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ABSTRACT 1	
  

Long-term supplementation with folic acid may improve cognitive performance in older 2	
  

individuals. The relationship between folate status and cognitive performance might be mediated by 3	
  

changes in methylation capacity, as methylation reactions are important for normal brain 4	
  

functioning. Although aberrant DNA methylation has been implicated in neurodevelopmental 5	
  

disorders, the relationship between DNA methylation status and non-pathological cognitive 6	
  

functioning in humans has not yet been investigated. The present study investigated the associations 7	
  

between global DNA methylation and key domains of cognitive functioning in healthy older adults. 8	
  

Global DNA methylation, defined as the percentage of methylated to total cytosine, was measured 9	
  

in leukocytes by LC-MS/MS, in 215 men and women, aged 50-70 years, who participated in the 10	
  

FACIT study (clinical trial registration number NCT00110604). Cognitive performance was 11	
  

assessed by means of the Visual Verbal Word Learning Task, the Stroop Colour-Word Interference 12	
  

Test, the Concept Shifting Test, the Letter-Digit Substitution Test, and the Verbal Fluency Test. 13	
  

Using hierarchical linear regression analyses adjusted for age, sex, level of education, alcohol 14	
  

consumption, smoking status, physical activity, erythrocyte folate concentration, and MTHFR 15	
  

677C→T genotype, global DNA methylation was not related to cognitive performance on any of 16	
  

the domains measured. Our results do not support the hypothesis that global DNA methylation, as 17	
  

measured in leukocytes, might be associated with cognitive functioning in healthy older individuals. 18	
  

19	
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Introduction 1	
  

Most cognitive functioning declines with advancing age, and identifying the risk factors for age-2	
  

related cognitive decline has become a topic of increasing interest. Previous research has indicated 3	
  

that a low folate status might increase the risk of cognitive impairment1. However, the potential 4	
  

biological mechanisms underlying this relationship remain to be elucidated. 5	
  

One possible mechanism that might explain the involvement of folate status in cognitive 6	
  

performance is DNA methylation, which refers to the epigenetic modification of gene expression by 7	
  

the addition of methyl groups to cytosine residues in DNA2. Recent animal studies have suggested 8	
  

that DNA methylation may be involved in regulating synaptic plasticity in hippocampal neurons, 9	
  

thereby influencing learning and memory processes3,4. In humans, both hypomethylation and 10	
  

hypermethylation of DNA have been implicated in psychiatric disorders, including schizophrenia5, 11	
  

neurodegenerative disorders, such as Alzheimer’s disease6, and syndromes associated with mental 12	
  

retardation, e.g. Fragile X syndrome7.  13	
  

Methyl groups for DNA methylation are provided by the universal methyl donor S-14	
  

adenosylmethionine, which is synthesized from methionine8. Folic acid may increase the 15	
  

availability of S-adenosylmethionine by promoting the conversion of homocysteine into 16	
  

methionine, thereby influencing DNA methylation status9. Indeed, an intervention study in older 17	
  

women has shown that low dietary folate intake was associated with global DNA hypomethylation, 18	
  

which could be reversed by folate repletion10. In addition, the common MTHFR 677C→T 19	
  

polymorphism, which mimics folate deficiency by impairing the conversion of homocysteine into 20	
  

methionine, has also been related to DNA hypomethylation11.  21	
  

Given the role of folate metabolism in generating methyl donors for methylation processes, 22	
  

and the involvement of DNA methylation in brain functioning, it seems reasonable to hypothesize 23	
  

that folate status might influence cognitive functioning by exerting effects on DNA methylation. 24	
  

However, the association between DNA methylation status and cognitive performance in the 25	
  

general population has not yet been investigated. Therefore, the present study examined whether 26	
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leukocyte global DNA methylation was associated with cognitive performance in healthy older 1	
  

adults.  2	
  

3	
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Methods 1	
  

Study population 2	
  

The present study was performed using data from the FACIT study, a randomized, double-blind, 3	
  

placebo-controlled trial, originally designed to investigate the effects of 3-year folic acid 4	
  

supplementation on the risk of cardiovascular disease12. The study population consisted of 818 5	
  

healthy men and women, aged 50-70 years at baseline. A detailed description of the study design 6	
  

and the selection of participants can be found elsewhere12.   7	
  

Venous blood samples were collected at baseline. Leukocyte global DNA methylation was 8	
  

determined in a subsample of 216 participants. First, the study population was stratified by MTHFR 9	
  

677C→T genotype, to ensure equal distribution of MTHFR 677C→T genotypes in the final sample. 10	
  

Thereafter, participants in the folate treatment group were randomly selected from the three strata 11	
  

and individually matched with participants in the placebo group on the variables age, sex, smoking 12	
  

status, and MTHFR 677C→T genotype, as these variables may influence DNA methylation11,13,14. 13	
  

Some samples were not measured due to human error in sample retrieval. Valid DNA methylation 14	
  

data were available for 111 participants in the treatment group and 105 participants in the placebo 15	
  

group. As valid data on cognitive functioning were lacking for one participant in the folate 16	
  

treatment group, the final study sample consisted of 215 individuals.  17	
  

This study was conducted according to the guidelines laid down in the Declaration of 18	
  

Helsinki and all procedures involving human participants were approved by the Medical Ethics 19	
  

Committee of Wageningen University. Written informed consent was obtained from all 20	
  

participants.  21	
  

 22	
  

Cognitive functioning 23	
  

Cognitive functioning on the domains of memory, sensorimotor speed, complex speed, 24	
  

information processing speed, and word fluency was assessed by means of a comprehensive 25	
  

neuropsychological test battery, consisting of the Visual Verbal Word Learning Task, the Stroop 26	
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Colour-Word Interference Test, the Concept Shifting Test, the Letter-Digit Substitution Test, and 1	
  

the Verbal Fluency Test, as described before12.  2	
  

 3	
  

DNA methylation status and genotyping 4	
  

Genomic DNA was isolated from peripheral blood leukocytes at baseline. Global DNA methylation 5	
  

was determined by LC-MS/MS, as described previously15. Genomic DNA methylation status was 6	
  

calculated as the percentage of methylated to total cytosine (mCyt/tCyt) using the following 7	
  

formula: (nmol mCyt/[nmol mCyt + nmol Cyt]) × 100%15. 8	
  

MTHFR 677C→T genotype was determined by PCR with restriction fragment length 9	
  

polymorphism analysis with HinfI16, and was defined as common variant (CC or CT genotype) or 10	
  

rare variant (TT genotype). 11	
  

 12	
  

Blood measurements 13	
  

Fasting venous blood samples were collected at baseline, directly processed, and stored at -80°C. 14	
  

Serum folate was measured using a chemiluminescent immunoassay (Diagnostic Products 15	
  

Corporation, Los Angeles, CA, USA). Erythrocyte folate was determined in duplicate and the 16	
  

average was taken to reduce measurement error. Erythrocyte folate concentrations were calculated 17	
  

using the following formula: (unadjusted erythrocyte folate/hematocrit) – ([1 – 18	
  

hematocrit]/hematocrit) × serum folate. Plasma total homocysteine was determined by HPLC and 19	
  

fluorimetric detection, as described previously17. 20	
  

 21	
  

Demographic and lifestyle variables 22	
  

Level of education (low/middle/high) was measured by classifying formal schooling according to 23	
  

the Dutch educational system18. Alcohol consumption (g/d) and current smoking (yes/no) were 24	
  

ascertained by means of self-report questionnaires. BMI (kg/m2) was calculated from height and 25	
  

weight, and physical activity was estimated using the Physical Activity Scale for the Elderly19.  26	
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 1	
  

Statistical analysis 2	
  

Normality of data distributions was ascertained by normal P-P plots. Baseline data were used to 3	
  

assess the cross-sectional associations between total DNA methylation status and cognitive 4	
  

functioning. Independent samples t tests and univariate ANOVA were used to examine whether 5	
  

DNA methylation status varied according to sex, level of education, smoking status, or MTHFR 6	
  

677C→T genotype.  7	
  

Hierarchical linear regression analyses were performed for DNA methylation status in 8	
  

relation to each of the five cognitive performance indices. The analyses were corrected for 9	
  

sociodemographic and lifestyle variables that were considered potential confounders, i.e. age, sex, 10	
  

level of education, alcohol consumption, smoking status, physical activity, erythrocyte folate 11	
  

concentration, and MTHFR 677C→T genotype11,13,14,20.  12	
  

To investigate the possibility of a non-linear relationship between global DNA methylation 13	
  

and cognitive performance, the analyses were repeated with the quadratic term for DNA 14	
  

methylation status as the independent variable, adjusted for covariates and the linear term for DNA 15	
  

methylation status. The quadratic term for DNA methylation status was expressed as the residuals 16	
  

of regressing (DNA methylation)2 on DNA methylation, i.e. the quadratic component that is 17	
  

orthogonal to the linear component of DNA methylation.  18	
  

Statistical power for detecting associations between DNA methylation status and each of the 19	
  

dependent variables, assuming a small effect size of f2 = 0.03, was 0.80. Statistical differences were 20	
  

considered significant at P-values <0.05. All analyses were performed using SPSS 16.0 (SPSS Inc., 21	
  

Chicago, IL, USA). 22	
  

23	
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Results 1	
  

Table 1 summarizes the characteristics of the study population. The percentage of methylated to 2	
  

total cytosine residues in leukocyte DNA ranged from 4.0 to 5.6%, which was comparable to the 3	
  

range reported by other population-based studies11,15. The extent of global DNA methylation did not 4	
  

vary according to sex (t = -1.285, P = 0.200), level of education (F = 0.611, P = 0.544), smoking 5	
  

status (t = 1.611, P = 0.109), or MTHFR 677C→T genotype (t = -0.907, P = 0.365).  6	
  

Hierarchical linear regression analyses corrected for age, sex, level of education, alcohol 7	
  

consumption, smoking status, physical activity, erythrocyte folate concentration, and MTHFR 8	
  

677C→T genotype did not reveal any significant associations between leukocyte global DNA 9	
  

methylation and cognitive performance on any of the domains measured (Table 2). In addition, 10	
  

repeating the analyses with the quadratic term for DNA methylation status as the independent 11	
  

variable did not yield any significant results (data not shown), implying that global DNA 12	
  

methylation did not show a non-linear relationship with cognitive performance.13	
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Discussion 1	
  

The present study did not offer support for the hypothesis that individual variation in cognitive 2	
  

functioning in older adults might be related to the extent of leukocyte global DNA methylation.  3	
  

Although there are no previous studies investigating the relationship between global DNA 4	
  

methylation and cognitive functioning in healthy humans, aberrant DNA methylation has been 5	
  

implicated in neurodevelopmental disorders7, psychiatric diseases5, and neurodegenerative 6	
  

disorders6. In addition, animal research has suggested that DNA methylation status may be involved 7	
  

in learning and memory processes, e.g. by regulating synaptic plasticity in hippocampal neurons3,4. 8	
  

 The observed lack of a relationship between global DNA methylation and cognitive 9	
  

performance in healthy adults might imply that there is no functional relationship between the 10	
  

extent of cytosine methylation within DNA and individual differences in cognitive performance in 11	
  

the general population. In line with earlier reports15, we observed that global DNA methylation has 12	
  

a relatively narrow distribution in healthy individuals. These findings suggest that under non-13	
  

pathological conditions, there appears to be little interindividual variation in DNA methylation-14	
  

based regulation of gene expression, which decreases the likelihood that individual differences in 15	
  

cognitive performances may be mediated by this epigenetic mechanism.  16	
  

Although global DNA methylation might not be involved in cognitive functioning, the 17	
  

present results do not rule out the possibility that DNA methylation at specific loci may be related 18	
  

to cognitive performance. In humans, gene-specific alterations in DNA methylation patterns have 19	
  

been associated with a number of pathological conditions characterized by cognitive deficits. 20	
  

Animal studies have suggested that diet-induced folate deficiency may result in overexpression of 21	
  

the Presenilin 1 gene by causing hypomethylation of its promoter region21. Increased expression of 22	
  

this gene, which leads to elevated production of β-amyloid peptide, has been implicated in the 23	
  

etiology of Alzheimer’s disease22. In addition, schizophrenia has been associated with reduced 24	
  

expression of the gene encoding the protein Reelin, which is involved in neurodevelopment and 25	
  

synaptic plasticity, due to hypermethylation of the gene’s promoter region5. However, although it 26	
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may be speculated that gene-specific changes in DNA methylation might underlie part of the 1	
  

individual differences in non-pathological cognitive functioning, little is known about the genetic 2	
  

correlates of cognitive performance in healthy humans.   3	
  

An alternative explanation for the present null findings is that cognitive performance might 4	
  

be related to short-term changes, i.e. within the range of hours, in DNA methylation patterns rather 5	
  

than individual variation on the level of global DNA methylation. Indeed, animal studies have 6	
  

reported that dynamic and reversible changes in DNA methylation, such as the transient 7	
  

methylation and demethylation of DNA, are crucial for synaptic plasticity, learning, and memory 8	
  

processes3,4. It might be complicated, however, to measure such short-term changes in DNA 9	
  

methylation in volunteers, which makes it rather difficult to test this possibility. 10	
  

From a methodological perspective, our study was limited by its cross-sectional nature. In 11	
  

addition, the fact that we determined global DNA methylation in leukocytes rather than brain tissue 12	
  

should also be considered a limitation, as the extent of DNA methylation might differ between cells 13	
  

derived from the periphery and the brain23. However, no direct measures of DNA methylation status 14	
  

in the central nervous system were available, given the inability to measure cerebrospinal fluid or 15	
  

brain DNA methylation status in volunteers.  16	
  

It might also be argued that due to the relatively small sample size, the present study might 17	
  

have been underpowered to detect very modest associations. However, it should be noted that our 18	
  

study had 80% power to detect a 3% change in the proportion of explained variance, which may be 19	
  

considered a small effect size24.  20	
  

The present study did not support the notion that folate metabolism might influence 21	
  

cognitive performance through the mechanism of global DNA methylation, as measured in 22	
  

leukocytes. In line with the present findings, we found that long-term supplementation with folic 23	
  

acid, which significantly improved cognitive performance in the FACIT population12, did not have 24	
  

any effect on leukocyte global DNA methylation status (A. Jung, Y. Smulders, P. Verhoef, F.J. 25	
  

Kok, H. Blom, R. Kok, E. Schouten, E. Kampman, J. Durga, 2010; unpublished results). This might 26	
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be explained by the fact that methylation capacity is not exclusively dependent on folate status, as 1	
  

methyl groups may also be provided by dietary intake of methionine, or by betaine-mediated 2	
  

remethylation of homocysteine9.  3	
  

To our knowledge, this is the first study to investigate the relationship between leukocyte 4	
  

global DNA methylation and non-pathological cognitive functioning in healthy older adults. Future 5	
  

studies focusing on gene-specific DNA methylation patterns or short-term changes in DNA 6	
  

methylation status might contribute further to identifying the epigenetic mechanisms involved in 7	
  

cognitive functioning.  8	
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Table 1. Characteristics of the study population. 

Characteristic Total sample (n = 215) 95% CI 

Age (years) 60.9 60.2; 61.6 

Female sex (%) 34.9  

Level of education (% low / middle / high) 26.0 / 39.1 / 34.9  

Alcohol consumption (g/d)* 12.6 4.5; 23.5 

Current smoker (%) 14.9  

BMI (kg/m2) 26.7 26.2; 27.2 

Physical activity (PASE score) 149.2 140.5; 158.0 

Erythrocyte folate (nmol/l) 716.0 681.2; 750.8 

Plasma total homocysteine (µmol/l) 13.4 12.9; 13.8 

MTHFR 677C→T genotype (% CC / CT / TT) 34.9 / 32.6 / 32.6  

Leukocyte global DNA methylation status (%)† 4.6 4.6; 4.7 

Values are means or %. PASE, Physical Activity Scale for the Elderly; MTHFR, 5,10-

methylenetetrahydrofolate reductase. 

* Median (interquartile range) is given because of skewed data distribution. 

† Defined as the percentage of methylated to total cytosine (mCyt/tCyt).


