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An end-tethered polymer chain compressed between two pistons undergoes an abrupt transition
from a confined coil state to an inhomogeneous flowerlike conformation partially escaped from the
gap. This phase transition is first order in the thermodynamic limit of infinitely long chains. A
rigorous analytical theory is presented for a Gaussian chain in two ensembles: (a) the H-ensemble,
in which the distance H between the pistons plays the role of the independent control parameter, and
(b) the conjugate f-ensemble, in which the external compression force f is the independent
parameter. Details about the metastable chain configurations are analyzed by introducing the Landau
free energy as a function of the chain stretching order parameter. The binodal and spinodal lines, as
well as the barrier heights between the stable and metastable states in the free energy landscape, are
presented in both ensembles. In the loop region for the average force with dependence on the
distance H (i.e., in the H-ensemble) a negative compressibility exists, whereas in the f-ensemble the
average distance as a function of the force is strictly monotonic. The average fraction of imprisoned
segments and the lateral force, taken as functions of the distance H or the average H, respectively,
have different behaviors in the two ensembles. These results demonstrate a clear counterexample of
a main principle of statistical mechanics, stating that all ensembles are equivalent in the
thermodynamic limit. The authors show that the negative compressibility in the escape transition is
a purely equilibrium result and analyze in detail the origin of the nonequivalence of the ensembles.
It is argued that it should be possible to employ the escape transition and its anomalous behavior in
macroscopically homogeneous, but microscopically inhomogeneous, materials. © 2007 American

Institute of Physics. [DOI: 10.1063/1.2406075]

INTRODUCTION

When an isotropic pressure is applied to some material,
it is expected that it reduces the material dimensions. This
behavior corresponds to a positive compressibility. Although
this response is found for simple systems, such as a gas,
some crystalline materials exhibit a negative compressibility
in one or more dimensions.' Also in soft-condensed matter
this behavior may be found, e.g., the bilayer membrane is
known to expand its thickness upon an increase of the
pressure.2 Materials with a negative linear (or surface) com-
pressibility may have interesting applications and therefore
this effect enjoys considerable interest."** It is believed that
a specific set of conditions should be met before it is possible
to find this unexpected behavior: confinement, dilatation, and
spatial anisotropy.3 In this paper we consider a system which
meets these requirements and report on the possibility that
there exists a sudden and pronounced negative compressibil-
ity, in particular, when the system suffers a phase transition.
Our system features a polymer chain which, due to the many
segments along the chain, can be seen as a thermodynamic
system in itself. This polymer chain is grafted with one of its
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ends onto a surface and compressed by a piston. Upon com-
pression it suffers an escape transition, wherein its confor-
mations change abruptly from a confined coil to a partially
escaped flower. We study this transition in two conjugate
ensembles, namely, the constant confinement and the con-
stant force ensembles.

According to statistical mechanics there is an equiva-
lence of different statistical ensembles in the appropriate
thermodynamic limit, including the special regions at or near
a phase transition in the phase diagram.5 Another general
theorem of statistical mechanics states that the equilibrium
pressure is a monotonic nonincreasing function of the vol-
ume, which means that the compressibility cannot be
negative.6 Note that the above mentioned systems with nega-
tive linear (or surface) compressibility should have a positive
compressibility in the other dimension(s) such that overall
the system obeys the compressibility theorem. We show in
this paper, however, that the escape transition does not obey
the compressibility theorem and gives different results for
the two complementary ensembles. As we solve the partition
function exactly, it is possible to elaborate on the origin of
these anomalities.
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FIG. 1. The simplest model describing the situation in the atomic force
microscopy: a grafted polymer chain compressed between two pistons. The
radius of the piston L, the distance between the two surfaces H, and the
compression force f are indicated. On the left, the chain is only weakly
compressed. On the right, the chain has a flower conformation.

One may argue that our system (a single chain in a con-
fined environment) is exotic. However, one of the emerging
research areas in soft-condensed matter physics is the ma-
nipulation of individual polymer chains by atomic force mi-
croscopy, magnetic levitation force microscopy, photonic
force microscopy, and by using optical tweezers and the sur-
face force apparatus.7_12 Using these methods it is possible to
measure the elasticity of materials at the molecular level.
This exciting possibility gives an impulse to the new and
expanding field of nanomechanics. Thus far, most of the
work has been conducted on biopolymers such as poly-
merase, Xantan, proteoglycans, and others."* 1 Fascinating
examples of the single-chain manipulations are the twisting
of DNA molecules by applying an external torque, and the
separation of double stranded DNA into two single strands.’
Similar research for synthetic polymers is just
beginning.lg_21

We can thus envision a force spectroscopy experiment,
wherein a single polymer chain, with contour length of
~100-200 nm, is tethered to an inert, nonadsorbing, surface
and compressed by the probe tip with a radius of curvature of
~20-50 nm. In this example it is relevant that the radius of
curvature is larger than the radius of gyration of the isolated
chain R,~10—15 nm. As we will see, this is a prerequisite to
find a well-defined conformational transition upon confine-
ment. A theoretical description capturing the essential fea-
tures of this setup may start with a model wherein an end-
fixed polymer chain, with contour length Na, is compressed
between two cylindrical pistons of radius L, see Fig. 1.

If the parameters satisfy the conditions Na>L>R,, a
phenomenon that was named the escape transition can occur
upon progressive squeezing of the polymer between the pis-
tons. At weak deformations the chain is compressed uni-
formly into a relatively thick pancake (left side of Fig. 1).
The resistance force increases monotonously as the distance
H between two pistons decreases. Beyond a certain critical
compression, the chain conformation changes abruptly. One
part of the chain forms a stem stretching from the anchoring
point to the piston edge, whereas the remainder of the seg-
ments forms a coiled crown outside the pistons, thus escap-
ing from underneath the piston (right side of Fig. 1). The
resistance force decreases abruptly, indicating a first-order
transition. The escape transition was studied rather exten-
sively both by analyticalzz’26 and numerical”’~® methods.

A Monte Carlo simulation by Milchev et al** of the
escape transition for an off-lattice bead-spring model demon-
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strated that the density profile at the transition point is, in-
deed, bimodal as expected for a first-order transition. The
force-deformation curve was found to be nonmonotonic, re-
sembling the van der Waals loop and implying a negative
compressibility within a certain deformation range. A general
theorem of statistical mechanics, however, states that the
equilibrium pressure has to be a monotonic nonincreasing
function of the volume and the compressibility cannot be
negative.5’6 A loop in the pressure-volume curve (corre-
sponding to a concave region in the thermodynamic poten-
tial) indicates that the homogeneous state is unstable and the
true equilibrium is achieved as a phase-segregated state. The
properties of the pure phases and their relative volumes are
obtained by the well-known Maxwell construction for the
pressure-volume isotherm or by the double tangent construc-
tion for the thermodynamic potential.5 The pressure in the
phase-segregated state is independent of the volume, thus
eliminating the loop and the region of negative compressibil-
ity.

Following this general recipe Milchev et al** “cor-
rected” their force-deformation curves by applying a Max-
well construction. As a result, they had to conclude that a
relatively wide transition region should be present instead of
a well-defined transition point, in contradiction with their
own data. Sevick and Williams™ pointed out that the con-
struction must be misleading since the loop in the force-
deformation curves was obtained also from exact numerical
calculations®" of the partition function for short chains.

A rigorous analytical theory for the equilibrium and ki-
netic aspects of the escape transition for a Gaussian chain
was constructed recently in Ref. 25. The effects of metasta-
bility were analyzed by introducing the Landau free energy
as a function a suitable order parameter. It was demonstrated
that the loop in the force-deformation curves corresponds to
the true equilibrium in the system and is not related the meta-
stable states. Consequently, no spurious Maxwell construc-
tion is needed.

The escape transition was mostly analyzed in the en-
semble where the distance H between two pistons serves as
an independent parameter (analogous to the canonical NVT
ensemble). A scaling approach, describing the escape transi-
tion in f-ensemble, where the independent parameter is the
conjugate force, was developed recently32 and also numerical
calculations for short polymer chain are available.” In con-
trast to the H-ensemble, there is no negative compressibility
loop; instead, the force-deformation curve is monotonic, with
a flat portion, resembling the normal gas-liquid coexistence.
Although this seems to be in line with the standard thermo-
dynamic expectations, there appears a new problem: the two
conjugate ensembles produce different results. This is in con-
flict with yet another general theorem of statistical mechan-
ics stating the equivalence of various statistical ensembles
(including the phase coexistence regions in the phase dia-
gram) in the appropriate thermodynamic limit.”

In previous work™?® we have mainly concentrated on
results for the escape transition in the H-ensemble. In this
paper we aim to bring together results for the escape transi-
tion for Gaussian chains in both the H- and f-ensembles. We
prove the qualitative differences in the behavior of thermo-
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dynamic properties of the system in the two ensembles and
we discuss the origin of this nonequivalence. Some prelimi-
nary discussion on this topic can be found elsewhere.”® We
visualize the metastable and the coexisting states in the
escape transition and analyze the origin of the negative com-
pressibility region as obtained from the equilibrium canoni-
cal partition function.

ESCAPE TRANSITION IN THE H-ENSEMBLE
General equations

We consider an ideal Gaussian chain consisting of N
segments, attached on one end at the center between two
pistons of radius L (cf. Fig. 1). Clearly only the radial direc-
tion is of interest here. A short-range repulsive force exists
between the chain segments and the surfaces of the pistons.
It was shown” " that the confinement effect of the pistons is
equivalent to an effective potential per segment in kg7 units
u:é(ﬂ'a/ H)?. The nature of this effective potential is purely
entropic (u is the loss of entropy per polymer segment in
slit).

In the continuum limit, the statistical weight G(N,r) of a
chain with the Nth segment at radial distance r from the
symmetry axis satisfies the Schrodinger-type equation in cy-
lindrical coordinates:

2 2
ﬁ%G(N, r) - “—%G(N, ") - %%G(N,r) + UGN, 1) =0,

6 d
(1)

where the potential field takes the simple form of U(r)=u for
r<L and zero otherwise. The appropriate initial condition
G(0,0)=5(0) describes the fact that one end of the chain is
attached at r=0. It is convenient to present G(N,r) as a sum
of two terms: G, for the imprisoned coil conformations
(that is, the part of the chain that is within the gap between
the two surfaces) and Gy, for the partially escaped flower
conformations. For the imprisoned coil, the solution of
Eq. (1) can be found using the standard reflection method.
The result can be written as

3r 32
Geoil(N,r) = ; exp| — NG — Nu

- deot2)

Here it was assumed that the “reflected” part of the solution
is, in all cases, a very small correction since L>R,, and
therefore, the cylindrical boundary can be treated as planar.

The Green’s function of the stem having n units is
known.”® The result for the case of cylindrical geometry of
the space between two pistons has the form

G () 312 ( 3L ) )
stem(,L) = — exp| —un — .

. na® P 2na*

The partition function of an (N—n)-segment crown end fixed
at the point where the potential u drops to zero, was calcu-
lated exactly in Ref. 36 and is given by
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chown(N_ n»u)

u(N —n) u(N —-n)
=exp| - 5 I 5

~1-u(N-n)/2 foru(N-n)<1
~ (mu(N-n))""? foru(N-n)>1, (4)

where I is the modified Bessel’s function.

Order parameter and Landau function

It was suggested in Refs. 23 and 25 that the parameter
that characterizes the chain stretching can serve as the order
parameter of the escape transition. For the imprisoned coil
states, this parameter refers to the chain as a whole, s
=r/Na, and the Landau free energy is given by ®_;(s)
=—N""1n G.o;i(N,r) with r=sNa. Again, the thermal energy
kgT is omitted. For the partially escaped states, only the stem
is stretched and the order parameter is defined as s=L/na.
The stem is the subchain composed of n imprisoned seg-
ments, starting from the fixed chain end and ending with the
first segment that reaches the edge of the pistons. The two
definitions of the order parameter match smoothly at r=L
when n=N. The other branch of the Landau function, which
describes the partially escaped flower states, is written as
Dp(s)==N""In(Gyern(n,L) Qeown(N—1,u))  with n=L/as.
Expressing the restricted partition functions ®.;(s) and
®;(s) in terms of the order parameter s and neglecting the
terms of order N—1, one arrives at the following simple ana-
Iytical expressions for the two branches of the Landau free

energy:
3, 1 (77(1)2 L
—sc+ = — fors < —
2 6\ H Na
s H) ~ 3L L [ ma\*1 )
—s+—<—) — fors=—.
2Na 6Na\ H ) s Na

The minima of the Landau function define the average value
of the order parameter in the stable or metastable states. The
binodal condition is found when the two minima of the Lan-
dau function are of equal depth. Then, the two states coexist
and the radial density and the free end distribution have a
bimodal character.”

The compressed coil minimum is located at s.,;=0 and
its depth is given by ®(s.y))=N"'(7R,/H)*. The minimum,
corresponding to the escaped flower state, is found at
Sesc=7a/3H, and this minimum is ®(s.,.)=7L/NH. This de-
fines the equilibrium transition line in the H-L plane,

7R>  wNa*
Hy=—%="" (6)
L 6L

If the confinement width H is slightly above H,, the escaped
flower state becomes metastable. With further increase in H,
the height of the barrier separating the metastable minimum
from the global one decreases and, eventually, metastability
is lost. This happens in the spinodal point, when the position
of the escaped state minimum, s, coincides with the posi-
tion of the barrier so=L/Na. Thus, the spinodal condition is
given by
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. 2mwR*(  R\' 2mR: N
H=—3(1+—> ~—*= . (7)
L L L 3L

that is, metastability is lost completely when the confinement
width is twice as large as that at the equilibrium transition
point.

The analytical expressions for the Landau free energy
allow us to compute the height of the barrier separating the
coil and the escaped-flower minima. The barrier height
counted from the coil state minimum, in scaling variables, is
simply given by

L2

Q (8)

coil =
and is interpreted as the elastic free energy of stretching of
the chain to the edge of the piston. The barrier height
counted from the flower state minimum depends on the prox-
imity to the spinodal and equals

L2<H* )2
Ag=—|—=-1]. 9
fl 4R§ H ()

We have illustrated the Landau function of the coil and
flower states as a function of the order parameter graphically
. . 25 ;
in a previous publication™ and we refer to this work for
more details.

The partition function and free energy

The full partition function can be obtained by integrating
over the order parameter s:

QO(H,N) =exp(-F) = f ds exp(= NO(s)). (10)
Apart from the preexponential term (which can be neglected

as demonstrated by numerical estimates), the result has the
following form:

L R \2
Q(H’N)=Qcoil+Qﬂ:€I‘f<2—Rg)exP[—(%) ]
p(ﬂ)[lf(iﬂgﬂ "
H 2R, H

Two asymptotic branches of the free energy F(H,L,N)
=-In Q(H,L,N) are

L
(—) —-In2 for H<H,
H

F(H,L,N) = (12)

2
TRy

72 for H> H,,.

One branch of the free energy can be continued in the meta-
stable region and stops in spinodal point H=H" at F(H")
=(3/2)(L?/Na?); the other metastable branch formally con-
tinues to H=0. In the transition point the free energy is equal
to F(H,)=6L*/Na>.

The curve F(H) is not concave within the range of
(3%/2°)<H/H,<(3%/2%. However, the standard double-
tangent construction cannot be applied, since a simultaneous
coexistence of the two phases is impossible due to the very
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FIG. 2. (a) The Helmholtz energy per segment F(H,N,L)/N as a function of
normalized separation distance H/H,, in H-ensemble. (b) F(f,N,L)/N as a
function of the normalized compression force f/f, in the f-ensemble, for
L/a=90; N=600. The equilibrium branches are shown by solid lines; the
metastable branches by dashed and dotted lines. The equilibrium branches
cross at binodal points H/H,=1 and f/f,=1. The spinodal points are at
H'/H,=2, and f"/f,=(3/4) (Ref. 6) are shown by the solid points. The
boarders of the concave region of F/N in the H-ensemble are shown by a
pair of <.

nature of the phases (see Discussion). The Helmholtz energy
per segment F/N as a function of H/H,, is presented in Fig.
2(a) for L/a=90 and N=600. The equilibrium branches are
shown by solid lines and the metastable branches by a
dashed and dotted line. The spinodal point is shown by a
solid dot. The borders of the region where F(H)/N is not
concave are shown by diamonds.

THE ESCAPE TRANSITION IN THE -ENSEMBLE

Landau function and partition function in force
ensemble

Conjugate to the H-ensemble is the ensemble wherein
the external compression force f plays the role of the
independent variable. The Landau function in the
(f,L,N)-ensemble is given by the Laplace transform: exp
(=ND(s,f))=[gexp(-N®(s,H))edH. Using the asymp-
totes given in Eq. (5) for the Landau function ®(s,H), we
obtain

3,1 (37Tfa)2/3 L
PO el B fors < —
pop-] 2 N Na
s,f 3L Bmf)? (La) 13
s+ — for s = —,
2Na 2N Ky Na
(13)
with minima at ®_1(0)= %(3 wfal N)*3 and

®q((mf/L)?al3)=(2/N)(mfL)"* for the coil and flower
states, respectively. The binodal and spinodal conditions are

46 L3
fe= S neat
9L}
I = (e

and f,/f =(4/3)°~17.

The barrier heights for the coil state in the f-ensemble
are the same as in the H-ensemble, and are given by A
=3L%/2Na. The barrier height for the flower state is
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FIG. 3. The barrier heights for the metastable flower state in H- and
f-ensembles as a function of normalized compression distance H/H,, (solid
line) and as a function of average normalized compression distance (H)/H,,
(dashed line). Parameters are L/a=90 and N=600.

3L2 (Na2)1/3

A=y a3t BN =2
L 2 61/3
= (E) + 7(37TfR)2/3 - 2(mfL)"?. (15)

The barrier heights for metastable flower state, as a func-
tion of compression distance H, and (H) in H- and
f-ensembles are presented in Fig. 3 for L/a=90 and N
=600. As we can see these two dependencies are similar to
each other. Close to binodal points the barriers in the two
ensembles have the same heights and decrease to zero at the
spinodal points.

The partition function Q(f,L,N) in the f-ensemble can
be obtained after integration of ®(s,f) on s or as a Laplace
transform of Eq. (11). The main terms of the partition func-
tions are

L1/4 3/4
O(f.L.N) ~ ﬁ(ﬁ exp(=2(mfL)"?)

/2 (Na2)1/3
(3f)2/3 exp(_ 2

(3777(‘ 2/3) .

(16)

The two asymptotic branches of the free energy F(f,L,N)
are

2aLf)'> for f<f,

XN PG forf >y )

F(f,L,N) = {
The free energy F(f,L,N) in the f-ensemble is presented in
Fig. 2(b) as a function of the external compression force.
One branch of the free energy can be continued in the meta-
stable region and stops in the spinodal point f=f" at
F(f “.L,N)/N=6L*/Na*; the other metastable branch for-
mally continues to infinite force.

THE AVERAGE CHARACTERISTICS
The force-distance relations

The average compression force (f) in the H-ensemble
can be obtained by differentiating the free energy F(H,L,N)
with respect to H. The two asymptotic branches are given by
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14 H 18
H,

FIG. 4. (a) The average normalized compression force (f)/(f), as a function
of the relative compression distance H/H,, in the H-ensemble. (b) The av-
erage compression distance (H)/(H),. (plotted on the x axis) as a function of
the normalized applied compression force f/f,. (plotted on the y axis) in the
f-ensemble. Metastable regions are shown by dotted and dashed lines.
Parameters are (L/a;N)=(30;200), (60;400), and (180;1200).

L
? for H<H,

<f> - 22 R2 (1 8)
—* for H>H,.
H
At the transition point, (f) jumps from 2L3/ 'n'Rg to one-half
of this value as H is decreased.

In Fig. 4(a) the average compression force in the
H-ensemble is given for three sets of parameters (L/a;N)
=(30;200), (60; 400), and (180; 1200) at fixed ration L/Na
=0.15. The force is normalized by its average value at the
equilibrium transition point taken as U}tr:%((ﬂ'L/ H2)
+(2772R§/Ht3r))=54L3/ 7N?a*. The dotted and dashed lines
are the metastable continuations of the equilibrium lines. The
lower branch of metastability runs up to the spinodal point
H'/H,=2.

As expected there is a loop exactly at the region where
the Helmholtz energy is concave [see Fig. 2(a)]. For finite
systems, the actual magnitude of the jump in the average
force ensemble is smaller than the limiting value cited above.
At the fixed L/Na ratio the transition becomes sharper with
increasing chain length. The region of negative compressibil-
ity narrows down and eventually shrinks to a point as the
thermodynamic limit is approached. In this limit, the local
convexity condition, &*F/JdH?>>0, is satisfied almost every-
where. However, the free energy remains globally concave
within a finite range of H due to a kink that develops in the
F(H) curve at the transition point.

The average compression distance (H) in the f-ensemble
is obtained by differentiating the free energy F(f,L,N) with
respect to f. The asymptotic branches are

(wLIf)'? for f<fy

(H) = {(ﬂlNazBf)”3 for f > f. (19)

It is easy to show that, at the force corresponding to spinodal
conditions, (H(f"))=H". Therefore in the spinodal point
(H(f"))/H,=2. Figure 4(b) shows (H) as a function of the
compression force [for comparison with Fig. 4(a), where we
presented the normalized force f/f,, as a function of (H)].
The region of negative compressibility is absent (as well as
the concave region in free energy) in the force ensemble. The
monotonic behavior of free energy F(f,L,N) is obvious from
the equation for Laplace transform (we will return to this
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FIG. 5. The fraction of imprisoned segments (m) as a function of compres-
sion distance H in the H-ensemble (solid line) and as a function of the
average compression distance (H) in the f-ensemble (dashed line). Param-
eters are L/a=60 and N=400.

below). Figures 4(a) and 4(b) show a possible hysteresis loop
in a closed compression-decompression cycle. Observing
such a loop requires relatively large, but finite, waiting times
comparable to the lifetimes of the metastable states discussed
above. Note that the hysteresis loop in the f-ensemble is
realized by a jump from the metastable to the stable branches
at a fixed force (parallel to the x axis), which differs in shape
from that in the H-ensemble, where it forms by a jump at
fixed H (parallel to the y axis).

As it is easily seen, these ensembles are not equivalent in
the region (33/2%) <H/H,<(3%/2%), where the free energy
F(H) is not concave [see Fig. 2(a)].

The lateral force

The average lateral force (f;) can be obtained in both
ensembles by differentiating the free energies F(H,N,L) and
F(f,N,L) with respect to the piston size L. In the
H-ensemble the lateral force drops at H=H, from w/H,
=6L/Na? to zero, whereas in the f-ensemble it has no drop.
The difference between the ensembles exists in the same
region as the difference for the compression force.

The average fraction of imprisoned segments

The area under the coil and stem profiles gives us the
average number of imprisoned segments which may also be
computed by (M)=JF/du. The exact relation between
(M(H)) and the average compression force (f(H)) for a
Gaussian chain was obtained in Ref. 25 and has the form

(M(H)) 3H?
(fH) — ma*

Here we present two asymptotic branches for the reduced
average fraction of imprisoned segments (m)=(M(H))/N:

1 for H> H,,

3LH (21)
> for H<H,.
N

(20)

(m(H)) =

wa

The difference of the fraction of imprisoned segments (m)
for the two ensembles is presented in Fig. 5. In the
H-ensemble (m) is presented as a function of compression
distance H. It has a sigmoid form and in the appropriate limit
has a jump in H,, as we discussed before. In f-ensemble we
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FIG. 6. Radial density profiles for an ideal polymer chain that suffers an
escape transition at the binodal (solid line) and spinodal (dashed line) con-
ditions. Piston radius is L/a=30 and the number of repeat units is N=200.

calculated (m) and (H) as a function of compression force f,
and then plotted (m) from the average compression distance
(H). The values L and N were the same in both ensembles.
As we can see in the force ensemble (m) increases gradually
with increasing (H). With increasing N and L, the curve did
not become more abrupt. This result resembles the (classical)
condensation of a saturated gas upon a decrease of the
volume.

Density profile in the escape transition

When we assume that the effect of the boundary is neg-
ligible (this is true for L>2R,), the density profile along the
radial coordinate (integrated over the vertical z coordinate) in
the coil state is given by

N

Peoi(T.N) = N”! f 3 (22)

| ha

The volume fraction profile of the flower conformations is
the sum of the density profiles of the stem and the crown
Pi1=Pstem + Perown- Provided that the crown is large enough to
be at least metastable, RZ,>H , it does not penetrate back into
the interpiston slit. Then the expression for the density pro-
file simplifies to

rown\/) = -| erfc - | —erfc - .
Perownll 7= 0 2R 2R RS

8

The radial density due to the stem can be written rigorously
in terms of Green’s functions; its asymptotic form is, how-
ever, very simple

3H
pstem(r) = P (24)
a

as it is just the inverse of the local stem stretching (which
remains constant throughout the stem). The normalized den-
sity profiles for a Gaussian chain in the coil and flower con-
formations for N=200 and L/a=30 are shown in Fig. 6. The
radial density profile for flower conformations was calcu-
lated at the transition point where the number of segments in
the stem is equal to N/2. The full density profile close to the
transition point has a binodal form. Similar results were ob-
tained in Ref. 32 by Monte Carlo simulations. At the spin-
odal point H=H", the density profile of flower conformations
has no crown part and is almost constant. In Fig. 6 we show
a typical result for L/a=30 and N=200.
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Spinodal state and mechanism of nucleation

In the classical theory of nucleation for low-molecular
compounds the formation of a new phase is realized through
critical nucleation cores. The rate J of formation of such
clusters is determined by the work of critical cluster forma-
tion J~exp(—A/RT) and depends on the lowest value of the
barrier height A for a cluster.

In the escape transition the new (escaped) phase emerges
via a single nucleus when the free end of the chain reaches
the piston edge and forms a seed crown of one or just a few
segments; its appearance involves a global change in the
chain conformation. This nucleus is at the top of the nucle-
ation barrier, and therefore we have to associate it with the
critical nucleus. Contrary to the standard picture of nucle-
ation in classical systems, the critical nucleus in escape tran-
sition remains the same irrespective of the external param-
eters (or the position in the phase diagram), as long as the
metastable state does exist. The nucleation barrier height for
the metastable coil A=A, =3L?/2Na’ is determined by the
stretching free energy. The picture of the critical nucleus re-
mains exactly the same in other coil-to-flower transitions in-
duced by a stepwise external potential or an adsorbing
surface.”

It is well known that the classical spinodal decomposi-
tion occurs via growth of long-wave fluctuations of the order
parameter. In contrast to this, the escape transition is ad-
equately described in terms of a single global order param-
eter. This allows one to construct a simple theory for both
equilibrium and kinetic aspects of this phenomenon. The na-
ture of the order parameter also dictates the basic mechanism
leading to a decay of an unstable state.

Note that not all single-chain phase transitions are natu-
rally described in terms of a single global order parameter.
For instance, in the coil-globule transition the order param-
eter is the local monomer density. Correspondingly, the ki-
netics of the coil collapse is governed by the growth and
coalescence of multiple nucleation centers, although its ini-
tial stage does not necessarily involve any change in the
large-scale coil conformation.

DISCUSSION

We have demonstrated that the behavior of a squeezed
tethered polymer chain undergoing the escape transition is
notably different in two experimental settings, corresponding
to two conjugate statistical ensembles.

At this point it is worth mentioning that the nonequiva-
lence between the various statistical ensembles for finite sys-
tems (finite chain length N) is standard. The specific property
of the escape transition, however, is the nonequivalence of
two conjugate ensembles in the thermodynamic limit where
both the number of monomer units N and the radius of the
piston L tend to infinity, while the ratio L/N remains con-
stant. For finite L and infinite N there is no transition (as well
as for finite N and infinite L), because the transition point is
proportional to N/L f.c. Eq. (6).

We have further shown that a negative compressibility in
the H-ensemble is strictly an equilibrium result that follows
from the exact partition function and is not related to un-
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stable states. There are several nontrivial issues here which
should be addressed. (1) Our results are in obvious contra-
diction with a theorem of statistical mechanics stating that
the pressure must be a monotonic function of volume. (2)
Another theorem states that the thermodynamic potential as a
function of volume must be convex everywhere. We have
seen that the exact free energy in the H-ensemble contradicts
this statement. Moreover, in contrast to the region of nega-
tive compressibility that shrinks to a single point in the
N— oo limit, the region where F(H) is globally concave re-
mains always finite. (3) One of the main principles of statis-
tical mechanics states that all ensembles are equivalent in the
thermodynamic limit. The results presented above demon-
strate a clear counterexample. (4) The escape transition gen-
erated by squeezing a chain between two pistons is funda-
mentally similar to the behavior of a chain in a step potential
or near an adsorbing chain. The equivalence of these three
models was demonstrated before and exploited in the present
paper. However, no abnormal response functions similar to
negative compressibility were found in the other systems.

The theorems of statistical mechanics concerning the
monotonic decrease of the pressure and the convexity of the
thermodynamic potential as functions of volume are based
on a general assumption about the homogeneity of the sys-
tem in question. The inapplicability of these fundamental
theorems to one macromolecule undergoing the escape tran-
sition is clearly related to the fact that this system is not
homogeneous. The inhomogeneity is a direct consequence of
the tethering: since the global translational degrees of free-
dom are absent, the region near the anchoring point always
has a finite monomer concentration, while some volume well
outside the pistons is never visited by the chain.

To clarify the other questions, we have to analyze the
general properties of conjugate statistical ensembles. In a
pair of conjugate ensembles we define a “primary” and “sec-
ondary” one in the sense that the partition function of the
secondary ensemble is the direct Laplace transform of the
partition function in the primary one. In this terminology, for
example, the microcanonical ensemble is primary with re-
spect to the canonical ensemble, being conjugate to the total
energy; similarly, the NVT ensemble is primary with respect
to the NPT ensemble, and the H-ensemble in the escape
transition is primary with respect to the f-ensemble.

In the normal standard case, the primary free energy
F(x) is convex down with respect to the primary control
parameter, x. The equivalence of the two ensembles in the
thermodynamic limit follows from the fact that the second-
ary partition function is dominated by the maximum of the
exponent, and therefore, the secondary free energy is given
by the Legendre transform

o]

0

where p=—3dF(x)/dx is the conjugate parameter. The convex-
ity condition ensures that the extremum at x; is a maximum.
The convexity also means that dF(x)/dx is a monotonically
growing function of x and the Legendre transform is
uniquely defined.
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In the case when the primary free energy is not convex
everywhere, the exponent, —F(x)—px, may have two
maxima. Since in the thermodynamic limit, only one global
maximum contributes, the secondary free energy turns out to
be the Legendre transform of the convex envelope of F(x)
rather than of the primary free energy itself.

For a van-der-Waals fluid in the NVT ensemble, the same
convex envelope is created by accounting for phase-
segregated states with simultaneously coexisting phases (the
double-tangent construction). In our case, simultaneous
phase coexistence of a coil and a flower is impossible, F(H)
is different from its convex envelope, and this automatically
implies the nonequivalence of the two ensembles. The region
of negative compressibility corresponds to a small region of
H near the transition point where the F(H) curve is locally
concave, while the two ensembles are nonequivalent wher-
ever the free energy differs from its convex envelope, see
Fig. 2(a).

The whole argument concerning the convex envelope
applies only to the primary free energy. The secondary free
energy is always a concave function of its variable p, which
follows directly from the integral representation for the sec-
ondary partition function. Anomalous response functions
(similar to negative compressibility) are strictly impossible
in the secondary ensemble, irrespective of whether the ther-
modynamic limit was achieved or not.

We now address the contrast between anomalies ob-
served in the escape transition and the much more standard
transitions for a chain in a step potential or near the adsorb-
ing plane, keeping in mind that all three systems were proved
to be equivalent. The partition function of the chain in a step
potential is defined as

Qu) =2 e, (26)

where the summation runs over all possible walks (confor-
mations) of the chains, and m, is the number of segments in
the negative half-plane for this conformation. It is clear that
we are dealing with the secondary ensemble. As stated be-
fore, nothing peculiar happens in the secondary ensemble
because its equation of state m(u) is always monotonic.

It is important to note that the unusual results discussed
above are not artifacts of the simple Gaussian model em-
ployed. Introducing excluded-volume interactions does not
affect the qualitative features of the transition. The transition
also does not depend on many other details such as the exact
position of the grafting point, the geometry and the precise
alignment of the pistons (within certain limits), etc. Indeed,
the situations when the two conjugate ensembles are non-
equivalent are not as exotic as it seems at first glance. As a
result, one should be able to observe this unusual behavior in
experiments, since the current state of the atomic force mi-
croscope spectroscopy has the phenomenon within its reach.

We further can imagine that it is possible to fabricate
materials with a macroscopic negative compressibility based
on confined polymers. At this stage it is reasonable to formu-
late some requirements for such materials. Of course, these
systems should be microscopically inhomogeneous. Chains
with radius R, should be grafted sparsely onto surfaces that
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are a few times larger than R, (e.g., chains may be grafted
onto the faces of clay platelets). Then these surfaces should
be stacked such that the chains are trapped, and these stacks
must be dispersed in a relatively soft gel swollen by a low
molecular weight good solvent. The external deformation
will squeeze surfaces closer to each other and, as some criti-
cal force, induce the coil-to-flower phase transitions, wherein
the chains partially escape to the resign phase. In this transi-
tion region the compressibility may be negative and the ef-
fects should be much more pronounced than in low molecu-
lar weight systems.l’3
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