

2012-2013

Molecular and morphological characterization of meristems in cauliflower:

Effects of high ambient temperature on switch to generative stage

Thesis of Master of Science By: Xiaoxue Sun

Department of Plant Breeding Wageningen University April, 2013

(internet in the second	9					
Vegetative	Transition	Generative	Curd	Flower		
	V V			Ý		
	FUL family	C	AL AP1, REI	AP1, REM1, TFL1-1 and FH		

Molecular and morphological characterization of meristems in cauliflower:

Effects of high ambient temperature on switch to generative stage

Thesis for Master of Plant Sciences (MPS)

With specialization

In

PLAND BREEDING AND GENETIC RESOURCES

By:

Xiaoxue Sun

Submitted to the Department of Plant breeding of Wageningen University and Research Centre (WUR)

Molecular and morphological characterization of meristems in cauliflower:

Effects of high ambient temperature on switch to generative stage

Student:	Xiaoxue Sun
Registration Number:	881207817100
Email:	<u>xiaoxue.sun@wur.nl</u>
Course Code:	PBR-80436
Supervisors:	Dr. Ir. Guusje Bonnema Johan Bucher
Examiners:	Dr. Ir. Guusje Bonnema
	Dr. Ir. Luisa Trindade

Department of Plant Breeding

Wageningen University

April, 2013

Acknowledgements

This report was prepared as my Major Master Thesis of Plant breeding and genetic resources in Plant Science of Wageningen University from June 2012 to March 2013. There are a number of people without whom this thesis might not have been written, and to whom I am greatly indebted.

I would like to express the deepest appreciation to my supervisor, **Dr. Ir. Guusje Bonnema**, Head of the Brassica group. Thank for her patient help and grateful to her sincere care and guidance during experiment. She worked tirelessly in making constructive criticisms, ideas, and corrections from research proposal development to final report write-up. Her intellectual skills, comments, advice, commitments and close supervision are quite remarkable towards successful completion of my thesis. Dear Dr. Ir. Guusje Bonnema, thank you for your encouragement and your patience. Your encouragement give me confidence to complete this thesis, your patience guidance help me successful completion this experiment. But most important thing is that please accept my apologies for giving you a lot of work to revise my report. You are the best guardian I have had.

Really big thanks to **Johan Bucher** who was always there to support me technically and materially. Thank you for your help especially great attention to me during my experiments, whether in the field, greenhouse or in the lab. Thank you for inspiring me and for providing such interesting projects for me to work on. Thank you for your direction and your help in the development of my scientific mind. Thank you for teaching me a lot. You really gave me feelings of serious and rigorous attitude in experiments. I am honoured to have worked with you and I have learned more from you than you will know.

In particular, a thank you to **Xiao Dong** for teaching me how to analysis my data and solve problems during the experimental process. Thank you for your support. In addition, thanks to **Dr. Ningwen Zhang** for showing me how to design primers.

I thank the Arabidopsis group for providing the relevant knowledge to support this research. Very special thanks to **Dr. ir. Richard G.H. Immink** who provided constructive and useful suggestions to helped me gather the required information for the thesis. Thanks to answered the questions in the experiment. I also thank **Leonie Verhage**, for your support as well. Thanks to teaching me how to design primers and supply useful information about Arabidopsis flowering time genes. Without the constant support this research would not be finished.

Last but not least, I would like also express a heartfelt appreciation to all people who in one way or another supported my master thesis in the University.

Contents

Acknowledgements

Contents

Abstract vii
1. Introduction1
1.1 Brassicaceae1
1.1.1 Brassica oleracea ssp. Botrytis (Cauliflower)2
1.2 Flowering Time
1.2.1 Flower time in Arabidopsis4
1.2.2 Flower time in <i>Brassica oleracea ssp.</i> Botrytis (Cauliflower)5
1.3 Gene expression profiling using qRT-PCR6
1.4 Scope of thesis and research goals7
2. Materials and methods9
2.1 Plant materials9
2.2 Growth conditions9
2.2.1 Field experiment9
2.2.2 Greenhouse experiment9
2.3 Phenotypes measurements11
2.3.1 Leaf number measurement11
2.3.2 Stem thickness measurement11
2.3.3 Curd weight and curd diameter measurement11
2.3.4 Apical meristem observation12
2.4 RNA isolation, quality control and cDNA synthesis12
2.5 Primer design13
2.6 Quantitative real time PCR16
2.7 Data analysis
2.7.1 Phenotypic data analysis16
2.7.2 Real time PCR analysis
3. Results
3.1 Phenotype
3.1.1 Leaf number
3.1.2 Stem thickness
3.1.3 Curd weight and diameter23
3.1.4 Apical meristem observation25
3.2 Expression analyses
3.2.1 Validation of reference genes28
3.2.2 Identification of genes that define cauliflower developmental stages in Fremont cultivar 30
3.2.3 Effect of temperature swap on gene expression during development
3.2.4 Expression profile of gene before and after temperature swap

4. Discussion
4.1 Morphological characterization and correlation
4.1.1 Leaf number and stem thickness
4.1.2 Curd weight and curd diameter
4.2 Meristem switch
4.3 Identification of genes that define cauliflower developmental stages
4.4 CAL expression during developmental influence by temperature swap
4.5 Gene before and after temperature swap43
5. Conclusion
6. Further study47
Reference:
Appendix
Time Schedule
Appendix 1: One block layout in the field experiment58
Appendix 2: Night blocks layout in the field experiment
Appendix2: Night blocks layout in the field experiment.59Appendix3: Temperature treatment (heat or cool) influences flowering genes expression in
Appendix 3: Temperature treatment (heat or cool) influences flowering genes expression in
Appendix 3: Temperature treatment (heat or cool) influences flowering genes expression in Arabidopsis
Appendix 3: Temperature treatment (heat or cool) influences flowering genes expression in Arabidopsis Appendix 4: qRT-PCR thermal cycling
Appendix 3: Temperature treatment (heat or cool) influences flowering genes expression in Arabidopsis 60 Appendix 4: qRT-PCR thermal cycling 61 Appendix 5: Leaf Number of Lindurian & Fremont in nine blocks in field
Appendix 3: Temperature treatment (heat or cool) influences flowering genes expression in 60 Arabidopsis 60 Appendix 4: qRT-PCR thermal cycling 61 Appendix 5: Leaf Number of Lindurian & Fremont in nine blocks in field 62 Appendix 6: Leaf Number of Lindurian & Fremont in the greenhouse 69
Appendix 3: Temperature treatment (heat or cool) influences flowering genes expression in 60 Arabidopsis 60 Appendix 4: qRT-PCR thermal cycling 61 Appendix 5: Leaf Number of Lindurian & Fremont in nine blocks in field 62 Appendix 6: Leaf Number of Lindurian & Fremont in the greenhouse 69 Appendix 7: Correlations between leaf number and stem thickness 76
Appendix 3: Temperature treatment (heat or cool) influences flowering genes expression in 60 Arabidopsis 60 Appendix 4: qRT-PCR thermal cycling 61 Appendix 5: Leaf Number of Lindurian & Fremont in nine blocks in field 62 Appendix 6: Leaf Number of Lindurian & Fremont in the greenhouse 69 Appendix 7: Correlations between leaf number and stem thickness 76 Appendix 8: Curd harvest stages in the field 78
Appendix 3: Temperature treatment (heat or cool) influences flowering genes expression in 60 Arabidopsis 60 Appendix 4: qRT-PCR thermal cycling 61 Appendix 5: Leaf Number of Lindurian & Fremont in nine blocks in field 62 Appendix 6: Leaf Number of Lindurian & Fremont in the greenhouse 69 Appendix 7: Correlations between leaf number and stem thickness 76 Appendix 8: Curd harvest stages in the field 78 Appendix 9: Correlation analysis between curd weight & diameter in field 91
Appendix 3: Temperature treatment (heat or cool) influences flowering genes expression in 60 Arabidopsis 60 Appendix 4: qRT-PCR thermal cycling 61 Appendix 5: Leaf Number of Lindurian & Fremont in nine blocks in field 62 Appendix 6: Leaf Number of Lindurian & Fremont in the greenhouse 69 Appendix 7: Correlations between leaf number and stem thickness 76 Appendix 8: Curd harvest stages in the field 78 Appendix 9: Correlation analysis between curd weight & diameter in field 91 Appendix10:Ct value and expression results for UFO, CCE1 and CRY2 in Fremont 92
Appendix 3: Temperature treatment (heat or cool) influences flowering genes expression in 60 Appendix 4: qRT-PCR thermal cycling. 61 Appendix 5: Leaf Number of Lindurian & Fremont in nine blocks in field. 62 Appendix 6: Leaf Number of Lindurian & Fremont in the greenhouse. 69 Appendix 7: Correlations between leaf number and stem thickness. 76 Appendix 8: Curd harvest stages in the field 78 Appendix 9: Correlation analysis between curd weight & diameter in field 91 Appendix 10:Ct value and expression results for <i>FUL family, FH, UFO, CCE1, NSN1-1, NSN1-2, NSN1-3, REM1 and</i>

Molecular and morphological characterization of meristems

in cauliflower:

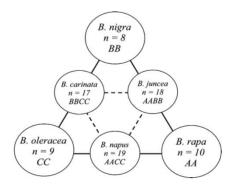
Effects of high ambient temperature on switch to generative stage

Abstract

Flowering time is the most important developmental trait for most crops, including Brassica crops (Brassica oleracea ssp. Botrytis). It determines where the crops can be cultivated and ensures high agricultural productivity. In many early cauliflower varieties, hot temperature causes a delay in the switch from vegetative to generative meristem and thus a delay in curd formation and harvest which causes economic losses during the cauliflower production. Base on the knowledge from the model plant A. thaliana and Brassica rapa, the expression of 4 reference genes ($EF\alpha 1$, YLS8, 18sRNA and Actin) and 17 flowering time candidate genes (AP1-a, AP1-c, FUL-a, FUL-b, FUL-c, FUL-d, FH, TFL1-1, CAL, REM1, UFO, CCE1, NSN1-1, NSN1-2, NSN1-3, Cry2-1 and Cry2-2) were measured to molecularly indicate the phase shifts in cauliflower meristem and changes in gene expression during curd formation and flowering under the plants exposed to high ambient temperature (day/night: 27/22°C) at 5th, 6th and 7th week when still in vegetative stage. Primers could be designed using the sequence of reference genome chiifu (AA). A stable reference gene Actin was identified and a set of genes with expression correlating to cauliflower meristem developmental stages was defined (AP1, REM1, TFL1-1, FH, NSN1, CAL and FUL family). This set of flowering time candidate genes was monitored for expression for several weeks (week 5 to 20) after control and high temperature treatment and 24hr before and after high temperature switch. The results showed that the expressions of CAL and Cry2 were influenced by high ambient temperatures at week 6 after sowing, which causes a delay of the switch from vegetative to generative meristem of cauliflower. At the same time the related morphology traits, leaf number, stem thickness, curd weight and curd diameter are also observed to find the correlation between these trait and the timing of meristem stage switches.

Key words: *Brassica oleracea ssp. Botrytis,* flowering time, meristem switch, curd formation, temperature swap, gene expression

1. Introduction


1.1 Brassicaceae

Brassicaceae family (Cruciferae or mustard family) is one of the largest families in the angiosperm plant kingdom which comprises 338 genera and 3700 species in some 10 poorly defined tribes (Sadowski & Kole,2011). Several species of great scientific, economic and agronomic importance are included, such as model species (e.g., *Arabidopsis*), as well as many widely cultivated species (e.g. cabbage, cauliflower, turnip, radish, etc.). *Brassicaceae* viz. *Arabidopsis* (*Arabidopsis thaliana*) and *Brassica* species as the well-known model plants have revolutionized out knowledge in almost every field of modern plant biology. The genus *Brassica* is a monophyletic group which is evolutionarily closely related to model crucifer plant *Arabidopsis thaliana*, and is reported to have diverged almost for 14.5-20.4 million years (Naser et al., 2012).

The well-known plant from the family *Brassicaceae* viz. *Arabidopsis* lacks its economic value but it is a model for molecular biology and genetics because of the small genome size, short generation time, also the ease of genetic approaches to study development, physiology, and gene function coupled with simple transformation methods.

The genus *Arabidopsis* has nine species and a further eight subspecies which is based on morphological and molecular phylogenies (Koch et al.,2008). The *Arabidopsis* species *Arabidopsis thaliana* (2n=10) is currently used in almost every discipline of biological experiment. In fact, after *Drosophila melanogaster* and *Caenorhabditis elegans*, *A.thaliana* was the first plant, and the third multicellular organism to be completely sequenced (Naser et al.,2012). The completely sequenced genome of *A. thaliana* paved the way to be a better understanding of every aspect in plant biology and presents the way to study gene function in crop plants.

Cultivated *Brassicas* are represented by six interrelated species, each with considerable morphological variation as the result of local selection and breeding. The three diploid species are *Brassica rapa* (2n=20, genome AA), *B.nigra* (2n=16, genome BB) and *B.oleracea* (2n=18, genome CC). From the cytogenetical relationships of the *Brassica* species it is evident that there are three amphidiploid derivatives, *Brassica juncea* (2n=36, genome AABB, brown mustard), *B.carinata* (2n=34, genome BBCC), *B.napus* (2n=38, genome AACC, oilseed rape), derived by hybridization and polyploidization of two of the diploid species (Ashraf & McNeilly,2004). The genetic relationship between species in the *Brassicaceae* family is described by well-known triangle of U **(Figure1)**.

Figure1. Cytogenetic relationships between the diploid and amphidiploid Brassica species. Adapted from U (1935).

The phylogenetic relationships within *Brassicaceae*, and of genome structure, gene expression are studied in recent years. Comparison between *A. thaliana* and related species have been used to study genetic control of flowering and leaf form in several Brassicaceae species. (Schranz et al.,2007). Preliminary comparisons between *Brassica* species and *A. thaliana* have indicated that the small genome of *A. thaliana* is syntenic to the three sub-genomes of diploid *Brassica* species (Lagercrantz,1998). So the relative knowledge, which has already been found in *A.thaliana* could be applied in *Brassicas*'.

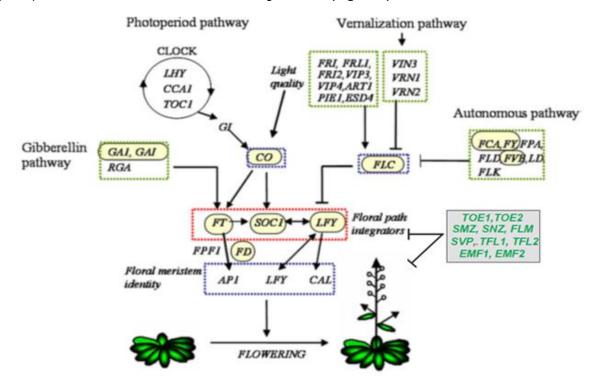
1.1.1 Brassica oleracea ssp. Botrytis (Cauliflower)

Brassica oleracea in its natural form is called *Wild Cabbage* which is a tall biennial plant growing up to two meters. The wild cabbage is domesticated into a range of cole vegetables (Smyth,1995). *Brassica oleracea* is a diploid species with many subspecies covering a wide range of commercial important vegetable crop forms, also be called cultivar groups, such as broccoli, cauliflower, cabbage, kale, brussels sprouts, savoy and Chinese kale (Table 1) (O'neill & Bancroft,2000; Bonnema et al.,2011). *B.oleracea* is tolerant to salt, lime and became established as an important human food crop plant. All of the *B.oleracea* vegetables are powerhouses of nutrition and contain good quantities of many essential vitamins and minerals.

Cultivar groups	Capitata	Acephal	Alboglabra	Botrytis	Gemmifera	Gongylodes	Italica
Examples	cabbage	kale	Chinese broccoli	cauliflower	brussels sprouts	kohlrabi	broccoli
Phenotypes	Øn		-			B	? ?

Table 1. Seven major cultivars groups of B.oleracea

Brassica oleracea ssp. Botrytis (Cauliflower) is a short caulescent plant with shoot tips composed of young leaves and leaf primordia situated around an apical dome which is separated by expanding internodes. The shoot tip components of the cauliflower are large, and easy to be detached, measured and analysed following environmental changes. The grower's cauliflower


consists of a large immature inflorescence (the curd) (Dixon, 2007). The curd is now generally considered to be an early, arrested stage of indeterminate inflorescence development, as its formation precedes floral initiation (Anthony et al., 1996). The inflorescence is a raceme, and flowering starts from the bottom to the top of the inflorescence. During the development of the reproductive structures, the inflorescence begins to elongate from the outer flowers of the curd and can be as large as 60 to 75 cm. When the temperature is greater than 20°C, it will stimulate seed stalk elongation and form yellower flowers with 4 petals, 4 sepals, 6 stamens, one pistil contains two carpels with 10 to 15 ovules inside each carpel. After fertilization of the ovules, seeds form inside a pod is called a silique (Rosales). According to the morphology, the growth phases of cauliflower can be divided into five stages, between vegetative growth and flowering: (1) the vegetative stage; (2) initiation of inflorescence resulting in formation of secondary meristems in axils of bracts; (3) curd development by the reiteration of meristems, each new meristem gives rise to a higher order; (4) curd maturity with no flower initials; (5) floral differentiation and elongation in some of the inflorescence branches. (Anthony et al., 1996). Among the many Brassica species, the seedling has to pass through a juvenile phase during which it cannot be induced to flower (Guo et al., 2004). Cauliflower plants go through a juvenile stage during which curd initiation does not occur, and cannot be initiated. The end of the juvenile period depends on the variety. At the completion of this stage, the plant has reached a mature vegetative phase when curd initiation can occur, or be induced. (North Willamette Research & Extension Center, 2004). More information is needed with regard to the above environmental and juvenile period factors on actual inflorescence initiation and development (Guo et al., 2004). Reproductive development determines the value of the crop, the key steps in this phase of growth remain physiologically and genetically poorly understood (Denise & Thomas, 2008). To reduce uncertainties in harvest time predictability and market availabilities, it is necessary to control the timing of floral transition and curd formation during the breeding effort (Jung & Mu"ller, 2009).

1.2 Flowering Time

One of the most important traits for both wild and cultivated plants is flowering time which is also the most important developmental trait for the production of *Brassica* crops (Yuan et al.,2009). Phenotypic flowering time is mostly measured as days after sowing (DAS) until the day on which first flowering appeared on 50% of plants (Liu,2001). It is a complex trait that is mainly regulated by the genotype and by environmental factors such as photoperiod, nitrogen level, ambient temperature and light. Temperature in considered to be one of the major factors (Nowbuth & Pearson, 1998). Change in the flowering time can lead to large reductions in the yield and quality of the harvested products. Therefore, understanding the mechanism of flowering time, when the first flower opens, but we use the term molecular flowering time, or molecular switch from vegetative to generative meristem. This can be seen by cytological observation of the meristem. This can be measured also by the transcription levels of the flowering time genes in *Arabidopsis*.

1.2.1 Flower time in Arabidopsis

Flowering time in *Arabidopsis* has become a model for understanding complex trait genetics in plants. Many genes involved in the regulation of flowering-time have been identified from *Arabidopsis*. Geneticists have identified ~180 genes which implicated in flowering time control in the model plant species *Arabidopsis thaliana* (Fornara et al.,2010). These genes evolve an elaborate genetic network. The flowering time genes function on four major promotion pathways: photoperiod, vernalization, autonomous, and gibberellin (Figure 2).

Figure 2. Pathways controlling flowering time in Arabidopsis (Corbesier & Coupland,2006; Henderson & Dean,2004).

Molecular studies have conclusively show that *CRYPTOCHROME2* (*CRY2*), *FRIGIDA* (*FRI*), *FLOWERING LOCUS C* (*FLC*), *FLOWERING LOCUS* (*FLM*), *PHYTOCHROME A* (*PHYA*) all harbor natural polymorphisms that alter flowering time in *Arabidopsis*. During that, *FLC* involved in the convergence of autonomous and vernalization pathways, encodes a MADS-box transcription factor that acts as a repressor of the floral transition in a dosage-dependent manner (*Rouse et al.,2002*). And *FLC* may also influence the ambient temperature pathway by physically interacting with the *SHORT VEGETATIVE PHASE* (*SVP*) which is the floral repressor gene under different ambient temperature (Lee et al.,2007). In another study, alternatively splicing was found in *Arabidopsis* that influenced the flowering time. A normal-length *FLC* transcript with nonsense mutation as well as an alternatively spliced transcript lacking exon 6 was found in the early flowering Van-0 *A.thaliana* accessions (Werner et al.,2005).

A number of key findings have emerged in some studies, the sequential action of floral meristem identity genes (switch the fate of meristem from vegetative to floral) and organ identity genes

(direct the formation of the various flower parts) were involved in flowering in *A.thaliana*. Therefore, flowering time control genes can be expected to interact with floral meristem identity genes. And the floral meristem identity genes are themselves capable of influencing flowering time (Levy & Dean,1998). For example, the overexpression of *LFY* and *AP1* causes early formation of determinate floral meristems (Yaron & Caroline,1998). *Ap1* has been identified as playing a role in inflorescence phase switch in *Arabidopsis* which encodes a putative transcription factor that acts locally to specify the identity of the floral meristem and to determine sepal and petal development. RNA tissue in situ hybridization studies show that *AP1* RNA accumulates uniformly throughout young floral primordia, but is absent from the inflorescence meristem (Gustafson-Brown C et al.,1994). On the molecular level, *AP1* was used to identify the flowering in *Arabidopsis* leaf primordia.

1.2.2 Flower time in *Brassica oleracea ssp.* Botrytis (Cauliflower).

It is an annual or biannual plant that reproduces by seed. Typically, flower bud development in cauliflower in arrested. Instead, the inflorescence meristem continuously generates replicas of itself in a spiral on its flanks. Each new meristem can in turn produce more, in a closely packed, geometric cluster of undifferentiated racemose inflorescence meristems ("curd") (Smyth, 1995).

Curd as an inflorescence is the edible part of the cauliflower plant and the phase transition from the vegetative to the generative phase is of crucial importance. There are three distinguished developmental phases between germination of seed and harvest of the curd (Lagercrantz,1998). Time on which plants resume growth after transplanting affects the duration of the juvenile phase most. The juvenile stage in the stage is which the plantlets are not affected by temperature fluctuations (vernalization or high temperatures). Variability in time of curd initiation within a cauliflower crop appears to be mainly due to a variation in time on which the juvenile phase ended. The end of the juvenile phase is another important phase transition in relation to curd induction, as during the juvenile phase the plant is insensitive to curd inducing conditions, such as the ambient temperature. The end of the juvenile phase can be characterized best by the number of initiated leaves.

In several cauliflower cultivars, like *cv. Delira* and *cv. Elgon*, time of curd initiation after the end of the juvenile phase depends among others on temperature; higher temperature delays curd initiation and increases the final number of leaves. The starting point of the temperature-sensitive phase is uncertain. The existence of a juvenile phase has been reported for cauliflower and the end of this phase is characterised by a physiological switch, which makes plants sensitive to environmental signals (Uptmoor et al.,2011). Several studies have tried to elucidate the genetic control of developmental arrest in *B. oleracea* by identifying and characterizing homologues of the *Arabidopsis* floral homeotic genes (Duclos,2008). The main flowering regulators and their response to environmental signals have been identified in *Arabidopsis thaliana* and homologues of flowering genes have been mapped in many crop species.

The range of variation in flowering time can be large, with a significant amount of this diversity arising from heritable genetic variation. This is exploited by breeders to breed spring, summer and autumn cauliflowers. Varieties differ in the length of time they may remain in a mature vegetative phase before curds are initiated and may also differ in the time required to produce harvestable curds after initiation has occurred (North Willamette Research & Extension Center,2004). High temperatures during the development of cauliflower may be considered as a situation of environmental stress which influence curd initiation. Some varieties are not sensitive for high temperature during vegetative stage.

However, some varieties will respond to a high temperature period during vegetative phase by delay switch to generative meristem and initiating curds. This characteristic can cause harvest scheduling problems. However, the genetic background resulting in flowering time variability in B. oleracea is currently not completely understood, so that assigning genotype differences to known genes remains difficult (Uptmoor, 2011). The flowering time in cauliflower corresponds to developmental characteristics of apices meristems. Some studies have tried to elucidate the genetic control of B. oleracea meristem development by identifying several genes expression during the curd proliferation and flower initiation. Duclos and Bjorkman (2007) proposed that some genes in B. oleracea, the expression pattern was arrested which is maintained by altered expression of the genes at different meristem developmental stages by varying the temperature regime. The meristem identity genes LEAFY (LFY), APETALA 2 (AP2), UNUSUAL FLORAL ORGANS (UFO), and the MADS-box genes APETALA 1 (AP1), CAULIFLOWER (CAL), and FRUITFULL (FUL), as well as the floral repressor TERMINAL FLOWER 1 (TFL1), and two other curd associated genes CAULIFLOWER CURD EXPRESSION 1 (CCE1) and REPRODUCTIVE MERISTEM 1 (BOREM1) were examined at different developmental stages. The reproductive stage was determined by dissection and measurement of the apical meristem. AP1-a and AP1-c transcripts increased at the inflorescence meristem stage. CAL and REM1 had their maximum expression at the inflorescence meristem. However CAL expression declined significantly in reproductive meristem. LFY reached its maximum expression in the initial stage of reproductive development, the vegetative to reproductive transition. UFO was expressed at very low levels at all developmental stages. CCE1 transcript levels were equally high in inflorescence meristem and floral primordium. All four FUL paralogues were expressed at all stages. FUL-b, FUL-c, and FUL-d had maximum expression at the inflorescence meristem stage.

We harness this gene expression knowledge to identify potential meristem identity genes that play roles in specific pathways. The pathway responsible for meristem development in *B. oleracea*.

1.3 Gene expression profiling using qRT-PCR

The mRNA molecule as the link between DNA and proteins is of central interest in bioscience. Reverse transcription PCR (RT-PCR) represents a sensitive and powerful tool for analysing RNA (Leslie A. Pray,2008). "Due to its outstanding accuracy, broad dynamic range, and sensitivity, QPCR has become the most emerging method for quantification of mRNA transcription levels in recent years. Moreover, QPCR is fast, easy to use, and highly reproducible, requiring a minimal amount of RNA, no post-PCR handling, and it avoids the use of radioactivity" (Aleksandar et al., 2004). The initial step in RT-PCR is the production of a single-strand complementary DNA copy (cDNA) of the RNA through the action of the retroviral enzyme, reverse transcriptase. An oligonucleotide primer is required to initiate cDNA synthesis. The primer anneals to the RNA, and the cDNA is extended toward the 5' end of the mRNA through the RNA-dependent DNA polymerase activity of reverse transcriptase (Freeman et al., 1999). To compare the different RNA transcription levels the CT values were compared directly. The CT is defined as the number of cycles needed for the fluorescence signal to reach a specific threshold level of detection and is inversely correlated with the amount of template nucleic acid present in the reaction (Aleksandar et al., 2004).

1.4 Scope of thesis and research goals

This Master's thesis puts forward a program for studying *Brassica oleracea ssp. Botrytis* (Cauliflower) flowering time in two different cultivars (temperature sensitive cultivar Lindurian and insensitive cultivar Fremont), with the aim to understand the mechanism of how the high ambient temperature affects timing of cauliflower meristem switch and curd formation.

The morphological characterization of cauliflower is measured to understand the influence of high temperature during the cauliflower growing process. According to that purpose, various types of characteristics are measured in the greenhouse or field, such as leaf number, stem thickness, curd weight and curd diameter while the collected phenotypic data will be used for statistical data analysis methods to find the correlation between leaf number and stem thickness, curd weight and curd diameter. Another aim is to assess the high ambient temperature delay cauliflower meristem switch by observing the meristem transition under the stereomicroscope.

The main aim in this study is to identify genes associated with cauliflower meristem developmental stage identity with a candidate gene approach. Simultaneously, the changes in candidate genes expression which are influenced by high ambient temperature treatment are researched in different treatment groups and different time points.

2. Materials and methods

2.1 Plant materials

Two hybrid *Brassica oleracea ssp. Botrytis* (cauliflower) cv. Fremont and cv. Lindurian which are usually planted in early spring and later summer were used in this study. The main difference between these two cultivars is that Fremont (Monsanto) is not sensitive to ambient temperature changes (read periods of high temperature) while Lindurian (Syngenta) is, as high temperature lead to unpredictable and delayed harvest time.

2.2 Growth conditions

In order to investigate the temperature sensitivity, we measured a set of phenotypic traits on cauliflower plants cultivated under two different environment growth conditions, both field and greenhouse. For the field experiment, plants growing under the natural environment conditions. In contrast to the field experiment, growth conditions in greenhouse were manual controlled which allowed to expose plants to well defined temperature increase during a period of 7 days.

2.2.1 Field experiment

To investigate the flowering time variation, plants were grown in the open field (sandy clay), under natural environmental conditions, with planting data of 3 week old plants in the field at April 19th, April 26th, May 3rd, May 10th, May 17th, May 24th, May 31th, Jun 7th and Jun 14th, 2012 in Wageningen, the Netherlands (51°59'11"N latitude, 05°39'52"E longitude). First 72 seeds of each cultivar were sown into the seeding soil in the greenhouse (day/night: 21/16°C) for one week and then we transplanted 65 best looking seedlings into the press pots. One week later, we moved the two weeks old plants to outside to adapt to the natural environment conditions. After that, three weeks old plants, a total of 45 Fremont and 45 Lindurian best looking seedlings were planted in one block (**Appendix 1**) and there were 9 times repetitions (9 blocks) in the field experiment (**Appendix 2**). In order to be able to measure the effect of natural ambient temperature in different meristem developmental stages, in each repetition, the cauliflower were sown and transplanted one week later than the previous block (see **Table 2** for sowing dates). Therefore, natural ambient temperature fluctuations will occur in the different cauliflower growth stages in different blocks.

2.2.2 Greenhouse experiment

Temperature swap experiments were conducted in the greenhouse, where temperature was increased for 7 days, either at week 5 after sowing or at week 6 after sowing. During the greenhouse experiments, two different ambient temperature greenhouse rooms (control room and high

temperature room) were applied. In greenhouse ambient temperature swap experiments, when plants in control room (day/night: 21/16°C) reached the appropriate stage for heat treatment, they were placed in a high ambient temperature room for one week at day/night temperature of 27/22°C and then swapped back to the control ambient temperature environmental conditions. The swap was always done from 12.00 o'clock till the next day 12.00 o'clock.

This greenhouse experiment 1: started at February, 2012. It was a test experiment to find when the ambient temperature sensitive cultivar Lindurian was more sensitive to the high ambient temperature, meaning when high temperature treatments result in a delayed meristem switch did. Three hundred seeds of Lindurian were sown in the seeding soil in modular trays on February 27th 2012. Plants were grown in control greenhouse room under the day/night temperature of 21/16°C. After two weeks, 250 best looking seedling were transplanted into 17cm pots followed by continued growing in the greenhouse. When the seedlings were five weeks old, we transferred 72 plants to high ambient temperature greenhouse room (day/night: 27/22°C). One week later, swap 64, 6 weeks old plants were transferred from control room to high ambient temperature room, and 5 weeks high temperature treatment plants were put back to the control temperature greenhouse room. Next week, did the similar thing, swapped 56, 7 weeks plants and put back 6 weeks high temperature treatment plants. And then, after one week heat temperature treatment the 7 weeks old plants, decreased the high ambient temperature greenhouse room (day/night: 27/22°C) to control temperature (day/night: 21/16°C). Three high ambient temperature treatment groups were completed and the plants continued growing in the greenhouse under the day/night temperature of 21/16°C.

For the greenhouse temperature swap experiment 2: two different cultivars were used (Brassica oleracea ssp. Botrytis cv. Fremont and cv. Lindurian). Three hundred seeds of Lindurian and Fremont were sown in the seeding soil in modular trays on June 12th 2012. Trays were placed in a greenhouse at day/night temperature of 21/16°C. After two weeks, 250 best looking seedlings for each cultivar were transplanted into 17cm pots (the soil in the pot is "Lentse potgrond") followed by growing in the greenhouse. There were two tables in each greenhouse room and one cultivar was placed on one table. Plants were growing under the control ambient temperature greenhouse conditions (day/night: 21/16°C) and subsets were used for heat treatment. By previous studies, there was an indication of the period that the Lindurian cultivar was more sensitive to the ambient temperature when the plants were 5 and 6 weeks old. When the plants growing to 5 weeks old (after sown 5 weeks), increased the ambient temperature of one greenhouse room from 21/16°C (day/night) to 27/22°C (day/ night) as the high ambient temperature room. After the 5 weeks old plants growing under high temperature for one week, swapped the 5 weeks high temperature treatment plants from high temperature room (day/night: 27/22°C) to the control room (day/night: 21/16°C). At the same time, the 6 weeks old plants (after sown 6 weeks) were replaced to high temperature room. One week later, switched the high ambient temperature to the control temperature. Per temperature treatment group (control, 5th weeks and 6th weeks) 70 plants were used for each cultivar (Fremont and Lindurian). Plants in control group were maintained in the control greenhouse (day/night: 21/16°C) all the time.

2.3 Phenotypes measurements

A total of five phenotypic traits (leaf number, stem thickness, curd weight, curd diameter and apical meristem) were investigated in the field, while 3 traits were measured in greenhouse (Leaf number, stem thickness and apical meristem).

2.3.1 Leaf number measurement

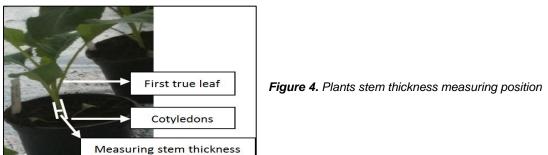

In the greenhouse temperature swap experiment, the numbers of leaves were counted twice a week (Tuesday and Thursday at 12.30pm) in control, 5th weeks and 6th weeks high temperature treatment groups for each cultivar. Every time we randomly choose 5 plants from one cultivar in each group. In the field experiment, 5 consecutive plants in one line for each cultivar were chose to count the leaf number once a week (Friday). Leaf number was counted starting from the first true leaf at the bottom of the plant, until the leaf size was less than 15mm at the top **(Figure 3)**.

Figure 3. Minimum measurement size of the leaf number

2.3.2 Stem thickness measurement

Measure the thickness of the stem (mm) in greenhouse temperature swap experiment twice one week (Tuesday and Thursday at 12.30pm). "Vernier Caliper" was used to measure a portion of the stem above the cotyledon and below the first true leaf of the plant (Figure 4). Measurements were conducted to the nearest 0±1 mm.

2.3.3 Curd weight and curd diameter measurement

Cauliflower curds in the field from each block were harvested start from July 26th 2012 to 06-09-September 6th 2012. Initial time, 15 weeks old curds (15 weeks after sowing) were harvested from block 1, 2, 3 and 4. But as we saw that the curds were harvested too late which caused they were much older than the normal ones in the supermarket, so we decided to harvest curds two weeks earlier **(Table 2).** 13 weeks old curds (13 weeks after sowing) were harvested from block 5, 6, 7, 8 and 9. Each cultivar (Lindurian and Fremont) in each block, 4 (repeat) x 5 (individual plant) were harvested one time, removed all leaves and then measured out the curd weight (g) and curd diameter (mm). Measurement of curd diameter was at the widest point of the curd (Figure 5).

Block	Curd old (weeks)	Sowing Time	Harvest Time
1	15	19-4-2012	26-7-2012
2	15	26-4-2012	02-8-2012
3	15	3-5-2012	09-8-2012
4	15	10-5-2012	16-8-2012
5	13	17-5-2012	09-8-2012
6	13	24-5-2012	16-8-2012
7	13	31-5-2012	23-8-2012
8	13	7-6-2012	30-8-2012
9	13	14-6-2012	06-9-2012

Table 2. Cauliflower sowing and harvest time in nine blocks in the field

Figure 5. Measuring the diameter of the longest as the curd diameter

2.3.4 Apical meristem observation

The developmental stage of the apical meristem was identified by stereomicroscope twice a week (Tuesday and Thursday at 13.30pm) in the greenhouse experiment and once (Friday at 15.30pm) in the field experiment. Under the stereomicroscope, we used forceps and solution planer moving out the leaves around the meristem until the apical meristem was exposed and made pictures for the cauliflower apical meristem under 2.5 times objective lens to identify the plant growth stage. For each cultivar, one meristem was observed for each greenhouse treatment group and field block. Simultaneously, three meristems were harvested and frozen in liquid nitrogen to provide start materials for later gene expression research. Different from greenhouse experiment, one more plant of each cultivar was leaved in the field as the harvested marker.

2.4 RNA isolation, quality control and cDNA synthesis

Total RNA was extracted using the TRIZOL reagent (Invitrogen) starting with frozen cauliflower meristem enriched material. In the previous part of the experiment, each RNA sample was isolated from a single cauliflower meristem. While, in "expression profile of gene before and after temperature swap" experiment, three meristems which used for RNA isolation were harvested for each cultivar in each treatment at the same time point in greenhouse. Genomic DNA contaminations were effectively

removed using RNase-free DNase I treatment (Invitrogen, Carlsbad, CA, USA) according to manufacturer's instructions, since melting curve gave single peak and genomic amplification was larger than RNA/cDNA amplification(different exons primers). The concentration and quality of the cleaned RNA was measured using the nucleic acid analytic apparatus K6000 (Bio Photometer, Eppendorf, Germany) by 260/280 nm absorption ratio 1.9~2.1. RNA concentration and purity were quantified with Nanodrop measurements and the quality of the total RNA was checked on a 1.5% RNase free agarose gel.

All RNA samples were diluted with nuclease free water (Qiagen) to 100ng/µl in a total volume of 10µl to use for cDNA synthesis. cDNA synthesis was performed with iScriptTM kit (BIO-RAD) according to supplier's instructions and a final volume of 20µl per cDNA sample was obtained. cDNA working dilutions were made at 1:20 with RNA free MQ water.

2.5 Primer design

Specific primer pairs were designed for 4 reference genes (*EFa1*, *YLS8*, *18S and Actin*) (**Table 3**) and 17 candidate genes (*AP1-a, AP1-c, FUL-a, FUL-b, FUL-c, FUL-d, FH, TFL1-1, CAL, REM1, UFO, CCE1, NSN1-1, NSN1-2, NSN1-3, CRY2-1 and CRY2-2*) (**Table 4**). The full cDNA sequences of the genes were retrieved from *Arabidopsis thaliana* (L.) Heynh and blasted against *B. rapa* gene sequences. If for one gene, several orthologous genes were in *B.rapa*, sequence comparisons were done by DNASTAR, Lasergene 9.1 (Lasergene, Madison, Wisconsin, USA), found the specific sequence regions among the orthologous genes. Base on the specific sequence in conserved regions, orthologous specific primers were designed using Primer3Plus website. A total set of 23 primer pairs with Tm 60 ±2 °C , free of dimer structures and with amplified product length no longer than 200bp were designed. Primer specificity and DNA contamination which caused by human operation during primer dilution process were visualised by separating PCR products from cDNA and DNA on 1.5% agarose gel and when only a single band was observed, the band was purified to be template for preparing the standard curves (which takes into account primer efficiency) using qRT–PCR (Ramakers et al.,2003).

Among the 17 candidate genes, we choose gene *Cry2* to test in cauliflower vegetative meristems around the temperature SWAP before and 24hr after. Base on the Arabidopsis results (Appendix 3), temperature increase during the vegetative stage, accelerates flowering. RNA sequence data of RNA isolated from the vegetative meristem before and 24hr after the temperature swap showed a set of genes that was differentially expressed or differentially spliced, even a set of genes that was differentially spliced and expressed. Some genes, like *FLM*, a MADs box transcription factor involved in flowering time regulation, is further analysed. *Cry2* as a gene that was differentially spliced and expressed will be checked in cauliflower meristem materials.

Primer		Sequence	Melting Peak
EFa1	Fw	GTCAGACCCGTGAGCATGCTCTTC	,Ξ Ā
Liui	Rv	GATCTCATCGTACCTAGCCTTGGAG	
YLS8	Fw	CGGCCATGATTGGGATGAGACTTG	
1230	Rv	GCTCGTACATGGTGTTGAAGTCTGGAAC	
185	Fw	CGAGACCTCAGCCTGCTAACTAG	A
185	Rv	TCAAACTTCCTTGGCCTAAACG	
	Fw	ACGTGGACATCAGGAAGGAC	- A
Actin	Rv	GAACCACCGATCCAGACACT	

Table 3. Primers for candidate reference genes and melting peaks cause after qRT-PCT

	Primer		Sequence	Tm	GC%	Melting Peak	
	BOAP1-0	Fw	CGAGCCCTTCTTATCCAACTAATT	57.1	42	- A	
AP1 paralogous	BOAP1-0	Rv	CATACTGAAGCAAAAGAACTTGAGAAA	57.9	33		
10000 0007 P.O.O	Red Dit a	Fw	TGGCTAGCTTCTTTCTATCCAATTAATA	58.4	32	÷Λ	
	└BoAP1-c	Rv	CACATACTAGAACCAAAAACTTACAAAGAGA	58.8	32		
	10101	Fw	CGCCCTACGACGAATGAATAG	57.5	52	A	
	BoFUL-a	Rv	CACAAAAATGCTGAGATACATTATGA	55.3	31		
	00000000	Fw	CGCCCTACCACGAAAGAATAA	55.7	48	A	
FUL	BoFUL-b	Rv	CAGTAAATCCAGAAAAATGCTGATATACA	57.7	31		
aralogous	4			21.1		and the second s	
Jaralogous	Ref. H	Fw	ACGTCCTGCTACCAATGAGTAAAAT	57.8	40	ε Λ	
	BoFUL-c	Rv	TACGTTCTTGACATTGTAATTCCGTC	57.1	38		
		Fw	TCGTCGTTGATTGAACCAAACT	55.2	41	A I	
	- BoFUL-d	Rv	AGTCACCAAAAAAGCTGATACATTATGA	57.8	32		
						and the second s	
	BoFH	Fw	AGCGACTTTGGTTGGTGGTATT	56.2	45		
	60FH	Rv	AACCACAGCAACTCATGAACTAATTAA	57.2	33		
		Fw	CGTGAATTTGCGATCGAGAAT	56.2	43	A	
	BoTFL1-1	Rv	TTTCTCTCTGAGCGTTGAAGAAGA	59.3	42		
		Fw	AAACCGCAGCCACCATGTA	55.2	53	- A	
	BOCAL	Ry	AAGGAGATGATGCCATGTAAGGA	56.7	43		
				30.7	45	A Contraction of the second se	
	0.0004	Fw	CCACGTTAAGTTTCCTTTTCAGTATTT	56.4	33	A	
	BOREM1	Rv	TGAGCCATGGAACCGAACA	54.8	53		
		Fw	TTGCGGATATGATCAAAGGAAA	54.0	36	A	
	UFO	Rv	ATTCAAAAGCCCATTGGTTCT	52.6	38		
		FW	TCGTTCCACCACCTTCCAAA	64.2	50	A IE	
	CCE1	Rv	ACGAGCCTGAAATGGTCGTAAT	54.3	50 45		
		RV	ACGAGCETGAAATGGTCGTAAT	57.1	43		
	- NSN1-1	Fw	AGGATTGTGTTGCGTGACTG	55.2	50	1- A	
		Rv	TTTGACTCTGCGTGTTCACC	54.7	50		
NSN1	Constant and the	Fw	GGATTGTGTTGCATGACTGG	53.2	50	A	
paralogous	NSN1-2	Rv	TTTGACTCTGCGTGTTCACC	54.7	50		
	Contractor Sectors	Fw	TTGTCCTGGAGTTGTGATGC	53.9	50	A	
	_NSN1-3	Rv	TGTGGCGTACAAAGCTTGAG	56.2	50		
			GCTGTGCAAAGCTACAATGG			I Ā	
	CRY2-1-a	Fw		55.5			
		Rv	GCACAACGGATTCAACAGAC	53.5	50		
	CRY2-1-b	Fw	ACAAGGCGCAAAGTATGACC primers	55.1	50	1- 1	
RY2		Rv	TCCATTCAGTTGGCAACCTC	53.9			
aralogous	1					- 1	
nan dan kerdalah sak	CRY2-2-0	Fw	CATTTGGTGCCCTGAAGAAG	54.2			
		Rv	ATAGCGGAAACCGTGCTATG	56.1	50		
	CRY2-2-b	Fw	TTGGTGCCCTGAAGAAGAAG	54.8	50		
		RV	ATAGCGGAAACCGTGCTATG	56.1	50		

Table 4. Primers for candidate genes and melting peaks cause after qRT-PCR

2.6 Quantitative real time PCR

qRT–PCR reactions were performed in 96 position carousel (Light Cycler) with the Light Cycler-RNA amplification kit SYBR Green I (Roche, Mannheim, Germany). A final volume of 10ul per reaction contained 2ul of cDNA_{1:20 dilution}; 5ul of SYBR Green Supermix; 2.4ul of RNA free MQ water; 0.3ul of Forward Primer at 10uM and 0.3ul Reverse Primer at 10uM. The thermal cycling consisted of 95°C for 2 min and 40 cycles of 95°C for 20s, 55°C for 20s and 72°C for 20s (**Appendix 4**). After the PCR a melting curve was generated to check the specificity of the amplification. Data analysis was performed with the Rotor-gene 6 ver. 6.1 software (Applied Biosystems). All the cycle threshold (Ct) values from one gene were determined at the same threshold fluorescence value of 0.2. Two technical replications were made per sample and two biological replications for each time point in greenhouse experiment 1 and 2. In order to avoid misinterpretation of experimental results and erroneous analyses, stable reference gene was applied in each sample every time.

2.7 Data analysis

2.7.1 Phenotypic data analysis

Phenotypic data collected (leaf number and stem thickness, curd weight and curd diameter) were statistically analysed by analysis of variance and correlation.

2.7.1.1 Comparison of leaf number and stem thickness

The Paired Samples T Test in IBM SPSS Statisitcs program version 19th edition was performed to evaluate block (natural environmental) effect in the field or group (temperature swap) effect in the greenhouse as a response of leaf number and stem thickness traits. The difference between two cultivars can also been analysed by this method. It computed the difference between the two variables for each case, and tested to see if the average difference was significantly different from zero.

In SPSS output table **(Table 5)**, the significance level of whole entire the Paired Samples T Test was fixed at 95% (P-2tailed= 0.05) which was the criterion the average difference between two variables was significantly or not.

	Paired Dif							
	Mean	Std.Deviation	Std.Error Mean	95%ConfidenceIntervaloftheDifferenceLowerUpper		ť	Df ³	Sig.(2- tailed) ⁴
Pair ¹ 1 Control- Five	27692	3.16153	.87685	-2.18742	1.63357	316	12	.758
Pair 2 Control- Six	.51538	3.18299	.88280	-1.40808	2.43884	.584	12	.570
Pair 3 Five-Six	.79231	1.77457	.49218	28005	1.86467	1.610	12	.133

Table 5. Example for the paired sample T test analysing Lindurian stem thickness in greenhouse experiment

¹Pairs: Different treatment blocks in field or groups in greenhouse, ²t:T value, ³df: Degrees of freedom, ⁴Sig: 2tailed significance value.

• If the significance value is less than 0.05, there is a significant difference

= Traits influenced by treatment/ No different between two cultivars

• If the significance value is greater than 0.05, there is no significant difference

= Traits not influenced by treatment/ No different between two cultivars

2.7.1.2 Correlation analysis

GenStat program version 15th edition was used to analyse the correlation between leaf number and stem thickness, curd weight and curd diameter. The significance level of correlation analysis was fixed at 95% (0.05-2tailed) and 90% (0.1-2tailed).

- If the significance value is less than 0.05, there is a significant correlation between the two variables.
- If the significance value is greater than 0.05 and less than 0.1, there is correlation between the two variables, but less significant than 0.05 level.
- If the significance value is greater than 0.1, there is not significant correlation between the two variables.

2.7.1.3 Distribution pattern of curd weigh and curd diameter analysis

Additionally, to check the distribution pattern of the observed values and normality of the data, Box plots were calculated using the GenStat program 15th edition. All the observed and collected data of cure weight and curd diameter traits were analysed separately.

2.7.2 Real time PCR analysis

The cauliflower meristem samples were divided into four strategic groups (different cultivars, developmental stages and different ambient temperature treatments) for analysis of reference gene stabilities and other candidate genes expression.

2.7.2.1 Reference gene stabilities analysis

The normalised data were imported and analysed by one stability analysis program for reference genes, geNorm ver. 3.4 (Vandesompele et al.,2002) for ranking the reference genes.

geNorm determines the gene stability measure (M) value for each gene, based on the average pairwise variation for a particular gene with all the other tested genes. Thus, genes can be ranked according to their expression stability through the stepwise exclusion of the least stable gene. The genes with an M value were arbitrarily suggested to be lower than 1.5; genes with the lowest M values have the most stable expression.

2.7.2.2 Expression profile analysis

All the data were an average from two corresponding biological replications (RNA isolated from one meristem, two individual meristem were harvested at the same time point in each treatment group as two corresponding biological replications) done in each experiment. Amplification cycle (Ct) which is analysed with the BioRad CFX software (version 3.0) in gene expression model is the point at which fluorescence increased above a fluorescence threshold above the background fluorescence (Duclos & Bjo¨rkman, 2007). Data or mean Ct values obtained from qRT–PCR were used for expression profile analysis, and fold change relative to the expression of the candidate genes and reference genes is calculated using normalized expression ($\Delta\Delta$ (Ct)) method with default threshold values using CFX Manager Software (www.bio-rad.com/genomics/pcrsupport).

Kenneth J. Livak and Thomas D. Schmittgen (2001) proposed that the calculate method for Normalized expression ($\Delta\Delta$ (Ct)). The example of how to calculate the fold change in expression of the target gene relative to the reference gene at various sample groups were studied (**Table 6**). Group x is any experimental group samples ant Group 1 represents the 1xexpression of the target gene normalized to reference gene. A value that is very different from one suggests a calculation error or a very high degree of experimental variation. In this study the default value of efficiency (E) used in the gene expression calculation is 100%. 100% efficiency in this software is equivalent to an efficiency of 2 (perfect doubling with every cycle).

$\Delta\Delta$ (Ct) formula:

 $\Delta\Delta(Ct) = (CT,_{Target} - CT,_{Reference})_{Group N} x - (CT,_{Target} - CT,_{Reference})_{Group 1}.$

Sample	Group(3 repeat in 1 group)	Gene	Ct Value	Mean Ct	$2^{-\Delta\Delta(Ct)}$	Mean Fold Change in gene expression
1		Target	22.3		1.023	
2	1	Target	22.0		0.786	1.02
3		Target	21.5	24.0	1.243	
4		Target	19.8	21.9	1.845	
5	2	Target	20.2		2.019	2.00
6		Target	20.0		2.149	
1		Reference	22.9		-	2-((20.0-21.7)-(21.9-22.5))
2	1	Reference	22.3		-	-
3		Reference	22.4	22.5	-	-
4		Reference	21.2	22.3	-	-
5	2	Reference	21.7		-	-
6		Reference	21.7		-	-

Table 6. Sample of data analysis using the $2^{-\Delta\Delta(Ct)}$ method.

Normalized Expression ($\Delta\Delta$ (Ct)) Formula:

Normalized fold Expression = E $\Delta\Delta(Ct)$ = 2 $-\Delta\Delta(Ct)$

• E= Efficiency of primer and probe set. This efficiency is calculated with the formula (%Efficiency*0.01) +1, where 100% efficiency=2 (the default value).

3. Results

3.1 Phenotype

In this study, five traits (leaf number, stem thickness, curd weight, curd diameter and apical meristem) were observed in the field and greenhouse. In addition to the analysis the characteristics of the individual traits, we also tried to find the correlation between them.

3.1.1 Leaf number

For this experiment, the numbers of leaves were measured in the field and greenhouse experimental conditions. Main aim was to see whether the number of leaves at the switch form vegetative to generative meristem differed between cultivars and environments /treatments.

In the field, the sowing time of the seeds in each block was different leaves were accounted each week, however, during the whole field experiment, only leaf numbers of 9 weeks old plants were counted in all nine blocks. For block 1, we started monitoring meristems stage and leaf number at week 9 (after sown 9 weeks) and expected (based on Greenhouse experiment 1) that plants would be in vegetative stage. However, plants were already in generative stage, so we needed to monitor meristem stage and leaf number at earlier time points for remaining blocks. The lowest average count was 6.6 leaves measured on 5th weeks in Block 8. The highest number is average 24.6 on 9th weeks in Block 9.Use the SPASS software analysis the 9 weeks old cauliflower leaf number found that there were no significant differences between Fremont and Lindurian cultivar.

In **Figure 6 and Figure 7**, results are presented of the number of leaves and meristem switch moment. Fremont and Lindurian meristem switched at the same week in Block 5, 7 and 8. In Block 5, meristems switched at week 7 and number of leaves are 9.8. In Block 7, Fremont is 14.2 leaves which week meristem switch and Lindurian is 13.4. In Block 8, Fremont and Lindurian switched between week 7 and week 8, the range of leaf number from 11.4 to 15.0 in Fremont and 11.8 to 15.4 in Lindurian. The meristem switched at different week for these two cultivars in Block 9. For Fremont, meristem switched between week 6 and week7, the leaf number between 9.4 and 13.6. For Lindurian, switch time was the same with Block 8, between week 7 and week 8. In both two cultivars, the blocks without exact switch time (Fremont Block 1, 2, 3, 4, 6 and Lindurian Block 2, 3, 4) is because when we started counting the leaf number in the field, the meristem already switched in these blocks.

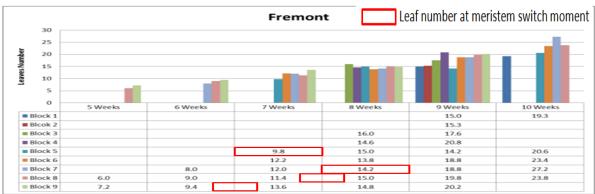


Figure 6. Fremont leaf number for nine blocks in the field, counted at defined weeks after sowing

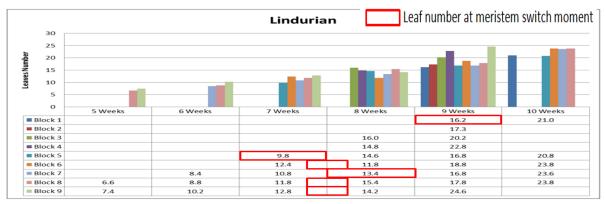


Figure 7. Lindurian leaf number for nine blocks in the field, counted at defined weeks after sowing

In **Figure 8 and Figure 9**, results are presented of the number of leaves in the greenhouse temperature swap experiment and marked the leaf number at meristem switch moment in three temperature treatment groups. With the growth of plants, the number of leaves in Lindurian and Fremont groups (control, 5th weeks and 6th week high temperature treatment groups) kept increasing, ranging from 9 to around 60. After comparison the data collection at same time point, Lindurian had more leaves are than Fremont during the plant growth process in both control and high temperature treatment of 5th and 6th week groups.

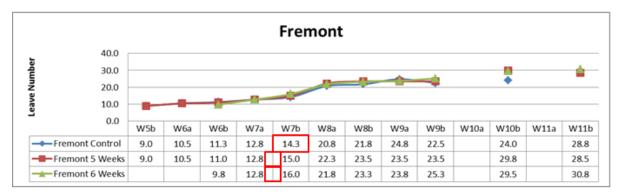


Figure 8. Fremont leaf number for three groups in greenhouse, counted at defined weeks after sowing

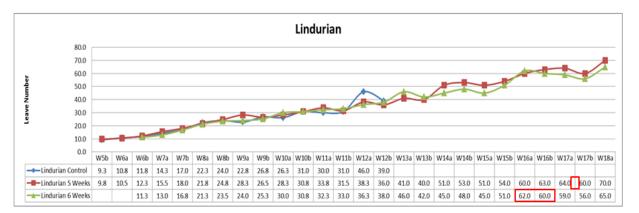


Figure 9. Lindurian leaf number for three groups in greenhouse, counted at defined weeks after sowing

For Lindurian, from week 6 to week 12, three groups leaf number were measured. The range of the numbers was from 11.8 to 39.0 in control group. In 5th and 6th weeks higher temperature treatment groups, the leaf number were from 12.3 to 36.0 and 11.3 to 38.0 from week6 to week 12. For Fremont, from week 6 to week 9, the numbers of leaves in all three treatment groups were obtained. The range numbers are from 11.3 to 22.5 under control condition. 11.0-23.5 and 9.8-25.3 were measured on 5th and 6th week high temperature treatment groups. The week 10 (W10a) and week 11 (W11a) were not measured in Fremont. We analysed whether number of leaves of the three groups of Lindurian and Fremont were different. The comparison between the two groups (control--five weeks, control--six weeks and five weeks--six weeks) showed that there was no significant difference between the different treatment groups in Lindurian or Fremont.

3.1.2 Stem thickness

The stem thickness and the leaf number were measured on the same individual plant when meristems were harvested to visualize in which stage they were. As can be seen from the measurement data of Lindurian (Figure 10) and Fremont (Figure 11), the range of the stem thickness in control group were from 8.9 to 10.4 in Lindurian from week 6 to week 12 and from 9.6 to 10.8 in Fremont from week 6 to week 11. In 5th and 6th week higher temperature treatment Lindurian groups, the stem thickness was from 8.9 to 9.5 and 8.2 to 11.6 from week6 to week 12. For Fremont, from week 6 to week 11, the thicknesses of stem in two high treatment groups were obtained. 9.1-10.9 and 8.3-12.1 were measured on 5th and 6th week high temperature treatment groups. The week 10 (W10a) and week 11 (W11a) were not measured in Fremont. The same point in time in the same treatment group, Fremont stems are wider than Lindurian stems. With the time of growth of plant growth, stem width increased.

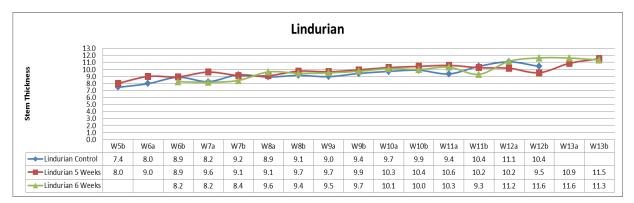


Figure 10. Lindurian stem thickness for three groups in greenhouse

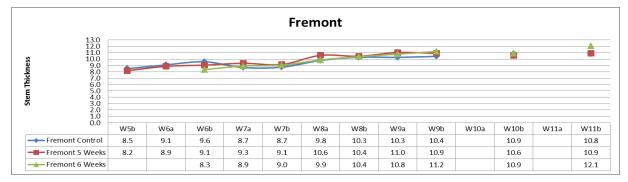


Figure 11. Fremont stem thickness for three groups in greenhouse

The comparison between the two groups (control--five weeks, control--six weeks and five weeks--six weeks) showed that the stem thickness was no significant difference between the different treatment groups in Lindurian or Fremont.

The detail leaf number and stem thickness data for Lindurian and Fremont are presented in **Appendix 5** and **Appendix 6**.

In the greenhouse experiment, at the same time point, the leaf number and stem thickness were measured for the same individual plant. SPASS software was used to analyse the correlation between leaf numbers and stem thickness. Twenty four time point of the twenty four pairs of data in the three treatment groups for each cultivar were used for analysis. Derived from the analysis results **(Appendix 7)**, there were no significant relation between leaf number and stem thickness in control , 5^{th} weeks and 6^{th} weeks groups at most time point by seeing the P value of each pair.

3.1.3 Curd weight and diameter

To estimate curd weight and diameter variation between different sowing time and different cultivars, curd was harvested from the initially at week 15 after sowing for each block. However, the cauliflowers in the blocks that were developed quicker and thus the curd was overripe (loose and start rot) at 15 weeks, which made us decide to harvest week 13 for the later blocks. In order to facilitate the analysis of data, based on the curd age, divided the data to two parts and total nine blocks by harvesting time **(Table 2).** The detail harvesting data for each block is presented in **Appendix 8.** Using box plots, the variation in curd weight and curd diameter in per cultivar was visualized (**Figure 12** and **Figure 13**).

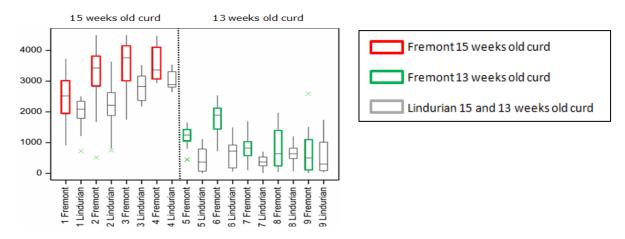


Figure 12. Box plots showing the distribution of curd weight in different block in the field

In block 1, 2, 3 and 4, the curds were 15 weeks old. Block 4 to block 9, the curds were 13 weeks old. Whether 15 weeks old curd or 13 weeks old curd, the curd weight of Fremont were larger than Lindurian. According to the curd weight distribution in nine blocks, we found that the variation of the curd weight in Fremont was large than Lindurian expect in block 5 and block 6.

Curd diameter of Fremont was larger than Lindurian from block 1 to block 9, besides block 8. In block 8, when the plants were 13 weeks old, the Lindurian curd diameter was longer than Fremont. However, the meristems of these two cultivars were all switched at week 8 in this block. The distribution of the curd diameter range was similar in these two cultivars when the curd was 15 weeks old. Analysis the 13 weeks old curd, the curd diameter range in Lindurian was more than Fremont in block 5 and block 6.

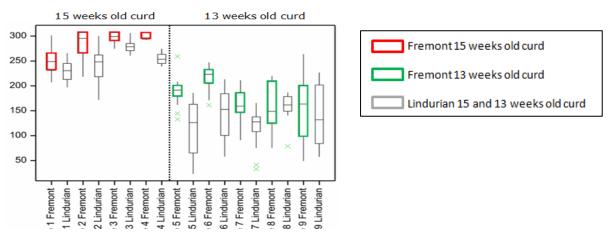


Figure 13. Box plots showing the distribution of curd diameter in different block in the field

As can be seen from the data change, the curd weight and curd diameter gaps between Fremont and Lindurian are reduced with the passage of sowing time, which means that Lindurian develops faster than Fremont when later sown, while Fremont maybe develop faster at early sown time.

Correlation analysis was carried out to identify the correlation between curd weight and diameter traits. The correlations computed were considered significant using 0.05 significant levels. From results of these correlations (Appendix 9), curd weight showed a correlation with curd diameter with P < 0.05. High value of correlation (P < 0.01) was found at some harvest stages.

3.1.4 Apical meristem observation

Based on the apical meristem developmental stage, three meristem developmental growing stages were separated during the cauliflower growing process (Figure 14), plus curd and flower stage. About one week to two weeks between the vegetative stage and generative stage was defined as the transition stage, based on the morphology. Cauliflower has a long curd stage, when it is in fact an inflorescence with non-developed flower buds. But after curd ripening, the flower bud develops and some flower truly open. The lengths of each growing stage was significant different for different cultivars.

Figure 14. Cauliflower growing stages

3.1.4.1 Meristem transition in greenhouse

In the temperature swap experiment 1, in the greenhouse (Table 7), the meristems of Lindurian plants in control group transited at week 9 to the generative stage, which means 9 weeks after sowing. Lindurian meristems of 5th week high temperature treatment group plants switched at week 13, 2.5 weeks later than control group. 6th week high temperature treatment plants swapped half weeks earlier than the 5th week plants. The 7th week high temperature treatment plants were in transition again, half week earlier than 6th week swap group. So all temperature swapped Lindurian were delayed in the transition from vegetative to generative meristem.

Lindurian								
Obser	ve Time	Control	5th week swap	6th week swap	7th week swap			
Week 5	3-4-2012	Vegetative						
week 5	5-4-2012	Vegetative						
Week 6	10-4-2012	Vegetative	Vegetative					
WEEKU	12-4-2012	Vegetative	Vegetative					
Week 7	17-4-2012	Vegetative	Vegetative	Vegetative	Vegetative			
week /	19-4-2012	Vegetative	Vegetative	Vegetative	Vegetative			
Week 8	24-4-2012	Vegetative	Vegetative	Vegetative	Vegetative			
WEEKO	26-4-2012	Vegetative	Vegetative	Vegetative	Vegetative			
Week 9	1-5-2012	Transition	Vegetative	Vegetative	Vegetative			
WEEK 5	3-5-2012	Transition	Vegetative	Vegetative	Vegetative			
Week 10	8-5-2012	Generative	Vegetative	Vegetative	Vegetative			
WEEK 10	10-5-2012	Generative	Vegetative	Vegetative	Vegetative			
Week 11	15-5-2012	Generative	Vegetative	Vegetative	Vegetative			
WEEK II	17-5-2012							
Week 12	22-5-2012	Generative	Vegetative	Vegetative	Transition			
WEEK 12	24-5-2012	Generative	Vegetative	Transition	Transition			
Week 13	29-5-2012	Generative	Transition	Transition	Transition			
week 13	31-5-2012	Generative	Transition	Generative	Transition			
Week 14	5-6-2012							
WCCK 14	7-6-2012	Generative	Transition	Generative	Transition			
Week 18	Nergena	Generative	Generative	Generative	Generative			

Table 7. Greenhouse temperature swapsexperiment 1, plants sown on December21th2011, Lindurian meristem switchtime.

In the temperature swap experiment 2 (Table 8), when plants were sown in the later season (June, 2012) when day lengths shortened, the transition stage in Lindurian control group was much later compared to experiment one, when plants were sown begin February, 2012. So in the latter part of the trial, there were not enough Lindurian plants in control group. The meristems transition time of Lindurian plants in control group was not known. However, we found that on Sep. 4th, 19 weeks old Lindurian's meristem was in generative stage and the phenotype was abnormal (Figure 15). Lindurian meristem of 5th weeks high temperature treatment groups plants switched at week 17. 6th week high temperature treatment groups, Lindurian 5th weeks group transitioned half week later than 6th week group.

In Fremont groups, plants in control, 5th week and 6th week groups were transition much early than Lindurian. The meristem of Fremont plants in control group transited at week 7 to the generative stage, which means 7 weeks after sowing. Fremont meristems of 5th week high temperature treatment group plants switched at the same week, week 7. 6th weeks high temperature treatment group plants swapped at the end of week 6, neared control and 5th weeks swap groups. Because temperature insensitive cultivar Fremont is not affected by temperature switch, the Fremont meristem transition time in control, 5th week and 6th week high temperature treatment groups were almost same, at week 7.

			Lindurian			Fremont	
Obse	rve Time	Control	5th week swap	6th week swap	Control	5th week swap	6th week swap
Week 5	17-7-2012	Vegetative	Vegetative		Vegetative	Vegetative	
week 5	19-7-2012	Vegetative	Vegetative		Vegetative	Vegetative	
Week 6	24-7-2012	Vegetative	Vegetative		Vegetative	Vegetative	
weekb	26-7-2012	Vegetative	Vegetative	Vegetative	Vegetative	Vegetative	Vegetative
Week 7	31-7-2012	Vegetative	Vegetative	Vegetative	Transition	Generative	Generative
WEEK7	2-8-2012	Vegetative	Vegetative	Vegetative	Generative	Vegetative	Generative
Week 8	7-8-2012	Vegetative	Vegetative	Vegetative	Generative	Generative	Generative
Weeko	9-8-2012	Vegetative	Vegetative	Vegetative	Generative	Generative	Generative
Week 9	14-8-2012	Vegetative	Vegetative	Vegetative	Generative	Generative	Generative
week 9	16-8-2012	Vegetative	Vegetative	Vegetative	Generative	Generative	Generative
Week 10	21-8-2012	Vegetative	Vegetative	Vegetative			
Week 10	23-8-2012	Vegetative	Vegetative	Vegetative	Generative	Generative	Generative
Week 11	28-8-2012	Vegetative	Vegetative	Vegetative			
WEEK II	30-8-2012	Vegetative	Vegetative	Vegetative	Generative	Generative	Generative
Week 12	4-9-2012	Generative	Vegetative	Vegetative			
WEEK 12	6-9-2012	Vegetative	Vegetative	Vegetative			
Week 13	11-9-2012	No plant	Vegetative	Vegetative			
WEEK 13	13-9-2012	No plant	Vegetative	Vegetative			
Week 14	18-9-2012	No plant	Vegetative	Vegetative			
Week 14	20-9-2012	No plant	Vegetative	Vegetative			
Week 15	25-9-2012	No plant	Vegetative	Vegetative			
WEEK 15	27-9-2012	No plant	Vegetative	Vegetative			
Week 16	2-10-2012	No plant	Generative	Transition			
WEEK 10	4-10-2012	No plant	Vegetative	Transition			
Week 17	10-10-2012	No plant	Vegetative	Generative			
week 17	11-10-2012	No plant	Generative	Generative			
Week 18	16-10-2012	No plant	Generative	Generative			
Week 18	18-10-2012	No plant	Generative	Generative			

Table 8. Greenhouse temperature swap experiment 2, plants sown on June 12th 2012, Lindurian and Fremont meristem switch time

Figure 15. Sep. 4th, 19 weeks old abnormal Lindurian plant

3.1.4.2 Meristem transition in field

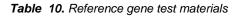
In the field experiment, Lindurian and Fremont plants were grown under natural environmental conditions. The meristems of Lindurian plants in block 1 transited at week 9. In block 2, block 3 and block 4, we did not get the exact meristems transition time because we did not monitor week 5-8. Lindurian plants in block 5 and block 6 transited at week 7. In block 7, the meristem of Lindurian plants transited at week 8. The meristems transited time for Lindurian plants in block 8 and block 9 was between week 7 and week 8. Comparing the transition time in nine blocks, Lindurian in block 8 and block 9 transitioned two weeks early than block 1 and one week later than block 5 and block 6.**(Table 9)**

In Fremont groups, the transition stages in block 1, 2, 3, 4 and 6 were not been determined in the field experiment. In block 5, the meristem of Fremont plants transited at week 7. The transition stage in block 7 was week 8. Fremont transited in block 8 between week 7 and week 8, in block 9 between week 6 and week 7. Comparing the transition time in nine blocks, Fremont in block 5 and block 9 transitioned one week early than block 7 and block 8.(Table 9)

Comparing the transition time in Lindurian and Fremont in the same block, Lindurian in block 1, block 6 and block 9 transitioned later than Fremont. However, in block 5 and block 7, the Lindurian and Fremont plants transited at the same week in the same block.

Table 9. Field experiment, plants sown on April 19th 2012, Lindurian and Fremont meristem switch time

Hybrid	Block	Sown time	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13
Lindurian	Block 1	19-4-2012					Transition	Switched	Switched	Switched	Switched
Lindurian	Block 2	26-4-2012					Switched	Switched	Switched	Switched	Switched
Lindurian	Block 3	3-5-2012				Switched	Switched	Switched	Switched	Switched	Switched
Lindurian	Block 4	10-5-2012				Switched	Switched	Switched	Switched	Switched	Switched
Lindurian	Block 5	17-5-2012			Transition	Switched	Switched	Switched	Switched	Switched	Switched
Lindurian	Block 6	24-5-2012			Transition	Transition	Switched	Switched			
Lindurian	Block 7	31-5-2012		Vegetative	Vegetative	Transition	Switched	Switched			
Lindurian	Block 8	7-6-2012	Vegetative	Vegetative	Vegetative	Switched	Switched	Switched			
Lindurian	Block 9	14-6-2012	Vegetative	Vegetative	Vegetative	Switched	Switched				
Fremont	Block 1	19-4-2012					Switched	Switched	Switched	Switched	Switched
Fremont	Block 2	26-4-2012					Switched	Switched	Switched	Switched	Switched
Fremont	Block 3	3-5-2012				Switched	Switched	Switched	Switched	Switched	Switched
Fremont	Block 4	10-5-2012				Switched	Switched	Switched	Switched	Switched	Switched
Fremont	Block 5	17-5-2012			Transition	Switched	Switched	Switched	Switched	Switched	Switched
Fremont	Block 6	24-5-2012			Switched	Switched	Switched	Switched			
Fremont	Block 7	31-5-2012		Vegetative	Vegetative	Transition	Switched	Switched			
Fremont	Block 8	7-6-2012	Vegetative	Vegetative	Vegetative	Switched	Switched	Switched			
Fremont	Block 9	14-6-2012	Vegetative	Vegetative	Switched	Switched	Switched				


3.2 Expression analyses

We wanted to look at expression of flowering related genes around meristem development and curd formation in temperature treated and control meristems. Thus we need a reference gene that was stably expressed in these samples. Based on the candidate genes research in *B.rapa* by Xiao Dong, one stable reference gene was chosen from 4 reference genes (*EFa1, YLS8, 18sRNA* and *Actin*) and 17 flowering time candidate genes (*AP1-a, AP1-c, FUL-a, FUL-b, FUL-c, FUL-d, FH, TFL1-1, CAL, REM1, UFO, CCE1, NSN1-1, NSN1-2, NSN1-3, CRY2-1* and *CRY2-2*) were check by qRT- PCR.

3.2.1 Validation of reference genes

Four reference candidate genes *EF* α 1, *YLS8*, 18S and *Actin* (**Table 3**) were tested in the two cultivars (Lindurian and Fremont) and in two growing stages (vegetative and generative) on four time points for each cultivar after sowing (**Table 10**). 18S showed Ct values ranging from 7.54 to 7.98 in Fremont and from 7.27 to 8.07 in Lindurian (Figure16 and Figure17). The Ct value of 18S is too low, which means it is too high expressed in these samples, as we expected target genes do not have this high expression. Therefore, 18S was not used as reference gene in this research. In the cases of *EF* α 1, *YLS8* and *Actin*, Ct value results were stable in two cultivars (Figure 18 and Figure 19). Using the software geNorm one can determines the gene stability measure (M) value for these three reference genes. The result was that *YLS* and *Actin* are more stable than *EF* α 1 (Figure 20 and Figure 21). However, when we checked the *YLS* and *Actin* PCR products on a 1.5% RNase free agarose gel (Figure 22), the *YLS8* primer has more primer dimer than *Actin, so Actin* was chosen as the reference gene for this study.

Fremont								
Plant old	5 weeks	6 weeks	8 weeks	9 weeks				
Growing stage	Vegeta	tive	Generative					
Plant number	F0111,F0113	F0248,F0249	F0130,F0176	F0139,F0143				
Lindurian								
Plant old	6 weeks	7 weeks	11 weeks	12 weeks				
Growing stage	Vegeta	tive	Generative					
Plant number	L0198,L0227	L0181,L0210	L0073,L0081	L0083,L0141				

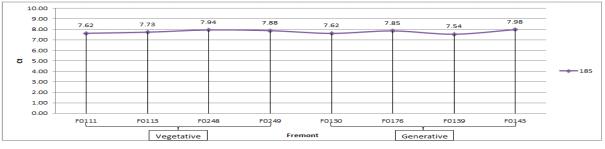


Figure 16. Reference gene 18S Ct value in Fremont

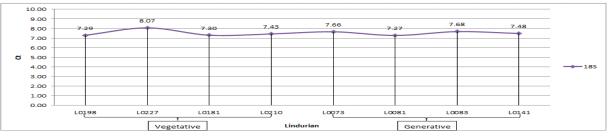


Figure 17. Reference gene 18S Ct value in Lindurian

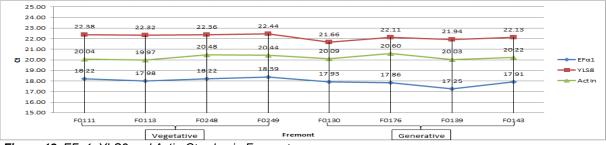


Figure 18. EFa1, YLS8 and Actin Ct value in Fremont

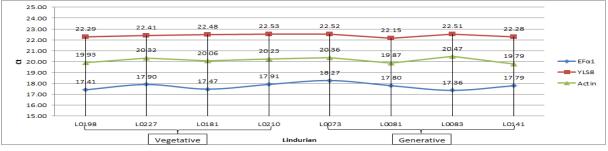


Figure 19. EFa1, YLS8 and Actin Ct value in Lindurian

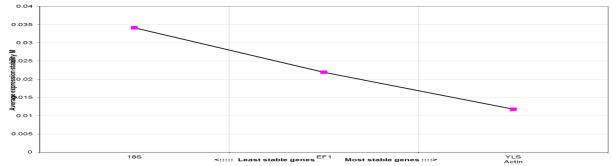


Figure 20. Use geNorm determines the gene stability in Fremont

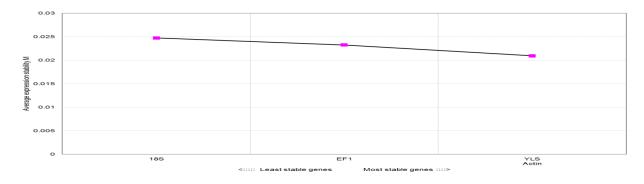


Figure 21. Use geNorm determines the gene stability in Lindurian

	Primer dimer
E Actin	

Figure 22. Use gel tests the primers quality

In later experiment, reference gene *Actin* was continued testing in Lindurian control group and 6th week high temperature treatment group. The Ct value of *Actin* in these different temperature treated Lindurian samples was still stable, ranging from 19.26 to 20.41 in 22 samples at 6 time points (**Figure 23**).

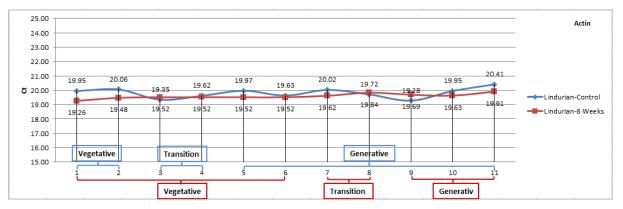


Figure 23. Ct value of Actin in Lindurian control and 5 weeks high temperature group materials

3.2.2 Identification of genes that define cauliflower developmental stages in Fremont cultivar

We looked at five development stages (vegetative-transition-generative meristems curd and flower) in the cauliflower. Curd and flower stages can be defined by morphology. The vegetative, transition and generative stages identification need to rely the stereomicroscope. If the meristems are used for RNA extraction, time maybe insufficient to check meristem stage and mistakes may happen, so a molecular expression marker that defines the stage would be handy. On molecular level, several genes were tested for their use to divide the development stages for cauliflower by their normalized fold expression levels. In this part, we focus on the results from Fremont material **(Table 11)** of experiment 2.

Table 11 Fromont start materials at different	timo nointo
Table 11. Fremont start materials at different	ume points

Fremont								
Plant old 5 weeks 6		6 weeks	7 weeks	8 weeks 9 weeks		16 weeks	20 weeks	
Growing stage	Vegetative		Transition	Generative		Curd	Flower	
Plant number	F0111,F0113	F0248,F0249	F0153,F0157,F0136	F0130,F0143	F0139,F0143	F0076,F0053	F-Small,F-Big	

Gene expression analysis showed that at different stages major expression differences occur for several genes:

AP1-a and **AP1-c** were not expressed in vegetative, transition, generative and curd stages in Fremont control group. They started expressing in flower stage, the Ct value reduced to 23.82 from 30 or more (Figure 24). The normalized fold expression was 2.55 at flower stage (Figure 25).

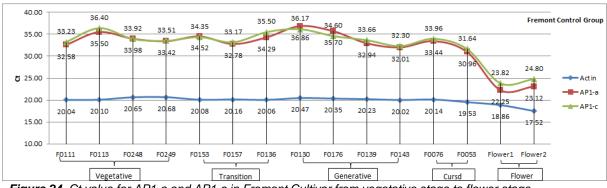


Figure 24. Ct value for AP1-a and AP1-c in Fremont Cultivar from vegetative stage to flower stage

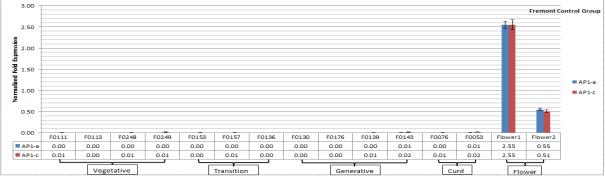


Figure 25. Normalized against Actin fold expression of AP1-a and AP1-c in Fremont from vegetative to flower stage

Opposite to *AP1-a* and *AP1-c* results, *REM1, TFL1-1* and *FH* were expressed in all stages tested, except in open flower tissue. The Ct value of *REM1, TFL1-1* and *FH* were around 26 from vegetative stage to curd stage. But in the flowering stage, the Ct value rose sharply to more than 30 (Figure 26). During the vegetative to curd developmental stage, the normalized fold expressions ranged from 0.7 to 2.0 for *REM1* and from 2 till 8 for *TFL1-1*, but in flower stage were 0 (Figure 27). Vegetative stage to curd stage of *FH* expression ranges from 0.18 to 1.14 and the less expression in flower tissue (Figure 28).

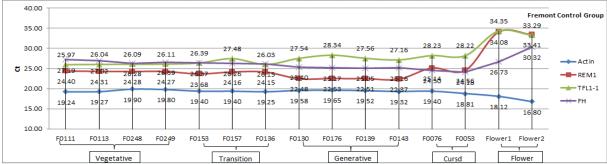
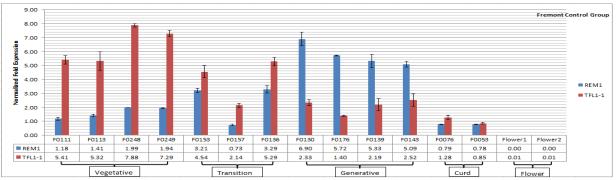



Figure 26. Ct value for REM1, TFL1-1 and FH in Fremont Cultivar from vegetative stage to flower stage

Figure 27. Normalized against Actin fold expression of REM1 and TFL1-1 in Fremont from vegetative to flower stage

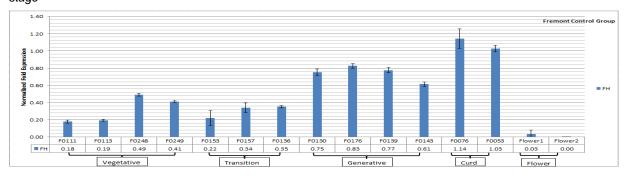


Figure 28. Normalized against Actin fold expression of FH in Fremont from vegetative to flower stage

NSN1 family has high expression level from vegetative to curd stage, expression fluctuated between 2.56 and 6.3, while significant decline was happened in flower stage, with lowest expression level, smaller than 1.00 (Figure 29).

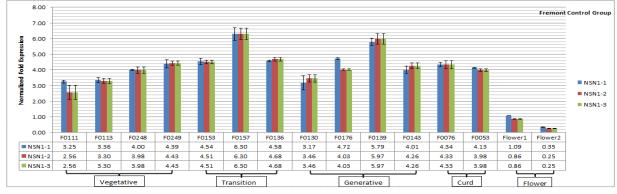


Figure 29. Normalized against Actin fold expression of NSN1 family in Fremont from vegetative to flower stage

CAL had a low expression from vegetative stage to generative stage (0.06 to 0.59) and its highest expression level ranged from 2.5 to 4.5 which lays in the curd stage which significantly higher than other periods (Figure 30).

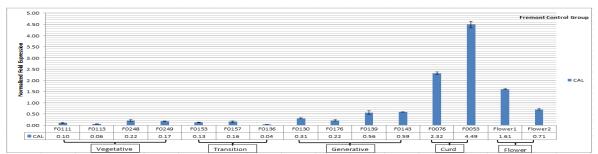


Figure 30. Normalized against Actin fold expression of CAL in Fremont from vegetative to flower stage

FUL family was an interesting gene family which can be used to divide the first three growth stages (vegetative, transition and generative stage) in cauliflower. In Fremont, the Ct value of the *FUL-a*, *FUL-c and FUL-d* were in the range of 21 to 29. But the *FUL-b* had a higher Ct value than the other *FUL* genes, higher than 31 in all five cauliflower growing stages (**Figure 31**). *FUL* family showed almost no normalized expression during the cauliflower meristem vegetative stage, and then the expression level sharply increased to 2.00 in transition stage. In generative and curd stages, the expression level doubled, reaching to the highest value 6.00. However, *FUL-a* significantly lower expressed than the other three through the whole process (**Figure 32**).

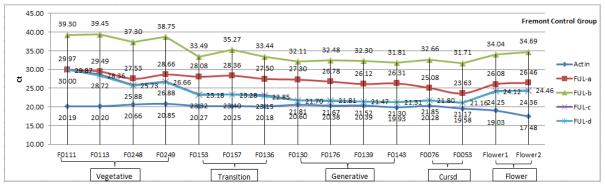


Figure 31. Ct value for FUL family in Fremont Cultivar from vegetative stage to flower stage

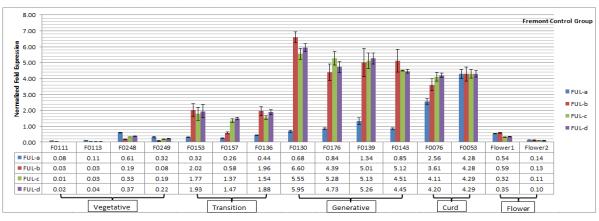
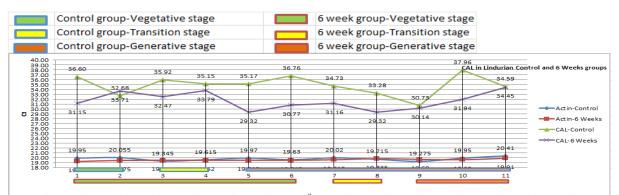


Figure 32. Normalized fold expression of FUL family in Fremont from vegetative to flower stage

Several other genes (*UFO, CCE1* and *CRY2* family) were also tested in Fremont materials, but no wishing expression patterns (different expression between different meristem developmental stages) were revealed. The Ct value and expression results of these genes are in the **Appendix 10**.


3.2.3 Effect of temperature swap on gene expression during development

Different developmental stages of the temperature sensitive Lindurian grown under control and 6th week high ambient temperature treatment **(Table 12)** was tested to screen gene expression, in order to test whether expression level was influenced by high ambient temperature. Because the time limit, during this experiment, we did only use meristem and curd tissue, so no flower materials.

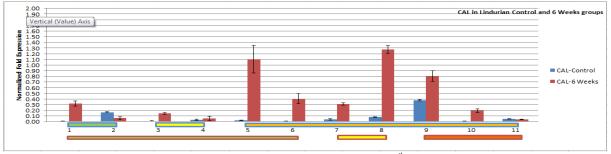

	Lindurian											
Plant old	nt old Week 7		Wee	ek 9	Wee	ek11	Wee	ek 12	Wee	ek 13	Week 14	
Control group	Vegetative		Trans	ition		Generative						
Plant number	L0181	L0210	L0241	L0277	L0073	L0081	L0083	L0141	L0040	L0068	L0270	L0273
6 Weeks group	Vegetative					Trans	sition		Gene	L0068 L0270 L0273 Generative		
Plant number	L0240	L0242	L0067	L0164	L0037	L0171	L0103	L0167	L0070	L0263	L0005	L0054

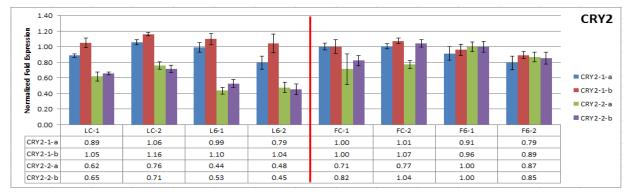
Table 12. Lindurian control and 6th high ambient temperature treatment group

CAL had high Ct values in the Lindurian control group at all stages tested, most of the time point the Ct values were greater than 33. However, in 6th week high temperature treated group, almost all time points Ct values were lower than those in the control group. (Figure 33). *CAL* expression analysis showed a low expression level from 0.00 to 0.30 in Lindurian control group in vegetative, transition and generative stages. But in Lindurian 6th week high temperature treatment group, from the later vegetative stage to early generative stage, expression increased to 1.10 (point 5) and then decreased to 0.80 (point 9) in early generative stage. All points in time in the whole process, *CAL* expression higher in 6th week high temperature treatment group. (Figure 34)

Figure 33. Ct value of CAL in Lindurian control and 6th week high temperature group from vegetative stage to generative stage

Figure 34. Normalized fold expression of CAL in Lindurian control and 6th week group from vegetative to flower stage

Expression of the *FUL* family, *FH*, *UFO*, *CCE1*, *NSN1-1*, *NSN1-2*, *NSN1-3*, *REM1* and *TFL1-1* was also measured in Lindurian control and 6th week high temperature treated group, however, did not see any effect of the temperature treatment. The Ct value and gene normalized fold expression are shown in the **Appendix 11**.


3.2.4 Expression profile of gene before and after temperature swap

We also liked to evaluate whether gene expression changed directly around the temperature swap. Thus we used material harvested in one day (24h) before and after the 6th week high temperature treatment. Meristems of five plants at every time point were cut and pooled, mixed after which RNA was isolated. Two biological repeat were used in this study **(Table 13)**.

Table 13. Start material for one week before and after high temperature treatment experiment

Treatment	Fremont	Lindurian
	(1,2-biological repeat)	(1,2-biological repeat)
Control group	Control – 1, Control – 2	Control – 1, Control – 2
6 Weeks high temperature	6 Weeks – 1, 6 Weeks – 2	6 Weeks – 1, 6 Weeks – 2

CRY2 has two paralogy were *CRY2-1* and *CRY2-2* on chromosome A10 in *Brassica rapa*. So we predicted that there will also be two paraogues in *Brassica loeracea*. *CRY2-1* expressed stable before and after high temperature treatment in two cultivars. For *CRY2-2*, the average of normalized expression decreased after high temperature treatment in Lindurian from 0.70 to 0.45. However, in Fremont, the normalized expression level increased from 0.74 to 0.98. (Figure 35)

Figure 35. CRY2 family Normalized against Actin fold expression in Lindurian and Fremont 24hr before and after high temperature treatment

Several other genes (*AP1, CAL, REM1, TEL1-1, CCE1, FH, NSN1* family and *FUL* family) were also test in these materials, but expression patterns were similar in control and 6th week high temperature treatment samples. The Ct value and expression results of these genes are in the **Appendix 12**.

4. Discussion

4.1 Morphological characterization and correlation

The Morphology of the cauliflower plant has been investigated repeatedly during the past two centuries (Sadik,2007). In this study, we focus on leaf number, stem thickness, curd weight and curd diameter. Simultaneously, the correlation between traits is also involved. The study of correlation between the dimensions with different traits of an organism, has been a long important theme in plants. For example, the relationships between the total leaf area (TLA) and height has been found in 12 tree species (D. A. Coomest & P. J. Grubb, 1998). In previous study, if there were developmental correlation between dimensions of these organs, it might limit the ability of each organ to evolve an independent response. Hereby, correlations between different organs are viewed as a potential source of further evolutionary constraints which is resistant to evolutionary changes (BROUAT et al., 1998). Two cauliflower cultivars were observed during the study, we focus on a relationship between the diameter of a stem and the number of the leaf, curd weight and curd diameter as well.

4.1.1 Leaf number and stem thickness

Leaf number of cauliflower is a "marker" which is used by many workers to predict curd initiation (NOWBUTH & PEARSON, 1998). In Booij and Struik study (1990), the number of leaves below the curd is mainly determined by the temperature before curd initiation and increases at increasing temperature. The similar result was found in Wurrte al. (1996) research. Increasing the ambient temperature during the experiment increased the final number of leaves in cauliflower. However, these results came out from the experiment when cauliflowers were grown with different temperatures during the whole developmental stages. Comparing with our study, only one week with high temperature treatment in the two cauliflower cultivars were growing under process. Even though Lindurian is temperature sensitive cultivar and Fremont is not temperature sensitive cultivar, there is no significant difference for leaf number among the three temperature treatment groups with these two cultivars (Figure 8 and Figure 9). In other words, the leaf number is not influenced by a short time ambient temperature change. We also want to find the relationship between leaf number and meristem switch time by analysing the leaf number around the meristem switch moment in the field and greenhouse. However, the data of leaf number around meristem switch moment in field and greenhouse are not comprehensive and accurate. Because plants in some blocks were already in generative stages in the field when we started monitoring and Lindurian in control group were not enough in greenhouse.

The plant has been given better development as expressed by greater stem thickness, height, leaf thickness and so on (Zeng et al.,2009). The stem thickness was also measured in this experiment as there were not all plants in the greenhouse compartment developed uniformed, this is because plants were very close and some plants were in the shade of other plants. This speed of development can also influence the meristem switch and thus can be used as correction factor. At the same time, we found that cauliflower stem thickness was also not influenced by one week high temperature treatment in Lindurian and Fremont.

There is no significant difference in different treatment groups because of only one week high temperature treatment in our experiment. If we increase the temperature for a long time, the leaf number and stem thickness maybe changed in different treatment groups. Another reason is that we stopped counting the leaf at week 10 in field and week 13 in greenhouse. The leaf number maybe increase after week 11 or 13 until the curd mature.

As previous studies, we wanted to find the relationship between two morphological traits, leaf number and stem thickness in cauliflower as well as the comparisons of the relationships between the different temperature treatment groups (control, 5th weeks, 6th weeks high temperature treatment groups). We found that there was no correlation between the number of leaves and the stem thickness in both cases (Appendix 7). However, a larger sample of cultivar is necessary for firm conclusion, correlation of leaf number-stem might thus be generally different from what we got from this study.

4.1.2 Curd weight and curd diameter

The production of cauliflower is recorded by curd weight and curd diameter (Kieffer et al.,2001). Curd initiation is influenced by both temperature and shade (Booij & Struik,1990). The heritability of the curd (inflorescence) size of cauliflower has been studied in particular detail. Curd weight is closely correlated with curd diameter, an easily measurable trait (Kage et al., 2004). In this study, Fremont curds were heavier and larger than Lindurian whether 15 weeks old plants or 13 weeks old plants. Fremont meristem switched much earlier than Lindurian which could lead to this phenotype. Meristem switched early applies a longer generative process for plant reproduction which caused the curd weightier to become larger. During the long generative process, some functional genes could be changed by some conditions which influence the curd formation. According to the analysis of the correlation between curd weight and curd diameter, we found that it was significant in this research (Appendix 9). However, we could not ignore that the number of curds we harvested from the field was not large. So the correlation between curd weight and curd diameter still need to be further confirmed.

4.2 Meristem switch

During the flowering process, the shoot apical meristem is converted to an inflorescence meristem that forms flowers (Torti,2012). Environmental conditions play a major role in the timing of the floral transition. These has been a concerted effort to understand the mechanisms of controlling flowering time and floral development utilizing a molecular genetic approach in *Arabidopsis* (Mouradov et al.,2002). The transition from vegetative to reproductive phases during *Arabidopsis* development is the result of a complex interaction of environmental and endogenous factors. A long, cold temperature treatment (i.e., a winter season) induces or accelerates *Arabidopsis* flowering (Macknight et al., 1997). *Brassica* species have related to genome of *A. thaliana* (Lagercrantz, 1998). So the relative knowledge which has been already found in *A.thaliana* could be applied in *Brassicas'*.

Since early time it has been known that flowering in *Arabidopsis* is under the control of the temperature, we focus on high temperature influence on the *Brassica oleracea ssp. Botrytis* (cauliflower) flowering. It is well known that high temperature delays curd formation and the harvest time. In this study, high ambient temperature factor in the temperature sensitive cultivar delayed the switch from vegetative to generative meristem, so delayed the onset of curd formation. In the temperature sensitive cultivar Lindurian, different degrees of meristem switch postponed happened in 5th, 6th and 7th week high temperature treatment groups. Flowering time of Lindurian in 5th week high temperature treatment group is postponed one week later than 6th week and 7th week groups (**Table 7 and Table 8**). However, based on the greenhouse experiment 2, the time of meristem switch for Fremont was not different among these three temperature groups and many weeks earlier than Lindurian, Fremont is not temperature sensitive cultivar whose meristem switch is not influenced by ambient temperature.

Comparing two temperature swap experiments in greenhouse, Lindurian in two experiments were almost under the same ambient temperature condition, in addition to sowing time. Greenhouse experiment 1 started sowing on February 27th, 2011, while Lindurian in experiment two was sown on June 12th 2012. However, meristem switch of Lindurian was much later (nearly four weeks later) in experiment 2 than in experiment one in the same temperature group **(Table 7 and Table 8).** According to this result, it can be assumed that the day length is also a main factor which influences the cauliflower meristem switch time. We did not use temperature insensitive cultivar Fremont in greenhouse experiment one. Thus, we could not compare Fremont meristem switch between two greenhouse experiments. The day length influence on Fremont cannot be analysed here. But we can see that Fremont in experiment two switched earlier than Lindurian in experiment one. If we want to analyze the high temperature influence on the cauliflower meristem switch, in the future study, it is better to sow the seeds at the same date to exclude the impact of day length factors. If we want to study the day length influence, more cultivars and more sowing periods should be used.

4.3 Identification of genes that define cauliflower developmental stages

Flowering induction and flower development are highly complex processes that require the coordinate expression of numerous genes throughout the different stages of development (Ferrandiz et al., 2000; Vivian F. Irish, 2009; Frank Wellmer & José L. Riechmann, 2010). Based on morphological criteria, cauliflower development has been broken down into a number of distinct stages. We would like to have in addition to defining development stage just by morphological criteria, molecular criteria. With the aim of identifying genes specifically expressed in the cauliflower meristem development, we isolated and characterized cDNAs corresponding to genes specifically expressed in the meristems of the cauliflower plant. This study has identified several different stage acting genes that determine the stage of organ primordial.

The first step in flower development is the transition from a vegetative to an inflorescence meristem, while the second step is transition of inflorescence meristem into a floral meristem (Mandel et al., 1992). In Arabidopsis, APETALA 1 as a floral meristem identity gene (Tränkner et al.,2010), is required for the transition of an inflorescence meristem into a floral meristem and for normal sepal and petal development (Vivian F. Irish., 2010). Ap1 expression induces the development of terminal flowers and early flowering phenotypes. In addition, previous studies have revealed that AP1 can serve as a good marker to determine whether Arabidopsis is at the flowering stage (Jaya et al., 2010). Thus we analyse the expression of the AP1 in cauliflower in this study. In Arabidopsis, loss of function mutations in AP1 show a partial conversion of floral meristems to a more inflorescence (Vivian F. Irish., 2010). Overexpression of AP1 is sufficient to convert the inflorescence meristem to a terminal flower in Arabidopsis (Mougiou et al., 2012). The AP1 gene is uniformly expressed early in flower development. That means AP1 RNA accumulates uniformly throughout young floral primordia (Ferrandiz et al., 2000). However, the inflorescence meristem stage in cauliflower is much longer than in Arabidopsis. In cauliflower, the inflorescence meristem means the stage from generative meristem to full grown curd and then into floral primordial. From the result we get, in cauliflower Fremont, AP1 is only expressed in open flower tissue. Therefore in essence, AP1 expression at Arabidopsis and cauliflower support the conclusion that AP1 acts locally to specify the identity of floral meristems, but the time between vegetative meristem and flowers is very long in cauliflower.

The expression patterns of *REM1*, *TFL1-1* and *FH* expression are opposite pattern compared to *AP1* expression. *REPRODUCTIVE MERISTEM 1* (*REM1*) could break the arrest in *Arabidopsis* to allow continued reproductive development. It may also be a transcription factor that up-regulates floral meristem genes. The expression of *REM1* is highest at the inflorescence meristem stage, and transcripts are detectable in floral primordium and floral bud stages in *Arabidopsis* (Duclos,2008). *REM1* expresses specifically in cauliflower reproductive meristems. It expression is detected in vegetative apices of cauliflower and absent from the youngest apical domes (Franco-Zorrilla et al.,1999). *TERMINAL FLOWER 1 (TFL1)*, as a strong repressor of flowering, is

a key regulator of flowering time and the development of the inflorescence meristem in *Arabidopsis* (Hanano & Goto,2011). *TFL1* is expressed during the vegetative phase, where it delays the commitment to inflorescence development and thus affects the timing of the formation of the inflorescence meristem as well as its identity (Bradley et al., 1997). In *Arabidopsis*, *TFL1* loss of function causes the terminal flowers in the shoot apex. In contrast with the loss of function phenotypes, overexpression of *TFL1* delayed flowering (Hanano & Goto,2011). This study is showing that *REM1* and *TFL1* are expressed in cauliflower meristem from vegetative stage to flower stage in Fremont. Both *REM1* and *TFL1* expression were zero in floral meristem (flower tissue) and low in inflorescence meristem (vegetative, transition, generative and curd stages) (**Figure 27**). The expression of *FH* reaches a peak level at curd maturity in cauliflower (Anthony et al., 1996). *FH* expression patterns in this study give similar result. Similarly, *FH* also has a low expression level in floral meristem (flower).

The MADS box proteins FRUITFULL (FUL) not only control flowering time, but also affect determinacy of all meristems (Melzer et al., 2008) and plays a role in promoting the floral transition. It is closely related to the meristem identity genes AP1 and CAL (Ferrandiz et al., 2000). Since FUL is a multifunctional gene in Arabidopsis, multiple copies of this gene in other species could increase specialization through subfunctionalization. Four FUL paralogues (FUL-a, FUL-b, FUL-c, and FUL-d) are present in cauliflower. All four FUL paralogues are expressed at all stages. FUL-c and FUL-d are the most abundant transcripts. However, compared with FUL-b, FUL-c, and FUL-d, FUL-a has a slightly different expression level during the whole cauliflower meristem developmental stage (Denise & Thomas, 2008). The similar different expression level of FUL family as the above conclusions also appeared in this study (Figure 32). FUL-c and FUL-d have a higher expression level than FUL-a, FUL-b. The expression level of the FUL-c and FUL-d during the cauliflower meristerm development has significant difference in vegetative, transition and generative meristem stages. They peaked at generative stage. Hence, the FUL-c and FUL-d may be used as the genes that can define cauliflower meristem developmental stages from transition to generative. It is regrettable that the fold expression of the FUL-c and FUL-d were neither black nor white.

4.4 CAL expression during developmental influence by temperature swap

In *Arabidopsis*, flower-meristem-identity genes *CAULIFLOWER(CAL)* at the shoot apex is important for flower initiation (Kaufmann et al.,2010). *CAL* encodes a protein with a MADS-domain and probably functions as a transcriptional activator. In this study, high temperature which can influence the cauliflower meristem development was considered as a factor. In Lindurian control group, *CAL* had a low expression from vegetative stage to generative stage. Comparing to the control group, *CAL* normalized fold expression in Lindurian high temperature treated 6th week was significant higher at transition stage and generative stage (**Figure 34**). At the same time point,

CAL expression in 6th weeks high temperature treatment group had higher expression level than plant in control group. According to the above experimental results, high temperature may up regulate the *CAL* expression in cauliflower meristem from vegetative stage to generative stage. Thus, *CAL* which is as a transcriptional activator may be influenced by high temperature and its function could relate to the delay of curd formation.

4.5 Gene before and after temperature swap

Changes in gene expression occur without a long period in some plants. In *Arabidopsis*, after 24hr temperature treatment, *hos1-1* plants mutate and flower early. This is due to the expression of RD29A gene and other stress responsive genes 24hr before and after treatment in *hos1-1* plant (Ishitani et al.,1998). Therefore, we chose 24hr before and after high temperature treatment cauliflower plants in this study, in order to find some genes with expression changes during one day time. The *Arabidopsis* photoreceptors *CYR2* is known to play roles in the regulation of flowering time (Mockler et al., 1999). Reduce the light induced down regulation of *CRY2* in Arabidopsis leading to early flowering (EI-Assal et al., 2001). We consider that other conditions could also regulate the *CRY2* expression so that regulation of flowering time or meristem transition.

Temperature signals are known to impose strong regulation on flowering time (Chew et al.,2012). To understand how temperature influence *CYR2* to regulate the meristem transition from vegetative growth to reproductive development, influence of cool temperature treatment was investigated by group of R.Immink who illustrated that *CRY2* had differentially expressed and also are differentially spliced when vegetative Arabidopsis plant are exposed to cold and heat temperature environment. From one of the two *CYR2* paralogues, expression decreased after one week high temperature treatment in Lindurian cultivar (**Figure 35**). But in temperature insensitive cultivar Fremont, the expression level of *CRY2* was nearly stable before and after high temperature treatment. Further research should reveal whether in Lindurian, temperature treatments also cause differentially splicing.

The differences of expression pattern between *Arabidopsis* and cauliflower are discussed. *Brassica* and *Arabidopsis* are members of the same family, as well as the Brassicaceae. Indeed, counterparts of essentially all the cloned genes exist in both species and corresponding to expression patterns and mutant phenotypes are similar. This study has tested a model of arrest in *Brassica oleracea ssp. Botrytis* (Cauliflower) that incorporated homologues of the key genes involved in the *Arabidopsis* floral transition: *AP1, CAL, FUL, UFO, FH, TFL1, REM1, CCE1, NSN1 and CRY2*. A number of key findings have been emerged. Flowering involves the sequential action of three groups of genes: those that switch the fate of the meristem from vegetative to floral (floral meristem identity genes), those expressions influenced by high temperature during cauliflower development from vegetative stage to generative stage and those that have different

expression or different spliced before immediately after one day high temperature treatment. The same candidate genes were tested in meristem indentifies experiment and high temperature treatment influence meristem switch experiment. By this way, we want to find some key genes which play an important role during these two pathways in cauliflower.

5. Conclusion

The initially purpose of this study if to research the effect of high ambient temperature in the delay of flowering time of *Brassica oleracea ssp. Botrytis* (Cauliflower), and investigate the expression level on several genes'. At the meanwhile, morphological characterization of cauliflower is observed in the greenhouse and field.

Through the morphological of the meristems observed in cauliflower, high temperature delaying meristem switch in temperature sensitive cultivar Lindurian need to be confirmed in this study. Treatment occurring at 5th weeks old plant has longer delay than treating plant at 6th and 7th weeks old in Lindurian. In addition, insensitive cultivar Fremont is confirmed that its meristem switches are not influenced by high ambient temperature. Leaf number and stem thickness increase during the cauliflower grown process. However, high temperature does not influence them in temperature sensitive cultivar Lindurian and insensitive cultivar Fremont. And correlation does not exist between leaf numbers and stem thickness. For curd weight and curd diameter, Fremont has larger curd (weightier and longer diameter) than Lindurian. This could be attributed to meristem switch early in Fremont than Lindurian. The correlation between crud weight and curd diameter has been found in field experiment. But the correlation coefficient not calculated out is this study.

On molecular experiment part, we focus on the expression of flowering time genes in cauliflower. However, before we study cauliflower flowering time, accurate determination of the meristem developmental stage is necessary. Only according to the morphological characteristics divided developmental phase is accurate, but not always possible, when meristems need to be harvested and immediately frozen for RNA analysis. Therefore, several genes were found in this study to define the growth stages of cauliflower. After stable reference gene *Actin* is determined in cauliflower curd development, some cauliflower developmental stage divided genes are found in this study (**Figure 36**). *AP1* gene is just expressed very late in flower tissue in cauliflower. The opposite result is *REM1*, *TFL1-1* and *FH* which are not expressed in flower stage but have high expression level from vegetative stage to generative stage. The most interesting marker genes which can be divided into the vegetative stage, transition stage and generative are *FRUITFULL (FUL)* family genes, especially *FUL-c* and *FUL-d* are the most abundant transcripts. In the cauliflower, *FUL-c* and *FUL-d*'s expression level show significant growth from vegetative to generative meristem stage.

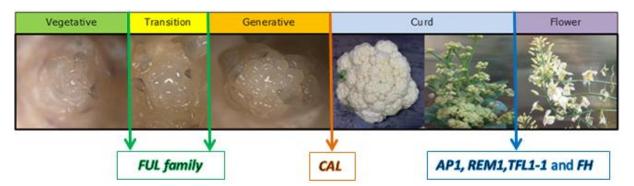


Figure 36. Cauliflower developmental stages divide genes

Longer inflorescence meristem stage has been found in cauliflower growth stage by dividing the growth phase with marker genes, comparing with the *Arabidopsis* growth stage. This is because cauliflower has a long curd stage which is the arrested inflorescence phase.

On high ambient temperature influence gene expression level study, preliminary finding is that flowermeristem-identity genes *CAULIFLOWER (CAL)* express differently after high temperature treatment. However, the reason and the regulator of this situation still need more experiments to be discovered.

One week before and after temperature swap is the important time during the cauliflower life, as this may trigger gene expression that will influence meristem transition. Base on the result from *Arabidopsis, Cry2* gene was tested and it was found with expression level decreased after one week high temperature treatment in temperature sensitive cultivar Lindurian, but stable in less sensitive cultivar Fremont. Thus, *Cry2* may have differentially expressed and also are differentially spliced which may be influenced by the high temperature.

This experiment is like a pre-experiment, has increased our understanding of cauliflower curd development. More molecular experiments can be done base on this pre-experiment in the future to find out the mechanism for high ambient temperature delaying the cauliflower flowering time.

6. Further study

As an exploratory experiment, lots of problems happened during the whole experimental process and some of the results we got need to be re-authentication with more experimental units in the future. On the other hand, we did not get much information closely associated with the cauliflower flowering time. So in the future we could choose not do the field experiment.

For morphological traits, a large amount of curd weight and curd diameter data need to be collected to verify the correlation between curd weight and curd diameter in order to test the correlation coefficient between them. By counting the leaf number when we harvest the curd and when meristem switched, a new relationship between leaf number and curd weight could be considered in the further study.

For molecular characterization, fortunately, several cauliflower meristem developmental stage divide genes have been found during this experiment. It is regrettable that these genes do not provide block and white results. Thus, based on the confirm experiments in *Arabidopsis* or other *Brassica* species, finding several accurate meristem identified genes which could define the cauliflower meristem developmental stages with black and white results is important in the further study. At the same time, when we redo the greenhouse experiment, more biological repeat could be used. This is can provide a good research base on cauliflower flowering time research.

Because of time constraints, few flowering time candidate genes were tested in this experiment. In further experiments, a candidate gene could be tested starting from vegetative meristem which will be not treated by high ambient temperature to later floral meristem in cauliflower. Through this process, a whole gene expression process can be described in cauliflower meristem tissue.

Based on these pre-experimental results, I believe that the later experiment will be able to be clearer and get good results.

Reference:

Aidyn Mouradov, Frédéric Cremer and George Coupland. (2002). Control of Flowering Time. Plant Cell. 2002; 14(Supplement): s111–s130.

Aleksandar Radoni_c, Stefanie Thulke, Ian M. Mackay, Olfert Landt, Wolfgang Siegert, and Andreas Nitsche. (2004). Guideline to reference gene selection for quantitative real-time PCR. Biochemical and Biophysical Research Communications 313: 856–862.

Alvarez, J., Guli, C.L., Yu, X.-H., and Smyth, D.R. (1992). Terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. Plant J. 2: 103–116.

Ashraf, M. and McNeilly, T. (2004). Salinity Tolerance in Brassica Oilseeds. Critical Reviews in Plant Sciences, 23(2), 157 – 174.

C. BROUAT, M. GIBERNAU, L. AMSELLEM and D. McKEY. (1998). Corner's rules revisited: ontogenetic and interspecific patterns in leaf-stem allometry. New Phytol, 139, 459±470.

C. Ferrandiz, Q. Gu, R. Martienssen and M.F. Yanofsky. (2000). Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. JOURNAL ARTICLES, February 15, 2000 Development127, 725-734.

Carmel M. O'neill, Ian Bancroft. (2000). Comparative physical mapping of segments of the genome of *Brassica oleracea* var. *alboglabra* that are homoeologous to sequenced regions of chromosomes 4 and 5 of *Arabidopsis thaliana*. The Plant Journal, Volume 23, Issue 2, pages 233–243.

Conny Tränkner, Sandra Lehmann, Hans Hoenicka, Magda-Viola Hanke, Matthias Fladung, Denise Lenhardt, Frank Dunemann, Achim Gau, Karin Schlangen, Mickael Malnoy, Henryk Flachowsky. (2010). Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309–1324.

Corbesier L, Coupland G (2006) The quest for florigen: a review of recent progress. J Exp Bot 57:3395–3403.

CZ Zeng, ZL Bie, BZ Yuan - Agricultural Water Management. (2009). Determination of optimum irrigation water amount for drip-irrigated muskmelon in plastic greenhouse. Agricultural Water Management Volume 96, Issue 4, April 2009, Pages 595–602.

D. A. Coomes[†], P. J. Grubb. (1998). A comparison of 12 tree species of Amazonian caatinga using growth rates in gaps and understorey, and allometric relationships. British Ecological Society 1365-2435.

D.C.E. Wurr, J.R. Fellows, K. Phelps. (1996). Investigating trends in vegetable crop response to increasing temperature associated with climate change. Scientia Horticulturae Volume 66, Issues 3–4, October 1996, Pages 255–263.

D.L. Liu, D.J. Luckett, and B.J. Scott. (2001). Sowing dates, phenology and yield in lupins (Lupinus angustifolius). Australian Agronomy Conference Concurrent Session 1, 1300-1430.

David R. Smyth. (1995). Flower Development: Origin of the cauliflower Original Research Article Current Biology, Volume 5, Issue 4, Pages 361-363.

Denise V. Duclos and Thomas Bjo[°]rkman. (2008). Meristem identity gene expression during curd proliferation and flower initiation in Brassica oleracea. Journal of Experimental Botany, Vol. 59, No. 2, pp. 421–433.

De-Ping Guo, Ghazanfar Ali Shah, Guang-Wen Zeng and Si-Jun Zheng. (2004). The interaction of plant growth regulators and vernalization on the growth and flowering of cauliflower (Brassica oleracea var. botrytis). Plant Growth Regulation 43: 163–171.

Desmond Bradley, Oliver Ratcliffe, Coral Vincent, Rosemary Carpenter, Enrico Coen. (1997). Inflorescence Commitment and Architecture in *Arabidopsis*. Science 3 January 1997: Vol. 275 no. 5296 pp. 80-83

El-Assal SED, Alonso-Blanco C, Peeters AJM, Raz V,Koornneef M. (2001). A QTL for flowering time in Arabidopsis reveals a novel allele of cry2. Nature publishing group:http://genetics.nature.com.

Fornara, F., de Montaigu, A. and Coupland, G. (2010). apShot: Control of flowering in arabidopsis (Short Survey). Cell Volume 141, Issue 3, Pages 550-556.

Franco-Zorrilla JM, Ferna ndez-Calvi B, Maduen F, Cruz-Alvarez M, Salinas J, Marti nez-Zapater JM. (1999). Identification of genes specifically expressed in cauliflower reproductive meristems Molecular characterization of BoREM1. Plant Mol Biol 39:427–436.

Frank Wellmer and José L. Riechmann. (2010). Gene networks controlling the initiation of flower development. Cell Volume 26, Issue 12, Pages 519–527.

Garner, W.W. & Allard, H.A. (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J. Agric. Res.18, 553–606.

Geoffrey R. Dixon. (2007). Vegetable Brassicas and Related Crucifers.

Gustafson-Brown C, Savidge B, Yanofsky MF. (1994). Regulation of the arabidopsis floral homeotic gene APETALA1. Cell. 1994 Jan 14;76(1):131-43.

Guusje Bonnema, Dunia Pino Del Carpio and Jianjun Zhao. (2011). Diversity analysis and molecular

taxonomy of Brassica vegetable crops. Book chapter in "Brassica vegetables", editor Jan Sadowski.

H. Kage, M. Kochler, H. Stützel. (2004). Root growth and dry matter partitioning of cauliflower under drought stress conditions: measurement and simulation. European Journal of Agronomy, Volume 20, Issue 4, April 2004, Pages 379–394.

Ian M. Ehrenreich, Yoshie Hanzawa, Lucy Chou, Judith L. Roe, Paula X. Kover and Michael D. Purugganan. (2009). Candidate Gene Association Mapping of Arabidopsis Flowering Time Copyright. Genetics Society of America DOI: 10.1534/genetics.109.105189.

Ian R. Henderson and Caroline Dean. (2004). Control of Arabidopsis flowering: the chill before the bloom. The Company of Biologists, Development 131, 3829-3838.

Jan Sadowski, Chittaranjan Kole. (2011). Genetics, Genomics and Breeding of Vegetable Brassicas (Genetic, Genomics and Breeding of Crop Plants).

Jaya ES, Clemens J, Song J, Zhang H, Jameson PE. (2010). Quantitative expression analysis of meristem identity genes in Eucalyptus occidentalis: AP1 is an expression marker for flowering. Tree Physiol 30:304–312.

Jung C., Mu[°]Iler A.E. (2009). Flowering time control and applications in plant breeding. Trends in Plant Science, 14, 563–573.

Kenneth J. Livak and Thomas D. Schmittgen. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 $^{-\Delta\Delta(Ct)}$ Method. METHODS 25, 402–408.

K Kaufmann, M Nagasaki, R Jáuregui. (2010). Modelling the molecular interactions in the flower developmental network of Arabidopsis thaliana. In Silico Biology.

Koch MA, Wernisch M, Schmickl R (2008) Arabidopsis thaliana's wild relatives: an updated overview on systematics, taxonomy and evolution. Taxon 57:933–943.

Lagercrantz, U. (1998). Comparative Mapping Between Arabidopsis thaliana and Brassica nigra Indicates That Brassica Genomes Have Evolved Through Extensive Genome Replication Accompanied by Chromosome Fusions and Frequent Rearrangements. Genetics 150(3): 1217–1228.

Lee, J.H. et al. (2007). Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21, 397-402.

Leslie A. Pray. (2008). The Biotechnology Revolution: PCR and the Use of Reverse Transcriptase to Clone Expressed Genes. Nature Education.

M Eric Schranz, Bao-Hua Song, Aaron J Windsor and Thomas Mitchell-Olds. (2007). Comparative genomics in the Brassicaceae: a family-wide perspective. Current Opinion in Plant Biology, 10:168–

175.

M Kieffer, N Simkins, MP Fuller, AJ Jellings. (2001). A cost effective protocol for in vitro mass propagation of cauliflower. Plant Science ant Science.

M. Alejandra Mandel, Cindy Gustafson-Brown, Beth Savidge & Martin F. Yanofsky. (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360, 273 – 277.

Manabu Ishitani, Liming Xiong, Hojoung Lee, Becky Stevenson, and Jian-Kang Zhu. (1998). HOS1, a Genetic Locus Involved in Cold-Responsive Gene Expression in Arabidopsis. The Plant Cell, Vol. 10, 1151–1161

MS Pidkowich, JE Klenz, GW Haughn. (1999). The making of a flower: control of floral meristem identity in Arabidopsis. Trends in plant science, 1999 – Volume 4, Issue 2, 1 February 1999, Pages 64–70.

N Mougiou, S Poulios, A Kaldis, KE Vlachonasios. (2012). Arabidopsis thalianaTBP-associated factor 5 is essential for plant growth and development. Molecular Breeding.

Naser A.Anjum, Sarvajeet S.Gill, Iqbal Ahmad, M.Pacheco, Armando C.Duarte, Shahid Umar, Nafees A.Khan, and M.Eduarda Pereira. (2012). The Plant Family Brassicaceae: An Introduction.

Nowbuth, R.D. and Pearson, S. (1998). The Effect of Temprerature and Shad on Curd Initiation in Temperature and Tropical Cauliflower. Acta Hort. (ISHS) 459:79-88.

R. Booij and P.C. Struik. (1990). Effects of temperature on leaf and curd initiation in relation to juvenility of cauliflower. Scientia Horticulturae, 44 (1990) 201-214.

R. Uptmoor, J. Li, T. Schrag and H. Stu⁻⁻ tzel. (2011). Prediction of flowering time in Brassica oleracea using a quantitative trait loci-based phenology model. Plant Biology ISSN 1435-8603.

Rebeca Unghiatti Rosales. Departamento de Ciencias Vegetales Facultad de Agronomía e Ingeniería Forestal Pontificia Universidad Católica de Chile raunghia@uc.c. Cauliflower and Broccoli Seed Production.

Richard G. Anthony, Pat E. James and Brian R. Jordan. (1996). Cauliflower [Brassica oleracea var. botrytis L.) curd development: the expression of meristem identity genes. Journal of Experimental Botany, Vol. 47, No. 295, pp. 181-188.

Richard Macknight, Ian Bancroft, Tania Page, Clare Lister, Renate Schmidt, Karina Love, Lore Westphal, George Murphy, Sarah Sherson, Christopher Cobbett, Caroline Dean. (1997). FCA, a Gene Controlling Flowering Time in Arabidopsis, Encodes a Protein Containing RNA-Binding Domains. Cell, Volume 89, Issue 5, 30 May 1997, Pages 737–745.

Rouse DT, Sheldon CC, Bagnall DJ, Peacock WJ, Dennis ES. (2002). FLC, a repressor of flowering, is regulated by genes in different inductive pathways. The Plant Journal 29, 183–191.

Shigeru Hanano and Koji Goto. (2011). Arabidopsis TERMINAL FLOWER1 Is Involved in the Regulation of Flowering Time and Inflorescence Development through Transcriptional Repression. The Plant Cell, Vol. 23: 3172–3184.

Sidki Sadik. (2007). Morphology of the Curd of Cauliflower. Botanical Society of America.

Siegbert Melzer, Frederic Lens, Jerôme Gennen, Steffen Vanneste, Antje Rohde and Tom Beeckman. (2008). Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nature Genetics 40, 1489 - 1492 (2008).

Stefano Torti, Fabio Fornara, Coral Vincent, Fernando Andrés, Karl Nordström, Ulrike Göbel, Daniela Knoll, Heiko Schoof and George Coupland. (2012). Analysis of the Arabidopsis Shoot Meristem Transcriptome during Floral Transition Identifies Distinct Regulatory Patterns and a Leucine-Rich Repeat Protein That Promotes Flowering. 2012 American Society of Plant Biologists. All rights reserved

T.C. Mockler, H. Guo, H. Yang, H. Duong and C. Lin. (1999). Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. May 15, 1999 Development126, 2073-2082.

Vivian F. Irish. (2010). The flowering of Arabidopsis flower development. The Plant Journal Volume 61, Issue 6, pages 1014–1028.

Werner JD, Borevitz JO, Uhlenhaut NH, Ecker JR, Chory J, Weigel D. (2005). FRIGIDA-Independent variation in flowering time of natural Arabidopsis thaliana accessions. Genetics 170, 1197–1207.

Willard M. Freeman, Stephen J. Walker and Kent E. Vrana. (1999). Quantitative RT-PCR: Pitfalls and Potential. BioTechniques 26:112-125.

Yaron Y. Levy and Caroline Dean. (1998). The Transition to Flowering. The Plant Cell, Vol. 10, 1973– 1989.

Yin Hoon Chew, Amity M. Wilczek, Mathew Williams, Stephen M. Welch, Johanna Schmitt, Karen J. Halliday. (2012). An augmented Arabidopsis phenology model reveals seasonal temperature control of flowering time. New Phytologist Volume 194, Issue 3, pages 654–665.

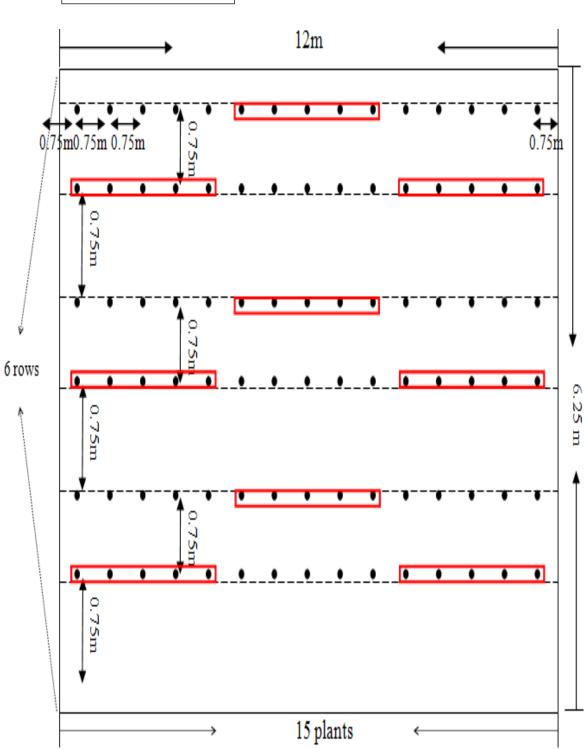
Yu-Xiang Yuan, Jian Wu, Ri-Fei Sun, Xiao-Wei Zhang, Dong-Hui Xu, Guusje Bonnema and Xiao-Wu Wang. (2009). A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time. Journal of Experimental Botany, Vol. 60, No. 4, pp. 1299–1308.

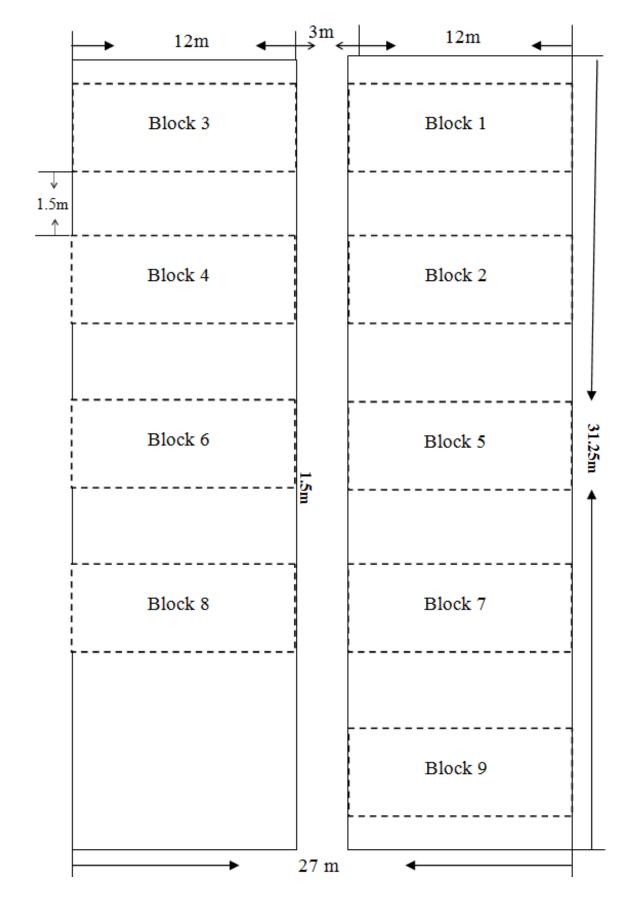
Appendix

Time Schedule

				Plant breeding master thesis time schedule	e (07.2012 01.2013) I		
Week	Day	Time	Theme	Explaination	Remark	Feeling	
	Monday	09-7-2012	Read papers	Read papers about the Brassicas, like the classfication of Brassicas.		Although I already study	
	Tuesday	10-7-2012	Firstmeeting	With Guusje, Johan and Verhage Leonie, introduce information about	Verhage Leonie is a PHD student who studies the Arabidopsis'	agriculture for four years,	
	-		_	the thesis.	flowering time in another group.	Brassicas still are new cultivars to	
	Wednesday	11-7-2012	Morning meeting	A final presentation about a kind of Brossico rapo.		me. First time try to know the	
	Thursday	12-7-2012	Read papers	Read papers about the Brassicaceae, Brassica, Brassica		Brassica is a little bit hard for me	
1				oleroceo(couliflower) and Arobidopsis (A. tholiono).		to understand some information.	
				With Johan. (1)Count the leaves number for 5, 6, 7, 8, 9 weeks (after	(1)There are two kinds cauliflowers: Lindurian(L) and	When I went to the field on Friday,	
		43 7 3043		sowing, the seed grows for 5 weeks) cauliflowers. (2)Cut the	Fremont(F). Linfluenced by temperature, F not. Grow same	the weather was rainy and soaked	
	Friday	13-7-2012	Go to the field	meristems(each block, each specie cut three plants) for frizing.	time, L curd is smaller than F. (2)Did not cut the meristem which	to the skin. The typical weather in	
				(3)Remove the second plant which we want to make pictures of	we want to make pictures in the field. Beacuse when we go	Netherland. Lucky, I did not catch a	
				meristem and bring them back to the lab.	back to the lab, the meristem will be dead or damaged.	cold.	
	Monday	16-7-2012	Read papers	Read papers about the relationship between Brassica and Arbidopsis			
				and flower time.		This is the second week of my	
	Tuesday	17-7-2012	Read papers	Read papers about the flower time relative genes and genetic methods		master thesis. Just try to	
					Many questions be discussed, most of them are about the gene	understand more information	
	Wednesday	18-7-2012	Morning meeting	Title "Mapping genes for leaf traits in Brassica rapa" present by	mapping and gene QTL. I know the phenoQTL and the	about this project. Read some	
2				Xiaodong	expressionQTL after this presentation. This case forces on the	papers, but there are so many	
					candidate genes, but is better to find novel genes.	papers here, I really do not know	
	Thursday	19-7-2012	Go to the greenhouse	12 Go to the greenhouse	With Johan. Cut the meriterm from two species cauliflowers. Three for	There are two greenhous rooms, one is control, the other one is	which one need I carefully read. So
				mRNA, one for picture.	high temp(5 weeks). Each room has both Fremont and Lindurian.	still amazing about what I will do in	
			Go to the field and do	(1) Do the same thing with last Friday. (2) Cut three plants back to use	(1) Use 1X and 2.5X times to take the meristem picture. When	the future. Maybe last week I need	
	Friday	20-7-2012	the safety test	for my practices. Practice make pictures for meristem from 5 and 9	the tissue is big, first use the 1X and then use the 2.5X. If is	find a complete line of my thought.	
				weeks cauliflowers under microscope.	small, just use the 2.5X. (2) Do not damage the meristem.		
	Monday	23-7-2012	Start to write proposal	Have a stucture of the proposal and add some general information.			
					Swap partial 5 weeks plants from high temp to control	Actually, it is the first week I began	
			Go to the greenhouse		temp.(2) Swap some 6 weeks plants from control temp to high	do the experiment. I start to learn	
	Tuesday	24-7-2012	and write proposal	With Johan and Leonie, cut the meristem and swap the plants.	temp. In the high temp, plants just stay for one week, and then	fome technologies which I will use	
					go back to the control temp. (3) Swap for 70 for each caultivar.	in the thesis from Johan. And after	
					Switch plants with the green labels.	Thursday, helped Johan collecting	
	Wednesday	75 7 2012	Morning meeting	Title "Hormone effect and sugar storage in turnip Genotypes" by		the seeds, I feel tiredwhen I go	
3	weathesday	23-7-2012	Normighteeting	Temesgen Menamo		back home, I derictly go to bed	
			Write proposal,		For each plant put the label in the bag and cut the plant, put it in	aftershower. Studying Brassica is	
	Thursday	26-7-2012	collect seeds in	Help Johan collect Brassica seeds, for more than hundred plants.	a big paper bag. Be careful with the seeds, do not loss them. We	a hard work, I known. But after I do	
			Negerna		work for 3 hours under the 37 degree, Johan is a hard work man.	something by myself, I know more	
			Go to the field, first	With Johan. (1)Count the leaves number for sowing 6,7,8,9 weeks		about the Brassica which I will	
	Friday	27-7-2012	time make the picture	cauliflowers. (2) Cut the meristem(each block,each kind of species cut	This time we did not cut the cauliflowers in block 6, because the	learn for 6 months in the future.	
	, naay	2/-/-2012	by myself	three plants) to frize.(3)Remove the second plant which we want to	two cultivars' meristems in that block already switched.		
				make pictures of meristem and bring them to lab for making pictures.			
	Monday	30-7-2012	Write proposal	General finish the proposal.			
				(1) Go to the Negerna greenhouse to help Ningwen to sow the Brassica	(1) After sow the Brassica seeds in the soil, use some soil cover	One month already finished. I	
			Go to the Negerna	seeds. (2) Go the the Unifarm greenhouse to cut the cauliflowers'	the seeds and then put some fine sand on the surface to make	writed the proposal. But writing is	
	Tuesday	31-7-2012	greenhouse and the	meristems with the Johan and make the meristems' pictures by	sure the seeds can get suitable water and air. Because the	hard for me. It is a challenge. First	
			Unifarm greenhouse	myself. The variation temperature treatments already finished for 5 or	Brassica seeds are small. If seeds are big, we do not use find	time I make many mistakes in my	
			greencose	6 weeks cauliflowers.	sand. (2) The temperature in the high temperature greenhouse	proposal, even I modified my	
4					room 5 (6 weeks) turn down to the control temperature.	proposal by myself for many times.	
-	Wednesday	01-8-2012	Finish the first draft of	Send the first draft to Johan.	I forgot the morning meeting today. That is a pity.	I have no courage let Johan help	
			my proposal			me to check it. Johan encourages	
					The 5 weeks and 6 weeks cauliflowers already finished high	me and give me lots suggestions. I	
	Thursday	02-8-2012	Go to the greenhouse	With Johan. Cut the meriterm from two species cauliflowers.	themperature treatment and growing under the control	think, in the future, I can improve	
					temperature condition.	my writing by other people's help.	
	Friday	03-8-2012	Go to the field	With Johan. Cut cauliflowers from the block 7,8,9.	Today I cut the meristems by myself. Although slowly, I can do it	I need more confidence.	
					by myself. All the cauliflowers in the field switched.		

Week	Day	Time	Theme	Explaination	Remark	Feeling		
	Monday	06-8-2012	Change proposal	Find flowering time candidate genes which I interested.		This week I do a lot of work.		
	Tuesday	07-8-2012	Biweekly TTI meeting	With Guusje, Johan, Verhage Leonie and Immink, Richard or Dijk, Aalt- Jan van.	Not cut the meristem in greenhouse. Will do it tomorrow.	espesily on Thursday. Johan and me work all the day, until 5 o'clock,		
1	Wednesday	08-8-2012	Morning meeting and cut the meristem in greenhouse	TTI Green Genetics Thermoflow project: A mbient temperature (in)sensitivity in cauliflower by Johan.	Better understanding the project (about the cauliflower flowering time).	we just finish the measure. The large number of cauliflowers been cut from the field. When I go back		
1	Thursday	0 9 -8-2012	Cut the meristem and harvest the curds.	With Johan hand Wins. Cut curd from the blook 3,4 and 5. And then weight them. (120 cauliflowers). Cut the meristem in the greenhouse.	Each block cut 4x5 cultivars. So for each blook, there are 20 Fremont and 20 Lindurian. Size their wide and weight them.	ome, my arms and legs are pain. cause I stand for a all day. But is		
	Friday	10-8-2012	Goto the field (The last time)	With Johan. Do the same thing as before for the block 8,9. And cut some cauliflowers in protection line to use for priacticing RNA extraction.	This is the last time for this experiment cut the meristem from the field. Because all the meristems are already switched laste week. We cut more week to make sure they all switched.	good that the work for cut meristem from the field is finished this week. Hope next week the lab work will start.		
	Monday	13-8-2012	Gotothe Negema greenhouse	Help Ningwen transplant the Brassica rapa seedings from the tray to the polt for the full day.	Know how to transplants the seedings of Brassica.	First I did not know what I need to write in the proposal.Writing is a		
	Tuesday	14-8-2012	Cut the meristem	Just myself cut the meristems		big problen for me. So after Guusje		
	Wednesday	15-8-2012	Morning meeting	Title "Genome comparison of three morphotypes in Brassica rapa" present by Lin Ke.	Different knowledge be introduced in this presentation. Use the software to analysis the Brassica genome. Based on the genome information publiced in the database.	checked my proposal, there were so many comments. I lose some important part in my proposal, feel not good. But on the other side, the master thesis is a learning process. So if I can learn something I did not know before, this process is valuable. Hope everything goes well. But I still not feel I start the		
2	Thursday	16-8-2012	Go to the greenhouse and the field to harvest the curds	(1)In the greenhouse cut the meristem by myself.(2) Harvest the curds in the field for block 6 and block 4.	For the curds harvest, we also harvest the block 4. Because the block 1 and 2 were harvested when the plants were 15 weeks old. But last time, the block 4 was harvest for 14 weeks old. So we harvset the block 4 this week when the plant also 15 weeks old to compare with the block 1 and 2.			
	Friday	17-8-2012	Change proposal after Guusje comment.			experiment, just prepare the start material. Worried about it.		
	Monday	20-8-2012	Reading papers					
	Tuesday	21-8-2012		Cut the meristem for swap 2. Just cut Lindurian plants and not cut Fremont plants. Because the Frenomt already switch,I do not need cut the Fremont twitch one week.	Today I find a problem, the Lindurian control plants are not enough, just have 7 plants. So I send an email to the Johan to find a way to solve the problem.	This week I find a big problem in this project. The Lindurian control plants are not enough but the meristem still not switch.So we		
3	Wednesday	22-8-2012	Learn primer desigen	Lear qRT-PCR desigen with Ningwen	Use the Brassica rapa data base, not the Brassica oleracea.	change the program, one time just		
	Thursday	23-8-2012	Cut the meristem and harvest the curds.	Harvest the curds in block 7 with a driver and cuting, measuring them by myself. In the greenhouse, just use one Lindurian control plant.	Change the meathod in the greenhouse. For the Lindurian control, I j ust use one plant to use the microscope to observe the meristem transition result.	use one Lindurian control plant. And for the Fremont, just cut them on Thursday.		
	Friday	24-8-2012	Reading papers					
	Monday	27-8-2012	Reading papers			This week John go to the holiday. I		
	Tuesday	28-8-2012	Cut the meristem in the greenhouse.	No Fremont. Lindurian control just observe one plant.		just continue the project. And discuss with Guusje to chang my		
4	Wednesday	29-8-2012	Morning meeting	Short discuss with Guusje. Want the slove the problem in the project.		thesis project. Because the Lindurian plants are not enough.		
	Thursday	30-8-2012	Cut the meristem and harvest the curds.	Harvest the curds in block 8 and measuring them. Cut the Fremont and Lindurian plant.	Just observe one Lindurian control plant. All the Fremont are switched. The Fremont curds become big.	So I have to chang the proposal a lot. I need do the swap 1, not do		
	Friday	31-8-2012	Radix Open Day			the swap 2.		


Week	Day	Time	Theme	Explaination	Remark	Feeling			
	Monday	03-9-2012	Sort out data	Sort out my experimental nodebook.					
	-		Greenhouse work,	With Guusje, Verhage Leonie discuss experiment. Cut the Lindurian					
	Tuesday	04-9-2012	Meeting	meristem.	Change the experiment method.	This is the first week I try to do the			
			Learn primer test,			lad experimentgRT-PCR.			
	Wednesday	05-9-2012	Agarose gel and qRT-	With Xiaodong	Missing the morning meet. The gRT-PCR is a long process.	Although just learn the steps of			
1	,		PCR		······································	the whole process, still feel grade.			
-			Hravest curds and			In the future, more gRT-PCR			
			makepicture for	The Lindurian in field is not enough 20 plants, just has 14 plants. In the	(1) This is the last time harvest curds.(2) This is the last	related experiments will be done,			
	Thursday	06-9-2012	meristem in	greenhouse, just make picture for Lindurian without cut meristem.	Lindurian control plant in the greenhouse.(3) Just make pictures	hope I can get accurated results.			
			greenhouse	greenhouse, just make pietare for enhannan without cat mension.	for Lindurian, no Fremont and no meristem cutting.	hope rearger accurace results			
	Friday	07-9-2012	Learn gRT-PCR	From Vinadana					
				From X laodong					
	Monday	10-9-2012	Read papers			Greenhouse work was the main			
	Tuesday	11-9-2012	Greenhousework	Cut the meristem for swap 2. Just cut Lindurian plants (without Control	Just one plant for 5th and 6th weeks Lindurian groups.	thing I did during this week.			
	· · · · · · · · · · · · · · · · · · ·			group) and not cut Fremont plants. Make pictures for curds.		Because the materials which I will			
2	Wednesday	12.0.2012	Morning meeting	"Pollen FISH: a cytogenetical technique exploring on Brassica rapa" by					
2	weunesday	12-9-2012	worning meeting	Xuan Shuxin .		use and the candidate genes still not determin. Last week, the main			
				Cut the meristem for swap 2. Just cut Lindurian plants (without Control					
	Thursday	13-9-2012	Greenhousework	group) and not cut Fremont plants.	Lindurian meristem still in vegetative stage.	thing is prepared the material for			
	Friday	14-9-2012	Read papers	Lear information about the rRT-PCR.	Prepare for next week work.	qRT-PCR.			
	Monday	17-9-2012	Read papers	Lea momator about merkinnek.	Prepare for thext week work.				
	Worrddy	17-5-2012	neau papers						
	Tuesday	18-9-2012	18-9-2012	Greenhousework	Greenhouse work	8-9-2012 Greenhousework	Cut the meristem for swap 2. Just cut Lindurian plants (without Control		
				group) and not cut Fremont plants.	But not quite sure about this	Fist week do the lab experiment.			
			Make sure start			Prepare the start material. Because			
3	Wednesday	10-0-2012	materials and isolate	Cultivar: Fremont+Lindurian. Detail: Fremont-week 5,6(vegetative)	Each week choose two individual plant's meristem. Just have	it is the first time, most time Johan			
ੱ	weariesday	15 5 2012	RNA from meristem	and 8,9(generative). Lindurian-6,7(vegetative) and 11,12(generative).	vegetative and generative stage.	help me. I think next time I can do			
			tissue			by myself.			
	Thursday	20-9-2012	Greenhousework	Cut the meristem for swap 2. Just cut Lindurian plants (without Control	More leaves come out at the top of plant (with picture).	oy mysen.			
	Thursday	20-9-2012	Greenhousework	group) and not cut Fremont plants.	wore leaves come out at the top of plant(with picture).				
	Friday	21-9-2012	RNA synthesis	Clean up RNA and reverse RNA to cDNA.	First time synthesis cDNA, help by Johan.				
	Monday	24-9-2012	Read papers						
				Cut the meristem for swap 2. Just cut Lindurian plants (without Control		The first week dog RT-PCR by			
	Tuesday	25-9-2012	Greenhouse work and	group) and not cut Fremont plants. Reference genes test.	After gRT-PCR, test RNA part by gel to check the purity of RNA.	myself. Test the reference genes.			
	,		reference genes test.	Cultivar:Fremont+Lindurian. Reference genes:YLS and EF1.	······································	Find a stable reference was the the			
4			Morning meeting and	"The genetic analysis of leaf architecture in Brassicarapa" by Xiao		first step before I start test the			
-	Wednesday	26-9-2012	test reference genes	Dong. Reference genestest: YLS and 18S.		other candidate genes. Luck, the			
		27.0.2012				gRT-PCR result I do have high			
	Thursday	27-9-2012	A nalysis data	Analysis which reference genes more stable.					
	Friday	28-9-2012	Greenhousework	Cut the meristem for swap 2. Just cut Lindurian plants (without Control	Not Thursday, one day later.	accuracy.			
			C.C.C.MICODE IVOIR	group) and not cut Fremont plants.					


Week	Day	Time	Theme	Explaination	Remark	Feeling	
	Monday	1-10-2012	Read papers				
	Tuesday	2-10-2012	Greenhouse work and reference test	Cut the meristem for swap 2. Just cut Lindurian plants (without Control group) and not cut Fremont plants. Reference genes test: YLS and Actin.	Lindurian 5th week plant already in generative. 6th week plant in transition stage.	Without reference genes, other	
	Wednesday	3-10-2012	Morning meeting and RNA isolate.	"Gene expression analysis during tumip formation in Brassica rapa" by Habtanmesh. Isolate RNA from curd issue.	RNA isolate from Lindurian and Fremont control group curd tissue which nearly come out flower.	candidate genes also be tested in this week. A big problem is AP1	
1	Thursday	4-10-2012	Greenhouse work;RNA deanup and cDNA sythesis	Cut the meristem for swap 2. Just cut Lindurian plants (without Control group) and not cut Fremont plants. RNA cleanup and cDNA snythesis.	This time, Lindurian meristem all in transition stage. Last time maybe one plant strange.	not expression in any materials. We need to think why this situation happened. Hope next	
	Friday	5-10-2012	Find information about the candidate genes	Use website to find expressiong information(expression stage).	Candidate genes:AP1,FUL family, TFL1, CAL, REM1, UFO and AP2.	week can find the answer.	
	Monday	8-10-2012	qRT-PCR for reference gene	Cultivar:Fremont+Lindurian.Test reference genes:A(YLS,AP1);B(YLS,Actin)	Use RNA and cDNA of Fremont and Lindurian materials.		
	Tuesday 9-10-2012 Gel test quality of RNA Greenhouse Wednesday 10-10-2012 work;lsolate RNA			Test the gRT-PCR plate for 08-10-2012. Flower tissue comes from Hans group and do not know the cultivar name.		The best result in this week was that make sure the stable	
2	Thursday	11-10-2012	Greenonouse work(last time);qRT- pcp	Cultivar:Fremont control group+another cultivar flower. Candidate genes:AP1(primer comes from Leonie)	menast time to make pictures for undoman. Because there is no 6 weeks Lindurian plant in the greenhouse, but still has 5 weeks Lindurion	reference gene for cauliflower. And then I can start testing the candidates.	
	Friday	12-10-2012	Primers diluted; qRT- PCR	Cultivar:Fremont control group+another cultivar flower. Candidate genes:(AP1-a, AP1-c); Cultivar:Lindurian control group. Candidate genes:(AP1-a, AP1-c and FUL-a).	Just test candidate genes in Lindurian control group cannot compare with the high temperature group. So in this stage, I will just test candidate genes in Fremont.	mondutes.	
	Monday	15-10-2012	qRT-PCR	Cultivar:Fremont control group+another cultivar flower. Candidate genes:A(FUL-a,FUL-b);B(FUL-c,FUL-d).			
	Tuesday	16-10-2012	qRT-PCR	Cultivar:Fremont control group+another cultivar flower. Candidate genes:A(FH,TFL1-1);B(CAL,REM1).		Finished the candidate genes test with another cauliflower flower tissue. Several interested genes	
3	Wednesday	17-10-2012	qRT-PCR	Cultivar:Fremont control group+another cultivar flower. Candidate gene	Second time test candidate genes: FUL-a, FUL-b.	were found. But the flower tissue	
	Thursday	18-10-2012	Check the plants in the greenhouse.	After finished the meristem observe, transfer all the plants to one greenhouse and check we ther the Fremont come out open flowers.	Some 6 weeks high temperature treatment Fremont plants al ready came out open flowers. Control Fremont group not.	was not our experimental cultivar, so futher experient need be done to verify the results.	
	Friday	19-10-2012	Isolate RNA; Synthesis cDNA.	Cultivar: Lindurian control and 6 weeks high temperature treatment groups.	12 Lindurian 6 weeks high temperature treatment group ' plants. 4 Lindurian control gourp's plants.		
	Monday	22-10-2012	qRT-PCR	Cultivar: Lindurian(control group and 6weeks high temperature treatment group). Candidate genes: A(AP1-a);B(AP1-c).			
	Tuesday	23-10-2012	qRT-PCR	Cultivar: Lindurian(control group and 6 weeks high temperature treatment group). Candidate genes: A(FUL-a); B(FUL-b).		Do the experiment as before. But now is test the candidate genes which may influence the cauliflower flower time when	
4	Wednesday	24-10-2012	qRT-PCR	Cultivar: Lindurian(control group and 6 weeks high temperature treatment group). Candidate genes: A(FUL-c); B(FUL-d).			
	Thursday	25-10-2012	qRT-PCR	Cultivar: Lindurian(control group and 6 weeks high temperature treatment group). Candidate genes: A(FH);FB(TFL1-1).		change the temperature. But the result is not good e nough.	

Week	Day	Time	Theme	Explaination	Remark	Feeling
	Monday	29-10-2012	qRT-PCR	Cultivar: Lindurian(control group and 6 weeks high temperature treatment group). Candidate genes:A(UFO); B(REM1).		
	Tuesday	30-10-2012	qRT-PCR	Cultivar: Lindurian(control group and 6 weeks high temperature treatment group). Candidate genes:A(NSN1-1);B(NSN1-2).	Di lute Lindurian cDNA materials.	This week finished the candidate genes' test in Lindurian, Just found
1	Wednesday	31-10-2012	qRT-PCR	Cultivar: Lindurian(control 6 weeks high temperature treatment group).Candidate genes:A(NSN1-3).		one gene maybe related to the temperature in Lindurian influence
	Thursday	1-11-2012	A nalysis data	Data is about candidate genes expression in cultivar Lindurian control and 6 weeks high temperature treatment group.		the flower time. Not so good.
	Friday	2-11-2012	Isolate RNA; Synthesis cDNA.	Cultivar: Fremont Flower-6 weeks high temperature treatment (F1 and F2).	Control Fremont group has no open flowers, more later than 6 weeks Fremont groups.	
	Monday	5-11-2012	qRT-PCR	Cultivar: Fremont+anotherkind cauliflower Flower. Candidate genes:A(FUL-a,FUL-b);B(FUL-c,FUL-d).		
2	Tuesday	6-11-2012	qRT-PCR	Cultivar: Fremont+Fremont Flower. Candidate genes:A(AP1-a, AP1- c);B(NSN1-1, NSN1-2).		Almost finished the experiment, but the data is hard to analysis.
2	Wednesday	7-11-2012	Morning meeting; qRT-PCR	Cultivar: Fremong+Fremont Flower. Candidategenes: A(NSN1- 3, CAL); B(REM1, TFL1).	The Fremont samples are not enough. I will sythesis cDNA again when start the new experiment.	Because I do not know use which method to analysis them.
	Thursday	8-11-2012	A nalysis data			
	Friday	9-11-2012	A nalysis data			
	-		Design the primer	Design the primer for AT1G04400, which is different expressed and spliced.	Use to test in Lindurian control and 6 weeks groups and Fremont caultivar.	l need to add one week experiment to test a new
3	Tuesday	13-11-2012	A nalysis data			candidategene in Lindurian and
-	to	to				Fremont. Hope I can finish the experiment quickly and have more
	Friday		A nalysis data			time write my report.
	Monday	19-11-2012	A nalysis data			
	to	to		Beacuse the q RT-PCR machine's oreder was full, so I have to wait.		If every day I can use the qRT-PCR
4	Friday	23-11-2012	A nalysis data			machine like Sunday, I can get
	'	25-11-2012	qRT-PCR	Cultivar:Lindurian. Candidategenes:A(CRY2-1-a);B(CRY2-2-a);C(CRY2-1- b);D(CRY2-2-b).	No body use the machine today, so I do the whole day experiment.	more results!
Week	Day	Time	Theme	Explaination	Remark	Feeling
	Monday	26-11-2012	Test new primers	Cultivar:Lindurian. Primers:CRY2-1-a, CRY2-1-b, CRY2-2-a, CRY2-2b	Several Lindurian RNA materials.	
	Tuesday	27-11-2012	qRT-PCR	Cultivar:Fremont. Candidategenes:CRY2-1-a and CRY2-2-a.	New primers CRY2-1-a, CRY2-1-b, CRY2-2-a and CRY2-2b were used in old materials.	This week, based on the resultes we already get, tested new
1	Wednesday	28-11-2012	qRT-PCR	New RNA materials. Cultivar:Fremont+Lindurian. Candidate genes:CRY2-1-a, CRY2-1-b, CRY2-2-a, CRY2-2b and CAL	New RNA materials were one week before and after high temperature treatment plants. One sample was 5 plants mixed isolating RNA. Help by Johan.	candidate genes used new materials. Because the time limited, just test several
	Thursday	29-11-2012	qRT-PCR	Cultivar:Fremont+Lindurian. CandidategenesA(FUL-a,FUL-b,FUL-c,FUL- d and REM1); B(TFL1-1, FH, AP1-a, NSN1-1 and CCE1).	Test other candidate genes which already tested in early experiment.	interesting genes. But, a new reserach direction was found.
			A nalysis data	dala kewij, bin eri, ni, Arra, Konriandeeenj.	caperinent.	rescriber and error was to and.

Appendix 1: One block layout in the field experiment.

Appendix 2: Night blocks layout in the field experiment.

Appendix 3: Temperature treatment (heat or cool) influences flowering genes expression in *Arabidopsis*

Gene	Cold Treatment Symbols
	Symbols: SUF4 zinc finger (C2H2 type) family protein chr1:11040613-11043593 REVERSE LENGTH=367
AT1G51430	Symbols: unknown protein; BEST Arabidopsis thaliana protein match is: unknown protein (TAIR:AT3G28370.1); Has 13 Blast hits to 13 proteins in 4 species:
	Archae - 0; Bacteria - 0; Metazoa - 0; Fungi - 0; Plants - 13; Viruses - 0; Other Eukaryotes - 0 (source: NCBI BLink). chr1:19068241-19069366 FORWARD LENGTH=160 Symbols: unknown protein; FUNCTIONS IN: molecular function unknown; INVOLVED IN: biological process unknown; LOCATED IN: membrane; EXPRESSED IN:
AT1G54920	23 plant structures; EXPRESSED DURING: 15 growth stages; Has 35333 Blast hits to 34131 proteins in 2444 species: Archae - 798; Bacteria - 22429; Metazoa - 974; Fungi
	- 991; Plants - 531; Viruses - 0; Other Eukaryotes - 9610 (source: NCBI BLink). chr1:20470916-20474898 FOR WARD LENGTH=890
	Symbols: CRY2, FHA, AT-PHH1, PHH1, ATCRY2 cryptochrome 2 chr1:1185719-1187901 REVERSE LENGTH=612 Symbols: VAMP78, VAMP771, ATVAMP781, ATVAMP781, uncide, excepted mombrane protein, 731, chr1:1221957, 1222495, DEVERSE LENGTH=310,
	Symbols: VAMP7B, VAMP721, ATVAMP721, AT VAMP7B vesicle-associated membrane protein 721 chr1:1331857-1333426 REVERSE LENGTH=219 Symbols: Translation elongation factor EFG/EF2 protein chr1:17172507-17176683 REVERSE LENGTH=754
	Symbols: 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein chr1:18023590-18025960 REVERSE LENGTH=393
	Symbols: Early-responsive to dehydration stress protein (ERD4) chr1:26107120-26110006 REVERSELENGTH=711
	Symbols: HXK3 hexokinase 3 chr1:17616243-17618859 REVERSE LENGTH=493 Symbols: PIF3, POC1, PAP3 phytochrome interacting factor 3 chr1:3077216-3079367 FORWARD LENGTH=524
AT1G24070	Symbols: ATCSLA10, CSLA10 cellulose synthase-like A10 chr1:8516437-8519734 REVERSE LENGTH=552
	Symbols: AGO1 Stabilizer of iron transporter SufD / Polynucleotidyl transferase chr1:17886285-17891892 REVERSE LENGTH=1048 Symbols: Major facilitator superfamily protein chr1:25193832-25196751 REVERSE LENGTH=494
	Symbols: [Major lacina to superiality protein [cirl: 4396555-4397859 REVERSE LENGTH=434
AT1G53770	Symbols: O-fucosyltransferase family protein chr1:20071460-20073708 REVERSELENGTH=563
	Symbols: HUB2 histone mono-ubiquitination 2 chr1:20607214-20612302 FORWARDLENGTH=900
	Symbols: MAF1, FLM, AGL27 K-box region and MADS-box transcription factor family protein chr1:28958311-28959054 FORWARD LENGTH=141 Symbols: ELF7 hydroxyproline-rich glycoprotein family protein chr1:30000743-30003969 REVERSE LENGTH=589
	Symbols: FIO1 methyltransferases chr2:9040940-9043136 FOR WARD LENGTH=483
	Symbols: ELF3, PYK20 hydroxyproline-rich glycoprotein family protein chr2:11059459-11063178 FORWARD LENGTH=695
	Symbols: BLH8, PNF BEL1-like homeodomain 8 chr2:11921540-11923902 REVERSE LENGTH=584 Symbols: RD04, HUB1 histone mono-ubiguitination 1 chr2:18542602-18548247 REVERSE LENGTH=878
	Symbols: HDD F Hotore mono oblight nation = feme: ab-actore ind-table ind-
	Symbols: ATMYB65, MYB65 myb domain protein 65 chr3:3603056-3604929FORWARD LENGTH=553
	Symbols: SPA3 SPA1-related 3 chr3:5169327-5172480 REVERSE LENGTH=837 Symbols: CKB3 casein kinase II beta chain 3 chr3:22270714-22271962 REVERSE LENGTH=276
	Symbols: CASS [Casen Kinase ii beta chain 3] Clips.2227014-2227 USB2 Reverse Leivon-276 Symbols: SPA2 SPA1-related 2 chr4:6772163-6776675 FORWARD LENGTH=1036
AT4G31877	
	Symbols: ATH1 homeobox gene 1 chr4:15914865-15916873 REVERSE LENGTH=473
	Symbols: PRR7, APRR7 pseudo-response regulator 7 chr5:638283-641461 REVERSE LENGTH=727 Symbols: FY Transducin/WD40 repe at-like superfamily protein chr5:4326638-4331557 REVERSE LENGTH=647
	Symbols: HUA2 Tudor/PWWP/MBT domain-containing protein chr5:7786173-7792080 FORWARD LENGTH=1392
	Symbols: PHYC phytochrome C chr5:14008049-14011619 FORWARD LENGTH=1111
	Symbols: AGL31, MAF2 AGAMOUS-like 31 chr5:25982415-25986114 FORWARD LENGTH=182
IN FURCEOCO	Symbols: MAE2_ECL2_AGL70_LK_box region and MADS, box transcription factor family protein_LchrE-35097E37.3E0010EE E0PM/APD LENGTH-10E
AT5G65060	Symbols: MAF3, FCL3, AGL70 K-box region and MADS-box transcription factor family protein chr5:25987527-25991065 FORWARD LENGTH=196 Heat Treatment
AT5G65060 Gen e	Symbols: MAF3, FCL3, AGL70 K-box region and MADS-box transcription factor family protein chr5:25987527-25991065 FORWARD LENGTH=196 Heat Treatment Symbols
Gen e AT1G26930	Heat Treatment Symbols Symbols: Galactose oxidase/kelch repeat superfamily protein chr1:9336211-9337476 REVERSE LENGTH=421
Gen e AT1G26930 AT1G45332	He at Tre atment Symbols Symbols: Galactose oxidase/kelch repeat superfamily protein chr1:9336211-9337476 REVERSE LENGTH=421 Symbols: Translation elongation factor EFG/EF2 protein chr1:17172507-17176683 REVERSE LENGTH=754
Gen e AT1G26930 AT1G45332 AT1G48740	Heat Treatment Symbols Symbols: Galactose oxidase/kelch repeat superfamily protein chr1:9336211-9337476 REVERSE LENGTH=421
Gen e AT1G26930 AT1G45332 AT1G48740 AT1G58400 AT1G04400	Heat Treatment Symbols Symbols: Galactose oxidase/kelch repeat superfamily protein chr1:9336211-9937476 REVERSE LENGTH=421 Symbols: Translation elongation factor EFG/EF2 protein chr1:17172507-17176683 REVERSE LENGTH=754 Symbols: Z-oxoglutarate (2OG) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590-18025960 REVERSE LENGTH=393 Symbols: Disease resistance protein CC-NBS-LRR dass) family chr1:21696155-21699118 REVERSE LENGTH=900 Symbols: CRY2, FHA, AT-PHH1, PHH1, ATCRY2 cryptochrome 2 chr1:185719-1187901 REVERSE LENGTH=612
Gen e AT1G26930 AT1G45332 AT1G48740 AT1G58400 AT1G04400 AT1G08970	Heat Treatment Symbols: Symbols: Galactose oxidase/kelch repeat superfamily protein chr1:9336211-9337476 REVERSE LENGTH=421 Symbols: Translation elongation factor EFG/EF2 protein chr1:1712507-17176683 REVERSE LENGTH=754 Symbols: 2-oxoglutarate (2OG) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590-18025960 REVERSE LENGTH=393 Symbols: Disease resistance protein (CC-NBS-LRR class) family chr1:21696165-21699118 REVERSE LENGTH=900 Symbols: CRY2, FHA, AT-PHH1, PHH1, ATCRY2 cryptochrome 2 chr1:1185719-1187901 REVERSE LENGTH=612 Symbols: HAP5C, NF-YC9 nuclear factor Y, subunit C9 chr1:2883144-2883839 FORWARD LENGTH=231
Gen e AT1G26930 AT1G45332 AT1G48740 AT1G58400 AT1G04400 AT1G04970 AT1G09530 AT1G67690	Heat Treatment Symbols: Symbols: Galactose oxidase/kelch repeat superfamily protein chr1:9336211-9337476 REVERSE LENGTH=421 Symbols: Translation elongation factor EFG/EF2 protein chr1:17172507-17176683 REVERSE LENGTH=754 Symbols: 2-oxoglutarate (20G) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590-18025900 REVERSE LENGTH=393 Symbols: Disease resistance protein (CC-NBS-LRR class) family chr1:2169115 REVERSE LENGTH=900 Symbols: Disease resistance protein (CC-NBS-LRR class) family chr1:18027901 REVERSE LENGTH=612 Symbols: HAP5C, NF-YC9 nuclear factor Y, subunit C9 chr1:2883144-2883839 FORWARD LENGTH=231 Symbols: PF3, POC1, PAP3 phytochrome interacting factor 3 chr1:3077216-3079367 FORWARD LENGTH=524 Symbols: Zincin-like metalloprote ases family protein chr1:25369086-2537370 FORWARD LENGTH=710
Gen e AT1G26930 AT1G45332 AT1G45740 AT1G58400 AT1G04400 AT1G08970 AT1G0530 AT1G67690 AT1G67690	Heat Treatment Symbols Symbols: Salactose oxidase/kelch repeat superfamily protein chr1:9336211-9337476 REVERSE LENGTH=421 Symbols: Translation elongation factor EFG/EF2 protein chr1:1772507-17176683 REVERSE LENGTH=754 Symbols: 12-oxoglutarate (20G) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590-18025960 REVERSE LENGTH=393 Symbols: Dise ase resistance protein (CC-NBS-LRR class) family chr1:21696165-21699118 REVERSE LENGTH=900 Symbols: RAYE, NT-PHH1, PHH1, ATCRY2 cryptochrome 2 chr1:185719-1187901 REVERSE LENGTH=612 Symbols: RAYE, NT-YC9 nuclear factor Y, subunit C9 chr1:2883144-288389 FORWARD LENGTH=231 Symbols: PIF3, POC1, PAP3 phytochrome interacting factor 3 chr1:3077216-3079367 FORWARD LENGTH=524 Symbols: Zincin-like metalloproteases family protein chr1:2569086-25373730 FORWARD LENGTH=710 Symbols: AG01 Stabilizer of iron transporter SufD / Polynucleotidyl transferase chr1:17881282-17891892 REVERSE LENGTH=1048
Gen e AT1G26930 AT1G45332 AT1G45332 AT1G48740 AT1G58400 AT1G08970 AT1G09530 AT1G7690 AT1G7690 AT1G7690 AT1G9570	Heat Treatment Symbols: Symbols: Galactose oxidase/kelch repeat superfamily protein chr1:9336211-9337476 REVERSE LENGTH=421 Symbols: Translation elongation factor EFG/EF2 protein chr1:17172507-17176683 REVERSE LENGTH=754 Symbols: 2-oxoglutarate (20G) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590-18025900 REVERSE LENGTH=393 Symbols: Disease resistance protein (CC-NBS-LRR class) family chr1:2169115 REVERSE LENGTH=900 Symbols: Disease resistance protein (CC-NBS-LRR class) family chr1:18027901 REVERSE LENGTH=612 Symbols: HAP5C, NF-YC9 nuclear factor Y, subunit C9 chr1:2883144-2883839 FORWARD LENGTH=231 Symbols: PF3, POC1, PAP3 phytochrome interacting factor 3 chr1:3077216-3079367 FORWARD LENGTH=524 Symbols: Zincin-like metalloprote ases family protein chr1:25369086-2537370 FORWARD LENGTH=710
Gen e AT1G26930 AT1G45332 AT1G453400 AT1G487400 AT1G08970 AT1G09530 AT1G676900 AT1G676900 AT1G9570 AT1G22770 AT1G22770	Heat Treatment Symbols: Symbols: Galactose oxidase/kelch repeat superfamily protein chr1:9336211-9337476 REVERSE LENGTH=754 Symbols: Translation elongation factor EFG/EF2 protein chr1:1712507-17176683 REVERSE LENGTH=754 Symbols: 2-oxoglutarate (2OG) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590-18025960 REVERSE LENGTH=393 Symbols: Disease resistance protein (CC-NBS-LRR class) family chr1:21696165-21699118 REVERSE LENGTH=600 Symbols: CKY2, FHA, AT-PHHI, PHHI, ATCRY2 cryptochrome 2 chr1:185719-1187901 REVERSE LENGTH=612 Symbols: PIF3, POC1, PAP3 phytochrome interacting factor 3 chr1:3077216-3079367 FORWARD LENGTH=710 Symbols: Zimin-like metalloprote ases family protein chr1:2536908e-2537370 FORWARD LENGTH=710 Symbols: GI Stabilizer of iron transporter SufD / Polynucleotidyl transferase chr1:17886285-17891892 REVERSE LENGTH=1048 Symbols: GI Stabilizer of iron transporter SufD / Polynucleotidyl transferase chr1:17886285-17891892 REVERSE LENGTH=1048 Symbols: GI FH2, FRE1, HY8 phytochrome A chr1:3095498-309216 REVERSE LENGTH=1122 Symbols: GI Stabilizer of iron transporter SufD / PORWARD LENGTH=1173 Symbols: GI KB2 (SEGERSE LENGTH=1048
Gen e AT1G26930 AT1G45332 AT1G45332 AT1G453400 AT1G58400 AT1G09530 AT1G67690 AT1G67690 AT1G48410 AT1G92770 AT1G22770 AT1G22770	Heat Treatment Symbols: Symbols: I Galactose oxidase/kelch repeat superfamily protein chr1:9305211-9337476 REVERSE LENGTH=421 Symbols: I Translation elongation factor EFG/EF2 protein chr1:1772507-17176683 REVERSE LENGTH=754 Symbols: I 2-oxoglutarate (20G) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590-18025960 REVERSE LENGTH=393 Symbols: I 2-oxoglutarate (20G) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590-18025960 REVERSE LENGTH=393 Symbols: I Disease resistance protein (CC-NBS-LRR class) family chr1:21696165-21699118 REVERSE LENGTH=900 Symbols: ERVER, FHA, AT-PHH1, PHH1, ATCRY2 cryptochrome 2 chr1:187901 ReV ERSE LENGTH=612 Symbols: PL3, DC1, PAP3 phytochrome interacting factor 3 chr1:3077216-3079367 FORWARD LENGTH=524 Symbols: I Inini-Ike metalloprote ases family protein chr1:3056086-25373730 FORWARD LENGTH=120 Symbols: PHYA, FHY2, FRE1, H% phytochrome A chr1:3065488-3092016 REVERSE LENGTH=120 Symbols: Symbols: GI, FB gigantea protein (GI) chr1:306238-7447 FORWARD LENGTH=1173 Symbols: Symbols: SEP3, AG19 K-box region and MADS-box transcription factor family protein chr1:2893790-8595862 REVERSE LENGTH=250 Symbols: Symbols: SMAF1, FLM, AG127 K-box region and MADS-box transcription factor family protein chr1:28958311-289589054 FORWAR
Gen e AT1G26930 AT1G45332 AT1G45332 AT1G453400 AT1G58400 AT1G95300 AT1G95300 AT1G95700 AT1G277080 AT1G227700 AT1G77080 AT1G79730	Heat Treatment Symbols: Symbols: Galactose oxidase/kelch repeat superfamily protein chr1:9336211-9337476 REVERSE LENGTH=754 Symbols: Translation elongation factor EFG/EF2 protein chr1:1712507-17176683 REVERSE LENGTH=754 Symbols: 2-oxoglutarate (2OG) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590-18025960 REVERSE LENGTH=393 Symbols: Disease resistance protein (CC-NBS-LRR class) family chr1:21696165-21699118 REVERSE LENGTH=600 Symbols: CKY2, FHA, AT-PHHI, PHHI, ATCRY2 cryptochrome 2 chr1:185719-1187901 REVERSE LENGTH=612 Symbols: PIF3, POC1, PAP3 phytochrome interacting factor 3 chr1:3077216-3079367 FORWARD LENGTH=710 Symbols: Zimin-like metalloprote ases family protein chr1:2536908e-2537370 FORWARD LENGTH=710 Symbols: GI Stabilizer of iron transporter SufD / Polynucleotidyl transferase chr1:17886285-17891892 REVERSE LENGTH=1048 Symbols: GI Stabilizer of iron transporter SufD / Polynucleotidyl transferase chr1:17886285-17891892 REVERSE LENGTH=1048 Symbols: GI FH2, FRE1, HY8 phytochrome A chr1:3095498-309216 REVERSE LENGTH=1122 Symbols: GI Stabilizer of iron transporter SufD / PORWARD LENGTH=1173 Symbols: GI KB2 (SEGERSE LENGTH=1048
Gen e AT1G26930 AT1G45332 AT1G45332 AT1G453400 AT1G58400 AT1G08970 AT1G09530 AT1G676900 AT1G676900 AT1G22770 AT1G24260 AT1G7280 AT1G7280 AT1G723300 AT2G23380 AT2G25930	Heat Treatment Symbols: Symbols: I Galactose oxidase/kelch repeat superfamily protein chr1:9336211-9337476 REVERSE LENGTH=754 Symbols: I Translation elongation factor EFG/EF2 protein chr1:1712507-17176683 REVERSE LENGTH=754 Symbols: 2-oxoglutarate (20G) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590-18025960 REVERSE LENGTH=393 Symbols: Disease resistance protein (CC-NBS-LRR class) family chr1:21696165-21699118 REVERSE LENGTH=900 Symbols: Disease resistance protein (CC-NBS-LRR class) family chr1:187919-1187901 REVERSE LENGTH=612 Symbols: PIF3, POC1, PAP3 phytochrome interacting factor 3 chr1:307716-3079367 FORWARD LENGTH=524 Symbols: J Zincin-like metalloprote ases family protein chr1:3095498-3099216 REVERSE LENGTH=104 Symbols: PIYA, FHY2, FRE1, HY8 phytochrome A chr1:3095498-3099216 REVERSE LENGTH=1122 Symbols: Symbols: GI, FB gigantea protein (GI) chr1:8062398-8067447 FORWARD LENGTH=1173 Symbols: SEP3, AGL9 K-box region and MADS-box transcription factor family protein chr1:3093790-8595862 REVERSE LENGTH=250 Symbols: SLE77 hydroxyproline-rich glycoprotein family protein chr1:3000743-30003969 REVERSE LENGTH=589 Symbols: CLF7, KUL, SDG1, SET1 / SET domain-containing protein chr2:395550-960117 FORWARD LENGTH=595 Symbols: CLF7, KUL, SDG1,
Gen e ATI.G26930 ATI.G45332 ATI.G45332 ATI.G45332 ATI.G58400 ATI.G08970 ATI.G08970 ATI.G09530 ATI.G7950 ATI.G7970 ATI.G22770 ATI.G22770 ATI.G79730 ATI.G79300 ATI.G79300 ATI.G225930 AT2.G25930 AT2.G25930	Heat Treatment Symbols: Symbols: I Calactose oxidase/kelch repeat superfamily protein chr1:9305211-9337476 REVERSE LENGTH=421 Symbols: I Translation elongation factor EFG/EF2 protein chr1:1772507-17176683 REVERSE LENGTH=754 Symbols: I 2-oxoglutarate (20G) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590-18025960 REVERSE LENGTH=393 Symbols: I 2-oxoglutarate (20G) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590-18025960 REVERSE LENGTH=393 Symbols: I Disease resistance protein (CC-NBS-LRR class) family chr1:21696165-21699118 REVERSE LENGTH=600 Symbols: CRY2, FHA, AT-PHH1, PHH1, ATCRY2 cryptochrome 2 chr1:187901 ReV ERSE LENGTH=612 Symbols: PL3, DC1, PAP3 phytochrome interacting factor 3 chr1:3077216-3079367 FORWARD LENGTH=524 Symbols: I Zincin-like metalloprote ases family protein chr1:2369086-25373730 FORWARD LENGTH=710 Symbols: PHYA, FHY2, FRE1, HY8 phytochrome A chr1:3065488-309201 6 REVERSE LENGTH=1048 Symbols: SPH, FHYA, FHY2, FRE1, HY8 phytochrome A chr1:3065488-309201 6 REVERSE LENGTH=1122 Symbols: Symbols: SEP3, AG19 K-box region and MADS-box transcription factor family protein chr1:893790-85565862 REV ERSE LENGTH=250 Symbols: Symbols: SLF7 hydroxyproline-rich glycoprotein family protein chr1:28958311-289589054 FORWARD LENGTH=141 </td
Gen e AT1G26930 AT1G45332 AT1G45332 AT1G48740 AT1G58400 AT1G04530 AT1G09530 AT1G09530 AT1G767690 AT1G22770 AT1G22770 AT1G79730 AT1G79730 AT1G79730 AT2G23380 AT2G25930 AT2G27990 AT2G4950	Heat Treatment Symbols: Symbols: I Galactose oxidase/kelch repeat superfamily protein chr1:9336211-9337476 REVERSE LENGTH=754 Symbols: I Translation elongation factor EFG/EF2 protein chr1:1712507-17176683 REVERSE LENGTH=754 Symbols: 2-oxoglutarate (20G) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590-18025960 REVERSE LENGTH=393 Symbols: Disease resistance protein (CC-NBS-LRR class) family chr1:21696165-21699118 REVERSE LENGTH=900 Symbols: Disease resistance protein (CC-NBS-LRR class) family chr1:187919-1187901 REVERSE LENGTH=612 Symbols: PIF3, POC1, PAP3 phytochrome interacting factor 3 chr1:307716-3079367 FORWARD LENGTH=524 Symbols: J Zincin-like metalloprote ases family protein chr1:3095498-3099216 REVERSE LENGTH=104 Symbols: PIYA, FHY2, FRE1, HY8 phytochrome A chr1:3095498-3099216 REVERSE LENGTH=1122 Symbols: Symbols: GI, FB gigantea protein (GI) chr1:8062398-8067447 FORWARD LENGTH=1173 Symbols: SEP3, AGL9 K-box region and MADS-box transcription factor family protein chr1:3093790-8595862 REVERSE LENGTH=250 Symbols: SLE77 hydroxyproline-rich glycoprotein family protein chr1:3000743-30003969 REVERSE LENGTH=589 Symbols: CLF7, KUL, SDG1, SET1 / SET domain-containing protein chr2:395550-960117 FORWARD LENGTH=595 Symbols: CLF7, KUL, SDG1,
Gen e AT1G26930 AT1G45332 AT1G453400 AT1G58400 AT1G58400 AT1G049500 AT1G045700 AT1G648410 AT1G67600 AT1G227700 AT1G222700 AT1G223380 AT2G23380 AT2G25930 AT2G25930 AT2G46830 AT2G46830 AT3G05120	Heat Treatment Symbols: Symbols: I ranslation elongation factor EFG/EF2 protein chr1:93362L1-9337476 REVERSE LENGTH=421 Symbols: I ranslation elongation factor EFG/EF2 protein chr1:17172507-17176683 REVERSE LENGTH=754 Symbols: I 2-oxoglutarate (20G) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590-18025960 REVERSE LENGTH=393 Symbols: I Disease resistance protein (CC-NBS-LRR class) family chr1:21696165-21699118 REVERSE LENGTH=600 Symbols: CRY2, FHA, AT-PHH1, PHH1, ATCRY2 cryptochrome 2 chr1:187719-1187901 REVERSE LENGTH=612 Symbols: CRY2, FHA, AT-PHH1, PHH1, ATCRY2 cryptochrome 2 chr1:2077216-3079367 FORWARD LENGTH=524 Symbols: PIF3, POC1, PAP3 phytochrome interacting factor 3 chr1:3077216-3079367 FORWARD LENGTH=524 Symbols: J Chr1:110000000000000000000000000000000000
Gene AT1G26930 AT1G45332 AT1G45332 AT1G453400 AT1G58400 AT1G08970 AT1G08970 AT1G09530 AT1G679900 AT1G48410 AT1G22770 AT1G22770 AT1G222790 AT2G23380 AT2G25930 AT2G25930 AT2G49500 AT2G49500 AT2G49500 AT3G5120 AT3G5120	Heat Treatment Symbols Symbols: Symbols: I ranslation elongation factor EFG/EF2 protein chr1:9336211-9337476 REVERSE LENGTH=421 Symbols: I ranslation elongation factor EFG/EF2 protein chr1:17172507-17176683 REVERSE LENGTH=754 Symbols: I 2-oxoglutarate (20G) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590 18025960 REVERSE LENGTH=393 Symbols: I 2-oxoglutarate (20G) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590 18025960 REVERSE LENGTH=393 Symbols: I 2-oxoglutarate (20G) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590 18025960 REVERSE LENGTH=393 Symbols: I 2-oxoglutarate (20G) and Fe(III)-dependent oxygenase superfamily protein chr1:18023149 FRSE LENGTH=300 Symbols: LPAS, NF-YC9 nuclear factor Y, subunit C9 chr1:2883144-2883889 FORWARD LENGTH=231 Symbols: LPIS, PC01, PAP3 phytochrome a chr1:3007216-3073957 FORWARD LENGTH=524 Symbols: LPIG, II-LENGAS-2398-206908-25373730 FORWARD LENGTH=510 Symbols: LPIS, PC1, PAP3 phytochrome A chr1:3005498-3099216 REVERSE LENGTH=102 Symbols: Symbols: LPIS, PC1, PAP3 phytochrome A chr1:3005498-25373730 FORWARD LENGTH=512 Symbols: Symbols: LPIS, PC1, PAP3 phytochrome A chr1:3005498-25373730 FORWARD LENGTH=510 <
Gen e AT1G26930 AT1G45332 AT1G45332 AT1G453400 AT1G58400 AT1G095300 AT1G095300 AT1G67690 AT1G67690 AT1G48410 AT1G277080 AT1G277080 AT1G277080 AT1G277080 AT1G27930 AT2G23380 AT2G259300 AT2G259300 AT2G259300 AT2G44950 AT2G44950 AT2G449512 AT3G12810 AT3G12810 AT3G12810	Heat Treatment Symbols Symbols: [Galactose oxidase/kelch repeats uperfamily protein chr1:937476 REVERSE LENGTH=421 Symbols: [Translation elongation factor EFG/EF2 protein chr1:17172507-17176683 REVERSE LENGTH=754 Symbols: [2-oxoglutarate (2OG) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590 18025960 REVERSE LENGTH=393 Symbols: [1 Disease resistance protein (CC-NBS-LRR class) family chr1:21696165-21699118 REVERSE LENGTH=900 Symbols: [NPDods: CRY2, FHA, AT-PHH1, PHH1, ATCRY2 cryptochrome 2 chr1:118710+1187901 REVERSE LENGTH=512 Symbols: [PIS, POC1, PAP3 phytochrome interacting factor 3 chr1:307716-3079367 FORWARD LENGTH=524 Symbols: [Zincin-like metalloprote ases family protein chr1:25369086-2537370 FORWARD LENGTH=710 Symbols: [Zincin-like metalloprote ases family protein chr1:30599306 REVERSE LENGTH=1048 Symbols: [GI] chr1:8062398-8067447 FORWARD LENGTH=1122 Symbols: Symbols: GI, F8 gigantea protein (GI chr1:8062398-8067447 FORWARD LENGTH=1123 Symbols: SEP3, AGI9 k-box region and MADS-box transcription factor family protein chr1:8993790-8595862 REV ERSE LENGTH=250 Symbols: Symbols: CLF, CUI, SOG, SET1 SET domain-containing protein chr1:9995570-9960117 FORWARD LENGTH=589 Symbols: Symbols: CLF, MUAroxyprol
Gen e AT1G26930 AT1G45332 AT1G45332 AT1G453400 AT1G58400 AT1G095300 AT1G095300 AT1G095300 AT1G67690 AT1G67690 AT1G227700 AT1G222700 AT1G223380 AT2G253380 AT2G253300 AT2G259300 AT2G259300 AT2G46830 AT3G05120 AT3G12410 AT3G12810 AT3G12810	Heat Treatment Symbols: Symbols: Galactose oxidase/keich repeat superfamily protein chr1:9336211-9337476 REVERSE LENGTH=421 Symbols: ITranslation elongation factor EFG/EF2 protein chr1:17172507-17176683 REVERSE LENGTH=754 Symbols: 12-oxoglutarate (20G) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590-18025960 REVERSE LENGTH=393 Symbols: Disease resistance protein (CC-NBS-LRR dass) family chr1:21696165-21699118 REVERSE LENGTH=900 Symbols: HDA ATCRY2 oxyptochrome 2 chr1:185719-1187901 REVERSE LENGTH=612 Symbols: HPSC, NF-YC9 nuclear factor Y, subunit C9 chr1:283314-2883839 FORWARD LENGTH=231 Symbols: HPSC, NF-YC9 nuclear factor Y, subunit C9 chr1:3077216-3079367 FORWARD LENGTH=710 Symbols: GSMODIS: Symbols: LZincin-like metalloprote ase family protein chr1:3095498-25377370 PORWARD LENGTH=710 Symbols: Symbols: Symbols: GSMODIS: CR02 FR4, FHY2, FRE1, HY8 phytochrome A chr1:3095498-3099216 REVERSE LENGTH=1028 Symbols: Symbols: Symbols: GI, FB gigantea protein (GI) chr1:802398-8067447 FORWARD LENGTH=1122 Symbols: Symbols: CALS K-Box region and MADS-box transcription factor family protein chr1:898790-8598862 REVERSE LENGTH=250
Gen e AT1G26930 AT1G45332 AT1G45322 AT1G453400 AT1G58400 AT1G09530 AT1G09530 AT1G67690 AT1G67690 AT1G67690 AT1G22770 AT1G222700 AT1G223380 AT2G23380 AT2G25930 AT2G550 AT2G25930 AT2G5930 AT2G5950 A	Heat Treatment Symbols: Symbols: Galactose oxidase/kelch repeats uperfamily protein chr1:9336211-9337476 REVERSE LENGTH=421 Symbols: Translation elongation factor EFG/EF2 protein chr1:11712507-17176683 REVERSE LENGTH=754 Symbols: 12-oxoglutarate (20G) and Fe(III)-dependent oxygenase superfamily protein chr1:18032590-18025960 REVERSE LENGTH=393 Symbols: 10 isease resistance protein (CC-NBS-LRR class) family chr1:210961675-21699118 REVERSE LENGTH=600 Symbols: REVERSE LENGTH=600 Symbols: Symbols: CR2, FHA, AT-PHH1, PHH1, ATCRY2 cryptochrome c chr1:185719-1187901 REVERSE LENGTH=612 Symbols: PL3, POC1, PAP3 phytochrome interacting factor 3 chr1:307716-3079367 FORWARD LENGTH=524 Symbols: Symbols: GI, FB3, POC1, PAP3 phytochrome A chr1:3095498-3099216 REVERSE LENGTH=123 Symbols: Symbols: AGO1 Stabilizer of iron transporter SufD / Polynucleotidyl transferase chr1:17886285-17891892 REVERSE LENGTH=1048 Symbols: Symbols: FB3, POC1, PAP3 phytochrome A chr1:3095498-3099216 REVERSE LENGTH=1123 Symbols: Symbols: SEP3, AGI9 K-box region and MAD5-box transcription factor family protein chr1:8593790-859882 REVERSE LENGTH=529 Symbols: SUPMols: SET3, PNK20 hydroxyproline-rich glycoprotein family protein chr1:20955570-9960117 FORWARD LENGTH=539
Gen e ATI.G26930 ATI.G45332 ATI.G45332 ATI.G45332 ATI.G58400 ATI.G09530 ATI.G09530 ATI.G7690 ATI.G7690 ATI.G22770 ATI.G22770 ATI.G22770 ATI.G223380 ATI.G7930 ATI.G7950 ATI	Heat Treatment Symbols: Symbols: Galactose oxidase/keich repeat superfamily protein chr1:9336211-9337476 REVERSE LENGTH=421 Symbols: ITranslation elongation factor EFG/EF2 protein chr1:17172507-17176683 REVERSE LENGTH=754 Symbols: 12-oxoglutarate (20G) and Fe(III)-dependent oxygenase superfamily protein chr1:18023590-18025960 REVERSE LENGTH=393 Symbols: Disease resistance protein (CC-NBS-LRR dass) family chr1:21696165-21699118 REVERSE LENGTH=900 Symbols: HDA ATCRY2 oxyptochrome 2 chr1:185719-1187901 REVERSE LENGTH=612 Symbols: HPSC, NF-YC9 nuclear factor Y, subunit C9 chr1:283314-2883839 FORWARD LENGTH=231 Symbols: HPSC, NF-YC9 nuclear factor Y, subunit C9 chr1:3077216-3079367 FORWARD LENGTH=710 Symbols: GSMODIS: Symbols: LZincin-like metalloprote ase family protein chr1:3095498-25377370 PORWARD LENGTH=710 Symbols: Symbols: Symbols: GSMODIS: CR02 FR4, FHY2, FRE1, HY8 phytochrome A chr1:3095498-3099216 REVERSE LENGTH=1028 Symbols: Symbols: Symbols: GI, FB gigantea protein (GI) chr1:802398-8067447 FORWARD LENGTH=1122 Symbols: Symbols: CALS K-Box region and MADS-box transcription factor family protein chr1:898790-8598862 REVERSE LENGTH=250
Gen e AT1G26930 AT1G45332 AT1G45332 AT1G453400 AT1G58400 AT1G095300 AT1G095300 AT1G67690 AT1G67690 AT1G48410 AT1G277080 AT1G277080 AT1G277080 AT1G277080 AT2G23380 AT2G259300 AT2G259300 AT2G44950 AT2G44950 AT2G44950 AT2G44950 AT3G12810 AT3G1280 AT3G12800 AT3G128	Heat Treatment Symbols Symbols: [Galactose oxidase/kelch repeats uperfamily protein chr1:3937476 REVERSE LENGTH=421 Symbols: [Translation elongation factor EFG/EF2 protein chr1:1717569.3RVERSE LENGTH=754 Symbols: [2-oxoglutarate (20G) and Fel(II)-dependent oxygenase superfamily protein chr1:18023590 18025960 REVERSE LENGTH=393 Symbols: Disease resistance protein (clc.NBS-LRR dass) family (1 protein) [chr1:2802155-21699118 REVERSE LENGTH=900 Symbols: Disease resistance protein (clc.NBS-LRR dass) family (1 protein) [chr1:2803144-288389 FORWARD LENGTH=231 Symbols: Disease resistance protein (clc.NBS-LRR dass) family (1 protein) [chr1:2560086-25373730 FORWARD LENGTH=524 Symbols: Paynothorme interacting factor 3 chr1:307216-80799367 FORWARD LENGTH=524 Symbols: Symbols: Chr1:2854086-25373730 FORWARD LENGTH=524 Symbols: Symbols: Chr1:2854086-25373730 FORWARD LENGTH=524 Symbols: Symbols: Chr1:28542086-25373730 FORWARD LENGTH=524 Symbols: Symbols: Chr1:28542086-25373730 FORWARD LENGTH=710 Symbols: Symbols: Chr1:285208-300216 REVERSE LENGTH=1048 Symbols: Symbols: Chr1:285208-309216 REVERSE LENGTH=1048 Symbols: Symbols:
Gen e AT1626930 AT1645332 AT1645332 AT1645332 AT1638400 AT1609530 AT1609530 AT1667690 AT1667690 AT1648410 AT1609570 AT1622770 AT1622770 AT1622770 AT1622790 AT2625930 AT2625930 AT2625930 AT264950 AT3611400 AT3615354 AT3615410 AT3615354 AT3618990 AT46161200 AT4616280 AT461280 AT461880 AT46188	Heat Treatment Symbols: Symbols: [Galactose oxidase/kelch repeats uperfamily protein [chr1:337476 REVERSE LENGTH=421 Symbols: [Translation elongation factor EFG/EF2 protein [chr1:2172507-11776683 REVERSE LENGTH=754 Symbols: [2-oxoglutarate (20G) and Fe(III-dependent oxygenase superfamily protein [chr1:3172507-11776683 REVERSE LENGTH=754 Symbols: [Disease resistance protein (CC-NBS-LRR dass) family [chr1:21696165-21699118 REVERSE LENGTH=612 Symbols: RAPSC, NF-YC9 nuclear factor Y, subunit C9 chr1:283144-288339 FORWARD LENGTH=231 Symbols: PLF3, POC1, PAP3 phytochrome interacting factor 3 chr1:3077216-3079367 FORWARD LENGTH=720 Symbols: Symbols: CNV2, HA, AT-PHH1, PHH1, ATCRV2 cryptochrome 2 chr1:185719-1882085-17891892 REVERSE LENGTH=104 Symbols: Symbols: Intra-nike metalloproteases family protein chr1:25360085-25373730 FORWARD LENGTH=720 Symbols: Symbols: GI, FB gigantea protein (GI chr1:8052398-8067447 FORWARD LENGTH=1173 Symbols: Symbols: SEP3, AG19 K-box region and MAD5-box transcription factor family protein chr1:2895301-28959054 FORWARD LENGTH=429 Symbols: Symbols: CLF, KUL, SDG1, SET1 SET domain-containing protein chr2:3995957-9690117 PORWARD LENGTH=459 Symbols: ELF7 hydroxyproline-rich givcoprotein family protein chr1:30303059 REVERSE LENGTH=459
Gen e ATI.G26930 ATI.G45332 ATI.G45332 ATI.G45332 ATI.G58400 ATI.G09530 ATI.G09530 ATI.G09530 ATI.G7950 ATI.G48410 ATI.G22770 ATI.G22770 ATI.G223380 AT2G23880 AT2G25930 AT2G46830 AT3G1524 AT3G12810 AT3G12810 AT3G12810 AT3G12810 AT3G12810 AT3G12810 AT3G12820 AT3	Heat Treatment Symbols Symbols: [Galactose oxidase/kelch repeats uperfamily protein chr1:3937476 REVERSE LENGTH=421 Symbols: [Translation elongation factor EFG/EF2 protein chr1:1717569.3RVERSE LENGTH=754 Symbols: [2-oxoglutarate (20G) and Fel(II)-dependent oxygenase superfamily protein chr1:18023590 18025960 REVERSE LENGTH=393 Symbols: Disease resistance protein (clc.NBS-LRR dass) family (1 protein) [chr1:2802155-21699118 REVERSE LENGTH=900 Symbols: Disease resistance protein (clc.NBS-LRR dass) family (1 protein) [chr1:2803144-288389 FORWARD LENGTH=231 Symbols: Disease resistance protein (clc.NBS-LRR dass) family (1 protein) [chr1:2560086-25373730 FORWARD LENGTH=524 Symbols: Paynothorme interacting factor 3 chr1:307216-80799367 FORWARD LENGTH=524 Symbols: Symbols: Chr1:2854086-25373730 FORWARD LENGTH=524 Symbols: Symbols: Chr1:2854086-25373730 FORWARD LENGTH=524 Symbols: Symbols: Chr1:28542086-25373730 FORWARD LENGTH=524 Symbols: Symbols: Chr1:28542086-25373730 FORWARD LENGTH=710 Symbols: Symbols: Chr1:285208-300216 REVERSE LENGTH=1048 Symbols: Symbols: Chr1:285208-309216 REVERSE LENGTH=1048 Symbols: Symbols:
Gen e ATIG26930 ATIG45332 ATIG45322 ATIG453400 ATIG95300 ATIG095300 ATIG095300 ATIG97300 ATIG242600 ATIG2277000 ATIG227300 ATIG227300 ATIG227300 ATIG227300 ATIG227300 ATIG259300 AT2623800 AT2623800 AT2646830 AT3612810 AT3612810 AT3612810 AT3612810 AT3612810 AT3612820 AT46162800 AT46162800 AT463289800 AT56128400	Heat Treatment Symbols Symbols:
Gen e AT1G26930 AT1G45332 AT1G45332 AT1G453400 AT1G58400 AT1G095300 AT1G095300 AT1G095300 AT1G67690 AT1G67690 AT1G227700 AT1G227700 AT1G227300 AT2G23380 AT2G23380 AT2G259300 AT2G259300 AT2G46830 AT3G12440 AT3G12410 AT3G12810 AT3G12810 AT3G12810 AT3G12810 AT3G12810 AT3G12810 AT3G12810 AT3G12810 AT3G12810 AT3G12810 AT4G162800 AT4G162800 AT4G31877 AT4G329800 AT5G128400 AT5G128400 AT5G13480	Heat Treatment Symbols Symbols: [Galactose oxidase/kelch repeat superfamily protein chr1:936211-937476 REVERSE LENGTH=421 Symbols: [I Translation elongation factor EFG/EF2 protein chr1:1272507-17776683 REVERSE LENGTH=754 Symbols: [Dascase resistance prote in (C-NSE-LRR dass) family chr1:1269158-21699118 REVERSE LENGTH=303 Symbols: Disease resistance prote in (C-NSE-LRR dass) family chr1:12691518-21699118 REVERSE LENGTH=612 Symbols: Disease resistance prote in (C-NSE-LRR dass) family chr1:12537901 REVERSE LENGTH=612 Symbols: Disease resistance prote in (C-NSE-LRR dass) family chr1:12537901 REVERSE LENGTH=612 Symbols: Disease resistance prote in (C-NSE-LRR dass) for (LT-1307216-307367 FORWARD LENGTH=524 Symbols: Distribution enteracting factor 3 chr1:3095498-3099216 REVERSE LENGTH=104 Symbols: Distribution enteracting factor 3 chr1:3095498-3099216 REVERSE LENGTH=104 Symbols: Distribution enteracting factor 3 chr1:3095498-3099216 REVERSE LENGTH=104 Symbols: Distribution enteracting factor 4 chr1:3095498-309216 REVERSE LENGTH=320 Symbols: Symbols: Distribution enteracting factor 4 milk protein chr1:2893790-855562 REVERSE LENGTH=250 Symbols: Symbols: Distribution enteracting protein chr1:3095499103989 REVERSE LENG
Gen e ATIG26930 ATIG45332 ATIG45332 ATIG45332 ATIG58400 ATIG09530 ATIG09530 ATIG67690 ATIG67690 ATIG48410 ATIG97300 ATIG22770 ATIG22770 ATIG223380 AT2G25930 AT2G25930 AT2G46830 AT2G46830 AT3G15120 AT3G12810 AT3G12810 AT3G12810 AT3G12810 AT3G12810 AT3G12820 AT3	Heat Treatment Symbols Symbols:
Gen e ATIG26930 ATIG45332 ATIG45332 ATIG453400 ATIG95400 ATIG95400 ATIG95400 ATIG9770 ATIG227700 ATIG227700 ATIG227900 ATIG225930 AT2G23800 AT2G23800 AT2G44950 AT3G12400 AT3G12810 AT3G12810 AT3G12810 AT3G12820	Heat Treatment Symbols Symbols: Symbols: Symbols: Symbols: Translation elongation factor EFG/EF2 protein chr:1372507-127.06833 REVERSE LENGTH=754 Symbols: Disease resistance protein [cc-NBS-URA class] family notein chr:118023590 18025500 REVERSE LENGTH=393 Symbols: Disease resistance protein [cc-NBS-URA class] family notein chr:118713-9118701 ReV RSE LENGTH=612 Symbols: Disease resistance protein [cc-NBS-URA class] family chr:118713-9118701 ReV RSE LENGTH=612 Symbols: PF3, POCL, PAP3 phytochrome interacting factor 3 chr:1307716-3073367 FORWARD LENGTH=524 Symbols: PF3, POCL, PAP3 phytochrome A chr:13085489-309216 ReV BRSE LENGTH=612 Symbols: PF3, POCL, PAP3 phytochrome A chr:13085489-309216 ReV BRSE LENGTH=524 Symbols: PF3, POCL, PAP3 phytochrome A chr:13085489-309216 ReV BRSE LENGTH=524 Symbols: PF3, POCL, PAP3 Phytochrome A chr:13085489-309216 ReV BRSE LENGTH=524 Symbols: PF3, POCL, PAP3 Phytochrome A chr:13085489-309216 ReV BRSE LENGTH=524 Symbols: PF3, POCL, PAP3 Network PAPC ReVARD LENGTH=122 Symbols: PF3, POCL, PAP3 Network PAPC ReVARD LENGTH=1173 Symbols: PF4, PAPT, PAPC, PAP3, PAPC, PAP3, PAPC, PAP3, PAPC, PAP3
Gen e ATIG26930 ATIG45332 ATIG45324 ATIG45324 ATIG95300 ATIG095300 ATIG095300 ATIG095300 ATIG97500 ATIG242600 ATIG227700 ATIG227300 ATIG227300 AT2G233800 AT2G259300 AT2G259300 AT2G259300 AT2G449500 AT2G449500 AT3G153544 AT3G153544 AT3G153544 AT3G153540 AT4G11100 AT4G162800 AT4G318777 AT4G328800 AT5G128400 AT5G128400 AT5G128400 AT5G328400 AT5G328400 AT5G328400 AT5G328400 AT5G601000	Heat Treatment Symbols Symbols:

Appendix 4: qRT-PCR thermal cycling

Protocol: 2Step SYB	R + Melt.prcl				
1	2	3	4	5	6
95.0 C 3:00	95.0 C 0:15	60.0 C 1:00	G O T O 2 39 x	95.0 C 0:10	95.0 C 0.5 C 0:05
→ 2 95.0 (3 60.0 (+ Plate F 4 GOTO 5 95.0 (6 Melt Cu for 0:05	2, 39 more tin C for 0:10 rve 65.0 to 95.0		5 C,		
END					

Protocol: 2Step SYBR + Melt.prcl

Appendix 5: Leaf Number of Lindurian & Fremont in nine blocks in field

Block	Weeks	Hybrid	Date	Purpose	Field Number	Number of Leaves	Picture	Curd
1		Lindurian	15-6-2012	Maintain	0001	17		
1		L	15-6-2012			16	Yes	Transition
1	1	L	15-6-2012		0003	16		
1	1		15-6-2012		0004	17		
1		I	15-6-2012		0005	15		
1	9	Fremont			0006	14		
1	1	Fremont	15-6-2012		0007	14	Yes	Generative
1	1				0008	15	163	Generative
1	1	Fremont Fremont			0008	15		
1		Fremont	15-6-2012		0010	15		
-		Fremont	13-0-2012	rieezei	0010	15		
1		Linduction	22 6 2012	Maintain	0011			
1			22-6-2012		-		Maria	C
1		I	22-6-2012			22	Yes	Generative
1			22-6-2012		0013	20		
1	10	I	22-6-2012		0014	22		
1			22-6-2012		0015	20		
1			22-6-2012		0016			
1			22-6-2012		0017	21	Yes	Generative
1			22-6-2012	Freezer	0018	20		
1		Fremont			0019	18		
1		Fremont	22-6-2012	Freezer	0020	18		
2		Lindurian	22-6-2012	Maintain	0091			
2		Lindurian	22-6-2012	Binoculair	0092		Yes	Generative
2		Lindurian	22-6-2012	Freezer	0093	18		
2		Lindurian	22-6-2012	Freezer	0094	17		
2	9	Lindurian	22-6-2012	Freezer	0095	17		
2		Fremont	22-6-2012	Maintain	0096			
2]	Fremont	22-6-2012	Binoculair	0097		Yes	Generative
2]	Fremont	22-6-2012	Freezer	0098	14		
2		Fremont	22-6-2012	Freezer	0099	15		
2	1	Fremont	22-6-2012	Freezer	0100	17		
3		Lindurian	22-6-2012	Maintain	0181			
3	1	Lindurian	22-6-2012	Binoculair	0182		Yes	Generative
3	1	Lindurian	22-6-2012	Freezer	0183	16		
3	1	Lindurian	22-6-2012	Freezer	0184	16		
3	1 _		22-6-2012		0185	16		
3	8		22-6-2012		0186			
3	1		22-6-2012		0187		Yes	Generative
3	1		22-6-2012		0188	17		
3	1		22-6-2012		0189	15		
3	1	Fremont			0190	16		
3		Lindurian	28-6-2012	Maintain	0191	21		
3	1	L	28-6-2012		-	20	Yes	Generative
3	1	I	28-6-2012		0193	20		
3	1		28-6-2012		0194	19		
3	9	I	28-6-2012		0195	20		
3		<u> </u>	28-6-2012		0196	18		
3	1	L	28-6-2012		0197	18	Yes	Generative
3	1	L	28-6-2012		0198	15	10.2	acheracive
3	1	L	28-6-2012		0199	17		
3	1	Fremont			0135	17		
5		remont	20-0-2012	neezer	0200	10		I

Block	Weeks	Hybrid	Date	Purpose	Field Number	Number of Leaves	Picture	Curd
4	WEEKS		28-6-2012		0271	15	Tiecone	Card
4			28-6-2012		0272	14	Yes	Generative
4			28-6-2012		0272	14	163	Generative
4			28-6-2012		0274	15		
4			28-6-2012		0274	15		
4	8	Fremont	28-6-2012		0275	13		
4		Fremont		Binoculair		15	Yes	Generative
4		Fremont	28-6-2012		0278	14	163	Generative
4		Fremont	28-6-2012		0279	14		
4		Fremont	28-6-2012	Freezer	02/9	14		
		riemoni	20-0-2012	1166761	0200	14		
4		Lindurian	6-7-2012	Maintain	0281	23		
4			6-7-2012			23	Yes	Generative
4				Freezer	0282	22	162	Generative
4		Lindurian						
4		Lindurian Lindurian		Freezer Freezer	0284 0285	23		
4	9		6-7-2012	Maintain	0285	22		
4		Fremont Fremont		Binoculair		20	Yes	Generative
4						20	Tes	Generative
	1	Fremont	6-7-2012	Freezer	0288			
4		Fremont	6-7-2012	Freezer	0289	21		
4		Fremont	6-7-2012	Freezer	0290	22		
5		Linducian	28-6-2012	Maintain	0361	11		
5			28-6-2012		0362	9	Yes	Transition
5			28-6-2012		0363	10	Tes	Transition
5		L	28-6-2012		0364	9		
5			28-6-2012		0365	10		
5	7	Fremont	28-6-2012		0366	10		
5		Fremont	28-6-2012		0367	9	Yes	Transition
5		Fremont	28-6-2012		0368	10	163	Tansicion
5		Fremont	28-6-2012		0369	10		
5		Fremont	28-6-2012	Freezer	0370	10		
		riemoni	20-0-2012	1166261	0570	10		
5		Lindurian	6-7-2012	Maintain	0371	14		
5		Lindurian		Binoculair	0372	15	Yes	Generative
5		Lindurian	6-7-2012	Freezer	0373	15		
5			6-7-2012		0374	14		
5	1	Lindurian			0375	15		
5	8	Fremont			0376	16		
5		Fremont		Binoculair		15	Yes	Generative
5	1	Fremont	6-7-2012		0378	15		
5		Fremont	6-7-2012	Freezer	0379	14		
5	1	Fremont	6-7-2012	Freezer	0380	15		
5		Lindurian	13-7-2012	Maintain	0381	14		
5			13-7-2012		-	16	Yes	Generative
5	1		13-7-2012		0383	17		
5	1		13-7-2012		0384	17		
5	_		13-7-2012		0385	20		
5	9		13-7-2012		0386	16		
5		Fremont		Binoculair		14	Yes	Generative
5	1		13-7-2012		0388	14		
5	1	Fremont	13-7-2012		0389	13		
		- remone	22 7 2012	THEELER	0000			

Block	Weeks	Hybrid	Date	Purpose	Field Number	Number of Leaves	Picture	Curd
5		Lindurian	20-7-2012	Maintain	0391	21		
5		Lindurian		Binoculair	0392	20	Yes	Generative
5		Lindurian			0393	18	100	Generative
5								
		Lindurian		I	0394	22		
5	10	Lindurian			0395	23		
5		Fremont	20-7-2012		0396	22		- · · ·
5		Fremont		Binoculair	0397	18	Yes	Generative
5		Fremont	20-7-2012		0398	20		
5		Fremont	20-7-2012		0399	22		
5		Fremont	20-7-2012	Freezer	0400	21		
6		Lindurian	6-7-2012	Maintain	0451	11		
6		Lindurian	6-7-2012	Binoculair	0452	13	Yes	Transition
6		Lindurian	6-7-2012	Freezer	0453	12		
6		Lindurian	6-7-2012	Freezer	0454	14		
6	-	Lindurian	6-7-2012	Freezer	0455	12		
6	7	Fremont	6-7-2012	Maintain	0456	13		
6	1	Fremont	6-7-2012	Binoculair	0457	12	Yes	Generative
6	1	Fremont	6-7-2012	Freezer	0458	12		
6	1	Fremont	6-7-2012		0459	12		
6		Fremont	6-7-2012	Freezer	0460	12		
		riemoni	0-7-2012	1166261	0400			
6		Lindurian	13-7-2012	Maintain	0461	13		
6			13-7-2012		0462	15	Yes	Transition
6		L			0462	10	162	Transition
			13-7-2012					
6			13-7-2012		0464	12		
6	8		13-7-2012		0465	9		
6			13-7-2012		0466	15		
6			13-7-2012			13	Yes	Generative
6		Fremont	13-7-2012	Freezer	0468	13		
6		Fremont	13-7-2012	Freezer	0469	13		
6		Fremont	13-7-2012	Freezer	0470	15		
6		Lindurian	20-7-2012	Maintain	0471	18		
6		Lindurian	20-7-2012	Binoculair	0472	20	Yes	Generative
6		Lindurian	20-7-2012	Freezer	0473	20		
6		Lindurian	20-7-2012	Freezer	0474	18		
6	_		20-7-2012		0475	18		
6	9		20-7-2012		0476	17		
6	1	Fremont		Binoculair		19	Yes	Generative
6	1	Fremont			0478	19		
6		Fremont			0479	20		
6		Fremont	20-7-2012		0475	19		
		. remone	20 7-2012	1120201	0400			
6		Linducian	27-7-2012	Maintain	0481	23		
			27-7-2012				Vee	Constitut
6						22	Yes	Generative
6	4		27-7-2012		0483	23		
6			27-7-2012	l	0484	24		
6	10		27-7-2012		0485	27		
6			27-7-2012		0486	24		
6		Fremont		Binoculair		25	Yes	Generative
6		Fremont	27-7-2012		0488	23		
6		Fremont	27-7-2012	Freezer	0489	21		

Block	Weeks	Hybrid	Date	Purpose	Field Number	Number of Leaves	Picture	Curd
7		Lindurian		Maintain	0541	8	Trecore	Cond
7		Lindurian		Binoculair		8	Yes	Vegetative
7		Lindurian			0542	8	103	vegetative
7		Lindurian		Freezer	0544	9		
7		Lindurian		Freezer	0545	9		
7	6	Fremont	6-7-2012		0546	8		
7		Fremont	6-7-2012		0547	8	Yes	Vegetative
7		Fremont	6-7-2012	Freezer	0548	8		1
7		Fremont	6-7-2012	Freezer	0549	8		
7		Fremont	6-7-2012	Freezer	0550	8		
7		Lindurian	13-7-2012	Maintain	0551	8		
7	1		13-7-2012			11	Yes	Vegetative
7			13-7-2012		0553	12		
7	1		13-7-2012		0554	11		
7			13-7-2012		0555	12		
7	7		13-7-2012		0556	12		
7	1		13-7-2012	l		12	Yes	Vegetative
7			13-7-2012		0558	11		
7			13-7-2012	l	0559	13		
7		Fremont	13-7-2012	Freezer	0560	12		
7		Lindurian	20-7-2012	Maintain	0561	14		
7			20-7-2012	l	0562	16	Yes	Transition
7			20-7-2012		0563	11		
7			20-7-2012		0564	14		
7			20-7-2012		0565	12		
7	8	Fremont	20-7-2012		0566	15		
7			20-7-2012			13	Yes	Transition
7			20-7-2012		0568	16		
7			20-7-2012		0569	14		
7		Fremont	20-7-2012		0570	13		
7		Lindurian	27-7-2012	Maintain	0571	11		
7			27-7-2012		0572	16	Yes	Generative
7			27-7-2012		0573	19		
7			27-7-2012		0574	20		
7			27-7-2012	i	0575	18		
7	9		27-7-2012		0576	17		
7	1		27-7-2012			17	Yes	Generative
7	1		27-7-2012		0578	21		
7	1	Fremont	27-7-2012		0579	21		
7	1	Fremont	27-7-2012		0580	18		
7	10	Lindurian	3-8-2012	Maintain	0581	23		
7			3-8-2012	l		27	Yes	Generative
7			3-8-2012		0583	24		
7		Lindurian			0584	23		
7		Lindurian			0585	21		
7		Fremont	3-8-2012		0586	27		
7		Fremont	3-8-2012	Binoculair		28	Yes	Generative
7		Fremont	3-8-2012	Freezer	0588	26		
7		Fremont	3-8-2012	Freezer	0589	27		
								1

Block	Weeks	Hybrid	Date	Purpose	Field Number	Number of Leaves	Picture	Curd
8		Lindurian			0631	7		
8		Lindurian		Binoculair	0632	6	Yes	Vegetative
8		Lindurian		Freezer	0633	7		Ŭ
8		Lindurian	6-7-2012	Freezer	0634	7		
8		Lindurian		Freezer	0635	6		
8	5	Fremont	6-7-2012		0636	6		
8	1	Fremont	6-7-2012	Binoculair	0637	6	Yes	Vegetative
8		Fremont	6-7-2012	Freezer	0638	6		
8		Fremont	6-7-2012	Freezer	0639	6		
8		Fremont	6-7-2012	Freezer	0640	6		
8		Lindurian	13-7-2012	Maintain	0641	9		
8		Lindurian	13-7-2012	Binoculair	0642	7	Yes	Vegetative
8		Lindurian	13-7-2012	Freezer	0643	10		
8		Lindurian	13-7-2012	Freezer	0644	9		
8	6	Lindurian	13-7-2012	Freezer	0645	9		
8	•	Fremont	13-7-2012	Maintain	0646	8		
8		Fremont	13-7-2012	Binoculair	0647	10	Yes	Vegetative
8		Fremont	13-7-2012	Freezer	0648	8		
8		Fremont	13-7-2012	Freezer	0649	9		
8		Fremont	13-7-2012	Freezer	0650	10		
8		Lindurian	20-7-2012	Maintain	0651	11		
8		Lindurian	20-7-2012	Binoculair	0652	12	Yes	Vegetative
8		Lindurian	20-7-2012	Freezer	0653	10		
8		Lindurian	20-7-2012	Freezer	0654	14		
8	7	Lindurian	20-7-2012	Freezer	0655	12		
8	· ·	Fremont	20-7-2012	Maintain	0656	12		
8		Fremont	20-7-2012	Binoculair	0657	12	Yes	Vegetative
8		Fremont	20-7-2012	Freezer	0658	11		
8		Fremont	20-7-2012	Freezer	0659	11		
8		Fremont	20-7-2012	Freezer	0660	11		
8		Lindurian	27-7-2012	Maintain	0661	17		
8		Lindurian	27-7-2012	Binoculair	0662	18	Yes	Generative
8		L	27-7-2012		0663	16		
8			27-7-2012		0664	12		
8	8	L	27-7-2012		0665	14		
8	_	Fremont	27-7-2012		0666	17		
8		Fremont				14	Yes	Generative
8		Fremont	27-7-2012		0668	15		
8		Fremont	27-7-2012		0669	15		
8		Fremont	27-7-2012	Freezer	0670	14		
8			3-8-2012		0671	16		
8	9		3-8-2012		0672	18	Yes	Generative
8		Lindurian		Freezer	0673	18		
8		Lindurian			0674	19		
8		Lindurian		Freezer	0675	18		
8		Fremont	3-8-2012		0676	21		-
8		Fremont		Binoculair	0677	19	Yes	Generative
8		Fremont	3-8-2012	Freezer	0678	19		
8		Fremont	3-8-2012	Freezer	0679	19		
8		Fremont	3-8-2012	Freezer	0680	21		

Block	Weeks	Hybrid	Date	Purpose	Field Number	Number of Leaves	Picture	Curd
8			10-8-2012		0691	22	1100010	Curd
8		L	10-8-2012		0692	25	Yes	Generative
8			10-8-2012		0693	24		Centerotive
8			10-8-2012		0694	23		
8			10-8-2012		0695	25		
8	10		10-8-2012		0696	21		
8		Fremont	10-8-2012		0697	24	Yes	Generative
8		Fremont			0698	25		
8		Fremont	10-8-2012		0699	24		
8		Fremont	10-8-2012	Freezer	0700	25		
9		Lindurian	13-7-2012	Maintain	0721	7		
9		Lindurian	13-7-2012	Binoculair	0722	8	Yes	Vegetative
9		Lindurian	13-7-2012	Freezer	0723	7		-
9		Lindurian	13-7-2012	Freezer	0724	8		
9	-		13-7-2012		0725	7		
9	5		13-7-2012		0726	7		
9		Fremont	13-7-2012		0727	8	Yes	Vegetative
9			13-7-2012	Freezer	0728	7		
9			13-7-2012		0729	7		
9		Fremont	13-7-2012	Freezer	0730	7		
9		Lindurian	20-7-2012	Maintain	0731	10		
9		Lindurian	20-7-2012	Binoculair	0732	10	Yes	Vegetative
9		Lindurian	20-7-2012	Freezer	0733	10		
9		Lindurian	20-7-2012	Freezer	0734	10		
9	-	Lindurian	20-7-2012	Freezer	0735	11		
9	6	Fremont	20-7-2012	Maintain	0736	9		
9		Fremont	20-7-2012	Binoculair	0737	9	Yes	Vegetative
9		Fremont	20-7-2012	Freezer	0738	10		
9		Fremont	20-7-2012	Freezer	0739	11		
9		Fremont	20-7-2012	Freezer	0740	8		
9		Lindurian	27-7-2012	Maintain	0741	14		
9		Lindurian	27-7-2012	Binoculair	0742	10	Yes	Transition
9		Lindurian	27-7-2012	Freezer	0743	13		
9		Lindurian	27-7-2012	Freezer	0744	13		
9	7	Lindurian	27-7-2012	Freezer	0745	14		
9	ŕ	Fremont	27-7-2012	Maintain	0746	14		
9		Fremont	27-7-2012	Binoculair	0747	13	Yes	Generative
9		Fremont	27-7-2012	Freezer	0748	14		
9		Fremont	27-7-2012	Freezer	0749	14		
9		Fremont	27-7-2012	Freezer	0750	13		
9		L	3-8-2012		0751	15		
9		Lindurian	3-8-2012	Binoculair	0752	13	Yes	Generative
9	8	Lindurian	3-8-2012	Freezer	0753	15		
9		Lindurian	3-8-2012	Freezer	0754	14		
9		Lindurian	3-8-2012	Freezer	0755	14		
9		Fremont	3-8-2012	Maintain	0756	15		
9		Fremont		Binoculair	0757	14	Yes	Generative
9		Fremont	3-8-2012	Freezer	0758	15		
9		Fremont	3-8-2012	Freezer	0759	15		
9		Fremont	3-8-2012	Freezer	0760	15		

Block	Weeks	Hybrid	Date	Purpose	Field Number	Number of Leaves	Picture	Curd
9		Lindurian	10-8-2012	Maintain	0776	25		
9		Lindurian	10-8-2012	Binoculair	0777	25	Yes	Generative
9		Lindurian	10-8-2012	Freezer	0778	24		
9		Lindurian	10-8-2012	Freezer	0779	25		
9	9	Lindurian	10-8-2012	Freezer	0780	24		
9	9	Fremont	10-8-2012	Maintain	0781	21		
9		Fremont	10-8-2012	Binoculair	0782	21	Yes	Generative
9		Fremont	10-8-2012	Freezer	0783	18		
9		Fremont	10-8-2012	Freezer	0784	20		
9		Fremont	10-8-2012	Freezer	0785	21		

Appendix 6: Leaf Number of Lindurian & Fremont in the greenhouse

Hybrid	Greenhouse No.	Date	Swap	Purpose	No. of Leaves	Stem (mm)	Picture
Lindurian	0258	19-7-2012	5 Week	Binoculair	10	8.18	Yes
Lindurian	0265	19-7-2012	5 Week	Freezer	9	7.33	
Lindurian	0266	19-7-2012	5 Week	Freezer	10	8.26	
Lindurian	0267	19-7-2012	5 Week	Freezer	10	8.24	
Lindurian	0364	19-7-2012	Control	Binoculair	10	7.50	Yes
Lindurian	0361	19-7-2012	Control	Freezer	9	7.13	
Lindurian	0362	19-7-2012	Control	Freezer	9	7.95	
Lindurian	0363	19-7-2012	Control	Freezer	9	7.17	
Fremont	0018	19-7-2012	5 Week	Binoculair	9	8.36	Yes
Fremont	0015	19-7-2012	5 Week	Freezer	9	8.07	
Fremont	0016	19-7-2012	5 Week	Freezer	9	7.83	
Fremont	0017	19-7-2012	5 Week	Freezer	9	8.43	
Fremont	0114	19-7-2012	Control	Binoculair	9	8.18	Yes
Fremont	0111	19-7-2012	Control	Freezer	9	8.15	
Fremont	0112	19-7-2012	Control	Freezer	9	9.30	
Fremont	0113	19-7-2012	Control	Freezer	9	8.34	
Lindurian	0350	24-7-2012	5 Week	Binoculair	11	9.16	Yes
Lindurian	0349	24-7-2012	5 Week	Freezer	10	8.66	
Lindurian	0348	24-7-2012	5 Week	Freezer	11	8.62	
Lindurian	0347	24-7-2012	5 Week	Freezer	10	9.50	
Lindurian	0500	24-7-2012	Control	Binoculair	10	8.10	Yes
Lindurian	0499	24-7-2012	Control	Freezer	11	8.03	
Lindurian	0498	24-7-2012	Control	Freezer	11	7.60	
Lindurian	0497	24-7-2012	Control	Freezer	11	8.10	
Fremont	0099	24-7-2012	5 Week	Binoculair	11	8.75	Yes
Fremont	0098	24-7-2012	5 Week	Freezer	11	9.60	
Fremont	0097	24-7-2012	5 Week	Freezer	10	9.20	
Fremont	0096	24-7-2012	5 Week	Freezer	10	7.90	
Fremont	0250	24-7-2012	Control	Binoculair	11	9.58	Yes
Fremont	0249	24-7-2012	Control	Freezer	10	8.60	
Fremont	0248	24-7-2012	Control	Freezer	11	9.22	
Fremont	0247	24-7-2012	Control	Freezer	10	8.95	
Lindurian	0447	26-7-2012	6 Week	Binoculair	10	8.45	Yes
Lindurian	0434	26-7-2012	6Week	Freezer	12	8.13	
Lindurian	0487	26-7-2012	6 Week	Freezer	12	8.15	
Lindurian	0485	26-7-2012	6Week	Freezer	11	8.25	
Lindurian	0311	26-7-2012	5 Week	Binoculair	12	9.08	Yes
Lindurian	0294	26-7-2012	5 Week	Freezer	12	9.09	
Lindurian	0323	26-7-2012	5 Week	Freezer	12	8.44	
Lindurian	0282	26-7-2012	5 Week	Freezer	13	9.14	
Lindurian	0395	26-7-2012	Control	Binoculair	12	7.96	Yes
Lindurian	0380	26-7-2012	Control	Freezer	11	9.52	
Lindurian	0416	26-7-2012	Control	Freezer	12	8.79	
Lindurian	0401	26-7-2012	Control	Freezer	12	9.22	
Fremont	0220	26-7-2012	6 Week	Binoculair	10	8.71	Yes
Fremont	0218	26-7-2012	6Week	Freezer	10	8.42	
Fremont	0187	26-7-2012	6 Week	Freezer	9	7.91	
Fremont	0188	26-7-2012	6 Week	Freezer	10	8.32	

Hybrid	Greenhouse No.	Date	Swap	Purpose	No. of Leaves	Stem (mm)	Picture
Fremont	0097	26-7-2012	5 Week	Binoculair	11	9.07	Yes
Fremont	0025	26-7-2012	5 Week	Freezer	10	9.22	
Fremont	0087	26-7-2012	5 Week	Freezer	12	9.20	
Fremont	0085	26-7-2012	5 Week	Freezer	11	8.72	
Fremont	0151	26-7-2012	Control	Binoculair	12	10.15	Yes
Fremont	0135	26-7-2012	Control	Freezer	11	9.17	
Fremont	0148	26-7-2012	Control	Freezer	11	8.81	
Fremont	0141	26-7-2012	Control	Freezer	11	10.17	
Lindurian	0460	31-7-2012	6 Week	Binoculair	15	8.79	Yes
Lindurian	0444	31-7-2012	6 Week	Freezer	13	8.39	
Lindurian	0478	31-7-2012	6 Week	Freezer	11	7.18	
Lindurian	0474	31-7-2012	6 Week	Freezer	13	8.25	
Lindurian	0292	31-7-2012	5 Week	Binoculair	16	9.33	Yes
Lindurian	0391	31-7-2012	5 Week	Freezer	15	9.47	
Lindurian	0281	31-7-2012	5 Week	Freezer	15	9.70	
Lindurian	0304	31-7-2012	5 Week	Freezer	16	9.94	
Lindurian	0393	31-7-2012	Control	Binoculair	14	8.14	Yes
Lindurian	0382	31-7-2012	Control	Freezer	16	8.26	
Lindurian	0414	31-7-2012	Control	Freezer	15	8.76	
Lindurian	0403	31-7-2012	Control	Freezer	12	7.83	
Fremont	0193	31-7-2012	6 Week	Binoculair	14	9.44	Yes
Fremont	0214	31-7-2012	6 Week	Freezer	11	8.60	
Fremont	0198	31-7-2012	6 Week	Freezer	12	8.58	
Fremont	0233	31-7-2012	6 Week	Freezer	14	9.07	
Fremont	0071	31-7-2012	5 Week	Binoculair	15	10.20	Yes
Fremont	0057	31-7-2012	5 Week	Freezer	13	9.76	
Fremont	0031	31-7-2012	5 Week	Freezer	9	7.28	
Fremont	0090	31-7-2012	5 Week	Freezer	14	10.12	
Fremont	0154	31-7-2012	Control	Binoculair	14	9.22	Yes
Fremont	0157	31-7-2012	Control	Freezer	11	7.05	
Fremont	0153	31-7-2012	Control	Freezer	13	8.81	
Fremont	0136	31-7-2012	Control	Freezer	13	9.60	
Lindurian	0445	2-8-2012	6 Week	Binoculair	17	8.17	Yes
Lindurian	0490	2-8-2012	6 Week	Freezer	17	8.72	
Lindurian	0454	2-8-2012	6 Week	Freezer	17	8.58	
Lindurian	0464	2-8-2012	6 Week	Freezer	16	8.20	
Lindurian	0305	2-8-2012	5 Week	Binoculair	18	9.60	Yes
Lindurian	0337	2-8-2012	5 Week	Freezer	17	8.76	
Lindurian	0278	2-8-2012	5 Week	Freezer	17	9.13	
Lindurian	0312	2-8-2012	5 Week	Freezer	20	9.00	
Lindurian	0394	2-8-2012	Control	Binoculair	17	8.96	Yes
Lindurian	0413	2-8-2012	Control	Freezer	16	9.09	
Lindurian	0404	2-8-2012	Control	Freezer	17	9.24	
Lindurian	0379	2-8-2012	Control	Freezer	18	9.58	
Fremont	0212	2-8-2012	6 Week	Binoculair	16	9.20	Yes
Fremont	0182	2-8-2012	6 Week	Freezer	15	8.96	
Fremont	0202	2-8-2012	6 Week	Freezer	16	8.72	
Fremont	0239	2-8-2012	6 Week	Freezer	17	9.27	

Hybrid	Greenhouse No.	Date	Swap	Purpose	No. of Leaves	Stem (mm)	Picture
Fremont	0030	2-8-2012	5 Week	Binoculair		9.10	Yes
Fremont	0065	2-8-2012	5 Week	Freezer	17	9.70	163
Fremont	0052	2-8-2012	5 Week	Freezer	15	8.49	
Fremont	0064	2-8-2012	5 Week	Freezer	16	9.28	
Fremont	0147	2-8-2012	Control	Binoculair	15	9.71	Yes
Fremont	0131	2-8-2012	Control	Freezer	17	9.74	163
Fremont	0152	2-8-2012	Control	Freezer	15	9.30	
Fremont	0173	2-8-2012	Control	Freezer	10	6.18	
Tremone	01/5	2 0 2012	control	1166261	10	0.10	
Lindurian	0468	8-8-2012	6 Week	Binoculair	21	9.80	Yes
Lindurian	0491	8-8-2012	6Week	Freezer	21	9.40	
Lindurian	0433	8-8-2012	6 Week	Freezer	22	9.72	
Lindurian	0457	8-8-2012	6 Week	Freezer	21	9.63	
Lindurian	0340	8-8-2012	5 Week	Binoculair	21	9.06	Yes
Lindurian	0295	8-8-2012	5 Week	Freezer	23	9.18	
Lindurian	0306	8-8-2012	5 Week	Freezer	23	9.27	
Lindurian		8-8-2012	5 Week	Freezer	20	8.91	
Lindurian		8-8-2012	Control	Binoculair		9.26	Yes
Lindurian	0417	8-8-2012	Control	Freezer	22	9.01	
Lindurian	0396	8-8-2012	Control	Freezer	23	8.53	
Lindurian	0386	8-8-2012	Control	Freezer	22	8.83	
Fremont	0137	8-8-2012	6 Week	Binoculair	22	10.24	Yes
Fremont	0208	8-8-2012	6 Week	Freezer	23	9.43	163
Fremont	0238	8-8-2012	6 Week	Freezer	22	9.88	
Fremont	0238	8-8-2012	6Week	Freezer	20	9.94	
Fremont	0099	8-8-2012	5 Week	Binoculair		10.53	Yes
Fremont	0089	8-8-2012	5 Week	Freezer	22	11.27	103
Fremont	0047	8-8-2012	5 Week	Freezer	22	10.67	
Fremont	0029	8-8-2012	5 Week	Freezer	20	9.87	
Fremont	0174	8-8-2012	Control	Binoculair		9.25	Yes
Fremont	0130	8-8-2012	Control	Freezer	23	10.00	
Fremont	0129	8-8-2012	Control	Freezer	23	10.00	
Fremont	0176	8-8-2012	Control	Freezer	20	9.75	
Tremone	01/0	0 0 2012	control	meezer	20	5.75	
Lindurian	0496	9-8-2012	6 Week	Binoculair	23	9.38	Yes
Lindurian		9-8-2012	6 Week		23	9.35	
Lindurian		9-8-2012	6 Week		24	9.15	
Lindurian	-	9-8-2012	6 Week	Freezer	24	9.86	
Lindurian		9-8-2012	5 Week	Binoculair		10.23	Yes
Lindurian		9-8-2012	5 Week	Freezer	26	10.01	
Lindurian		9-8-2012	5 Week	Freezer	24	9.17	
Lindurian		9-8-2012	5 Week	Freezer	24	9.52	
Lindurian	-	9-8-2012	Control	Binoculair		9.71	Yes
Lindurian		9-8-2012	Control	Freezer	24	9.39	
Lindurian		9-8-2012	Control	Freezer	23	8.33	
Lindurian		9-8-2012	Control	Freezer	22	9.10	
Fremont	0235	9-8-2012	6 Week	Binoculair		9.93	Yes
Fremont	0243	9-8-2012	6Week	Freezer	23	10.47	
Fremont	0183	9-8-2012	6 Week	Freezer	25	10.71	
Fremont	0179	9-8-2012	6 Week	Freezer	23	10.41	
					~~		

Hybrid	Greenhouse No.	Date	Swap	Purpose	No. of Leaves	Stem (mm)	Picture
Fremont	0092	9-8-2012	5 Week	Binoculair	26	9.75	Yes
Fremont	0045	9-8-2012	5 Week	Freezer	21	10.64	
Fremont	0078	9-8-2012	5 Week	Freezer	22	10.66	
Fremont	0072	9-8-2012	5 Week	Freezer	25	10.74	
Fremont	0177	9-8-2012	Control	Binoculair		10.32	Yes
Fremont	0166	9-8-2012	Control	Freezer	21	10.36	
Fremont	0146	9-8-2012	Control	Freezer	22	11.25	
Fremont	0165	9-8-2012	Control	Freezer	21	9.22	
Lindurian	0450	14-8-2012	6 Week	Binoculair	24	9.60	Yes
Lindurian	0483	14-8-2012	6 Week	Freezer	27	10.08	
Lindurian	0466	14-8-2012	6 Week	Freezer	23	8.79	
Lindurian	0482	14-8-2012	6 Week	Freezer	22	9.53	
Lindurian	0308	14-8-2012	5 Week	Binoculair	28	9.85	Yes
Lindurian	0279	14-8-2012	5 Week	Freezer	30	9.74	
Lindurian	0288	14-8-2012	5 Week	Freezer	26	8.45	
Lindurian	0303	14-8-2012	5 Week	Freezer	29	10.57	
Lindurian	0398	14-8-2012	Control	Binoculair	22	8.86	Yes
Lindurian	0408	14-8-2012	Control	Freezer	24	9.15	
Lindurian	0411	14-8-2012	Control	Freezer	22	8.56	
Lindurian	0391	14-8-2012	Control	Freezer	23	9.26	
Fremont	0192	14-8-2012	6Week	Binoculair		10.99	Yes
Fremont	0189	14-8-2012	6 Week	Freezer	25	10.38	
Fremont	0222	14-8-2012	6 Week	Freezer	25	10.24	
Fremont	0221	14-8-2012	6 Week	Freezer	22	11.53	
Fremont	0081	14-8-2012	5 Week	Binoculair		11.17	Yes
Fremont	0031	14-8-2012	5 Week	Freezer	24	11.04	
Fremont	0026	14-8-2012	5 Week	Freezer	24	11.83	
Fremont	0080	14-8-2012	5 Week	Freezer	21	10.10	
Fremont	0144	14-8-2012	Control	Binoculair		9.93	Yes
Fremont	0139	14-8-2012	Control	Freezer	25	11.17	
Fremont	0145	14-8-2012	Control	Freezer	26	10.08	
Fremont	0143	14-8-2012	Control	Freezer	24	9.91	
	0115	110 2012	control		2.	5.51	
Lindurian	0431	16-8-2012	6 Week	Binoculair	27	9.83	Yes
Lindurian	0430	16-8-2012	6 Week	Freezer	22	9.59	
Lindurian	0435	16-8-2012	6Week	Freezer	27	10.43	
Lindurian	0441	16-8-2012	6 Week	Freezer	25	9.06	
Lindurian	0334	16-8-2012	5 Week	Binoculair	28	9.90	Yes
Lindurian	0277	16-8-2012	5 Week	Freezer	26	10.41	
Lindurian	0297	16-8-2012	5 Week	Freezer	25	9.42	
Lindurian	0307	16-8-2012	5 Week	Freezer	27	10.02	
Lindurian	0392	16-8-2012	Control	Binoculair	31	9.84	Yes
Lindurian	0406	16-8-2012	Control	Freezer	25	8.99	
Lindurian	0418	16-8-2012	Control	Freezer	27	8.87	
Lindurian	0419	16-8-2012	Control	Freezer	24	9.96	
Fremont	0232	16-8-2012	6 Week	Binoculair	23	10.38	Yes
Fremont	0242	16-8-2012	6 Week	Freezer	28	11.37	
Fremont	0140	16-8-2012	6 Week	Freezer	25	11.89	
Fremont	0199	16-8-2012	6 Week	Freezer	25	11.15	

Hybrid	Greenhouse No.	Date	Swap	Purpose	No. of Leaves	Stem (mm)	Picture
Fremont	0024	16-8-2012	5 Week	Binoculair	24	11.11	Yes
Fremont	0095	16-8-2012	5 Week	Freezer	26	12.07	
Fremont	0063	16-8-2012	5 Week	Freezer	24	10.88	
Fremont	0059	16-8-2012	5 Week	Freezer	20	9.52	
Fremont	0142	16-8-2012	Control	Binoculair	23	10.58	Yes
Fremont	0172	16-8-2012	Control	Freezer	25	10.50	
Fremont	0178	16-8-2012	Control	Freezer	21	10.26	
Fremont	0164	16-8-2012	Control	Freezer	21	10.38	
Lindurian	0480	21-8-2012	6 Week	Binoculair	31	9.59	Yes
Lindurian	0443	21-8-2012	6 Week	Freezer	30	10.04	
Lindurian	0455	21-8-2012	6 Week	Freezer	30	11.17	
Lindurian	0469	21-8-2012	6 Week	Freezer	29	9.59	
Lindurian	0332	21-8-2012	5 Week	Binoculair	30	10.00	Yes
Lindurian	0270	21-8-2012	5 Week	Freezer	30	10.23	
Lindurian	0341	21-8-2012	5 Week	Freezer	28	10.31	
Lindurian	0336	21-8-2012	5 Week	Freezer	25	10.51	
Lindurian	0420	21-8-2012	Control	Binoculair	25	11.17	Yes
Lindurian	0407	21-8-2012	Control	Freezer	27	9.26	
Lindurian	0423	21-8-2012	Control	Freezer	25	9.82	
Lindurian	0399	21-8-2012	Control	Freezer	28	8.58	
cincianan	0355	2102012	control	meezer	20	0.50	
Lindurian	0456	23-8-2012	6 Week	Binoculair	28	10.68	Yes
Lindurian	0446	23-8-2012	6 Week	Freezer	31	9.99	163
Lindurian	0432	23-8-2012	6 Week	Freezer	32	9.54	
Lindurian	0452	23-8-2012	6 Week	Freezer	32	9.73	
Lindurian	0326	23-8-2012	5 Week	Binoculair	28	11.08	Yes
Lindurian	0314	23-8-2012	5 Week	Freezer	29	10.04	163
Lindurian	0273	23-8-2012	5 Week	Freezer	31	9.94	
Lindurian	0286	23-8-2012	5 Week	Freezer	35	10.62	
Lindurian	0405	23-8-2012	Control	Binoculair	31	9.88	Yes
Lindurian	0405	23-8-2012	Control	Freezer	51	5.00	163
Lindurian		23-8-2012	Control	Freezer			
Lindurian		23-8-2012	Control	Freezer			
Fremont	0180	23-8-2012	6 Week	Binoculair	32	10.86	Yes
Fremont	0191	23-8-2012	6Week	Freezer	28	11.09	163
Fremont	0240	23-8-2012	6Week	Freezer	26	11.01	
Fremont	0240	23-8-2012	6 Week	Freezer	32	10.60	
Fremont	0061	23-8-2012	5 Week	Binoculair		10.68	Yes
Fremont	0032	23-8-2012	5 Week	Freezer	25	10.68	163
Fremont	0032	23-8-2012	5 Week	Freezer	30	10.07	
Fremont	0082	23-8-2012	5 Week	Freezer	32	10.72	
Fremont	0150	23-8-2012	Control	Binoculair	22	10.10	Yes
Fremont	0130	23-8-2012	Control	Freezer	22	11.18	162
Fremont	0159	23-8-2012	Control	Freezer	21	11.18	
Fremont	0155	23-8-2012	Control	Freezer	25	10.12	
riemont	0100	25-0-2012	Control	rieezer	20	10.12	
Lindurian	0448	28-8-2012	6Wook	Binoculair	32	10.23	Yes
Lindurian	0448	28-8-2012	6 Week	Freezer	33	10.23	162
Lindurian	0442	28-8-2012	6 Week	Freezer	36	10.60	
					701		

Hybrid	Greenhouse No.	Date	Swap	Purpose	No. of Leaves	Stem (mm)	Picture
Lindurian	0320	28-8-2012	5 Week	Binoculair	34	10.91	Yes
Lindurian	0289	28-8-2012	5 Week	Freezer	35	10.94	
Lindurian	0331	28-8-2012	5 Week	Freezer	31	10.62	
Lindurian	0274	28-8-2012	5 Week	Freezer	35	9.82	
Lindurian	0421	28-8-2012	Control	Binoculair	30	9.35	Yes
Lindurian		28-8-2012	Control	Freezer			
Lindurian		28-8-2012	Control	Freezer			
Lindurian		28-8-2012	Control	Freezer			
Lindurian	0439	30-8-2012	6 Week	Binoculair	34	9.55	Yes
Lindurian	0477	30-8-2012	6 Week	Freezer	30	8.12	
Lindurian	0459	30-8-2012	6Week	Freezer	32	10.12	
Lindurian	0437	30-8-2012	6 Week	Freezer	36	9.37	
Lindurian	0333	30-8-2012	5 Week	Binoculair	31	10.14	Yes
Lindurian	0290	30-8-2012	5 Week	Freezer	32	10.83	
Lindurian	0275	30-8-2012	5 Week	Freezer	33	9.88	
Lindurian	0422	30-8-2012	5 Week	Freezer	30	10.09	
Lindurian		30-8-2012	Control	Binoculair	31	10.44	Yes
Lindurian		30-8-2012	Control	Freezer			
Lindurian		30-8-2012	Control	Freezer			
Lindurian		30-8-2012	Control	Freezer			
Fremont	0241	30-8-2012	6Week	Binoculair	30	12.00	Yes
Fremont	0213	30-8-2012	6Week	Freezer	32	11.53	
Fremont	0235	30-8-2012	6Week	Freezer	30	13.16	
Fremont	0207	30-8-2012	6 Week	Freezer	31	11.58	
Fremont	0044	30-8-2012	5 Week	Binoculair	28	10.68	Yes
Fremont	0083	30-8-2012	5 Week	Freezer	29	10.46	
Fremont	0093	30-8-2012	5 Week	Freezer	29	11.62	
Fremont	0034	30-8-2012	5 Week	Freezer	28	10.86	
Fremont	0162	30-8-2012	Control	Binoculair	27	10.18	Yes
Fremont	0169	30-8-2012	Control	Freezer	26	10.22	
Fremont	0167	30-8-2012	Control	Freezer	32	9.76	
Fremont	0158	30-8-2012	Control	Freezer	30	13.13	
Lindurian	0492	4-9-2012	6 Week	Binoculair	36	10.72	Yes
Lindurian	0494	4-9-2012	6 Week	Freezer	33	11.23	
Lindurian	0475	4-9-2012	6 Week	Freezer	36	10.96	
Lindurian	0493	4-9-2012	6 Week	Freezer	40	11.71	
Lindurian	0271	4-9-2012	5 Week	Binoculair	36	10.36	Yes
Lindurian	0284	4-9-2012	5 Week	Freezer	39	9.97	
Lindurian	0280	4-9-2012	5 Week	Freezer	38	10.12	
Lindurian	0283	4-9-2012	5 Week	Freezer	40	10.19	
Lindurian	0387	4-9-2012	Control	Binoculair	46	11.07	Yes
Lindurian		4-9-2012	Control	Freezer			
Lindurian		4-9-2012	Control	Freezer			
Lindurian		4-9-2012	Control	Freezer			
Lindurian	0388	6-9-2012	Control	Binoculair	39	10.41	Yes
Lindurian	0330	6-9-2012	5 Week	Binoculair	36	9.52	Yes
Lindurian	0471	6-9-2012	6 Week	Binoculair	38	11.63	Yes

Hybrid	Greenhouse No.	Date	Swap	Purpose	No. of Leaves	Stem (mm)	Picture
Lindurian		11-9-2012	Control	Binoculair			Yes
Lindurian	0344	11-9-2012	5 Week	Binoculair	41	10.86	Yes
Lindurian	0458	11-9-2012	6 Week	Binoculair	46	11.61	Yes
Lindurian		13-9-2012	Control	Binoculair			Yes
Lindurian	0329	13-9-2012	5 Week	Binoculair	40	11.51	Yes
Lindurian	0476	13-9-2012	6 Week	Binoculair	42	11.33	Yes
Lindurian		18-9-2012	Control	Binoculair			Yes
Lindurian	0285	18-9-2012	5 Week	Binoculair	51		Yes
Lindurian	0473	18-9-2012	6 Week	Binoculair	45		Yes
Lindurian		20-9-2012	Control	Binoculair			Yes
Lindurian	0310	20-9-2012	5 Week	Binoculair	53		Yes
Lindurian	0486	20-9-2012	6 Week	Binoculair	48		Yes
Lindurian		25-9-2012	Control	Binoculair			Yes
Lindurian	0298	25-9-2012	5 Week	Binoculair	51		Yes
Lindurian	0461	25-9-2012	6 Week	Binoculair	45		Yes
Lindurian		27-9-2012	Control	Binoculair			Yes
Lindurian	0276	27-9-2012	5 Week	Binoculair	54		Yes
Lindurian	0409	27-9-2012	6 Week	Binoculair	51		Yes
Lindurian		2-10-2012	Control	Binoculair			Yes
Lindurian	0300	2-10-2012	5 Week	Binoculair	60		Yes
Lindurian	0436	2-10-2012	6 Week	Binoculair	62		Yes
Lindurian		4-10-2012	Control	Binoculair			Yes
Lindurian	0293	4-10-2012		Binoculair			Yes
Lindurian	0438	4-10-2012	6 Week	Binoculair	60		Yes
Lindurian		10-10-2012		Binoculair			Yes
Lindurian	0291	10-10-2012	5 Week	Binoculair			Yes
Lindurian	0479	10-10-2012	6 Week	Binoculair	59		Yes
Lindurian		11-10-2012	Control	Binoculair			Yes
Lindurian	0324	11-10-2012	5 Week	Binoculair			Yes
Lindurian	0465	11-10-2012	6 Week	Binoculair	56		Yes
Lin du t		45 40 2042	Cart 1	Dia and the			N
Lindurian		16-10-2012	Control	Binoculair			Yes
Lindurian	0335	16-10-2012	5 Week	Binoculair			Yes
Lindurian	0470	16-10-2012	6 Week	Binoculair	65		Yes

Appendix 7: Correlations between leaf number and stem thickness

Remark:

No correlation between leaf number and stem thickness

Has correlation between leaf number and stem thickness

Abbreviations :L - Lindurian

F - Fremont

L+N(Number:7,8,9 et.al) – Leaf number when plant was N weeks old.

S+N(Number:7,8,9 et.al) - Stem thickness when plant was N weeks old.

Table 1. Correlations between leaf number and stem thickness in control

							Co	orrelatio	ns betw	een Lea	ve Num	ber and	Stem Th	ninkness	s in Cont	rol Grou	ıp							
	L-L7	F-L7	L-S7	F-S7	L-L8	F-L8	L-S8	F-S8	L-L9	F-L9	L-S9	F-S9	L-L10	F-L10	L-S10	F-S10	L-L11	F-L11	L-S11	F-S11	L-L12	F-L12	L-S12	F-S12
L-L7	1	.333	637	.391	683	.927	022	.958	.333	522	222	366	870	174	409	992	333	.632	.271	407	-1.000	.666	-1.000	.259
F-L7	.333	1	897	.554	098	.662	185	.325	333	870	.765	911	522	522	207	379	556	422	.887	.035	-1.000	424	-1.000	276
L-S7	637	897	1	368	.149	862	103	540	081	.759	402	.736	.843	.248	.550	.639	.766	016	906	104	1.000	003	1.000	.344
F-S7	.391	.554	368	1	781	.531	882	.607	738	879	.634	846	108	974	.537	503	.313	366	.116	796	-1.000	286	-1.000	.640
L-L8	683	098	.149	781	1	082	.887	452	.360	.498	.153	.280	.549	528	.436	.552	.376	247	.252	.945	1.000	337	1.000	865
F-L8	.927	.662	862	.531	082	1	.074	.880	.565	092	.209	.576	.397	.153	346	194	.393	.335	.471	310	-1.000	.361	-1.000	.096
L-S8	022	185	103	882	.887	.074	1	276	.328	.386	.014	.305	.433	558	.340	.193	.321	.493	.263	.853	1.000	.406	1.000	803
F-S8	.958	.325	540	.607	452	.880	276	1	.482	178	.090	.454	.273	.251	391	447	.325	.491	.155	645	-1.000	.549	-1.000	.499
L-L9	.333	333	081	738	.360	.565	.328	.482	1	.433	.551	.425	.858	028	.328	.216	.778	.843	.093	.510	a	.787	.a	456
F-L9	522	870	.759	879	.498	092	.386	178	.433	1	166	.565	.474	.066	.128	.603	.404	.330	496	.460	1.000	.284	1.000	229
L-S9	222	.765	402	.634	.153	.209	.014	.090	.551	166	1	371	.401	.089	.565	.294	.679	892	.366	105	-1.000	875	-1.000	046
F-S9	366	911	.736	846	.280	.576	.305	.454	.425	.565	371	1	.547	115	320	.198	.571	.487	458	.361	1.000	.450	1.000	134
L-L10	870	522	.843	108	.549	.397	.433	.273	.858	.474	.401	.547	1	430	.511	.378	.919	550	061	072	1.000	537	1.000	.247
F-L10	174	522	.248	.07.1	528	.153	558	.251	028	.066	.089	115	430	1	556	.072	740	.550	107	.745	1.000	.474	1.000	612
L-S10	409	207	.550	.537	.436	346	.340	391	.328	.128	.565	320	.511	556	1	.294	.973	560	269	662	1.000	490	1.000	.729
F-S10	992	379	.639	503	.552	194	.193	447	.216	.603	.294	.198	.378	.072	.294	1	.349	549	229	.498	1.000	592	1.000	339
L-L11	333	556	.766	.313	.376	.393	.321	.325	.778	.404	.679	.571	.919	740	.973	.349	1	211	381	681	1.000	141	1.000	.818
F-L11	.632	422	016	366	247	.335	.493	.491	.843	.330	892	.487	550	.550	560	549	211	1	217	032	-1.000	.995	-1.000	.078
L-S11	.271	.887	906	.116	.252	.471	.263	.155	.093	496	.366	458	061	107	269	229	381	217	1	.455	-1.000	261	-1.000	663
F-S11	407	.035	104	796	.945	310	.853	645	.510	.460	105	.361	072	.745	662	.498	681	032	.455	1	1.000	130	1.000	968
L-L12	-1.000	-1.000	1.000	-1.000	1.000	-1.000	1.000	-1.000	a	1.000	-1.000	1.000	1.000	1.000	1.000	1.000	1.000	-1.000	-1.000	1.000	1	-1.000	1.000	1.000
F-L12	.666	424	003	286	337	.361	.406	.549	.787	.284	875	.450	537	.474	490	592	141	.995	261	130	-1.000	1	-1.000	.173
L-S12	-1.000	-1.000	1.000	-1.000	1.000	-1.000	1.000	-1.000	a	1.000	-1.000	1.000	1.000	1.000	1.000	1.000	1.000	-1.000	-1.000	1.000	1.000	-1.000	1	1.000
F-S12	.259	276	.344	.640	865	.096	803	.499	456	229	046	134	.247	612	.729	339	.818	.078	663	968	1.000	.173	1.000	1
*. Correla	ation is si	gnificant	at the 0.0	5 level (2-	-tailed).**	. Correlati	ion is sig	nificant at	the 0.01	level (2-ta	ailed).a. C	annot be	compute	d becaus	e at least	one of th	ne variable	es is cons	stant.					

Table 2. Correlations between leaf number and stem thickness in 5 weeks high temperature treatment group

					C	orrelatio	ons betw	een Lea	ives Nun	nber an	d Stem 1	Chinkne :	ssin 5 w	eeks Hi	gh Temp	erature	Treatme	ent Grou	р					
	L-L7	F-L7	L-S7	F-S7	L-L8	F-L8	L-58	F-S8	L-L9	F-L9	L-S9	F-S9	L-L10	F-L10	L-S10	F-S10	L-L11	F-L11	L-S11	F-S11	L-L12	F-L12	L-S12	F-S12
L-L7	1	.000	.406	958	.577	.317	.822	.375	778	728	834	829	.293	962	.693	874	917	.878	.782	997	.440	577	961	060
F-L7	.000	1	798	035	.000	621	.351	730	.000	.000	.236	426	956	.000	597	.452	346	.478	.155	.077	863	.000	250	.940
L-S7	.406	798	1	488	.599	.944	147	.989	596	.011	749	158	.881	269	.938	794	007	025	075	478	.978	599	138	924
F-S7	958	035	488	1	786	486	671	496	.924	.501	.933	.912	247	.844	758	.872	.834	858	583	.960	462	.786	.896	.120
L-L8	.577	.000	.599	786	1	.499	500	.090	.453	.543	.502	223	267	471	.360	555	.624	.507	.453	597	657	-1.000	478	309
F-L8	.317	621	.944	486	.499	1	733	.652	.178	029	.087	.113	121	042	.737	280	.421	019	338	383	.106	768	055	844
L-S8	.822	.351	147	671	500	733	1	105	666	138	390	457	.522	276	198	129	695	.889	.415	780	.360	108	238	.432
F-S8	.375	730	.989	496	.090	.652	105	1	310	.014	086	120	.623	067	.877	304	062	020	040	445	.565	683	.137	901
L-L9	778	.000	596	.924	.453	.178	666	310	1	.208	.842	.164	503	.360	058	.368	.376	683	.118	.792	647	.962	.100	.258
F-L9	728	.000	.011	.501	.543	029	138	.014	.208	1	.407	159	.054	049	091	199	.492	639	.469	.707	493	140	.037	188
L-S9	834	.236	749	.933	.502	.087	390	086	.842	.407	1	273	221	.296	.169	.315	.093	620	.488	.863	644	.889	.059	.439
F-S9	829	426	158	.912	223	.113	457	120	.164	159	273	1	060	.190	337	.154	.566	932	607	.804	.100	.774	.575	230
L-L10	.293	956	.881	247	267	121	.522	.623	503	.054	221	060	1	233	.392	300	280	200	.339	365	.579	169	.196	916
F-L10	962	.000	269	.844	471	042	276	067	.360	049	.296	.190	233	1	212	.923	223	845	477	.952	.130	.333	.661	034
L-S10	.693	597	.938	758	.360	.737	198	.877	058	091	.169	337	.392	212	1	373	096	.324	.151	748	.305	730	178	738
F-S10	874	.452	794	.872	555	280	129	304	.368	199	.315	.154	300	.923	373	1	363	552	377	.911	015	.648	.641	.536
L-L11	917	346	007	.834	.624	.421	695	062	.376	.492	.093	.566	280	223	096	363	1	971	125	.882	452	.367	.052	337
F-L11	.878	.478	025	858	.507	019	.889	020	683	639	620	932	200	845	.324	552	971	1	.761	839	026	507	964	.397
L-S11	.782	.155	075	583	.453	338	.415	040	.118	.469	.488	607	.339	477	.151	377	125	.761	1	752	421	.041	425	.302
F-S11	997	.077	478	.960	597	383	780	445	.792	.707	.863	.804	365	.952	748	.911	.882	839	752	1	512	.597	.936	.140
L-L12	.440	863	.978	462	657	.106	.360	.565	647	493	644	.100	.579	.130	.305	015	452	026	421	512	1	457	.161	921
F-L12	577	.000	599	.786	-1.000	768	108	683	.962	140	.889	.774	169	.333	730	.648	.367	507	.041	.597	457	1	.459	.309
L-S12	961	250	138	.896	478	055	238	.137	.100	.037	.059	.575	.196	.661	178	.641	.052	964	425	.936	.161	.459	1	217
F-S12	060	.940	924	.120	309	844	.432	901	.258	188	.439	230	916	034	738	.536	337	.397	.302	.140	921	.309	217	1
*. Correla	ation is si	gnificanta	at the 0.0	5 level (2-	-tailed).**.	Correlat	ion is sig	nificant a	the 0.01	level (2-ta	ailed).													

					Co	orrelatio	ns betw	een Lea	ves Nun	nber and	d Stem T	hinknee	sin 6 w	eeks Hi	gh Temp	erature	Treatme	ent Grou	р					
	L-L7	F-L7	L-S7	F-S7	L-L8	F-L8	L-58	F-S8	L-L9	F-L9	L-S9	F-S9	L-L10	F-L10	L-S10	F-S10	L-L11	F-L11	L-S11	F-S11	L-L12	F-L12	L-S12	F-S12
L-L7	1	522	987	757	853	870	695	998	.522	.346	639	836	.322	.754	150	677	426	870	.711	.565	.501	.455	.626	.286
F-L7	522	1	.433	.866	.816	.333	.943	.553	-1.000	132	318	015	.309	556	.889	.612	.000	.778	959	371	757	.522	303	961
L-S7	987	.433	1	.739	.837	.812	.650	.974	433	226	.695	.857	274	645	.091	.552	.558	.782	616	444	355	535	520	175
F-S7	757	.866	.739	1	.987	.416	.983	.757	866	.096	.034	.289	.331	457	.734	.446	.481	.759	869	191	476	.147	187	701
L-L8	853	.816	.837	.987	1	.825	.669	.455	.687	.506	441	.684	.329	.252	.474	.476	.282	.816	395	284	121	.000	634	625
F-L8	870	.333	.812	.416	.825	1	.333	.582	.790	.269	071	.769	.130	.019	.083	.543	.289	.852	347	866	.028	522	564	168
L-S8	695	.943	.650	.983	.669	.333	1	.436	.036	.282	328	.403	.138	.096	.652	.575	.327	.789	803	262	573	.290	346	819
F-S8	998	.553	.974	.757	.455	.582	.436	1	.031	336	.479	.303	143	405	158	.184	009	.901	389	614	112	420	320	328
L-L9	.522	-1.000	433	866	.687	.790	.036	.031	1	.659	300	.711	.305	.444	.073	.354	.458	778	025	.371	.361	522	488	.961
F-L9	.346	132	226	.096	.506	.269	.282	336	.659	1	540	.508	.574	.600	.483	.257	.682	574	165	.959	.310	.208	084	.153
L-S9	639	318	.695	.034	441	071	328	.479	300	540	1	145	441	323	812	257	.069	.292	.047	360	.323	972	.160	.535
F-S9	836	015	.857	.289	.684	.769	.403	.303	.711	.508	145	1	113	.331	.107	.765	.688	.573	454	547	111	851	508	.248
L-L10	.322	.309	274	.331	.329	.130	.138	143	.305	.574	441	113	1	123	.617	203	.006	309	003	.759	.418	.645	.376	352
F-L10	.754	556	645	457	.252	.019	.096	405	.444	.600	323	.331	123	1	033	.095	.521	926	.108	.959	.125	.174	572	.468
L-S10		.889	.091	.734	.474	.083	.652	158	.073	.483	812	.107	.617	033	1	.356	.027	.405	454	.055	415	.778	.110	915
F-S10	677	.612	.552	.446	.476	.543	.575	.184	.354	.257	257	.765	203	.095	.356	1	.531	.915	797	960	604	038	338	559
L-L11	426	.000	.558	.481	.282	.289	.327	009	.458	.682	.069	.688	.006	.521	.027	.531	1	.000	508	.492	.151	426	143	.226
F-L11	870	.778	.782	.759	.816	.852	.789	.901	778	574	.292	.573	309	926	.405	.915		1	924	783	858	058	779	646
L-S11	.711	959	616	869	395	347	803	389	025	165	.047	454	003	.108	454	797	508	924	1	.580	.563	291	.105	.875
F-S11	.565	371	444	191	284	866	262	614	.371	.959	360	547	.759	.959	.055	960	.492	783	.580	1	.861	.178	.990	.341
L-L12		757	355	476	121	.028	573	112	.361	.310	.323	111	.418	.125	415	604	.151	858	.563	.861	1	290	.248	.769
F-L12	.455	.522	535	.147	.000	522	.290	420	522	.208	972	851	.645	.174	.778	038		058	291	.178	290	1	.310	717
L-S12		303	520	187	634	564	346	320	488	084	.160	508	.376	572	.110	338		779	.105	.990	.248	.310	1	.242
F-S12	.286	961	175	701	625	168	819	328	.961	.153	.535	.248	352	.468	915	559	.226	646	.875	.341	.769	717	.242	1
*. Correl	ation is si	gnificant	at the 0.0	5 level (2-	tailed).**.	Correlat	ion is sig	nificant at	the 0.01	level (2-ta	ailed).													

Table 3. Correlations between leaf number and stem thickness in 6 weeks high temperature treatment group

Appendix 8: Curd harvest stages in the field

Blo ck	Harvest Time	Curd Old(Weeks)	Cultivar	Curd Phenotype
1	26-7-2012		Lindurian Fremont	
			Lindurian	
2	2-8-2012	15	Fremont	
3	9-8-2012		Lindurian	
3	5-6-2012	15	Fremont	
4	9-8-2012	14	Lindurian	
.4			Fremont	

Block Harvest Time Curd Old(Weeks) Cultivar

Curd Phenotype		100
	1	

4	16-8-2012	15	Undurian
			Fre mont
			undurian
5	9-8-2012	13	Fremont
6	16-8-2012	13	Fremont
7	23-8-2012	13	Undurian
	2762012	B	Fremont

Block	Harvest Time	Curd Old(Weeks)	Cultivar	Curd Phenotype
			Linduri an	
8	30-8-2012	13	Fremont	
9	6-9-2012	13	Linduri an	
y	6-9-2012	B	Fremont	

	Curd Measured in the Field									
Block 1-15 Weeks										
Block	Curd Old (weeks)	Date	Hybrid	Field No.	Weight (kg)	Diameter (mm)				
Block1	15		Lindurian	0021	1.788	212.82				
Block1	15	26-7-2012	Lindurian	0022	2.506	244.91				
Block1	15	26-7-2012	Lindurian	0023	2.345	231.51				
Block1	15	26-7-2012	Lindurian	0024	2.399	265.93				
Block1	15	26-7-2012	Lindurian	0031	1.708	205.99				
Block1	15	26-7-2012	Lindurian	0032	2.132	244.49				
Block1	15	26-7-2012	Lindurian	0033	1.932	229.28				
Block1	15	26-7-2012	Lindurian	0034	1.217	197.3				
Block1	15	26-7-2012	Lindurian	0035	2.041	224.54				
Block1	15	26-7-2012	Lindurian	0051	1.959	257.35				
Block1	15	26-7-2012	Lindurian	0052	2.47	245.74				
Block1	15	26-7-2012	Lindurian	0053	2.252	243.85				
Block1	15	26-7-2012	Lindurian	0054	0.725	203.13				
Block1	15	26-7-2012	Lindurian	0055	2.129	228.51				
Block1	15	26-7-2012	Fremont	0026	2.923	251.94				
Block1	15	26-7-2012	Fremont	0027	3.623	269.27				
Block1	15	26-7-2012	Fremont	0028	2.311	233.96				
Block1	15	26-7-2012	Fremont	0029	2.675	248.93				
Block1	15	26-7-2012	Fremont	0030	3.73	301.64				
Block1	15	26-7-2012	Fremont	0036	3.245	277.71				
Block1	15	26-7-2012	Fremont	0037	3.069	264.32				
Block1	15	26-7-2012	Fremont	0038	2.519	236.77				
Block1	15	26-7-2012	Fremont	0039	2.926	239.45				
Block1	15	26-7-2012	Fremont	0040	2.513	262.91				
Block1	15	26-7-2012	Fremont	0041	1.416	218.1				
Block1	15	26-7-2012	Fremont	0042	1.977	247.09				
Block1	15	26-7-2012	Fremont	0043	1.936	222.75				
Block1	15	26-7-2012	Fremont	0044	1.847	215.45				
Block1	15	26-7-2012	Fremont	0045	1.93	263.04				
Block1	15	26-7-2012	Fremont	0046	2.487	229.82				
Block1	15	26-7-2012	Fremont	0047	3.012	274				
Block1	15	26-7-2012	Fremont	0048	2.199	239.99				
Block1	15	26-7-2012	Fremont	0049	1.592	231.54				
Block1	15	26-7-2012	Fremont	0050	2.892	255.44				
Block1	15	26-7-2012	Fremont	0056	3.151	283.01				
Block1	15	26-7-2012	Fremont	0057	1.697	217.07				
Block1	15	26-7-2012	Fremont	0058	3.006	256.94				
Block1	15	26-7-2012	Fremont	0059	0.923	207.4				
Block1	15	26-7-2012	Fremont	0060	3.226	274.05				
Average			Average		Weight (kg)	Diameter (mm)				
Average Lindurian	15	76-7-2012	Average Lindurian		1.972	231.10				
Fremont	15	26-7-2012	Fremont		2.513	248.90				

		Blo	ock 2-15 W	eeks		
Block	Curd Old (weeks)	Date	Hybrid	Field No.	Weight (kg)	Diameter (mm)
Block2	15	2-8-2012	Lindurian	0111	3.637	284.21
Block2	15	2-8-2012	Lindurian	0112	2.685	275.82
Block2	15	2-8-2012	Lindurian	0113	3.475	269
Block2	15	2-8-2012	Lindurian	0114	2.365	259.35
Block2	15	2-8-2012	Lindurian	0115	2.061	248.86
Block2	15	2-8-2012	Lindurian	0121	1.859	220.9
Block2	15	2-8-2012	Lindurian	0122	2.04	247.83
Block2	15	2-8-2012	Lindurian	0123	2.643	253.25
Block2	15	2-8-2012	Lindurian	0124	0.945	185.39
Block2	15	2-8-2012	Lindurian	0125	2.5	248.49
Block2	15	2-8-2012	Lindurian	0141	2.382	236.37
Block2	15	2-8-2012	Lindurian	0142	1.934	233.28
Block2	15	2-8-2012	Lindurian	0143	1.972	240.18
Block2	15	2-8-2012	Lindurian	0144	2.614	262.71
Block2	15	2-8-2012	Lindurian	0145	3.063	300.31
Block2	15	2-8-2012	Lindurian	0151	2.568	261.41
Block2	15	2-8-2012	Lindurian	0152	1.907	210.9
Block2	15	2-8-2012	Lindurian	0153	0.806	172.42
Block2	15	2-8-2012	Lindurian	0154	1.198	215.05
Block2	15	2-8-2012	Lindurian	0155	0.748	215.73
Block2	15	2-8-2012	Fremont	0106	4.498	307.55
Block2	15	2-8-2012	Fremont	0107	3.135	307.55
Block2	15	2-8-2012	Fremont	0108	4.04	301.12
Block2	15	2-8-2012	Fremont	0109	3.787	291.34
Block2	15	2-8-2012	Fremont	0110	4.135	307.55
Block2	15	2-8-2012	Fremont	0116	3.803	301.8
Block2	15	2-8-2012	Fremont	0117	2.683	259.63
Block2	15	2-8-2012	Fremont	0118	3.395	297.35
Block2	15	2-8-2012	Fremont	0119	3.036	293.31
Block2	15	2-8-2012	Fremont	0120	1.673	286.13
Block2	15	2-8-2012	Fremont	0126	3.461	264.78
Block2	15		Fremont	0127	2.599	258.73
Block2	15	2-8-2012	Fremont	0128	4.07	307
Block2	15	2-8-2012		0129	0.515	218.64
Block2	15	2-8-2012	Fremont	0130	2.854	260.41
Block2	15	2-8-2012	Fremont	0136	3.08	269.33
Block2	15	2-8-2012	Fremont	0137	3.499	307.55
Block2	15	2-8-2012	Fremont	0138	3.824	301.95
Block2	15	2-8-2012		0139	3.731	307.05
Block2	15	2-8-2012	Fremont	0140	2.791	277.67

Average			Average	Weight (kg)	Diameter (mm)
Lindurian	15	2-8-2012	Lindurian	2.170	242.07
Fremont	15	2-8-2012	Fremont	3.230	286.32

		Blo	ock 3-15 W	eeks		
Block	Curd Old (weeks)	Date	Hybrid	Field No.	Weight (kg)	Diameter (mm)
Block3	15	9-8-2012	Lindurian	0201	3.222	274.40
Block3	15	9-8-2012	Lindurian	0202	2.331	285.48
Block3	15	9-8-2012	Lindurian	0203	2.826	269.70
Block3	15	9-8-2012	Lindurian	0204	2.558	261.15
Block3	15	9-8-2012	Lindurian	0205	3.525	289.28
Block3	15	9-8-2012	Lindurian	0221	2.784	273.52
Block3	15	9-8-2012	Lindurian	0222	3.487	284.10
Block3	15	9-8-2012	Lindurian	0223	2.839	269.36
Block3	15	9-8-2012	Lindurian	0224	2.229	267.59
Block3	15	9-8-2012	Lindurian	0225	2.846	280.46
Block3	15	9-8-2012	Lindurian	0241	2.177	295.19
Block3	15	9-8-2012	Lindurian	0242	3.296	306.21
Block3	15	9-8-2012	Lindurian	0243	2.181	278.69
Block3	15	9-8-2012	Lindurian	0244	2.486	278.23
Block3	15	9-8-2012	Lindurian	0245	2.997	283.47
Block3	15	9-8-2012	Fremont	0216	3.898	305.78
Block3	15	9-8-2012	Fremont	0217	3.638	307.00
Block3	15	9-8-2012	Fremont	0218	3.552	298.54
Block3	15	9-8-2012	Fremont	0219	4.164	302.03
Block3	15	9-8-2012	Fremont	0220	4.500	285.45
Block3	15	9-8-2012	Fremont	0226	4.145	288.49
Block3	15	9-8-2012	Fremont	0227	2.982	279.12
Block3	15	9-8-2012	Fremont	0228	2.762	307.04
Block3	15	9-8-2012	Fremont	0229	3.841	294.84
Block3	15	9-8-2012	Fremont	0230	4.500	292.95
Block3	15	9-8-2012	Fremont	0236	1.751	285.21
Block3	15	9-8-2012	Fremont	0237	3.759	304.50
Block3	15	9-8-2012	Fremont	0238	3.455	307.00
Block3	15	9-8-2012	Fremont	0239	4.235	307.00
Block3	15	9-8-2012	Fremont	0240	3.969	307.00
Block3	15	9-8-2012	Fremont	0246	3.921	296.19
Block3	15		Fremont	0247	4.280	307.04
Block3	15	9-8-2012		0248	3.665	300.34
Block3	15		Fremont	0249	2.369	288.53
Block3	15	9-8-2012		0250	2.334	274.90
Block3	15	9-8-2012		0256	3.021	299.28
Block3	15	9-8-2012	Fremont	0257	2.779	297.56
Block3	15	9-8-2012	Fremont	0258	4.057	307.03
Block3	15	9-8-2012	Fremont	0259	4.500	307.03
Block3	15	9-8-2012	Fremont	0260	3.383	293.11
Average			Average		Weight (kg)	Diameter (mm)
Lindurian	15	9-8-2012	Lindurian		2.786	279.79
Fremont	15	9-8-2012			3.578	297.72

		Blo	ock 4-15 W	eeks		
Block	Curd Old (weeks)	Date	Hybrid	Field No.	Weight (kg)	Diameter (mm)
Block4	15	9-8-2012	Lindurian	0301	2.291	239.52
Block4	15	9-8-2012	Lindurian	0302	2.090	229.97
Block4	15	9-8-2012	Lindurian	0303	1.726	228.21
Block4	15	9-8-2012	Lindurian	0304	2.746	257.48
Block4	15	9-8-2012	Lindurian	0305	1.973	223.68
Block4	15	9-8-2012	Lindurian	0311	1.541	214.34
Block4	15	9-8-2012	Lindurian	0312	1.865	212.43
Block4	15	9-8-2012	Lindurian	0313	1.905	223.13
Block4	15	9-8-2012	Lindurian	0314	0.697	181.24
Block4	15	9-8-2012	Lindurian	0315	2.475	263.08
Block4	15	9-8-2012		0321	2.341	246.31
Block4	15	9-8-2012	Lindurian	0322	2.146	228.31
Block4	15	9-8-2012	Lindurian	0323	1.716	204.96
Block4	15	9-8-2012		0324	1.422	196.39
Block4	15	9-8-2012	Lindurian	0325	0.668	206.86
Block4	15	9-8-2012	Lindurian	0341	2.308	243.47
Block4	15	9-8-2012	Lindurian	0342	1.664	216.19
Block4	15	9-8-2012		0343	1.643	250.86
Block4	15	9-8-2012		0344	0.701	166.05
Block4	15	9-8-2012	Lindurian	0345	0.248	106.48
Block4	15	9-8-2012	Fremont	0306	3.615	307.00
Block4	15	9-8-2012	Fremont	0307	2.658	240.05
Block4	15	9-8-2012	Fremont	0308	2.856	271.63
Block4	15	9-8-2012	Fremont	0309	2.244	267.99
Block4	15	9-8-2012	Fremont	0310	1.449	251.44
Block4	15	9-8-2012	Fremont	0316	2.888	279.62
Block4	15	9-8-2012	Fremont	0317	2.917	275.28
Block4	15	9-8-2012	Fremont	0318	2.291	228.91
Block4	15	9-8-2012	Fremont	0319	3.103	277.92
Block4	15	9-8-2012		0320	1.711	212.78
Block4	15	9-8-2012		0336	3.499	270.99
Block4	15	9-8-2012		0337	2.902	291.25
Block4	15	9-8-2012	Fremont	0338	3.309	299.32
Block4	15	9-8-2012	Fremont	0339	1.018	204.55
Block4	15	9-8-2012	Fremont	0340	2.879	258.65
Block4	15	9-8-2012	Fremont	0346	1.406	273.93
Block4	15	9-8-2012		0348	1.400	245.78
Block4	15	9-8-2012	Fremont	0348	3.376	307.07
Block4	15	9-8-2012	Fremont	0349	1.517	190.31
Block4 Block4	15	9-8-2012	Fremont	0349	2.979	300.11
DIOCK4	- 13	5-6-2012	renont	0330	2.3/3	500.11
Average			Average		Weight (kg)	Diameter (mm)
Lindurian	15	9-8-2012	Lindurian		1.708	216.95
Fremont	15	9-8-2012	Fremont		2.522	262.73

	Block 4-14 Weeks									
Block	Curd Old (weeks)	Date	Hybrid	Field No.	Weight (kg)	Diameter (mm)				
Block 4	14	16-8-2012	Lindurian	0331	2.646	239.27				
Block 4	14	16-8-2012	Lindurian	0332	3.232	253.45				
Block 4	14	16-8-2012	Lindurian	0333	3.538	274.75				
Block 4	14	16-8-2012	Lindurian	0334	2.857	259.52				
Block 4	14	16-8-2012	Lindurian	0335	2.888	246.8				
Block 4	14	16-8-2012	Fremont	0326	3.971	307.04				
Block 4	14	16-8-2012	Fremont	0327	4.472	307.04				
Block 4	14	16-8-2012	Fremont	0328	2.942	294.55				
Block 4	14	16-8-2012	Fremont	0329	3.364	292.53				
Block 4	14	16-8-2012	Fremont	0330	3.11	306.97				
Average			Average		Weight (Kg)	Diameter (mm)				
Lindurian	14	16-8-2012	Lindurian		3.0322	254.758				
Fremont	14	16-8-2012	Fremont		3.5718	301.626				

		Blo	ock 5-13 We	eeks		
Block	Curd Old (weeks)	Date	Hybrid	Field No.	Weight (kg)	Diameter (mm)
Block5	13	9-8-2012	Lindurian	0411	1.113	185.75
Block5	13	9-8-2012	Lindurian	0412	0.853	184.24
Block5	13	9-8-2012	Lindurian	0413	0.769	164.95
Block5	13	9-8-2012	Lindurian	0414	0.417	124.23
Block5	13	9-8-2012	Lindurian	0415	0.022	45.91
Block5	13	9-8-2012	Lindurian	0421	0.393	136.84
Block5	13	9-8-2012	Lindurian	0422	0.339	128.22
Block5	13	9-8-2012	Lindurian	0423	0.262	113.67
Block5	13	9-8-2012	Lindurian	0424	0.207	96.34
Block5	13	9-8-2012	Lindurian	0425	0.008	23.64
Block5	13	9-8-2012	Lindurian	0431	1.007	181.86
Block5	13	9-8-2012	Lindurian	0432	0.825	166.04
Block5	13	9-8-2012		0433	0.423	133.2
Block5	13	9-8-2012	Lindurian	0434	0.164	99.02
Block5	13	9-8-2012		0435	0.015	48.52
Block5	13	9-8-2012	Lindurian	0441	0.815	161.07
Block5	13	9-8-2012	Lindurian	0442	0.7	159.56
Block5	13	9-8-2012	Lindurian	0443	0.109	78.56
Block5	13	9-8-2012	Lindurian	0444	0.03	51.96
Block5	13	9-8-2012	Lindurian	0445	0.014	33.72
Block5	13	9-8-2012	Fremont	0416	1.489	208.54
Block5	13	9-8-2012	Fremont	0417	0.453	144.45
Block5	13	9-8-2012	Fremont	0418	1.334	197.81
Block5	13	9-8-2012	Fremont	0419	1.222	180.29
Block5	13	9-8-2012	Fremont	0420	0.809	168.94
Block5	13	9-8-2012	Fremont	0426	1.244	187.91
Block5	13	9-8-2012	Fremont	0427	1.638	204.22
Block5	13	9-8-2012	Fremont	0428	1.486	186.32
Block5	13	9-8-2012	Fremont	0429	1.149	193.92
Block5	13		Fremont	0430	0.943	162.33
Block5	13	9-8-2012		0436	1.598	203.7
Block5	13		Fremont	0437	1.655	259.2
Block5	13		Fremont	0438	1.196	180.42
Block5	13	9-8-2012	Fremont	0439	1.126	197.73
Block5	13	9-8-2012		0440	1.011	190.37
Block5	13	9-8-2012	Fremont	0446	1.295	195.05
Block5	13	9-8-2012	Fremont	0447	1.366	207.6
Block5	13	9-8-2012	Fremont	0448	1.244	192.65
Block5	13	9-8-2012	Fremont	0449	1.363	190.04
Block5	13	9-8-2012	Fremont	0450	0.44	132.92
are ena		5 0 2012			5.77	
Average			Average		Weight (kg)	Diameter (mm)
Lindurian	13	9-8-2012	Lindurian		0.424	115.87
			and a second second			

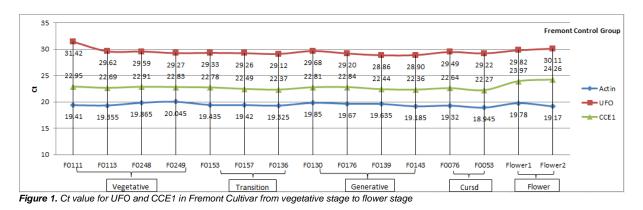
		Blo	ock 6-13 W	eeks		
Block	Curd Old (weeks)	Date	Hybrid	Field No.	Weight (kg)	Diameter (mm)
Block 6	13	16-8-2012	Lindurian	0501	0.828	183.79
Block 6	13	16-8-2012	Lindurian	0502	1.498	213.4
Block 6	13	16-8-2012	Lindurian	0503	0.871	181.37
Block 6	13	16-8-2012	Lindurian	0504	0.063	58.3
Block 6	13	16-8-2012	Lindurian	0511	0.725	152.78
Block 6	13	16-8-2012	Lindurian	0512	0.332	120.58
Block 6	13	16-8-2012	Lindurian	0513	0.15	95.09
Block 6	13	16-8-2012	Lindurian	0514	0.232	116
Block 6	13	16-8-2012	Lindurian	0515	0.084	74.58
Block 6	13	16-8-2012	Lindurian	0521	0.829	183.5
Block 6	13	16-8-2012	Lindurian	0522	0.994	191.27
Block 6	13	16-8-2012	Lindurian	0523	0.938	188.98
Block 6	13	16-8-2012	Lindurian	0524	0.297	117.77
Block 6	13	16-8-2012	Lindurian	0525	0.297	121.67
Block 6	13	16-8-2012	Lindurian	0531	1.089	195.23
Block 6	13	16-8-2012	Lindurian	0532	1.182	184.7
Block 6	13	16-8-2012	Lindurian	0533	0.873	175.8
Block 6	13	16-8-2012	Lindurian	0534	0.159	88.05
Block 6	13	16-8-2012	Lindurian	0535	0.144	90.07
Block 6	13	16-8-2012	Fremont	0496	2.228	247.35
Block 6	13	16-8-2012	Fremont	0497	1.196	192.25
Block 6	13	16-8-2012	Fremont	0498	1.873	229.62
Block 6	13	16-8-2012	Fremont	0499	1.426	212.78
Block 6	13	16-8-2012	Fremont	0500	1.634	213.9
Block 6	13	16-8-2012	Fremont	0516	1.76	223.31
Block 6	13	16-8-2012	Fremont	0517	2.123	227.13
Block 6	13	16-8-2012	Fremont	0518	1.056	171.38
Block 6	13	16-8-2012	Fremont	0519	1.381	199.13
Block 6	13	16-8-2012	Fremont	0526	1.951	227.44
Block 6	13	16-8-2012	Fremont	0527	1.894	214.54
Block 6	13		Fremont	-	2.07	226.84
Block 6	13		Fremont	-	1.508	202.09
Block 6	13		Fremont		0.732	161.53
Block 6	13		Fremont		2.541	242.26
Block 6	13		Fremont		1.959	218.88
Block 6	13		Fremont		2.248	241.4
Block 6	13		Fremont		2.212	234.37
Block 6	13	16-8-2012	Fremont	0540	2.085	243.15
Average			Average		Weight (Kg)	Diameter (mm)
Lindurian	13	16-8-2012	Lindurian		0.609736842	143.8384211
Fremont	13	16-8-2012			1.783	217.3342105

		Blo	ock 7-13 W	ee ks		
Block	Curd Old (weeks)	Date	Hybrid	Field No.	Weight (kg)	Diameter (mm)
Block 7	13	23-8-2012	Lindurian	0591	0.71	165.74
Block 7	13	23-8-2012	Lindurian	0592	0.635	156.98
Block 7	13	23-8-2012	Lindurian	0593	0.339	121.69
Block 7	13	23-8-2012	Lindurian	0594	0.105	87.35
Block 7	13	23-8-2012	Lindurian	0595	0.01	33.33
Block 7	13	23-8-2012	Lindurian	0601	0.287	114.46
Block 7	13	23-8-2012	Lindurian	0602	0.584	146.11
Block 7	13	23-8-2012	Lindurian	0603	0.374	131.17
Block 7	13	23-8-2012	Lindurian	0604	0.345	124.89
Block 7	13	23-8-2012	Lindurian	0605	0.091	75.47
Block 7	13	23-8-2012	Lindurian	0611	0.203	101.93
Block 7	13	23-8-2012	Lindurian	0612	0.286	116.17
Block 7	13		Lindurian	-	0.538	142.52
Block 7	13		Lindurian	-	0.463	130.14
Block 7	13	23-8-2012	Lindurian	0615	0.365	127.13
Block 7	13		Lindurian	-	0.562	140.45
Block 7	13		Lindurian		0.457	128.52
Block 7	13		Lindurian	-	0.471	135.21
Block 7	13		Lindurian	-	0.529	133.91
Block 7	13		Lindurian	-	0.026	41.62
Di Di Ciciti y		20 0 2012			0.020	42.02
Block 7	13	23-8-2012	Fremont	0596	1.033	181.89
Block 7	13		Fremont	-	0.82	156.9
Block 7	13		Fremont	-	0.694	153.5
Block 7	13		Fremont		0.573	150.64
Block 7	13		Fremont	_	0.47	130.19
Block 7	13		Fremont	-	1.272	202.52
Block 7	13		Fremont	-	1.697	211.6
Block 7	13		Fremont	-	1.533	197.43
Block 7	13	23-8-2012		0609	0.929	175.21
Block 7	13		Fremont	-	0.612	147.05
Block 7	13		Fremont		0.823	167.03
Block 7	13		Fremont	-	1.024	190.11
Block 7	13		Fremont	-	0.559	142.36
Block 7				-		
	13		Fremont	-	0.69	148.46
Block 7 Block 7	13		Fremont	-		161.55 191.56
	13		Fremont	-	1.251	
Block 7	13		Fremont	-	0.963	183.69
Block 7	13		Fremont	-	0.581	148.04
Block 7	13		Fremont	-	0.51	143.62
Block 7	13	23-8-2012	Fremont	0630	0.103	91.47
Average			Average		Weight (Kg)	Diameter (mm)
Lindurian	13	23-8-2012	Lindurian		0.369	117.7395
Fremont	13	23-8-2012			0.84765	163.741

		Blo	ock 8-13 W	eeks		
Block	Curd Old (weeks)	Date	Hybrid	Field No.	Weight (kg)	Diameter (mm)
Block 8	13	30-8-2012	Lindurian	0691	0.926	186.98
Block 8	13	30-8-2012	Lindurian	0692	0.699	178.82
Block 8	13	30-8-2012	Lindurian	0693	0.819	161.97
Block 8	13	30-8-2012	Lindurian	0694	0.352	140.9
Block 8	13	30-8-2012	Lindurian	0695	0.073	78.99
Block 8	13	30-8-2012	Lindurian	0701	0.663	166.64
Block 8	13	30-8-2012	Lindurian	0702	1.202	186.06
Block 8	13	30-8-2012	Lindurian	0703	0.536	153.03
Block 8	13	30-8-2012	Lindurian	0704	0.612	161.4
Block 8	13	30-8-2012	Lindurian	0705	0.481	149.18
Block 8	13	30-8-2012	Fremont	0686	1.322	194.18
Block 8	13	30-8-2012	Fremont	0687	0.286	130.74
Block 8	13	30-8-2012	Fremont	0688	0.237	136.53
Block 8	13	30-8-2012	Fremont	0689	0.295	125.93
Block 8	13	30-8-2012	Fremont	0690	0.124	101.44
Block 8	13	30-8-2012	Fremont	0706	1.379	218.18
Block 8	13	30-8-2012	Fremont	0707	1.401	208.56
Block 8	13	30-8-2012	Fremont	0708	1.485	196.24
Block 8	13	30-8-2012	Fremont	0709	0.107	86.56
Block 8	13	30-8-2012	Fremont	0716	1.972	220.43
Block 8	13	30-8-2012	Fremont	0717	1.547	213.28
Block 8	13	30-8-2012	Fremont	0718	0.725	161.24
Block 8	13	30-8-2012	Fremont	0719	0.553	132.53
Block 8	13	30-8-2012	Fremont	0720	0.05	75.47
Average			Average		Weight (Kg)	Diameter (mm)
Lindurian	13	30-8-2012	Lindurian		0.6363	156.397
Fremont	13	30-8-2012	Fremont		0.820214286	157.2364286

		Blo	ock 9-13 W	eeks		
Block	Curd Old (weeks)	Date	Hybrid	Field No.	Weight (kg)	Diameter (mm)
Block 9	13	6-9-2012	Lindurian	0761	0.854	187.02
Block 9	13	6-9-2012	Lindurian	0762	0.267	132.73
Block 9	13	6-9-2012	Lindurian	0763	0.085	84.23
Block 9	13	6-9-2012	Lindurian	0764	0.051	75.34
Block 9	13	6-9-2012	Lindurian	0791	1.741	227.19
Block 9	13	6-9-2012	Lindurian	0792	1.027	201.78
Block 9	13	6-9-2012	Lindurian	0793	1.019	205.87
Block 9	13	6-9-2012	Lindurian	0794	0.725	184.44
Block 9	13	6-9-2012	Lindurian	0795	0.078	83.79
Block 9	13	6-9-2012	Lindurian	0801	1.014	213.14
Block 9	13	6-9-2012	Lindurian	0802	0.335	130.99
Block 9	13	6-9-2012	Lindurian	0803	0.182	108.01
Block 9	13	6-9-2012	Lindurian	0804	0.115	87.36
Block 9	13	6-9-2012	Lindurian	0805	0.045	57.64
Block 9	13	6-9-2012	Fremont	0766	0.894	197.59
Block 9	13	6-9-2012	Fremont	0767	1.048	194.39
Block 9	13	6-9-2012	Fremont	0768	0.481	133.07
Block 9	13	6-9-2012	Fremont	0769	0.437	157.81
Block 9	13	6-9-2012	Fremont	0770	0.015	49.39
Block 9	13	6-9-2012	Fremont	0786	2.59	263.65
Block 9	13	6-9-2012	Fremont	0787	1.461	220.18
Block 9	13	6-9-2012	Fremont	0788	1.513	214.52
Block 9	13	6-9-2012	Fremont	0789	1.186	204.91
Block 9	13	6-9-2012	Fremont	0790	0.458	143.43
Block 9	13	6-9-2012	Fremont	0796	0.632	180.8
Block 9	13	6-9-2012	Fremont	0797	0.521	169.29
Block 9	13	6-9-2012	Fremont	0798	0.122	107.09
Block 9	13	6-9-2012	Fremont	0799	0.074	80.38
Block 9	13	6-9-2012	Fremont	0800	0.019	50.11
Block 9	13	6-9-2012	Fremont	0806	1.159	193.86
Block 9	13	6-9-2012	Fremont	0807	1.032	202.18
Block 9	13	6-9-2012	Fremont	0808	0.257	129.19
Block 9	13	6-9-2012	Fremont	0809	0.107	90.7
Block 9	13	6-9-2012	Fremont	0810	0.067	79.65
Average			Average		Weight (Kg)	Diameter (mm)
Lindurian	13	6-9-2012			0.538428571	141.395
Fremont	13	6-9-2012	Fremont		0.70365	153.1095
Fremont	12	0-3-2012	Fremont		0.70505	105.1055

Remark:



No correlation between curd weight and curd diameter

Has correlation between curd weight and curd diameter

													3	Correlations	ions be	between (Curds W	Weight a	and	Diameter														
	<u>1</u> -/		(-01 H-01	L-W2	F-W2		F-D/2	r-W3	F-II3	[-]]3	F-D3	Y4 F	-114	4	7	_	<u>-</u>	E		±.,	Ξ.	<u> </u>	<u>_</u>	- -	L-D3			F-W4	Ĩ-	Ŧ	<u>_</u>)2
		0.052	780** 0.093	3 0.10	0.108 -0.219		0.064 -0.293	3 -0.053	0.022	0.153	-0.213	0.629	0.217	0.685 -1	-0.547 (0.345 -0.	680	284	0.108 0.	0.399 0	0.12 0.	267	0.197 -	-0.2 -0.(094 -0.112		35 0.125	25 -0.136	6 0.24	-0.023	-0.226	0.082 -0	-0.196 0.	0.192
F-WI	0.052	1	-0.089.849**	-0.016	6 0.216	6 0.025	25 0.425	5 0.345	0.22	-0.219	-0.209	-0.282	0.446	-0.63	0.81 (0.007-0	-0.442	0.04 -0.	-0.407 0.	0.115 -0	-0.14 0.	027	-0.031 -0.076	0	166 -0.196	96 0.086	0.	193 -0.142	2 - 0.258	-0.075	.584*	0.439.5	541* 0.	.319
I-DI	.780**	-0.089	1 0.06	7 -0.04	6 -0.294	4 -0.02	28 -0.23	0.067 -0.046 -0.294 -0.028 -0.238 -0.183	0.14	0.075	-0.171	0.22	0.149	0.487 -1	-0.663 (0.137 -0	-0, 101	0.07 -0.	-0.017 0.	0.214 0.	0.182	0.1 0.	0.266 -0.	-0.349 -0.192	92 -0.208	08 -0.036	36 -0.021	21 0.112	2 0.182	0, 186	-0.257	0.056 -0	-0.173 0.	.209
F-DI	0.093	.849**	0.067	1-0.025	5 0.191	1 0.066	66 0.354.	4.614*	0.261	0.13	-0.237	-0.337	0.07 -	-0.567	0.67 -(-0.186 -0	-0.381 -0.).219 -0.	268	0.219 0.	0.253 0.	0.184 0.	0.319 -0.	-0.287 0.0	042 -0.383	83 0.023	-	365 0.062	2 -0.503	0.137	.784**	0.221.7	725** 0.	.048
L-W2		-0.016 -0.	0. 108 -0. 016 -0. 046 -0. 025	5	1 0.018		894** -0.112	2 0.207	0.255	-0.104	460*	0.184	0.135	0.121 -(-0.042.5	501*	0.18 0.	0.443 0.	163.	549* -0	-0.02 .61	613** -0.	-0.028 0.	0.244 0.2	299 0.304	04 0.294	0	251 0.151	1 0.237	0.208	0.001	0.065 0	0.062 0.	0.085
F-W2		0.216 -0.	-0.219 0.216 -0.294 0.191 0.018	1 0.01	8	-0.00	98.800**	\$ 0.086	-0, 14	-0.207	-0, 015	-0.458 -	-0.482 -	-0.288	0.026 (0.309 0	0.167	0.29 0.	0.008 -0.	-0.032 0.	0.323 -0.	-0.074 0.	0.439 0.	0.105 -0.013		0.08 0.	0.05 -0.0	096 -0.017	7 -0.164	0.147	0.195	0.143 0	0.191 0.	0.163
L-D2		0.064 0.025 -0.028	0.028 0.066	6.894**	e -0. 098		1 - 0.23	1 -0.239 0.273	0.187	0.008	0.33	0.004	0.668 -	-0.175 (0.242 (0.287 -0	-0.074 0.	0.223 -(-0.05 .51	517* -0.	063.	526* -0.	-0.087 0	0.16 0.1	166 0.	0.16 0.097	0	156 0.008	8 0.123	0.063	0.06	-0.095 0	081 -0.	.143
F-D2		0.425 -0.	-0.293 0.425 -0.238 0.354 -0.112	4 -0.11		800** -0.239	39	1 -0.036	0.059	-0.36	0.054	-0.041	0.41 -	-0. 537 .9	916* (0.077 -0	-0.146	0.06 -0.	-0.293 -0.	-0.045 0.	0.137 -0.	-0. 086 0.	0.313 0.	0.064 -0.138	38 0.018	18 -0.087	- -	468 0.009	9-0.281	0.102	0.277	0.176 0	314 0.	. 186
L-W3	-0.053	0.345 -0.	0.345 -0.183.614*	0.207	7 0.086	5 0.27	0.086 0.273 -0.036	6 1	0.273	0.287	-0.277	-0.447 -	-0.449 -	-0.471	0.392 -(-0.129 0	0.228 -0.	-0.218 0.	0.319 0.	0.069 0.	514	0.148 0.	0.494 -0.	-0.079 0.331	31 -0.213		0.29 0.121	21 0.209	9 -0.266	0.261	.689**	0.023.6	630* -0.	-0.093
F-W3	0.022	0.22	0.14 0.261	1 0.255	5 -0.14	4 0.187	87 0.059	9 0.273	1	-0.224	460*	-0.657 -	-0.352 -	-0.481 (0.159 -(-0.084 -0	-0.179 -(-0.06 0.	0.069 0.	0.117 -0.	-0.044 0.	0.092 0.	0.036 -0.	-0.035 0.011	11 -0.031	31 0.114	14 -0.6	6 -0.358	8 -0.511	-0.401	0.217	0.052 0	055 -0.	.017
L-D3		0.153 -0.219 0.	0.075 0.13	3 -0.10	-0.104 -0.207	7 0.008	08 -0.36	0.287	-0.224	1	-0.182	0.001	0,301 -	-0.467	0.86 (0.233	0.1 0.	0.109 0.	0.394.56	568* 0.	0.344.60	603* (0.19 -0.	-0.064 -0.011	11 -0.132	32 0.036	36 0.016	6 0.145	5 -0.2	0.173	0.165	-0.247 0	0.181-0.	-0, 186
F-D3		-0.209 -0.	-0.213 -0.209 -0.171 -0.237	7.460*	-0. 015	5 0.33	33 0.054	4 -0.277	460*	-0.182		0.014	0.717 -	-0.005 -	-0.065 (0.291 0	0.134 (0.36 0.	301	0.211-0.	213 0.	216 -0.	237.44*	.0	121.557*	0.	224 -0.0	079 -0.327	7 0.251	-0.359	572*	-0.07 -0.	527	0.042
L-W4		0.629 -0.282 (0.22 -0.337		0.184 -0.458)4 -0.04	0.004 -0.041 -0.447 -0.	-0.657	0.001	0.014	-	-0.212	0.85	-0.36 (0.089 -0	-0.236 0.	0.243 -0.	-0.214 0.	0.423 -0.	-0.284 0	0.37 -0.	-0.313 0	0.01 -0.169	69 0.115	15 -0.247	47 0.249	19 -0.583	3 0.154	-0.342	-0, 49	0.05 -0.	532	-0.058
F-W4		0.217 0.446 0.149	149 0.0	Q 0.13	0.07 0.135 -0.482 0.668	2 0.66		0.41 -0.449 -0.	-0.352	0.301	0.717	-0.212	-	-0.503	0.578 (0.585 -0.432		0.596 -0.	-0.419 0.	0.602 -0	-0.26 0.	0.451 -0.	-0.301 0.	0.777 0.675	75 0.703	03 0.548	48 0.418	8 0.414	4 0.616	0.415	-0.158	0.865 0.	123	0.743
L-D4		0.685 -0.63 0.	0.487 -0.567 0.121 -0.288 -0.175 -0.537 -0.471 -0.	7 0.12	1 -0.288	9 -0.17	75 -0.53	7 -0.471	481	-0.467	-0.005	0.85	-0.503	-T	-0.796 -0.	051	0.105 0.	0.128 0.	0.037 -0.	-0.103 -0.	-0.225 -0.	-0.136 -0.	-0.163 -0.	-0.276 -0.355	55 -0.064	64 -0.273	73 0.116	16 -0.593	3 0.065	-0.355	-0.661	-0. 165 -0.	803	-0.091
F-D4	-0.547	0.81 -0.663	0.63 0.67	7 -0.04	-0.042 0.026	6 0.242	42.916*	0.392	0.159	0,86	-0, 065	-0.36	0.578 -	-0.796	1	0.122 -0	-0.455 -0.	-0.028 -0.	-0.303 0.	0.643 0.	088	0.651 -0.	-0.061 0.	0.432 0.372	72 0.167	67 0.134	34 0.018	18 0.344	4 -0.02	0.187	0.675	0.265 0.	857	0.005
1#-1		0.007 0	0.345 0.007 0.137 -0.186.501*	6.501*	0.309	9 0.287	87 0.077	7 -0.129 -0.0	-0.084	0.233	0.291	0.089	0.585 -	-0.051	0.122	1	0.395_94	4 <mark>5** 0</mark> .	0.428.54	545* 0.	0.111.53	532* 0.	0.129 0.	0.408 0.345	45.458*	* . 4.7*	0	544 0.091	1 0.621	0.256	-0.344	0.314-0.1	96	542*
F-W1	-0. 089	-0.442 -0.	-0.089 -0.442 -0.101 -0.381		8 0.167	7 -0.07	0.18 0.167 -0.074 -0.146	6 0.228 -0.1	-0.179	0.1	0, 134 -	-0.236 -	-0.432	0.105 -(-0.455 (0.395	1.4	457* . 85	858** -0.	-0.313 0.	0.328 -0.	-0. 187 0.	0.252 0	0.31.601**	** 0.443	43.700**	0	535 0.421	1 0.366	0.455	-0.114	0.291 -0.	031	0.433
I(-1	0.284	0,04	0.07 -0.219	9 0.443	3 0.29	9 0.223	23 0.0	0.06 -0.218	-0, 06	0,109	0.36	0.243	0.596	0.128 -(-0.028	45** .4	457*	1. 低	463* 0.	0.367 -0.	-0.053 0.	0.343 -0.	-0.042, $500*$)* 1,485*	* .578**	k* . 573**	0.	615 -0.021	1.685*	0.171	-0.461.	455* -0.	316.	643**
F-D1	0.108	-0.407 -0.	0.108 -0.407 -0.017 -0.268 0.163	8 0.16		9 -0.0	0.008 -0.05 -0.293	3 0.319 0.0	0.069	0.394	0.301	-0.214 -	-0.419	0.037 -(-0.303 (0.428.8	58** . 4	463*	1 -0.	-0.051 0.	0.365 0.	0. 055 0.	0.276 0.	0.283.473*		0.41.633**	0.	555 0.082	2 0.357	0.13	-0.237	0.14 -	-0.22 (0.28
L-W2		0.399 0.115 0.	0.214 0.219.	9.549*	-0.032	-0.032, $517*$	-0.045	5 0.069	0.117	.568*	0.211	0.423	0.602 -	-0.103 (0.643.5	545* -0	-0.313 0.	0.367 -0.	. 051	1 0.	259,96	1** 0.	0.195 0.	0.077 -0.025		0.04 0.007	0	005 0.058	8 0.063	0.146	0.043	-0.065 0	134 -0.	-0.016
F-W2	0.12	-0.14	0.182 0.253	3 -0.02	2 0.323	0.323 -0.063	63 0.137	7 0.514 -0.0	-0.044	0.344	-0.213	-0.284	-0.26	-0.225	0.088 (0.111 0	0.328 -0.	-0.053 0.	0.365 0.	0.259	1 0	0.29) ** ().	0.094 0.043	43 0.072	72 0.171	71 0.492	0	5 0.245	608*	0.35	-0.08 0	435 -0.	.039
L-D2		0.267 0.027	0.1 0.184 .613** -0.074 .526*	4.613**	\$ -0.074	1.526*	: -0.08	-0.086 0.148	0.092	.603*	0.216	0.37	0.451 -	-0.136	0.651.5	532* -0	-0. 187 0.	0.343 0.	0.055.96) **[0.29	1	0.21 0.	0.062 0.013	13 0.036	36 0.045	45 0.083	3 0.212	2 0.095	0.27	0.109	-0.066 0	208 -0.	-0.028
F-D2	0.197	0.197 -0.031 0.	0.266 0.319 -0.028	9 -0.02	8 0.439	0.439 -0.087	87 0.313	3 0.494	0.036	0.19	-0.237	-0.313 -	-0.301	-0.163 -(-0.061 (0.129 0	0.252 -0.	-0.042 0.	0.276 0.	0.195.95	0	0.21	1 0.	0.057 -0.	09 0.017	17 0.064	64 0.355	55 0.359	9 0.179	0.491	0.324	-0.074 0	376 -0.	.026
L-¶3		-0.076 -0.	-0.2 -0.076 -0.349 -0.287 0.244	7 0.24	4 0.105	0.105 0.16		0.064 -0.079 -0.	035	-0.064	.444*	0,01	0.777 -	-0.276	0.432 (0.408	0.31.50	500* 0.	0.283 0.	0.077 0.	094	0.062 0.	0.057	1.455*	* .946	** .462*	k .821**	* -0.009	9.827**	0.024	-0.252	0.24 -0.	123	0.315
F-W3		-0.094 0.166 -0.192	192 0.04	0.042 0.299	9 -0.013	3 0.16	0.166 -0.138	8 0.331 0.0	11	-0.011	0.121	-0,169	0.675 -				601** .48	-	473* -0.				-0.09.455*	.*	1.547*	•				.548*	0.217.			755**
C-D3		-0.196 -0.	-0.112 -0.196 -0.208 -0.383	3 0.304		8 0.16	16 0.018	8 -0.213 -0.0	131		557*	0.115	0.703 -			458* 0	0.443.57	578** (0.41 0		0.072 0.	0.036 0.	0.017.94	347*		1.593	¤.831≭	* 0.059	9.923**	0.104	-0.444	0.334 -0	-0.259 0.	0.436
F-D3	0.035	0.086 -0.	0.035 0.086 -0.036 0.023	3 0.294	4 0.05	5 0.09	0.097 -0.087	7 0.29	0.114	0.036	0.224	-0.247	0.548 -	-0.273	0.134.4	47* .7		573** . 63	633** 0.	0.007 0.	0.171 0.	0.045 0.	0.064.462*)* . 954	🗱 . 593**	*	1.691*	0.508	8.659*	.579*	0.115	774** 0	307.79	792**
L-74	_	-0.193 -0.	0. 125 -0. 193 -0. 021 -0. 365	5 0.25	0.251 -0.096		0.156 -0.468	8 0.121	-0.6	0.016	-0.079	0.249	0.418	0.116	0.018 (0.544 0	0.535 0.	0.615 0.	0.555 0.	0.005 0.	492 0.	083	0.355.82	821** . 658*	* .83]**	k*.691*	~	1 0.332	2.887**	0.451	-0.22	0.446 -	-0.02 0.	.621
F-W4	-0.136	-0.136 -0.142 0.	0.112 0.062		0.151 -0.017	7 0.008	38 0.00	0.009 0.209 -0.	-0.358	0.145	-0.327	-0.583	0.414 -	-0.593 (0.344 (0.091 0	0.421 -0.	-0.021 0.	0.082 0.	0.058	0.5 0.	0.212 0.	0.359 -0.	-0.009 0.505	05 0.059	59 0.508	08 0.332	32	1 0.355	.957**	0.421	0.439.6	645* 0.	.518
L-D4		-0.258 0	0.24 -0.258 0.182 -0.503 0.237 -0.164	3 0.23	7 -0.164		23 -0.28	0.123 -0.281 -0.266 -0.	-0.511	-0.2	0.251	0.154	0.616	0.065	-0.02 (0.621 0	0.366.68	685* 0.	0.357 0.	0.063 0.	245 0.	660	0.179.82	827** 0.	0.57.923**	k*. 659*	.887	** 0.355	5	0.45	-0.458	0.545 -0	-0.188.79	798**
F-D4	-0.023	-0.023 -0.075 0.	0.186 0.137	7 0.208	8 0.147	7 0.063	63 0.102	2 0.261 -0.2	-0,401	0.173	-0.359	-0.342	0.415 -	-0.355	0.187 (0.256 0	0.455 0.	0.171 (0.13 0.	0.146.60	608* 0	0.27 0.	0.491 0.	0.024.548*	* 0.104	04.579*	0	451 . 957**	* 0.45	1	0.397	0.528.6	633* .60	608*
1-₩5	-0.226.584*	.584* -0.	-0.257.784**	* 0.001	1 0.195	5 0.06	06 0.277	7.689**	0.217	0.165	572*	-0.49	-0.158 -	-0.661	0.675 -0.	344	-0.114 -0.	-0.461 -0.	237	0.043 0	0.35 0.	109	0.324 -0.	. 252 0. 217	17 -0.444	44 0.115	Ŷ	22 0.421	1 -0.458	0.397	1	0.23.9	3** -0.	-0.005
F-W5	0.082	0.439	0.056 0.221	1 0.065		0.143 -0.095	95 0.176	6 0.023	0.052	-0.247	-0.07	0.05	0.865 -	-0.165 (0.265 (0.314 0	0.291.45	455* (0.14 -0.	-0.065 -0	-0.08 -0.	066	-0.074 0.	.24.783**	** 0.33 4	34.774**	0.	446 0.439	9 0.545	0.528	0.23	1 0	403 91	*
C-D5		-0.196.541* -0.173	173.725*:	.725** 0.062	2 0.191	1 0.081	81 0.314	4.630*	0.055	0.181	-0.527	-0.532	0.123 -	-0.803 (0.857 -0	-0.196 -0	-0.031 -0.	-0.316 -(-0.22 0.	0.134 0.	435 0.	0.208 0.	.376 -0.123	123 0.397	97 -0.259	59 0.307	Ŷ	.02.645*	-0.188	633*	.943**	0.403	1 0.	.249
F-D5		0.319 0	0.192 0.319 0.209 0.048 0.085 0.163 -0.143 0.186	8 0.08	5 0.163	3 -0.14	13 0.18	6 -0.093 -0.0	17	-0.186	0.042	-0.058	0.743 -	-0.091	0.005.5	542* 0	0.433.64	.643** (0.28 -0.	-0.016 -0.	-0.039 -0.	028	-0.026 0.	0.315.755**	** 0.436	36.792**	0	621 0.51	18.798**	.608*	-0.005	910** 0.	249	
, () **	orrelati	on is sig.	** Correlation is significant at the 0.01 level (2-tailed).	t the O	.01 leve	91 (2-t	ailed).																											
* 0	<u>rrelatic</u>	m is sign	*. Correlation is significant at the 0.05 level (2-tailed)	the 0.()5 level	l (2-ta	iiled).																											

Appendix 10: Ct value and expression results for *UFO*, *CCE1* and *CRY2* in Fremont

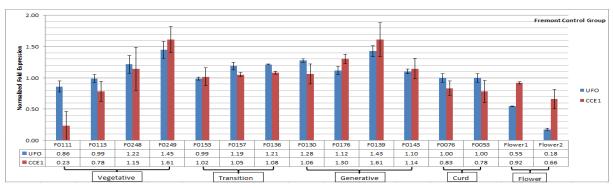


Figure 2. Normalized fold expression of UFO and CCE1 in Fremont from vegetative to flower stage

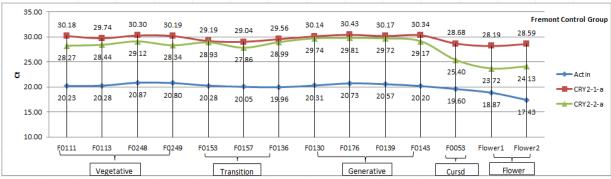


Figure 3. Ct value for CRY2 family in Fremont Cultivar from vegetative stage to flower stage

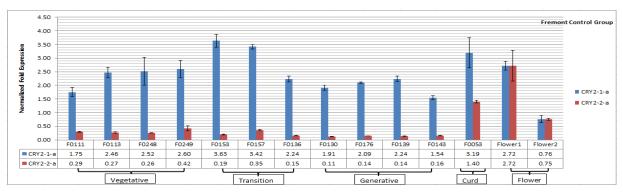


Figure 4. Normalized fold expression of CRY2 family in Fremont from vegetative to flower stage

Appendix 11: Ct value and expression results for *FUL family, FH, UFO, CCE1, NSN1-1, NSN1-2, NSN1-3, REM1 and TFL1-1* in Lindurian control and 6th week high temperature treatment group

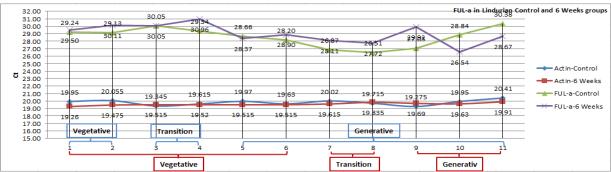


Figure 1. Ct value for FUL-a in Lindurian cultivar

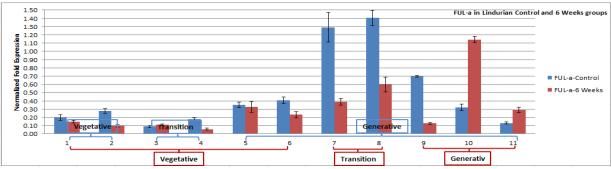


Figure 2. Normalized fold expression of FUL-a in Lindurian control and 6th week group from vegetative to flower stage

	We	ek 7	We	ek 9	Wee	ek11	Wee	ek 12	Wee	ek 13	Week 14
Control	Vege	tative	Trans	sition			(Generative	2		
Plant Num	L0181	L0210	L0241	L0277	L0073	L0081	L0083	L0141	L0040	L0068	L0270
FUL-b-Ct		39.36	38.63	36/04	35.83	35.36	33.23	32.78	32.42	34.42	36.32
6 Weeks G			Vege	tative			Trans	sition	(Generative	5
Plant Num	L0240	L0242	L0067	L0164	L0037	L0171	L0103	L0167	L0070	L0263	L0005
FUL-b-Ct			38.35		38.16	38.15	37.02	35.41	38.51	34.13	34.44

"--" Means Ct value higher than 40

Figure 3. Ct value for FUL-b in Lindurian cultivar

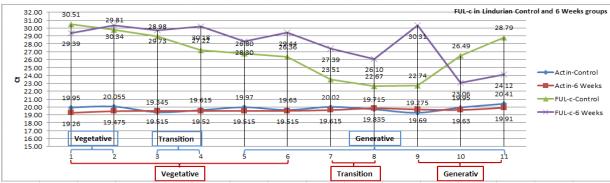


Figure 4. Ct value for FUL-c in Lindurian cultivar

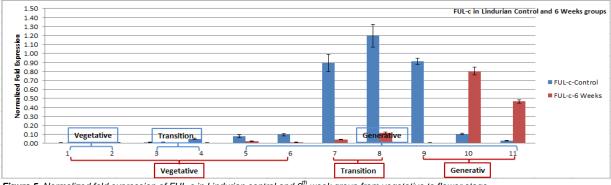


Figure 5. Normalized fold expression of FUL-c in Lindurian control and 6th week group from vegetative to flower stage

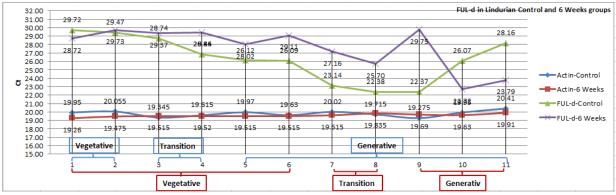
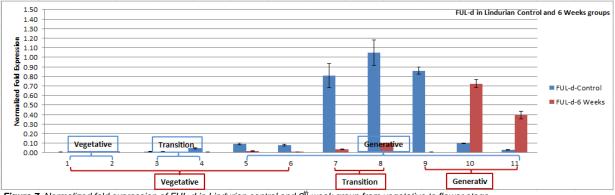
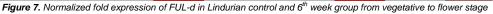
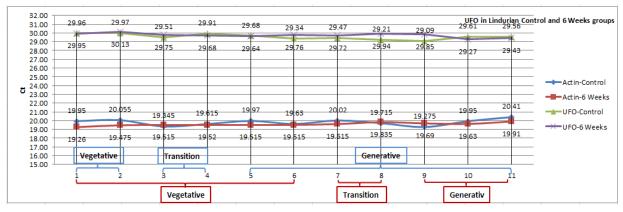
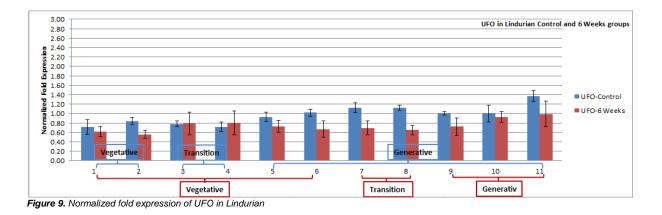




Figure 6. Ct value for FUL-d in Lindurian cultivar

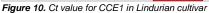
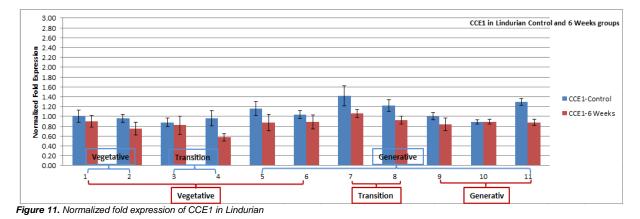



Figure 8. Ct value for UFO in Lindurian cultivar

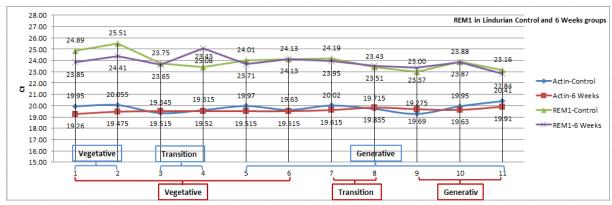


Figure 12. Ct value for REM1 in Lindurian cultivar



Figure 13. Normalized fold expression of REM1 in Lindurian

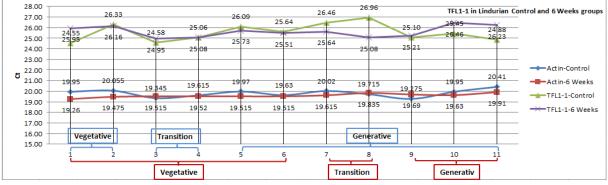


Figure 14. Ct value for TFL1-1 in Lindurian cultivar

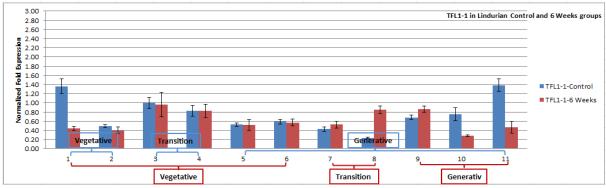


Figure 15. Normalized fold expression of TFL1-1 in Lindurian

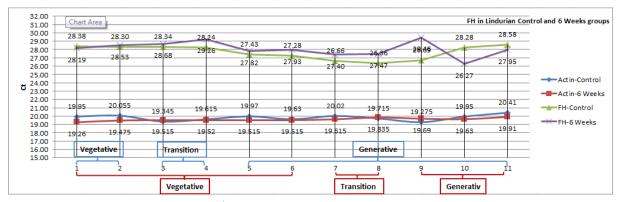


Figure 16. Ct value of FH in Lindurian control and 6th week high temperature group from vegetative stage to generative stage

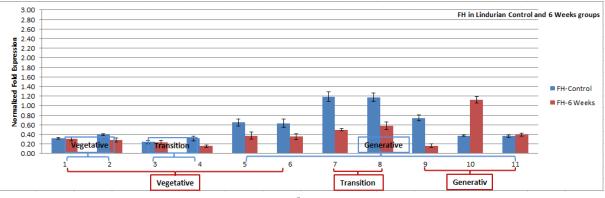


Figure 17. Normalized fold expression of FH in Lindurian control and 6th week group from vegetative to flower stage

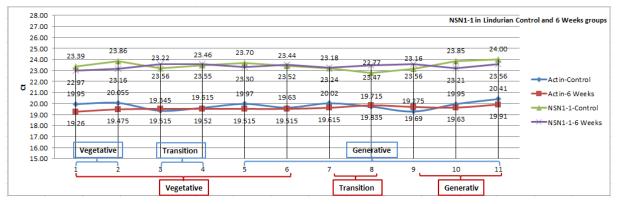
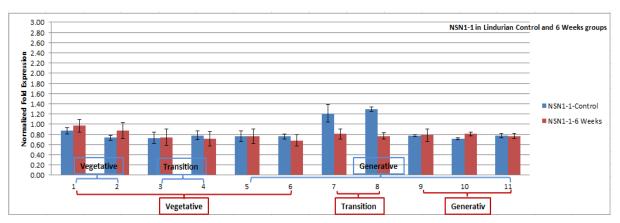
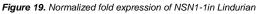
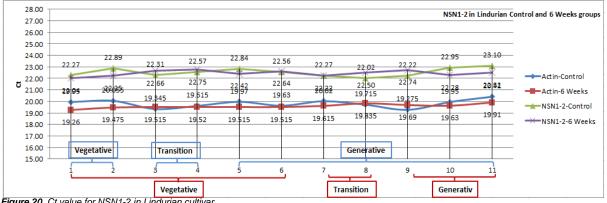
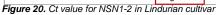






Figure 18. Ct value for NSN1-1 in Lindurian cultivar

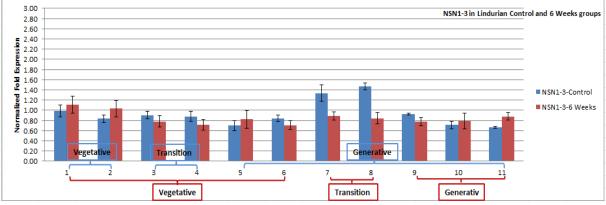
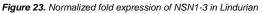




Figure 22. Ct value for NSN1-3 in Lindurian cultivar

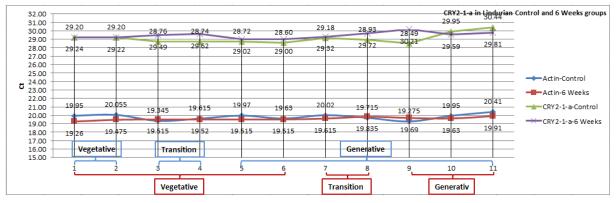
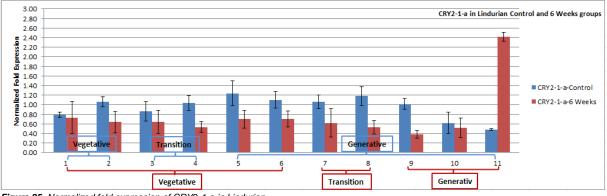
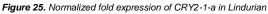




Figure 24. Ct value for CRY2-1-a in Lindurian cultivar

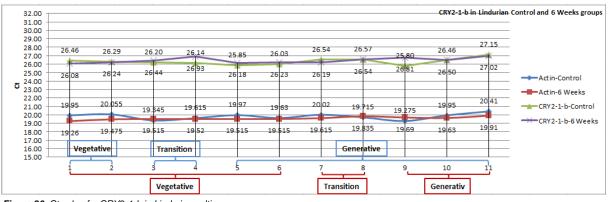


Figure 26. Ct value for CRY2-1-b in Lindurian cultivar

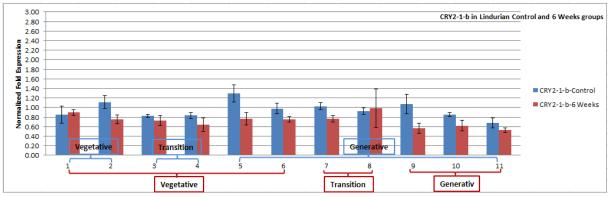


Figure 27. Normalized fold expression of CRY2-1-b in Lindurian

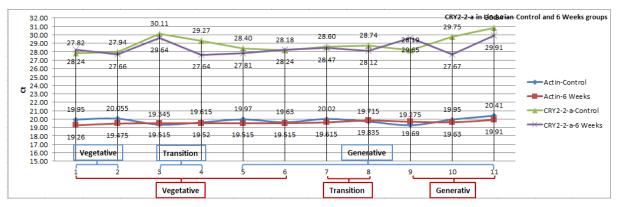
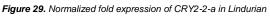



Figure 28. Ct value for CRY2-2-a in Lindurian cultivar

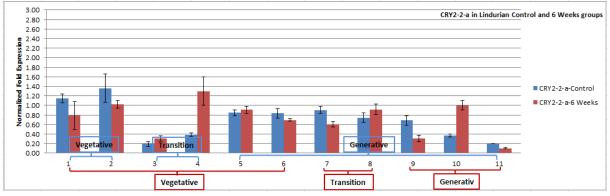


Figure 30. Ct value for CRY2-2-b in Lindurian cultivar

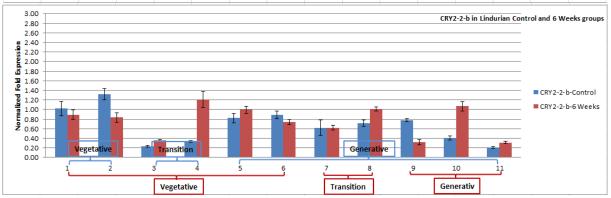


Figure 31. Normalized fold expression of CRY2-2-b in Lindurian

Appendix 12: Candidate genes expression level one week before and after high temperature treatment Ct value and normalized fold expression result.

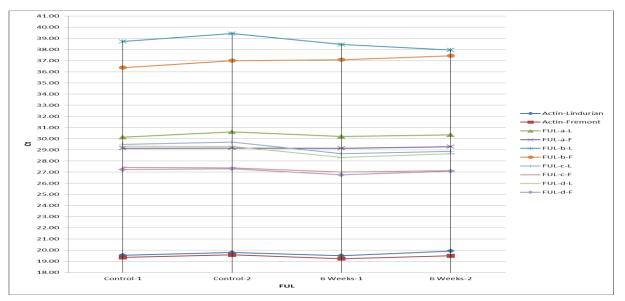


Figure 1. Ct value for FUL family in Lindurian and Fremont cultivars

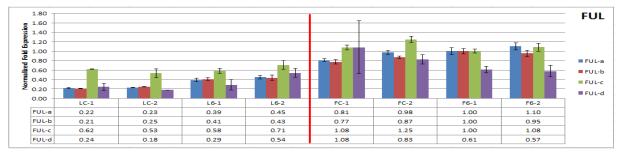


Figure 2. Normalized fold expression of FUL family in Lindurian and Fremont cultivars

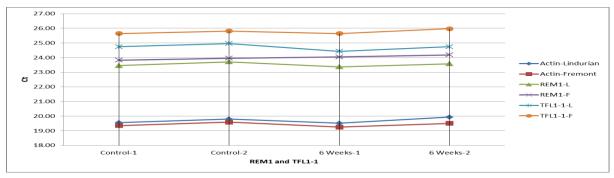


Figure 3. Ct value for REM1 and TFL1-1 in Lindurian and Fremont cultivars

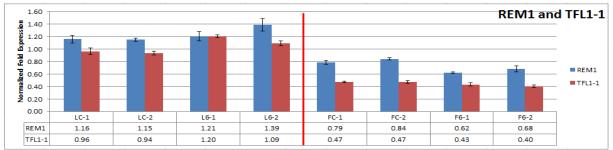


Figure 4. Normalized fold expression of REM1 and TFL1-1 in Lindurian and Fremont cultivars

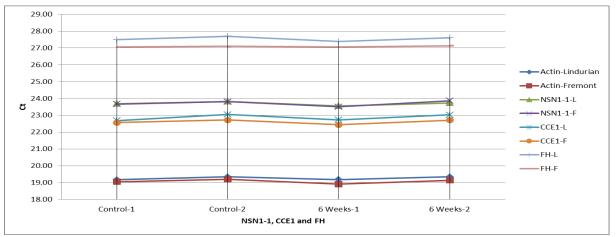


Figure 5. Ct value for NSN1-1, CCE1 and FH in Lindurian and Fremont cultivars

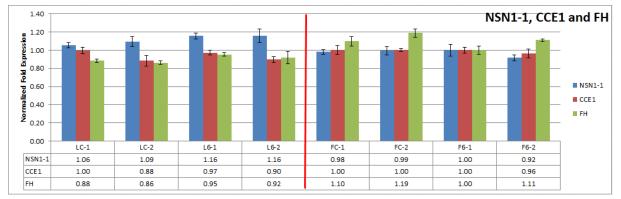


Figure 6. Normalized fold expression of NSN1-1, CCE1 and FH in Lindurian and Fremont cultivars

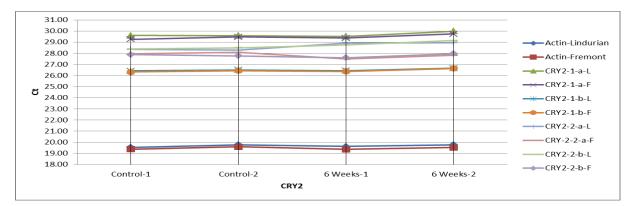


Figure 7. Ct value for CRY2-1 and CRY2-2 in Lindurian and Fremont cultivars

Table 1. Ct value for AP1-a and CAL in Lindurian and Fremont cultivars

	LC-1	LC-2	L6-1	L6-2	FC-1	FC-2	F6-1	F6-2
AP1-a-Ct					36.26			
CAL-Ct	35.95		36.76	37.06	36.91		35.68	

"--" Means Ct value higher than 40