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1        Introduction 

  



 

 

1.1 Legitimacy 

According to the latest revision of the UN population prospects (UN, 2010), the world 

population is projected to grow by 32 percent from 6.9 billion in 2010 to 9.1 billion in 

2050. To meet the demand for food, annual grain production will need to rise from 2.2 

billion ton in 2010 to about 3.0 billion ton in 2050 (FAO, 2010). In addition, the threat of 

regional imbalances in food supply and demand will continue to rise as crop production 

faces the challenges of climate change, limited and dwindling resources, and increasing 

energy needs and prices. Many national and international organizations aim to minimize 

this threat, and safeguard a sustainable use of natural resources (GECATS, 2012; Justice 

and Becker-Reshef, 2007; IGOL, 2006; Becker-Platen, 1979). Timely and accurate 

information on spatial patterns of crop yield is important for commercial interests 

(Jagtap and Jones, 2002), strategic agricultural planning (Lobell and Ortiz-Monasterio, 

2007), public policy formulation and application (De Wit et al., 2005; Wassenaar et al., 

1999), and agricultural scientific innovation (Williams et al., 2008). This includes 

information on current crop-yield patterns as well as explorations of future scenarios 

(e.g. climate change). 

 

1.2 Overview of methodological approaches in crop yield 

estimates studies 

Probably the most widely used technique to assess the spatial patterns of crop yield is by 

means of the agricultural census or other forms of surveys (Dobermann et al., 2003; 

Downing et al., 1999). Alternatively, remote sensing techniques have shown to be 

effective in mapping regional patterns of crop yield and in monitoring changes at regular 

intervals (Khan et al., 2010; Launay and Guerif, 2005). The main limitation of these 

assessments is that they only provide insight ex post. Therefore, there is a continuing 

need for the development of modelling approaches to assess a priori and/or future (ex 

ante) ranges of alternative scenarios for the spatial patterns of crop yield. Ideally, a 

generic crop growth simulation model (CGSM) would be developed for the regional level 

which would be fed with high-resolution input data on weather, soil, and management 

data so as to provide accurate regional patterns of crop yield. Currently, CGSMs are able 

to integrate the effects of agricultural management under a wide range of climatic and 

soil conditions and offer good insight in the spatial variability of crop yield at the field 

level (e.g. Xiong et al., 2008; Launay and Guérif, 2003; Faivre et al., 2000). In the past 

forty years, different CGSMs have been developed to serve a variety of applications 

(Matthews and Stephens, 2002). DSSAT (Decision Support System for Agro-technology 

Transfer) was developed in the USA by IBSNAT (International Benchmark Sites Network 
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for Agro-technology Transfer) (Jones et al., 2003). The APSIM (Agricultural Production 

system SIMulator) modelling framework was developed by APSRU (Agricultural 

Production Systems Research Unit) in Australia (Thorburn et al., 2010; Keating et al., 

2003). In the Netherlands, de Wit started working on crop growth simulation modelling 

at the Department of Theoretical Production Ecology of Wageningen Agricultural 

University (Van Keulen et al., 2008; Van Ittersum et al., 2003). Although CGSMs aim to 

be universal (within certain boundary conditions), they still require calibration for 

prediction outside the observed data range or in extreme environmental situations, a 

CGSM might have to be redeveloped or calibrated to produce useful results (Wang et al., 

2002; Basso et al., 2001; Bolte, 1997).  

 

Despite all the efforts, CGSMs are not available for all cropping systems. For example, 

there are still many perennial crops (e.g. coffee, tea, and banana) for which no CGSMs 

have been developed (Zuidema et al., 2005). In addition, there is still a lack of models 

that can handle the impact of weeds, micro nutrients, and mixed cropping. Moreover, 

many CGSMs have been designed to simulate crop production for a field, while no 

process-based simulation models are specifically developed to assess regional patterns 

of crop yield. The development of such regional models is troubled by the lack of insight 

in processes specific to the regional level (Veldkamp et al., 2001). The calibration and 

application of regional models is furthermore hampered by the data requirements of 

such models. 

 

1.3 Application of crop growth simulation models at the regional 

level 

Due to the urgent call from policymakers for methods to assess regional patterns of crop 

yield, scientists pragmatically used field-level CGSMs at regional scales (e.g. Xiong et al., 

2008; Launay and Guérif, 2003; Faivre et al., 2000). Such applications aim to identify (i) 

the effect of climate change (e.g. Reidsma et al., 2009; Hansen and Jones, 2000), (ii) 

the impact of changes in land use, policy and technology (e.g. Godard et al., 2008), 

and/or (iii) annual yield forecasts (e.g. Yun, 2003; Jagtap and Jones, 2002; Supit, 

1997). However, two main problems emerge in the application of field-level CGSMs at 

regional scales. Firstly, the required input data on weather, soils, and management are 

often not available (data availability); and secondly, if they are, generally not at the 

required level of detail (data aggregation). 



 

 

1.3.1  Data availability  

Increasing the extent from a homogeneous field to regional level requires incorporating 

additional spatial variability of the input data (Faivre et al., 2004; Hansen and Jones, 

2000). This is because by increasing the extent of the study area, new variability of 

input data emerges. For instance, soil varies in depth, texture, and chemical properties; 

climate, in particular rainfall, becomes more variable; and so do management practices 

(soil tillage, irrigation, fertilization, choice of cultivar, etc.). The availability of data on 

weather, soil, and management is one of the problems faced by the application of the 

models at the regional level (Carbone et al., 2003; De Bie, 2000; Nachtergaele, 2000; 

Fresco et al., 1997; Sombroek and Antoine, 1994). Although there are many approaches 

developed to generate input data (e.g. Leenhardt et al., 2006; Launay, 2002; 

Heinemann et al., 2002; Voltz and Webster, 1990; Webster and Beckett, 1968), the 

criteria for selecting the best approach are often unclear. Moreover, using these 

approaches to generate input data may have implications for model outcomes. One 

could argue that empirical models with lower input data requirements, in which historical 

data on crop yields and predictors are used to calibrate relatively simple regression 

equations, provide a useful alternative to CGSMs (see e.g. De Vries et al., 1998; Beven, 

1989). 

 

1.3.2  Data aggregation 

CGSMs are mainly developed for the plot and field scale, requiring location-specific, 

spatially homogenous input data (Tao et al., 2009; De Wit et al., 2005; Van Ittersum et 

al., 2003; Mearns et al., 2001; Hansen and Jones, 2000). The availability of such data is 

one of the problems faced by the application of the models at the regional level (Carbone 

et al., 2003; De Bie, 2000; Nachtergaele, 2000; Fresco et al., 1997; Sombroek and 

Antoine, 1994). Soil and daily climate data are often available from existing databases at 

different spatial levels of detail, but spatially and temporally explicit information on crop 

management is much less readily available (Leenhardt et al., 2010; Godard et al., 2008; 

Maton et al., 2007; Mignolet et al., 2007; Faivre et al., 2004; Biarnès et al., 2004; 

Jagtap and Jones, 2002). Therefore, in contrast to field-scale model applications, 

regional-scale applications often rely on data aggregated over space and/ or time. In 

general, with increasing aggregation (i.e. an increase in support) variability of data will 

decrease and local extremes will be levelled out (Baron et al., 2005: Hansen and Ines, 

2005; Easterling et al., 1998). Depending on the spatial distribution, this effect will be 

stronger for some variables than for others. As a result, quantitative relationships 

between variables may change with aggregation. Using aggregated input data requires 

therefore recalibration of the models. Also when relationships are non-linear, 
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aggregation will have implications for model outcomes (Ewert, 2004). A sensitivity 

analysis is a suitable methodology to identify the degree to which input variables are 

affected by aggregation, and can therefore be used to study if aggregation of specific 

input data is appropriate (Hansen and Jones, 2000). Furthermore, a sensitivity analysis 

of the extent to which the variables of a chosen model will influence model output and 

accuracy, may identify the most significant/relevant input variables of the model in 

response to specific output (e.g. yield). This allows focusing data collection efforts on 

these particular variables.  

 

Apart from adjusting the CGSM to regional scale and/or generating the required detailed 

input data, there are two other known solutions for solving the scaling issue. One is 

replacing the CGSM by a metamodel that can deal with less detailed data (Kleijnen and 

Sargent, 2000; Barton, 1998), and the second approach is using the less detailed data 

to derive a simple empirical model (Lobell and Burke, 2010; White, 2009; Veldkamp et 

al., 2001). Initially, a metamodel requires similar data as the original process-based 

CGSM for its development, although these data may be up-scaled to more practical 

temporal and spatial resolutions (Audsley et al., 2008). Metamodels are relatively 

simple, can easily be applied by end users such as policymakers, and require less data 

for their application compared to the CGSM (Kleijnen and Sargent, 2000; Barton, 1998). 

However, as such a metamodel is based on the CGSM, the problem of not including 

factors (Donatelli et al., 2010) that play a role at wider temporal and spatial scales may 

not be solved.  

An empirical model can use all data available including other data sources depending on 

availability and hypothesized relationships. It is calibrated directly on the aggregated 

input data, and can include all kinds of factors at any available aggregation level (see 

e.g. De Vries et al., 1998; Beven, 1989). Empirical models are able to represent factors 

that are not present in CGSMs, such as proxies for the occurrence of pests and diseases. 

The advantages of the empirical models furthermore concern their ease to be used by a 

broad group of users with limited process knowledge. Due to the lower data 

requirements, errors associated with uncertainties in input data are smaller. However, 

disadvantages of metamodels and empirical models are that extrapolation beyond the 

calibration range of input variables is unreliable, and the relationships that comprise the 

model are context dependent and not process-based (Bakker and Veldkamp, 2012). 

Furthermore, aggregation of spatial data may lead to linearization of relationships 

obscuring the underlying complexity (Kok and Veldkamp, 2011). 

 



 

 

1.4  Scope and objectives 

This study is mainly concerned with how to model spatial patterns of crop yield at the 

regional scale. The definition of regional scale varies with different settings. In this study 

I adopt an operational definition in which the regional level includes the scale levels 

above the field level (i.e. for which it is impossible to deal with individual fields) up to 

the national level. In practice this means that I deal with a population of farms or fields 

(survey data) or administrative regions (agricultural statistics). Applying and developing 

models at the regional scale has various consequences. Scale is defined on the basis of 

extent (i.e. the spatial area covered by the simulation), support (i.e. the spatial area 

covered by the observed data), and resolution (i.e. the ratio between the support and 

the extent) (e.g. Bierkens et al., 2000; Faivre et al., 2004). As soon as we move 

towards higher scale levels the extent increases. By increasing the extent of the study, 

new processes and variables possibly emerge as driving factors behind the variability in 

crop yield. For example, spatial variability of access to markets can emerge as a 

determinant of spatial patterns, or a regional variability in sensitivity to plagues and 

diseases may appear. Thus, with increasing extent it becomes necessary to incorporate 

additional data (Faivre et al., 2004; Hansen and Jones, 2000). The higher scale level 

also means that data on weather, soils, and management are not available at the same 

resolution. While detailed soil maps may be available at a scale of 1:20,000 for small 

areas, regional exploratory surveys are typically at a scale of 1:50,000 to 1:250,000. 

 

In this thesis, different modelling approaches will be used to model regional patterns of 

crop yield for cases in which: 

• Survey data of yield and its predictors (e.g. soil, weather conditions) are 

available; data will be used to develop an empirical model to model the spatial 

patterns of crop yield. 

• The availability of a calibrated CGSM allows us modelling the spatial patterns of 

crop yield with the environmental data. 

• A metamodel will be constructed by identifying the most significant input 

variables of the calibrated CGSM in response to crop yield.  

 

Three different modelling approaches, being empirical models, CGSMs, and metamodels 

of the CGSMs, were distinguished to simulate regional patterns of crop yield. The context 

conditions that determine the best approach are input data requirements, problem 

definition, study sub-objective, the scale at which results are expected, model end-

users, and utilization of the output (e.g. testing different scenarios). Which modelling-

approach to choose, and how the model will eventually perform, is context dependent. 
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Context means the specific properties of the region, the data availability in that region, 

and for what purpose the model will be used.  

Since there will always be a certain level of idiosyncrasy to the case, one has to strive 

for a toolbox of approaches from which the proper tool can be selected on the basis of a 

number of specific criteria such as credibility and sensitivity. Models are typically 

evaluated in terms of their credibility in modelling yield patterns, on the basis of a range 

of observation points using statistical techniques like the root mean square difference 

(Akinbile and Yusoff, 2011; Quiroga and Iglesias, 2009; Xiong et al., 2008). For the 

application of a model to a specific area and period, verifying its sensitivity to variables 

that are known to play an important role in that area and period is also essential. When 

the model itself is to be run by policymakers, user-friendliness is also an important 

criterion.  

 

The selection of the modelling approaches can be considered as one of the most difficult, 

and often ignored, steps to model crop yield at the regional level. However, a structured, 

systematic way of modelling-approach selection is lacking. In order to address this issue 

I aimed to develop a framework for recommendable practices to model regional patterns 

of crop yield. From this general objective, more specific sub-objectives are derived: 

 To provide decision rules for selecting appropriate approaches to generate input 

variables to feed crop growth simulation models at the regional level; 

 To provide decision rules for selecting appropriate procedure s to simulate 

regional yield patterns using CGSMs; 

 To identify, given context conditions, the most suitable modelling approach to 

simulate regional patterns of crop yield. 

 

1.5  Outline of the thesis 

To develop a framework for recommendable practices to model regional patterns of crop 

yield, in this thesis I explore proper input data for modelling, model implementation, and 

model selection criteria (Figure 1-1). 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: the contribution of this thesis to the development of a framework for recommendable 

practices to model regional patterns of crop yield consists of (i) proper input data for modelling, 

(ii) model implementation, and (iii) model selection criteria. 

 

In Chapter 2, the issue of data availability is discussed, literature is reviewed for existing 

approaches that have been used to overcome the problem of data availability, and 

decision rules for selecting appropriate approaches to supply CGSMs at the regional level 

with suitable weather, soil, and management data are proposed. It starts by discussing 

the three main domains of input data by looking at the spatial characteristics of the 

variable, the availability of data at the regional level, and reviewing the approaches that 

people have been using to generate input data for CGSM applications at the regional 

level. Then, it focuses on the opportunities created by new interpolation techniques and 

the use of auxiliary data. Finally, the review is used to formulate decision rules as to 

when to use which approach.  

Chapter 3 evaluates and selects different procedures for CGSM implementation to 

simulate regional yield patterns for a specific situation. The approaches include (i) run 

the CGSMs for a series of points distributed throughout a region after which the 

simulated crop productions can be interpolated to create a continuous surface of yield 

patterns, and (ii) create surfaces for each of the input variables individually, and then 

run the CGSM for each location (grid cell) to create a continuous surface of yield 

patterns. Moreover, scaling effects of different supports by aggregating either input or 

Synthesis: a framework for recommendable practices to model regional patterns of 

crop yield  

Proper input data for modelling 

Model selection criteria 

Model comparison at watershed level Model comparison at national level 

Model implementation 

Introduction: towards regional patterns of crop yield 

Chapter 1 

Chapter 2 

Chapter 4 Chapter 5 

Chapter 6 

Chapter 3 
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output at different spatial resolutions are examined. These procedures are applied to a 

complex CGSM (SUBSTOR-potato model, Ritchie et al., 1995) for the potato-pasture 

production system in the Carchi province in Northern Ecuador.  

Choosing the most appropriate modelling approach should happen in terms of various 

criteria. Different modelling approaches to model regional patterns of crop yield including 

empirical models, CGSMs, and metamodels of the CGSMs are selected. Chapters 4 and 5 

compare and evaluate the performance of three different modelling approaches for their 

capacity to model regional patterns of crop yield for two different regions: the Carchi 

province in Northern Ecuador (Chapter 4) and Western Germany (Chapter 5). For the 

Carchi study area, spatial analyses were carried out at watershed level, while for 

Western Germany spatial and temporal analyses were carried out at national level. The 

CGSM used for the Carchi study area was the SUBSTOR-potato model (Ritchie et al., 

1995); the CGSM used for Western Germany was the LINTUL2 model (van Ittersum et 

al., 2003). The main strengths and limitations of the modelling approaches are 

discussed. Based on these findings, various criteria for selecting a modelling approach 

are defined.   

In Chapter 6, I reflect upon the achievement of the overall research objective. The 

comparison of the strengths and weaknesses of the modelling approaches and the 

analysis of the results and experiences from the research presented in this thesis 

provides information towards the design of a framework for recommendable practices to 

model regional patterns of crop yield. The chapter ends with a number of conclusions. 
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2      Regional crop yield estimates: how to feed our crop 

growth simulation models? 

 

 

 

 

 

 

 

 

 

Crop growth simulation models (CGSMs) are useful tools to estimate crop yield. However, at the 

regional level, their application is constrained by data requirements. This chapter aims to provide 

decision rules for selecting appropriate approaches to supply CGSMs at the regional level with 

suitable weather, soil, and management data. First, we discuss the three main domains of input 

data by looking at the spatial characteristics of the variable, the availability of data at the regional 

level, and reviewing the approaches that people have been using to generate input data for CGSM 

applications at the regional level. Then it uses the review to formulate decision rules as to what 

approach to take under different circumstances. Which of the approaches should be used depends 

on the following questions: (i) do observations of the input variable allow to estimate 

semivariograms?; (ii) are there auxiliary data correlated to the target variable?; (iii) do the input 

variables exhibit spatial correlation?; and (iv) is there spatial correlation in the residuals of the 

regression that related auxiliary data to the target variable?. Summarized, the selection of possible 

approaches depends on the data availability, the spatial variability, the temporal variability, the 

correlations with other variables, the data acquisition methods, the expected accuracy from a 

particular approach used to describe spatial variability, and the sensitivity of the CGSM to the 

variable. This sensitivity makes every decision context specific. At the regional level CGSMs are 

typically fed by the input data that are generated as discrete zones. However, increasingly the 

input data are presented as continuous surfaces to feed the CGSMs as a result of the development 

of new interpolation techniques, the accumulation of data sources (in digital form), and inclusion 

of auxiliary data. Generally, spatially-explicit regional patterns of yield are less accurate when 

done for discrete zones compared to continuous surfaces, although one should be aware of a false 

sense of accuracy, when continuous maps are made by unreliable interpolations. The most suitable 

method should be selected in a structural way, using decision rules as presented in this chapter, 

rather than to limit ourselves in an early stage to the typical procedures such as discrete zones. 

 

 

Based on: Soltani, A., Bakker, M.M. and Stoorvogel, J.J. Regional crop yield estimates: how to 

feed our crop growth simulation models? Submitted to NJAS-Wageningen Journal of Life Science. 

  



 

 

2.1  Introduction 

There is an increasing call for regional, spatially-explicit yield estimates in the context of 

e.g. climate change studies and rural development. Crop growth simulation models 

(CGSMs) are useful tools to provide such estimates under current conditions but also to 

evaluate the potential effects of environmental, biological, and management changes on 

crop growth (Hoogenboom, 2000). There is a wide range of CGSMs available, such as 

the Decision Support System for Agro-technology Transfer (DSSAT; Jones et al., 2003) 

and the Agricultural Production system SIMulator modelling (APSIM, Thorburn et al., 

2010; Keating et al., 2003). Most CGSMs have been designed to simulate crop 

production for a field, which can be assumed uniform in soil, weather, and management. 

The models are not specifically developed to assess regional patterns of crop yield. The 

development of regional models is troubled by the lack of insight in processes specific to 

the regional level (Veldkamp et al., 2001), but also by the data requirements for their 

calibration and application. Due to the urgent call from policy makers to assess regional 

patterns of crop yield, scientists pragmatically use the field-level CGSMs at regional 

scales (e.g.  Tsvetsinskaya et al., 2003; Iglesias et al., 2000; Chipanshi et al., 1999). 

These studies aim to identify (i) the effect of climate change (e.g. Challinor et al., 2009; 

Reidsma et al., 2009; Xiong et al., 2008; Wolf and Van Oijen, 2002; Hansen and Jones, 

2000), (ii) the impact of changes in land use, policy, and technology (e.g. Godard et al., 

2008; Stoorvogel et al., 2004), and / or (iii) annual yield forecasts (e.g. Yun, 2003; 

Jagtap and Jones, 2002; Chipanshi et al., 1999; Supit and Van der Goot, 1999; Supit, 

1997). The target variable of the studies varies as some studies focus on aggregated 

yield data (e.g. mean and standard deviation) (Faivre et al., 2004; Van Ittersum and 

Donatelli, 2003; Jagtap and Jones, 2002; Bouman et al., 1996) while others aim at the 

assessment of regional patterns (Beaujouan et al., 2001; Gomez and Ledoux, 2001; 

Faivre et al., 2000).  

 

Applying the models at the regional scale has various consequences. Scale is defined on 

the basis of extent (i.e. the spatial area covered by the simulation), support (i.e. the 

spatial area covered by the observed data), and resolution (i.e. the ratio between the 

support and the extent) (e.g. Faivre et al., 2004; Bierkens et al., 2000). As soon as we 

move towards higher scale levels the extent increases. By increasing the extent of the 

study, new processes and variables possibly emerge as driving factors behind the 

variability in crop yield. For example, spatial variability of access to markets can emerge 

as a determinant of spatial patterns, or a regional variability in sensitivity to plagues and 

diseases may appear. Thus, with increasing extent it becomes necessary to incorporate 

additional data (Faivre et al., 2004; Hansen and Jones, 2000). The higher scale level 
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also means that data on weather, soils, and management are not available at the same 

resolution. While detailed soil maps may be available at a scale of 1:20,000 for small 

areas, regional exploratory surveys are typically at a scale of 1:50,000 to 1:250,000. 

The availability of data on weather, soil, and management is one of the problems that 

the application of CGSMs at the regional level faces (Carbone et al., 2003; De Bie, 2000; 

Nachtergaele, 2000; Fresco et al., 1997; Sombroek and Antoine, 1994). Many 

approaches have been developed to overcome the problem of data availability, but the 

plethora of available approaches is overwhelming and makes one uncertain about which 

approaches to use. 

CGSMs require input data from three domains; weather, soil, and management. Each of 

those has very different spatial characteristics. Weather exhibits gradual changes over 

space, but with a high temporal variability. Weather data are therefore typically collected 

for a limited number of points in space and with a high temporal resolution. Soil 

properties are relatively stable over time but with more spatial variability, including 

abrupt changes. Although soil data are generally collected at the point level, they are 

often available as soil maps that describe the variability through a limited number of 

mapping units. Crop management is highly variable, both in space and time. In contrast 

to soil and weather data, there is little tradition in mapping agricultural management. 

Therefore, most studies rely on ad-hoc farm surveys. Only in a few cases cross-sectional 

management data are available.  

 

The purpose of this chapter is to provide decision rules for selecting appropriate 

approaches to supply CGSMs at the regional level with suitable input data. First, we 

discuss the three main domains of input data by looking at the characteristics of the 

variable, available data, and reviewing the approaches that people have been using to 

feed CGSMs. Secondly, we discuss a number of recent developments in data acquisition 

that may open new alternatives to provide better estimates of spatial variability of the 

input data. When regional yield patterns need to be assessed typically the studies do not 

have the resources to collect new data. We therefore focus on using existing data to 

estimate the spatial variability of the input data. We use the review to formulate decision 

rules when to use which approach.  

In this study we focus mostly on the spatial element of scale (rather than the temporal 

element) as we aim to assess spatial patterns of crop yield. We adopt a pragmatic 

operational definition of the regional level as the scale levels above the field level for 

which the CGSMs have been developed. As a result, the regional level includes the 

catchment level but also the national or continental scale levels.  



 

 

2.2    Assessing spatial variability of growing conditions 

Despite the fact that most CGSMs have not been developed for application at the 

regional scale and that data availability is limited, the literature provides us with a 

plethora of case studies where CGSMs have been used to assess regional patterns of 

crop yield. This section reviews the various approaches on the assessment of regional 

variability in weather, soil and crop management.  

 

2.2.1   Weather variability 

Most CGSMs require daily weather data including, for example, precipitation, 

temperature (minimum and maximum), potential evapotranspiration, and solar 

radiation. Weather data are characterized by a high temporal variability and generally 

exhibit gradual changes in space (except for the case of individual rain showers). Data 

are typically collected for a limited number of weather stations. These stations generally 

provide data at a high temporal resolution (mostly daily). As a result, we have good 

insight in the temporal variability, but the information on the spatial variability is limited. 

The simplest approach to obtain a spatially continuous map of weather data involves a 

subdivision of a region into discrete zones (Southworth et al., 2000). Weather conditions 

in each zone are represented by a weather station and the spatial variability within the 

zone is ignored. Different approaches are used to delineate the weather zones including 

nearest neighbour, statistical techniques, and expert judgment.  

Nearest neighbour interpolation (Thiessen polygons) is the most straightforward 

methodology. Conceptually the methodology simply uses for each location the data from 

the nearest weather station. This approach does not use any auxiliary data. Due to its 

simplicity it is commonly used (Leenhardt et al., 2010; Xiong et al., 2008; Launay and 

Guérif, 2003; Heinemann et al., 2002; Heywood et al., 1998). Alternatively, weather 

zones are delineated using statistical techniques in combination with auxiliary data (e.g. 

Donet et al., 2001; Leenhardt, 1995; Ripert et al., 1990). Auxiliary data which is known 

to be related to weather, such as altitude, is used to identify zones. In another approach 

the weather zones are defined by experts and linked to weather stations (e.g. Legros, 

1996). Experts draw the weather zone based on their insight, possibly using auxiliary 

information.  The disadvantage of the use of expert judgment is that it is subjective.  

Weather data can also be interpolated between weather stations to generate a 

continuous surface of weather variables. Typical interpolation method is kriging. Most 

interpolation techniques calculate for each location a weighted average of the observed 

values at surrounding observation points (in this specific case weather station). They 

best apply to variables that exhibit continuous spatial variation (e.g. Voltz and Webster, 
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1990). Interpolation has to be done separately for each weather variable and for each 

individual time step (e.g. Leenhardt et al., 2006; Hansen and Jones, 2000), which makes 

the interpolation very time consuming. More commonly, therefore, is that interpolation 

techniques are applied to temporal averages, such as monthly data. For example, 

several authors interpolated monthly weather data from weather stations (e.g. Harrison 

et al., 2000; Saarikko, 2000). It produces good estimates of the spatial variation in 

monthly weather conditions because of the gradual variations. In some cases the 

interpolated monthly data are subsequently temporally disaggregated to the daily data 

required by CGSMs using, for example, a sine curve interpolation method (Brooks, 1943) 

or stochastic weather generators (Semenov and Barrow, 1997; Racsko et al., 1991; 

Richardson and Nicks, 1990; Richardson and Wright, 1984).  

When auxiliary data are available, other interpolation techniques involving auxiliary data 

(such as process-based weather models) can be used to interpolate sparse data. The 

weather models are used to interpolate weather data, using for example digital elevation 

models (DEMs) (Kumar et al., 2010; Evrendilek, 2007; Baigorria, 2005; Courault et al., 

2003; Courault et al., 1998). Baigorria (2005) provides a good example of a process-

based interpolation model estimating the spatial and temporal distribution of maximum 

and minimum temperatures and rainfall in mountainous areas. His model interpolates 

maximum and minimum temperatures based on the radiation balance at specific hours 

when those temperatures occur. Rainfall is interpolated based on cloud movements over 

complex terrains, incorporating the physical processes driving rainfall events. The results 

are presented as daily maps in which the spatial resolution is controlled by the resolution 

of the DEM. The development of this kind of process-based approaches is still at a very 

early stage.  

To conclude, regional weather variability is typically described by a limited number of 

discrete zones. However, increasingly the weather data are presented as continuous 

surfaces. Despite some of the disadvantages of the use of discrete zones (conceptually 

weather zones are less accurate compared to continuous surfaces), their use is quite 

common for weather data. This is probably due to a number of specific properties of 

weather data. Except for mountainous regions, weather conditions vary gradually 

resulting in a relatively good description by the weather zones. In addition, weather data 

are collected at a low spatial resolution that does not allow for more detailed 

descriptions.  

 

2.2.2   Soil variability 

Soil data show, particularly in contrast to weather data, relatively little temporal 

variability. On the other hand, they present more spatial variability. Traditionally, soil 



 

 

data are acquired through soil surveys in which a large number of field observations is 

collected (e.g. Soil Survey Staff, 1993). The information of the observations is combined 

with e.g. additional field observations of topography, aerial photography, and expert 

knowledge to delineate the mapping units presented on the soil maps. In practice, the 

spatial perception of soil results in a map in which units are discrete zones with sharply 

defined boundaries (Burrough and McDonnell, 1998). The mapping units are described 

by one or more soil types and each of the soil types is represented by a typical soil 

profile. Soil properties are often derived from a limited number of representative soil 

profiles described in the soil survey report. Most studies only use the dominant soil type 

from each mapping unit (Angulo et al., 2012).  

Soil types are described by soil profiles for which soil chemical and physical analysis 

were carried out (e.g. Soil Survey Staff, 1993; Brus et al., 1992; Boulaine, 1980). In 

many situations, the recorded soil properties are incomplete for the application of 

CGSMs. A common solution to this problem is the use of pedotransfer functions (PTFs). 

These are functions that relate basic available soil properties to the more difficult to 

measure soil properties (Wosten et al., 2001; van Genuchten and Leij, 1992; Bouma, 

1989). A good example, in which a variety of PTFs is evaluated, is presented by Gijsman 

et al. (2003). They evaluated different PTFs to assess soil water retention parameters 

(e.g. soil water content at field capacity, wilting point and, saturation) as inputs for 

CGSMs. These are often used at regional scales to quantify required soil properties (e.g. 

Donet et al., 2001; Leenhardt, 1995). If a large number of soil observations is available, 

a continuous surface of soil properties can be created by the use of interpolation 

techniques (see e.g. Soltani et al., 2013).  

In soil surveys, point data have been collected to describe soil variability. The original 

point data have been lost in the process to develop the currently available soil map. Only 

the representative soil profiles are included in the soil survey reports. As a result, most 

people use the discrete zones of the soil map. And few cases use interpolation to 

describe soil variability. 

 

2.2.3    Management variability 

Management data required by CGSMs include, amongst other things, the crop varieties, 

sowing and planting dates, fertilizer management, and irrigation data. Management data 

are highly variable in space and time. Because of this variability and the lack of proper 

surveying, data on the spatial variability of management is often unavailable at regional 

scale (Leenhardt et al., 2010; Godard et al., 2008; Maton et al., 2007; Mignolet et al., 

2007; Biarnès et al., 2004; Jagtap and Jones, 2002).  
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One possible approach is to use typical or recommended practices over the spatial extent 

(Godard et al., 2008; Yun, 2003; Faivre et al., 2000; Hansen and Jones, 2000). 

Alternatively, a limited number of discrete management zones can be identified. Experts 

draw the management zone based on their expertise and survey data (Therond et al., 

2010; Janssen et al., 2009; Zander et al., 2009; Godard et al., 2008).  

Alternatively, continuous surfaces can be assessed for some variables like sowing dates 

using remote sensing (e.g. Launay, 2002; Guerif and Duke, 2000). Such surfaces can 

also be determined using statistical or probability relationships that relate the 

management practices to other input variables such as rainfall. For example, sowing 

dates can be calculated based on soil and weather conditions using statistical 

relationships (e.g. Moen et al., 1994; Leenhardt and Lemaire, 2002). 

Another approach to describe the variability in management is by using farm typologies. 

In a farm typology, farms are grouped on the basis of various characteristics observed in 

a farm survey. It could be based on cropping patterns but also on resource endowment 

or farmers’ objectives (Mesiti and Vanclay, 2006, 1997; Thomson, 2001a, 2001b; 

Howden et al., 1998; Vanclay et al., 1998; Vanclay and Lawrence, 1995; van der Ploeg, 

1994). Although all farm types can be simulated, most studies only use the dominant or 

average farm type from each management zone (Salvi et al., 2012). This is comparable 

to the use of the dominant soil type for soil mapping units.  

To conclude, although different approaches exist, most studies use typical farm 

management to feed the CGSMs. This is probably due to specific properties of 

management data. Management is highly variable in space and time, and results from 

human decision-making. Predicting optimal decisions is one thing, and can be inferred 

from weather, soil and crop data, but predicting actual decisions, which, for a multitude 

of reasons, deviate from optimal rational decisions, is even much more difficult. Indeed, 

in comparison to other input data of CGSMs, the availability of management data is 

limited. 

 

2.2.4    Typical procedure 

The use of discrete zones is quite common to describe the variability in weather, soil, 

and management to assess regional patterns of crop yield. In such a case, individual 

weather, soil, and management zone maps are overlaid to create a map with zones with 

unique weather, soil and management conditions. The CGSM can be run for these so-

called simulation zones resulting in a map with discrete zones characterized by the 

resulting simulated crop yield. Figure 2-1 shows this typical procedure. Spatial scales 

and temporal resolutions of datasets commonly used as input data to feed CGSMs at the 

regional level are shown in Table 2-1. Weather data are collected for a limited number of 



 

 

points in space and expressed by daily data. Soil data are collected at the point level but 

in most cases derived from soil maps. Soil properties are relatively stable over time. For 

management data, we have to rely on ad-hoc farm surveys. Most studies use one set of 

management data for growing season. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1: Typical procedure to assess regional patterns of crop yield by crop growth simulation 

models with the use of discrete zones for input data. 

 

 

Table 2-1: Spatial scale and temporal resolution of datasets used to feed CGSMs at the regional 

level 

Input data                                         Spatial                     

scale a 

Temporal   

resolution 

 
 Reference  

 
Weather data 

 
Weather stations 

 
0.1-0.01 km2 

 
Daily 

 
Soltani et al., 2013; Therond et al., 

2010; Bakker et al., 2005; Hansen 

and Jones, 2000; Southworth et 

al., 2000. 

Soil data Soil profiles 1- 0.1 km-2 Once Bakker et al., 2005; Hansen and 

Jones, 2000. 

Soil units Units of 1- 5 km Once Angulo et al., 2012; Therond et al., 

2010; Jones et al., 2000. 

Management 

data 

Farm/ field 1-2 km-2 Once Angulo et al., 2012; Colbach, 2008; 

Angevin et al., 2002. 

a expressed as density of observations (for point data) and average size for zone data 

 

Crop 

growth 

simulation 

model 

Regional 

pattern of 

crop yield 

Thiessen polygons 

Derive representative 

management data 

Derive soil properties per 

mapping units + (PTF) 

Survey data 

Soil map + report 

Weather station 

data 

Available data Approaches Simulations  Model output 

Discrete zones with 

representative daily 

weather data 

Discrete zones with    

soil properties 

Single representative 

management data 

Approaches output 
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2.3   New developments 

For quite a while, the use of discrete zones and limited use of auxiliary data is quite 

common to describe the variability in weather, soil, and management. The discrete 

zones allow for the assessment of regional patterns of crop yield with a limited number 

of simulation runs, albeit that the spatial pattern will clearly reflect the soil pattern and 

the weather and management zones. In the past, limiting the number of simulation runs 

was an important argument, due to the limited computer capacity. However, with the 

computer limitations largely resolved, it becomes more interesting to work with 

continuous surfaces of input data. Availability of auxiliary data and new interpolation 

techniques increasingly allow for the derivation of continuous surfaces of the input 

variables.  

In this section we review the new developments in obtaining continuous surfaces of 

weather, soil, and management data. We limit ourselves to the creation of such surfaces 

from existing data, and do not discuss new acquisition techniques like proximal sensing 

etc. The opportunities for improving the description of spatial variability differ between 

the various domains of input data, which is due to the specific properties of each of the 

input data. 

 

2.3.1   Weather data 

The limited number of observation points and the high temporal resolution for weather 

data limits the application of simple interpolation techniques like kriging. The extent of 

the study area determines the number of weather stations that are available for a 

particular study. For example, if the study involves a small catchment (e.g. Soltani et 

al., 2013) the number of weather stations may be very limited (less than 5). Studies at 

the national scale may be able to use a relatively large number of weather stations 

ranging from 100 (for countries like Germany and Ecuador) up to 1200 for the US. The 

implications are that interpolation techniques like kriging are only possible in studies 

with a larger extent. The interpolation techniques like regression-kriging may be 

supported through the use of auxiliary data derived from spatially referenced 

environmental data layers such as DEMs, such as the global 90-m resolution DEM from 

the Shuttle Radar Topography Mission (Jarvis et al., 2008). Moreover, remote sensing 

data can be considered as auxiliary data to use in the interpolation. For example, 

remotely sensed cloudiness can be used as a proxy for radiation. With sufficient 

observations the auxiliary data allow for advanced interpolation techniques like 

regression-kriging. If the number of weather stations is limited and the auxiliary provide 

a continuous description of the co-variable, a regression is also possible. The regression 



 

 

equation can subsequently be applied to the continuous surface of the auxiliary data to 

create a continuous surface of the target variable. Weather data itself can also be 

observed by satellites (e.g. Hansen and Jones, 2000). The big advantage of these 

measurements is that they directly result in continuous surfaces of weather conditions. 

Interesting enough there is very little use of mechanistic models to create continuous 

surfaces of weather data (e.g. Baigorria, 2005) to feed CGSMs.  

 

2.3.2   Soil data 

Currently, with improved tools like geographical information systems (GIS) and field 

computers, more point data are saved during soil surveys than before. Moreover, 

because soil data do not change much over time, observations typically accumulate over 

time. The increased availability of soil observations allows for moving from discrete 

zones to continuous surfaces by means of interpolation. If auxiliary data are available 

they can also be used to improve the interpolation. An advanced form of interpolation, 

where the use of auxiliary data is formalized, is digital soil mapping (DSM) (see e.g. 

Kempen et al., 2011). It applies pedometric methods to map (predict) the spatial 

variability of soils (Grunwald, 2006; McBratney et al., 2003; McBratney et al., 2000). 

The conceptual framework of DSM is based on the main soil forming factors: climate, 

organisms (mainly vegetation), relief, parent material, and time (Jenny, 1941). DSM 

formalizes the relationships between soil properties and the soil forming factors by 

deriving empirical relationships between observations on soil properties and auxiliary 

variables that represent the soil forming factors (McBratney et al., 2003). These auxiliary 

variables are DEMs, satellite images, and geology maps. Once quantified by a statistical 

model, the relationships between soil and soil forming factors can be used to predict soil 

properties at locations where field observations are lacking but auxiliary data are 

available. Soil spatial variability can be represented with different models of spatial 

variation. It is generally modelled as a continuous phenomenon with a continuous model 

of spatial variation (e.g. kriging) but discrete or mixed models of spatial variation can be 

applied as well (Heuvelink and Huisman, 2000; Heuvelink, 1996). However, DSM has 

drawbacks of its own. The standard procedures do not provide information on the three-

dimensional variability of the soil properties as it is provided by the representative soil 

profiles for the discrete zones. Recently, few studies have combined general pedological 

knowledge with interpolation methods to map the three-dimensional variation of soil 

properties using depth functions (Kempen et al., 2011; Malone et al., 2009; Meersmans 

et al., 2009; Mishra et al., 2009). Much more research is needed to make these tools 

applicable for the wide range of soil properties in conjunction with CGSMs. 
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Direct observation of soil properties by satellites is limited to topsoil, and only for cases 

where the soil is bare and not too many clouds occur. Finally, there is very little use of 

improved mechanistic models to create continuous surface of soil properties (e.g. Finke, 

2012; Minasny and McBratney, 2001) to feed CGSMs.  

 

2.3.3    Management data 

The limited number of observation data and the high variability of management data at 

short distances limit the application of simple interpolation techniques like kriging. For 

management practices that depend on individual farmer decisions rather than on 

physical properties (e.g. fertilizer application), it is often difficult to determine 

relationships with auxiliary data. Thus advanced interpolation techniques involving 

auxiliary data are not expected to give good results and this management data can only 

be derived from farm surveys. Some management data shows reasonable relationships 

with auxiliary data. For example, Sacks et al. (2010) predicted the global spatial 

patterns of maize and spring wheat planting dates reasonably well by assuming a fixed 

temperature at planting. The relationship with temperature can also be useful to create a 

continuous surface of the planting date. Moreover, continuous surfaces can be assessed 

for some variables like sowing dates and crop choices using remote sensing (e.g. 

Launay, 2002; Guerif and Duke, 2000). However, this only results in ex post 

assessments, and is not useful for future predictions. Much more research is needed to 

create continuous surface of management data by models (possibly agent-based 

models) to feed CGSMs.  

 

2.4   Decision rules 

Only in exceptional cases, data are collected at the proper resolution for the application 

of the CGSMs at the regional level. If this is not the case, one will often describe the 

spatial variability through a subdivision of a region into discrete zones. However, 

increasingly the CGSM’s input data take the form of continuous surfaces, which allow for 

better crop yield estimates. This development is due to the development of new 

interpolation techniques, the accumulation of data sources (in digital form), and 

inclusion of auxiliary data. This review shows that there is a wide array of methodologies 

available, although criteria for the selection of the methods are often unclear. Which of 

these should be used depends on a number of questions whose answers lead to the 

decision rules denoted in Figure 2-2. These criteria followed largely from literature 

review and are discussed in the following. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2-2: Decision rules for selecting appropriate approaches to describe the spatial variability of 

input variables to feed crop growth simulation models at the regional level (scale effects not 

included). 

 

(i)  Are observations of the input variable adequate to estimate semivariograms? 

The approaches to create continuous surface variables are referred to as “geostatistics” 

(Goovaerts, 1997; Journal and Huijbregts, 1978). Geostatistical methods can be 

considered interpolation techniques. To apply geostatistics, a “semivariogram” must be 

estimated (see Figure 2-3), which shows the magnitude of spatial variation as a function 

of distance (Goovaerts, 1997). The semivariograms can only be estimated if the number 

of observations of the variable is large enough (Webster and Oliver, 1992) and has an 

acceptable point density. In general, at least 50 observations are required, of which at 

least some pairs are at close distances in order to correctly estimate the nugget (e.g. 

Tabachnick and Fidell, 1996; Comrey and Lee, 1992). If this is not the case, other 

interpolation techniques such as nearest neighbour and inverse distance weighting that 

do not use the semivariograms can be used to generate input data as discrete zones.  

 

 

Available data 

Are observations of the               

input variable adequate (N ≥ 50) to 

estimate semivariograms?  

 

   Are there auxiliary data 

correlated to the target 

variable? 

 

 Is there spatial                

correlation in the observations 

of the input variable? 

 

Yes 

No 

Discrete zones  (e.g. nearest neighbor, inverse distance weighting, expert judgment) 

 Is there spatial                     

correlation in the residual of the 

regression analysis? 

 

Continuous 

surface: . Kriging 

 

. Regression 

 

. Regression-kriging 

 

   Are there auxiliary data 

correlated to the target 

variable? 

 

No 

No 

Yes 

No 

Yes 

Yes 
No 

Yes 

No Yes 
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The advantage of geostatistical methods over nearest neighbour and inverse distance 

weighting interpolation is that a measure of accuracy of the estimate is provided. The 

difference between them is that with nearest neighbour and inverse distance weighting 

interpolation the weights assigned to sample data depend solely on the sample 

configuration, whereas with geostatistics methods the weights depend on both the 

sample configuration and a model of spatial variation estimated from the data (i.e. 

semivariogram).  

 

(ii)  Is there spatial correlation in the observations of the input variable? 

Once the semivariogram is made, one can determine the spatial correlation in the data. 

The idea underlying all the interpolation methods is that spatial autocorrelation between 

two observations declines with the distance between these observations. Therefore, 

variance increases with increasing distance, until the overall variance of the variable is 

achieved, termed the ‘‘sill’’, which happens at a distance termed the ‘‘range’’. The range 

represents the distance beyond which there is no spatial autocorrelation. For very small 

distances the variance, termed the ‘‘nugget’’, although a minimum, may still be non-

zero; it can be caused by a discontinuous surface or by measurement error (Goovaerts, 

1997). Figure 2-3 shows a schematic semivariogram, adapted from Eleveld and van der 

Woerd (2006). The “nugget-to-sill” ratio and the “range-to-extent” ratio can be used to 

explain (classify) the spatial correlation. The lower “nugget-to-sill” ratio for observed 

data indicates a stronger spatial correlation of the input variable.  For instance, 

Cambardella et al. (1994) classified spatial correlation of soil properties by using the 

“nugget-to-sill” ratio as follows: a ratio more than 75% indicates a weak spatial 

correlation; a ratio less than 25% indicates a strong spatial correlation; and a ratio 

between 25% and 75% indicates a moderate spatial correlation. The larger “range-to-

extent” ratio for observed data indicates a stronger spatial correlation of the input 

variable. When the variable exhibits spatial correlation, the resultant semivariogram can 

be used to interpolate and predict values in unobserved regions. In doing so, all 

unknown observations that lie within the range of known observations, are estimated 

using the information of the known observations. More details regarding the methods 

that use the semivariogram can be found in Atkinson and Lewis (2000) and Isaaks and 

Srivastava (1989).  

  

 

 

 

 

 



 

 

 

Figure 2-3: A schematic representation of a semivariogram, adapted from Eleveld and van der 

Woerd (2006). 

 

(iii)  Are auxiliary data correlated to the target variable? 

In the last decades there has been a surge of auxiliary data including satellite images 

and DEMs. If the auxiliary data is ratio or interval, geostatistical methods involving 

auxiliary data e.g. Regression-kriging (Bourrenane et al., 1996) and regression (e.g. 

Brus, 2000) may be used to create continuous surface of variables. If the auxiliary data 

is nominal, it can be still used for defining discrete zones (Dobson, 1990). The use of 

auxiliary data will be more successful when its coverage is higher (it should have a 

higher coverage than the variable to be described spatially), and when it is more closely 

related to the input data of CGSMs (the auxiliary data should explain some of the 

variance of the input data of CGSMs). Last but not least, the ability of the researcher for 

identification of potential co-variables as such is to be mentioned (process-knowledge) 

(Bierkens et al., 2000). For more extensive reading about the use of auxiliary data, see 

Brus (2000), Brus and De Gruijter (1997), and Goovaerts (1997). 

 

(iv) Is there spatial autocorrelation in the residuals of the regression analysis that relates 

the auxiliary data to the target variable? 

The relationship between the observations of the input variable and the related auxiliary 

data is quantified using regression analyses. Afterwards, the residuals are defined as the 

real observed input variable minus the value predicted by regression. The spatial 

correlation in the residuals of the regression can be characterized by a semivariogram. 

The “nugget-to-sill” ratio and the “range-to-extent” ratio can be used to explain 

(classify) the spatial correlation as described in section (ii). In the case of spatial 

correlation in the residuals from the regression analysis, this suggests that omitted 

explanatory factors exhibit spatial autocorrelation. In such a case geostatistical methods 

such as regression-kriging can be applied so as to mimic this omitted explanatory factor. 

In practice, the residuals from the regression analysis are interpolated with kriging, after 
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which the final predicted value is obtained by summing the value predicted by regression 

and the interpolated residuals (Odeh et al., 1995). 

When there is no spatial correlation in the residuals from the regression analysis, a 

regression suffices to describe spatial variation of the input data. For example, if the 

number of weather stations is limited, but an auxiliary variable provides a continuous 

description of the surface in between the observations of the target variable, a 

regression is a good method to obtain the values in between these observations. That is, 

the regression equation is applied to the continuous surface of the auxiliary data to 

create a continuous surface of the target variable.  

 

2.5    Discussion and conclusion 

Decision rules concerning appropriate approaches to describe the spatial variability of 

variables to feed CGSMs at the regional level are presented in Figure 2-2. To structure 

the review of approaches that have been used in the literature we distinguished between 

two categories: (i) where input data are generated as discrete zones; and (ii) where 

input data are generated as continuous surfaces. In the case of discrete zones the CGSM 

simulations are done for individual discrete zones. In the case of continuous surfaces the 

CGSM simulations are done for individual grid cells. Obviously, the latter approach is 

more sophisticated, and likely to result in more accurate spatially-explicit yield 

predictions. However, in order to generate continuous surfaces, a few conditions need to 

be met, which are outlined in the decision tree in Figure 2-2. Furthermore, creating 

continuous surfaces requires more effort, time, and information. The effort may not be 

worth it if (i) the results are deemed to be just as inaccurate as the discrete zones, or 

(ii) the CGSM is hardly sensitive to the input variable. Below, we discuss these two 

aspects, which should contribute to the information based on which the best approach 

for creating the required CGSM input data is selected. 

 

(i)  The accuracy of the presentation of the spatial variability of input data by various 

approaches is influenced by the accuracy of the original available data, density and 

spatial pattern of the original available data, characteristics of the study area, and the 

expected accuracy from a particular approach used to describe spatial variability of input 

data. The resulting accuracy in the spatial variability of input data generated by various 

approaches is specific to each case study and difficult to generalize. For example, 

continuous surfaces often create a false sense of accuracy, which is less so for discrete 

zones: with these everyone sees that these are simplifications. With continuous surfaces 

that are derived from shaky data with weak (auto)correlations, one does not see that the 



 

 

results make probably little sense. It is the user’s responsibility, then, to prevent 

introducing the false sense of accuracy and precision unwarranted by the available data. 

Therefore, if we are able to delineate proper zones on the basis of auxiliary data, this 

may be preferred above an interpolation to create a continuous surface with a limited 

number of observations. 

(ii)  The sensitivity of the CGSM outcomes to a particular input variable is an 

important factor in determining how much effort one wants to spend on generating an 

accurate surface. A sensitivity analysis can help to distinguish important from less 

important variables driving crop yield at the regional level. The approach to create a 

surface of a variable can be adapted to the sensitivity of the model to that particular 

variable. Few studies have explored the required level of detail for weather and soil 

characteristics (e.g. Olesen et al., 2000; Easterling et al., 1998). This is specific to each 

case study and difficult to generalize.  

 

To conclude, the selection of possible approaches depends on the data availability, the 

spatial variability, the temporal variability, the correlations with other variables, the data 

acquisition methods, the expected accuracy from a particular approach used to describe 

spatial variability, and the sensitivity of the CGSM to the variable. This sensitivity makes 

every decision context specific. At the regional level CGSMs are typically fed by the input 

data that are generated as discrete zones. However, increasingly the input data are 

presented as continuous surfaces. This has the following reasons: (i) the surge of 

available auxiliary data including satellite images and DEMs; (ii) the accumulation of 

data sources (in digital form); and (iii) the development of interpolation techniques such 

as DSM that effectively uses auxiliary data. Generally, spatially-explicit regional patterns 

of yield are less accurate when done for discrete zones compared to continuous surfaces, 

although one should be aware of a false sense of accuracy, when continuous maps are 

made by unreliable interpolations. The most suitable method should be selected in a 

structural way, using decision rules as presented in this chapter, rather than to limit 

ourselves in an early stage to the typical procedures such as discrete zones. 
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3      How to use field-level crop growth simulation 

models to simulate regional patterns of crop yield? 

 

 

 

 

 

 

 

There is an increasing demand for spatially explicit predictions of crop yield at the regional scale. 

Two different approaches exist to generate regional patterns of crop yield using crop growth 

simulation models (CGSMs): (i) run the CGSM for a series of points distributed throughout a region 

after which the simulated crop productions can be interpolated to create a continuous surface of 

crop yield (calculate first, interpolate later; CI), and (ii) create surfaces for each of the input 

variables individually, then run the CGSM for each location (grid cell) to create a continuous 

surface of crop yield (interpolate first, calculate later; IC). We evaluate and compare these two 

approaches, by applying a CGSM for potato to two watersheds in the Carchi province in Northern 

Ecuador. We examine scaling effects that arise from spatial variability in soil properties by using 

different supports. Model performance was compared with interpolated, observed yields at 

resolutions of 100 m and 400 m. Results demonstrate that the order of calculation and 

interpolation was of major importance, while aggregation had a minor effect on the regional 

patterns of potato yield. The former is probability due to the non-linearity of CGSM and the 

difference in the spatial dependency of individual inputs. The latter is probably due to the absence 

of local extremes, which is due to the gradual trends in soil properties in the volcanic ash soils of 

Carchi (being a result of the soil forming processes, but also a consequence of the interpolation 

method, kriging). The RMSD in the normalized yields was 0.79 for the CI approach and 0.99 for 

the IC approach at 100 m. For the aggregation to 400 m, the RMSD was 0.74 for the CI approach 

and 0.99 for the IC approach. The spatial comparison of regional patterns of crop yield shows that 

regional yield patterns generated by different procedures (i.e. different approaches and different 

supports) were similar, while, non-spatial comparisons of different yield patters in terms of RMSD 

showed better performance of the CI approach than the IC approach. From an uncertainty 

propagation and variability point of view it is in general preferable to calculate first before 

interpolation.  

 

 

Based on: Soltani, A., Bakker, M.M., Stoorvogel, J.J. and Veldkamp, A. How to use field-level crop 

growth simulation models to simulate regional patterns of crop yield? To be submitted to 

Agroforestry Systems. 



 

 

3.1  Introduction 

The demand for spatially-explicit predictions of regional crop-yield patterns is increasing. 

Policymakers need these predictions for e.g. regional development plans, the 

assessment of climate change impacts, and the reduce the threat of regional imbalances 

between food supply and demand (Lobell and Ortiz-Monasterio, 2007; De Wit et al., 

2005; Jagtap and Jones, 2002). The support level at which model outputs generally 

become interesting for policymakers is at the level larger than the field support. 

Agricultural census, other forms of direct surveys, or remote sensing imagery (Khan et 

al., 2010; Launay and Guerif, 2005) allow to assess spatial patterns of crop yield, but 

this will only provide insight ex post. An alternative approach to assess a priori and/or 

future ranges of alternative scenarios spatial yield patterns at the regional scale is the 

application of modelling approaches such as crop growth simulation models (CGSMs). 

Since, no process-based CGSMs have been specifically developed to estimate spatial 

patterns of crop yield at the regional level, field-level CGSMs are frequently being used 

to estimate the regional patterns of crop yields (e.g. Launary, 2002; Gomez and Ledoux, 

2001; Faivre et al., 2000).  

The most commonly applied methodology is to run a CGSM for a series of points 

distributed throughout a region after which the simulated crop yields can be interpolated 

to create a continuous surface representing the spatial patterns of crop yield (Leterme et 

al., 2007; Sinowski et al., 1997; Bosma et al., 1994). This methodology, referred to as 

‘calculate first, interpolate later’, is very appealing as the CGSM is applied at the spatial 

scale for which it has been developed. However, this approach requires high quality 

weather, soil, and management data to be collected at the same point locations. As this 

is generally not the case, required data need to be estimated from surrounding 

observations. 

Alternatively, we can create continuous surfaces for each of the variables individually.  

The CGSM can then be run for each location (grid cell) to create a continuous surface 

representing the spatial patterns of crop yield (Van Bodegom et al., 2002; Heuvelink and 

Pebesma, 1999; Bosma et al., 1994). This approach is referred to as ‘interpolate first, 

calculate later’. The advantage is that the procedures followed for the different variables 

can be specifically designed for the available data. At the same time the procedures can 

be adapted to the sensitivity of the model to that particular variable.  

 

So far, the two approaches, i.e. ‘calculate first, interpolate later’ (CI) and ‘interpolate 

first, calculate later’ (IC), have been applied in various studies (Leterme et al., 2007; 

Tong et al., 2007; Van Bodegom et al., 2002; Bosma et al., 1994; Addiscott and Bailey, 

1990). The results demonstrate considerable discrepancies. In theory the two 
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approaches are expected to produce the same result when the CGSM is linear, and the 

interpolation method is linear (e.g. Heuvelink and Pebesma, 1999). When the model 

and/or interpolation method are nonlinear, the IC and CI approaches produce different 

results (Groot et al., 1998; Heuvelink, 1998; Addiscott and Tuck, 1996; Addiscott, 

1993). It can be quite difficult to anticipate how this non-linearity will exactly affect the 

differences between the two approaches, but one can expect the deviation to be 

proportional to the degree of non-linearity of the model or interpolation method 

(Addiscott and Tuck, 2001). 

Hence, an empirical comparison of the two approaches is needed to determine the most 

suitable approach experimentally, for a specific situation. Although such a comparison 

has been done before (e.g. Bosma et al., 1994), this was only in a statistical sense (i.e. 

the root mean square difference) without considering the spatial pattern. Moreover, to 

our best knowledge, none of previous studies accounted for the effect of the model 

calculations and interpolations sequence at supports larger than the field support. Spatial 

aggregation of field support is needed to obtain the regional pattern predictions, and is 

likely to further exacerbate the differences between the IC and CI approaches. 

 

We studied the effect of the CI and IC approaches on spatial crop-yield patterns at 

different supports. The SUBSTOR-potato model (Ritchie et al., 1995) was used to model 

the spatial pattern of potato yield in the Carchi province in Northern Ecuador. The Carchi 

province was chosen as a study area because the SUBSTOR-potato model (Ritchie et al., 

1995) was calibrated and validated in this area. The study focused particularly on the 

soil conditions for which a relatively large dataset was available.  

The specific objective was (i) to find the influence of the sequence of model calculations 

and interpolations (i.e. CI and IC) on the prediction of spatial patterns of potato yield in 

the Carchi province at the regional scale, and (ii) to evaluate the persistence of the CI 

and IC results with different supports, both spatially and non-spatially. Scaling effects of 

different supports were examined by interpolation of either input or output at a spatial 

resolution of 100 m and then aggregate them to 400 m. The model performance was 

compared with interpolated, observed yields at 100 m and 400 m supports. 

 

3.2   Materials and methods 

3.2.1  Study area 

The agricultural system in the Carchi province, largely situated in the Andes, is 

dominated by the production of potatoes and milk. The research focused on an area of 

approximately 36 km2, comprising two watersheds, ranging in altitude between 2750 



 

 

and 3450 m above sea level, located at 77˚50' Western longitude and 00˚37' Northern 

latitude (Figure 3-1). Being close to the equator there is virtually no change in average 

monthly temperature, which ranges between 9 and 12˚C. However, daily temperatures 

can vary by more than 10˚C. This large swing is caused by the complex mountainous 

topography, even allowing for severe frost during clear skies at night. Average rainfall 

varies between 950 and 1300 mm yr-1, and increases with elevation. Volcanic ash soils 

with their typical thick (about 120 cm), black A-horizon have developed in relatively 

young volcanic ash deposits. The soils are rich in organic matter (5-14 %) content and 

have a high infiltration capacity. Generally, at higher elevations (above 3000 m.a.s.l.) 

younger ash deposits are predominant. The geographic position and climatic conditions 

allow for continuous plant growth, making the province a very productive agricultural 

region. The potato farming system in Carchi is intensive and commercial with yields of 

up to 21 t ha-1 as a result of agro-ecological conditions in combination with the access to 

national and international markets (Crissman et al., 1998). The intensive and continuous 

production farming does not only result in high productivity but also in a high pest- and 

disease-pressure, resulting in high rates of pesticide use. Farming in Carchi evolved 

towards a market-oriented potato-pasture system based on a three to five year 

rotational system. Farmers follow this rotation with one or two years of “rest” in 

spontaneously occurring grassland for dairy and meat cattle (Crissman et al., 1998). Due 

to the intensive form of agriculture, the system strongly depends on external inputs to 

maintain soil fertility and control pests. Essentially, all potato growers in Carchi used 

chemical fertilizers, with an average application rate being 138 kg ha-1 of Nitrogen, 327 

kg ha-1 Phosphorus, and 163 kg ha-1 Potassium. In addition, farmers apply high rates of 

Carbofuran, a highly toxic pesticide (Crissman et al., 1998). Intensive input use reduced 

the gap between potential, nutrient limited yield and the actual yield. Hence, potato 

growth in Carchi can be usefully modelled by CGSMs. 

 

3.2.2  Data 

This study makes use of a 2-year dynamic survey including 40 farms with a total of 187 

agricultural fields with 202 observations of potato yields (Figure 3-1; Crissman et al., 

1998). The survey includes the detailed registration of crop yields and agricultural 

management such as planting date and fertilizer applications. Different potato varieties 

are grown in the study area. To overcome this variability in potato varieties, the yield 

data are expressed as quality adjusted potato yield based on the relative price levels of 

the different potato varieties (Crissman et al., 1998). Weather data, including rainfall, 

maximum and minimum temperature, and solar radiation were recorded daily at the 

weather stations of San Gabriel, El Angel, and El Voladero around the study area (Figure 
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3-1). A digital elevation model (DEM), based on 1:50,000 topographic maps, was 

available for the area (50 m grid size, 2.5 m vertical resolution). For soil properties, a 

database of 256 soil profiles with full profile descriptions (Meyles and Kooistra, 1997) 

was used. Table 3-1 provides an overview of the data used as input for the CGSM. 

 

3.2.3  The crop growth simulation model 

In this study we used the SUBSTOR-potato model (Ritchie et al., 1995) to obtain 

spatially explicit predictions of potato yields at the regional scale, as a function of 

environmental factors. SUBSTOR is a CGSM that simulates the physical, chemical, and 

biological processes in the potato plant. SUBSTOR is available within the Decision 

Support System for Agro-technology Transfer (DSSAT) (Jones et al., 1998). The details 

of SUBSTOR are described by Griffin et al. (1993) and Ritchie et al. (1995). Bowen et al. 

(1999) and Clavijo (1999) calibrated and validated SUBSTOR for Andean conditions 

using experimental data from the Carchi area. The weather, soil, and management data 

considered in the application of SUBSTOR are listed in Table 3-1. Farm management 

data from the survey showed a large variability in terms of planting date and fertilization 

(Crissman et al., 1998), but did not show a clear spatial autocorrelation. Therefore, it 

was decided to use representative management data with a nitrogen application of 168 

kg ha-1 season-1 planted on February 15 for this study.  

 

 

 
Figure 3-1: Overview of the Carchi study area in Northern Ecuador showing altitude, survey fields, 

soil observations, and weather stations.  

 



 

 

Table 3-1: Total set of variables, with average values for weather, soil, and potato management in the Carchi study area, used by the CGSM. 

Weather Soil (0-50 cm) Management 

 
Rainfall (mm/day) 

 
SLOC 

 
Soil organic carbon (%)  

 
4.7 

 
Planting date                   

 
Feb 15 

       Average annual   3.24 SLCL Clay (%)        28 Fertilizer (kg N h-1 season -1)  168 

       Growing season  3.95 SLLL Water content at wilting point (cm3 cm-3)      0.30 Harvest date               August 15 

Maximum Temperature (˚C) SDUL Water content at field capacity (cm3 cm-3)   0.46    

       Average annual   14.3 SSAT Water content at saturation (cm3 cm-3)   0.50    

       Growing season  15.0 SBDM Bulk density (cm h-1)  1.03    

Minimum Temperature (˚C) SLNI Total Nitrogen (%)  0.4   

       Average annual  4.6 
SSKS Saturated hydraulic conductivity (cm h-1)                   0.1   

       Growing season  4.6 
SCEC Cation exchange capacity   25   

Solar radiation (MJ m-2 d-1) 
SLHW pH in water                         5.4    

       Average annual  13.2 
SLHB pH in buffer                        4.5    

       Growing season 13.0 
SLSI Silt (%)                                  31    
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3.2.4   Calculate first, interpolate later 

For the CI approach, potato yields were simulated for the original 256 soil profiles using the 

CGSM (Figure 3-2). Since weather data was only recorded at the three weather stations, 

weather data was interpolated to a 100 m grid between the three meteorological stations 

using the DEM assuming a linear relationship with altitude. The 100 m grid cells roughly 

correspond to field size. Subsequently, potato yields were simulated using the observed soil 

properties, interpolated weather data, and representative management data. Finally, the 

simulated yields were interpolated using ordinary kriging. Ordinary kriging is often used for 

spatial interpolation of point data as an optimal interpolator in ecological studies (e.g. Voltz 

et al., 1990). Hereto, the semivariogram of yield data had to be determined, which 

characterizes the spatial autocorrelation of the data (Goovaerts, 1997). More details can be 

found in Isaaks and Srivastava (1989) and Atkinson and Lewis (2000). The quality of the 

interpolation was evaluated by a cross validation in which the Root Mean Squared Different 

normalized to the mean of the observed values (CV-RMSD) was used and calculated as: 

        
√∑ ( ̂    )

  
    ⁄

 ̅
                                                                  (3.1) 

Where    is the simulated yield,  ̂  is the interpolated, simulated yield at location i,  ̅ is the 

average simulated yield, and n is the number of observations. The cross validation involved 

consecutively removing a data point, interpolating the value from the remaining 

observations and comparing the interpolated value with the simulated point value (Mueller 

et al., 2004). Finally, the patterns that were generated were aggregated to a larger support 

of 400 m to explore the effect of aggregation on the IC and CI approaches. 

 



 

 

 

 
Figure 3-2: Overview of the procedures to evaluate the regional patterns of potato yields in the Carchi 

study area in Northern Ecuador. 

 

3.2.5   Interpolate first, calculate later 

For the IC approach, not only the weather data but also the individual soil properties were 

interpolated to generate a continuous surface of the necessary input for the CGSM (Figure 

3-2). The weighted average of the soil properties over the top 50 cm was calculated and 

interpolated using ordinary kriging to a 100 m resolution grid. The semivariogram of soil 

properties had to be determined before interpolation. Then, the quality of all the 

interpolated soil properties at a 100 m grid was evaluated by a cross validation similar to 

Eq. (3.1). Only the top 50 cm of the soil profile, i.e. the rooting depth, was considered as 

this was found to be driving the potato production in a sensitivity analysis. In the sensitivity 

analysis, soil depth was altered by increasing or decreasing its value by its standard 

deviation from its mean while holding the other model input variables constant (see e.g. 

White et al., 2000; Box et al., 1978). After each change in soil depth, the CGSM was run 

and the simulated response in crop yield was evaluated.  

Returning to the IC approach, the CGSM was run for all the individual grid cells. Next, the 

grids with soil properties were aggregated to 400 m grids to evaluate the performance of 

the CGSM at a larger support. Also here, the CGSM was run for all the individual grid cells.  
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In general, with interpolation and / or aggregation variability of data will decrease and local 

extremes will be levelled out (Baron et al., 2005; Bodegom et al., 2002; Bouma et al., 

1996). Depending on the spatial distribution, this effect will be stronger for some variables 

than for others. As a result, correlations between variables may change with interpolation 

and / or aggregation. Such changes will have implications for model outcomes and may also 

be a cause of difference between the results of the CI and IC approaches (Van Bodegom et 

al., 2002; Heuvelink and Pebesma, 1999). Therefore, three Pearson correlation matrices 

were calculated to indicate the degree of colinearity between all soil properties at point 

level, at 100 m, and at 400 m resolutions. 

 

3.2.6    Inter-comparison of the results 

The various analyses provided us with four maps describing the patterns in potato yields 

with differences in approaches (CI and IC) and supports (100 m and 400 m). In order to 

evaluate the outcomes, a comparison with observed yields was done. Therefore, the 

observed yields were also interpolated using ordinary kriging. Yield data typically present a 

significant variability at short distances due to management differences (on top of the agro-

ecological differences that are also considered in the CGSMs). Therefore, we paid specific 

attention to the semivariogram before interpolating to evaluate the spatial dependency. The 

quality of the interpolated, observed yield at a 100 m grid was evaluated by a cross 

validation similar to Eq. (3.1). To compare patterns at the appropriate support the 

interpolated, observed yields were also aggregated to a 400 m grid. Due to the wide range 

of potato varieties, the yield maps based on the actual observations are expressed in quality 

adjusted potato yields. However, the simulated potato yields are expressed in nutrient and 

water limited yields. Given the fact that we are interested in patterns in the potato yield and 

to make the maps inter-comparable, all six maps were normalized as ( ̂   ̅)    ⁄  with  ̂ the 

estimated yield (either observed or modelled yield),  ̅ the average yield over the entire 

map, and     the standard deviation of the yield for the map. The maps are compared in 

terms of the Root Mean Squared Difference (RMSD). The RMSD is calculated as: 

     √
∑ ( ̂    )

  
   

 
                                                             (3.2) 

where    is the interpolated, observed yield,  ̂  the model-based yield for cell i, and n is the 

number of cells. To compare visually the simulation maps of the CI and IC with the 

interpolated, observed yield, the simulated maps from the two approaches were grid-by-

grid subtracted from the observed-interpolated yield map at each resolution to reveal the 



 

 

differences (over- or underestimations) in predicted values. Moreover, spatial dependency 

of the CI and IC results were assessed in terms of semivariogram parameters (i.e. nugget-

to-sill ratio and range) and Moran’s I (Li et al., 2007; Moran, 1950). Moran’s I values range 

from −1 (indicating perfect dispersion) to +1 (perfect dependency). A zero value indicates a 

random spatial pattern. Hereto, the grids of the CI and IC maps were converted to point 

data and then the semivariogram and Moran’s I were applied to the point data using ArcMap 

9.3. 

 

3.3    Results and discussions 

3.3.1  Non-spatial comparison of simulated yields and observed yields 

The CI approach vs. IC approach 

In the Carchi study area, the CI maps presented smaller RMSD values than the IC maps. 

The RMSD of the normalized yields was 0.79 for the CI approach, 0.99 for the IC approach 

at 100 m. It is assumed that non-linearity of the model plays a key role in difference 

between the results of the CI and IC approaches. Moreover, there are other factors 

including the spatial dependency of soil properties, and the correlations between the soil 

properties that may play a role in difference between the results of the CI and IC approach 

(see e.g. Van Bodegom et al., 2002; Addiscott and Tuck, 2001; Heuvelink and Pebesma, 

1999). Anticipating how these factors’ interactions will affect the differences between the 

two approaches is difficult. Therefore, in this study I took an experimental approach to 

understand and consider the role of these different factors in the differences between the 

two approaches. 

In the Carchi region, all soil properties were characterized by a nugget-to-sill ratio less than 

41%, a range of about 3.5 km, and a CV-RMSD of 8 - 10 %. The large range (compared to 

the size of the study area) was expected in the Carchi study area as most soil properties 

vary gradually with climatic differences and with various ash deposits (Crissman et al., 

1998). The individual inputs (i.e. soil properties in this case) showed different spatial 

dependency. Although these differences were small, they can explain the difference 

between the results of the CI and IC approach. This is because interpolation of the 

individual inputs can take these differences into account whereas spatial interpolation of the 

output cannot (see e.g. Heuvelink and Pebesma, 1999). On the other hand, the output of 

the CGSM had an even larger range (>3.5 km, with a nugget-to-sill ratio of 38%, and a CV-

RMSD of 11%) than the ranges of soil properties. This may be due to the general trend in 
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weather variables and also effect of the nonlinear model. Interaction of model non-linearity 

with the spatial dependency of inputs increases the range in the CI approach (Leterme et 

al., 2007). 

 

A Pearson correlation matrix was calculated to indicate the degree of colinearity between all 

soil properties at point level (Table 3-2). The matrix shows that some of soil properties are 

strongly correlated. Since correlations between variables may change with interpolation, this 

is a potential cause for differences between the CI and IC approaches. Therefore, a Pearson 

correlation matrix was also calculated to indicate the degree of colinearity between all soil 

properties at 100 m resolution (the same result as Table 3-2 was obtained). However, in 

this case study, the data correlation between all soil properties did not change from point 

level to 100 m resolution. It is therefore concluded that in this case study the difference 

between the results of the CI and IC approaches was caused by the non-linearity of the 

model and the differences in the spatial dependency of various soil properties. 

Although smaller values of RMSD mean that the CI approach performed better than the IC 

approach, the IC approach should not automatically be discarded. Especially when the 

CGSM requires high-quality weather, soil, and management data that are not collected for 

the same point locations, and available data still need to be estimated from surrounding 

observation points. For example, in this case study, weather data was only recorded at the 

three weather stations, and the only possible option was to interpolate weather data 

between the three meteorological stations. To generate reliable model results for regional 

application and/or estimate associated uncertainties, it is important to understand and 

consider the effects of such data interpolation on simulation results. 

  



 

 

Table 3-2: Pearson correlation coefficients between soil properties in the crop growth simulation model 

 

 SBDM SCEC SDUL SLCL SLHB SLHW SLLL SLNI SLOC SLSI SSKS SSAT 

SBDM 1            

SCEC -0.44 1           
SDUL -0.45 0.86 1          
SLCL 0.19 -0.08 -0.35 1         
SLHB 0.77 -0.47 -0.63 0.49 1        
SLHW 0.79 -0.52 -0.66 0.62 0.88 1       
SLLL -0.47 0.85 1 -0.36 -0.64 -0.66 1      
SLNI 0.06 0.33 0.52 -0.58 -0.31 -0.42 0.53 1     
SLOC 0.15 0.35 0.51 -0.51 -0.20 -0.33 0.51 0.96 1    
SLSI 0.41 0.08 0.04 0.21 0.34 0.26 0.02 0.40 0.49 1   
SSKS 0.68 -0.84 -0.89 0.32 0.73 0.78 -0.88 -0.42 -0.38 0.03 1  
SSAT 0.41 0.13 -0.07 0.38 0.70 0.56 -0.10 -0.22 -0.11 0.24 0.23 1 

For acronyms of soil properties, see Table 3-1. 

 

The CI and IC approaches at different supports (aggregation) 

For the CI approach, the agreement between simulated and observed yield slightly 

increased with increasing support (aggregation of the model output). The RMSD in the 

normalized yields was 0.79 at 100 m and 0.74 at 400 m. This was expected as the 

variability decreases with aggregation and local extremes are levelled out (Baron et al., 

2005; Hansen and Ines, 2005; Easterling et al., 1998). This was also found by Verburg et 

al. (1999) and Kok and Veldkamp (2000). In their model validation they found that 

deviations between modelled and actual land use at the cell level can be considerable, but 

that very good agreement was found at higher aggregation levels such as agro-ecological 

zone or district. The results showed that aggregation of calculated data leads to less 

variability and increasing linear fits at higher aggregation levels. The spatial variability in the 

case study area determines how strong this effect is. 

For the IC approach, the agreement between observations and simulation remained 

constant with spatial aggregation. The RMSD in the normalized yields was 0.99 at both 

supports (i.e. 100 m and 400 m). This is because the aggregation effect on the soil 

properties was quite small in the study area (aggregation of the model input). Data on soil 

properties were obtained from interpolation of 256 soil profiles, and because of this 

interpolation, local extremes did not exist, not even at fine resolutions. For that reason, 

aggregation did not have a very strong effect. Moreover, from Table 3-2, it can be seen that 

some of soil properties are strongly correlated. When correlated variables are multiplied or 
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divided in a model, aggregation can lead to severe scaling errors. Therefore, a Pearson 

correlation matrix was also calculated to indicate the degree of colinearity between all soil 

properties at 400 m resolution (the same result as Table 3-2 was obtained). However, in 

this case study, the data correlation between all soil properties did not change from point 

level to 400 m resolution. For that reason, aggregation did not have a very strong effect. 

Moreover, the soil properties are probably not subject to local extremes (meaning that it is 

not only a consequence of the data interpolation). Because of the gradual trend of the 

young and older volcanic ash soils in the region, adjacent locations tend to be more similar, 

and hence the change in variability with aggregation becomes less (see e.g. Reynolds and 

Amrhein, 1998). Therefore, it was expected that the aggregation of soil properties has a 

relatively small effects on the prediction of potato yield. Moreover, it has to be taken into 

account that this study covers a region in which high input agriculture. As the provision of 

nutrients is one of the main functions of the soil, it is not surprising that the aggregation of 

soil data results in only minimum levelling-out of extreme values. The result was in line with 

conclusions from other studies (Folberth et al., 2012; De Wit et al., 2005; Olesen et al., 

2000; Easterling et al., 1998). 

 

In this study, aggregation had a minor effect on the prediction of the spatial pattern of 

potato yield because of the gradual trend in soil properties. However, at the regional level, 

soil properties generally exhibit more (short-distance) spatial variability. Moreover, no 

process-based CGSMs have been specifically developed to estimate regional patterns of crop 

yield. The application of field-level CGSMs at supports larger than fields may require an 

adaptation of the model (re-calibration) because relations between variables that exist at 

the field support need not extend to the larger support. Another alternative procedure to 

avoid application of the field-level model at a larger support is to use the route in which the 

model is run at field support (i.e. the 100 m grid cells roughly correspond to field size), and 

then to aggregate the model output (see e.g. Heuvelink and Pebesma, 1999). Therefore, in 

the case that available data still need to be interpolated from surrounding observation 

points (i.e. IC), the aggregation step can be applied after model calculation in the sequence 

because of model non-linearity. For example, Soltani et al. (2013) aggregated the all yield 

maps (observed and the IC approach-based) to larger spatial aggregations levels to 

estimate regional patterns of crop yield at supports larger than field. They concluded that 

increasing the level of spatial aggregation increased the similarity between simulated yield 

patterns and interpolated, observed yield. Similar results have been found by Leterme et al. 

(2007). 



 

 

 

3.3.2    Spatial comparison of simulated yields and observed yields 

The spatial variability of the observed yield was characterized by a nugget-to-sill ratio of 

58%, and a correlation range of 3 km. The semivariogram of the observed yields indicates a 

moderate spatial autocorrelation. The 202 yield observations were interpolated with 

ordinary kriging. The cross validation revealed a CV-RMSD of 17%. The resulting map 

demonstrated that the higher yield levels are attained in the western part, where altitudes 

are between 3000 and 3300 m.a.s.l. The results demonstrate a yield decrease towards 

warmer and dryer conditions, which coincide with lower elevations. The maps of the 

different approaches at different supports showed a similar spatial pattern (results are not 

shown). To compare visually, the simulated maps from the two approaches were grid-by-

grid subtracted from the observed-interpolated yield map at each resolution to reveal the 

differences (over- or underestimations) in predicted values (Figure 3-3). In the centre-north 

the simulated potato yields were much lower than the observed yields. For the areas in the 

centre-south, on the other hand, the simulated yields were higher than the observed yields. 

The differences are because the spatial variability in observed yields is, besides variability in 

weather and soil data, due to the variability in management practices (e.g. fertilization). 

Whereas, the spatial variability simulated by the different approaches was the result of 

variability in weather and soil characteristics only. Moreover, the differences might be 

explained by the low sampling density of the soil survey in the area, or could not be 

explained by physical variables and therefore must be explained by other causes such as 

pest and diseases. Although, regional patterns of crop yield generated by different 

procedures (i.e. different approaches and different supports) were similar. However, a 

higher agreement was found for the CI approach, increasing with increasing support. 

 

The spatial dependency of the yield maps generated by the CI and IC approaches at 100 m 

was characterized by a nugget-to-sill ratio of 0, and a range more than 3 km. A decrease in 

variance (from a nugget-to-sill ratio ≈ 41% in soil properties to 0 in the CI and IC maps) 

signifies a decrease of the degree of heterogeneity which is caused by the interpolation part 

of the CI and IC approaches. It is expected that the smoothing effect that results from 

interpolation (Goovaerts, 1997), results in reduced spatial variability of (Van Bodegom et 

al., 2002; Bouma et al., 1996), with unknown implications for the simulation results. This 

smoothing property of kriging is also apparent in Figure 3-3. The large range with respect to 

the study area indicates that there is large spatial dependency in each map. Moreover, the 
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Moran’s I values for all maps of the different procedures were positive, significant (p = 0), 

and showed large spatial dependency in each of them. For comparison, Moran’s I is 0.99 for 

the CI approach at 100 m, 0.97 for the IC approach at 100 m, 0.92 for the CI approach at 

400 m, and 0.71 for the IC approach at 400 m.  

 

 

 

 

Figure 3-3: Maps of difference between interpolated, observed yield and the CI approach (left); and 

the IC approach (right) at supports of 100 m and 400 m in the Carchi study area. 

 

Regional patterns of crop yield generated by different procedures (i.e. different approaches 

and different supports) were similar, as shown by different indicators including the 

semivariogram parameters (i.e. nugget-to-sill ratio and range), the Moran’s I, and visually. 

This was expected, because (i) the area is covered by relatively young volcanic ash, and the 

resulting maps of soil properties (interpolated from 256 soil profiles) demonstrated large 

spatial dependency; (ii) there is a gradual trend in weather conditions; and (iii) spatial 

management variability was not considered in this study. 

 



 

 

3.4    Conclusions  

The CI and IC approaches were evaluated by comparing their outcomes to observed yields 

in the Carchi study area. These approaches differ with respect to the sequence of model 

calculation and interpolation. Results demonstrate that the order of calculations and 

interpolation was of major importance, while the aggregation had minor effect on the spatial 

pattern of potato yield. The former is probability due to the non-linearity of CGSM and the 

difference in the spatial dependency of individual inputs. The latter is probably due to the 

absence of local extremes, which is due to the gradual trends in soil properties in the 

volcanic ash soils of Carchi (being a result of the soil forming processes, but also a 

consequence of the interpolation method, kriging). The RMSD in the normalized yields was 

0.79 for the CI approach and 0.99 for the IC approach at 100 m. For the aggregation to 400 

m, the RMSD was 0.74 for the CI approach and 0.99 for the IC approach. The spatial 

comparison of regional patterns of crop yield shows that regional yield patterns generated 

by different procedures (i.e. different approaches and different supports) were similar, as 

shown by different indicators including the semivariogram parameters (i.e. nugget-to-sill 

ratio and range), the Moran’s I, and visually. While, non-spatial comparisons of different 

yield patters in terms of RMSD showed better performance of the CI approach than the IC 

approach. From an uncertainty propagation and variability point of view it is in general 

preferable to calculate first before interpolation. 
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4    Model suitability to assess regional potato yield 

patterns in Northern Ecuador 

 

 

A wide range of scenario studies aiming at rural development require regional patterns of crop yield. 

This study aims to evaluate three different modelling approaches for their suitability to assess regional 

potato yield patterns. The three model approaches include (1) an empirical model; (2) a process-

based crop growth simulation model; and (3) a metamodel derived from the crop growth simulation 

model. Scenario studies have specific requirements for these modelling approaches including (1) their 

ease to use, (2) a realistic sensitivity, (3) the relevance in terms of generating the desired system 

property, and (4) their credibility in producing recognizable plausible outputs for stakeholders. The 

modelling approaches were applied to assess patterns of potato yields in a major production area in 

northern Ecuador. All three modelling approaches require significant expert knowledge for their 

development and calibration. However, after this initial phase, the empirical model and the metamodel 

are very easy to use and transparent. However, their application domain is limited to the case study 

area. The application of the crop growth simulation model remains complex and the model functions 

as a black box. The results show that regional patterns of potato yield are determined by a limited 

number of variables. The sensitivity of all three modelling approaches to weather variables and water 

holding capacity suggest that the potato production in the area is constrained by water availability and 

temperature. All models generate similar yield patterns. However, the empirical model derives quality 

adjusted potato yields that correlate highly to the observed yields, whereas the crop growth simulation 

model and the derived metamodel produce potential, water and nutrient limited yields. Scenario 

studies may require yield patterns at different levels of resolution. All results could be aggregated to 

different resolutions but in general the patterns remained very similar. All three modelling approaches 

were capable to reproduce the observed regional pattern of potato yield and are therefore considered 

to be credible. In analysing the effect of spatial aggregation on the performance of the modelling 

approaches, the results show that aggregation improves the overall correspondence between model 

output and interpolated, observed yields. It can be concluded that the various modelling approaches 

have their unique value. They are therefore complementary to each other for the interpretation of the 

observed patterns. The patterns themselves do not vary much and as such the most convenient 

modelling approach can be selected (based on available expertise and data).  

 

  

Based on: Soltani, A., Stoorvogel, J.J. and Veldkamp, A. 2013. Model suitability to assess regional 

potato yield patterns in Northern Ecuador. European Journal of Agronomy, vol. 48, 101-108. 

 



 

 

4.1 Introduction 

Nowadays more and more scenario studies are used to explore future options for land use 

and agriculture (Alcamo, 2008; EEA, 2006). Well known global examples are the Global 

Environment Outlook (UNEP, 2002) and the Millennium Ecosystem Assessment (MEA, 

2005). These large scale scenario studies involve stakeholders only in the development of 

storylines. In national and regional studies stakeholders can be more actively involved 

during scenario development by jointly developing scenarios with modellers but also in the 

execution and interpretation of the scenarios (Van Vliet et al., 2010). In order to involve 

stakeholders more effectively in a participatory modelling exercise, simplified models are 

required that allow stakeholders to learn and make informed decisions. It is therefore 

important to develop simplified models that are easy to handle and that display a realistic 

sensitivity to the relevant input parameters (Antle et al., 2010). Alcamo and Henrichs 

(2008) identify four criteria to evaluate the quality of scenarios: relevance, credibility, 

legitimacy and creativity. Of these four criteria, ‘relevance’, i.e. do they link to stakeholders 

needs, and ‘credibility’, i.e. are the outputs recognizable from the present and plausible, are 

relevant for the models used. This leaves us with four criteria that model approaches used 

in participatory scenario development should fulfil: (i) their ease to use (user friendliness), 

(ii) a realistic sensitivity to input variables (sensitivity), (iii) their relevance for producing 

the desired system property (relevance), and (iv) their credibility in producing recognizable 

plausible outputs for stakeholders (credibility). 

 

Current and future yield patterns (under a range of scenarios) at different levels of 

aggregation are important system properties for many regional studies (Bouma et al., 

2007). Accurate information on regional patterns of yield is important for commercial 

interests (Jagtap and Jones, 2002), strategic agricultural planning (Lobell and Ortiz-

Monasterio, 2007), public policy formulation and application (De Wit et al., 2005; 

Wassenaar et al., 1999), and agricultural scientific innovation (Williams et al., 2008). 

Different modelling approaches to assess regional yield patterns exist using empirical 

models, process-based crop growth simulation model (CGSM), and metamodels of the 

CGSM. 

Empirical models describe the interaction between observed crop yields (from e.g. survey 

data) and a range of explanatory (environmental and management) factors (e.g. Lobell et 

al., 2008). Empirical models have been used widely to estimate crop-yield patterns (e.g. 

Poudel and Kotani, 2012; Akinbile and Yusoff, 2011; Quiroga and Iglesias, 2009). The 
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strength of empirical models is that they capture the effect of a wide range of factors that 

determine actual yields. Furthermore, they only require input data for variables that are 

selected to be relevant for the region or crop of interest (Lobell and Burke, 2010; Landau et 

al., 2000). However, these empirical models do not describe the underlying mechanisms 

explicitly and, therefore; they cannot be expected to perform well outside their calibration 

domain (Challinor et al., 2009, 2004). An alternative modelling approach to assess spatial 

patterns of crop yields is the application of a mechanistic CGSM (e.g. Xiong et al., 2008; 

Launay and Guérif, 2003; Faivre et al., 2000). These models have been designed to 

simulate crop yield in response to environmental and management factors based on the 

underlying physiological mechanisms (Saarikko, 2000). The application of CGSM requires 

experimental data for calibration. The mechanistic character of the models makes them 

more generic (compared to empirical models) allowing an application outside their 

calibration domain (within certain boundary conditions). However, CGSMs are only available 

for a limited number of crops, they do not include all yield limiting factors, they require 

highly detailed input data, and are often a black box to many users. 

 

To resolve some of the issues related to data requirements and complexity of the CGSMs, a 

metamodel can be derived from the CGSM (Kleijnen and Sargent, 2000; Barton, 1998). 

Initially, a metamodel requires similar data as the original process based crop growth 

simulation model for its development. However, during the development key variables are 

selected that are required for its application. As such a metamodel is based on the crop 

growth simulation model, the problem of excluding some yield determining factors is not 

solved (Donatelli et al., 2010), nor is the problem of having calibration data. These are still 

issues that the original crop growth simulation model should address (Ewert et al., 2002; 

Brown and Rosenberg, 1997) before a metamodel can be derived. The application and 

performance of the different modelling approaches for assessing regional patterns of crop 

yields has rarely been investigated and evaluated in a single case study. This study aims to 

evaluate the three different modelling approaches for their potential use in participatory 

scenario development in terms of user friendliness, sensitivity, relevance, and credibility. 

The analysis was carried out for the potato system in Carchi in the Ecuadorian Andes. 



 

 

4.2   Materials and methods 

4.2.1    Study area 

The Carchi Province is located in the Northern part of the Ecuadorian Andes (Figure 4-1). 

The study focused on an area of 36 km2 in the eastern part of the province located at 

77˚50' Western longitude and 00˚37' Northern latitude. Altitudes range between 2750 and 

3450 m above sea level. Average annual rainfall varies between 950 and 1300 mm yr-1. 

Being located close to the equator there is virtually no change in average monthly 

temperature ranging from 9 to 12 °C. The area is covered by relatively young volcanic ash 

deposits in which volcanic ash soils with their typical thick (about 120 cm) black A-horizon, 

high organic matter content (more than 4.5%), and high infiltration capacity prevail. 

Climatic conditions become colder and more humid with increasing altitude. At the same 

time, soil fertility increases with altitude with younger ash deposits and higher organic 

matter contents. The agricultural system is dominated by the production of potatoes and 

milk mostly situated on the steep Andean hillsides. The potato farming system is intensive 

and commercial with yields of up to 21 t ha-1 as a result of the favourable agro-ecological 

conditions in combination with the access to national and international markets (Crissman et 

al., 1998). The intensive and continuous production in the area does not only result in a 

high productivity but also in a high pest and disease pressure. Therefore, farmers use 

significant amounts of pesticides resulting in serious human health and environmental risks 

(Cole and Mera-Orcés, 2003). The intensive, commercial production of potatoes also results 

in a number of environmental threats such as tillage erosion and pesticide leaching. The 

demand for potato continues to increase. As a result potato cultivation is pushed to less 

favourable areas at higher altitudes and with higher erosion risk. This results in a decrease 

of the natural alpine páramo vegetation. There is an increasing call for participatory 

scenario studies in the area to deal with the problems of human health, environmental 

degradation, and rural development (Sherwood, 2009). These scenario studies require a 

better understanding of the agricultural system. Yield maps play an important role in the 

discussion making the study area a suitable case. Crissman et al. (1998) give a full 

description of the Carchi study site. 
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Figure 4-1: Overview of the Carchi study area in Northern Ecuador showing the altitude, the survey 

fields, the soil observations, and the weather stations. 

 

4.2.2    Data and preprocessing 

This study uses yield data collected during a 2-year dynamic survey including 40 farms with 

a total of 187 agricultural fields with 202 observations of potato yields (Figure 4-1; 

Crissman et al., 1998). The survey includes the detailed registration of crop yields and 

agricultural management such as planting date and fertilizer applications. Different potato 

varieties are grown in the study area. To overcome this variability in potato varieties, the 

yield data are expressed as quality adjusted potato yield based on the relative price levels 

of the different potato varieties (Crissman et al., 1998). In the Carchi study area, the potato 

farming system is intensive and commercial (Crissman et al., 1998). As the different potato 

varieties are planted throughout the year in the region mean the survey data covered 

several cropping cycles of five months each. 

Soils are described by 256 soil profiles within the study region by Meyles and Kooistra 

(1997) (Figure 4-1). For each soil profile average soil properties over the top 50 cm were 

calculated. Subsequently, soil properties were interpolated using kriging to create a 

continuous surface. A digital elevation model (DEM) based on the 1:50,000 topographic 

maps was available for the area (100 m grid size, 2.5 m vertical resolution). Slope was 

derived from this DEM. Weather data are recorded at three meteorological stations around 

the study area including daily rainfall, minimum and maximum temperature, and solar 



 

 

radiation (Figure 4-1). The daily weather data were interpolated between these three 

meteorological stations using a digital elevation model assuming a linear relationship with 

altitude. Daily weather data were aggregated to yearly data for use by the empirical model 

and the metamodel. As the different potato varieties are planted throughout the year in the 

region without a clearly defined growing season, mean yearly rainfall and temperature were 

calculated. Due to the extreme topography in the Ecuadorian Andes, there is significant 

spatial variability in weather conditions. Farm management data from the survey showed a 

large variation in terms of planting date, fertilization, potato variety, and pesticide 

management. However, management differences did not show a clear spatial 

autocorrelation. Therefore, management variability was not considered in this study. Table 

4-1 lists the total set of input variables that were considered for this study. 

 

Table 4-1: The total set of variables; √ indicates whether or not the variable is tested in the particular 

model approach 

Variables Description  Empirical model CGSM Metamodel 

 
Topography 

    

DEM Elevation (m.a.s.l.) √ - - 

Slope Slope (%) √ - - 

Aspect Aspect (˚) √ - - 

Weather     

Tmax Annual mean of maximum temperature (°C) √ - √ 

Tmin Annual mean of minimum temperature (°C) √ - √ 

Rain Annual mean of rainfall (mm d-1) √ - √ 

SRAD Annual mean of solar radiation (MJ m-2 d-1) √ - √ 

D.Tmax Daily maximum temperature (°C) - √ - 

D.Tmin Daily minimum temperature (°C) - √ - 

D.Rain Daily rainfall (mm d-1) - √ - 

D.SRAD Daily solar radiation (MJ m-2 d-1) - √ - 

Soil     

SDUL Water content at field capacity (cm3 cm-3) √ √ √ 

SLLL Water content at wilting point (cm3 cm-3) √ √ √ 

WHC Water holding capacity (cm3 cm-3) √ - √ 

SSAT Water content at saturation (cm3 cm-3) √ √ √ 

SLOC Organic carbon (%) √ √ √ 
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SLCL Clay (%) √ √ √ 

SSKS Saturated hydraulic conductivity (cm h-1) √ √ √ 

SBDM Bulk density (cm h-1) √ √ √ 

SLSI Silt (%) √ √ √ 

SLCF Coarse fraction (%) √ √ √ 

SLNI Total nitrogen (%) √ √ √ 

SLHW pH in water √ √ √ 

SLHB pH in buffer √ √ √ 

SCEC Cation exchange capacity √ √ √ 

SRGF Root growth factor √ √ √ 

Interactions     

Rain x Tmin Interaction of Rain and Tmin √ - √ 

Rain x Tmax Interaction of Rain and Tmax √ - √ 

WHC x Tmin Interaction of WHC and Tmin √ - √ 

WHC x Tmax Interaction of WHC and Tmax √ - √ 

WHC x Rain Interaction of WHC and Rain √ - √ 

Tmax2 Square of Tmax √ - √ 

Tmin2 Square of Tmin √ - √ 

10log(Rain) The logarithm of Rain √ - √ 

 

 

4.2.3     Interpolated yield data 

Spatial autocorrelation of the observed potato yields was studied through an analysis of the 

semivariogram. The yields were interpolated using kriging to create a yield map. The quality 

of the map was evaluated by a cross validation. The cross validation involved consecutively 

removing a data point, interpolating the value from the remaining observations and 

comparing the predicted value with the measured value (Mueller et al., 2004). The kriging 

performance was validated in terms of the CV-RMSD. The CV-RMSD is defined as the root 

mean squared difference normalized to the average of the observed values and calculated 

as: 

        
√∑ ( ̂    )

  
    ⁄

 ̅
                                                                  (4.1) 



 

 

Where    is the observed yield,  ̂  the interpolated, observed yield for the cell containing 

observation  ,  ̅ is the average observed yield for the area, and   is the number of 

observations.  

 

4.2.4    Modelling yield patterns 

Empirical model 

An empirical model was created to describe the interaction between crop yield and the 

various explanatory variables in Table 4-1. To construct an empirical model, the yield 

observations were split into a calibration (102 fields) and a validation (100 fields) dataset. 

We deliberately choose variables that are also available at wide temporal scales. Because 

we know from theory that some variables are non-linearly related to crop yields, various 

transformations were included. For temperature we included a squared term, to allow the 

regression to pick up the fact that temperature has an optimum; for precipitation we 

included a log transformation, to prevent that the signal from normal rain variability 

becomes obscured by extreme rainfall events. Furthermore, we included several interactions 

(see Table 4-1). These were included to account for the possibility that, e.g. water holding 

capacity becomes a more important determinant of crop yield in areas where rainfall is low. 

A Pearson correlation matrix was calculated to indicate the degrees of colinearity between 

all explanatory variables. The most significant independent variables for predicting potato 

yields were selected by means of a backward elimination of the variables with the lowest 

statistical significance. The results of the final model obtained by applying the regression 

model to the validation dataset of explanatory variables were compared with the yield 

observations. The results of the validation were expressed as the CV-RMSD similar to Eq. 

(4.1) and a coefficient of determination (R2). The coefficient of determination was calculated 

as 1 − SSE/SST, whereby SSE is the sum of squares of residuals, and SST is the total sum 

of squares. A map of potato yields was created using the empirical model in combination 

with the maps of the relevant explanatory variables. 

 

Crop growth simulation model 

The SUBSTOR-potato model (Ritchie et al., 1995) is a mechanistic crop growth simulation 

model that simulates potato yield as a function of environmental and management factors. 

This CGSM is available within the Decision Support System for Agro-technology Transfer 

(DSSAT) (Jones et al., 2003). The SUBSTOR-potato model simulates the physical, chemical, 

and biological processes in the plant and its associated environment. Bowen et al. (1999) 
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and Clavijo (1999) calibrated and validated the SUBSTOR-potato model for Andean 

conditions using experimental data from the region. Table 4-1 lists the total set of variables 

that were considered in the application of the CGSM. For the crop growth simulation model 

representative management data are used with a nitrogen application of 168 kg ha-1 

season-1 planted on February 15. The model was run for each of the grid cells to create a 

map of the expected potato yields using interpolated daily weather data, interpolated soil 

properties, and representative management data. 

 

Metamodel 

A metamodel was derived from the calibrated SUBSTOR-potato model. Meyles and Kooistra 

(1997) provided complete soil profile descriptions for 256 sites in the Carchi region. Potato 

yields were simulated using the CGSM for these 256 points. The dataset with simulated 

yields was split into a calibration (130 observations) and a validation dataset (126 

observations). The metamodel was obtained by relating model input to model output of the 

calibration dataset following the same statistical procedures as used during the development 

of the empirical model. The results of the final model obtained by applying the regression 

model to the validation dataset of explanatory variables were compared with the simulated 

yield. The results of the validation were expressed as the CV-RMSD similar to Eq. (4.1) and 

a coefficient of determination (R2). A map of potato yields was created using the metamodel 

in combination with the maps of the relevant explanatory variables. 

 

4.2.5    Model comparison 

Studies typically evaluate yield patterns on the basis of a range of observation points using 

statistical techniques like the root mean square difference (Akinbile and Yusoff, 2011; 

Quiroga and Iglesias, 2009; Xiong et al., 2008; Launay and Guérif, 2003). However, the 

application of the model-based approaches for the analysis of participatory scenarios 

requires different characteristics in terms of, e.g. user friendliness and sensitivity. 

Therefore, we compared the three different modelling approaches for their potential use in 

participatory scenario development in terms of their user friendliness, sensitivity, relevance, 

and credibility. 

The user friendliness of the models to predict yield patterns was compared in terms of the 

number of input variables used, computation time, and transparency. The sensitivity of the 

models to predict pattern yield was compared by showing the models sensitivity to different 

explanatory variables and respective coefficient of the different variables. The models 



 

 

relevance was compared by analysing the unit of analysis (i.e. actual yield or potential 

yields) and the effect of scale of the predicted yield pattern. Many scenario studies are not 

interested in the results at the field level, but require more general patterns of yields with 

supports larger than the field. Therefore, all yield maps (observed and model-based) were 

aggregated to higher aggregation levels of 200, 300, 400, 500 and 600 m resolution. 

Subsequently, the model-based yield maps were compared to the interpolated, observed 

yields with the aim of analysing models relevance by producing the yield patterns at support 

resolutions larger than field in terms of root mean squared difference (RMSD). The RMSD is 

calculated as: 

     √
∑ ( ̂    )

  
   

 
                                                             (4.2) 

where    is the interpolated, observed yield,  ̂  the model-based yield for cell  , and   is the 

number of cells.  

 

The credibility of the models was analysed by comparing the model-based yield maps to the 

interpolated, observed yield map, evaluated visually and in terms of the RMSD. Although, 

the comparison of the predicted patterns in potato yield to the interpolated, observed yields 

is not a true validation. Most of the time real patterns of yield are unknown and we will have 

to describe the spatial pattern through interpolation. Due to the different potato varieties, 

the yield maps based on the actual observations are expressed in quality adjusted potato 

yields. However, the CGSM and the metamodel provide nutrient limited, potential yields. 

Given the fact that we are interested in patterns in the potato production and to make the 

maps inter-comparable, the four maps were normalized as ( ̂   ̅)    ⁄  with  ̂ being the 

estimated yield (interpolated, observed yield or modelled yields),  ̅ the average yield over 

the entire map, and     the standard deviation of the yield for the map. 

 

4.3  Results and Discussions 

4.3.1    Observed yields 

Yield maps were made based on interpolation of the 202 data points. The semivariogram of 

the observed yields showed a nugget- to-sill ratio of 58% indicating a moderate spatial 

autocorrelation. The yields were interpolated with ordinary kriging. The cross validation 

revealed a CV-RMSD of 17%. Although the yield map explains part of the variation, a large 

part of the variation remains unexplained. The large nugget can be caused by a short 
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distance variation in the yields caused by differences in management. The spatial variation 

in yield is due to variation in weather, soil properties, and management data. There is a 

limited short-distance variation of soil properties and weather condition. As the area is 

covered by relatively young volcanic ash and there is a general trend in weather condition 

based on altitude. Therefore, management differences are considered to be responsible for 

the unexplained variance in yields (e.g. fertilization, pesticide use). The resulting map 

(Figure 4-2a) demonstrates that the highest yield levels are attained in the western part 

with altitudes between 3000 and 3300 m.a.s.l. These areas are considered to be the prime 

potato growing region. They are dominated by young volcanic ash soils, but they also have 

enough rainfall and are relatively cool. The results demonstrate a yield decrease towards 

warmer and dryer conditions that coincides with lower elevation in the Andean mountain 

range. Potato growth is constrained by the cold temperatures in areas above 3300 m.a.s.l. 

Moreover, these areas are often cloudy with lower irradiation and rainfall is very high. At 

lower elevations, approximately 2700–3000 m, lower yields coincide with less rainfall and 

older, less fertile soils. 

 

 
  

 

Figure 4-2: Maps of normalized potato yield in the Carchi study area based on: (a) interpolated, 

observed yields, (b) empirical model, (c) crop growth simulation model, and (d) metamodel. 



 

 

4.3.2    Modelling yield patterns 

Empirical model 

A linear regression that related the explanatory variables of Table 4-1 to the observed yields 

resulted in the following model (calculated potato yield for the empirical model is in quality 

adjusted, actual yields): 

 

Yield= - 5.1 + 27.8 WHC + 0.3 Tmin 

 

This model described around 43% (=R2) of the observed potato yield with a CV-RMSD of 

9% for the calibration dataset. The model predicted 36% (=R2) of the observed potato yield 

for the validation dataset with a CV-RMSD of 12%. According to this model, yields are 

higher on soils with higher water holding capacity, which is related to plant available water. 

Yields increase with increasing annual minimum temperature, which can probably be 

ascribed to a reduced risk on frost damage. From Table 4-2, it can be seen that annual 

minimum temperature is strongly correlated to annual maximum temperature and rainfall, 

implying that this annual minimum temperature may also serve as a proxy for annual 

maximum temperature and rainfall. The model is sensitive to soil water holding capacity and 

temperature. It is not surprising that soil fertility is not included. The area is covered by 

volcanic ash soils with their typical thick (about 120 cm) black A-horizon, and high organic 

matter content (more than 4.5%). Moreover, high input agriculture characterized by a 

significant fertilizer input prevails in the area. The normalized map created by the empirical 

model is shown in Figure 4-2b. The map shows the highest yield levels in the western part 

with altitudes between 3000 and 3300 m.a.s.l. 

 

Crop growth simulation model 

The CGSM simulated the nutrient limited potato yield using daily weather data, soil 

properties, and representative management data in the validation dataset. This resulted in a 

map of simulated potato yields that was normalized as displayed in Figure 4-2c. The 

resulting map demonstrates that the higher yield levels are attained in the western part, 

where altitudes are between 3000 and 3300 m.a.s.l. 

 

Metamodel 

The metamodel was created by running a regression between the input variables and the 

potato yield predicted by the SUBSTOR-potato model for 256 points for which complete soil 
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profile descriptions were available. The best metamodel to emulate the potato yield 

estimates (in t ha−1 season−1) result of the CGSM is:  

 

Yield = - 10.8 + 20.4 WHC + 0.5 Rain x Tmin 

 

The results of the metamodel and the CGSM had an R2 of 48% with a CV-RMSD of 17% for 

the calibration dataset. The metamodel predicted 41% (=R2) of the potato yield estimates 

by the CGSM for the validation dataset with a CV-RMSD of 21%. According to this model, 

yields are higher on soils with higher water holding capacity. In the study area, yield 

increase towards cooler and wetter conditions. Considering the fact that interactions are 

known to exist therefore annual rainfall and minimum temperature interactions were tested 

and improved the results of the metamodel. In this model only water availability and 

weather condition (the interaction of annual rainfall and minimum temperature) are 

included. The normalized, metamodel map is shown in Figure 4-2d. The resulting map 

demonstrates that the highest yield levels are attained in the western part, where altitudes 

are between 3000 and 3300 m.a.s.l.  

 

4.3.3     Model comparison   

User friendliness 

It can be observed from Table 4-3, that the empirical model and the metamodel require less 

input variables (2 and 3 respectively) compared to the CGSM (18) to estimate regional 

patterns of potato yield. Comparison of the relative computation time under the same 

conditions (i.e. CPU, memory and software) provides useful information for choosing a more 

efficient modelling approach (Guo et al., 2010). We record the average processing time for 

each modelling approach to create a map of potato yield at 100 m resolution, and the 

results are shown in Table 4-3. The empirical model and the metamodel prove to be 

relatively simple and fast, while the CGSM requires more computation time. 

 

The empirical model and the metamodel are linear regressions that explicate the 

relationships between potato yield and relevant significant variables, valid in that context 

and at that scale. Such regressions are simple and intuitively easy to comprehend by 

stakeholders. The CGSM is a more complex model that is less transparent for non-experts 

and acts like a black box for non-expert users. But in terms of flexibility, it provides more 

options. Giving the model users the opportunity to contribute and challenge model 



 

 

assumptions before results are reported also creates a sense of ownership (Korfmacher, 

2001). However, this requires transparent models that are well understood by the end-

users. Therefore, when used directly by stakeholders empirical and metamodel approaches 

are the suitable choice. To conclude, the empirical model and metamodel where key driving 

variables are selected in an early stage of the research have the advantage of greater 

simplicity and transparency. In addition, they require less computation time compared to 

CGSM. The empirical model is easiest to use followed by metamodel. The CGSM requires too 

much data to be ways to use in a part scenario development. Nevertheless, statistical 

procedures and correlations between variables may make the estimation of empirical and 

metamodels difficult to understand.  

 

Table 4-2: Pearson correlation coefficient between variables in the empirical and metamodel approach 

 

 SBDM SCEC SDUL SLCL SLHB SLHW SLLL SLNI SLOC SLSI SSKS SSAT Tmax Tmin Rain 

SBDM 1               

SCEC -0.44 1              

SDUL -0.45 0.86 1             

SLCL 0.19 -0.08 -0.35 1            

SLHB 0.77 -0.47 -0.63 0.49 1           

SLHW 0.79 -0.52 -0.66 0.62 0.88 1          

SLLL -0.47 0.85 1 -0.36 -0.64 -0.66 1         

SLNI 0.06 0.33 0.52 -0.58 -0.31 -0.42 0.53 1        

SLOC 0.15 0.35 0.51 -0.51 -0.20 -0.33 0.51 0.96 1       

SLSI 0.41 0.08 0.04 0.21 0.34 0.26 0.02 0.40 0.49 1      

SSKS 0.68 -0.84 -0.89 0.32 0.73 0.78 -0.88 -0.42 -0.38 0.03 1     

SSAT 0.41 0.13 -0.07 0.38 0.70 0.56 -0.10 -0.22 -0.11 0.24 0.23 1    

Tmax 0.61 -0.70 -0.77 0.27 0.73 0.74 -0.74 -0.52 -0.47 -0.11 0.83 0.36 1   

Tmin 0.61 -0.70 -0.77 0.27 0.73 0.74 -0.74 -0.52 -0.47 -0.11 0.83 0.36 1 1  

Rain -0.61 0.69 0.76 -0.27 -0.73 -0.74 0.73 0.53 0.47 0.11 -0.82 -0.37 -1 -1 1 
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Table 4-3: The evaluation of three different modelling approaches (an empirical model, a crop growth 

simulation model (CGSM), and a metamodel) to assess potato yield patterns in the Carchi study area 

 

Criteria  Empirical model CGSM Metamodel 

               
User  
 
friendliness 

Number of variables required 2 18 3 

Computation time (S) 45 600 45 

Transparency  yes no Yes 

Sensitivity  Explanatory variables Obvious  Requires sensitivity analysis Obvious 

Application domain Similar agro-     

ecology  

Wider range of conditions Similar agro-     

ecology  

Relevance Yield unit Actual yield Potential yield  Potential yield 

Credibility RMSD  0.61 0.99 1.05 

 

Sensitivity  

From the resulting models it can be seen that regional patterns of potato yield are 

determined by a limited number of variables. The empirical model and metamodel 

demonstrate the sensitivity to soil water holding capacity and weather conditions as 

important explanatory variables, except that metamodel picked up the interaction of annual 

rainfall and minimum temperature while the empirical model picked up annual minimum 

temperature. Moreover, the weather variables in the empirical and metamodel allow for 

their potential use in climate change scenarios. In our specific case study soil fertility is not 

included in the empirical model and the metamodel. This seems a logical consequence of 

the relative fertile soils in combination with the high input agriculture. The explanatory 

variables in the empirical model and metamodel are obvious. In the case of CGSM, a 

sensitivity analysis is required to obtain sensitivity information (Table 4-3). The 

development of a metamodel could be a good alternative for the sensitivity analysis to 

assess the key variables of the CGSM. 

At the regional level other yield determining factors such as pests and diseases may play a 

role, which are not accounted for in CGSM and the derived metamodel. While, empirical 

models implicitly consider these other yield-limiting factors when empirical data are 

available. This could explain the slightly better performance of the empirical model with a 

RMSD of 0.61 as this model is calibrated on the observed potato yields. The fundamental 

limitation of any empirical model is that it is not valid outside its calibration domain. This 



 

 

seriously hampers its usefulness for scenario studies (White, 2009). The strength of the 

CGSMs is that impacts over a longer time frame can be simulated, taking into account many 

factors in a way that would not be possible using empirical models and metamodels (Lobell 

and Burke, 2010; Bouman et al., 1998). 

 

Relevance 

The models’ relevance was compared by analysing the unit of analysis and effect of scale of 

the predicted yield pattern. The empirical model has the potential to consider other yield 

determining factor such as pests and diseases and therefore provide actual yields in 

contrast to the potential yield provided by the CGSM and the metamodel (Table 4-3). At the 

level of small grid cells substantial errors might be found, preventing a direct interpretation 

of the model outcomes at this level. However, the analysis was carried out aiming at 

regional patterns of potato yield in Carchi with regards to the biophysical variables rather 

than evaluating the outcome of each individual basis cell. Moreover, scenario studies often 

require results at supports larger than a field support. Therefore, all yield maps (observed 

and model-based) were aggregated to different levels of resolution with the aim of 

analysing the effect of spatial aggregation on the performance of the modelling approaches.  

The results show that increasing the level of spatial aggregation increased the similarity 

between simulated yield patterns and interpolated observed yield, as illustrated in Figure 4-

3. This is confirmed by studies of Kok and Veldkamp (2000) and Verburg et al. (1999). In 

their model validation they found that deviations between modelled and actual land use at 

the cell level can be considerable, but that very good agreement was found at the higher 

level such as agro-ecological zone or district.  

In this study, the rates of decreasing RMSD with higher aggregated levels were similar for 

the different modelling approaches and in most cases resulting in a linear decline of 15–

30%. The decreasing RMSD with increasing aggregation was expected as the variability of 

data will decrease and local extremes will be levelled out (Baron et al., 2005; Hansen and 

Ines, 2005; Easterling et al., 1998). In this study we aggregated the yield maps to five 

aggregations levels. However, at different scale levels different explanatory variables may 

play a role (De Koning et al., 1998). A more proper analysis should include separate model 

estimation at each of the hierarchical scale levels rather than an aggregation of the final 

results. Therefore, some caution has to be taken when interpreting the results of such an 

analysis. 
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Credibility 

In the current study, the maps of the different modelling exercises demonstrate a good 

correspondence with the survey data, evaluated visually and in terms of RMSD. The 

different modelling approaches properly identified the high-productivity regions in the 

western part, where altitudes are between 3000 and 3300 m.a.s.l. as well as the low-

productivity regions in areas above 3300 m.a.s.l., and at lower elevations, approximately 

2700–3000 m (Figure 4-2). The RMSD values for the difference of the three model-based 

maps from the map of observed potato yields show that the yield differences were lowest 

for the empirical model, showing a RMSD of 0.61. The RMSD in the normalized yields was 

highest for the metamodel, showing a RMSD of 1.05. The CGSM shows a more modest 

difference in the yields, showing a RMSD of 0.99 (Table 4-3). The empirical model 

outperforms CGSM and metamodel in being better able to analyse the regional pattern of 

yield. This might be also explained by that part of the variation that could not be explained 

in the CGSM and metamodel and therefore must be explained by other causes such as pest 

and diseases. 

  

 

 

Figure 4-3: Root mean squared differences at the different levels of aggregation comparing model-

based approaches to the map of observed potato yields in the Carchi study area. 
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4.4 General discussions 

Previous integrated assessment studies for the study area showed the importance of the 

variation of yield differences in the study area in a range of econometric production models 

(e.g. Stoorvogel et al., 2004; Antle and Stoorvogel, 2006). The integrated assessment 

models were used in participatory scenario analysis to deal with environmental issues like 

pesticide leaching in combination with rural development (Sherwood, 2009). One of the key 

constraints of the modelling approach was the complexity of the models. The calibration but 

also the actual subsequent analysis of the mechanistic models for crop growth and pesticide 

leaching was recognized as a serious limitation. This refers mainly to the user friendliness 

but of the mechanistic modelling approaches. In a later stage this has led to the 

development of a new suite of parsimonious models (e.g. Antle et al., 2010). As illustrated 

in this study, there is not a single optimal solution to modelling agricultural systems to 

assess, e.g. regional yield patterns. Since there will always be a certain level of idiosyncrasy 

to the case, we have to strive towards a toolbox of approaches (Bouma et al., 2007) from 

which the proper tool can be selected on the basis of a number of specific criteria (like user 

friendliness, sensitivity, relevance, and credibility). In this study, we selected different 

models using different calibration data (observed yields for the empirical model and 

experimental data for the CGSM) and at different levels of detail (e.g. CGSM vs. 

metamodel). We recognize that there are other methods available (see e.g. Reimer and Li, 

2009). We do not give a final preference to one of the approaches. This depends on the 

specific study the results are being used for, but also the results were rather similar. 

 

4.5   Conclusions 

Three modelling approaches of an empirical model, a CGSM, and a metamodel were applied 

to assess patterns of potato yields in a major production area in northern Ecuador. All three 

modelling approaches require significant expert knowledge for their development and 

calibration. However, after this initial phase, the empirical model and the metamodel are 

very easy to use and transparent, although the application domain is limited to the case 

study area. The application of the simulation model remains rather complex and functions 

as a black box. The results show that regional patterns of potato yield are determined by a 

limited number of variables. The sensitivity of all three modelling approaches to weather 

variables and water holding capacity suggest that the potato production is constrained by 
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water availability and temperature. All models generate similar potato yield patterns. The 

empirical model derives quality adjusted potato yields that correlate to observed yields. The 

crop growth simulation model and the derived metamodel produce potential, water and 

nutrient limited yields. Scenario studies may require yield patterns at different levels of 

resolution. All results could be aggregated to different resolutions but in general the 

patterns remained very similar. All three modelling approaches were capable to reproduce 

the observed regional pattern of potato yield and are therefore considered to be credible. In 

analysing the effect of spatial aggregation on the performance of the modelling approaches, 

the results show that aggregation improves the overall correspondence between model 

output and interpolated, observed yields. It can be concluded that the various modelling 

approaches have their unique value. They are therefore complementary to each other for 

the interpretation of the observed patterns. The patterns themselves do not vary much and 

as such the most convenient modelling approach can be selected (based on available 

expertise and data). Proper model evaluation requires different criteria including user 

friendliness, sensitivity, relevance, and credibility. 
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5       How to use crop growth models at regional scales? A 

case study of winter wheat yield in Western Germany 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trends and patterns in winter wheat in Western Germany were simulated using three different 

modelling approaches. Yield estimates by LINTUL2, a process-based model, were compared with those 

of a metamodel and an empirical model. Model outcomes were aggregated to administrative units for 

the whole of Western Germany to allow comparison with agricultural census data for validation 

purposes. The spatial patterns and temporal trends seem to be better represented by the 

empirical model (R2= 69%, RMSE= 0.49 t ha-1yr-1, and CV-RMSE= 8%) than by the 

LINTUL2 model (R2= 65%, RMSE= 0.67 t ha-1yr-1, and CV-RMSE=11%) and the metamodel 

(R2= 56%, RMSE= 0.79 t ha-1yr-1, and CV-RMSE=13%). All models demonstrate a similar 

order of magnitude of yield prediction and associated uncertainties. The suitability of the 

three models used are context dependent. Empirical modelling is most suitable to analyse 

and project past and current crop-yield patterns while crop growth simulation models are more suited 

for future projections with climate scenarios. The derived metamodels are fast reliable alternatives for 

areas with well calibrated crop growth simulation models. A model comparison helps to reveal 

shortcomings and strengths of the models. In our case, a performance comparison between the three 

models indicated that a higher sensitivity to soil depth and winter wind speed in the LINTUL2 model 

and the metamodel would probably lead to better predictions. This specific conclusion is only valid for 

winter wheat growth in western Germany, for the used models. 

 

 

Based on: Soltani, A., Bakker, M.M., Veldkamp, A., Stoorvogel, J.J. and Angulo, C. How to use crop 

growth models at regional scales? A case study of winter wheat yield in Western Germany. Ecological 

modelling (under revision). 



 

 

5.1  Introduction 

Process-based crop growth simulation models are a commonly used tool for future 

projections of crop yields within climate scenarios (Challinor et al., 2009; Lobell et al., 

2008; Ewert et al., 2005; Parry et al., 2004). These models are mainly developed for the 

plot and field scale, requiring location-specific, spatially homogenous input data (Tao et al., 

2009; De Wit et al., 2005; Van Ittersum et al., 2003; Mearns et al., 2001; Hansen and 

Jones, 2000). When such models are applied to larger areas (e.g. provinces or countries) 

and at annual time steps, there is a scaling challenge (Kok and Veldkamp, 2011; Tao et al., 

2009; Saarikko, 2000). At wider spatial scales other factors than those typically used by 

crop growth simulation models co-determine yield variability (e.g. pests, plagues etc.). 

Furthermore, using aggregated input data may require recalibration of the model (Easterling 

et al., 2001). Also at wider temporal scales new factors may emerge that turn out to be 

important (e.g. technological development), which are not accounted for in crop growth 

simulation models (Bakker et al., 2005; Kok and Veldkamp, 2001). Furthermore, the 

required detailed weather data is not directly generated by future climate scenarios because 

they use annual or courser time steps (DDC IPCC, 2010; Janssen et al., 2009). 

Consequently the required high resolution data are generated by data modelling exercises 

using weather generators and other downscaling techniques (Qian et al., 2011; 

Apipattanavis et al., 2010). 

 

That leaves us with the question how to best use data and models at regional scales. Apart 

from adjusting crop growth simulation models to wider scales and/or generating the 

required detailed input data, there are two other known solutions for solving the scaling 

challenge. One is replacing the crop growth simulation model by a metamodel, that can deal 

with less detailed data (Kleijnen and Sargent, 2000; Barton, 1998), and the second 

approach is using the survey data to derive an empirical model relating observed yields to 

environmental characteristics (Lobell and Burke, 2010; White, 2009; Veldkamp et al., 

2001). A metamodel would require similar data as the original process based crop growth 

simulation model but instead of daily, annual average of daily weather data (Audsley et al., 

2008). Moreover, in most regions, only a limited number of environmental and management 

factors determine crop growth (e.g. Soltani et al., 2013). As a result one can wonder 

whether we need the full complexity of the crop growth simulation models in those cases. 

However, as such a metamodel is based on the crop growth simulation model, the problem 

of not including factors (Donatelli et al., 2010) that play a role at wider temporal and spatial 
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scales is not solved: these are still issues that the original crop growth simulation model 

should address (Ewert et al., 2002; Brown and Rosenberg, 1997), before it can be replaced 

by a meta model. A data-based empirical model can use all data available including other 

data sources depending on availability and hypothesized relationships. It is calibrated 

directly on the aggregated input data, and can include all kinds of factors at any available 

aggregation level. Their disadvantage is that extrapolation beyond the calibration range of 

input variables is unreliable, and the relationships used are context dependent and not 

process based (Bakker and Veldkamp, 2012).  

 

This chapter compares the following three approaches to simulate and predict crop yields at 

wide spatial and temporal scales: 1) a crop growth simulation model, 2) a metamodel, and 

3) an empirical model. The crop growth simulation model was to some extent adapted to 

wider spatial and temporal scales: it includes a technology development factor and it was 

recalibrated for spatially aggregated input data (Angulo et al., 2012). It was, however, not 

recalibrated for temporally aggregated weather data, nor did it include factors such as pests 

and plagues that become important at wider spatial scales. The metamodel is potentially 

able to overcome the issue of being able to use temporally aggregated data, but not the 

issue of including factors such as pests and diseases. The empirical model relates available 

input data to output data and can resolve the scale and new factor issues, but might not be 

reliable when used in future scenarios that will automatically exceed the calibration range. 

All three models will be calibrated for one time period and validated for a subsequent time 

period by comparison with observed yields for one case study, Western Germany. Finally, 

the models will be used to make a future prediction of crop yields for 2050. 

 

5.2    Materials and methods 

5.2.1   Study area  

Western Germany (i.e. former West Germany) covers a wide range of agro-ecological 

conditions. The northwest and the north have a sea climate while the Alpine regions have a 

boreal climate. The average annual rainfall ranges between 200 in the East and Upper Rhine 

Graben and 1600 mm in the Alps; the average annual temperature ranges between 2°C in 

the higher Alps and 11°C in the North. Over 80% of the land is used for agriculture and 

forestry. Like in other modernized countries, the agricultural sector has undergone profound 

structural changes in the second half of the 20th century. The number of farms decreased 



 

 

dramatically as a result of increasing mechanization coinciding with increased productivity 

per hectare. Nevertheless, family farms still predominate in Western Germany (87% of all 

farms comprised less than 50 hectares in 1997). Arable farming is dominated by soft winter 

wheat (Triticum aestivum L.). Temporal averages over the period 1993-2002 of the annual 

winter wheat yields in the individual climate zones varied between approximately 4 t ha−1 in 

the south and southwest to 8 t ha−1 in the north and northeast (Figure 5-1a). 

 

5.2.2    Data  

Time series of winter wheat yields from 1983 to 2002 were obtained from the Statistisches 

Bundesamt Deutschland (Bakker et al., 2005) at NUTS3 level, which is the finest spatial 

level at which agricultural statistics are available.  

Weather data were obtained from the SEAMLESS database (van Ittersum et al., 2008) for 

70 climate zones in Western Germany (Andersen et al., 2010; Janssen et al., 2009) for the 

period 1983-2002.  Data included daily data on rainfall (mm d−1), maximum and minimum 

air temperature (°C), global solar radiation (MJ m−2d−1), wind speed (m s−1), vapour 

pressure (hPa), and evapotranspiration (mm d−1, calculated with the Penman–Monteith 

formula as applied by Allen et al. (1998)). 

Soil characteristics at the level of so-called AgriEnvironmental Zones (Hazeu et al., 2010), 

which are a further refinement of the climatic zones, were obtained from the Pan European 

SEAMLESS database (Andersen et al., 2010; van Ittersum et al., 2008). Data included 

critical soil water content for transpiration reduction due to water logging, and the water 

content at field capacity, saturation, wilting point, and air dryness. In addition, soil depth 

was obtained from the Pan European Soil Erosion Risk Assessment project (contact no: 

QLK5-1999-01323, http://www.pesera.jrc.it). Soil depth is available at a 1 km grid covering 

all of Europe, and is defined as the depth to a rooting restriction (bedrock, very dense soil 

material or groundwater) with a maximum value of 1 m (i.e. implying no constraint for crop 

growth). 

Technological development has also played an important role in the development of yields 

over time (Challinor et al., 2009; Semenov and Halford, 2009; Ewert et al., 2005). Here, we 

use a proxy for technological development as described in Ewert et al. (2005) to estimate 

yield increase due to improved varieties and crop management (e.g. pesticides and 

herbicides). The available yields statistics were de-trended to exclude yield increases 

resulting from technology development. For this purpose, yield trends were calculated for 

each climate zone by fitting a linear regression line through the correspondent observed 
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yields, as described by Ewert et al. (2005). Following this approach (i.e. a linear de-

trending), for each climate zone a trend in technological development was obtained by 

setting the initial technological development (in our case the year 1983) to e.g. 1.033, and 

we obtain a value of each subsequent year by multiplying the value of the previous year by 

1.033. This variable is spatially explicit, showing a range between 1.033 and 1.077.  

Yearly sowing and harvest dates for winter wheat were obtained from the JRC/MARS Crop 

Knowledge Base for 70 climate zones in Western Germany for the period 1983-2002 (JRC, 

1998). These data of sowing and harvest dates were then used for the application of 

LINTUL2. 

 

As a projection of climate change by the mid-21st century, we used the ensemble mean of 

15 Global Circulation Models (GCMs) calculated as part of the third Coupled Model Inter-

comparison Project (CMIP3) provided by the Intergovernmental panel on Climate Change 

(IPCC) Data Distribution Centre (DDC) (DDC IPCC, 2010). CMIP3 evaluated a range of 

different scenarios. In this study, we used the A1B scenario which corresponds to rapid 

economic growth in an integrated world where the global population reaches 9.1 billion in 

2050. The A1B scenario projects for Western Germany an increase in maximum 

temperatures of 1.3 - 2.7°C, an increase of minimum temperatures of 0.8 - 2.2°C, a 

decrease in precipitation of  0.1 - 0.8 mm d-1, an increase in vapour pressure of 0.08 - 

0.15%, changes in wind speed between -0.8 - 0.4%, and changes in evapotranspiration 

between -0.1 - 0.4%. All these variables are spatially explicit, showing a general gradient 

from northwest to the southeast. Climate change is smallest in the northwest; towards the 

southeast rainfall reduces over time while all other variables increase. 

Increases in CO2 levels are likely to result in a yield increase (Erda et al., 2005; Southworth 

et al., 2002; Eitzinger et al., 2001). Potential negative impacts of climate change on C3 crop 

yields can be offset by the fertilization effect of increased CO2 as described in (Nowak et al., 

2004; Kimball et al., 2002). Angulo et al. (2012) used a simple representation of the effects 

of increased atmospheric CO2 level (ppm) on winter wheat yield, using the relationship 

between CO2 and radiation-use efficiency as proposed by Stockle et al. (1992). Increased 

CO2 also reduces crop transpiration. A linear diminution of transpiration up to 10% for 

winter wheat was taken into consideration by Angulo et al. (2012), when the atmospheric 

CO2 reaches 700 ppm (Ewert et al., 2002). IPCC (2001) reports a gradual increase of the 

average CO2 level for the SRES A1B scenario from 374 ppm in 2002 up to 532 ppm in 2050. 

There is no spatial variability assumed for this variable.  

 



 

 

All data were aggregated to the coarsest spatial level: that of the climate zone. This 

resulted in 70 observations on yield, as response variable, and a range of explanatory 

variables which are listed in Table 5-1.  

Weather data were also temporally aggregated so that they could be used by the empirical 

model and the metamodel (which both operate with an annual resolution). Three 

aggregations were made: (i) by taking the annual average of daily weather data, (ii) by 

taking the average over the growing season (April to August), and (iii) by taking the 

average over winter (December-March). The winter period is relevant because winter wheat 

is sown in autumn and has a dormancy period throughout winter.  

 

Table 5-1: The total set of variables; √ indicates whether or not the variable is tested in the particular 

model approach  

Variables   
 
Description  
 

 
Empirical 
model 

 
LINTUL2 

 
Meta-
model 

 
Management 
data 

    

TD Technological development (-) √ √ √ 

S.dates Sowing dates - √ - 

H.dates Harvest dates - √ - 

Weather     

Tmax Mean annual maximum temperature (°C) √ - √ 

Tmin Mean annual minimum temperature (°C)  √ - √ 

Rain Mean annual rainfall (mm d-1) √ - √ 

SRAD Mean annual global solar radiation (MJ m-2 d-1) √ - √ 

WS Mean annual wind speed (m s-1) √ - √ 

VP Mean annual vapour pressure (hPa) √ - √ 

ET Mean annual evapotranspiration (mm d-1) √ - √ 

G.Tmax Mean growing season maximum temperature (°C) √ - √ 

G.Tmin Mean growing season minimum temperature (°C)  √ - √ 

G.Rain Mean growing season rainfall (mm d-1) √ - √ 

G.SRAD Mean growing season global solar radiation (MJ m-2 d-1) √ - √ 

G.WS Mean growing season wind speed (m s-1) √ - √ 

G.VP Mean growing season vapour pressure (hPa) √ - √ 

G.ET Mean growing season evapotranspiration (mm d-1) √ - √ 

W.Tmax Mean winter season maximum temperature (°C) √ - √ 

W.Tmin Mean winter season minimum temperature (°C)  √ - √ 

W.Rain Mean winter season rainfall (mm d-1) √ - √ 

W.SRAD Mean winter season global solar radiation (MJ m-2 d-1) √ - √ 

W.WS Mean winter season wind speed (m s-1) √ - √ 

W.VP Mean winter season vapour pressure (hPa) √ - √ 

W.ET Mean winter season evapotranspiration (mm d-1) √ - √ 

D.Tmax Daily maximum temperature (°C) - √ - 

D.Tmin Daily minimum temperature (°C) - √ - 

D.Rain Daily rainfall (mm d-1) - √ - 

D.SRAD Daily global solar radiation (MJ m-2 d-1) - √ - 
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D.WS Daily wind speed (m s-1) - √ - 

D.VP Daily vapour pressure (hPa) - √ - 

D.ET Daily evapotranspiration (mm d-1) - √ - 

CO2 Atmospheric CO2 level (ppm) 
- √ - 

Soil     

SD Soil depth (cm) √ - √ 

WCFC Water content at field capacity (%) √ √ √ 

WCWP Water content at wilting point (%) √ √ √ 

WCST Water content at saturation (%) √ √ √ 

WCAD Water content at air dryness (%) √ √ √ 

WCWET Critical soil water content to waterlogging (%) √ √ √ 

WHC Water holding capacity (%) √ - √ 

Interactions     

SD x WS Interaction of SD and WS √ - √ 

SD x G.WS Interaction of SD and G.WS √ - √ 

SD x W.WS Interaction of SD and W.WS √ - √ 

SD x Rain Interaction of SD and Rain √ - √ 

SD x G.Rain Interaction of SD and G.Rain √ - √ 

SD x W.Rain Interaction of SD and W.Rain √ - √ 

WHC x WS Interaction of WHC and WS √ - √ 

WHC x G.WS Interaction of WHC and G.WS √ - √ 

WHC x W.WS Interaction of WHC and W.WS √ - √ 

WHC x Rain Interaction of WHC and Rain √ - √ 

WHC x G.Rain Interaction of WHC and G.Rain √ - √ 

WHC x W.Rain Interaction of WHC and W.Rain √ - √ 

T2 Square of Tmax √ - √ 

G.T2 Square of G.Tmax √ - √ 

W.T2 Square of W.Tmax √ - √ 

T2 Square of Tmin √ - √ 

G.T2 Square of G.Tmin √ - √ 

W.T2 Square of W.Tmin √ - √ 

10Log(Rain) The logarithm of Rain √ - √ 

10Log(G.Rain) The logarithm of G.Rain √ - √ 

10Log(W.Rain) The logarithm of W.Rain √ - √ 

 

5.2.3   Modelling yields 

Crop growth simulation model  

LINTUL2 is a process-based crop growth simulation model that allows for the simulation of 

soft winter wheat under potential and water-limited conditions (for a comprehensive 

description: van Ittersum et al., 2003). LINTUL2 describes yield under water-limited 

conditions by including a water balance of crop and soil in the LINTUL1 model. Conditions 

are still optimal with respect to other growth factors, i.e. ample nutrients and a pest-, 

disease- and weed-free environment. The LINTUL2 model was designed to study options for 

water conservation, as well as differences among cultivars in drought tolerance. Input data 



 

 

are daily solar radiation, temperature and rainfall, plant density, dates of crop emergence 

and harvest; soil depth, and the soil moisture retention characteristics, i.e. the relation 

between volumetric soil moisture content and suction (see also Table 5-1). LINTUL2 has 

been used in numerous climate change studies (e.g. Wolf and van Oijen, 2002; Ewert et al., 

1999). 

LINTUL2 is integrated in the so-called Agricultural Production and Externalities Simulator 

(APES), which is a cropping system modelling framework (Adam et al., 2012). The model 

was further extended with various calibration methods valid for European conditions by 

Angulo et al. (2012) to allow the simulation of spatial and temporal yield trends and 

responses to climate change. Their results showed that the extended method considering 

the region-specific calibration of phenology and growth parameters is most suitable to 

simulate climate change effects on wheat yields in Western Germany (Angulo et al., 2012). 

This version of the model includes the effects of CO2 levels and technology development on 

winter wheat yield. 

 

Metamodel 

A metamodel is considered to be the simplest parsimonious regression model that mimics 

the input–output relationships of the process model. A metamodel was derived from the 

LINTUL2 model for Western Germany. LINTUL2 was run for a ten year period (1983-1992) 

for the 70 climate zones for the simulation of winter wheat in Western Germany, using 

SPSS. This way, both spatial and temporal variability was represented in the input and 

output. The metamodel was obtained by relating model input to model output by means of 

a multiple linear regression. In this case, because our metamodel is meant to be run with 

coarser data than those required by the LINTUL2 model, we deliberately choose variables 

that are also available at wide spatial and temporal scales, i.e. soil depth in addition to the 

detailed variables used by LINTUL2, and annual average of daily weather data instead of 

daily data (see Table 5-1). Theory suggests that some variables are non-linearly related to 

crop yields, we included transformations (Wallach et al., 2006). For temperature, we 

included a squared term, to allow the regression to pick up the fact that temperature has an 

optimum; for precipitation we included a log transformation, to prevent that the signal from 

normal rain variability becomes obscured by extreme rainfall events. Furthermore, 

considering the fact that interactions are known to exist and may improve the results of the 

model, we included several interactions (see Table 5-1). The interactions were included to 

account for the possibility that e.g. water holding capacity becomes a more important 

determinant of crop yield in areas where rainfall is low. A Pearson correlation matrix was 
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calculated to indicate the degrees of colinearity between all explanatory variables. For 

reasons of space, we only show those variables that were strongly related (i.e. Pearson 

correlation coefficient > 0.75) to at least one of the other variables. The most significant 

independent variables for predicting winter wheat yields were selected by means of a 

backward elimination of the variables with the lowest statistical significance.  

 

Empirical model  

An empirical model was created for the simulation of winter wheat in Western Germany by 

regressing 10 years of observed annual winter wheat yields (1983-1992) for 70 climate 

zones on the various predictor data in table 5-1, using SPSS. The most significant 

independent variables for predicting winter wheat yields were selected by means of a 

backward elimination of the variables with the lowest statistical significance. Because we 

wanted to compare the empirical model to the metamodel, both models use the same set of 

potentially explanatory variables. Yearly yields were considered independent events, so we 

did not correct for temporal autocorrelation. 

 

5.2.4    Validation of the modelling approaches 

The three model approaches were validated for a second 10 year period (1993-2002) for 

which also the agricultural yield statistics and predictor data were available. The results of 

the validation were expressed as a coefficient of determination (R2), the root mean squared 

Error (RMSE), and the root mean squared Error normalized to the average of the observed 

values (CV-RMSE). The coefficient of determination was calculated as 1 – SSE/SST, whereby 

SSE is the sum of squares of residuals, and SST is the total sum of squares. The RMSE is 

calculated as:  

     √
∑ ( ̂    )

  
   

 
                                                                     (5.1) 

Where,  ̂  is the simulated yield,    is observed yield at climate zone i, and n is the number 

of observations (70 climate zones x 10 years). The CV-RMSE is calculated as      ̅⁄ , where 

 ̅ is the average of the observed yield. 

 

5.2.5    Comparison of Modelling yield patterns 

Different simulated regional patterns of winter wheat yields, averaged over the 10 years 

period (1993-2002), were compared with the observations over the same time period. The 



 

 

results of comparison were expressed as a R2, the RMSE similar to Eq. (5.1), and CV-RMSE. 

Whereas the previous analysis (validation of the modelling approaches) is based on 700 

observations, this analysis is based on 70 climate zones. This is because simulated and 

observed annual-yields of winter wheat yields were averaged over the 10 years period 

(1993-2002). 

 

5.2.6    Simulation of future 2050 yields for Western Germany 

The scenario analysis considered projected changes in temperature, precipitation, wind 

speed, vapour pressure, radiation, evapotranspiration, atmospheric CO2, and technological 

development. The soil variables were considered constant in time. The empirical model, the 

LINTUL2 model, and the metamodel were used to simulate future winter wheat yield for the 

20 years period centred around 2050 (2041-2061) for the climate change scenario of 

15GCM A1B. We took the winter wheat yield maps for the period 1993-2002 as the 

baseline, and compared them with the 2050 maps to explore the predicted changes in 

yields.  

 

5.3    Results and discussions 

5.3.1    Crop growth simulation model 

LINTUL2 outcomes explained 58% of the observed winter wheat yield variability in the 

validation period (1993-2002) with a RMSE of 0.73 t ha-1yr-1, and a CV-RMSE of 12%. As 

the model was already calibrated, we only present its performance on the validation period.  

 

5.3.2     Metamodel  

The best metamodel to emulate the winter wheat yield estimates by the LINTUL2 for the 

period 1983-1992 is: 

 

Yield = 5.2 + 5.4 TD + 0.2 W.Tmin - 0.1 G.WS 

With: 

Yield = Winter wheat yield (t ha-1yr-1) 

TD = Technological development (-) 

G.WS = Mean growing season wind speed (m s-1) 
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W.Tmin = Mean winter season minimum temperature (oC) 

 

According to this model, yields increase with increasing minimum temperature during 

winter, which can probably be ascribed to a reduced risk on frost damage. Yields decrease 

with increasing wind speed during growing season, which can probably be ascribed to the 

fact that winter wheat is rather vulnerable to wind damage during the growing season 

(Armbrust et al., 1974). Furthermore, with each unit increase in TD, yields go up with 5.4 t 

ha-1yr-1. As annual changes in TD fluctuate around 0.055, this comes down to an average 

annual increase of approximately 29 kg ha-1. Soil variables were not included in the 

metamodel, neither were any of the non-linear or interaction terms. The metamodel 

predicted 72% (=R2) of the simulated winter wheat yield variability in the validation period 

(1993-2002) with a RMSE of 0.45 t ha-1yr-1, and a CV-RMSE of 8%. The metamodel 

predicted 49% (=R2) of the observed winter wheat yield variability in the validation period 

(1993-2002) with a RMSE of 0.91 ha-1yr-1, and a CV-RMSE of 15%.  

 

5.3.3     Empirical model  

The best linear multiple regression model to emulate the observed winter wheat yield for 

the period 1983-1992 is:  

 

Yield = 13 + 6.2 TD + 0.3 W.Tmin - 0.2 W.WS + 0.2 SD 

With: 

Yield = Winter wheat yield (t ha-1yr-1) 

TD = Technological development (-) 

W.Tmin = Mean winter season minimum temperature (oC) 

W.WS = Mean winter season wind speed (m s-1) 

SD = Soil depth (cm) 

 

According to this model, yields are higher on deeper soils, which is related to rooting depth 

and plant available water. Furthermore, all variables are included that were also included in 

the metamodel, except that this model picked up wind speed during winter while the 

metamodel picked up wind speed during growing season. This model predicted 60% (=R2) 

of the observed winter wheat yield variability in the validation period (1993-2002) with a 

RMSE of 0.61 t ha-1yr-1, and a CV-RMSE of 10%.  

 



 

 

5.3.4    Spatial patterns 

The observed and modelled winter wheat yield maps for 1993-2002 are presented in Figure 

5-1. The observed yields, obtained at the level of administrative units, were aggregated to 

the 70 climate zones to allow comparison (Figure 5-1a). Figure 5-1b shows results from the 

empirical model, Figure 5-1c those of the LINTUL2 model, and Figure 5-1d those of the 

metamodel. All models have a similar order of magnitude of yield prediction and associated 

uncertainties. They were all capable of reproducing high-productivity regions in northern 

part of Western Germany as well as the low-productivity regions in southern parts. The 

spatial patterns and temporal trends seem to be better represented by the empirical model 

(R2= 69%, RMSE= 0.49 t ha-1yr-1, and CV-RMSE= 8%) than by the LINTUL2 model (R2= 

65%, RMSE= 0.67 t ha-1yr-1, and CV-RMSE=11%) and the metamodel (R2= 56%, RMSE= 

0.79 t ha-1yr-1, and CV-RMSE=13%). This spatial variability must be associated with the 

spatial variability in soil depth. The absence of any soil variable in the metamodel reveals an 

overall insensitivity of the LINTUL2 model to soil variability. This insensitivity seems to be 

refuted by the spatial variability in observed crop yields. Overall, the LINTUL2 and the 

metamodel are able to mimic the global North-South trend, but appear not to capture the 

finer-scale soil variability that is visible in the empirical model and the agricultural census 

data. This can explain the slightly better performance of the empirical model. 

 

5.3.5    Temporal trends 

The temporal trends of winter wheat yields, observed as well as predicted by the three 

models, are plotted in Figure 5-2. All models simulate a general increase in average yield in 

time. The reported census data demonstrate a peak around 1991, which is only reproduced 

by the empirical model. Based on the small differences between the metamodel and the 

empirical model, it seems likely that this should be attributed to the higher sensitivity of the 

empirical model to minimum winter temperature or the fact that the empirical model used 

winter wind speed instead of growing season wind speed. If we plot the trend in explanatory 

variables – used by the metamodel and the empirical model – along with the trend in yields 

(Figure 5-3) it appears as if the winter wind speed was the variable that allowed the 

empirical model to simulate the peak in yields in 1991. 
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5.3.6   Simulation of future 2050 climate change effects for Western 

Germany  

The difference of simulated future winter wheat yields (2041-2061) from the baseline yields 

(1993-2002) for the different modelling approaches is shown in Figure 5-4. Projected future 

yields were higher than baseline yields for all modelling approaches, although the increase 

varied considerably per geographical area. Yield increases were highest for the empirical 

model, showing an increase in yields between 1% and 60% (on average 19%). The 

metamodel predicts a yield increase between 3% and 56% (on average 18%). It shows a 

more modest change in the yields but still with considerable increases in the south eastern 

part of the region. The LINTUL2 model predicts the smallest yield increase, between 5% and 

44% (on average 17%). Overall future increases in winter wheat yield (Figure 5-2 and 

Figure 5-4) can obviously be ascribed to technological development, and for the LINTUL2 

projection also to elevated atmospheric CO2. It is remarkable that both the metamodel and 

the empirical model predict higher future yields than the LINTUL2 model, in spite of not 

being sensitive to increased CO2 levels. This could indicate a structural overestimation of a 

positive effect of one of the other variables, such as winter temperature or technological 

development. It also may indicate that such positive effects are highly correlated with 

elevated CO2. The spatial variability in the metamodel and the empirical model outcomes 

suggests that changes in yield are also determined by variables exhibiting, next to temporal 

variability, also spatial variability. These are winter temperature, and wind speed. 

Particularly, consideration of technology development can have substantial impacts on yield 

prediction. Further investigation is required to reduce uncertainty in the assumptions 

regarding technology development, especially for future projections of crop yields within 

climate scenarios.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 
 

Figure 5-1: Winter wheat yields averaged over the period 1993-2002, showing yields per climate zone 

region based on: a) agricultural statistics, b) empirical model, c) LINTUL2, and d) metamodel. 
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Table 5-2: Pearson correlation coefficient between variables in the empirical and metamodel approach (Only variables with one or more 

correlations stronger than 0.75 are shown) 

  WCFC WCST WCWP Rain TMax TMin SRAD WS ET VP 
W. 

Tmax 
W. 

TMin 
W. 
WS 

G. 
Tmax 

G.  
TMin 

G. 
SRAD 

WCST 0.75 1               

WCWP 0.83 0.98 1              

WCWET 0.94 0.93 0.96              

TMin -0.07 -0.10 -0.10 0.14 0.79 1           

ET 0.08 0.08 0.08 -0.22 0.78 0.30 0.85 -0.27 1        

VP -0.06 -0.08 -0.08 0.16 0.79 0.99 -0.01 0.17 0.31 1       

W.Tmax -0.06 -0.08 -0.09 -0.13 0.90 0.78 0.32 -0.01 0.61 0.75 1      

W.TMin -0.06 -0.11 -0.10 0.00 0.82 0.93 0.10 0.13 0.40 0.88 0.91 1     

W.WS -0.11 -0.14 -0.15 0.15 -0.01 0.31 -0.44 0.96 -0.15 0.30 0.08 0.26 1    

W.VP -0.08 -0.12 -0.12 -0.01 0.82 0.93 0.06 0.14 0.37 0.89 0.91 0.99 0.26    

G.Rain 0.05 0.10 0.10 0.86 -0.27 -0.14 -0.03 -0.05 -0.14 -0.10 -0.32 -0.28 -0.07    

G.Tmax 0.02 0.01 0.01 -0.14 0.90 0.63 0.49 -0.21 0.79 0.66 0.66 0.61 -0.04 1   

G.TMin 0.01 0.01 0.02 0.23 0.74 0.87 0.12 0.14 0.44 0.91 0.61 0.72 0.28 0.76 1  

G.SRAD 0.10 0.10 0.11 -0.37 0.54 0.21 0.86 -0.34 0.84 0.20 0.48 0.37 -0.20 0.61 0.24 1 

G.WS -0.16 -0.15 -0.16 0.12 -0.23 0.08 -0.54 0.97 -0.35 0.08 -0.10 0.01 0.69 -0.32 0.03 -0.42 

G.ET 0.08 0.07 0.07 -0.25 0.76 0.37 0.77 -0.26 0.94 0.37 0.56 0.45 -0.08 0.86 0.50 0.90 

G.VP 0.02 0.02 0.03 0.19 0.76 0.87 0.15 0.14 0.47 0.91 0.64 0.72 0.29 0.77 0.99 0.27 

 



 

 

 
 

Figure 5-2: The temporal trend of observed and simulated winter wheat yields from 1983 to 2050 for 

Western Germany. 

 

 

 
 

Figure 5-3: The difference between wheat yields in 1993-2002 and 2041-2061, simulated by: a) 

empirical model, b) LINTUL2, and c) metamodel. 
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Figure 5-4: The temporal trend of variables included in metamodel and empirical model from 1983 to 

2002 for Western Germany. 

 



 

 

5.3.7    Model comparison 

We compared different modelling approaches in order to simulate and predict crop yields at 

wide spatial and temporal scales. Apart from the inherent differences of the proposed 

models all three seem reasonably able to predict winter wheat yield level at regional to 

national scales. The fact that all approaches have similar model performances could be 

somewhat overestimated due to aggregation effects of reported yields. The yields were 

aggregated either by administrative units (Figure 5-1) or for the whole of Western Germany 

(Figure 5-2). It is known from landscape scale studies that such aggregation steps can 

cause a scale-dependent overestimation of model fits (Veldkamp et al., 2001). Whether this 

effect has caused some overestimations of model performance or not, does not matter in 

the sense that it affected all three models in a similar fashion.  

A model comparison helps to reveal shortcomings and strengths of the models. For 

example: in our study, a performance comparison between the three models indicated that 

a higher sensitivity to soil depth in the LINTUL2 model and the metamodel would probably 

lead to better predictions of yield spatial variability. Moreover, a performance comparison 

between the three models indicated that a higher sensitivity to winter wind speed in the 

LINTUL2 model and the metamodel would probably lead to better predictions of yield 

temporal variability. The best fit with reported reality is observed for the empirical model, 

apparently outperforming the crop growth simulation model and its derived metamodel. 

However, the fundamental limitation of the empirical model is that it is not valid outside its 

calibration domain severely hampers its usefulness for future predictions (White, 2009). 

Their validity for long-term future projections, especially that of empirical models that are 

calibrated on past observations, is however questionable. Future projections of crop yields 

within climate change scenarios can be best made by crop growth simulation models. The 

added value of the metamodel is that it is much faster to run and it requires far less data as 

the original LINTUL2 model. This suggests that such metamodels could be successfully used 

for fast, quick scan applications of future yield scenarios for areas where LINTUL2 has been 

calibrated. The empirical models and the metamodels are easy to make, require less input 

variables compared to the CGSMs to estimate regional patterns of crop yield. For Western 

Germany, the metamodel and the empirical model required three and four input variables 

respectively, while the CGSM required 16 input variables. The strength of empirical models 

and metamodels is that for their application they only require input data for variables that 

are selected to be relevant for the region or crop of interest (Lobell and Burke, 2010; 

Landau et al., 2000). 
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Remarkable is furthermore that neither the empirical model nor the metamodel contain a 

precipitation variable. Rainfall was also not strongly correlated to any of the variables that 

were included, which would account for its absence. Apparently, in the study area and 

during the study period, neither spatial nor temporal variability in rainfall was strongly 

related to either modelled or observed yields.  

 

All three models are limited by the fact that they assume that other mainly socio-economic 

factors do not directly drive crop productivity. This could be easily overcome by using such 

data to derive improved empirical models. The general validity of such simplistic models is 

questionable because many mechanisms of the complex multi-level land system are still 

unknown (Veldkamp, 2009). In order to do this properly far more advanced statistical 

analyses are required (Bakker and Veldkamp, 2012) and the derived ‘models’ have no 

future predictive power.  

 

5.4    Conclusions 

All three explored model options have the capability to simulate and predict crop yields at 

wide spatial and temporal scales. The suitability of the three models used are context 

dependent. For near-future projections, the empirical model appeared to be most reliable. 

We know, however, that it is not sensitive to variables or non-linearities that will probably 

become important in the future. For that reason, future projections of crop yields within 

climate change scenarios can be best made by crop growth simulation models. The derived 

metamodels can be fast and reliable alternatives for areas with well calibrated crop growth 

simulation models. A model comparison helps to reveal shortcomings and strengths of the 

models. In our case, a performance comparison between the three models indicated that a 

higher sensitivity to soil depth and winter wind speed in the LINTUL2 model and the 

metamodel would probably lead to better predictions. This specific conclusion is only valid 

for winter wheat growth in western Germany, for the used models.  
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6      General discussion and synthesis 



 

 

6.1     Introduction 

This thesis aimed to develop a framework for recommendable practices to model regional 

patterns of crop yield. The sub-objectives were: 

 To provide decision rules for selecting appropriate approaches to generate input 

variables to feed crop growth simulation models at the regional level; 

 To provide decision rules for selecting appropriate procedures to simulate regional 

yield patterns using CGSMs; 

 To identify, given context conditions, the most suitable modelling approach to 

simulate regional patterns of crop yield. 

In this chapter, I will discuss the outcomes of these objectives. I will first summarize the 

main findings of the previous chapters, in the context of the above sub-objectives; then I 

will synthesize the findings in order to address the main objective: the framework for 

recommendable practices to model regional patterns of crop yield. 

 

6.2    Accomplishment of the specific research objectives 

6.2.1   Generating input at the regional level 

Crop growth simulation models (CGSMs) require extensive input data on cultivar, 

management, weather, and soil conditions that are unavailable in many parts of the world. 

The validity of CGSM predictions over a region depends on the quality of the representation 

of the spatial variability of the input data (Hansen and Jones, 2000). At the regional scale, 

data availability often limits the generation of spatially detailed input data required by many 

CGSMs (Carbone et al., 2003). There are many approaches available to generate spatial 

variability in input data for CGSMs at the regional level, although criteria for the selection of 

the methods are often unclear. Chapter 2 discussed the issue of input data availability, and 

reviewed literature for existing approaches that have been used to overcome the problem of 

data availability. Based on the review decision rules were formulated as to what approach to 

take under different circumstances. Which of the approaches should be used depends on a 

number of questions whose answers lead to the decision rules denoted in Figure 6-1.  
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Figure 6-1: Decision rules for selecting appropriate approaches to describe the spatial variability of 

input variables to feed crop growth simulation models at the regional level (scale effects not included). 

 

For quite a while, the use of discrete zones and limited use of auxiliary data has been quite 

common to describe the variability in weather, soil, and management. However, 

increasingly the input data are presented as continuous surfaces. This has the following 

reasons: (i) the surge of available auxiliary data such as DEMs; (ii) the accumulation of data 

sources (in digital form); and (iii) the development of interpolation techniques that 

effectively uses auxiliary data. For example, interpolation may be supported through the use 

of spatially referenced environmental data layers such as the global 90-m resolution DEM 

from the Shuttle Radar Topography Mission (Jarvis et al., 2008). Moreover, remote sensing 

data can be considered as auxiliary data to use in the interpolation of soil and weather data. 
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Currently, with improved tools like geographical information systems (GIS) and field 

computers, more point data are saved during soil surveys than before. Moreover, because 

soil data do not change much over time, observations typically accumulate over time. The 

increased availability of soil observations allows for moving from discrete zones to 

continuous surfaces by means of interpolation.  

An advanced form of interpolation, where the use of auxiliary data is formalized, is digital 

soil mapping (DSM) (see e.g. Kempen et al., 2011). Recently, few studies have combined 

general pedological knowledge with interpolation methods to map the three-dimensional 

variation of soil properties using depth functions (Kempen et al., 2011; Malone et al., 2009; 

Meersmans et al., 2009; Mishra et al., 2009). Some weather, soil, and management 

variables can also be observed continuously, for example, by satellites (e.g. Launay, 2002; 

Guerif and Duke, 2000; Hansen and Jones, 2000). The big advantage of these 

measurements is that they directly result in continuous (small pixels) surfaces of variables. 

However, direct observation of soil properties by satellites is limited to topsoil, and only for 

cases where the soil is bare and not too many clouds occur. Interestingly enough there is 

very little use of mechanistic models to create continuous surface of weather data (e.g. 

Baigorria, 2005) and soil data (e.g. Finke, 2012; Minasny and McBratney, 2001) to feed 

CGSMs. Clearly, more research is needed to create continuous surface of management data 

by mechanistic models to feed CGSMs at the regional level. 

 

Generally, spatially-explicit regional patterns of yield are less accurate when done for 

discrete zones compared to continuous surfaces, although one should be aware of a false 

sense of accuracy, when continuous maps are made by unreliable interpolations. The most 

suitable method should be selected in a structural way, using decision rules as presented in 

Figure 6-1, rather than to limit ourselves in an early stage to the typical procedures such as 

discrete zones. 

 

6.2.2 Procedures for using CGSMs at the regional scale 

Regional patterns of crop yields using CGSMs can be generated with two different 

approaches: (i) run the CGSM for a series of points distributed throughout a region after 

which the simulated crop productions can be interpolated to create a continuous surface of 

yield patterns (calculate first, interpolate later; CI), and (ii) create surfaces for each of the 

input variables individually, then run the CGSM for each location (grid cell) to create a 

continuous surface of yield patterns (interpolate first, calculate later; IC). In order to 
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generate reliable model results for regional applications and/or estimate associated 

uncertainties, it is important to understand and consider the influence of the sequence of 

model calculations and interpolations (i.e. CI and IC) on simulation results, especially in the 

case of complex models with non-linear relationships (Ewert, 2004). 

 

I evaluated and compared these two approaches, by applying SUBSTOR-potato model 

(Ritchie et al., 1995) for potato to the Carchi province in Northern Ecuador at different 

supports, as illustrated in Figure 3-2 in Chapter 3. By using different supports, I examined 

scaling effects that arise from spatial variability in soil properties. The interpolations were 

performed with kriging at 100 m resolution. The specific objective was (i) to find the 

influence of the sequence of model calculations and interpolations (i.e. CI and IC) on the 

prediction of spatial patterns of potato yield, and (ii) to evaluate the persistence of the CI 

and IC results with different supports, both spatially and non-spatially. Model performance 

was compared with interpolated, observed yields at resolutions of 100 m and 400 m.  

 

In theory the two approaches are expected to produce the different results when the CGSM 

and / or interpolation method are nonlinear (Groot et al., 1998; Heuvelink, 1998; Addiscott 

and Tuck, 1996; Addiscott, 1993). It can be expected that the deviation is proportional to 

the degree of non-linearity of the model or interpolation method (Addiscott and Tuck, 

2001). Moreover, there are other factors, including the spatial dependency of input 

variables and the correlations between the input variables, which can contribute to the 

difference between the results of the CI and IC approach (see e.g. Van Bodegom et al., 

2002; Addiscott and Tuck, 2001; Heuvelink and Pebesma, 1999). Anticipating how these 

factors’ interactions will affect the differences between the two approaches is difficult. 

Therefore, in this thesis (Chapter 3) I took an experimental approach to understand and 

consider the role of these different factors in the differences between the two approaches.  

 

This study revealed a clear difference between the CI and IC approach. In the Carchi region, 

where this study was conducted, all soil properties were characterized by a nugget-to-sill 

ratio less than 41%, and a (autocorrelation) range of about 3.5 km. The individual inputs 

(i.e. soil properties in this case) showed different spatial dependency. Although these 

differences were small, they can explain the difference between the results of the CI and IC 

approach. This is because interpolation of the individual inputs can take these differences 

into account whereas spatial interpolation of the output cannot (see e.g. Heuvelink and 

Pebesma, 1999). On the other hand, the output of the CGSM had an even larger range than 



 

 

the ranges of soil properties. This is partly due to the model non-linearity, as interaction of 

model non-linearity with the spatial dependency of inputs increases the range in the CI 

approach (Leterme et al., 2007). 

 

In general, with interpolation and / or aggregation variability of data will decrease and local 

extremes will be levelled out (Baron et al., 2005; Bodegom et al., 2002; Bouma et al., 

1996). Depending on the spatial distribution, this effect will be stronger for some variables 

than for others. As a result, correlations between variables may change with interpolation 

and / or aggregation. Such changes may be a cause of difference between the results of the 

CI and IC approaches (Van Bodegom et al., 2002; Heuvelink and Pebesma, 1999). In order 

to see to what extent this has been the cause for the difference between the IC and the CI 

approach, three Pearson correlation matrices were calculated to indicate the degree of 

colinearity between all soil properties at point level, at 100 and at 400 m resolutions. The 

matrix calculated at point level shows that some of soil properties are strongly correlated. 

However, in this case study, the data correlation between all soil properties did not change 

from point level to 100 m, nor did it change from point level to 400 m resolution. 

 

Final results demonstrate that the order of calculation and interpolation was of major 

importance, while aggregation had a minor effect on the regional patterns of potato yield in 

the Carchi study area. The former is probability due to the non-linearity of CGSM and the 

difference in the spatial dependency of individual inputs; the latter is probably due to the 

absence of local extremes, which is due to the gradual trends in soil properties in the 

volcanic ash soils of Carchi (being a result of the soil forming processes, but also a 

consequence of the interpolation method, kriging). The RMSD in the normalized yields was 

0.79 for the CI approach and 0.99 for the IC approach at 100 m. For the aggregation to 400 

m, the RMSD was 0.74 for the CI approach and 0.99 for the IC approach. The spatial 

comparison of regional patterns of crop yield in terms of the semivariogram parameters (i.e. 

nugget-to-sill ratio and range), the Moran’s I (Li et al., 2007; Moran, 1950), and visually, 

shows that regional yield patterns generated by different procedures (i.e. different 

approaches and different supports) were similar, while, non-spatial comparisons of different 

yield patters in terms of RMSD showed better performance of the CI approach than the IC 

approach. From an uncertainty propagation and variability point of view it is in general 

preferable to calculate first before interpolation.  
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6.2.3   Modelling-approach comparison  

Models are typically evaluated in terms of their credibility in modelling yield patterns, on the 

basis of a range of observation points using statistical techniques like the root mean square 

difference (Akinbile and Yusoff, 2011; Quiroga and Iglesias, 2009; Xiong et al., 2008). Since 

there will always be a certain level of idiosyncrasy to the case, one has to strive for a 

toolbox of approaches from which the proper tool can be selected on the basis of a number 

of specific criteria such as credibility, sensitivity, and user friendliness that are defined in 

this thesis.  

 

Credibility 

I evaluated the performance of three different models for their capacity to predict regional 

patterns of crop yield for two different regions: the Carchi province in Northern Ecuador and 

Western Germany. In the Carchi area, the model evaluation was done on the basis of a 

large farm survey in a relatively small but heterogeneous mountain area. In Western 

Germany, a similar evaluation was done, but based on census data and for larger climate 

zones. For the Carchi study area, spatial analyses were carried out at watershed level, while 

for Western Germany spatial and temporal analyses were carried out at national level. The 

CGSM used for the Carchi study area was the SUBSTOR-potato model (Ritchie et al., 1995) 

that was calibrated and validated for Andean conditions using experimental data from the 

region (Bowen et al., 1999; Clavijo, 1999) (for a comprehensive description see Annex); the 

CGSM used for Western Germany was the LINTUL2 model (van Ittersum et al., 2003) that 

was - to some extent - adapted to wider spatial and temporal scales: it includes a 

technology development factor and it was recalibrated for spatially aggregated input data 

(Angulo et al., 2012) (for a comprehensive description see Annex).  

 

In both case studies the metamodels were obtained by relating model input variables to 

simulated crop yield by means of a multiple linear regression. The existence of a validated 

CGSM is the most important requirement for the metamodel approach. In both case studies 

the empirical models were obtained by relating various explanatory variables to observed 

crop yield by means of a multiple linear regression. For the empirical models and 

metamodels, the most significant explanatory variables for predicting crop yields were 

selected by means of a backward elimination of the variables with the lowest statistical 

significance.   

 



 

 

For the Carchi study area, the maps of the different modelling exercises all demonstrated a 

good correspondence with the map of observed yield, evaluated visually and in terms of 

RMSD. The different modelling approaches properly identified the high-productivity regions 

in the western part, where altitudes are between 3000 and 3300 m.a.s.l., as well as the 

low-productivity regions (Figure 4-2, Chapter 4). The RMSD values for the difference 

between the three model-based maps and the map of observed potato yields show that the 

differences were lowest for the empirical model, with a RMSD of 0.61. The RMSD was 

highest for the metamodel, with a RMSD of 1.05. The CGSM showed a RMSD of 0.99. The 

empirical model outperformed the CGSM and the metamodel in being better able to capture 

the regional pattern of potato yield. This might be explained by causes such as pest and 

diseases, which are not represented in the CGSM nor in the metamodel.  

In Western Germany, all models have a similar order of magnitude of yield prediction and 

associated uncertainties. They were all capable of reproducing high-productivity regions in 

the northern part of Western Germany as well as the low-productivity regions in southern 

parts. The spatial patterns and temporal trends seem to be better represented by the 

empirical model (R2= 69%, RMSE= 0.49 t ha-1yr-1, and CV-RMSE= 8%) than by the 

LINTUL2 model (R2= 65%, RMSE= 0.67 t ha-1yr-1, and CV-RMSE=11%) and the metamodel 

(R2= 56%, RMSE= 0.79 t ha-1yr-1, and CV-RMSE=13%). This spatial variability must be 

associated with the spatial variability in soil depth. The absence of any soil variable in the 

metamodel reveals an overall insensitivity of the LINTUL2 model to soil variability to 

simulate winter wheat growth in this specific case study. This insensitivity seems to be 

refuted by the spatial variability in observed crop yields. Overall, the LINTUL2 and the 

metamodel are able to mimic the global North-South trend, but appear not to capture the 

finer-scale soil variability that is visible in the empirical model and the agricultural census 

data. This can explain the slightly better performance of the empirical model. 

 

Moreover, Chapter 4 analyses the effect of spatial aggregation on the performance of the 

modelling approaches with the aim of analysing models’ relevance by modelling the yield 

patterns at support resolutions larger than field. In the Carchi study area, all yield maps 

(observed and model-based) were aggregated to higher aggregation levels of 200, 300, 

400, 500 and 600 m resolutions. Subsequently, the model-based yield maps were compared 

to the interpolated, observed yields in terms of Root Mean Squared Difference (RMSD). In 

this study, the rates of decreasing RMSD with higher aggregation levels were similar for the 

different modelling approaches and in most cases resulting in a linear decline of 15-30%. 

The results showed that aggregation of calculated data leads to less variability and 



 

95 
 

increasing linear fits at higher aggregation levels. The spatial variability in the case study 

area determines how strong this effect is. 

 

To conclude, all three modelling approaches were capable to predict the observed regional 

patterns of crop yield in both case studies and are therefore considered to be credible. 

However, in both case studies the empirical models outperformed CGSMs in being better 

able to simulate the regional patterns of yield. The metamodels were also able to simulate 

regional patterns of crop yields, albeit always less accurate than the CGSMs. 

 

Sensitivity 

I compare the models in terms of the models’ sensitivity to the different explanatory 

variables and the models’ application domain.  

 

Explanatory variables 

From the results of Chapter 4 (i.e. the Carchi case study), it can be observed that the 

empirical model and metamodel exhibit a sensitivity to soil water holding capacity and 

weather variables, as these were important explanatory variables. The sensitivity of all 

three modelling approaches to weather variables and water holding capacity suggest that 

the potato yield in the Carchi study area is driven by temperature and constrained by water 

availability. From the results of Chapter 5 (for Western Germany), it can be observed that 

the metamodel exhibits a sensitivity of the original CGSM to technological development, 

wind speed, and minimum winter temperature. The empirical model demonstrated, in 

addition to technological development and weather variables a further sensitivity of the 

actual yields to soil depth. The weather variables included in the metamodel and the 

empirical model were largely the same, except that the empirical model picked up wind 

speed during winter while the metamodel picked up wind speed during growing season.  

 

Based on results of Chapter 5 (i.e. the Western Germany case study), I could derive that 

the LINTUL2 model appeared to lack sensitivity to wind speed during winter to adequately 

model temporal variability of winter wheat yields in this specific case study. Because the 

sensitivity of the empirical model to winter wind speed resulted in a better performance of 

this model, the empirical model could be used to reveal these shortcomings of the process-

based model. Moreover, LINTUL2 appeared to lack sensitivity to soil variables to adequately 

model spatial variability of winter wheat yields in this specific case study. The fact that the 

empirical model was able to predict spatial variability in observed data, suggests that the 



 

 

LINTUL2 model would probably benefit by a higher sensitivity to soil variables as well as 

wind speed during winter. This specific conclusion is only valid for winter wheat growth in 

western Germany, for the used models.  

 

To conclude, regional patterns of crop yield are determined by a limited number of 

explanatory variables. The importance of the various explanatory variables in the empirical 

model and metamodel in response to yield is obvious and can be derived from their 

statistical significance. In the case of CGSMs, a sensitivity analysis is required to derive the 

importance of the various explanatory variables in response to yield. The development of a 

metamodel could be a good alternative for the sensitivity analysis to show the importance of 

the various explanatory variables in the CGSMs. This is because the metamodel is 

constructed by identifying the most significant explanatory variables of the calibrated CGSM 

in response to crop yield, for a particular setting (in time and space). 

 

Application domain 

In Chapter 4 (Carchi case study) and 5 (Western Germany case study) the empirical model 

and metamodel demonstrated a sensitivity to weather variables. Therefore, the weather 

variables in the empirical and metamodel allow for their potential use in climate change 

scenarios. However, their validity is probability limited to near-future predictions. Empirical 

models and metamodels can be used if the range of the input variables for the simulation 

does not exceed the range of the input variables in the calibration dataset by, say, more 

than 10% (this percentage can be made a function of the sensitivity of the model to the 

variable). This seriously hampers their usefulness for scenario studies (White, 2009). For 

the prediction of future patterns or for wider agro-ecological conditions both the metamodel 

and the empirical model have fundamental shortcomings, as they may have omitted 

variables that are important process variables. CGSMs do take into account many factors in 

a way that would not be possible using empirical models and metamodels (Lobell and Burke, 

2010; Bouman et al., 1998). Therefore, empirical models and metamodels are context 

dependent (both spatially and temporally) and should not be used for situations that deviate 

strongly from this context (Bakker and Veldkamp, 2012).  

 

User friendliness 

This criterion is only relevant if the developed model is to be run by non-experts (i.e. often 

policymakers). I considered three model characteristics to compare the user-friendliness: 

the number of input variables required, computation time, and transparency.  
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The empirical models and the metamodels require less input variables compared to the 

CGSMs to estimate regional patterns of crop yield (Chapters 4 and 5). The strength of 

empirical models and metamodels is that for their application they only require input data 

for variables that are selected to be relevant for the region or crop of interest (Lobell and 

Burke, 2010; Landau et al., 2000). As regional scale often imply that the availability of input 

data decreases, a limited number of input variables required by the simpler models (e.g. 

empirical models and metamodels) is a useful characteristic to look at for focusing further 

data collection on these variables. 

 

For large-scale applications in which a lot of model runs would be required, comparison of 

the relative computation time under the same conditions (i.e. CPU, memory and software) 

may provide useful information for choosing a more efficient modelling approach (Guo et 

al., 2010). In both case studies (Chapters 4 and 5) the empirical model and the metamodel 

prove to be relatively simple and fast (= 45 second), while the CGSM required more 

computation time (= 600 second). The results were in agreement with the conclusions of 

Blanning (1975) who proposed the use of simplified models such as metamodels to obtain 

useful sensitivity information with a significant reduction in the computation time. 

 

All three modelling approaches require significant expert knowledge for their development 

and calibration. However, after this initial phase, the empirical model and the metamodel 

are simple and transparent.  The CGSM is a more complex model that is less transparent for 

non-experts and acts like a black box for non-expert users. Therefore, when the model itself 

is to be run by policymakers, empirical models and metamodels may be a better choice. 

 

6.3     Synthesis  

I propose a standard protocol for guiding and justifying model- and data-selection 

procedures for the simulation of regional yield patterns. This has led towards the design of a 

framework for recommendable practices to model regional patterns of crop yield, which is 

shown in Figure 6-2. Such a framework requires the development of general decision rules - 

associated with specific conditions - that will help researchers and policymakers to select 

model and data generation procedures that fit their objective. Although two case studies 

may not be enough to derive generally valid decision rules, the findings and experiences 



 

 

gained during the writing of this thesis certainly provide some direction towards the design 

of the framework for recommendable practices to model regional patterns of crop yield.  

 

The framework consists of three elements: (i) the modelling-approach choice, (ii) the data-

handling choice, and (iii) the model-implementation choice, discussed in the following. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-2: A framework for recommendable practices to model regional patterns of crop yield. The 

framework is context specific and not case proof. 
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The modelling-approach choice 

Three different modelling approaches, being empirical models, CGSMs, and metamodels of 

the CGSMs, were distinguished to simulate regional patterns of crop yield. The context 

conditions that determine the best approach are input data requirements, problem 

definition, study sub-objective, the scale at which output results are expected, model end-

users, and utilization of the output (e.g. testing different scenarios). Which of these 

modelling-approaches should be used depends on a number of questions whose answers 

lead to the decision rules denoted in Figure 2-2. 

 

Will the model be used within input variable range that exceeds the calibration 

range by more than 10%? 

• Empirical models can be used if the range of the input variables for the simulation 

does not exceed the range of the input variables in the calibration dataset by, say, more 

than 10% (this percentage can be made a function of the sensitivity of the model to the 

variable). 

• When a variable does not exhibit variability within the area or time period 

considered, will not be included in the empirical or metamodel made for that area and time 

period. This does not mean that the variable is not an important explanatory variable of 

crop yield. CGSMs do take into account many factors in a way that would not be possible 

using empirical models and metamodels. The empirical models rely on existing data and are 

not able to make future projections of yields, when the range in input data for the future 

scenarios strongly exceeds the calibration range. Therefore, empirical models and 

metamodels are context dependent (both spatially and temporally) and should not be used 

for situations that deviate strongly from this context. 

• For creating maps of past and current yields an empirical model will give the best 

results; for future scenarios, or for understanding the role of a particular variable, CGSMs 

should be used. Or when necessary e.g. used by or with non-experts, metamodels made 

from CGSMs should be used. 

• When there is abundance of data, it is always recommendable to use a process-

based CGSM. Due to data limitations and scale-effects, running a CGSM is often impossible. 

Policy makers then have to choose for either a metamodel or an empirical model. 

• Empirical models are good at mimicking patterns, but due to confounding issues, the 

exact role of individual variables is not accurately assessed. For that reason, if one wants to 



 

 

investigate the response to a change in one particular variable (e.g. temperature), it may 

be better to use a metamodel. 

 

Is actual yield expected to deviate from potential yield due to mechanisms other 

than those in CGSM? 

• Risk-factors such as pest and plagues are not captured in CGSMs. If, in general, 

actual yields strongly differ from potential yields for other reasons than mechanisms 

modelled in the CGSM, an empirical model should be considered (possibly in addition to the 

CGSM).  

 

Are yield observations (N) ≥ 100? 

• Creating a reliable empirical model requires a sufficient number of observations of 

the target variable (yield). For calibrating a CGSM less such observations are required, 

because calibration here concerns adjusting priorly-defined relationships rather than 

establishing relationships purely from the data. Calibrating a metamodel only requires a 

calibrated CGSM. 

 

The model-implementation choice 

With respect to model implementation, the available input data determine the possible 

approaches to simulate regional patterns of crop yield using field-level CGSMs. As a starting 

point, it is important to know whether the input data are available for a series of points 

distributed throughout a region. In the case of point data, two possible approaches exist 

(i.e. calculate first, interpolate later: CI, and interpolate first, compute later: IC) to create a 

continuous surface representing the spatial patterns of crop yield. Which of these 

approaches should be used depends on a number of questions whose answers lead to the 

decision rules denoted in Figure 2-2. Otherwise, (i) in the case of discrete zones describing 

the variability in input data, the simulations are only done for individual discrete zones 

resulting in a map with discrete zones characterized by the resulting simulated crop yield. In 

some cases (e.g. the Western Germany application), important variables are already in the 

form of discrete zones, and the underlying observations from which these zones were made 

are not available. In that case one has no option but to use the discrete zones approach. (ii) 
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In some cases, important variables are already in the form of continuous surfaces (e.g. 

remote sensing imagery). In that case one has no option, the simulations are only done for 

individual cells resulting in a map with continuous surfaces characterized by the resulting 

simulated crop yield. 

 

Are all required data available for same points? 

• If data of different input variables is collected for the same point locations, using the 

calculate first, interpolate later approach is best. Note however, that application of the field-

level model at a larger support could have implications for model outcomes. If the latter is 

expected to be important, because the model is strongly non-linear, or because variables 

are multiplied in the model while showing strong correlation in reality, the aggregation step 

should be applied after model calculation. 

 

Is it possible to generate a reliable continuous surface of the input variable? 

• If data of different input variables are not collected for the same point locations, but 

the input variable shows good correlations with available auxiliary data, interpolation will 

probably results in reliable maps (see the data-handling choice), so that one can best use 

the interpolate first, calculate later approach. Note however, that with a complex model, 

applying the interpolate first, calculate later approach requires a relative high computation 

time, as the model needs to be run for each individual pixel to create a continuous surface 

of yield patterns. If the computation time is expected to be a limiting factor, an empirical 

model or metamodel should be considered.  

• When the input data are available for only a limited number of observations, the use 

of discrete zones representing specific combinations of soil, weather and management data 

is recommended (see the data-handling choice). Representing the outcome in such zones 

avoids a false impression of accuracy. In case a continuous surface was created with just as 

poor a quality as the discrete zones, users could mistake the continuous surface output for 

being more realistic and accurate.  

 



 

 

The data-handling choice  

Various choices for generating data to feed CGSMs at the regional level were distinguished, 

based on data availability, the spatial and temporal variability of the data, the correlation 

with other variables, the data acquisition methods, the expected accuracy from a particular 

approach used to describe spatial variability, and the sensitivity of the CGSM to the variable. 

To structure the review of approaches that have been used in the literature, I distinguished 

between two categories: (i) where input data are generated as discrete zones; and (ii) 

where input data are generated as continuous surfaces. Obviously, the latter approach is 

more sophisticated, and likely to result in more accurate spatially-explicit yield predictions. 

However, in order to generate continuous surfaces, a few conditions need to be met, which 

are outlined in the decision tree in Figure 6-1. 

 

6.4     Conclusions 

The final conclusions of the research presented in this thesis are: 

• Regional crop yield modelling is very sensitive to the choice of model-type and data 

used; 

• This sensitivity is usually not specifically addressed (often calibrated away) and not 

properly and systematically documented in the many available published studies; 

• The outcomes of such modelling exercises cannot be properly used when the 

underlying decisions on model and data type and sensitivities are unknown; 

• Without this crucial knowledge regional crop simulation models can be easily miss-

used by non-specialist; 

• A standard decision procedure is proposed where these choices are documented in a 

standard format allowing cross comparisons of different approaches despite the often 

strong context dependency of the results.  
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Annex 

  



 

 

Description of modules in the LINTUL2-(FAST) and SUBSTOR-(DSSAT) that 

have been used in this thesis 

 

SUBSTOR-potato model in DSSAT 

In this thesis we used the SUBSTOR-potato model (Ritchie et al., 1995) to simulate 

variability in the productivity of potatoes as a function of environmental factors. The 

SUBSTOR-potato model (Ritchie et al., 1995) is available within the Decision Support 

System for Agro-technology Transfer (DSSAT) (Jones et al., 1998) and was calibrated and 

tested under Andean conditions as described by Stoorvogel et al. (2004) and Bowen et al. 

(1999). The SUBSTOR-potato model is one of 16 models embedded within the DSSAT (v4) 

program. A brief review of the SUBSTOR-Potato model is provided here for convenience but 

readers interested in a comprehensive description are referred to Griffin et al. (1993). 

The SUBSTOR-Potato model simulates on a daily basis the growth and development of the 

potato crop using information on climate, soil, management and cultivar. The model is 

divided into four main sub models simulating simultaneously the phenological development, 

the biomass formation and partitioning, soil water and nitrogen balances to provide a 

realistic description of the plant–soil–atmosphere system. The phenological development is 

controlled by cumulative temperature whilst the growth rate is calculated as the product of 

absorbed radiation, which is a function of leaf area, using a constant ratio of dry matter 

yield per unit radiation absorbed. Cultivar-specific coefficients, also referred to as ‘genetic 

coefficients’, are used by the model to control tuber initiation, leaf area development, and 

tuber growth rate. 

The soil water balance in DSSAT is based on Ritchie’s model (Ritchie, 1981a, b) where the 

concept of drained upper limit and drained lower limit of the soil is used as the basis of the 

available soil water. This one dimensional and multi-layer model uses the ‘tipping bucket’ 

approach to compute the soil water drainage when a layer’s water content is above a 

drained upper limit parameter (field capacity). The SCS method (Soil Conservations Service, 

1972) modified to account for layered soil (Williams, 1984) is used to partition rainfall 

and/or irrigation into runoff and infiltration, based on a curve number that attempts to 

account for texture, slope, and tillage.  

The nitrogen balance in the soil is simulated using the CERES N model where processes 

such as mineralization, immobilization, nitrification, de-nitrification, nitrogen uptake by 

plants, distribution and remobilization within the plants are simulated (Godwin and Singh, 



 

131 
 

1998). At each growth stage, deficits in soil water or nitrogen will affect the growth of the 

modelled crop and hence final yield. The model is designed to be used for simulation of two 

production levels. The potential yield production level is limited only by temperature, solar 

radiation and the specific physiological plant characteristics. At the water and nutrients-

limited production level, the soil and plant water balance together with available nutrients 

are included in the simulation of potato growth. 

 

  



 

 

LINTUL2 in FAST 

 

LINTUL2 is a mechanistic crop growth simulation model that allows for the simulation of soft 

winter wheat under potential and water-limited conditions (for a comprehensive description: 

van Ittersum et al., 2003; Farré et al., 2000; Spitters and Schapendonk, 1990). LINTUL2 

describes production under water-limited conditions by including a water balance of crop 

and soil in the LINTUL1 model. Conditions are still optimal with respect to other growth 

factors, i.e. ample nutrients and a pest-, disease- and weed-free environment. With the 

LINTUL2 model, options for water conservation can be studied, as well as differences among 

cultivars in drought tolerance.  

The simple soil water balances in LINTUL2 are derived from more complex versions 

documented by Penning de Vries et al. (1989) and Stroosnijder (1982). Input data for the 

model are standard data of daily solar radiation, temperature and rainfall; plant density, 

dates of crop emergence and harvest; rootable depth; and the soil moisture retention 

characteristics, i.e. the relation between volumetric soil moisture content and suction. 

LINTUL2 has been used in numerous climate change studies (e.g. Hijmans, 2003; Wolf and 

van Oijen, 2002; Ewert et al., 1999; van Oijen and Ewert, 1999). 

The model is integrated in Analysing Cropping systems and Environment (ACE) which is a 

further development of the recently developed cropping system modelling framework 

Agricultural Production and Externalities Simulator (APES) (Donatelli et al., 2010; van 

Ittersum et al., 2008).  

The model was extended with a calibration algorithm and implemented to allow fast 

simulations (FAST; Fast Agro-Simulation Technique) for large numbers of spatial units and 

years with more than 100,000 runs per scenario for which temporal model performance 

becomes a critical issue. The resulting model LINTUL2 in FAST was further extended with 

various calibration methods under European conditions by Angulo et al. (2012) to allow the 

simulation of spatial and temporal yield trends and responses to climate change. A simple 

representation of the effects of increased atmospheric CO2 level on biomass production was 

considered using the relationship between CO2 level and radiation use efficiency as proposed 

by Stockle et al., (1992).  

Moreover, a simple representation of the effects of technology development on biomass 

production using the estimation of yield changes due to improved varieties and crop 

management as described in (Ewert et al., 2005). Their results showed that the extended 

method considering the region-specific calibration of phenology and growth parameters is 
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most suitable to simulate climate change effects on wheat yields in Western Germany 

(Angulo et al., 2012). The calibrated model LINTUL2 in FAST includes the effects of CO2 

levels and technology development on wheat production has been used in this thesis. 

  



 

 

Table 1: Summary description of modules in the LINTUL2-(FAST) and SUBSTOR-(DSSAT) 

 

Modules Sub modules Crop growth simulation model 

  LINTUL2-(FAST) SUBSTOR-(DSSAT) 

Weather  Reads or generates daily and/or hourly weather data: daily 

rainfall, maximum air, temperature, minimum air temperature, 

global solar radiation, wind speed, vapour pressure and 

Evapotranspiration  

Reads or generates daily and/or hourly weather data: 

maximum and minimum temperatures, global radiation 

and precipitation  

Soil Soil moisture Tipping bucket: drainage of water, runoff and irrigation are 

calculated in a preferential sequence in the tipping bucket model. 

Tipping bucket:  snow accumulation and melt, runoff, 

infiltration, saturated flow and water table depth. 

Volumetric soil water content is updated daily for all soil 

layers. 

Water uptake: Uptake of water from the soil by plant roots is 

driven by crop transpiration and may be modified by the amount 

of water in the profile. 

Soil carbon 

and nitrogen 

 

 

 

 Organic and inorganic fertilizer and residue placement 

decomposition rates, nutrient fluxes between various 

pools and soil layers.  

Soil nitrate and ammonium concentrations are updated 

on a daily basis for each layer. 

Soil 

temperature 

 Computes soil temperature by layer 

Soil 

dynamics 

 Computes soil structure characteristics by layer. This 

module currently reads values from a file, but future 

versions can modify soil properties in response to tillage. 

Crop Phenological 

development 

Total crop growth: emergence and root growth take place only if 

there is enough water in the soil, i.e. if the water content is 

above wilting point. 

Crop growth rate is affected if the transpiration of the crop is 

hampered due to low water content in the rooted soil. 

Define temperature effect on vegetative, early 

reproductive, and late reproductive development 

Parameters for each growth stage: preceding stage, 

photoperiod function, temperature function, temperature 

and water sensitivity, N and P sensitivity 
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Formation of 

leaf, stem 

and root 

biomass and 

its 

partitioning, 

Root-shoot partitioning: allocation of biomass over roots and 

shoot of the crop is changed if water stress occurs.  The process 

is modelled in a general way, based on two assumptions: upon 

drought, more roots will be formed to alleviate the water 

shortage and thus less biomass is left for the shoot, the 

distribution of dry matter among stem, leaves and storage 

organs remains unchanged. 

Dry matter partitioning to leaf, stem, and root as 

function of vegetative stage. 

Coefficients for partitioning at emergence, final growth 

stage, stem senescence, during water stress, and nodule 

growth Parameters that define leaf expansion response 

to temperature and solar radiation 

Initial root depth and length, root water uptake 

parameters 

Relative effects of temperature on pod set, seed growth 

and relative Change in partitioning 

Relative effects of soil water content. 

Management 

operations 

module 

 Sowing and harvest dates. 

Technology development:  yield changes due to improved 

varieties and crop management 

Planting, emergence and harvest dates as well as about 

used amount of nitrogen, potassium and phosphorus 

fertilizers, irrigation and tillage practices and previous 

crop. 



 

 

 



 

137 
 

Summary 

Modelling regional land use: the quest for the appropriate method 

The demand for spatially-explicit predictions of regional crop-yield patterns is increasing. 

Policymakers need these predictions for e.g. regional development plans, the assessment of 

climate change impacts, and to reduce the threat of regional imbalances between food 

supply and demand (Lobell and Ortiz-Monasterio, 2007; De Wit et al., 2005; Jagtap and 

Jones, 2002). Agricultural census, other forms of direct surveys, or remote sensing imagery 

allow to assess spatial patterns of crop yield, but this will only provide insight ex post (Khan 

et al., 2010; Launay and Guerif, 2005). An alternative approach to assess a priori and/or 

future ranges of alternative scenarios spatial yield patterns at the regional scale is the 

application of mechanistic crop growth simulation models (e.g. Launary, 2002; Gomez and 

Ledoux, 2001; Faivre et al., 2000). However, two main problems emerge in the application 

of field-level CGSMs at regional scales. Firstly, the required input data on weather, soils, 

and management are often not available (data availability); and secondly, if they are, 

generally not at the required level of detail (data aggregation). As argued in Chapter 1, 

there are two possible approaches to address the identified problems. One is replacing the 

CGSM by a metamodel that is a simple mathematical function intended to mimic the 

behaviour of interest of a mechanistic model (Kleijnen and Sargent, 2000; Barton, 1998). 

The second approach is a simple empirical model that describe the response from observed 

crop yields (from e.g. survey data) to a range of explanatory (environmental and 

management) variables (e.g. Lobell et al., 2008).  

 

The modelling-approach choices and performances are context dependent. The context 

conditions that determine the best approach are input data requirements, problem 

definition, study sub-objective, the scale at which output results are expected, model end-

users, and utilization of the output (e.g. testing different scenarios). Since there will always 

be a certain level of idiosyncrasy to the case, one has to strive for a toolbox of approaches 

from which the proper tool can be selected on the basis of a number of specific criteria such 

as credibility, sensitivity, relevance, and user-friendliness. The selection of the modelling 

approaches can be considered as one of the most difficult, and often ignored, steps to 

model crop yield at the regional level. However, a structured, systematic way of modelling-

approach selection is lacking. In order to address this issue this thesis aimed to develop a 

framework for recommendable practices to model regional patterns of crop yield. From this 

general objective, more specific sub-objectives are derived: 



 

 

 

 To provide decision rules for selecting appropriate approaches to generate input 

variables to feed crop growth simulation models at the regional level; 

 To provide decision rules for selecting appropriate procedure s to simulate regional 

yield patterns using crop growth simulation models (CGSMs); 

 To identify, given context conditions, the most suitable modelling approach to 

simulate regional patterns of crop yield. 

 

Chapter 2 discusses the issue of input data availability, reviews literature for existing 

approaches that have been used to overcome the problem of data availability. Then it uses 

the review to formulate decision rules as to what approach to take under different 

circumstances. Which of the approaches should be used depends on the following questions: 

(i) do observations of the input variable allow to estimate semivariograms?; (ii) are there 

auxiliary data correlated to the target variable?; (iii) do the input variables exhibit spatial 

correlation?; and (iv) is there spatial correlation in the residuals of the regression that 

related auxiliary data to the target variable?. Summarized, the selection of possible 

approaches depends on the data availability, the spatial variability, the temporal variability, 

the correlations with other variables, the data acquisition methods, the expected accuracy 

from a particular approach used to describe spatial variability, and the sensitivity of the 

CGSM to the variable. At the regional level CGSMs are typically fed by the input data that 

are generated as discrete zones. However, increasingly the input data are presented as 

continuous surfaces. This has the following reasons: (i) the surge of available auxiliary data 

including satellite images and DEMs; (ii) the accumulation of data sources (in digital form); 

and (iii) the development of interpolation techniques such as DSM that effectively uses 

auxiliary data. Generally, spatially-explicit regional patterns of yield are less accurate when 

done for discrete zones compared to continuous surfaces, although one should be aware of 

a false sense of accuracy, when continuous maps are made by unreliable interpolations. The 

most suitable method should be selected in a structural way, using decision rules as 

presented in Chapter 2. 

Chapter 3 evaluates different procedures to simulate regional patterns of potato yields in 

the Carchi province in Northern Ecuador with field-level crop growth simulation models. It 

also examines scaling effects that arise from spatial variability in soil properties by using 

different supports. Results demonstrate that the order of calculation and interpolation was 

of major importance, while aggregation had a minor effect on the regional patterns of 

potato yield. The former is probability due to the non-linearity of the CGSM and the 
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difference in the spatial dependency of individual inputs. The latter is probably due to the 

absence of local extremes, which is due to the gradual trends in soil properties in the 

volcanic ash soils of Carchi (being a result of the soil forming processes, but also a 

consequence of interpolation). The spatial comparison of regional patterns of crop yield 

shows that regional yield patterns generated by different procedures (i.e. different 

approaches and different supports) were similar, while, non-spatial comparisons of different 

yield patters in terms of the Root Mean Squared Differences showed better performance 

when calculations were performed first instead of staring with the interpolation of the input 

variables. From an uncertainty propagation and variability point of view it is in general 

preferable to calculate first before interpolation.  

Chapters 4 and 5 compare and evaluate the performance of three different modelling 

approaches for their capacity to model regional patterns of crop yield for two different 

cases: potato yields in the Carchi province in Northern Ecuador (Chapter 4) and wheat 

yields in Western Germany (Chapter 5). Based on these findings, various criteria for 

selecting a modelling approach are defined including credibility, relevance, sensitivity, and 

user friendliness. The empirical model and the metamodel are very easy to use and 

transparent. However, their application domain is limited to the case study area. The 

application of the crop growth simulation model remains complex and the model functions 

as a black box. The strength of the CGSMs is that impacts over a wider range of conditions 

can be simulated, taking into account many factors in a way that would not be possible 

using empirical models and metamodels (Lobell and Burke, 2010; Bouman et al., 1998). It 

can be concluded that the various modelling approaches each have their unique merit. 

Hence, the different modelling approaches are therefore complementary for the 

interpretation of the observed patterns. There is not a single optimal solution to modelling 

agricultural systems to model, e.g. regional yield patterns. Moreover, Chapter 4 analyses 

the effect of spatial aggregation on the performance of the modelling approaches. The 

results showed that aggregation of calculated data leads to less variability and increasing 

linear fits at higher aggregation levels. The spatial variability in the case study area 

determines how strong this effect is. 

Chapter 6 synthesises the methodologies and results from the research presented in this 

thesis. The chapter is divided into three main parts. The first part reflects upon the 

achievement of the specific research objectives. The second part synthesises the results of 

the thesis, and provides a framework for recommendable practices to model regional 

patterns of crop yield. The final conclusions are presented in the third part of the synthesis: 



 

 

 Regional crop yield modelling is very sensitive to the choice of model-type and data 

used;  

 This sensitivity is usually not specifically addressed and not properly and 

systematically documented in many studies;  

 The outcomes of such modelling exercises cannot be properly used when the 

underlying decisions on model and data type and sensitivities are unknown;  

 Without this crucial knowledge regional crop simulation models can be easily 

misused by non-specialists;  

 Standard decision rules are proposed to document these choices in a standard 

format allowing cross comparisons of different approaches despite the often strong 

context dependency of the results. 
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Samenvatting 

Het modelleren van regionale landgebruik: de zoektocht naar de juiste 

methode 

 

De vraag naar ruimtelijk-expliciete voorspellingen van regionale patronen van 

gewasopbrengsten neemt toe. De politiek heeft deze voorspellingen nodig voor o.a. 

regionale ontwikkelingsplannen, het inschatten van de gevolgen van klimaatsverandering, 

en om de bedreiging van een regionale onbalans tussen het aanbod en de vraag naar 

voedsel te verminderen (Lobell en Ortiz-Monasterio, 2007; De Wit et al., 2005; Jagtap en 

Jones, 2002). De landbouwcensus, maar ook andere vormen van enquêtes of 

aardobservatie, maken het mogelijk om ruimtelijke patronen van gewasopbrengsten te 

analyseren. Dit geeft echter alleen inzichten ex post (Khan et al., 2010; Launay en Guerif, 

2005). Een alternatieve methode om a priori onder alternatieve scenario’s de ruimtelijke 

patronen op regionale schaal in te schatten is met behulp van mechanistische 

gewasgroeimodellen (e.g. Launary, 2002; Gomez en Ledoux, 2001; Faivre et al., 2000). 

Omdat de gewasgroeimodellen op veldniveau zijn ontwikkeld, leidt hun inzet op regionale 

schaal tot twee problemen. Ten eerste, zijn de benodigde invoergegevens m.b.t. weer, 

bodem, en management vaak niet beschikbaar. Ten tweede, hebben de invoergegevens, als 

ze al beschikbaar zijn, vaak niet het gewenste schaalniveau. Zoals aangegeven in hoofdstuk 

1, zijn er twee mogelijke manieren om de verschillende problemen aan te pakken. Eén optie 

is om het gewasgroeimodel te vervangen door een metamodel. Een metamodel is een 

simpele mathematische functie die het gedrag van een mechanistisch gewasgroeimodel 

imiteert (Kleijnen en Sargent, 2000; Barton, 1998). Een alternatieve aanpak is om een 

simpel empirisch model te ontwikkelen dat waargenomen gewasopbrengsten (van bijv. 

enquêtes) aan verklarende factoren koppelt (e.g. Lobell et al., 2008). 

 

De keuze van modelaanpak en hun prestatie zijn context specifiek. De omstandigheden die 

bepalen welk model de beste resultaten geeft worden bepaald door de beschikbare 

invoergegevens, de onderzoeksvraag, het gewenste schaalniveau, en het gebruik van de 

eindresultaten (bijv. het testen van scenario’s). Aangezien case-studies altijd specifiek zijn 

en moeilijk te generaliseren, moet men streven naar een set van verschillende aanpakken 

van waaruit op basis van verschillende criteria zoals geloofwaardigheid, gevoeligheid, 

relevantie, en gebruikersvriendelijkheid geselecteerd kan worden. De selectie van 



 

 

modelaanpak kan gezien worden als één van de moeilijkste, en vaak genegeerde, stappen 

om gewasopbrengsten op het regionaal niveau te modelleren. Een gestructureerde manier 

om deze keuze te maken mist echter nog. Om hier beter mee om te gaan, richt dit 

proefschrift zich op een raamwerk waarmee de beste aanpak om regionale patronen van 

gewasopbrengsten te modelleren geselecteerd kan worden. Van deze algemene doelstelling 

zijn een aantal specifieke doelstellingen afgeleid:  

 Het ontwikkelen van beslissingsregels om geschikte methodes te selecteren voor 

het genereren van invoervariabelen om de simulatiemodellen voor gewasgroei  op 

regionaal niveau te voeden; 

 Het ontwikkelen van beslissingsregels voor de selectie van de juiste procedures om 

patronen van gewasopbrengsten te simuleren met modellen voor gewasgroei; 

 Het opzetten van procedures om, gegeven een bepaalde context, het meest 

geschikte modeltype te selecteren om regionale patronen van gewasopbrengst te 

simuleren. 

Hoofdstuk 2 bediscussieerd de kwestie van de beschikbaarheid van invoergegevens en 

analyseert de literatuur voor methodes die gebruikt zijn om problemen met 

gegevensbeschikbaarheid op te lossen. Dit overzicht is vervolgens het startpunt om 

beslissingsregels te formuleren die helpen de juiste methode te selecteren voor bepaalde 

omstandigheden. Deze keuze hangt af van de volgende vragen: (i) laten waarnemingen van 

de inputvariabele het toe om een semi-variogram te schatten?; (ii) zijn er hulpvariabelen 

beschikbaar die gecorreleerd zijn aan de doelvariabele?; (iii) zijn de invoergegevens 

ruimtelijk gecorreleerd?; en (iv) zijn de residuen van de regressie tussen doelvariabele en 

hulpvariabele ruimtelijk gecorreleerd? Samenvattend hangt de selectie van mogelijke 

methodes af van de databeschikbaarheid, de ruimtelijke variabiliteit, de temporele 

variabiliteit, de correlaties met andere variabele, de gevraagde nauwkeurigheid om de 

ruimtelijke variabiliteit te beschrijven en de gevoeligheid van het gewasgroeimodel voor de 

variabele. Op het regionaal niveau worden de invoergegevens voor gewasgroeimodellen 

vaak beschreven door middel van discrete zones. In toenemende mate worden de gegevens 

echter steeds vaker beschreven als continue oppervlaktes. Hiervoor zijn een aantal redenen 

aan te wijzen: (i) de snelle groei aan beschikbare secundaire data zoals satellietbeelden en 

digitale hoogtemodellen; (ii) de toename aan verschillende bronnen met (digitale) 

gegevens; en (iii) de ontwikkeling van interpolatietechnieken zoals digitale 

bodemkarteringen die effectief gebruik maken van secundaire data.  In het algemeen zijn 

regionale patronen van gewasopbrengsten minder nauwkeurig als ze afgeleid zijn discrete 

zones in vergelijking tot continue oppervlaktes. Het zou echter een vals gevoel van 
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nauwkeurigheid kunnen zijn omdat continue oppervlaktes gemaakt kunnen zijn door 

onnauwkeurige interpolaties. Het is daarom van belang om de beste methodes te selecteren 

in een gestructureerd manier, zoals door het gebruik van de beslissingsregels gepresenteerd 

in hoofdstuk 2.  

 

Hoofdstuk 3 evalueert verschillende procedures voor het simuleren van regionale patronen 

van aardappel opbrengst in de provincie Carchi in Noord-Ecuador met simulatie modellen 

voor gewasgroei ontwikkeld op veldniveau. Er wordt ook ingegaan op de schaal effecten die 

voortvloeien uit de ruimtelijke variabiliteit van de gebruikte bodem eigenschappen. 

Resultaten tonen aan dat de volgorde van de berekening en de interpolatie van groot belang 

was. Aggregatie van invoer of uitvoergegevens had een gering effect op de regionale 

patronen van de aardappel opbrengst. De verschillen in de volgorde van de methodes zijn 

waarschijnlijk te wijten aan de niet-lineariteit van het simulatiemodel en het verschil in 

ruimtelijke afhankelijkheid van de afzonderlijke invoergegevens. Aggregatie heeft weinig 

effect vanwege de afwezigheid van lokale extremen, die door de geleidelijke ontwikkeling 

van bodemeigenschappen in de vulkanische as bodems van Carchi (welke een gevolg zijn 

van de bodem vormingsprocessen, maar ook een gevolg van de gebruikte 

interpolatietechniek). Uit de ruimtelijke vergelijking van regionale patronen van 

gewasopbrengst blijkt dat de regionale opbrengst patronen gegenereerd door verschillende 

procedures (d.w.z. verschillende benaderingen en verschillende gegevens) vergelijkbaar 

waren, terwijl, niet-ruimtelijke vergelijkingen van verschillende opbrengst patronen in 

termen van bijv. de Root Mean Squared Difference betere prestaties vertonen van de 

aanpak waarbij eerst gesimuleerd wordt in vergelijking met de procedure waar eerst 

geïnterpoleerd wordt. Vanuit het oogpunt van foutenvoortplanting en variabiliteit is het in 

het algemeen beter om eerst te simuleren voor punten waarna de resultaten geïnterpoleerd 

worden.  

 

De hoofdstukken 4 en 5 vergelijken en evalueren de prestaties van drie verschillende 

modellen op basis van hun capaciteit om regionale patronen van gewasopbrengst te 

modelleren in twee verschillende studies: aardappel opbrengsten in de Carchi provincie in 

het noorden van Ecuador (hoofdstuk 4) en tarwe opbrengsten in West-Duitsland (Hoofdstuk 

5). Op basis van de resultaten zijn criteria gedefinieerd voor het selecteren van de beste 

modelaanpak, waaronder geloofwaardigheid, relevantie, gevoeligheid, en 

gebruiksvriendelijkheid. Empirische modellen en metamodellen zijn zeer makkelijk te 

gebruiken en transparant. Echter, hun toepassingsdomein is beperkt tot het studiegebied. 



 

 

De toepassing van simulatiemodellen voor gewasgroei blijft complex en de modellen 

functioneren vaak als een zwarte doos. Echter, de kracht van de simulatiemodellen is dat 

effecten over een breder scala van omstandigheden gesimuleerd worden. Daarnaast houden 

ze rekening met veel factoren op een wijze die niet mogelijk zou zijn met empirische 

modellen en metamodellen (Lobell en Burke, 2010; Bouman et al., 1998). Geconcludeerd 

kan worden dat de verschillende modellen elk hun eigen verdienste hebben. Vandaar dat de 

verschillende modelmatige benaderingen elkaar mooi aanvullen om waargenomen patronen 

te interpreteren. Door de grote verschillen tussen case studies, is er geen optimale methode 

om landbouwsystemen te modelleren. Hoofdstuk 4 laat ook nog het effect van ruimtelijke 

aggregatie op de prestaties van de modelleringsbenaderingen zien. De resultaten tonen aan 

dat de aggregatie van de berekende gegevens de variabiliteit vermindert en lineaire relaties 

met verklarende factoren op hogere aggregatieniveaus verbeteren. De ruimtelijke 

variabiliteit in het studiegebied bepaalt hoe sterk dit effect is. 

 

Hoofdstuk 6 synthetiseert de methoden en de resultaten van het onderzoek beschreven in 

dit proefschrift. Het hoofdstuk bestaat uit drie delen. Het eerste deel reflecteert op de 

verwezenlijking van de specifieke doelstellingen van het onderzoek. Het tweede deel 

synthetiseert de resultaten van het proefschrift, en biedt een kader voor de aan te bevelen 

praktijken om regionale patronen van de gewasopbrengst. De definitieve conclusies worden 

gepresenteerd in het derde deel van de synthese: 

 Het modelleren van regionale gewasopbrengsten is zeer gevoelig voor de keuze 

van het model-type en de gebruikte gegevens; 

 In tal van studies is deze gevoeligheid meestal niet specifiek behandeld en niet 

goed en systematisch gedocumenteerd; 

 De uitkomsten van de modelstudies kunnen niet goed worden gebruikt wanneer de 

onderliggende keuzes m.b.t. model en data type en de gevoeligheden onbekend 

zijn; 

 Zonder deze essentiële kennis kunnen regionale simulatiemodellen voor 

gewasgroei eenvoudig worden misbruikt door niet-specialisten; 

 Standaard beslisregels worden voorgesteld om deze keuzes te documenteren in 

een standaardformaat. Hierdoor kunnen verschillende benaderingen vergeleken 

worden, ondanks de vaak sterke context-afhankelijkheid van de resultaten. 
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