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Stochastic dynamic programming (SDP) is a useful tool for analyzing policy questions in fisheries manage-
ment. In order to understand and reproduce solution procedures such as value function iteration, an analytic
elaboration of the problem and model characteristics is required. Because of the increased use of numerical
techniques, our aim is to develop a tutorial of a specific case that uses this tool. We describe and analyze a
bi-level SDP model to study fisheries policies. At the first level, a policy maker decides on the fish quota to be
imposed, keeping in mind fish stock dynamics, capital stock dynamics and long-term social benefits. At the
second level, fishermen react on this quota and on current states of fish stock and capital stock by deciding
on their investments and fishing effort. An analysis of the behavior of the model is given and a method is
elaborated to obtain optimum strategies based on value function iteration. Bi-level decision making enables
us to present the model in an understandable manner, and serves as a basis for extension to more complex
settings.

Key words : stochastic dynamic programming, value function iteration, fisheries management, bi-level

1. Introduction
Policy makers in fisheries management face uncertainty related to dynamics in fish stock due to
environmental variability. Moreover, policy makers have to take into account human behavior when
setting policies. Quota are not only based on known or unknown dynamics in fish stock and fleet
capacity of the fishery sector, but also based on how fishermen behave in an unregulated setting.
The implementation of these interactions in a model is a challenge, because policy makers and
fishermen have different and partly conflicting objectives. The policy maker seeks a long-term
sustainable fish stock as well as maximization of social benefits, while fishermen have their own
priorities and may behave myopically. There is thus a need to account for fishermen behavior in
the quota decision making process.

Fisheries policies are often analyzed in the literature in a setting of dynamic optimization,
where a sole owner determines optimal harvest and investment levels for a specific fishery
[Charles(1983), Boyce(1995), Sethi et al.(2005), Singh et al.(2006)]. Such models have been devel-
oped in deterministic and stochastic settings, often assuming uncertainty in fish stock dynamics

* This work has been funded by grants from the Spanish Ministry of Science and Innovation (TIN2008-01117) and
Junta de Andalućıa (P11-TIC-7176), in part financed by the European Regional Development Fund (ERDF). Eligius
Hendrix is a fellow of the Spanish ”Ramón y Cajal” contract program, co-financed by the European Social Fund.
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due to environmental variability. The assumption of sole ownership, however, ignores behavior of
fishermen and the effect of a policy on this behavior. Models that do account for behavior of differ-
ent decision makers are frequently presented in a game theoretic framework. Most game theoretic
studies simplify the problem by using a single-stage approach where each player makes a deci-
sion at the beginning of the game, given observed states that change deterministically over time
[Bailey et al.(2010)]. Fewer studies use a multi-stage approach, where players make a decision at
stage one that is independent of the other player’s behavior. At stage two, each player uses deci-
sions from stage one to decide on the best strategy [Ruseski(1998), Kronbak and Lindroos(2006)].
More often, fisheries models are sequential games where players make decisions one after another.
The setting typically consists of two sectors, regions or countries that compete for multiple species
[Fischer and Mirman(1992), Sumaila(1995), Munro(2009), Wang and Ewald(2010)]. For example
in [Fischer and Mirman(1992)], two regions each determine their optimal level of consumption,
based on two deterministically interacting species. The assumption of biological externality, which
stems from interaction between species, justifies the game theoretic approach. A similar approach
is used in [Wang and Ewald(2010)], where a number of fisheries harvest two interacting species.
The assumption of ecological uncertainty makes it a complex model, which in turn makes the inter-
pretation of bio-economic dynamics and long-run Nash equilibrium strategies not straightforward.
See [Bailey et al.(2010)] for an overview of the application of game theory to fisheries over the last
30 years.

In these studies, where policy questions are analyzed with numerical solution methods such as
stochastic dynamic programming, an elaboration of model characteristics and implementation of
the solution procedure is often not provided. Complex models, such as [Wang and Ewald(2010)],
are therefore not easily understood and reproduced. Because of the increased use of numerical
solution methods, our objective is to develop a tutorial for a specific case of a stochastic dynamic
programming model with multiple players, that takes the reader step-wise through the model and
solution procedure of value function iteration. The following research questions are answered: (i)
what are characteristics of the model that are used in the solution procedure, and (ii) how is the
solution procedure implemented in a deterministic and stochastic setting.

We develop a model setting in which the objective of a policy maker is to determine levels of
quota that maximize social benefits, subject to dynamics in fish stock and capital stock and based
on behavior of fishermen. We study a single-species fishery, where fish stock growth is consid-
ered stochastic. From this perspective, it is useful to analyze fisheries policies in a framework of
stochastic dynamic programming. The assumptions of myopic fishermen and a single-species fish-
ery furthermore allow us to use a game theoretic framework, which we call a bi-level model. At the
first level of the bi-level stochastic dynamic programming model, the policy maker determines the
optimal quota for known values of fish stock and capital stock. At the second level, fishermen make
their harvest and investment decisions, where they are restricted by available fish stock, capital
stock and the quota set by the policy maker at level one. Bi-level decision making enables us to
present the model in a simple manner such that it can be reproduced. We show how the model
can be solved by means of value function iteration in order to find the optimal strategy for deter-
mining the quota. To check robustness of the model, we analyze how the model performs under
increased uncertainty and what the impact is of a continuous versus a discrete decision space, i.e.
a grid-search procedure.

The paper is organized as follows. Section 2 describes the model and Section 3 analyses math-
ematical properties of the model that can be used to derive optimum solutions. In Section 4, a
description is provided of a solution approach based on value function iteration. In Section 5 we in-
vestigate, along numerical experiments, the behavior of an optimal path of quota towards a steady
state when uncertainty increases. Section 6 summarizes our findings.



Van Dijk et al.: A tutorial on bio-economic SDP modeling
3

2. Model description
The model describes dynamics of a biological system that interacts with dynamics of economic
behavior. We describe the biological submodel, the economic submodel and optimization. In the
used symbols, we distinguish between model parameters (exogenous in lower case letters) and
decision variables (capitals) that include direct decision variables, dependent variables and stock
variables. Without loss of generality, the dynamics are modeled in discrete time using an index t.

2.1. Biological model; growth of fish stock
The development of one species of fish is based on the Gordon-Schaeffer model [Gordon(1954),
Schaefer(1954)]. Used parameters are

Data
m carrying capacity of the species in kton
r intrinsic growth rate
ξ lognormal random variable with cumulative distribution function G(ξ)

based on parameters µ and σ, with µ+ 1
2
σ2 = 0, such that E(ξ) = 1

The random variable describes a random multiplicative effect. A lognormal distribution is a
common assumption in fisheries economics literature. Let the stock variable be fish stock Xt in
kton and Ht harvest in kton. Then dynamics of fish stock is given by

Xt+1 =Xt + ξrXt

(
1− Xt

m

)
−Ht. (1)

2.2. Economic submodel; harvest and investment decisions
The economic part of the model includes capital stock dynamics depending on investment in fleet
equipment and all costs to harvest fish. A fixed selling price p is assumed. Used parameters are

Data
p selling price in euro/kton
γ yearly depreciation rate of capital
ce cost of effort in euro/hpd
ci investment cost in euro/hpd
cs crew cost in euro/euro
q catchability coefficient in Schaeffer harvest function

Let Kt describe capital stock and It investment. Then following neoclassical investment theory we
have

Kt+1 =Kt(1− γ) + It, (2)

where the fishery sector is confronted with investment costs ciIt.
To describe cost of harvesting, a decision variable Et representing fishing effort (intensity) is

introduced that makes harvest Ht in fact a dependent variable. The variable Et is expressed in
horse-power-days (hpd). The relation between harvest Ht and effort Et is one of the elements where
the two sub-models are linked. Harvest not only depends on effort, but also on the size of fish
population. We assume the following Spence harvest function [Spence(1973)]

Ht =Xt

(
1− e−qEt

)
→Et =

1

q
ln

Xt

Xt−Ht

. (3)

Effort is limited by capital
Et ≤Kt→Ht ≤Xt

(
1− e−qKt

)
, (4)

which implies that harvest is always less than fish stock:

Ht <Xt. (5)
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Profit of the fishery sector is sales from harvest, pHt, minus effort cost, ceEt, and crew cost,
cspHt. Effort cost ceEt can be expressed in the harvest function, Ht, by substituting variable Et:
ceEt = ce

q
ln Xt

Xt−Ht
. Direct profit for the fishery sector,

π2(Qt,Xt,Kt) = pHt− cspHt−
ce

q
ln

Xt

Xt−Ht

,

depends on harvest decision Ht = H(Qt,Xt,Kt) and, via (4), on the investment decision It =
I(Qt,Xt,Kt) taken by the fishery sector as described in Section 2.3.

2.3. Optimization model
Objectives to be optimized depend on the players such as different groups of fishing companies and
authorities like countries and the European Union. In this paper, we focus on a policy maker (EU
authority) that sets a quota in order to maximize the discounted stream of future social benefits,
given levels of fish stock Xt and capital stock Kt. The fishery sector reacts on that by deciding on
investment level I(Qt,Xt,Kt) and harvest H(Qt,Xt,Kt), given levels of fish stock, capital stock
and quota decision Qt.

2.3.1. Decisions at level 2 At the second level, the harvest decision is restricted by quota
Qt, capital stock via equation (4) and the marginal cost of harvesting. Harvest is set to zero if
the effort cost ce/q lnXt/(Xt−Ht) is higher than the return (1− cs)pHt. The fish stock at which
ce/q lnXt/(Xt−Ht)> (1− cs)pHt, is in fact the level below which it is not profitable to harvest.
Profit for the fishery sector, given quota Qt and stock levels Xt and Kt, is

π2(Qt,Xt,Kt) = max
H

{
pH − cspH − c

e

q
ln

Xt

Xt−H

}
, (6)

subject to 0≤H ≤Qt and H ≤Xt (1− e−qKt). If the optimization problem in equation (6) has an
interior solution, the analytical expression follows from the first order condition

d

dH

{
pH − cspH − c

e

q
ln

Xt

Xt−H

}
= 0. (7)

Given upper and lower bounds in (6), the solution is given by

H(Qt,Xt,Kt) = min

{(
Xt−

ce

pq(1− cs)

)+

,Qt,Xt

(
1− e−qKt

)}
, (8)

where y+ stands for max{0, y} and where ce

pq
has been identified in [Conrad and Clark(1987)] as

the bioeconomic equilibrium escapement in the Spence model.
With respect to the investment decision, it is assumed that the fishery sector observes the desired

harvest level

ĥ(Qt,Xt) = min

{(
Xt−

ce

pq(1− cs)

)+

,Qt

}
, (9)

and adjusts its capital stock for next year to have sufficient capital to reach ĥ

ĥ(Qt,Xt) =Xt

(
1− e−qKt+1

)
→Kt+1 =

1

q
ln

Xt

Xt− ĥ(Qt,Xt)
. (10)

Given dynamics of capital stock Kt in (2) and assuming nonnegative investment, this leads to the
investment function

I(Qt,Xt,Kt) =

(
1

q
ln

Xt

Xt− ĥt(Qt,Xt)
−Kt(1− γ)

)+

. (11)
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2.3.2. Decisions at level 1 At the first level, we have

max
Q(Xt,Kt)

E

{
∞∑
0

π1,t

(1 + ρ)t

}
, (12)

where ρ is the discount rate and by taking Qt =Q(Xt,Kt),

π1,t = π2(Qt,Xt,Kt)− ciIt. (13)

Typically subscripts 1 and 2 refer to levels 1 and 2 and the investment cost ciIt is only accounted for
at level 1. Decision Qt =Q(Xt,Kt) depends on dynamics of fish stock in equation (1) and capital
stock in equation (2). Note that this model deals with a stationary system, which means that the
optimum strategy consists of a decision rule that tells the policy maker what quota Q(X,K) to set
given fish stock X and capital stock K. Furthermore, the optimum strategy depends on behavior
of the fishery sector at the second level.

3. Model analysis
In this section we address the question what are characteristics of the model that are used in the
solution procedure of value function iteration. We first look at model characteristics that are used to
define implicit bounds of decision variables. We then derive steady state values for the deterministic
setting, which are later used in the value iteration approach to verify long-term behavior of the
system.

3.1. Bounding decision values
Let the following denote the level of fish stock below which it is not profitable to start harvesting:

x̂=
ce

pq(1− cs)
. (14)

Hence, Ht = 0 if Xt < x̂. The quota Q(Xt,Kt) has alternative optimal solutions, as a positive quota
is not binding in the decision on the harvest level Ht. We consider the minimum level of harvest
to be chosen in case Qt has alternative solutions. Often this means that Qt =Ht.

Fish stock as described in equation (1) increases up to carrying capacity m and decreases if fish
stock, would exceed that level. Due to fishing behavior it is also known that for Xt < x̂ no fishing
takes place and growth is always positive. On one side, x̂ is a lower bound on fish stock Xt if initial
stock X0 > x̂. On the other side, if the initial stock is higher than the carrying capacity, X0 >m,
the stock can only go down from that level. Given an initial stock X0,

Xt ∈ [min{X0, x̂} ,max{X0,m}] . (15)

This means that the interesting range for harvest Ht and quota Qt is [0,max{X0,m} − x̂]. This
range also provides corresponding values for capital stock Kt and investment It. Due to investment
cost and depreciation, the level of capital should not exceed what is required to catch the desired
level, as specified by equation (10)

Kt, It ∈
[
0,max

{
1

q
ln
(m
x̂

)
,K0

}]
.
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3.2. Steady state values
In a stationary system, Xt,Kt,Ht, It,Qt and π1,t are constant over time with steady state values
X,K,H, I,Q and π1. Harvest is a constant fraction of fish stock in equation (1), so that Xt+1 =
Xt =X. If for the steady state value of X, x̂≤X ≤m, it can be found that

H = rX

(
1− X

m

)
→X =

rm+
√

(rm)2− 4rmH

2r
. (16)

Otherwise, if X < x̂, no harvest takes place. In the long run, capital, quota and harvest converge
to the same level, so that Q=H, K = 1

q
ln X

X−H , and I = dK = d
q

ln X
X−H . The policy maker at level

1 tries to keep stationary social benefits π1, as high as possible, whereas harvest equals growth;

max
H

{
π1 := pH − cspH − c

e + γci

q
ln

X

X −H

}
, (17)

subject to

H = rX

(
1− X

m

)
.

Substitution of growth in the (constant over time) social benefits function gives

π1 = r(1− cs)pX
(

1− X
m

)
+
ce + γci

q
ln
(

(1− r) +
r

m
X
)
. (18)

For an interior optimum, x̂ < X < m, the first order condition dπ1
dX

= 0 leads to the equilibrium
value

X =
3m

4
− m

2r

(
1− 1

2

√
(r− 2)2 +

8r(ce + γci)

q(1− cs)mp

)
. (19)

4. Stochastic Dynamic Programming
Now that we are familiar with characteristics of the model and how these characteristics are used
to determine steady state values, we next explain the value function iteration approach and we are
concerned with the question how value function iteration is implemented in a deterministic and in
a stochastic setting.

In the literature, the Stochastic Dynamic Programming (SDP) solution follows the Bellman
equation [Puterman(1994)] and takes the following general notation

Vt(Xt,Kt) = max
Qt

{
πt(Qt,Xt,Kt)− ciIt(Qt,Xt,Kt) + δEVt+1(Xt+1,Kt+1)

}
, (20)

where Vt is the value function that represents the maximized value of the objective function from
time t onwards. The expectations operator E holds the transition probabilities of moving from a
given current state of fish stock Xt, to next period’s fish stock Xt+1.

In our specific model, we are dealing with a system that is stationary and that is subject to
discounting. This means that a function V exists such that the optimal solution fulfills the Bellman
equation. Behavior of the system depends on the optimum quota rule Q(Xt,Kt) that solves (12),
maximizing discounted future social benefits

V (Xt,Kt) = max
Q

{
π2(Q,Xt,Kt)− ciI(Q,Xt,Kt) + δEV (Xt+1,Kt+1)

}
, (21)

where Xt+1 and Kt+1 follow from dynamic equations (1) and (2), i.e. they depend on values for
Qt,Xt and Kt and the fishermen behavior H(Qt,Xt,Kt) and I(Qt,Xt,Kt).
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4.1. Value function iteration of the deterministic case
Optimum Q(Xt,Kt) can be found by a value function iteration approach that iteratively approx-
imates the value function V . In this approach the system starts with an arbitrary valuation of
function V1 and determines V2 iteratively. The iterative process of repeating V1 = V2 continues until
V2(X,K)−V1(X,K) converges to an arbitrarily small convergence accuracy ε, for all state values
(X,K). This works with a discretization of state space of (X,K) with vectors x,k, repeating for
each grid point the iteration

V2(Xt,Kt) = max
Q

{
π2(Q,Xt,Kt)− ciI(Q,Xt,Kt) + δV1(Xt+1,Kt+1)

}
, (22)

with Xt+1,Kt+1 following from the dynamics and fishermen behavior. Iteratively, we set V1 = V2.

Algorithm 1 :Pseudo code value function iteration

Funct data, x,k vectors, ε; Q,V matrices
1. V1 = 0 matrix
2. for all i, j
3. solve (22) for Xt = xi,Kt = kj
4. if maxij(V2(i, j)−V1(i, j))−minij(V2(i, j)−V1(i, j))> ε
5. V1 = V2 and go to step 2

We first outline the approach for a deterministic setting, when random variable ξ = 1, and
illustrate the results of a base case. We show how steady state values are reached if the system
starts at arbitrary levels of states of fish stock and capital stock.

Using Xt ∈ {x1, x2, . . . , xi, . . . , xmax} and Kt ∈ {k1, k2, . . . , kj, . . . , kmax} in fact discretizes the state
space, such that function V (Xt,Kt) is approximated by the matrix F (i, j) = V (xi, kj). For each
matrix entry (i, j), iteratively the minimum over Q is found of a function

fij(Q) = π2(Q,xi, kj)− ciI(Q,xi, kj) + δV1(Xt+1,Kt+1), (23)

where V2 as well as V1 are approximated by a matrix F . As a result of the dynamics and decision,
Xt+1 and Kt+1, may not be on the grid defined by x,k. The usual approach is to interpolate
V1(Xt+1,Kt+1) from matrix F (i, j). Iterative minimisation of fij(Q) over Q in (23) can be done by
using a grid on a range of [0,Qmax], or by using a one-dimensional minimisation algorithm.

The implementation requires considering first appropriate boundaries x1, xmax and k1, kmax of
the system and whether all combinations xi, kj are feasible. As discussed in Section 3.1, fish
stock values Xt < x̂ are not considered, as harvest is then zero and quota can be set at Qt = 0.
Upper bound xmax depends on the possibility of considering starting values X0 > m. We can
take [x1, xmax] = [x̂,max{X0,m}]. Following the reasoning in Section 3.1, it is appropriate to take
[k1, kmax] = [0, 1

q
ln(m

x̂
)]. Grid points xi and kj are not necessarily equidistant in their corresponding

ranges. A more refined grid, i.e. using more grid points, results in a better approximation of value
function V (X,K) and policy decision Q(X,K).
Example 1. We introduce a base case with data taken from [van Dijk et al.(2012)], a study on

North Sea plaice. This species is one of the main commercially exploited flatfish in the North Sea and
is subject to increasing fishing pressure [Kell and Bromley(2004)]. We use the following parameter
values: m = 460, r = 0.74, ξ = 1, q = 0.0139, γ = 0.1, δ = 0.95, p = 1.83, ci = 2.1, cs = 0.25, ce = 3.54.
For this base case, given above parameter values and (14), fishing is not profitable below x̂= 185.6.
According to (19), the stationary value of fish stock is X = 349.5.

The value function iteration algorithm is run with x1 = 170, xmax = 500, k1 = 4, kmax = 70 and
taking 23 equidistant points xi and kj on each axis. So the distance between the grid points
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Figure 1 Quota function found by value function iteration, deterministic model
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Figure 2 Convergence of stock to stationary state, deterministic model; K0 = 9, X0 = 100,250,400,500

is 15 for Xt and 3 for Kt. Iterative minimisation of Q is done by a one-dimensional minimisa-
tion algorithm fminbnd of matlab. For the matrices V1 and V2 in the algorithm, we have that
maxij (V2−V1)−minij (V2−V1) becomes smaller than ε= 0.1 within 20 iterations, indicating that
the policy Q(X,K) found at iteration 20 is optimal. Resulting values of Q(X,K) are depicted in
Figure 1.

The behavior of the system is sketched in Figure 2 by simulation for four different starting values
of the fish stock X0 and initial capital stock of K0 = 9. The system converges after 7 time steps
to the steady state. Stable dynamics of fish stock, due to equation (1), are determined by fishing
behavior. For low values of fish stock, no fishing takes place and for values higher than carrying
capacity m, harvesting reduces the stock due to low effort cost. The policy maker helps to reach
the stable situation. For instance for Xt = 200,Kt = 9, the fishery sector would harvest about 14
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kton. Notice that the policy maker sets quota at zero, preventing harvest, in order to promote
recovery of the fish stock and keeping in mind long term social benefits.

4.2. Value function iteration of the stochastic case
Now consider the model in a stochastic setting. We show how the system behaves when random
variable ξ has a variation. We look at stability of the system, deviations of long term average states
and how fast the system reacts to deviations from stationary values.

When random variable ξ has a variation, the necessary condition (Bellman equation) for an
optimal Q needs to be adjusted, i.e. expected value and probabilities come into play. The Bellman
equation (21) for an optimum solution Q(Xt,Kt) is that there exists a value function V such that

V (Xt,Kt) = max
Q

(
πt,1 (Q,Xt,Kt)− ciIt (Q,Xt,Kt) + δEξ [V (Xt+1,Kt+1)]

)
, (24)

where expected value Eξ is taken over future social benefits.
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Figure 3 Quota function found by value function iteration, using continuous optimization by fminbnd; stochastic model

For the use of the algorithm, there are several practical ways to discretize the distribution of
ξ. One way is to iterate over all possible grid points xi, kj for V1 and assign probabilities to these
outcomes given decision Q. This approach is quite cumbersome as it requires re-calculation of V1

for many values of quota and associated probabilities. A more usual approach is to discretize the
space of possible outcomes of stochastic variable ξ. A way to do this is by using quantiles of the
lognormal distribution. An equidistant grid is taken over probability range [0,1] with a step pξ and
generating a discrete outcome space {θ1, θ2, . . . , θn} = {G−1(pξ),G−1(2pξ),G−1(3pξ), . . . ,G−1(1 −
pξ)}. The consequence of this operation is that the outcome space is truncated by the pξ-quantiles
and each outcome has the same probability of occurrence. Equation (24) is iteratively approximated
by using in the algorithm

EξV1(Xt+1,Kt+1)≈ pξ
n∑
i=1

V1

(
Xt + θirXt

(
1− Xt

m

)
−H(Q,Xt,Kt),Kt+1

)
, (25)

where H(Q,Xt,Kt) is the harvest level chosen by the fishing sector on level 2. Interpolation is
required in the state space to valuate V1 for every possible outcome θi of the growth multiplier.
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Ranges for state variables do not change compared to the deterministic model since possible out-
comes θi are always positive. This means that for Xt < x̂, growth is positive and for Xt >m growth
is negative, so the same bounds can be used as in the deterministic case. Calculation time for the
value function iteration increases as for each evaluation of a suggested quota Qt, now n values of
the value function are interpolated.
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Figure 4 Realisations of stochastic paths for 4 different starting values of fish stock following optimal quota setting;
K0 = 9,X0 = 100,250,400,500

Example 2. In example 2, variable ξ is lognormal distributed with parameters σ = 0.159
and µ = −0.0126. Distributing n = 40 points over the outcome space with pξ = 0.025 we have
{θ1, θ2, . . . , θn}= {0.596,0.716, . . . ,1.593}. We run the value function iteration by solving (24) with
(25). ‖V1 − V2‖ < ε is obtained after 15 iterations. The behavior of the system is sketched for 4
different starting values X0 and K0 = 9 in Figure 4, showing 10 realisations of sample paths that
follow the optimum strategy.

5. Sensitivity analysis
So far illustrations show that the model leads to stable paths. Volatility of fish stock, however, is
difficult to assess. We therefore analyze whether higher volatility reduces stability and if it leads
to a different long term average solution. Experiments are shown in Section 5.1.

The suggested solution procedure of dynamic programming enhances an iterative nonlinear op-
timization step for each matrix element Fij. Alternative to this continuous search of the optimal
quota is a grid-search [Hendrix and Toth(2010)], where possible quota values are limited to rounded
values and where the solution procedure is evaluated for a grid of possible quota values. In Section
5.2 we analyze the quality of the solution of the grid-search and the impact for efficiency of the
procedure.

5.1. Impact of volatility on model outcomes
Because stock growth is unknown, we investigate whether the described solution method is robust
with respect to higher or lower volatility in the model, what the impact is on the optimum solution
and if the long term average depends on volatility σ. Experiments are based on varying volatility
σ ∈ {0.05,0.16,0.5} and corresponding µ ∈ {−0.0013,−0.0126,−0.125} to have an average growth
of 1. Besides the base case of σ = 0.159 [van Dijk et al.(2012)], we now look at scenarios of low
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Figure 5 Optimal policy, Q(xi, kj), for low volatility (in blue), high volatility (in green) and base case volatility (in black)
against state numbers xi, kj

volatility and high volatility. For the SDP procedure this means that the range of multiplication
factors ranges between [θ1, θn] = [0.85,1.16] for the scenario of low volatility and [θ1, θn] = [0.2,3.66]
for high volatility.

The consequence for the solution procedure is that the high growth possibility in the high
volatility scenario may lead to fish stock values that exceed the xmax = 500 value used in the ranges
of the algorithm. We know, however, that stock levels exceeding carrying capacity imply a decrease
in stock in the next year. In that case, setting a quota is not necessary as harvest is limited by the
size of capital stock. Running the algorithm for the three scenarios gives in all cases a convergence
of the value function within 20 iterations.

With respect to the optimum policy, the optimum strategy is the same for all values of state
variables. It is known from literature on dynamic programming and practical experience that
including state values with a low probability of occurrence, slows down convergence of value function
iteration. To compare outcomes, in Figure 5 we depict the optimum quota of Figure 1 by putting
on the x-axis state numbers that correspond to coordinates of state spaces xi, kj, for i, j = 1, . . . ,23.
Each curve of optimal quota corresponds to a fixed coordinate of xj and all coordinates of kj, where
j = 1, . . . ,23. The coordinate of xj increases as we proceed to the next curve, while coordinates
of kj are always evaluated for j = 1, . . . ,23. The policy of the base case, in black, overlaps both
policies of low volatility, in blue, and high volatility, in green. It can thus be concluded that both
procedure and optimal solution are robust with respect to the unknown natural variation. We
obtain an optimal policy, which is valid for different values of µ and σ.

We now examine the impact on behavior of the system. So far, the model shows stable behavior
towards the long term average. It is expected to observe higher and lower volatility in fish stock
when feeding the optimum strategy to the system. This is illustrated in Figures 6 and 7 for 10
sample paths from 4 different starting values of Xt. We are interested in finding out whether the
long term average is influenced by volatility and whether fish stock and corresponding harvest
are higher or lower with increasing volatility. We simulate the system for a period of 10,000 years
based on the same random numbers for all scenarios, where realizations of the growth factor are
calculated by transforming normal pseudo-random numbers to lognormal random numbers with
specified volatility and expected value. When measuring long term average, median, 5% and 95%
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Figure 6 Fish stock Xt under low volatility
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Figure 7 Fish stock Xt under high volatility

percentiles, it can be observed that the interpercentile-range increases with volatility, but the
average value slightly changes downward. Results are given in Table 1. The distribution of Xt

becomes more skewed with increasing volatility; the median value starts to deviate from the mean.

Table 1 Stock Xt distribution for varying volatility and optimal quota

σ 0.05 0.16 0.5
Mean 349.4 348.3 347.5
Perc(5%) 343.3 331.1 302.4
Median 349.4 348.0 344.1
Perc(95%) 355.6 367.1 405.9

5.2. Impact of grid-search on the solution procedure
For the base case, we use standard one-dimensional nonlinear optimization to derive iteratively for
every grid point (xi, kj) the optimum of fij(Qt) in equation (23). Quota are determined in terms
of rounded numbers, e.g. Q ∈ Q = {0,10,20, . . . ,270}. The grid-search procedure selects the best
value of Q and generates the value function V with that. We evaluate effectiveness, i.e. whether
the procedure generates accurate results, and efficiency, i.e. the impact on computing time.

With respect to efficiency, evaluating |Q|= 28 values at each minimization step requires slightly
more time than using the standard fminbnd procedure of matlab; 400 seconds versus 360. Using a
more accurate grid with 55 points doubles computing time. Despite that, in a grid-search procedure
the approximate value of Qt converges faster due to being fixed to a grid point. The number of
iterations up to convergence is similar in both procedures.

As for effectiveness, the best values of quota are sketched in Figure 8. They are in fact rounded
values of the continuous optimization. The impact on discounted welfare is more difficult to assess
in an SDP context. We consider the value of fij(Qt) around deterministic stationary states of the
base case, x13 = 350 and k15 = 46, with the same matrix V found after convergence. It appears that
the optimal (continuous) value of Qt(350,46) = 77.6 provides the same value as using the value
Qt = 80 found by the grid search. The objective function is rather flat at the optimum value, which
means that one could use rounded numbers for quota instead.
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Figure 8 Quota found by using iterative grid search, with grid size 10

6. Conclusions
Stochastic dynamic programming models have shown to be an interesting modeling tool to analyze
questions in fisheries management. In order to understand and reproduce such models, we presented
a tutorial in which we analyze model characteristics and we show how these characteristics and
solution procedure are implemented in a deterministic and a stochastic setting. Robustness of the
model is assessed with respect to higher volatility and with respect to the search procedure of the
optimal policy.

In our specific case, we study fisheries policies with a bi-level stochastic dynamic programming
model that describes dynamics in fish stock and capital stock. At the first level, a policy maker
decides on quota to be fished, keeping in mind long term social benefits. At the second level,
fishermen react on this quota and on current states of fish stock and capital stock by deciding on
their investments and fishing effort.

We find that fish stock dynamics provide stability to the model, with a tendency to converge to a
long term steady state. For the derivation of the optimal quota, a careful assessment of boundaries
of the system is required to analyse those states that have a high probability of occurrence. Given
this analysis, an SDP approach based on value function iteration is a feasible option to derive the
optimal quota.

The procedure is robust with respect to parameter variation of the model, but its convergence is
sensitive with respect to exact boundaries used in the implementation. Furthermore, the optimal
solution is robust with respect to volatility in the model. Moreover, we find that the quota is
optimal for both a continuous solution procedure and a grid-search procedure.

The bi-level set up of the model allows us to analytically derive boundary values for state and
action spaces and steady states, which is a useful, yet a not always taken step before proceeding
to implementation of the solution procedure. In solving the problem, we can make efficient use of
standard techniques after having a good understanding of the problem structure. These insights
are obtained from a mathematical analysis and numerical experimentation, starting with a simpler
version of the problem. The model we studied can be extended in several directions, for example
to study multi-annual quota adjustment and non-myopic behavior of fishermen. In further studies
the model will be used to answer questions on feasibility of such extensions.
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