples similar in composition but 
deviating abundance. The best match (R2=0.64) was obtained for modelled spectra 
with similar dominant minerals but less variability in the residual mineral 
composition. 

4.4 Discussion and conclusions 
This research confirmed the complexity of retrieving composite soil mineralogy from 
proximal sensed data. Using measured spectra from soil mixtures, retrieval of 
composite mineralogy was hampered by the co-occurrence of absorption features at 
similar wavelengths. Due to the complex interaction between the different 
components, retrieval of each separate endmember was limited when using PRISM. 
By excluding the interaction between the components while accounting for the co-
occurrence of absorption features, PRISM was able to retrieve the composite 
mineralogy in terms of presence of minerals. By generalization of the minerals into 
groups this method could be particularly useful for regional scale studies where 
mineralogy can be used as key soil property for parent material characterization and 
soil formation. The expert system decision-making framework in PRISM was based 
on a priori knowledge from the data collected in the field. Application of the method 
elsewhere will require adjustment using data acquired from a sample covering the 
attribute space, e.g. such as proposed in Mulder et al. (2012a).  

However these results are not optimal for local scale studies whereby more 
detailed information is required, such as mineral abundance, in order to predict 
specific soil threats (e.g. salinization or swelling and shrinking of soils). Successful 
methods focus on the interaction between minerals within the intimate mixture by 
addressing the interaction with a non-linear model. Promising methods include the 
photometric model of Hapke (Warell and Davidsson, 2010, and references therein) 
and the modified Gaussian model of absorption bands (Sunshine et al. 1990). These 
methods have been successfully used for extra-terrestrial studies, yet, they have not 
become operational for terrestrial studies focusing on soil properties. Therefore, to 
make optimal use of the upcoming high quality remote sensing data, we have to 
consider such approaches to provide the soil science community with high quality 
data to support their work.  
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Abstract 
This paper presents a methodology for assessing mineral abundances of mixtures 
having more than two constituents using absorption features in the 2.1–2.4 µm 
wavelength region. In the first step, the absorption behaviour of mineral mixtures is 
parameterized by exponential Gaussian optimization. Next, mineral abundances are 
predicted by regression tree analysis using these parameters as inputs. The approach 
is demonstrated on a range of prepared samples with known abundances of kaolinite, 
dioctahedral mica, smectite, calcite and quartz and on a set of field samples from 
Morocco. The latter contained varying quantities of other minerals, some of which 
did not have diagnostic absorption features in the 2.1–2.4 µm region. Cross 
validation showed that the prepared samples of kaolinite, dioctahedral mica, smectite 
and calcite were predicted with a root mean square error (RMSE) less than 9 wt.%. 
For the field samples, the RMSE was less than 8 wt. % for calcite, dioctahedral mica 
and kaolinite abundances. Smectite could not be well predicted, which was attributed 
to spectral variations of the cations within the dioctahedral layered smectites. 
Substitution of part of the quartz by chlorite at the prediction phase hardly affected 
the accuracy of the predicted mineral content; this suggests that the method is robust 
in handling the omission of minerals during the training phase. The degree of 
expression of absorption components was different between the field sample and the 
laboratory mixtures. This demonstrates that the method should be calibrated and 
trained on local samples. Our method allows the simultaneous quantification of more 
than two minerals within a complex mixture and thereby enhances the perspectives of 
spectral analysis for mineral abundances. 
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5.1 Introduction 
Soil mineralogy is an important indicator for soil formation and parent material 
characterization. Among other minerals in soils like quartz, feldspars and carbonate 
minerals, clay minerals are the main secondary phases formed by the weathering of 
the parent material. The abundance of different clay minerals and their structural 
features become useful indicators in defining the evolutional stage of a soil (Egli et 
al., 2008; Hong et al., 2013; Mavris et al., 2011; Sedov et al., 2003). In 
environmental and geological studies, the characterization (and quantification) of soil 
mineralogy is typically achieved using X-ray diffraction (XRD). XRD is broadly 
acknowledged as the essential tool for mineral determination of mono- or multi-
mineral mixtures (Bish and Plötze, 2011; Gomez et al., 2008a; Mulder et al., 2011b; 
Omotoso et al., 2006). The basic limitation of XRD is that the analysis must be 
carried out indoors, basically due to sample preparation requirements and specific 
laboratory treatments necessary for some clay minerals, such as glycolation and 
heating after various cation saturations. Visible Near Infrared and Shortwave Infrared 
(VNIR/SWIR) spectroscopy has proven to be an efficient method for the 
determination of various soil properties since measurements can be done with little 
effort and in situ (Ben-Dor et al., 2009; Viscarra Rossel et al., 2006b). In this paper 
we propose and demonstrate its use for simultaneous quantification of mineral 
abundances from complex mixtures. 

Some minerals such as quartz, and low iron feldspars do not show absorption 
features in the 0.350–2.500 µm wavelength range except for the features arising from 
Fe2+/3+ related to their weathering products (Clark et al., 1990). Detection of minerals 
having absorption features within the 0.350–2.500 µm range have been successfully 
obtained using linear spectral unmixing techniques (Dennison and Roberts, 2003). 
However, these analyses were limited to estimating the main component within a 
sample having the most distinct absorption feature (Mulder et al., 2012b). Linear 
mixing behaviour of spectra, however, is highly unlikely in soils because the mineral 
constituents are typically in intimate association with one another. Influencing 
factors are e.g. the opaqueness of minerals and coating by other minerals. 
Furthermore, simultaneous retrieval of multiple mineral abundances from reflectance 
spectra in the 0.350–2.500 µm region is affected by the co-occurrence of absorption 
features at similar wavelengths arising from overtones and combinations of the 
fundamental absorptions of OH, H2O and CO3 which occur at wavelengths greater 
than 2.500 µm, nonlinear mixing (or scattering) phenomena (Singer, 1981; Sunshine 
et al., 1990), and measurement noise (Stenberg et al., 2010). Hence, reflectance 
spectra of mixtures are typically a complex result from the combinations of the 
spectral characteristics of the constituents (Clark et al., 1990), as illustrated in figure  
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5.1. A comparison of the diagnostic features of pure calcite with the continuum 
removed reflectance (Clark, 1998) of samples containing a spectrally dominant 
mineral shows that e.g. in the presence of quartz the double absorption feature near 
2.300–2.350 µm is present but much less distinct while it is absent in mineral 
mixtures of calcite with kaolinite or dioctahedral mica at approximately 15% 
abundance. Note also that the absorption near 2.150 µm is absent in the smectite and 
dioctahedral mica mixtures while it changes the typical absorption of kaolinite. 
Depending on the composition, the abundance and the spatial arrangement of the 
minerals, the total reflectance resulting from the scattering of the minerals within the 
intimate mixture produces positional shifts, changes in intensity, disappearance of 
absorption features or changes in their shape.  

Methods aiming to match diagnostic absorption features with spectra from a large 
spectral library include the Tetracorder (Clark et al., 2003) and the CRISM Analysis 
Tool (CAT) (Flahaut et al., 2012). While the extended library enables application to 
unknown areas without the need of calibration on local samples, the retrieval of the 
mineral composition of complex mixtures remains limited because spectral mixing 
effects may yield diagnostic features not distinct enough to be matched to minerals in 
the spectral library. Theoretically, the spectra could be matched to the corresponding 
spectra with known abundances in the library. However the spectra to be included in 
the library of various minerals and the possible variation in mixtures of these would 
follow combinatory logic (Mulder et al., 2012b). So, the methods are commonly 
applied to characterizing mineral composition in terms of presence or absence but not 
quantifying mineral abundances (Clark et al., 2003). Non-linear models, such as the 
single scattering albedo model of Hapke (Hapke, 2002; Warell and Davidsson, 2010) 
have been successful in predicting the abundances of minerals in intimate mixtures. 
The main reason why such a nonlinear approach is not widely adopted is the amount 
of detailed information needed on the scattering properties of all endmembers to 
perform the calculations (Keshava and Mustard, 2002). Alternatively, the modelling 

Figure 5.1: Continuum removed reflectance of calcite and mixtures containing calcite. The mixtures contain 
minerals of which the additional mineral with absorption features has an abundance of approximately 15% and a 
sample of calcite with 25% quartz (Spectra originate from field samples measured in this experiment, the calcite 
spectra contains a small trace of mica).  
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of reflectance and the inference of absorption components within complex features 
can be done by fitting Gaussian curves or modified Gaussian curves to the absorption 
features and absorption components in reflectance spectra of minerals also referred to 
as spectral deconvolution (Burns, 1993; Noble et al., 2006; Roush and Singer, 1986; 
Singer, 1981). Sunshine et al. (1990) provided the explanation for Gaussian 
behaviour of absorption features. The signal sensed by a spectrometer corresponds to 
the mean response from massive amounts of electronic and vibrational processes that 
cause absorption around specific wavelengths (absorption bands). Owing to the 
Central Limit Theorem, an absorption feature closely resembles a Gaussian 
distribution. Alternatively, the exponential Gaussian optimization (EGO) of Pompilio 
et al. (2009) has been designed to model absorption components which are not 
Gaussian in shape and accounts for saturation and asymmetry effects. The use of 
such a quantitative deconvolution method for a spectrum of a specific composition is 
dependent only on the spectra and absorption of the minerals themselves rather than 
the detailed information on the scattering properties required for the Hapke model 
(Shepard and Helfenstein, 2007). It provides the means to study the individual 
absorption components in spectra and interpretation of these can then be analysed in 
terms of composition (Sunshine et al., 1990).  

Modified Gaussian models have been demonstrated in laboratory experiments by 
mixtures with two constituents of interest using either multiple linear regression 
techniques (Bishop et al., 2011; Singer, 1981) or the ratio between intensities of 
absorption components (Kanner et al., 2007; Sunshine and Pieters, 1998). It has thus 
been assumed that the model parameters vary as a linear function of the relative 
proportions of the constituents in the mixture (Pompilio et al., 2009; Sunshine and 
Pieters, 1998). Samples with similar mineralogy but unknown abundance can then be 
predicted by the calibrated mixtures models. However, such approach is insufficient 
for the prediction of mixtures with more than two minerals. Model parameters might 
vary linearly over a short range of the mixture possibilities but over the complete 
range of mixture possibilities, non-linearity dominates. As a result, a different type 
of analysis is required to relate the EGO parameters to the mineral content in order to 
determine abundances of three or more minerals within a mixture. We propose a 
recursive partitioning of the data by regression tree analysis (Breiman et al., 1984). 
Regression tree analysis allows dealing with nonlinearity and interactions between 
the EGO parameters. Regression trees can be trained by setting decision rules based 
on the predictive structure of the dataset with mineral mixtures (Breiman et al., 
1984). This approach is an often used data mining technique in several disciplines 
(De'Ath and Fabricius, 2000; McBratney et al., 2003; Yang et al., 2003).  

 Below we give details on combining the deconvolution by EGO and the use of 
regression trees on the EGO parameter values for quantifying mineral abundances of 
mixtures having more than two constituents. The approach is demonstrated on a 
range of prepared samples with known abundances of kaolinite, dioctahedral mica, 
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smectite, calcite and quartz and on a set of field samples from Morocco, which were 
quantitatively analysed by XRD analysis.  

5.2 Methods 

5.2.1 Spectral deconvolution by Gaussian modelling of absorption components 

Deconvolution of the spectra by fitting Gaussian curves needs to be concerned with 
partly overlapping absorptions components (Sunshine and Pieters, 1993) as well as 
the presence of amorphous materials and impurities that may modify absorption band 
shapes and contribute to saturation and asymmetry of spectral features (Burns, 1993; 
Pompilio et al., 2009). The Modified Gaussian Model (MGM) describes absorption 
components as modified Gaussian distributions that are parameterized by a band 
centre, band width (full width at half maximum) and band strength (amplitude 
intensity), for more details see Sunshine et al. (1990) and Kanner et al. (2007). In 
several studies MGM has been successfully used to model overlapping absorptions 
components (Bishop et al., 2011; Kanner et al., 2007; Lane et al., 2011; Ogawa et al., 
2011; Pinet, 2007; Sunshine and Pieters, 1998). Because we have mineral mixes with 
many constituents, the absorption components may be modified in shape due to 
saturation and asymmetry effects. It is important to include a parameter on 
saturation. When saturation occurs the absorption band is reduced in depth and 
becomes flatter near the minimum. Without information on saturation the spectral 
deconvolution might be less accurate because it cannot discriminate between 
overlapping and saturated absorption bands (Pompilio et al., 2009). Therefore, the 
deconvolution of the spectra will be performed with the exponential Gaussian 
optimization (EGO) of Pompilio et al. (2009) to model those absorption components 
which are not Gaussian in shape and account for saturation and asymmetry effects. 

The EGO algorithm of Pomilio et al. (2010; 2009) first fits a continuum linear in 
wavelength over the isolated absorption feature and secondly fits the feature’s 
individual absorption components by a number of EGO profiles in log reflectance. 
These are then combined into the final fitted curve of an isolated feature. The 
continuum over the isolated feature is set according to equation 5.1: 
 

C(λ) = c0 + c1λ-1
                   Equation 5.1 

 
where 𝑐0 is the offset and 𝑐1 a constant for the slope of the continuum and λ is the 
wavelength (Sunshine et al., 1990). In wavelength space, the continuum becomes a 
flat line in infrared and a curved line at shorter wavelengths (Clénet et al., 2011). 
Then, for each absorption component an EGO profile is described, using the five 
parameters position, intensity, width, band saturation and asymmetry (Eq. 5.2): 
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Where λ represents the wavelength in micrometres [µm], s the band amplitude 
intensity, μ the centre and σ the full width at half maximum (FWHM) of the EGO 
profile. The parameter t is used to model band saturation, and k is the coefficient for 
asymmetry.  

The complete model algorithm is described by the fitted continuum C(λ) and the 
sum of the different EGO profiles superimposed onto the continuum (Eq. 5.3): 
 

ln(R(λ)) = C(λ) + ƩEGO(λ)                Equation 5.3 
 
where R is the reflectance spectrum as a function of the wavelength, C(λ) indicates 
the continuum as a function of wavelength and EGO (λ) are the individual profiles 
fitted to each absorption feature again as a function of wavelength. Log transformed 
reflectance is used since absorption is assumed having a logarithmic dependence 
between transmissivity of light through a substance and the product of the path 
length and the absorption coefficient of the substance (Beer Lambert law) (Sassaroli 
and Fantini, 2004). The appropriate number of absorption components to be used in 
the EGO analysis depends on the number of known minerals present in the material 
mixture and the number of unique electronic and vibrational absorptions for each 
mineral (Kanner et al., 2007). For a graphical demonstration of the EGO algorithm 
we refer to the work of Pompilio et al. (2010; 2009). 

We used a similar approach as Pompilio et al. (2010; 2009) to evaluate the 
deconvolution of the spectra. So called best fit models were assessed using the root 
mean squared error (RMSE) of the estimated natural log of reflectance. Based on 
visual interpretation, additional EGO profiles were included at subsequent iterations 
when the current set of profiles did not achieve a proper fit in specific wavelength 
ranges. These EGO profiles were centred around the position (µm) of the selected 
absorption components, as discussed in section 5.2.3.1. A best fit of the estimated 
natural log reflectance results from negligible improvement of the corresponding 
RMSE with subsequent iterations. For a complete description of the statistics we 
refer to Appendix A in Pompilio et al. (2009). 

The EGO routine was implemented within the R-environment by Pompilio et al. 
(2009) ( R Development Core Team, 2011). The approximation of the parameters is 
obtained by optimization of the parameters in the model aiming for the least RMSE 
using a Levenberg-Marquardt approach (Garbow et al., 1980; Moré, 1978; Press et 
al., 1992).  
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5.2.2 Determination of mineralogical composition by regression trees 

Regression tree analysis (RTA) is a flexible method for specifying the conditional 
distribution of a variable y, given a vector of predictor variables X (Breiman et al., 
1984). The goal of the regression tree is to create relatively homogeneous subsets. 
This is done by recursively partitioning the data in binary splits based on a single 
predictor variable. The partition is determined by splitting rules, evaluating the best 
split at each internal node with respect to homogeneity of the two subsets. Each 
observation is ultimately assigned to a unique terminal node based on the splitting 
rules set for each node in the tree (Breiman et al., 1984).  

In this work, mineral abundance was predicted by coupling RTA with the EGO 
results whereby a separate regression tree was trained for the individual minerals. In 
the first instance, a maximum tree was grown to the point where additional splits 
could not be made due to lack of data, using the EGO profile parameters for the 
corresponding mineral as the predictor variables. Subsequently, the least important 
splits were removed by pruning the tree based upon the standard error of the estimate 
from cross-validation. The optimal tree was derived by using the so called 1SE rule, 
introduced by Breiman (1984). By this rule we select the simplest tree where the 
error estimate is within one standard error of the lowest error of the estimate. 
Thereby we reduce the instability of the model and also the number of parameters 
used for the prediction model. In addition, the stopping rules used for training of the 
trees included (Breiman et al., 1984); the minimum number of observations that must 
exist in a node in order to be considered for a split were set to 3 for the laboratory 
experiment and to 5 for the field experiment; a split was accepted if the overall 
coefficient of determination (R2) of leave-one-out cross validation increased at each 
step by at least 0.01. 

An additional validation was done to test the model performance with a number of 
samples which were not included for training of the trees. By setting aside 16 
randomly selected samples from the field experiment (total 77 samples), training of 
the trees was based on the remaining samples. The accuracy of the predicted 
mineralogy from the cross validation and the external validation was assessed by the 
coefficient of determination (R2) from the CART analysis and the root mean square 
error (RMSE) of the predicted mineral abundances compared to the known 
mineralogy. Calculations were performed using the R language and environment for 
statistical computing, version 2.14.1 (R Development Core Team, 2011) and the 
contributed package rpart (Ripley, 2011). For more details about RTA we refer to 
Breiman et al. (1984). 
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5.2.3 Case studies 

5.2.3.1 Laboratory experiment 
Mineral samples 
The laboratory experiment was conducted on spectra of physical mixtures of almost 
pure minerals. The minerals included in the mixtures were kaolinite, dioctahedral 
mica (illite), smectite, calcite and quartz, those found to be dominantly present in the 
study area (see section 5.2.3.2). Since quartz was ubiquitous in the study area a fixed 
amount of quartz was added to each sample. Quartz is known to lack absorption 
features in the studied wavelength range. Nevertheless, inclusion of quartz in 
physical mixtures is important because of potential secondary impact, from scattering 
of light by quartz, on the absorption features of other minerals (Clark, 1999); 
however, in this study the direct estimation of quartz abundance using EGO and 
regression tree analysis is not supported because of absence of absorption features 
(see also figure 5.2). The minerals were obtained either from CMS source clay 
repository (kaolinite KGa-2 Georgia U.S.A., Fe-chlorite CCa-1 California U.S.A.) or 
are industrial products (quartz and calcite from Fluka, illite Sarospatakite from 
Füzerradvany Hungary, and montmorillonite cloisite-Na from Southern Clay 
Products U.S.A.). A dataset of 35 samples was used for training the regression trees. 
To obtain the required opacity for the spectral measurements each sample had a 
gravimetric content of 15 g.  

 Samples 1-25 consisted of gravimetric, intimate mineral mixes of pure kaolinite, 
dioctahedral mica, smectite, calcite and quartz with a grain size of < 63 µm. Each of 
these samples had a quartz content of 25 wt. %, while the other minerals contributed 
to the remaining 75 wt. % with abundance as indicated in Table 5.1. A pure sample 
of each mineral was included as reference for the absorption characteristics of the 
pure minerals. With this laboratory experiment the true composition of the sample 
can be assumed to be known and the chance that there are unknown minerals 
influencing the model performance is minimized. 

A sensitivity test was done to test the model performance against the presence of 
an unknown mineral on which the regression trees were not trained. Missing specific 
absorption components might reduce the statistical relationship between the EGO 
profiles and mineral contents included in the analysis. Therefore, in five samples 
chlorite was admixed, which is another common sheet silicate in soils (Dalton et al., 
2004).  
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Sample no. Smectite Kaolinite Dioctahedral 
mica Calcite Quartz Chlorite 

1 10 5 40 20 25 0 
2 45 15 15 0 25 0 
3 5 5 50 15 25 0 
4 20 10 10 35 25 0 
5 10 15 15 35 25 0 
6 0 0 60 15 25 0 
7 10 15 40 10 25 0 
8 45 20 5 5 25 0 
9 25 15 30 5 25 0 
10 0 10 40 25 25 0 
11 20 15 25 15 25 0 
12 15 10 20 30 25 0 
13 5 5 55 10 25 0 
14 0 0 20 55 25 0 
15 0 0 0 75 25 0 
16 60 5 10 0 25 0 
17 50 10 5 10 25 0 
18 15 0 30 30 25 0 
19 0 20 55 0 25 0 
20 0 0 50 25 25 0 
21 15 10 35 15 25 0 
22 5 0 35 35 25 0 
23 15 5 20 35 25 0 
24 50 5 20 0 25 0 
25 10 0 45 20 25 0 
Pure minerals 

     26 100 0 0 0 0 0 
27 0 100 0 0 0 0 
28 0 0 100 0 0 0 
29 0 0 0 100 0 0 
30 0 0 0 0 100 0 
Addition of chlorite* 
31 (1) 10 5 40 20 15 10 
32 (2) 30 10 15 0 20 25 
33 (4) 20 10 10 35 15 10 
34 (8) 45 20 5 5 20 5 
35 (14) 0 0 20 55 10 15 

* Numbers within brackets refer to the corresponding number of the sample without chlorite 
 
 
 
 

Table 5.1: Overview of prepared mineral samples, content is given in wt. % of the total mass of 15 g. 
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Spectral measurements and reflectance of minerals 
Spectral measurements were performed under laboratory conditions with an 
Analytical Spectral Devices (ASD) Fieldspec 3 spectroradiometer. The 
spectroradiometer covered the 350–2500 nm wavelength region with a resolution of 3 
nm at 700 nm and 10 nm at 1400/2100 nm (1.4 nm and 2nm sampling interval). The 
samples were measured using an ASD High Intensity Muglight (4W quartz tungsten 
halogen lamp) to minimize measurement errors associated with stray light and 
specular reflection from the minerals. The powdered samples were placed in pure 
quartz sample holders to avoid scattering from the sample holder, since quartz lacks 
distinct absorption features in the measured wavelength region. All sample holders 
were calibrated against a non-reflecting reference standard prior to sample 
measurements.  

The reflectance of pure minerals — including those studied in this paper — was 
extensively reviewed by Clark et al. (1990) and Swayze et al. (2003). Figure 5.2 
presents the continuum removed (CR) spectra of the pure minerals, the spectra show 
clearly the strong absorption features of water around 1.400 µm and 1.900 µm, 
related to the overtones and combinations of the fundamental vibrational 
characteristics of water as well as absorption from the OH bends. The diagnostic 
characteristic of kaolinite is the double absorption feature around 2.150 µm and 
2.200 µm; Dioctahedral mica has two primary absorption features centred around 
2.200 µm and 2.350 µm. Smectite contains water in the crystal structure and 
therefore exhibits strong absorption near 1.400 µm and 1.900 µm. In the SWIR, it 
can be recognized by the single sharp and symmetrical absorption at 2.200 µm due to 
the AlOH bend and the smaller absorption around 2.250 µm. For calcite, second and 
third overtones and combinations of the CO3 fundamentals occur in the near IR. The 
two strongest absorptions are found at 2.500–2.550 µm and 2.300–2.350 µm. Three 
weaker absorption bands occur near 2.120–2.160 µm, 1.970–2.000 µm and 1.850–
1.870 µm. In the SWIR region, calcite is distinguished from the other minerals by the 
weaker absorption near 2.120–2.160 µm and the double absorption feature near 
2.300–2.350 µm (Clark et al., 1990). Based on the bends which discriminate the 
minerals from each other we study the wavelength range between 2.100–2.400 µm. 
Within this wavelength range quartz does not have any absorption feature. Direct 
estimation of quartz abundances using EGO and regression tree analysis is therefore 
not supported. As indicated earlier, it is important to include quartz into the mixtures. 
The presence of quartz affects the scattering of light, thereby affecting the spectral 
features of the other minerals within the mixture. While the shape of the CR feature 
of a mineral is unlikely to be affected by quartz, the depth, asymmetry and saturation 
of the fitted Gaussians will likely be affected (Clark et al., 1990).  
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Figure 5.2: Continuum removed spectra from the pure minerals in this study, right: full VNIR - SWIR, left: 
between 2.1 – 2.4 µm (Spectra originate from samples measured in this experiment). 
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Selection of absorption components for curve fitting by EGO  
Based on the number of minerals and their specific absorption behaviour, as 
discussed in the previous section, we expected that six individual absorption 
components centred around 2.170 µm, 2.210 µm, 2.250 µm, 2.310 µm, 2.350 µm and 
2.380 µm would be required to optimally model abundances. From here on, these 
components are referred to as absorption components 1 to 6. For those spectra having 
2 absorption features within the 2.100–2.400 μm region, the reflectance was split into 
the two primary absorption features around 2.120–2.270 μm and 2.280–2.400 μm, 
referred to as “feature 1” and “feature 2”, respectively. Figure 5.3 illustrates the 
positioning of the individual absorption components and features using the spectrum 
of pure kaolinite (Fig. 5.3).  

5.2.3.2 Field experiment 
Field sampling 
The regional case study was located in Northern Morocco, centred at around 34.0ºN,-
4.5ºW and covers an area of 15,000 km2. While the Rif Mountains, an area of 
highlands, form the northern border, the Anti-Atlas Mountains is the southern border 
with areas of plateaus and intermountain valleys in between. This area offered a 
diverse lithological setting including sedimentary, igneous and metamorphic rock 
types. For training of the regression trees, a sample was collected which covered the 
variability in mineralogy present in the study area. We designed a sparse, remote 
sensing-based sampling approach making use of conditioned Latin Hypercube 

Figure 5.3: Continuum removed spectrum of kaolinite where the absorption components within the 2.100 - 2.400 
μm region are indicated along with the two spectral regions within the studied wavelength range (red lines). 
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Sampling (cLHS) to assess variability in soil properties at regional scale (Mulder et 
al., 2012a).  

At 73 sites, a mixed soil sample from a 15×15 m. plot was taken of the top 5 cm 
of the soil. Two additional samples originating from a soil profile and duplicate 
samples of 2 sites were included which resulted in a total sample size of 77. The soil 
samples were dried at 70 C, sieved and crushed to a powder (<20 µm) sieved and 
crushed to a powder (<20 µm) with a McCrone micronising mill in ethanol. To 
improve mineral quantification by X-ray diffraction, the organic matter was 
destroyed for samples having organic matter content higher than about 10%. Spectral 
measurements were taken with the same setup as described in section 5.2.3.1 and the 
absorption components used for curve fitting and training of the regression tree were 
identical to those described in section 5.2.3.1.  
 
X-ray powder diffraction for analysis of soil mineralogical composition 
Mineralogy of the fine powdered samples (< 0.20 µm) was determined on randomly 
oriented powder specimens with X-ray diffraction analysis. The second sample 
preparation for clayey materials produces oriented specimens, which enhanced the 
basal reflections from the clay minerals thereby facilitating their identification. The 
changes in the reflex positions in the XRD pattern by intercalation of ethylene glycol 
were used for the identification of smectite. X-ray measurements were made using a 
Bragg-Brentano Theta-2Theta diffractometer Philips PW1820 using Cu Ka alpha 
radiation. The instrument was equipped with an automatic divergence slit, a graphite 
monochromator and a NaI scintillation counter. The powder samples were step-
scanned at room temperature from 2 to 70°2Theta (step width 0.03° 2Theta, counting 
time 4 s). The qualitative phase composition was determined in comparison to the 
ICDD PDF database using the software DIFFRACplus (Bruker AXS, 2012). The 
quantitative mineral composition of the samples was calculated by Rietveld analysis 
using the Rietveld program AutoQuan (GE SEIFERT) (Bergmann, 1998; Kleeberg, 
2005).  

The ranges and variety of minerals within the field samples, determined by XRD 
analysis, are presented in Table 5.2. Due to the similar structure of illite and 
muscovite, the minerals were not separated with the XRD analysis and are treated as 
the sum of dioctahedral mica in the field experiment. The interstratified 
illite/smectite minerals are abbreviated as I/S ML. This mineral type was not defined 
more in detail with respect to the ratio illite/smectite and order of layering. For the 
experiments those minerals were included which (1) had absorption features in the 
2.100–2.400 µm region (Fig. 5.4), (2) were frequently present in the samples and (3) 
had an average content larger than 5 wt. %. Following these criteria, calcite, 
dioctahedral mica, smectite and kaolinite were considered for in this study. The other 
minerals were deemed either subordinate to the selected minerals or did not contain 
the required spectral features to estimate abundances using spectral unmixing 
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Mineral Average 
(wt. %) 

Range 
(wt. %) 

Error (3σ)  
(wt. %) 

No. 
samples 

Anatase 1.0 0.4 – 1.9 0.2 - 0.3 41 
Aragonite 7.1 1.9 – 11.1 0.7 – 0.8 3 
Calcite 21.4 0.7 – 75.3 0.3 – 1.6 63 
Chlorite 5.0 0.8 – 25.4 0.4 – 1.8 52 
Cristobalite 2.8 1.2 – 4.5 0.3 – 0.5 3 
Epidote 1.9 1.9 0.5 1 
Dolomite 6.9 0.8 – 33.9 0.3 – 0.9 29 
Goethite 5.2 1.2 – 11.6 0.8 – 1.3 14 
Gypsum 1.5 1.5 0.5 1 
Hematite 1.4 0.4 – 4.6 0.2 – 0.4 27 
Dioctahedral mica  10.5 1.6 – 56.9 0.4 – 2.1 66 
Kaolinite 6.7 1.3 – 16.7 1.1 – 2.7 49 
K-feldspar 3.1 0.9 – 18.6 0.5 – 1.3 42 
Palygorskite 6.8 6.8 0.8 1 
Plagioclase Ab 4.9 1 – 23.8 0.4 – 1.2 69 
Quartz 42.5 12.6 – 83.9 0.6 – 1.8 77 
Rutile 1.1 0.6 – 1.8 0.2 – 0.4 10 
Smectite 28.6 9.4 – 52.9 1.4 – 3.0 25 
I/S ML 20.7 6.5 – 42.4 2.3 – 3.6 10 

 
approaches. The use of field samples may introduce several errors which could 
reduce the accuracy of the approach. The uncertainties are related to additional traces 
of other minerals and organic matter, significant amounts of minerals without 
diagnostic features in the 2.100–2.400 µm region and measurement errors. Also, 
differences in the accuracy of the XRD analysis might influence the prediction 
accuracy. As can be seen from Table 5.2, the error for the determined content of 
smectite (1.4 – 3.0 wt. %) and I/S ML (2.3 – 2.6 wt. %) was higher compared to the 
errors for calcite (0.3 – 1.6 wt. %), dioctahedral mica (0.4 – 2.1 wt. %) and kaolinite 
(1.1 – 2.7 wt. %). Note that the regression tree was trained only on the abundances of 
the minerals of interest. These minerals occur within an unknown matrix, which 
might interfere with the measurements and the subsequent analysis. However, owing 
to the sampling design we assume that the samples also represent the non-analysed 
minerals associated with the composition of interest. Although unknown constituents 
may affect the spectral behaviour this does not necessarily invalidate the approach 
since regression tree analysis can deal with non-linear behaviour and interactions. 
Training of the regression trees was done by using the XRD-determined abundance 
of each mineral as the weight percentage of the mineral with respect to the total 

Table 5.2: Ranges of the mineral abundance (wt. %) present in the field samples, as determined by XRD analysis. 
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weight of the sample. Therefore, the regression tree predictions are also expressed as 
absolute weight percentages. 

5.3 Results 

5.3.1 Curve fitting  

Table 5.3 shows the parameters of the EGO profiles fitted for the pure minerals; calcite was 
fitted with three EGO profiles positioned around the typical absorption components of 
calcite. The spectrum of calcite was fitted with one feature ranging from 2.120 to 2.400 µm. 
Dioctahedral mica required two EGO profiles positioned around the two strongest typical 
absorption components. The feature was split into two absorption features to obtain a better 
fit. Smectite was fitted with two EGO profiles positioned around the typical absorption 
features of smectite by one feature within the 2.100–2.280 µm wavelength range. Kaolinite 
was fitted with four EGO profiles and was split into the wavelength ranges of 2.120–2.240 
µm and 2.270–2.450 µm. The typical absorption between 2.120 and 2.240 µm was more 
difficult to fit by an EGO profile, this feature had the lowest fit of all the modelled features. 
Overall, the low values for the RMSE of the estimated log reflectance per feature show that 
the EGO profiles fitted on the typical absorption components of the mineral result in an 
accurate estimate of the measured log reflectance of the absorption features.  
 
 
 
 
Table 5.3: Model parameter values of the fitted EGO profiles to the pure minerals (a-d). In addition, the RMSE of 
the fitted log reflectance compared to the measured log reflectance is given for each mineral. The EGO profile 
numbers correspond to the absorption components as identified in section 2.3.1. Each absorption component is 
described by a position (µm), width as the full width at half maximum (µm), intensity (µm), saturation (-) and 
asymmetry (-).The values listed for each continuum are the offset and slope of a straight line in wavelength and 
natural log reflectance. 

Table 5.3a: Calcite.     

EGO Profile Position Intensity Width Saturation Asymmetry 
1 2.158 0.012 0.010 -2.890 0.098 
2 - - - - - 
3 2.288 0.082 0.028 -7.95*10-5 -0.356 
4 - - - - - 
5 2.338 -0.173 0.021 1.10*10-4 -0.1000 
6 - - - - - 
  Feature1   Feature 2  
Continuum      
 Offset -5.165  -  
 Slope 1.274  -  
RMSE  0.0008  -  
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EGO Profile Position Intensity Width Saturation Asymmetry 
1 - - - - - 
2 2.202 0.261 0.024 -3.68*10-5 0.011 
3 - - - - - 
4 - - - - - 
5 2.341 0.050 0.014 -2.501 -0.111 
6 - - - - - 
  Feature1   Feature 2  
Continuum      
 Offset -1.868  -4.723  
 Slope 3.456  -9.971  
RMSE  0.0035  0.0011  

EGO Profile Position Intensity Width Saturation Asymmetry 
1 2.164 - 0.360 0.025 -2.87 * 10-4 -0.326 
2 2.206 0.0446 0.011 -1.48 *10-5 -0.147 
3 - - - - - 
4 - - - - - 
5 2.357 0.035 6.20*10-3 2.097 0.055 
6 2.384 0.076 9.82*10-3 0.355 -0.012 
  Feature1   Feature 2  
Continuum      
 Offset -8.329  -3.27  
 Slope 17.590  6.27  
RMSE  0.0166  0.0014  
 

EGO Profile Position Intensity Width Saturation Asymmetry 
1 - - - - - 
2 2.205 0.196 0.018 0.920 -0.073 
3 2.239 0.062 0.010 0.883 0.101 
4 - - - - - 
5 - - - - - 
6 - - - - - 
  Feature1   Feature 2  
Continuum      
 Offset -1.563  -  
 Slope 3.091  -  
RMSE  0.0016  -  

 
 

 
 

Table 5.3b: Dioctahedral mica.    

 

Table 5.3c: Kaolinite. 

   

Table 5.3d: Smectite.    
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Table 5.4 provides the results of the deconvolution of the spectra from the 35 samples 
within the laboratory experiment. The total number of fitted profiles is given and the 
minimum and maximum parameter values as well. In addition, the average goodness-of-fit 
of all samples is provided by the average RMSE of the estimated log reflectance per feature 
for all 35 samples along with the standard deviation of the RMSE. The low average RMSE 
and standard deviation of the estimated log reflectance shows that the curve fitting 
approach approximates the measurements well. Splitting the reflectance into two spectral 
regions was necessary for most samples. The samples containing high concentrations of 
calcite were modelled by one feature. Samples containing relatively high concentrations of 
all four minerals required more EGO profiles compared to samples with specific dominant 
minerals to obtain the same accuracy.  

The position of the EGO profiles corresponded to those of the diagnostic 
absorption features of the individual minerals, with minor shifts to smaller and longer 
wavelengths. In conclusion, the six expected absorption components of the minerals 
within the spectra were chosen to reflect their dimensionality. The minimum and 
maximum values of the saturation and asymmetry deviated strongly compared to the 
values of the EGO profiles fitted to the pure minerals, especially for the profiles 1, 3, 
5 and 6. This indicates that the central limit theorem does not fully apply to the 
spectra of mineral mixtures. To accurately fit the absorption around the defined 
components, the EGO profile is required to be modelled with use of the parameters 
for asymmetry and saturation.  

EGO 
Profile 

No. of 
samples Position Intensity Width Saturation Asymmetry 

  Min Max Min Max Min Max Min Max Min Max 
1 24 2.15 2.193 -0.360 0.13 0.01 0.02 -4.842 38.88 -0.38 0.098 
2 32 2.20 2.208 0.005 0.44 0.01 0.02 -0.501 0.920 -0.26 0.221 
3 24 2.21 2.253 -0.069 0.10 -0.01 0.08 -3.343 14.57 -0.23 0.199 
4 10 2.28 2.309 -0.057 0.08 0.01 0.03 -3.987 3.705 -0.43 0.027 
5 27 2.33 2.357 -0.173 0.07 0.01 0.02 -44.87 13.61 -0.35 0.055 
6 14 2.36 2.385 0.006 0.07 0.01 0.02 -30.50 6.107 -0.45 0.093 
   Feature1    Feature 2 
   Average Standard deviation Average Standard deviation 
RMSE   0.00189 0.0028    0.00058 0.00030  
Each absorption component is described an EGO profile which has a position (µm), width as the full width at half 
maximum (µm), intensity (µm), saturation (-) and asymmetry (-). The RMSE provides the measure for goodness-of-
fit of the estimated log reflectance compared to the measured log reflectance of the prepared samples. 

 

 

 

 

Table 5.4: Model parameters of the EGO profiles fitted to the 35 prepared samples. For each EGO profile the total 
number of fitted profiles and the minimum and maximum parameters values are given. In addition, the average 
RMSE and standard deviation of the fitted log reflectance for the full sample is given.  
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Table 5.5 provides the results of the deconvolution of the spectra from the 77 
samples within the field experiment. In addition, the average goodness-of-fit of all 
samples is provided by the average RMSE of the estimated log reflectance per 
feature for all 77 samples along with the standard deviation of the RMSE. The 
average RMSE and its standard deviation of the estimated log reflectance show that 
the curve fitting resulted in small differences between the observed and predicted log 
reflectance. Of most interest are the differences between the obtained parameter 
values compared to those of the laboratory experiment. The field samples required 
fewer EGO profiles than the laboratory experiment which can be attributed to the fact 
that most of these samples consisted of at most two dominant minerals. The 
intensities were lower and the saturation and asymmetry effects strongly increased. 
The shifts in position towards higher and lower wavelengths were also stronger but 
they were still well modelled by the six absorption components of the minerals. 
Fewer EGOs were fitted around the smaller absorption components (1, 4 and 6) 
which could indicate that the weaker absorption components of the minerals, around 
2.170 μm, 2.310 μm and 2.380 μm, became subsidiary absorptions. Overall, the 
appearances of individual absorption components were less intense in the field 
samples due to the noise introduced relating to the additional traces of other 
minerals, significant concentrations of minerals without diagnostic features in the 
2.100–2.400 µm region (Table 5.2). 
 
 
 
 
 
 

EGO 
Profile 

No. 
fitted Position Intensity Width Saturation Asymmetry 

  Min Max Min Max Min Max Min Max Min Max 
1 37 2.171 2.198 0.008 0.08 0.01 0.03 -6.82 8.253 -0.17 0.11 
2 75 2.202 2.216 -0.077 0.17 0.01 0.03 -9.11 1.136 -0.22 0.27 
3 72 2.215 2.333 -0.026 0.06 0.02 0.02 -4.95 48.96 -0.16 0.30 
4 13 2.281 2.309 -0.017 0.04 -0.01 0.04 -11.81 14.15 -0.45 0.29 
5 65 2.312 2.369 -0.014 0.06 0.006 0.19 -21.98 56.68 -1.02 1.69 
6 9 2.376 2.396 -0.013 0.02 0.005 0.51 -6.863 11.14 -0.31 3.62 
   Feature1    Feature 2   
   Average Standard deviation  Average Standard deviation 
RMSE   0.0020 0.0006    0.00056 0.00034  
Each absorption component is described by a position (µm), a full width at half maximum (µm), intensity (µm), 
saturation (-) and asymmetry (-). The RMSE provides the measure of goodness-of-fit of the predicted log 
reflectance compared to the observed log reflectance of the field samples. 

Table 5.5: Model parameters of the EGO profiles fitted to the 77 field samples. For each EGO profile the total 
number of fitted profiles and the minimum and maximum parameters values are given. In addition, the average 
RMSE and standard deviation of the fitted log reflectance for the full sample is given. 
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5.3.2 Prediction of mineralogy by regression trees 

5.3.2.1 Laboratory experiment  
The mineral abundances of the prepared samples were predicted by pruned regression 
trees which included a maximum of seven EGO variables (Table 5.6). The splits of 
the regression trees were mainly based on the position, intensity and width of the 
EGO profiles. The predicted samples fell into the numerical ranges defined by the 
terminal nodes of the regression tree. For example, figure 5.5 shows the pruned 
regression tree for dioctahedral mica where the variables with the threshold to split 
the dataset are given at the nodes and the total number of samples assigned to each 
terminal node.  
 

 
Regression tree 

EGO profile parameters 
Position Intensity Width Asymmetry Saturation 

Kaolinite  EGO 2* 

EGO 3 
 

EGO 1 

EGO 2 
EGO 3 
 

  

Dioctahedral mica EGO 3 EGO 3 
EGO 5 
 

EGO 2 EGO 2 
 

EGO 2 
EGO 5 

Smectite EGO 3 EGO 1 
 

EGO 2 EGO 2 
 

EGO 2 

Calcite EGO 1 EGO 2 EGO 2 
EGO 5 
 

EGO 1  

* EGO 1: 2.170 µm, EGO 2: 2.210 µm, EGO 3: 2.250 µm and EGO 5: 2.350 µm 

 

 

 

 

 

 

 

 

 

 

 

Table 5.6: Variables used at splits in the pruned regression trees for the laboratory experiment. 

Figure 5.5: Regression tree for dioctahedral mica, the thresholds at a specific split with the assigned EGO 
parameter, the mineral abundance (wt.%) and the number of samples for each terminal node are given.  
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Cross-validation of the pruned regression trees shows that (Fig. 5.6 a-d); kaolinite 
resulted in six terminal nodes and abundance was predicted with an RMSE of 4 wt. % 
and R2 of 0.92. Dioctahedral mica resulted in eight terminal nodes and was predicted 
by the regression tree with an RMSE of 9.3 wt. % and R2 of 0.82. Calcite resulted in 
seven terminal nodes and was predicted by the regression tree with an RMSE of 7.3 
wt. % and R2 of 0.88. Smectite resulted in seven terminal nodes and was predicted by 
the regression tree with an RMSE of 8 wt. % and R2 of 0.85. Calculation of the 
covariance of the predicted minus the measured mineral abundance showed that 
neither the over- or under estimation of a mineral were correlated to the other 
minerals. 

For dioctahedral mica the major splits in the regression tree were based on the 
position and intensity of the absorption component around 2.250 µm, the width, 
asymmetry and saturation around 2.210 µm. Smaller splits used the intensity and 
saturation around 2.350 µm (Table 5.6). The major splits for the pruned regression 
tree for kaolinite were based on the intensity and width of the EGO profiles around 
2.210 µm and 2.250 µm and smaller splits used the width around 2.170 µm (Table 
5.6). Although the small subsidiary absorptions at wavelengths > 2.250 µm could be 
fitted, they were not significantly present within the mixture to be used as a 
prediction parameter.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 5.6 a-d: Predicted relative mineral content (wt.%) from the laboratory experiment compared to known 

mineral abundance of a) kaolinite, b) mica, c) smectite and d) calcite. The predicted mineralogy is presented by 
boxplots of the samples which were assigned to the terminal nodes of the regression tree. 
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The EGO profiles corresponding to the typical absorption components of smectite 
around 2.210 µm and 2.250 µm were used for partitioning of the dataset; the 
asymmetry and saturation of the EGO profile around 2.210 µm and the position 
around 2.250 µm were used for the major splits. The typical v-shape of the smectite 
absorption becomes less distinct and intense within mixtures due to saturation. With 
increasing saturation of the absorption component around 2.250 µm, the width of the 
EGO profile around 2.210 µm and the asymmetry of the EGO profile around 2.250 
µm increases. The prediction of calcite was based on the width of the EGO profile 
around 2.350 µm, and the position around 2.170 µm and the parameters related to the 
EGO profile around 2.210 µm. Taking into account the strong absorption components 
of calcite around 2.350 µm (Fig. 5.2), it was to be expected that changes related to 
this feature would be important for defining the splits of the regression tree.  

In table 5.7, the differences between the predicted mineralogy from the samples 
with added chlorite are given. Small errors occur up to 3 wt. %, with the exception of 
smectite in sample 2 and dioctahedral mica in sample 14, and the latter deviating just 
6 wt. % difference with the measured content. Mineral concentrations in most of 
these “contaminated” samples were predicted correctly. This indicates that the 
pruned regression trees trained on the specific mineral absorption components were 
rather insensitive to contamination by chlorite. 
 
 

Sample 
No. Mineral Content 

(%) 

Predicted content (%) Difference between 
predicted contents Original 

sample 
Sample with chlorite 

1 Kaolinite 5 8.9 8.9 0.0 
 Dioctahedral mica 40 29.3 29.3 0.0 
 Smectite 10 8.5 8.5 0.0 
 Calcite 20 27.5 27.5 0.0 

2 Kaolinite 15 8.9 8.9 0.0 
 Dioctahedral mica 15 13.9 13.9 0.0 
 Smectite 45 51.3 8.5 -42.7 
 Calcite 0 4.4 0.0 -4.4 

4 Kaolinite 10 8.9 8.9 0.0 
 Dioctahedral mica 10 13.9 13.9 0.0 
 Smectite 20 10.0 8.5 -1.5 
 Calcite 35 27.5 27.5 0.0 

8 Kaolinite 20 17.5 17.5 0.0 
 Dioctahedral mica 5 13.9 13.9 0.0 
 Smectite 45 45.0 45.0 0.0 
 Calcite 5 4.4 8.3 3.9 

14 Kaolinite 0 2.1 2.1 0.0 
 Dioctahedral mica 20 29.3 13.9 -15.4 

 Smectite 0 8.5 8.5 0.0 
 Calcite 55 55.0 55.0 0.0 

Table 5.7: Difference in the predicted mineralogy of the samples containing additional chlorite. 
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Finally, the absorption components around 2.210 µm and 2.350 µm were most 
diagnostic; modelled changes of these components and their relation to the other 
components were key to predicting mineralogy in composite mixtures. These results 
and the constructed regression trees show that indeed there is a statistical relationship 
between the model parameters and their representativeness of the complex interaction 
between diagnostic absorptions and mineralogy. Although intensity and widening 
were the most important parameters, some regression trees required the parameters 
related to saturation or asymmetry which stresses the added value of including these 
parameters for the deconvolution of the spectra. Note that our sample was small, 
which resulted in simple trees with few terminal nodes; a larger sample of mineral 
mixtures spanning the volume space may produce more complex trees with finer 
resolution in the terminal nodes.  

5.3.2.2 Field experiment 
The relative mineral abundance in the field samples was predicted by training and 
pruning the regression trees by the same EGO profiles used for the laboratory 
experiment. New regression trees were trained because unknown constituents may 
have affected the spectral behaviour and thereby changing the relation of the EGO 
parameters with mineral abundances. The regression trees included a maximum of 
five variables for their splits (Table 5.8). The coefficient of determination (R2) and 
RMSE of predicted mineral content (wt. %) obtained from cross validation of the 
pruned regression trees were generally lower compared to the controlled 
experiments. This indicates that the fit of the trees were less accurate and the 
estimated error in the mineral abundance was consequently lower. Because more 
samples were available for training of the tree, more terminal nodes could be made 
and thereby the error estimate of the mineral abundance reduced. The splits of the 
regression trees were mainly based on intensity and asymmetry rather than the 
position, intensity and width of the trees in the laboratory experiment; Kaolinite 
resulted in seven terminal nodes and abundance was predicted with an RMSE of 3 
wt.% and R2 of 0.70 (Fig. 5.7a). The deviations occur in samples where absence was 
predicted while the actual content of the samples where within a range of 0-8 wt. % 
kaolinite. Dioctahedral mica resulted in eight terminal nodes and was predicted by 
the regression tree with an RMSE of 5 wt. % and R2 of 0.63 (Fig. 5.7b). Calcite 
resulted in seven terminal nodes and was predicted by the regression tree with an 
RMSE of 8 wt. % and R2 of 0.80 (Fig. 5.7d). The nodes including the absence and 
traces of calcite contained the samples with the greatest deviation resulting in a 
general underestimation of calcite. Unfortunately, with respect to smectite it was not 
possible to build a regression tree with a better fit and accuracy (R2=0.40, RMSE=12 
wt. %, Fig. 5.7c) without violating the criteria set for pruning the regression tree. 
Calculation of the covariance of the predicted minus the measured mineral abundance 
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showed that neither the over- or under estimation of a mineral were correlated to the 
other minerals. 

The independent validation on 16 samples resulted in an RMSE of 5 wt. % for 
kaolinite, 9 wt. % for dioctahedral mica, wt. 18% for smectite and 14 wt. % for 
calcite. The overall lower RMSE (wt. %) within the field experiment can be 
attributed to specific mineral composition of the field samples compared to the 
prepared samples. The relative abundance of minerals was usually dominated by two 
minerals with only smaller contributions of other minerals. Also, more samples were 
available for training the regression tree. From figure 5.7 (a-d) it can also be 
observed that the model has difficulties with the prediction of the absence of 
minerals; the main reason can be attributed to the precision of the tree, due to the 
small sample (smectite, the smallest set consisted of 25 samples) few terminal nodes 
could be set. For both kaolinite and dioctahedral mica the model estimates a presence 
up to 5 wt. % in samples where these minerals are absent. For calcite and smectite 
the abundance estimate for absent minerals is up to a maximum of 10 wt. %. These 
lower thresholds for kaolinite and dioctahedral mica can be attributed to lower 
abundance in the samples used for training the trees.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 5.7a-d: Predicted relative mineral content (wt.%) from the field experiment compared to the values 
obtained from the XRD analysis of a) kaolinite, b) mica, c) smectite and d) calcite. The predicted mineralogy is 
presented by boxplots of the samples which were assigned to the terminal nodes of the regression tree. 
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Regression tree EGO parameter values 
Position Intensity Width Asymmetry Saturation 

Kaolinite EGO 3*  EGO 2 EGO 2 
EGO 3 

 

Dioctahedral mica  EGO 2 
EGO 5 

 EGO 2 
EGO 3 

EGO 2 

Smectite  EGO 2 
EGO 3 

 EGO 2 
EGO 3 

 

Calcite EGO 5 EGO 5  EGO 1 
EGO 2 

 

* EGO 1: 2.170 µm, EGO 2: 2.210 µm, EGO 3: 2.250 µm and EGO 5: 2.350 µm 

5.4 Discussion 
This work demonstrated that the combination of spectral deconvolution of SWIR 
spectra with regression tree analysis allows simultaneous quantification of more than 
two minerals within a mixture. The fact that more than two minerals can be 
simultaneously quantified is an improvement on similar MGM-based methods. Key 
to this improvement was the regression tree analysis that followed the EGO analysis. 

It was found that the degree of expression of absorption components was different 
between the field samples and the laboratory mixtures. Due to the nature of the field 
samples, the simple representation of the complex scattering behaviour by a few 
Gaussian bands required asymmetry and saturation to accurately deconvolve the 
spectra. Also, asymmetry of the EGO profiles proved to be an important parameter 
for the estimation of mineral content with field samples. For operational use, these 
results emphasize the importance of using (1) field samples for training of the model 
rather than laboratory mixes and (2) deconvolution using the EGO algorithm. For 
terrestrial studies it is therefore recommended that a representative surface sample is 
collected using a strategic sampling design, such as the one used by Mulder et al. 
(2012a). 

The regression tree analysis was an improvement on the band ratios (Kanner et 
al., 2007; Noble et al., 2006) and the multiple linear regression (MLR) (Bishop et al., 
2011) that were used to relate mineral abundances to the parameterized reflectance of 
mineral mixtures. Regression trees can deal with nonlinearity and interactions 
between the EGO parameters which made it possible to accurate predict mineral 
abundances from complex mixtures. The regression tree analysis used in this work 
uses a heuristic approach of making local optimal choices and finding a global 
optimum (cf., greedy algorithm), whereby construction of the tree is based on a local 
optimization, that is, at each node the data is partitioned – giving the best result for 
that specific node. This local optimization can result in an initial split based on some 
criteria which, at subsequent levels, results in suboptimal splits. Improvements are 

Table 5.8: Variables used at splits in the pruned regression trees for the field experiment. 
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expected by using less greedy algorithms such as boosted regression trees or random 
forest (Brown et al., 2006).  

 Alternatively, methods based on the single scattering albedo model of Hapke 
(2002), such as the work of Warell and Davidsson (2010) and Mustard and Pieters 
(1987), have proven successful in simultaneous retrieval of mineral abundances from 
prepared mixtures. Despite that, the accuracy of estimated mineral abundances from 
natural samples proved to be rather low. Our method is a strong competitor of the 
Hapke-based models. Especially, considering the required detailed information on 
the scattering properties of all endmembers in the model of Hapke (Keshava and 
Mustard, 2002) and the lower accuracy for estimates from natural samples (Warell 
and Davidsson, 2010). Nevertheless, there are limitations to our approach and 
possible solutions, as outlined below. 

5.4.1 Limitations and outlook 

Retrieval of smectite abundances 
A likely explanation for the unsuccessful prediction of smectite is that smectite is a 
group consisting of monoclinic clay minerals such as e.g. montmorillonite. Within 
this group the clays have different ions within the octahedral layer; particularly Fe3+ 
or Al3+, but also Mg2+, occur depending on the dioctahedral or trioctahedral character 
of the octahedral layer (Moore and Reynolds Jr., 1997). Mg2+ is not commonly 
present in a dioctahedral layer but can be present due to charge compensation in the 
tetrahedral layers. Within the studied wavelength range strong absorption features of 
minerals are related to the overtones and combinations of the fundamentals of either 
the OH bend of AlOH, MgOH or Fe3+OH. Also, within the laboratory experiment Na-
rich montmorillonite was used, while the field samples originate from a calcite-rich 
environment resulting in Ca-rich montmorillonite. As discussed by Clark et al. 
(1990), variations in the Na/Ca ratio cause shifts of the 2.200 µm feature and with 
increasing Ca2+ concentrations, the 2.250 µm feature becomes less pronounced (see 
also figures 5.2 and 5.4). The prediction model for smectite was trained using both 
absorptions, which subsequently resulted in poor performance. As indicated by 
Bishop et al. (2011); if differences in the octahedral cations occur, samples should 
not be treated spectrally as one group. So, by discriminating among the dioctrahedral 
clay minerals by their variations in their cation concentrations and by training the 
regression trees individually, the prediction of smectite abundance could be 
improved. 
 
Outlook 
A contribution that could not yet be included are abundance estimates from other 
minerals having their absorption features outside the studied wavelength range. 
Common minerals found on Earth, besides quartz and feldspars, e.g. goethite, 
hematite or chlorite, have their electronic absorption bands at shorter wavelengths. 
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Similar, dominant soil minerals such quartz, alkali feldspars and plagioclases have 
fundamental absorptions in the MIR and occasionally have broad electronic 
absorption around 1.2 microns due to structural Fe. Within the domain of reflectance 
spectroscopy it would be recommended to extend the studied wavelength range to the 
full VNIR-SWIR range (0.4–3.0 µm) to allow analyses of more minerals, which is 
feasible since most spectrometers usually cover this wavelength range. 

Another challenge for the future includes the integration of the suggested 
approach with a spatial component. Spatially explicit information provides important 
information on parent material and soil formation (Egli et al., 2008; Mavris et al., 
2011). Currently, satellites do not provide the fine spectral resolution needed to 
accurately deconvolve the spectra into components that can be related to mineral 
abundances. As a result, recent research efforts especially focus on the exploration 
and identification of minerals rather than abundances using RS data (Lau et al., 2012; 
Sgavetti et al., 2009; van der Meer et al., 2012; Viscarra Rossel, 2011). Compared to 
our work these studies do have a spatial context and provide insight in the spatial 
distribution of mineral characterization within a study area. However, combining the 
presented work with additional geostatistical analysis could be key to e.g. the 
creation of mineral abundance maps of large areas.  

5.5 Conclusions 
The retrieval of mineralogy from SWIR reflectance presented and evaluated in this 
paper aims to estimate the modal abundance of multiple minerals by a spectral curve 
fitting approach. Subsequently, the model parameters were used to predict mineral 
abundance by regression tree analysis. By using EGO, the spectra between 2.100 µm 
and 2.400 µm were accurately fitted in both the laboratory and field experiment 
(average RMSE of 0.004). This required the isolation of the absorption features and 
modelling of the individual absorption components within these absorption 
complexes. The position of the absorption components compared to those of the 
known diagnostic absorption features of the individual minerals showed shifts 
towards shorter and longer wavelengths. The parameters addressing the saturation 
and asymmetry of the absorption components appeared to be essential to obtain an 
accurate fit for the field samples.  

The regression trees calibrated for the laboratory experiment based the splits 
mainly on the position, intensity and width of the fitted absorption components. The 
calibrated trees in the field experiment resulted in splits based on intensity and 
asymmetry rather than position, intensity and width. The selected parameters 
reflected the major changes in absorption of specific minerals and to changes in 
relation to the other known minerals.  

The cross-validation results showed that the regression tree models were able to 
predict the mineral abundances well by establishing the statistical relationship with 
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the EGO model parameters. Within the laboratory experiment, abundances of 
kaolinite, dioctahedral mica, calcite and smectite were predicted with respectable 
RMSE values of less than 9 wt.% and a minimum detection limit up to 10 wt.%. 
Prediction of mineralogy with field samples showed good results for calcite, 
dioctahedral mica and kaolinite, with RMSE values less than 8 wt. %, similar 
minimum detection limits but lower coefficients of determination. Prediction of 
smectite abundance was less successful due to the spectral variations related to 
differences in the octahedral cations in the smectites of the analysed powders. 
Substitution of part of the quartz by chlorite at the prediction phase hardly affected 
the accuracy of the predicted mineral contents; this suggests that the method is robust 
in handling the omission of minerals during the training phase. On the other hand, the 
degree of expression of absorption components was different between the field 
samples and the laboratory mixtures. This demonstrates that the method should be 
calibrated and trained on a training set representing the range of local mineral 
compositions. With this study we demonstrated that our method allows estimation of 
more than two minerals within a mixture and thereby enhances the perspectives of 
spectral analysis for mineral abundances. 
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Abstract 
This work aims at mapping major mineral variability at regional scale based on scale-
dependent spatial variability observed in remote sensing (RS) data. The objectives 
were to improve prediction models by using smoothed RS data that matched the scale 
of variability of the target sample and to evaluate the use of spectroscopy for soil 
mineral mapping. The analyses involved two datasets: (1) mineral abundances 
obtained from X-ray diffraction measurements, and (2) mineral categories derived 
from laboratory spectral analysis using the Material Identification and 
Characterization Algorithm (MICA). The RS data were smoothed to represent the 
medium and long-range spatial variability using Fixed Rank Kriging. The smoothed 
RS data resembled more closely the spatial variability of soil and environmental 
properties at regional scale. This was demonstrated by stronger correlations of 
mineralogy with the smoothed RS data than with the original RS data. Highest model 
accuracies resulted from the models using multi-scale soil-landscape relationships. 
Maps of predicted mineral categories and mineral abundances had similar patterns. 
The MICA analysis successfully predicted dominant mineral categories but was less 
able to model subtle differences. High correlation coefficients were obtained for the 
abundances of calcite (R2=0.71, RMSE = 12 wt. %) and mica (R2=0.70, RMSE= 6 
wt. %) and moderate accuracies for smectite (R2=0.57, RMSE = 8.3 wt. %) and 
kaolinite (R2=0.45, RMSE = 3.8 wt. %). Moreover, soil mineralogy obtained from 
spectroscopy provided sufficiently detailed data to characterize major mineral 
variability (overall accuracy for mica, smectite and kaolinite were 76%, 89% and 
86% respectively). 
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6.1 Introduction 
As part of the ecosystem, soils are responding and contributing to global 
environmental changes including climate change. Soil resources play a fundamental 
role for assuring food security and are essential to be considered in climate change 
adaptation measures (Global Soil Parnership, 2011; Grunwald, 2009). Accordingly, 
representative and up-to-date soil information for regional to global scales is needed. 
This provides new challenges to digital soil mapping (DSM) in relation to scaling 
issues, prediction accuracies and computational requirements. 

DSM has evolved to being a discipline where geo-statistics, terrain analysis and 
remote sensing (RS) are synergistically used to predict spatial soil variability. Over 
the past decade, many contributions have assessed DSM, and some extensive reviews 
on the topic have been written (Grunwald, 2009; McBratney et al., 2003; Scull et al., 
2003). At smaller scales, DSM has been successful in delivering up-to-date soil 
information (Ben-Dor et al., 2002; Castrignanò et al., 2000; McBratney et al., 1991; 
Odeh et al., 1994). Still, difficulties exist for large-scale assessments with respect to 
data availability and scaling issues (Minasny, 2012).  

In this work the following definitions of scale were used; local is smaller than 104 
km2, regional varies between 104 km2 and 107 km2 and global is larger than 107 km2 
(Mulder et al., 2011b). Larger spatial scales or studies refer to studies which are 
carried out at a scale beyond the local scale. Typically, large-scale assessments rely 
on relatively sparse samples which impede the development of soil prediction 
models; many predictor variables are obtained from satellite platforms and using 
such data requires comprehensive preprocessing. Accordingly, the sample size of 
target variables and the sampled variance of the soil and environmental observations 
influence the accuracy of soil prediction models (Vasques et al. 2011). 

Within this framework, we aimed at mapping major soil variability at regional 
scale using predictor variables derived from RS data. The foci were (1) to improve 
prediction models using scaled variability in RS data that matched the scale of 
variability of the target sample and (2) to evaluate the use of spectroscopy for 
mineral mapping. We have a sparse sample that represents the major variability of 
soils at regional scale, collected previously (Mulder et al., 2012a). We state that for 
modelling soil properties using this sample, the predictor variables are required to 
represent the same scale. This was realized by considering medium and long range 
spatial variability in RS data. Smoothing RS data to the corresponding ranges allows 
expressing major variability rather than the noisy RS signals, including short range 
variability and measurement errors (Burrough, 1983). The spatial variability in the 
RS data can be assessed by determining the spatial structures in their variogram. The 
Soil-Landscape paradigm (Jenny 1941) is the basic principle underlying this study. 
Here, it is stated that soil properties depend on the environmental conditions and thus 
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soil properties can be predicted using the statistical relation between soil properties 
and environmental predictors. Therefore, we assume that the observed spatial 
variance at specific scales in RS data represents the spatial variance of soil properties 
at the same scale. Accordingly, prediction models (McBratney et al., 2006) using a 
representative sample and the smoothed RS data are deemed more representative for 
large-scale soil mapping. We chose soil mineralogy for the known presence of 
different spatial structures in large areas and the relative low variability over middle 
to long ranges (Jaquet, 1989).  

Predicting soil properties using spectroscopy is applicable to larger-scale studies 
because it is a time and cost-efficient method to collect information (Viscarra Rossel 
et al., 2011). However, the derived information differs from that obtained from 
traditional chemical analysis. Typically, less refined outputs are generated from 
spectroscopy, especially for those materials that are difficult to estimate, e.g. 
mineralogy (Stenberg et al., 2010). In the presented work, we were interested in 
major mineral variability (i.e. areas where high concentrations of specific minerals 
occur) rather than quantifying soil properties at high resolution. Spectral analysis has 
been applied to provide such information, e.g. the work of Clark et al. (2003) and 
Swayze et al. (2003). Hence, for evaluating the use of spectroscopy for mineral 
mapping, we modelled surface mineralogy using both spectroscopy-derived and 
chemical-derived soil mineralogy.  

Factorial kriging enables multi-scale analysis of small data sets (Goovearts, 
1997). Unfortunately, the use of large datasets in conventional kriging approaches 
results in computationally forced limitations, mainly owing to the calculation of the 
inverse covariance matrix (Cressie and Johannesson, 2008). Local kriging 
neighbourhoods were used with moving windows for larger data sets (Harris et al., 
2011). This appeared to be suboptimal because the long scale is not well represented, 
since the data is still too voluminous. To ensure computational feasibility, methods 
have been developed that approximate the covariance function by e.g. covariance 
tapering (Furrer et al., 2006) or approximate iterative methods (Nychka et al., 2002; 
Quiñonero-Candela and Rasmussen, 2005). Nevertheless, these methods still have 
difficulties calculating the sparse covariance matrix for massive datasets. We used 
the Fixed Rank Kriging (FRK) method, to overcome the difficulties with large 
datasets (Cressie and Johannesson, 2008). FRK introduces a dimension reduction for 
the calculation of the (inversed) covariance matrix. This reduction is based on the 
assumption that the process of interest can be expressed as a linear combination of 
spatial basis functions and a fine-scale-variation component. The size of the 
covariance matrix is thereby reduced to the number of spatial basis functions. The 
basis functions are typically chosen at various resolutions to capture different scales 
of spatial variation. FRK thus allows modelling the spatial variability at specific 
scales of interest. As such, FRK has not been employed yet in DSM assessments, 
however, it was deemed most suitable for large-scale DSM.  
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Here, we present a study aiming at characterizing regional soil mineral 
composition, based on scale-dependent spatial variability as observed in RS data, 
using a 15.000 km2 area located in Northern Morocco. The analysis of scale-
dependent variability, the subsequent smoothing of RS data with FRK and the 
development of the prediction models was done using ASTER satellite imagery and 
derived products. In the final step, the resulting mineral maps for both approaches 
were carefully evaluated and final recommendations were given concerning the use 
of remote and proximal sensing (RS and PS) data for large-scale DSM.  

6.2 Data 

6.2.1 Study area and site data 

The 15.000 km2 study area is located in Northern Morocco, centred at approximately 
34.0ºN, 4.5ºW. The Rif Mountains, an area of highlands, forms the northern border 
of the study area. The Anti-Atlas Mountains are located on the southern border. In 
between, the study area consists of plateaus and intermountain valleys. This area 
offered a diverse lithological setting, including sedimentary, igneous and 
metamorphic rock types. We designed a sparse RS-based sampling approach, making 
use of conditioned Latin Hypercube Sampling (cLHS) to assess the major soil 
variability present in the study area. The sample consists of 73 sites, located within 
predefined subareas (Fig. 6.1), and proved to be representative for soil variability at 
regional scale. For more details on the sampling strategy and the mineral analysis we 
refer to Mulder et al. (2012a; 2013). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1: Study area with predefined subareas (Mulder et al., 2012a). 
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6.2.1.3 Soil mineralogy from x-ray diffraction analysis 
The mineralogy of the samples was determined by X-ray diffraction (XRD) analysis 
(Mulder et al., 2013) (Table 6.1). Illite and muscovite could not be separated by the 
XRD analysis due to their similar structure, and in this work they were referred to as 
(dioctahedral) mica. Interstratified illite/smectite is abbreviated by I/S ML. The 
minerals used for this study were required to (1) have absorption features in the 
2.100–2.400 µm region (Clark, 1999); this allows comparison at a later stage with 
the spectroscopy-derived maps, (2) be frequently present in the samples and (3) have 
an average content larger than 5 wt. %. Following these criteria, calcite, dioctahedral 
mica, smectite and kaolinite were used for further analysis (Mulder et al., 2013). 

 
 
 
 
 
 

 
 
Table 6.1: Mineral abundances (wt. %) present in the samples as determined by XRD analysis (Mulder et al., 
2013).  

Mineral 
 

Average 
(wt. %) 

Range 
(wt. %) 

Error (3ơ)  
(wt. %) 

No. 
samples 

Anatase 1.0 0.4 - 1.9 0.2 - 0.3 41 
Aragonite 7.1 1.9 - 11.1 0.7 – 0.8 3 
Calcite 21.4 0.7 - 75.3 0.3 – 1.6 63 
Chlorite 5.0 0.8 - 25.4 0.4 – 1.8 52 
Cristobalite 2.8 1.2 - 4.5 0.3 – 0.5 3 
Epidote 1.9 1.9 0.5 1 
Dolomite 6.9 0.8 - 33.9 0.3 – 0.9 29 
Goethite 5.2 1.2 - 11.6 0.8 – 1.3 14 
Gypsum 1.5 1.5 0.5 1 
Hematite 1.4 0.4 - 4.6 0.2 – 0.4 27 
Dioctahedral mica  10.5 1.6 - 56.9 0.4 – 2.1 66 
Kaolinite 6.7 1.3 - 16.7 1.1 – 2.7 49 
K-feldspar 3.1 0.9 - 18.6 0.5 – 1.3 42 
Palygorskite 6.8 6.8 0.8 1 
Plagioclase Ab 4.9 1 - 23.8 0.4 – 1.2 69 
Quartz 42.5 12.6 - 83.9 0.6 – 1.8 77 
Rutile 1.1 0.6 - 1.8 0.2 – 0.4 10 
Smectite 28.6 9.4 - 52.9 1.4 – 3.0 25 
I/S ML 20.7 6.5 - 42.4 2.3 – 3.6 10 
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6.2.1.4 Soil mineralogy from spectroscopy 
Studies employing spectral feature analysis and comparison methods have shown that 
many different materials can be identified and mapped in terrestrial imaging 
spectrometer data (Clark et al., 2003; Dalton et al., 2004; Kokaly et al., 2013. Van 
der Meer (2012) reviewed the use of multi- and hyperspectral for geologic RS. The 
reviewed studies were limited to characterizing key minerals at local scales. Most 
detailed information was obtained from Hyperion data supported by ground truth data 
or not. The methods included linear spectral unmixing (Chudnovsky 2009; 2011) or 
Mixture Tuned Matched Filtering (Kodikara et al., 2012). These methods appeared to 
be suboptimal to map or quantify mineral mixtures when overlapping absorption 
features exist. Successful examples include the Tetracorder (Clark et al. 2003) and 
the Material Identification and Characterization Algorithm (MICA) (Kokaly et al., 
2011a). MICA is a module of the USGS Processing Routines in IDL for 
Spectroscopic Measurements (PRISM) software (Kokaly et al., 2011a) and has been 
especially helpful for the characterization of the dominant mineralogy over large 
areas (Kokaly, 2011b; Mulder et al., 2012b). 

The central concept of the MICA classification routine is the detection of 
diagnostic absorption features. These features are unique to particular materials. The 
diagnostic features are isolated by continuum removal and matched to reference 
features from a spectral library. To discriminate between materials having similar 
diagnostic absorption features, constraints are included to rule out the co-occurrence 
of other materials (Clark et al., 2003; Mulder et al., 2012b). Spectral measurements 
were taken under laboratory conditions with an ASD Fieldspec Pro FR 
spectroradiometer covering the 350-2500 nm wavelength region. The samples were 
illuminated using a stabilized quartz-tungsten light source with a condenser and 
Koehler illuminator, securing isotropic illumination within the field-of-view. A 
measurement field-of-view of 2 cm was obtained by using a 50 foreoptics while 
placing the sensor 23 cm above the sample. The 2 mm samples were placed in pure 
crystal sample holders to reduce scattering from the sample holder. Preprocessing of 
the spectral data and the determination of main mineralogy was done using the 
‘Processing Routines in IDL for Spectroscopic Measurements’ (PRISM) software 
(Kokaly, 2011a). The diagnostic features within the Short-Wave Infrared (SWIR) 
were used to derive the soil mineral categories. Discriminating between a calcite-rich 
and -poor environment gave the most accurate output for six mineral categories 
(Table 6.2). This classification relied on 48 spectral endmembers from the USGS 
spectral library version 6 (Clark et al., 2007). The overall accuracy was 0.52, based 
on the confusion matrix between the MICA output categories and reclassified 
abundances derived from x-ray diffraction.  
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Table 6.2: Soil mineral categories derived with PRISM.  

Mineral category Spectral endmembers No. of samples 
MICA 

No. of 
samples XRD 

Smectite  Montmorillonite (SAz-1, STx-1) 
Montmorillonite + Illite (CM37, CM42) 

6 15 

Smectite  calcite-
rich 

Montmorillonite (50%) + Calcite (25%) +Dolomite 
(25%)  
Montmorillonite (50%) + Calcite (50%) 
Montmorillonite (67%) + Calcite (33%) 
Montmorillonite (20%) + Calcite (80%) (AMX15, 
AMX19) 
Montmorillonite (50%) + Dolomite (50%) (AMX10, 
AMX21) 

27 18 

Dioctahedral mica Illite (CU00-5b) 
Illite (GDS 4) 
Illite IMt-1 (a,b) 
Muscovite – medium low Al 
Muscovite (CU93-1) low Al 
Muscovite + Chlorite (CU91-253D) 
Muscovite (GDS 113, GDS 116) 
Chlorite + Muscovite (CU93-65A) 

40 32 

Dioctahedral mica 
calcite-rich 

Muscovite (67%) + Calcite (33%) 23 28 

Kaolinite Kaolinite (CM3, CM7, CM9) 
Kaolinite (KGa-2) 
Kaolinite + Muscovite (intimate mix) 
Kaolinite (50%) + Muscovite (50%) 
Kaolinite (50%) + Smectite (50%) 

17 24 

Kaolinite calcite-
rich 

Kaolinite (30%) + Calcite (70%) 
Kaolinite (20%) + Calcite (80%) 

38 22 
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6.2.2 Remote sensing data 

The explanatory variables used for predicting soil mineralogy, based on research listed in 
Table 6.3, were: 

• ASTER satellite imagery (Abrams and Hook, 2001); 
• ASTER digital elevation model (Abrams and Hook, 2001); 
• The first three principal components (Wold et al., 1987) of ASTER VNIR-

SWIR bands; 
• Normalized difference vegetation index (NDVI) (Tucker, 1979). 

 

6.2.2.1 ASTER satellite data 
The spectral data products used for this work were (1) the ASTER Visible and Near 
Infrared (VNIR), (2) crosstalk corrected SWIR surface reflectance and (3) surface 
emissivity derived from the thermal infrared (TIR) (Abrams and Hook, 2001). A total 
of nine images of 60 x 60 km were required. These images were recorded in June and 
September 2005 and early May 2007. The selection of images from similar seasonal 
conditions minimized the cloud and vegetation coverage but small phenological 
differences did happen to occur over the years. Additionally, the images do not 
completely cover the area (Fig. 6.2). 
 
Preprocessing of satellite data 
We applied a modified Sun-Canopy-Sensor (SCS+C) method, to reduce topographic 
effects in the data (Soenen et al., 2005). This method appeared to be more effective 
than a pure cosine correction, a reason for which is in the fraction of forested hills 
covering substantial areas in the nine ASTER tiles. Pixels with slopes steeper than 
40º were overcorrected which resulted in overestimated reflectance values (Soenen et 
al., 2005) and therefore these pixels were masked out. The striping in the TIR bands 
was reduced by applying a low-pass filter (Cudahy, 2012). Next, due to differences 
in gains and offsets of the images, a stepwise approach was used for mosaicking. 
This resulted in a global response of reflectance values (Cudahy, 2012) for the area. 
Finally, the data were resampled to 90 meters to match the resolution of the TIR data. 
Pixels having substantial vegetation cover (NDVI > 0.35 (Serbin et al., 2009)), 
clouds, snow and water were masked out to retain a strong signal from the soils.  
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Table 6.3: Remote sensing data. 

Data  Wavelength (µm) Resolution (m) Information 
ASTER VNIR Band 1 0.520 – 0.600 15 Vegetation and iron bearing 

minerals (Cudahy et al,. 2012)  Band 2 0.630 – 0.690 15 
 Band 3N 0.780 – 0.860 15 
ASTER SWIR Band 4 1.600 – 1.700 30 Clay and carbonate (Hewson et 

al., 2005)  Band 5 2.145 – 2.185 30 
 Band 6 2.185 – 2.225 30 
 Band 7 2.235 – 2.285 30 
 Band 8 2.295 – 2.365 30 
 Band 9 2.360 – 2.430 30 
ASTER TIR Band 10 8.125 – 8.475 90 Clay, quartz and carbonate-rich 

minerals (Hewson et al., 2005)  Band 11 8.475 – 8.825 90 
 Band 12 8.925 – 9.275 90 
 Band 13 10.25 – 10.95 90 
 Band 14 10.95 – 11.65 90 
ASTER GDEM Band 3N,3B - 30 Proxy for topography (Jenny, 

1941) 
NDVI Band 2,3 - 15 Crop growth characteristics and, 

indirectly, characteristic for 
specific site qualities (Sommer 
et al., 2003; Sun et al., 2008) 

PC 1:3 Band 1:9 - 30 Major variability present in the 
spectral data (Wold et al., 1987) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2: False colour composite of the topographically corrected, masked mosaic. Grey colours indicate no 
data. 
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6.3 Methods 
 
Variogram analysis of the RS data was used for confirming the presence of medium 
and long-range structures of variability. Based on these findings, the RS data were 
smoothed to the corresponding ranges. Next, prediction models were made relating 
the mineral abundances and categories to the RS data. The considered scales for 
these models were (1) the pixel level, (2) the medium scale, (3) the long scale and (4) 
a combination of both medium and long scale. The most accurate prediction models 
for mineral abundances and categories were applied to the full extent of the study 
area and finally the maps were compared to each other.  

6.3.1 Analysis of spatial structures within the remote sensing data 

The scale-dependent spatial variability observed in RS data was determined by the 
range where changes in spatial structure occurred for each individual band or derived 
product. These structures were modelled by fitting variogram models to empirical 
variograms (Cressie, 1993; Pebesma, 2004). The Matérn model was applied because 
of its flexibility to model different variogram shapes (Matérn, 1960; Minasny and 
McBratney, 2005). Two structures were expected to suffice for an accurate fit 
(Goovearts, 1997). The accuracy of the fit was determined by calculating the RMSE 
of the fitted and actual semivariance of the lags of the variogram. The maximum lag-
distance considered was 60 kilometres, corresponding to one third of the diagonal of 
the study area. More insight in the spatial processes was obtained by evaluating the 
relative contributions of the nugget and the partial sills to the total semivariance, the 
range parameter and kappa values. Ensuring that the spatial variability was captured 
at the scale of interest, the ranges of these structures were subsequently used as 
indicators for the resolution of the basis functions for FRK. Calculations were 
performed using the R language and environment for statistical computing (R 
Development Core Team, 2011) and contributed packages gstat and sp (Pebesma, 
2004; Renard, 2011). 
 

6.3.2 Data smoothing using Fixed Rank Kriging 

Fixed Rank Kriging (FRK) aims to predict a spatial process by separating the signal 
from the noise, based on a large number of observations that contain measurement 
errors. To ensure computational feasibility even for massive datasets, FRK 
introduces a dimension reduction. This is done by expressing the process of interest 
as a linear combination of spatial basis functions and a fine-scale-variation 
component. The latter is characterized by a covariance matrix. Plugging in estimates 
of all parameters, we can obtain the Fixed Rank Kriging (FRK) predictor. In our case 
these are the smoothed RS signal and the accompanying mean squared prediction 
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error. This allows us to express major variability rather than the noisy RS signals, 
including short range variability and measurement error. FRK uses the signal that 
remains after removal of a deterministic trend. This signal is called the random 
spatial-variation component. Maximum-likelihood estimates of the covariance matrix 
of the vector of basis-function weights and the variance of the fine-scale-variation 
component can be obtained using the expectation-maximization (EM) algorithm, 
implemented in the Spatial Random Effect (SRE)-model (Katzfuss and Cressie, 
2009). Hereby, the variance of the measurement error is assumed to be known and 
the spatial basis functions are representative for the scale of spatial variation. 
Recommendations for the spatial basis functions are that the center points (1) vary in 
spatial resolution in order to capture different scales of spatial variations and (2) 
regularly cover the spatial domain. This approach is based on Cressie and 
Johannesson (2008) and Katzfuss and Cressie (2011), among others. 
 
Model settings SRE-model 
Here, bisquare functions were used as basis functions, as suggested by previous work 
of Nychka et al. (2002). The center points of the functions were positioned on a 
regular grid at locations with data. The appropriate distance between the center 
points were obtained from variogram analysis, as was described in section 6.3.1. Two 
sets of spatial basis functions were selected to capture the spatial variation for both 
the long and medium range (Katzfuss and Cressie, 2011). The resolution and number 
of center points of the basis functions are given in Table 6.4. The observations used 
to estimate the spatial process were obtained by extracting them from the RS data, 
using a 7x7 window; this corresponded to one observation every 670 meter (Table 
6.4). The number of observations slightly differed due to differences in spatial 
coverage resulting from various masks that were applied to the RS data. The variance 
of the measurement error and fine scale variation were estimated by fitting a 
variogram, using a subsample consisting of 15.000 observations (Katzfuss and 
Cressie, 2011). The overall mean was subtracted from the data, as is similarly done 
in simple kriging where the mean is assumed to be known and constant throughout 
the area; the residual component was modelled as a stationary random function with 
zero mean (Goovaerts, 1997).  
 
Settings of the EM-algorithm 
The maximum-likelihood estimates of the covariance matrix of the vector of basis-
function weights and the variance of the fine-scale-variation component were 
obtained by iteratively solving the expectation-maximization (EM) algorithm. 
Convergence of the algorithm was monitored by evaluating the change in the  
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Table 6.4: SRE model settings.  

Model setting VNIR-SWIR TIR PC DEM NDVI 
Resolution of basis functions No. of center points 
30 km (long range) 23 23 26 26 26 
20 km (long range) 63 63 66 66 66 
9 km (medium range) 237 236 234 235 234 
5 km (medium range) 660 659 660 660 660 
No. of observations used for 
the approximation of the 
covariance matrix (7x7 
window) 

46349 46237 51106 52376 52155 

No. of FRK prediction 
locations (450 m. resolution) 115514 115514 115514 115514 115514 

 
covariance matrix and fine-scale-variation components. All unique elements were 
stacked into a vector and the change was evaluated against the stopping criteria that 
determined the order of difference (ϛ). E.g., ϛ= r2*10-6 for the long range process, 
where r2 is the order of magnitude of the parameters in the vector. The pre-specified 
values in ϛ are given in Table 6.5 and were deemed sufficiently low (Katzfuss, 2011). 
The choice of starting values for the parameter vector that maximizes the likelihood 
functions in the EM algorithm, were set to the default values to satisfy the 
requirements of a valid starting covariance matrix (K[0]) and positive initial fine-
scale-variation (σ2

ξ
[0]) (Katzfuss and Cressie, 2011). 

 
FRK predictions 
Plugging in estimates of all parameters, we obtained the Fixed Rank Kriging (FRK) 
predictors at a spatial resolution of 450 m; this was deemed sufficiently detailed for 
mapping regional scale variability (Table 6.4). The FRK prediction errors were 
converted to relative values ((the prediction error / the range of the RS signal)*100) 
for comparison. Next, the effect on the relation between smoothed RS data and 
mineralogy was evaluated by assessing the correlation of mineralogy with the 
original, medium and long-scaled data. Preparation of the FRK input data and 
analysis of the FRK predictors were performed using the R language and 
environment for statistical computing (R Development Core Team, 2011) and 
contributed packages raster (Hijmans and van Etten, 2012) and sp (Pebesma, 2004). 
The FRK was performed in Matlab using the freely available FRK code provided by 
the SSES Program (http://www.stat.osu.edu/~sses/research.html). 
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Table 6.5: Settings of the EM algorithm. 

Model setting Parameter Value 
Starting values to set the initial conditional expectation 
of the likelihood values (where ν^2 is the variance of 
residuals and I the identity matrix) 

Covariance matrix K[0] 0.9 ν^2I 
Fine scale variation 
process (σ2ξ[0] ) 

0.1 ν^2 

Pre-specified values for the stopping criteria of the 
iteration process 

Short range process 1*10-5 

Long range process 1*10-6 

6.3.3 Digital soil mapping for mineral characterization 

6.3.3.1 DSM using soil mineralogy derived by x-ray diffraction 
Prediction of mineral abundances using the data from the x-ray analysis needs a 
modelled relation between the continuous target variables and continues predictor 
variables. Popular models include regression tree analysis (Breiman et al., 1984; 
Viscarra Rossel, 2011) and artificial neural networks (Malone et al., 2009). Linear 
regression models are most commonly used in DSM (Cambule et al., 2013; 
McBratney et al., 2003). We used multiple linear regression (MLR) for predicting 
mineral abundances based on (smoothed) RS data.  

Variable selection in MLR was based on an exhaustive search for the best subsets 
explaining the most variation in the target variable while keeping the explanatory 
variables to a minimum (highest R2

adj). Models were calibrated for the considered 
scales at (1) the pixel level, (2) the medium scale, (3) the long scale and (4) a 
combination of both medium and long scale. The models were validated using leave-
one-out cross-validation and the most accurate models were applied to the full extent 
of the study area. The data-range of predictor variables might have been smaller at 
the calibration stage, potentially resulting in unrealistic estimates when applied to the 
full extent (outside the range of 0-100 wt. %). Abundances outside the [0, 100]-
interval were set to “nodata”. The calculations were performed using the R language 
and environment for statistical computing (R Development Core Team, 2011) and 
contributed packages leaps (Miller, 2002), regr0 (Stahel, 2011) and raster (Hijmans 
and van Etten, 2012). 

6.3.3.2 DSM using soil mineralogy derived from spectroscopy 
Prediction of mineral categories requires a modelled relation between the categorical 
target variables and the continuous predictor variables (RS data). Such can be 
achieved by regression tree analysis (Breiman et al., 1984; Felicísimo et al., 2012), 
artificial neural networks (Behrens et al., 2005) and multinomial logistic regression 
(MNL) (Ardö et al., 1997; Hengl et al., 2007; Kempen et al., 2012). For this work we 
choose for MNL because it was deemed more suitable for our small dataset. The 
following mineral categories were predicted for each mineral: “absence”, “presence” 
and “presence Ca-rich” (Table 6.2). “Presence Ca-rich” refers to the occurrence of a 
mineral in a calcite-rich environment.  
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Models were calibrated for the considered scales, being (1) the pixel level, (2) the 
medium scale, (3) the long scale and (4) a combination of both medium and long 
scale. The accuracy of the predicted mineral categories was assessed by calculating 
the error matrix of the observed versus the predicted mineral categories, using the 
training data. In addition, the change in the predicted probability of each category per 
sample was evaluated. These classification probabilities provide an internal measure 
of model performance (Stehman, 1997). The most accurate MNL models were 
applied to the full extent of the study area. The calculations were performed using the 
R language and environment for statistical computing (R Development Core Team, 
2011) and contributed package nnet (Venables and Ripley, 2002) and DAAG 
(Maindonald and Braun, 2010). 

6.3.3.3 Evaluation of characterized regional soil mineral composition 

Comparison of abundance maps with the mineral sample  
Independent validation of the maps was not possible because the complete sparse 
sample was needed to fit the MLR and MNL models. Alternatively, the distribution 
in mapped and modelled mineral abundances was compared to obtain insight in 
major differences. A random sample consisting of 10,000 points was taken from the 
mineral maps. The Wilcoxon test was used to test whether both samples had the same 
distribution and mean (p=0.01) (Wilcoxon, 1945) and if not, the shift in the median 
was defined. This shift provides insight in possible over- or underestimations in the 
modelled abundances. The histograms were given for visualisation of the mapped and 
measured mineral variability.  
 
Comparison of mineral categories maps with the mineral sample 
Comparing the distribution of mapped mineral categories with the sample required a 
reclassification of the measured abundances into the mineral categories (Table 6.2). 
Finding the threshold in abundance where minerals were successfully characterized 
by MICA is subjective and hampers a quantitative comparison. Initially, the 
threshold for a calcite-rich environment was set to the abundance of the first quartile 
of the distribution, being 16 wt. % calcite. The threshold for mica, kaolinite and 
smectite was set to an abundance larger than 0 wt. %. Next, the similarity between 
the abundances and the predicted categories (p=0.01) was determined using the Chi-
squared test (Snedecor and Cochran, 1989). The initial thresholds may be unrealistic 
and hamper the comparison of the modelled the mineral abundance and -category 
maps (next section). As such, more realistic thresholds were defined by adjusting the 
thresholds to a level where the population percentages of reclassified abundances 
matched with the mineral categories. These adjusted thresholds were assumed to be 
the detection limit in mineral abundance for MICA.  
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Comparison of mineral abundances and categories maps 
The abundance maps were first reclassified to the mineral categories using the 
thresholds resulting from the Chi-squared test. Next, to provide insight in the 
differences, the error matrix was calculated between both maps using all pixels 
(Stehman, 1997). Finally, these maps were compared, using the error matrix and 
observed spatial patterns. 

All calculations were performed using the R language and environment for 
statistical computing (R Development Core Team, 2011). 

6.4 Results 

6.4.1 Analysis of spatial scales within the remote sensing data 

The variogram analysis confirmed the presence of medium and long-range spatial 
processes within the RS data. The variograms from the VNIR, SWIR, TIR sensors 
and principal components resulted in similar variograms; therefore one band per 
sensor was presented (Fig. 6.3). The VNIR data had high nuggets (42% of the total 
semivariance), little variability was captured by the medium-range structure (14%) 
while the long-range structure captured 44% of the total semivariance. The nuggets 
of the SWIR data were 20% of the total semivariance, 22% and 58% was captured by 
the medium and long-range structure, respectively. The nuggets, medium and long-
range structures of the TIR data were, 40%, 34%, and 26% respectively. The nuggets 
of the PC’s was 26% of the total semivariance, most variability was accounted for by 
the medium-range structure (40%) while the long-range structure captured 33% of 
the total semivariance. The NDVI had a high nugget (38%), 25% and 37% of the 
semi-variance was captured by the medium and long-range structure, respectively. 
The long-range structure of the DEM was modelled by a power model with a 
linearity parameter of 1.01 indicating an almost linear structure. The semivariance in 
elevation (DEM) was 100% explained by the medium-range structure plus the 
nugget. 

The medium-scale structures had low kappa-values (< 0.51) and range parameters 
of maximal 9.5 kilometres, indicating strong spatial variability over shorter distances 
(Minasny and McBratney, 2005). The long-scale structures had kappa-values 
between 1.9 and 6 and a range between 20 and 40 kilometre, indicating a smooth 
spatial process over long distances. The data smoothing with FRK need to capture the 
spatial variability corresponding to the range parameters of the medium- (9.5 km) 
and long-scale structures (up to 40 km). We decided using the basis function-
parameterizations listed in Table 6.4 (resolution of basis functions).  

 
 
 



Characterizing regional soil mineralogy using spectroscopy and geostatistics 

123 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3: Variograms of the (a) VNIR band 1, (b) SWIR band 1, (c) TIR band 1, (d) PC 1, (e) NDVI and (f) 
DEM. The RMSE of the fitted model is given along with the model parameters of the medium (1) and long-range 
(2) spatial structures. 
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6.4.2 Data smoothing using Fixed Rank Kriging 

Smoothing of RS data provided images with full coverage, representing either the 
medium or long- range variability within the RS data (Fig. 6.3 and 6.4). As expected, 
the prediction errors for the medium-range data (Fig. 6.4c and d) increased in the 
interpolated areas. The image representing the long-range variability (Fig. 6.4a) 
shows broad spatial patterns, however, also differentiated areas with higher 
prediction errors (Fig. 6.4b). This was expected because it is the difference between 
the local observations and long-scaled estimated RS value. The averaged FRK 
prediction errors at the medium scale did not deviate strongly, except for the TIR 
data (Table 6.6). Higher prediction errors were found for data having high nugget and 
semivariance at short distances, e.g. NDVI (Fig. 6.3e) against PC 1 (Fig. 6.3d). The 
opposite was found for the long-scale RS data where the prediction error decreased 
with increasing partial sill, e.g. SWIR (Fig. 6.3b) against DEM (Fig. 6.3f). Likely, 
the high errors within the TIR data originate from the striping effect.  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
Figure 6.4: Smoothed RS data (band 1) to the (a) long-range and (c) medium-range compared to (e) the original 
data along with the prediction errors (b,d) introduced by FRK. 
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Table 6.6: Relative prediction errors (%), averaged per sensor for the medium and long-range RS data.  

Range VNIR SWIR TIR PC DEM NDVI 
Medium 6.3 5.4 11.8 6.5 3.1 8.0 
Long 3.7 4.5 32.0 6.4 9.4 12.0 
 
The correlation between mineralogy and smoothed RS data was found to be higher 
for several RS variables (Fig. 6.5). Calcite (Fig. 6.5a) showed stronger correlation for 
the VNIR- SWIR bands at both scales. The effect of smoothing on the TIR and PC 
data had mixed effect on the correlation. Most striking was the higher correlation for 
PC1 and lower correlations for PC3 and NDVI. The correlation of mica improved 
using scaled RS data (Fig. 6.5b). Compared to calcite, the effect was less in the 
VNIR-SWIR bands but more apparent in the TIR bands. By removing the noise from 
the data, the typical absorption features of kaolinite in the SWIR were expected to 
improve the correlation. This was indeed observed for the long-range data (Fig. 
6.5c). In contrast, the correlations slightly decreased with the medium-range data, 
except for the NDVI and TIR band 13. Smectite had low correlation with the RS data 
(Fig. 6.5d) but smoothing increased the correlation with the TIR data. Smectite has 
strong absorption features in the SWIR bands, even so the correlation of smectite did 
not increase with these bands after smoothing.  
 
 
 

 

 

 

 

 

 

 

 

 

Figure 6.5: Correlation of RS data representing the pixel, medium and long-range variability with (a) calcite, (b) 
mica, (c) kaolinite and (d) smectite abundances (wt. %). 
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6.4.3 Prediction models for soil mineralogy 

6.4.3.1 Prediction of mineral categories using spectroscopy 
The overall accuracy of the MNL models using the original RS data were relative 
high (> 0.74) (Table 6.7). The smoothed RS data, regardless of scale, improved the 
overall accuracy little, except for mica using medium-scale RS data. Nevertheless, 
using a combination of medium and long-scaled RS data substantially improved the 
overall accuracy of the models. The probability of a sample belonging to a specific 
class also increased using a combination of medium and long-scaled RS data (Fig. 
6.6). Many samples were positioned around the center of the diagram using the 
original RS data, indicating substantial confusion between the categories. This 
improved by using scaled RS data, because many samples moved towards the corners 
of the diagrams. The remaining samples located along the axes indicated confusion 
between two categories, which was largest for absence and presence in a calcite-poor 
environment. High confusion between the smectite classes remained, despite using 
scaled RS data (Fig. 6.6c). 

 
 
 
 

Table 6.7: Overall classification accuracy of the predicted mineralogy by MNL using the sample data. 

Mineral Pixel Medium Long Medium + Long 
Mica 0.74 0.70 0.79 0.76 
Smectite 0.78 0.79 0.74 0.89 
Kaolinite 0.75 0.79 0.76 0.86 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.6: Ternary diagrams with MNL classification probabilities of kaolinite (a), mica (b) and smectite (c). 
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6.4.3.2 Prediction of mineral abundances based on x-ray diffraction analysis 
Models using the original RS data resulted in low coefficients of determination and 
high RMSE values for all minerals and were deemed unsuitable for predicting 
mineral abundances (Table 6.8). The use of individual scaled RS data had mixed 
effect on the prediction models and most accurate models were derived for calcite 
and mica. We found that the prediction models resulted in highest accuracy using 
both the medium and long-range RS data. The mica and calcite models performed 
well for both the medium and the combined ranges; the model statistics showed high 
Radj

2 and lowest RMSE for predictions from the calibration and cross-validation. The 
goodness-of-fit for smectite indicated that 57% of the variation was explained by the 
model. The model for kaolinite was limited to explain 45% of the variation. These 
results indicated that the use of smoothed data improved model performance. 

6.4.4 Digital soil mapping for mineral characterization 

6.4.4.1 Application of prediction models to the study area  
This section presents the spatial explicit prediction models for mica because of its 
high predictive accuracy (Table 6.8). The effect of using medium (Fig. 6.7b) and 
long-range variability (Fig. 6.7c) was clearly observed. Employing the smoothed 
data, areas of high and low abundances were well differentiated whereas the original 
data produced a map that hardly showed spatial patterns. Model predictions in areas 
interpolated with FRK seamlessly joined most of the spatial patterns of areas where 
RS data were available. The mineralogy was not well characterized in the nodata-
area in the East, running from North to South using medium-scaled RS data. In this 
area, the accumulated FRK prediction errors (Fig. 6.4) were too high and the  
 
Table 6.8: Model accuracy for the predicted minerals by MLR  

Mineral Scale Radj2 RMSEcal RMSEval 
Calcite Pixel 0.42 12.8 14.2 
 Medium 0.54 10.6 17.3 
 Long 0.34 12.7 22.9 
 Medium + long 0.71 8.9 12.0 
Mica Pixel 0.46 3.4 3.7 
 Medium 0.61 4.9 9.0 
 Long 0.55 5.2 8.9 
 Medium + long 0.70 4.6 6 
Smectite Pixel 0.53 7.4 10.2 
 Medium 0.29 9.2 25.8 
 Long 0.36 7.8 19.5 
 Medium + long 0.57 6.0 8.3 
Kaolinite Pixel 0.26 2.9 3.2 
 Medium 0.10 3.6 7.9 
 Long 0.24 2.9 4.5 
 Medium + long 0.45 2.5 3.8 
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predicted abundances disrupted the smooth spatial patterns observed in the map (Fig. 
6.7d). The mapped calcite abundances were overestimated in the 30 wt. % and 50 wt. 
%-interval (Fig. 6.8a) causing a shift in the median of 4.5 wt. % (p=0.02). Similarly, 
mica was overestimated in the 15 wt. %-interval (Fig. 6.8b) causing a shift in the 
median of 1.5 wt. % (p=0.02). The distribution of modelled and measured kaolinite 
abundances were similar (p=0.05) (Fig. 6.8c). Smectite abundances were predicted 
outside the range of measured abundances (Fig. 6.6d), yet, they originated from the 
same distribution (p=0.53). The modelled and measured mineral categories did not 
have a similar distribution (p < 0.01) using the initial thresholds (Table 6.9). 
Increasing the threshold of mica to 5 wt. % resulted in a similar distribution (p = 
0.51). 22 wt. % of the mapped kaolinite falsely represents the presence of kaolinite in 
either a calcite-rich or -poor environment (p < 0.01). Smectite required a lower 
calcite threshold (3 wt. %, p = 0.63). 

 

 
Table 6.9: Proportional distribution of the sampled and modelled mineral categories. 

Mineral class 
Mica Kaolinite Smectite 
Sample Sample*  

(mica 5 wt. %) 
Map Sample Map Sample Sample*  

(calcite 3 wt. %) 
Map 

Presence Ca-rich 0.35 0.24 0.20 0.23 0.29 0.21 0.34 0.40 
Presence 0.49 0.40 0.45 0.40 0.56 0.27 0.14 0.13 
Absence 0.15 0.36 0.35 0.37 0.15 0.52 0.52 0.47 

Figure 6.7: Predicted mica based on XRD data and using the (a) original RS data, (b) RS data representing 
medium-range variability, (c) RS data representing long-range variability and (d) combination of scaled RS data. 
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* adjusted threshold in abundance (wt. %), indicating the detection threshold of MICA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.4.4.2 Evaluation of predicted soil mineral composition using spectroscopy or x-ray 
diffraction  
The overall similarity between the maps with reclassified abundances and mineral 
categories were relative low (between 0.34 and 0.44, Table 6.10). Nevertheless, 
substantial agreement between to two approaches was found using a more qualitative 
comparison using the error matrices and observed spatial patterns. Areas with high 
abundances (Fig. 6.9) coincide with the minerals classified as present either in a 
calcite- rich or poor environment (Fig. 6.10 and Table 6.10). High concentrations of 
calcite (Fig. 6.9d) showed similar patterns as mica (Fig. 6.10a) and kaolinite (Fig. 
6.10b) in a calcite-rich environment, although, the error matrices indicated relative 
high misclassifications. The absence of smectite had high similarity (Table 6.10c) but 
the other two classes deviated strongly, which agrees with the findings in section 
6.3.2.1. High user accuracy was found for the presence of kaolinite, but substantial 
spatial differences were observed, especially in the North (Fig. 6.9b and Fig. 6.10b). 
As a result, the error matrix shows low agreement between the mapped absence of 
kaolinite. Finally, the effect of the FRK prediction errors were less pronounced in the 
mapped mineral categories. 
 
 
 
 
 
 

Figure 6.8: Histograms of the sampled (right axis) and mapped (left axis) abundances (wt. %) of (a) calcite, (b) 
mica, (c) kaolinite and (d) smectite. 
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Figure 6.9: Predicted soil mineral abundances, based on XRD data and scaled RS data. 

Figure 6.10: Predicted soil mineral categories based on spectral point measurements and scaled RS data.  
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Table 6.10a: Error matrix (%) mica characterization. 

Reclassified  
abundances 

Presence 
Ca-rich 

Presence Absence User 
accuracy 

Presence Ca-rich 0.13 0.28 0.14 0.23 
Presence 0.04 0.13 0.12 0.43 
Absence 0.03 0.04 0.07 0.50 
Producer’s Accuracy 0.64 0.28 0.22 0.34* 
*Overall accuracy     
 

Table 6.10b: Error matrix (%) kaolinite characterization. 

Reclassified  
abundances 

Presence 
Ca-rich 

Presence Absence User 
accuracy 

Presence Ca-rich 0.16 0.24 0.08 0.34 
Presence 0.04 0.12 0.02 0.66 
Absence 0.08 0.19 0.05 0.16 
Producer’s Accuracy 0.57 0.22 0.34 0.34* 

*Overall accuracy     
 
Table 6.10c: Error matrix (%) smectite characterization. 

Reclassified  
abundances 

Presence 
Ca-rich 

Presence Absence User 
accuracy 

Presence Ca-rich 0.16 0.06 0.17 0.40 
Presence 0.10 0.04 0.07 0.20 
Absence 0.13 0.02 0.22 0.60 
Producer’s Accuracy 0.40 0.34 0.47 0.43* 

*Overall accuracy     

6.5 Discussion  

6.5.1 Main findings 

6.5.1.1 Data collection  
The MICA analysis applied to the samples had difficulties in matching some 
minerals present in the sample with the spectral library (Mulder et al., 2012b). The 
MICA analysis used in this study was adapted from an approach developed at the 
remote sensing level of spectroscopy (Kokaly et al 2011a) rather than the laboratory 
level. To improve the analysis, the expert-decision rules need to be further refined to 
match the level of detail of high-resolution spectral data. More specifically, this 
involves specific adjustments of the characteristics describing the diagnostic 
absorption features. Despite that, MICA delivers insightful information for large-
scale studies, consisting of different mineral categories. This provides important 
information on parent material and soil formation. The highest interest for regional 
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scale studies, are the coarse differences and general spatial patterns of minerals. 
Therefore, spectroscopy is considered to be an important and cost efficient way to 
obtain mineral information. In addition, mineral compositions derived using the 
MICA algorithm are based on absorption features in reflectance signatures, thus the 
basis of mineral identification is similar to absorption processes causing variations in 
the satellite remote sensing data. By contrast, XRD results are based on different 
types of processes arising in the interaction of electromagnetic energy with the 
sample.  

In this work, x-ray analysis was used to obtain mineral abundances. This involved 
the use of costly equipment while the analysis was labour-intensive. Alternatively, 
mineral abundances could be estimated using other spectral modelling approaches, 
such as proposed by Mulder et al. (2013). 

6.5.1.2 Variogram analysis and Fixed Rank Kriging 
The different scales of spatial variability within the area were determined by 
variogram analysis (Fig. 6.3). The high nugget values (20% to 43% of the total 
semivariance) suggested the presence of a substantially amount of noise in the 
original RS data. Also, for some RS data more variance was captured by the long-
range structure than the medium-scale structure. These findings were further used in 
the FRK. Here, we found lower prediction errors for RS data having lower sill values 
at the medium-scale. This indicated that the basis functions had more difficulty in 
capturing the spatial process for strongly spatially correlated RS variables. The 
prediction errors might be further reduced by increasing the number of basis 
functions. At the long-scale the opposite was found, this indicated that the increased 
nugget reduced the prediction accuracies for those RS data having lower spatial 
correlation. Overall, the resulting FRK prediction errors and the relation with the 
variogram were confirm the expectations (Isaaks and Srivastava, 1989).  

FRK generated a full coverage by interpolating missing areas with low FRK 
prediction errors up to a range of 6 kilometres. The missing data in the Eastern part 
of the area, running from North to South (120 km) having a width of 10 kilometre, 
appeared to be too large. The FRK positioned the medium-range basis functions at a 
resolution of 5 and 9.5 kilometre. As a result, there were too few observations 
available to accurately interpolate. The resulting prediction errors accumulated in the 
mineral prediction models, increased the average prediction errors (Table 6.6) and 
resulted in unrealistic predictions. As such, the accuracy of interpolation by FRK is 
mainly defined by the extent of the missing data and the desired map scale. 
Discrepancies between the latter substantially increase the prediction errors. The 
MNL was more robust for this phenomenon because the RS data was related to three 
categories rather than a continuous range of abundances.  
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6.5.1.3 Prediction models for soil mineralogy 
Initially, the effect of smoothing RS data seemed relatively small in relation to 
mineralogy (Fig. 6.5). However, the prediction models clearly indicated that using 
original RS data resulted in lower model performance (Table 6.6 and 6.8). Noise in 
the original data (i.e. short scale variability) was removed by the FRK, leading to 
improved relations of smoothed RS data with mineralogy. In addition, the model 
accuracy and sample sizes of kaolinite were smaller than for calcite and mica.  This 
may indicate that the MLR might have been hampered by sample size rather than by 
the soil-landscape relationships. Alternative to MLR, different analysis might 
improve the prediction of mineralogy. MLR assumes a linear relationship of 
mineralogy towards the predictor variables but this relation might be more complex. 
Recursive partitioning of the data, for example, can deal with nonlinearity and 
interactions between predictor variables (Breiman et al., 1984). 

The most accurate models utilized a combination of scaled RS data. This indicates 
that variability of environmental factors explain soil variability better at a specific 
scale. In addition, the resulting spatial patterns of the soil system’s variability at 
regional scale were more representative. Vasques et al. (2012) also found that the use 
of medium and long-range variability observed in spatial data were needed to model 
major soil variability at large scales. They found that soil carbon was controlled by 
ecological processes that evolved and interacted over a range of spatial scales across 
the landscape. They suggested there were two appropriate scales to observe soil 
carbon and their results supported our use of multi-scale soil-landscape relationships.  

6.5.1.4 Evaluation of maps 
The soil mineral maps showed similarity between both approaches (Fig. 6.9 and 
6.10). Unfortunately, the overall accuracy was rather low (between 0.34 and 0.44, 
Table 6.10). The modelled calcite and mica abundances were overestimated. As a 
result, the thresholds which were based on the measured abundances, were too low 
(Fig. 6.8). This resulted in higher misclassification of the presence of mica or 
kaolinite in a calcite-rich or -poor environment (Table 6.10a, b). Besides, comparison 
of kaolinite abundances (Fig. 6.9b) and categories (Fig. 6.10b) may not be that 
informative. Typically, kaolinite can be well discriminated by spectral analysis and 
the MNL model resulted in accurate models, while the MLR model was weak (R2 = 
0.45) (Table 6.7 and Fig. 6.6). This may imply that the MICA approach was more 
reliable for kaolinite. Reflecting on the methods and findings of this paper several 
sources of errors could be identified that contributed to the disagreement, (1) the 
reclassification of abundances into mineral categories was subjective due to the 
unknown spectral detection thresholds and (2) soil mineral abundances were less 
accurately modelled due to the accumulation of the FRK predictions errors. As such, 
major differences resulted from the classification of absence in areas where low or 
unrealistic abundances were mapped. Overall, the spectroscopy-based maps 
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characterized regional soil mineral composition and defined areas with a high 
likelihood of occurrence of minerals.  

The evaluation in section 6.4.4 was based on the distribution of the collected 
sample (Mulder et al., 2012a). Here, two assumptions were made, first, the spatial 
distribution of mineralogy was assumed to be fully sampled. Second, the 
overrepresented and missing intervals of the LHS were not considered to influence 
the distribution of mineralogy. The first assumption is inherent to the choice of using 
cLHS (Minasny and McBratney, 2006). The RS data was assumed to be 
representative of the landscape and its environmental variables (CLORPT, Jenny, 
1941). By sampling the first three principal components of ASTER data and 
elevation, the sampling aimed to optimally capture the environmental variability 
which was thus the proxy for soil variability. As such, reflectances are a result of the 
environmental variables but also an expression of interactions. The precise 
interactions are unknown but they might influence soil variability, e.g. soil-
vegetation feedbacks (Milcu et al., 2012) and, therefore, the sample may not be an 
optimal representation of the actual soil variability. The second assumption should be 
further investigated because the realized sample did not fully cover the LH covariate 
space. Therefore, careful interpretation of the statistical tests employed in section 
6.4.4 is in place. Additional field data may be acquired to complete the coverage of 
the LH, and independent data is deemed necessary to validate the final prediction 
models and maps. 

6.5.2 Imaging spectroscopy for geologic applications 

Studies reviewed by Van der Meer (2012) demonstrate that, at the moment, RS data 
does not provide the high spectral resolution needed to quantitatively map 
mineralogy. This was also supported by Cudahy et al. (2012) who emphasize that the 
ASTER data does not provide sufficient spectral resolution to determine the 
abundance or chemistry of specific minerals. The physical nature of minerals is 
complex and difficult to model in a quantitative way using spectroscopy at the 
remote sensing level. Nevertheless, using an advanced spectral feature comparison 
method, spectroscopy at the remote sensing level can deliver informative data 
supporting regional-scale DSM; MICA allowed characterizing more minerals with a 
higher accuracy than other spectral feature comparison methods. Besides, a 
geostatistical approach using a small sample having the required quantitative data 
and spectral resolution (laboratory level) significantly improves the feasibility to 
quantitatively map mineralogy. Finally, this approach can also be applied to model 
other environmental properties on various spatial scales, because of the underlying 
basic principle, the Soil-Landscape paradigm (Jenny, 1941). DSM uses this paradigm 
to develop empirical models that relate observations of various soil properties, e.g. 
soil carbon, with environmental variables that describe the main soil-forming factors 
(McBratney et al., 2003; Vasques et al., 2012). 
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6.6 Conclusion and outlook 
In this work we aimed at characterizing regional soil mineral composition, based on 
scale-dependent spatial variability observed in RS data. The focus of this work was 
to improve prediction models using scaled variability in RS data that matched the 
scale of variability of the target sample. The results indicated that the use of RS data 
smoothed to target scales generally resulted in better prediction accuracies than when 
using the original RS data. Moreover, soil information obtained from spectroscopy 
provided sufficiently detailed data to characterize the spatial distribution of the soil 
mineral categories, present in the study area. 

The best models utilized a combination of medium and long-range variability. 
This indicates that the variability of environmental factors improve the explained soil 
variability when represented at specific scales. As such, large-scale DSM approaches, 
based on the Soil-Landscape paradigm (Jenny, 1941), may improve their empirical 
models by using these multi-scale soil-landscape relationships. In addition, PS 
provided important primary information while RS provided all secondary data for the 
prediction models. Obtaining spectroscopic data is time and cost efficient, therefore, 
its use should be seriously considered for large-scale assessments. This work 
contributed substantially to DSM by advancing methods for large-scale assessments. 
The prediction models were improved by (1) representing explanatory variables more 
closely to the spatial variability of soil and environmental properties at regional scale 
and (2) using existing multi-scale soil-landscape relationships to predict soil 
properties. The approach was cost-efficient because it relies on globally available 
data and advanced soil collection methods while computational demands are 
relatively low. 

Outlook  

This work showed the potential of using scale-dependent RS data for large-scale 
DSM. However, this study was one of the first steps exploring the use of large 
datasets, geostatistical approaches and RS and PS methods simultaneously. Future 
research could focus on using additional environmental data to account for all factors 
of soil formation (Jenny, 1941). Another interest would be studying the information 
originating from micro-scale or local scale variability, which was not accounted for 
in this study (Katzfuss, 2011; Katzfuss, 2013; Sang and Huang, 2012). This allows 
mapping those regions that were now considered to be outliers due to their local 
occurrence, e.g. hydrothermal alteration zones having specific mineral occurrences. 
These areas are important to improve our understanding of local soil formation. 
Fixed Rank Kriging (FRK) is also an option that could be employed for geologic 
remote sensing in vegetated areas. FRK allows to generate a full coverage by 
interpolating areas where vegetation hampers extracting mineral information (Cressie 
and Johannesson, 2008). Yet, the feasible depends on the coverage and spatial 
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distribution of vegetation and the desired map scale of the modelled properties. For 
this, future research is needed to define its use in vegetated areas.    
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7.1 Main findings 
Global environmental changes have resulted in moderated key ecosystem services 
that soils provide. It is necessary to have up to date soil information on regional and 
global scales to ensure that these services continue to be provided. As a result, digital 
soil mapping (DSM) research priorities are among others, advancing methods for 
data collection and analyses tailored towards large-scale mapping of soil properties. 
Within this context, the objective of this thesis was to exploit the use of remote and 
proximal sensing methodologies for digital soil mapping in order to facilitate soil 
mapping at regional scale. Different methods were assessed and developed for 
operational DSM at regional scale, to reach this objective. Each of these methods 
focussed on one of the research questions presented in section 1.4. Below, the 
answers to the main research questions are revisited and the results are discussed in 
relation to the problem setting discussed in Chapter 1. 
  
1: What is the current state-of-art in the use of remote sensing for soil and terrain 
mapping? 
The use of existing remote and proximal sensing (RS and PS) methods for soil survey 
support three main components in DSM (Chapter 2). First, RS data support the 
segmentation of the landscape into homogeneous soil-landscape units whose soil 
composition can be determined by sampling. These soil-landscape units have also 
been used as a source of secondary information in DSM. Secondly, RS and PS 
methods allow for inference of soil properties using physically-based and empirical 
methods. Thirdly, RS data supports spatial interpolation of sparsely sampled soil 
property data as a primary or secondary data source. The progress made in this field 
is discussed below, as well as remaining limitations.  

PS has been successfully used for deriving quantitative and qualitative soil 
information (Viscarra Rossel et al., 2006). Most reported studies were done at the 
laboratory and local scale focusing on estimating soil properties having clear 
absorption features (Ben-Dor et al., 2008). These studies showed the high potential 
of PS but for large-scale mapping of soil properties, methods need to be extended 
beyond the plot. Various soil properties are difficult to characterize using 
spectroscopy due to the lack of diagnostic absorption features and complex scattering 
behaviour within the soil mixture (Clark and Roush, 1984). Quantification and 
qualification of such soil properties require methods that model the complex 
scattering behaviour of soils (Chapter 4). For that, the sample preparation, spectral 
measurements, data analysis and model parameterization require special expertise 
(Pompilio et al., 2010). Besides, these methods have not been fully developed.  

Important qualitative and, to a lesser extent, quantitative soil information has 
been derived from RS data (Chapter 2). It was found that RS-derived information has 
a lower accuracy and feasibility to obtain information compared to PS. RS provides 
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qualitative information on those soil properties that have clear diagnostic absorption 
features. The main limiting factors to derive the same soil properties as with PS are 
(1) the coarse spatial and spectral resolution, (2) the low signal-to-noise ratio of 
high-resolution RS data and (3) the bands of multi-band RS sensors have not been 
positioned at diagnostic wavelengths.  

Reported DSM-studies made limited use of the various methods that are available 
for spectroscopy and geostatistics (Ben-Dor et al., 2009; Dewitte et al., 2012). It was 
found that current research using RS data typically produces qualitative outputs. 
Also, the overall model accuracy reduced with increasing scale of the study area. 
This was contributed to incompatibility between the RS data and the available sample 
data. From the viewpoint of the soil scientists, the major gap is the lack of readily 
available RS-based soil products. Currently, soil scientists generate their own input 
data for their models. However, they may be limited in their knowledge of RS and PS 
tools and methods. Here, communication is the limiting factor which is needed to 
initiate a multidisciplinary approach for soil mapping.  

Chapter 2 of this thesis indicated a large potential of using RS and PS methods for 
DSM, yet, advances are deemed necessary to fully develop large-scale 
methodologies. Advances may be expected in developing more quantitative methods 
and enhanced geostatistical analysis using RS and PS data by making use of recent 
developments in DSM-related disciplines.  
 
2: Can major soil variability at regional scale be represented by a sparse remote 
sensing-based sampling approach? 
Budgetary constraints commonly limit the sample size of soil mapping efforts at 
larger scales. Furthermore, areas might not be accessible due to either the rough 
terrain or political reasons. Also, often there is limited soil legacy data available 
supporting the sampling strategy (de Gruijter et al., 2006). Collecting an exhaustive 
sample that honours a geometric criterion or represents the full variability requires 
extensive fieldwork and analysis, or may not be feasible at all. Considering the 
involved cost and time, current methods for data collection are not adequate 
(Grunwald, 2011). The consensus is to collect a sparse sample that captures the major 
soil variability while minimizing the acquisition efforts.  

RS data can serve as proxy for soil variability alternative to the required soil 
legacy data that supports the sampling strategy. The Soil-Landscape paradigm 
(Jenny, 1941) is the basic principle underlying the use of RS data. This paradigm 
indicates that the degree of sampled variability from exhaustive RS data is 
representative for the same degree of soil variability within the landscape. A 
sampling strategy aiming to sample the feature space of the RS data with minimal 
acquisition efforts is the most efficient way to collect data. Latin Hypercube 
Sampling (cLHS) allows optimizing such a sampling strategy (Minasny and 
McBratney, 2006).  
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It was found that the RS-based sampling strategy successfully represented major 
soil variability (Chapter 3). Apart from that, the cLHS sample did not express spatial 
correlation; constraining the LHS by a distance criterion favoured large spatial 
variability within short distances. The absence of spatial correlation in the sampled 
soil variability precludes the use of additional geostatistical analyses to spatially 
predict soil properties. Predicting soil properties using the cLHS sample is thus 
restricted to a modelled relation between the sample and exhaustive predictor 
variables. The RS data were deemed suitable predictors. This data provided the 
necessary spatial information because of the strong spatial correlation while the 
spectral information provided the variability of the environment (Chapter 3 and 6).  

The LHS approach is considered a time and cost efficient method for acquiring 
information on soil resources over extended areas. This information is crucial to the 
identification and monitoring of those resources (Chapter 1). If data availability and 
resources are scarce, this approach provides a small representative dataset with soil 
properties. These can be used for mapping soil properties using modelled relations 
between the sampled properties and RS data (Chapter 6).  
 
3: Which methods allow retrieval of mineralogy from complex mixtures using 
proximal sensing? 
PS has been recognized as potential data source for retrieval of mineralogy and other 
soil properties (Chapter 1). Various methods are available for estimating soil 
properties from PS data. Most of these methods provide qualitative soil information 
and are restricted to derive information of soil properties that have distinct spectral 
diagnostic features (Chapter 2). For these reasons, PS-based methods are needed for 
providing quantitative information on a wider set of soil properties. Soil mineralogy 
can be used for developing such methods (Clark and Roush, 1984).  

Estimating mineralogy using PS and a linear modelling approach is hampered by 
the strong influence of complex scattering within the mixture and overlapping 
absorption features (Chapter 4). It was demonstrated that a state-of-the-art linear 
spectral feature comparison method, the Material Identification and Characterization 
Algorithm (MICA) (Kokaly, 2011a), can be used to characterize the dominant 
mineralogy (Chapter 4). Mineral categories that can be characterized include the 
presence of mica, kaolinite and smectite either in a calcite rich or poor environment, 
among others. Moreover, this method appeared sufficiently detailed to map regional 
mineral variability (Chapter 6). Retrieval of refined information from natural 
samples, such as mineral abundances is more complex, since mineral absorption 
features may be less distinct or even absent. Estimating mineral abundances requires 
a method that accounts for the interaction between minerals within the intimate 
mixture. This can be done by addressing the interaction with a non-linear model.  

Quantifying mineral abundances of mixtures having more than two constituents 
can be estimated using PS (Chapter 5). Spectral deconvolution of SWIR spectra (2.1–
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2.4 µm) coupled with regression tree analysis allows simultaneous quantification of 
more than two minerals within a mixture. Accurate deconvolution of natural samples 
using Gaussian bands requires the use of Exponential Gaussian Optimization (EGO) 
(Pompilio et al., 2009) rather than the Modified Gaussian Model (MGM) (Sunshine 
and Pieters, 1993). It was found that the modelled asymmetry and saturation were 
key to deconvolve the reflectance, when using the simple representation of the 
complex scattering behaviour by a few Gaussian bands. Also, asymmetry of the EGO 
profiles shows to be an important predictor variable for the prediction of mineral 
content of field samples. Compared to MGM and the single scattering albedo model 
of Hapke (Hapke, 2002), the presented model is easier to parameterize and model 
accuracies for estimated mineral abundances from natural samples are higher. 

Based on the findings of Chapter 4 and 5, it can be concluded that more advanced 
unmixing algorithms do improve the estimation soil mineralogy. Firstly, a linear 
model within an expert-based decision framework allows characterizing dominant 
mineralogy. Secondly, EGO, in combination with regression trees, allows 
quantification of mineral abundances within complex mixtures. Spectral 
deconvolution has not been widely used to retrieve soil information using 
spectroscopy. Employing spectral deconvolution coupled with regression tree 
analysis does not require additional information compared to linear spectroscopic 
analysis methods. This approach advances existing PS methods and has the potential 
to quantify other soil properties, e.g. soil moisture (Whiting et al., 2004). As such, 
the soil science community was provided an improved inference method to derive 
and quantify soil properties. 
 
4: Can scale-dependent variability be extracted from remote sensing and do model 
predictions improve by using scaled remote sensing data that match the variability of the 
sample?  
Using a sparse sample for regional-scale DSM is a challenging task. Especially for 
soil prediction models that rely on the statistical relation between the sample and 
predictor variables. These models may be hampered in determining the relation of a 
sparse sample with predictor variables for properties with high spatial variability 
over short distances. The relation tends to weaken with increasing scale and extent of 
the study area, which results in lower prediction accuracies. This can be contributed 
to a lack of compatibility between the predictor variables and the sample. Model 
accuracies might be improved by using predictor variables that represent the same 
scale. 

Major mineral variability can be characterized using a sparse sample, 
spectroscopy and geostatistics. First, the RS-based predictor variables can be 
smoothed to improve the compatibility of the data with the sample that is 
representable for major variability at regional scale. This can be achieved by 
considering the medium and long-range spatial variability in the RS data (Goovearts, 
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1997). Smoothing the data to the corresponding ranges can be done using Fixed Rank 
Kriging (FRK) (Cressie and Johannesson, 2008). This method allows smoothing the 
massive RS datasets to the observed ranges and removes the short scale variability 
and measurement noise. The resulting RS data resemble more closely the spatial 
variability of soil and environmental properties at regional scale. Besides, FRK 
provides a full data coverage for a study area because missing data is interpolated. 
Next, with this scaled RS data, regression models can be made for predicting the 
major mineral variability. Here, the combined use of the medium and long-scaled 
data allows to model multi-scale soil-landscape relationships (Vasques et al., 2012). 
The original RS data was found to be unsuitable for developing regression models 
predicting calcite, mica, kaolinite and smectite (Chapter 6). On the other hand, the 
models using scaled RS data substantially increased the prediction accuracies. This is 
mainly contributed to the improved compatible of the data and the use of multi-scale 
soil-landscape relationships (Chapter 6). Following this approach, more accurate 
predictions and representative spatial patterns of major soil variability can be 
obtained.  

Alternatively to the DSM approach, imaging spectroscopy has been used to map 
soil mineralogy. Recent studies (van der Meer et al., 2012) demonstrated that, at the 
moment, RS data does not provide the high spectral resolution that is needed to 
quantitatively map soil mineralogy. The physical nature of minerals is too complex 
(Clark, 1999) to be modelled in a quantitative way using imaging spectroscopy alone. 
The use of a geostatistical approach in combination with a small representative 
sample substantially improves the feasibility to quantitatively map mineralogy.  

In the context of spatial modelling at regional scale, the aim was to model areas 
where high concentrations of specific soil properties occur, rather than quantifying 
soil properties at high resolution. This consensus resulted in improved model 
accuracies and thus higher quality of delivered soil information. In addition, this 
approach provides (soil) information over vast areas at a spatial and thematic 
resolution that corresponds to other fundamental (global) data sets such as those for 
weather, climate, land cover and geology (Hengl, 2009). Environmental models will 
improve with a proper integration of soil data, which can be achieved when the data 
have matching scales.  

In conclusion, scale-dependent variability in RS data can be extracted and does 
improve soil prediction models that rely on a sparse sample. This method has 
potential to model various natural resources at large spatial scales and thereby 
enhances the perspective of a global system for inventorying and monitoring the 
earth’s soil resources. 
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7.2 Reflection and outlook 
This research was motivated by the need to improve our knowledge about remote 
sensing (RS) and proximal sensing (PS) methods for digital soil mapping (DSM) at 
regional scale. Scientifically, this thesis contributed to the development of 
methodologies, which aim to optimally use RS and PS for DSM to facilitate soil 
mapping at regional scale. The main contributions of this thesis with respect to the 
latter are (I) the critical evaluation of recent research achievements and identification 
of knowledge gaps for large scale DSM using RS and PS data, (II) the development 
of a sparse RS based sampling approach to represent major soil variability at regional 
scale, (III) the evaluation and development of different state-of-the-art methods to 
retrieve soil mineral information from PS, (IV) the improvement of spatially explicit 
soil prediction models and (V) the integration of RS and PS methods with 
geostatistical and DSM methods. Following these five contributions, it can be 
concluded that: Improvements in regional-scale DSM result from the integrated use 
of RS and PS with geostatistical methods. In every step of the soil mapping process, 
spectroscopy can play a key role and can deliver data in a time and cost efficient 
manner. Although existing methods have demonstrated the value of spectral data in 
DSM, this thesis stressed that methods need the support of geostatistics and ground 
truth data in order to advance models for regional-scale DSM. This thesis improved 
the integration for large-scale DSM, despite the limited available soil legacy data and 
tight constraints on budget and time to obtain data for DSM. Actually, the constraints 
forced us to find sophisticated solutions and to combine the most recent advances 
made in PS, RS and geostatistics. Reflecting on the findings in this thesis, some 
issues have not been discussed yet. These are focussed on (I) quantification of soil 
mineralogy using PS and (II) mapping soil properties at regional scale using PS, RS 
and geostatistics. 

7.2.1 Quantification of soil mineralogy using proximal sensing 

This thesis has shown the feasibility to estimate up to four minerals from a soil 
mixture (Chapter 5). This is a substantial improvement compared to methods based 
on the MGM (Sunshine and Pieters, 1993), since these were limited to estimate two 
minerals within prepared mixtures. Methods that were based on Hapke’s (Hapke, 
1981) model, proved to be evenly successful in estimating mineral abundances, 
although their analysis on natural samples was less accurate. The strongest point of 
our method is the need of few input parameters to quantify up to four minerals, 
namely the measured reflectance and known mineral variability within the sampled 
area. Like with other methods, the weakest point of our approach is that training of 
the model requires laboratory spectral measurements of natural samples. Prerequisite 
is thus a small sample that is representative for the study area. For this purpose, a 
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RS-based sampling approach was developed (Chapter 3) where data can be collected 
in a cost and time efficient manner.  

The X-ray analysis was the most time and cost demanding analysis of the method. 
An alternative, unexplored option to obtain a set of present mineralogy is running 
MICA on high spectral resolution RS data. This set of minerals can be used to train 
the model for the quantification of mineral abundances from the PS data. In this 
thesis, the feasibility for mineral characterization was already demonstrated in 
Chapter 4 to 6. Future research using these methods will prove its efficiency in 
collecting soil information for large areas. 

Currently, the method presented in Chapter 5 allows quantifying mineral 
abundances up to four minerals while it is known that soils contain a high variety of 
minerals (Hochella, 2002). The value of knowing the main minerals, however, 
provides essential information about soils (Egli et al., 2003; Mavris et al., 2011). 
Overall, the natural samples used in this study consisted of two main minerals with 
an additional two minerals having minor abundances (secondary minerals), but the 
remaining minerals were subordinate in abundances. The quantification of the main 
minerals without knowledge of subordinate minerals provides information on e.g. 
soil formation or parent material. If this information would be limited to two 
minerals, without supporting secondary minerals, the information content may be too 
limited to draw conclusions. It remains a scientific challenge to quantify the full set 
of minerals using PS. Also, modelling of subordinate minerals is not solved, yet this 
is of importance for mining of rare earth minerals (Hochella, 2002).  

The soil spectroscopy community has not yet explored spectral deconvolution for 
assessing soil properties using PS other than mineralogy and soil moisture (Whiting 
et al., 2004). Various methods for estimating properties of the topsoil using PS were 
found to be sufficient accurate compared to chemical soil analysis. The remaining 
inaccuracies in estimated soil properties of the topsoil, such as soil organic matter, 
have often been contributed to other constituents in soil samples (Bartholomeus et 
al., 2008). This implies actually, that the inaccuracies are a consequence of 
overlapping absorption features, which were not accounted for by the employed 
inference methods. Although it has not yet been investigated, the prediction of 
various soil properties may be further improved by using the method presented in 
Chapter 5. 

7.2.2 Mapping soil properties at regional scale using PS, RS and geostatistics 

This thesis has shown the added value of advanced PS, RS and geostatistical methods 
to obtain soil information. At the same time, Chapter 2 listed various studies that 
were successful in mapping soil properties at regional scale using RS data only. One 
of the best examples includes the ASTER Geoscience product (Cudahy, 2012) and 
the mineral maps that were made for Australia (Lau et al., 2012). The maps presented 
in this thesis differ in some ways compared to these. The main differences are the 
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higher spatial resolution of the ASTER Geoscience products and the more qualitative 
nature of the mineral estimates. The higher spatial resolution is favoured by soil 
scientists. However, as was discussed in Chapter 6, a high spatial resolution does not 
necessarily improve the accuracy of predicted soil properties when modelled at 
regional scale and the added value of high-resolution data should be reconsidered for 
regional-scale models. 

One strong point of our method is the flexibility to model other soil properties 
because of the underlying basic principle, the Soil-Landscape paradigm (Jenny, 
1941). DSM uses this paradigm to develop empirical models that relate observations 
of various soil properties with environmental variables that describe the main soil 
forming factors (Chapter 1 and 2). Another strong point of our method is the ability 
to interpolate gaps in the spatial coverage of employed auxiliary data. Using RS in 
areas having a climate other than arid or semi-arid will always require interpolation 
of masked out areas either due to clouds, high vegetation cover or other non-climatic 
related features. Apart from that, many soil properties are difficult to quantify using 
RS data due to the spectral resolution and the position of the sensors’ bands. As 
mentioned in Chapter 1, modelling soil properties in a regional or global-scale 
context benefits more from quantification of soil properties, compared to qualitative 
soil information. Indeed, this thesis has shown the need to use a representative 
sample and laboratory measurements for PS analysis. Nevertheless, using this data in 
combination with RS and geostatistics allows to spatially explicit quantify soil 
properties at regional scale providing data at a resolution fitting that scale.  

A good example that could benefit from the presented methods in this thesis is 
global soil carbon (SOC) modelling (Minasny et al., 2013). Envisioning a method to 
achieve this, a combination of PS, RS and geostatistics is deemed necessary. 
Mapping of carbon pools is complex and mapping the spatial and temporal processes 
using RS-based ratios, such as used for the ASTER geoscience products, does not 
suffice. Key to global SOC mapping is quantifying both the slow and fast carbon 
pools (Knorr et al., 2005). The slow carbon pools are below ground and are difficult 
to model using solely RS data, if not impossible. The slow and fast carbon pools 
could be quantified based on legacy, in-situ, and observational (RS) data. That is, the 
below ground carbon information requires on-site data-collection where existing soil 
legacy data may be exploited for sampling or spatial modelling at a later stage. The 
collected data may be analysed using PS, chemical analysis or a combination of the 
two techniques. Spatially explicit SOC maps can be derived using this set of 
information, RS data and derived products as exhaustive predictor variables and 
spatial and temporal statistics. The methods presented in this thesis can contribute to 
global mapping of SOC pools (Croft et al., 2012) with respect to soil data collection 
and spatial modelling of SOC. Nevertheless, more research is needed on the temporal 
component (Croft et al., 2012).  
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7.2.3 Modelling global environmental changes 

The recognition that RS, PS and geostatistics are key to improvement of regional-
scale modelling of the environment increases the feasibility to provide soil and other 
environmental information at large scales. Delivering up-to-date accurate spatial soil 
information is a major advancement with respect to the information that is currently 
being used in environmental-change models. These models need this information of 
the pedosphere for model parameterization and calibration, in addition to the 
information of the other Earth’s spheres. Also, at the moment they do not incorporate 
supporting soil data for the prediction of future changes in e.g. vegetation shifts or 
changes in soil resources (Grunwald, 2011; Varella et al., 2010). This introduces 
large uncertainties for modelling e.g. future food security.  

Two major issues are at the core of this problem. First, there is a lack of available 
soil information at regional and global scale (Chapter 1). Second, modelling future 
changes requires an understanding of changes in the past. At the moment, analysis 
methods have not been fully developed to advance this understanding with respect to 
changes in soil resources. The soil science community is aware of these shortcomings 
and current efforts are on data harmonization (Panagos et al., 2011; Sulaeman et al., 
2012) while research efforts are initiated for temporal modelling of soil properties 
(Banwart, 2011). Despite these initiatives, it is expected that the existing soil data 
have insufficient coverage and thematic variability for regional and global models. 
The time and cost associated with collecting sufficient data are comprehensive. 
Therefore, it is important to develop new methods, for the benefit of various research 
disciplines focussing on modelling environmental changes, climate change 
adaptation, food security and soil services. This thesis contributed to these essential 
developments. 

7.2.4 Outlook 

As previously discussed, an interesting and contemporary research topic, is global 
soil carbon mapping. Many papers have described the importance of this research; 
soil carbon is one of the most important soil services and is needed in climate change 
adaptation and food security research (Bond-Lamberty and Thomson, 2010; Lal, 
2004). However, for future research in soil science, it is more important to develop 
methods that allow modelling a wider set of soil properties. Regional and global-
scale environmental models do have need for various soil parameters and therefore 
methods are required to be flexible in delivering soil information. Considering the 
need and the content of such soil information, spatiotemporal modelling is the future 
of soil mapping (Heuvelink and Webster, 2001; Katzfuss and Cressie, 2012). 
However, to actually develop a spatiotemporal model, many advances have to be 
made, especially in the temporal domain. Again, RS and PS with geostatistics will 
play the key role. Spatiotemporal modelling requires the presence of a monitoring 
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system (Jonckheere, 2012); the integration of different sensor and measurement 
techniques would allow for a robust monitoring system. This is an efficient 
alternative, because spectral measurements are less expensive to collect and analyse 
compared to traditional techniques (Croft et al., 2012). Integration of laboratory, 
field and airborne or satellite platform sensors will allow to monitor changes in soil, 
vegetation and their feedbacks (Milcu et al., 2012) over various spatial and temporal 
scales. Such data, in combination with soil profile data, is prerequisite for accurate 
spatiotemporal modelling of soil resources. Other priorities that deserve attention in 
future research are listed below. 

Spectroscopy for quantifying soil properties 
RS and PS methods bear potential to be further exploited. Major contributions 
include the development of more quantitative approaches, such as proposed in this 
thesis, and the integration of various RS and PS sensors. Remote sensors which were 
not included in this thesis form a valuable input as well. These include, gamma-ray 
spectroscopy (Wilford et al., 1997), radar (Merlin et al., 2013) or electric 
conductivity (Lambot et al., 2004). These techniques provide subsurface information 
and are less sensitive to vegetation cover, while imaging spectroscopy is limited to 
the surface. These remote sensors do not yet deliver data on the global scale but it 
may contribute substantially to a system for inventorying and monitoring the earth’s 
soil resources over various spatial and temporal scales. 

Geostatistics for large datasets 
Another remaining challenge for large-scale DSM, is the use of voluminous datasets 
(Katzfuss, 2011; Katzfuss, 2013). Up to today, little research has been done by the 
DSM community to advance methods with geostatistical approaches that can deal 
with large datasets. Accurate spatial and spatiotemporal modelling approaches that 
allow transferability to other areas rely on geostatistical approaches and exhaustive 
datasets. Chapter 6 suggested some alternatives that enhance the perspectives of 
large-scale DSM.  
 
Finally, in our quest to develop such methods, we need to combine legacy, in-situ, 
and observational data and modelling to allow better prediction of soil properties. 
This will enable us in the near future to deliver more accurate and comprehensive 
information about soils, soil resources and ecosystem services provided by soils at 
regional and, ultimately, global scale. 
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Summary 

Global environmental changes have resulted in changes in key ecosystem services 
that soils provide. It is necessary to have up to date soil information on regional and 
global scales to ensure that these services continue to be provided. As a result, 
Digital Soil Mapping (DSM) research priorities are among others, advancing 
methods for data collection and analyses tailored towards large-scale mapping of soil 
properties. Scientifically, this thesis contributed to the development of 
methodologies, which aim to optimally use remote and proximal sensing (RS and PS) 
for DSM to facilitate regional soil mapping. The main contributions of this work with 
respect to the latter are (I) the critical evaluation of recent research achievements and 
identification of knowledge gaps for large-scale DSM using RS and PS data, (II) the 
development of a sparse RS-based sampling approach to represent major soil 
variability at regional scale, (III) the evaluation and development of different state-
of-the-art methods to retrieve soil mineral information from PS, (IV) the 
improvement of spatially explicit soil prediction models and (V) the integration of 
RS and PS methods with geostatistical and DSM methods.  

A review on existing literature about the use of RS and PS for soil and terrain 
mapping was presented in Chapter 2. Recent work indicated the large potential of 
using RS and PS methods for DSM. However, for large-scale mapping, current 
methods will need to be extended beyond the plot. Improvements may be expected in 
the fields of developing more quantitative methods, enhanced geostatistical analysis 
and improved transferability to other areas. From these findings, three major research 
interests were selected: (I) soil sampling strategies, (II) retrieval of soil information 
from PS and (III) spatially continuous mapping of soil properties at larger scales 
using RS. 

Budgetary constraints, limited time and available soil legacy data restricted the 
soil data acquisition, presented in Chapter 3. A 15.000 km2 area located in Northern 
Morocco served as test case. Here, a sample was collected using constrained Latin 
Hypercube Sampling (cLHS) of RS and elevation data. The RS data served as proxy 
for soil variability, as alternative for the required soil legacy data supporting the 
sampling strategy. The sampling aim was to optimally sample the variability in the 
RS data while minimizing the acquisition efforts. This sample resulted in a dataset 
representing major soil variability. The cLHS sample failed to express spatial 
correlation; constraining the LHS by a distance criterion favoured large spatial 
variability over short distances. The absence of spatial correlation in the sampled soil 
variability precludes the use of additional geostatistical analyses to spatially predict 
soil properties. Predicting soil properties using the cLHS sample is thus restricted to 
a modelled statistical relation between the sample and exhaustive predictor variables. 
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For this, the RS data provided the necessary spatial information because of the strong 
spatial correlation while the spectral information provided the variability of the 
environment (Chapter 3 and 6). Concluding, the RS-based cLHS approach is 
considered a time and cost efficient method for acquiring information on soil 
resources over extended areas. 

This sample was further used for developing methods to derive soil mineral 
information from PS, and to characterize regional soil mineralogy using RS. In 
Chapter 4, the influences of complex scattering within the mixture and overlapping 
absorption features were investigated. This was done by comparing the success of 
PRISM’s MICA in determining mineralogy of natural samples and modelled spectra. 
The modelled spectra were developed by a linearly forward model of reflectance 
spectra, using the fraction of known constituents within the sample. The modelled 
spectra accounted for the co-occurrence of absorption features but eluded the 
complex interaction between the components. It was found that more minerals could 
be determined with higher accuracy using modelled reflectance. The absorption 
features in the natural samples were less distinct or even absent, which hampered the 
classification routine. Nevertheless, grouping the individual minerals into mineral 
categories significantly improved the classification accuracy. These mineral 
categories are particularly useful for regional scale studies, as key soil property for 
parent material characterization and soil formation. Characterizing regional soil 
mineralogy by mineral categories was further described in Chapter 6. Retrieval of 
refined information from natural samples, such as mineral abundances, is more 
complex; estimating abundances requires a method that accounts for the interaction 
between minerals within the intimate mixture. This can be done by addressing the 
interaction with a non-linear model (Chapter 5).  

Chapter 5 showed that mineral abundances in complex mixtures could be 
estimated using absorption features in the 2.1–2.4 µm wavelength region. First, the 
absorption behaviour of mineral mixtures was parameterized by exponential 
Gaussian optimization (EGO). Next, mineral abundances were successfully predicted 
by regression tree analysis, using these parameters as inputs. Estimating mineral 
abundances using prepared mixes of calcite, kaolinite, montmorillonite and 
dioctahedral mica or field samples proved the validity of the proposed method. 
Estimating mineral abundances of field samples showed the necessity to deconvolve 
spectra by EGO. Due to the nature of the field samples, the simple representation of 
the complex scattering behaviour by a few Gaussian bands required the parameters 
asymmetry and saturation to accurately deconvolve the spectra. Also, asymmetry of 
the EGO profiles showed to be an important parameter for estimating the abundances 
of the field samples. The robustness of the method in handling the omission of 
minerals during the training phase was tested by replacing part of the quartz with 
chlorite. It was found that the accuracy of the predicted mineral content was hardly 
affected. Concluding, the proposed method allowed for estimating more than two 
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minerals within a mixture. This approach advances existing PS methods and has the 
potential to quantify a wider set of soil properties. With this method the soil science 
community was provided an improved inference method to derive and quantify soil 
properties 

The final challenge of this thesis was to spatially explicit model regional soil 
mineralogy using the sparse sample from Chapter 3. Prediction models have 
especially difficulties relating predictor variables to sampled properties having high 
spatial correlation. Chapter 6 presented a methodology that improved prediction 
models by using scale-dependent spatial variability observed in RS data. Mineral 
predictions were made using the abundances from X-ray diffraction analysis and 
mineral categories determined by PRISM. The models indicated that using the 
original RS data resulted in lower model performance than those models using scaled 
RS data. Key to the improved predictions was representing the variability of the RS 
data at the same scale as the sampled soil variability. This was realized by 
considering the medium and long-range spatial variability in the RS data. Using 
Fixed Rank Kriging allowed smoothing the massive RS datasets to these ranges. The 
resulting images resembled more closely the regional spatial variability of soil and 
environmental properties. Further improvements resulted from using multi-scale soil-
landscape relationships to predict mineralogy. The maps of predicted mineralogy 
showed agreement between the mineral categories and abundances. Using a 
geostatistical approach in combination with a small sample, substantially improves 
the feasibility to quantitatively map regional mineralogy. Moreover, the 
spectroscopic method appeared sufficiently detailed to map major mineral variability. 
Finally, this approach has the potential for modelling various natural resources and 
thereby enhances the perspective of a global system for inventorying and monitoring 
the earth’s soil resources. 

With this thesis it is demonstrated that RS and PS methods are an important but 
also an essential source for regional-scale DSM. Following the main findings from 
this thesis, it can be concluded that: Improvements in regional-scale DSM result from 
the integrated use of RS and PS with geostatistical methods. In every step of the soil 
mapping process, spectroscopy can play a key role and can deliver data in a time and 
cost efficient manner. Nevertheless, there are issues that need to be resolved in the 
near future. Research priorities involve the development of operational tools to 
quantify soil properties, sensor integration, spatiotemporal modelling and the use of 
geostatistical methods that allow working with massive RS datasets. This will allow 
us in the near future to deliver more accurate and comprehensive information about 
soils, soil resources and ecosystem services provided by soils at regional and, 
ultimately, global scale. 
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Samenvatting 

Mondiale veranderingen in het functioneren van het systeem aarde en het milieu 
hebben veranderingen gebracht in de ecosysteemdiensten die bodems leveren. Om te 
garanderen dat deze diensten ook in de toekomst geleverd worden, is inzicht nodig in 
de huidige status van bodems en hun ecosysteemdiensten. Onderzoekslijnen, binnen 
de wetenschappelijke bodemgemeenschap, richten zich daarom op het ontwikkelen 
van methoden om gegevens te verzamelen en te analyseren die specifiek gericht zijn 
op regionale en globale studies. De wetenschappelijke bijdrage van dit werk omvat 
de ontwikkeling van methoden die optimaal gebruik maken van aardobservatie (AO) 
en spectroscopie voor grootschalige, digitale bodemkartering. De belangrijkste 
resultaten van dit werk richten zich op (I) het kritisch evalueren van recente 
onderzoeken en het identificeren van kennishiaten op het gebied van grootschalige 
bodemkartering die gebruik maken van AO en spectroscopie, (II) het ontwikkelen 
van een bemonsteringsmethode die enkel gebruik maakt van AO, (III) de evaluatie en 
ontwikkeling van geavanceerde methoden voor het bepalen van bodemmineralogie 
met spectroscopie, (IV) het verbeteren van regionale ruimtelijke modellen voor het 
voorspellen van bodemeigenschappen en (V) de integratie van AO en spectroscopie 
met geostatistische en digitale karteringsmethoden. 

Hoofdstuk 2 is een literatuurstudie naar het gebruik van AO en spectroscopie voor 
bodem- en terreinkartering. Recente studies wezen erop dat AO en spectroscopie veel 
potentie hebben om positief bij te dragen aan het verbeteren van bestaande methodes 
voor grootschalige kartering. Toch moeten de huidige methoden nog verder 
ontwikkeld worden om op grotere schaal toegepast te kunnen worden. Verbeteringen 
kunnen verwacht worden op het gebied van de ontwikkeling van kwantitatieve 
methoden, verbeterde geostatistische analyses en toepasbaarheid van methoden naar 
andere gebieden. Gebaseerd op deze bevinden zijn drie onderzoekslijnen vastgesteld: 
(I) strategieën voor bodembemonstering, (II) bepalen van bodemeigenschappen met 
gebruik van spectroscopie en (III) ruimtelijk karteren van bodemeigenschappen op 
grote schaal. 

Budgettaire beperkingen, gelimiteerde tijd en beschikbare bodemgegevens waren 
bepalend voor de data acquisitie in het veld (Hoofdstuk 3). Een gebied ter grote van 
15.000 km2 in het noorden van Marokko diende als studiegebied. In dit gebied was 
een monster verzameld gebaseerd op constrained Latin Hypercube Sampling (cLHS) 
van AO en hoogtegegevens. De AO gegevens werden als alternatief gebruikt voor de 
bodemgegevens die nodig zijn ter ondersteuning van de methode. Het 
bemonsteringsschema richtte zich op het volledig bemonsteren van de variabiliteit in 
deze data terwijl, tegelijkertijd, de kosten voor acquisitie beperkt werden. Dit 
monster bleek representatief voor de algemene bodemvariabiliteit in het gebied. Het 
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cLHS-monster was niet in staat om de ruimtelijke correlatie van 
bodemeigenschappen te beschrijven. Dit was te verwachten aangezien de LHS 
gelimiteerd was met een criterium dat de voorkeur had om veel ruimtelijke 
variabiliteit te bemonsteren over korte afstanden. Dit leidde ertoe dat het monster 
niet geschikt was om bodem mineralogie te voorspellen met geostatistische 
methoden. Als alternatief moest een empirische methode gebruikt worden die het 
monster relateert aan de AO gegevens om zo mineralogie te voorspellen. Hiervoor 
zijn de AO gegevens uitermate geschikt, mede omdat deze sterke ruimtelijke 
correlatie vertoond en spectraal representatief zijn voor de bodem variabiliteit 
(Hoofdstuk 3 en 6). De cLHS, gebruikmakende van AO gegevens, word beschouwd 
als een tijd- en kosteneffectieve bemonsteringsmethode om bodemgegevens in te 
winnen voor grote gebieden.  

In Hoofdstuk 4, werden de invloed van complexe spectrale interacties van en 
tussen mineralen op het bepalen van mineralogie onderzocht. Dit was gerealiseerd 
door mineralogie te bepalen met PRISM’s MICA met de originele spectra en lineair 
gemodelleerde spectra van de minerale fracties aanwezig in het monster. De 
gemodelleerde spectra bevatten de specifieke minerale absorptie kenmerken welke 
voorkomen op dezelfde golflengtes maar de complexe spectrale interactie tussen de 
mineralen werden zo uitgesloten. Voor de gemodelleerde spectra bleek dat meerdere 
mineralen bepaald konden worden met een hogere nauwkeurigheid. In de originele 
spectra waren de specifieke minerale absorptie kenmerken minder duidelijk te 
onderscheiden of zelfs afwezig. Hierdoor is MICA minder goed in staat om 
mineralen te classificeren. Het samenvoegen van individuele mineralen in 
categorieën resulteerde in een accuratere classificatie. Deze categorieën zijn 
bijzonder geschikt voor regionale studies en kunnen dienen als belangrijke 
bodemeigenschap om moedermateriaal of bodemvorming te karakteriseren. Het 
karteren van deze minerale categorieën is verder beschreven in Hoofdstuk 6. Voor 
het bepalen van gedetailleerdere informatie zijn methoden nodig die zich richten op 
de wisselwerking tussen aanwezige mineralen (Hoofdstuk 5).  

Hoofdstuk 5 heeft laten zien dat hoeveelheden aan mineralen in samengestelde 
mengsels geschat kunnen worden met behulp van absorptiekenmerken die voorkomen 
in de golflengtes tussen 2.1-2.4 µm. De karakteristieke absorptiekenmerken waren 
eerst geparameteriseerd met behulp van exponentiële Gaussische optimalisatie 
(EGO). De mineraalhoeveelheden werden geschat door middel van regressiebomen 
en de resulterende EGO parameters. Het schatten van mineraalhoeveelheden was 
getest op samengestelde monsters die calciet, kaoliniet, dioctahedral mica en 
montmorillonite bevatten en natuurlijke monsters met soortgelijke samenstelling. 
Deze experimenten toonden aan dat de voorgestelde methode goed in staat is om 
hoeveelheden te schatten. Ook bleek de noodzaak om EGO te gebruiken; het 
nauwkeurig modelleren van de complexe spectrale interactie in natuurlijke monsters 
met enkele Gaussische modellen vereiste het gebruik van de parameters asymmetrie 
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en verzadiging van het absorptiekenmerk. Daarnaast had asymmetrie een sterke 
voorspellende waarde om mineraalhoeveelheden in complexe mengsels te schatten. 
In een derde experiment werd de robuustheid van het model getest door een deel van 
de quartz in de monsters te vervangen met chloriet. De schatting van hoeveelheden 
bleek hier nauwelijks door beïnvloed. Tot slot, de methode kan hoeveelheden van 
meer dan 2 mineralen in een bodemmonster schatten en heeft de potentie om 
verschillende bodemeigenschappen te kwantificeren; hiermee heeft de bodemkundige 
gemeenschap een verbeterde methode voor het verkrijgen van kwantitatieve 
bodeminformatie met behulp van spectroscopie.  

De laatste uitdaging in dit proefschrift was het karakteriseren van regionale 
mineralogie gebruikmakende van het marginale monster. Regionale modellen zijn 
minder goed in staat om de relatie te leggen tussen voorspellende variabelen en een 
bodemeigenschap welke grote ruimtelijke variabiliteit heeft. Hoofdstuk 6 beschreef 
een methode om modellen te verbeteren door de schaal-afhankelijke ruimtelijke 
variabiliteit die aanwezig is in AO gegevens te gebruiken. Fixed Rank Kriging 
maakte het mogelijk om de middellange en lange schaal te modelleren ondanks de 
enorme omvang van de dataset. Het resultaat was een verbeterde weergave van de 
regionale ruimtelijke variabiliteit van zowel bodem- als omgevingsfactoren. De 
originele AO data bleek ongeschikt om hoeveelheden te voorspellen en minder 
accuraat voor de klassen. Verdere verbeteringen waren behaald door bestaande 
bodem-landschapsrelaties op verschillende schaalniveaus te gebruiken. De kaarten 
van voorspelde mineraalklassen en -hoeveelheden voor het studiegebied in Noord 
Marokko, hadden grote overeenkomsten. MICA was in staat categorieën te 
voorspellen van mica, kaoliniet en smectiet, in een kalkrijk of –arm milieu. Het 
gebruik van een geostatistische methode in combinatie met een klein maar 
representatief monster verbetert de kwantificatie van regionale mineralogie. Tot slot, 
deze methode heeft de potentie om meerdere natuurlijke hulpbronnen te modelleren. 
Hiermee vergroten we het perspectief voor een mondiaal systeem voor het 
inventariseren en monitoren van bodems en andere natuurlijke hulpbronnen. 

Dit proefschrift toont aan dat AO en spectroscopie een belangrijke bron zijn voor 
regionale bodemkartering. Op basis van deze thesis kan geconcludeerd worden dat: 
Regionale bodemkartering verbeterd door geïntegreerd gebruik te maken van 
spectroscopie en aardobservatie met geostatistische methoden. In elke stap van 
bodemkartering kan spectroscopie een sleutelrol spelen en efficiënt gegevens 
leveren. Echter, duidelijk is dat er problemen moeten worden opgelost in de nabije 
toekomst. Onderzoeksprioriteiten moeten zich richten op het ontwikkelen van (I) 
operationele methoden voor kwantitatieve bepalingen van bodemeigenschappen, (II) 
de integratie van sensoren, (III) ruimtelijk-temporeel modelleren en (IV) het gebruik 
van geschikte geostatistische methoden voor omvangrijke AO data. Deze 
ontwikkelingen zullen het mogelijk maken om, in de nabije toekomst, informatie te 
leveren over bodems en de geleverde ecosysteemdiensten. 
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