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Abstract

Free air CO2 enrichment (FACE) experiments in aggrading forests and plantations have
demonstrated significant increases in net primary production (NPP) and C storage in
forest vegetation. The extra C uptake may also be stored in forest floor litter and in
forest soil. After five years of FACE treatment at the EuroFACE short rotation poplar5

plantation, the increase of total soil C% was larger under elevated than under ambient
CO2. However, the fate of this additional C allocated belowground remains unclear.
The stability of soil organic matter is controlled by the chemical structure of the or-
ganic matter and the existence of protection offered by the soil matrix and minerals.
Fresh litter entering the soil enhances microbial activity which induces the binding of10

organic matter and soil particles into macro-aggregates. As the enclosed organic mat-
ter is decomposed, microbial and decomposition products become associated with
mineral particles. This association results in the formation of micro-aggregates (within
macro-aggregates) in which organic matter is stabilized and protected. FACE and N-
fertilization treatment did not affect the micro- and macro-aggregate weight, C or N frac-15

tions obtained by wet sieving. However, Populus euramericana increased the micro-
and small macro-aggregates weight and C fractions. The obtained macro-aggregates
were broken up in order to isolate recently formed micro-aggregates within macro-
aggregates (iM-micro-aggregates). FACE increased the iM-micro-aggregate weight
and C fractions. This study reveals that: 1) Species has an effect on the formation of20

macro-aggregates. The choice of species in a plantation or the effect of global change
on species diversity, may therefore affect the stabilization and protection of soil C in
aggregates. And 2) Increased atmospheric CO2 concentration increases the stabi-
lization and protection of soil C in micro-aggregates formed within macro-aggregates.
This mechanism increases the C sink of forest soils under increasing atmospheric CO225

concentration.
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1 Introduction

Afforestation of agricultural land and regrowth of temperate forests constitute a large
carbon (C) sink (Houghton, 2003; Houghton et al., 1998; Janssens et al., 2003). En-
hanced growth due to increasing atmospheric CO2 concentration is hypothesized to
further increase this terrestrial C sink (Prentice et al., 2001). Free air CO2 enrich-5

ment experiments in aggrading forests and plantations have demonstrated significant
increases in net primary production (NPP) and C storage in forest vegetation (Cal-
fapietra et al., 2003; DeLucia et al., 1999; Gielen et al., 2005; Hamilton et al., 2002;
Liberloo et al., 2006; Norby et al., 2005; Norby et al., 2002). The extra C uptake may,
next to forest vegetation, also be stored in forest floor litter and in forest soil. The fate of10

this additional C allocated belowground remains unclear (Jastrow et al., 2005; Lichter
et al., 2005; Norby et al., 2002; Schlesinger and Lichter, 2001). Enhanced carbon
transfer to the root system may result mainly in enhanced root respiration or, other-
wise, in an increase of root dry matter, mycorrhizal activity and subsequent transfer of
carbon to soil C pools.15

The stability of soil organic matter is controlled by the chemical structure of the or-
ganic matter and the existence of protection offered by the soil matrix and minerals
(Baldock and Skjemstad, 2000; Davidson and Janssens, 2006; Elliott, 1986; Jastrow,
1996; Krull et al., 2003; Six et al., 2002; Van Veen and Kuikman, 1990). The ad-
ditional C input into the soil may affect population size and activity of soil fauna and20

flora, and may therefore also affect the formation of soil aggregates (Oades, 1993). It
has been established that the inclusion of organic matter within aggregates reduces
its decomposition rate (Krull et al., 2003; Oades, 1984; Six et al., 2002, 2000; Tisdall
and Oades, 1982). Oades (1984, 1993) suggested a model of aggregate formation in
which micro-aggregates (∼100µm in diameter) are formed within macro-aggregates25

(>250µm in diameter). This model of the cycle of aggregate formation has been ex-
tended and applied by Jastrow (1996), Puget (1995) and Six et al. (2002, 2001, 1999,
1998). Fresh plant remains entering the soil become sites for microbial activity and nu-
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cleation centers for aggregation. The enhanced microbial activity induces the binding
of organic matter and soil particles into macro-aggregates. As the enclosed organic
matter is decomposed, microbial and decomposition products become associated with
mineral particles (Chenu and Stotzky, 2002). This association results in the formation
of micro-aggregates. Eventually, the binding agents in macro-aggregates degrade, re-5

sulting in a breakdown of macro-aggregates and the release microbially processed or-
ganic matter and micro-aggregates. Six et al. (1999) hypothesized that these released
micro-aggregates are a mixture of old micro-aggregates, which had been previously
formed and incorporated during macro-aggregate formation, and newly formed micro-
aggregates.10

At two sites in Ohio and Ontario Six et al. (2002) found that afforestation of cultivated
land resulted in increased aggregation and a greater C stock in the A horizons. The
micro-aggregates and their capacity to protect C in the longer term were found to be
crucial for C sequestration in both forested systems. Twenty years after afforestation
of former arable land in northeastern Italy, Del Galdo et al. (2003) observed an in-15

crease of soil C of respectively 23 and 6% at 0–10 and 10–30 cm soil depth. Moreover,
afforestation resulted in stabilization of soil C in micro-aggregates.

After six years of CO2 enrichment at the Duke Forest FACE experiment, Lichter et
al. (2005) did not detect a significant FACE effect on soil C content. However, the C
content of the mineral top soil (0–15 cm) averaged over the FACE and control rings20

significantly increased during the experiment. Physical fractionation suggested that
this increase occurred entirely within the free light fraction in which organic C is not
protected against decomposition. Fractions in which soil C is protected to some de-
gree, i.e. coarse and fine intra-aggregate particulate organic matter (iPOM) and min-
eral associated organic matter (micro-aggregates) were not affected by FACE. At the25

Oak Ridge deciduous forest FACE experiment, organic C in the surface 5 cm of the
soil increased linearly during 5 years of CO2 enrichment, while C in the ambient plots
remained relatively constant (Jastrow et al., 2005).

After 3 years of FACE treatment at the POPFACE poplar plantation, significantly
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more new C was incorporated into the mineral soil (Hoosbeek et al., 2004). We also
observed a significantly larger increase in total soil C after 5 years of CO2 enrichment
(Hoosbeek et al., 2006). Chemical fractionation revealed a FACE induced increase
of the labile soil C fraction. We hypothesize that this extra labile soil C will increase
the formation of macro-aggregates and subsequently will increase the formation of5

micro-aggregates. This FACE enhanced physical protection of soil organic matter may
increase long-term C sequestration in forest soils.

2 Methods

The POPFACE experiment was established early 1999 on former agricultural fields
near Viterbo (42◦37′04′′ N, 11◦80′87′′ E, alt 150 m), Italy. The plantation and adjacent10

fields had been under forest until about 1950. Since then a variety of agricultural
crops has been grown on these former forest soils until the inception of the POPFACE
plantation. The annual precipitation is on average 700 mm with dry summers (Xeric
moisture regime). During November of 1998 an initial soil survey took place. The loamy
soils classified as Pachic Xerumbrepts and were described in detail by Hoosbeek et15

al. (2004).
Nine ha were planted with Populus x euramericana hardwood cuttings at a density of

0.5 trees per m2. Within this plantation three FACE and three control plots (30×30 m)
were randomly assigned under the condition of minimum CO2 enrichment pollution.
The plots were divided into two parts by a physical resin-glass barrier (1 m deep in20

the soil) for nitrogen differential treatments in the two halves of each plot. However,
because of the high inorganic N content of the soil, no fertilization treatment was ap-
plied during the first 3-year rotation of the experiment. Each half plot was divided into
three sectors, where each sector was planted at a density of 1 tree per m2 using three
different genotypes: P. x euramericana Dode (Guinier) (=P. deltoides Bart. ex Marsh. x25

P. nigra L.) genotype I-214, a genotype of P. nigra L. (Jean Pourtet) and a local selection
of P. alba L. (genotype 2AS11). Carbon enrichment was achieved by injection of pure
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CO2 through laser-drilled holes in tubing mounted on six masts (Miglietta et al., 2001).
The FACE rings (octagons) within the FACE plots had a diameter of about 22 m. The
elevated CO2 concentrations, measured at 1-min intervals, were within 20 % deviation
from the pre-set target concentration (560µmol mol−1) for 91% of the time to 72.2%
of the time, respectively, at the beginning and at the end of each rotation cycle of the5

plantation. The plantation was drip irrigated at a rate of 6 to 10 mm per day during the
growing seasons.

The trees were coppiced after the first three growing seasons (1999–2001). The
experiment continued with a second rotation under the name EuroFACE (2002–2004).
A fertilization treatment was added to one half of each experimental plot because soil10

analyses showed the occurrence of limiting conditions of nitrogen availability in the soil
(Scarascia-Mugnozza et al., 2006). The total amount of nitrogen supplied was 212 kg
ha−1 y−1 in 2002 and 290 kg ha−1 y−1 during 2003 and 2004.

Soil samples were collected from each sector within 2 control (rings 2 and 3) and 2
FACE plots (rings 1 and 4) in October of 2003. Bulk density samples were taken with15

300 cm3 metal rings at 0–10 cm below the surface of the mineral soil. The samples
were dried at 105◦C for 3 days. Bulk densities were calculated based on dry weight and
ring volume. Next, the soil samples were crushed by hand and live roots were removed.
Carbon and nitrogen were determined by flash combustion in an elemental analyzer
(EA 1108) (Van Lagen, 1996). Total soil organic C and N content are expressed as20

weight percentage (g C or N per gram soil × 100%).

2.1 Whole sample fractionation

For fractionation, bulk samples were collected from the upper 10 cm of the mineral
soil and air dried at room temperature. Before drying, large aggregates (>1 cm) were
broken up along natural planes of weakness. The wet sieving procedure was described25

by Six et al. (1998). Materials used included a wet sieving apparatus, 20 l buckets (used
as wet sieving basins) and four 20 cm diameter sieves (2000, 1000, 250 and 53µm
mesh). The buckets were filled with demineralized water; the sieves were stacked,
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submerging one sieve at a time to prevent air bubbles from getting trapped under a
sieve. The top sieve (2000µm) was placed on top of the stack without touching the
water at first. Dried soil material was placed on the top sieve, after which the stack
of sieves was lowered until the material on the top sieve was just covered by water.
The samples were left to slake for 5 min, followed by 2 min of wet sieving. The wet5

sieving apparatus gently lowers and lifts the sieves at a speed of about 30 repetitions
per minute, over a distance of 3 cm. After sieving, the sieves were lifted out of the water
and the material that remained on the sieves was washed into beakers assigned to the
specific fractions. The isolated fractions were dried at 40◦C. Four fractions based on
the following size classes were distinguished: 53–250 (micro-aggregates), 250–100010

(small macro-aggregates), 1000–2000 (medium macro-aggregates), and >2000µm
(large macro-aggregates).

Six et al. (1998) used three sieves: 2000, 250 and 53µm, while we used an addi-
tional 1000µm sieve. The reason for this was the relatively large 250–2000µm fraction
of the samples we used, which tended to block the 250 µm sieve. We also used 75 g15

of sample per stack of sieves instead of 100 g in order to prevent blockage.
In general, differences in texture between field plots and aggregate fractions, and the

fact that there is hardly any binding between sand particles and organic matter, makes
sand fraction correction a necessity when comparing aggregate fractions and their C
and N contents (Elliott et al., 1991; Six et al., 1998). Per obtained fraction, 2 gram of20

soil material was used. The aggregates were destroyed by removing organic matter
with peroxide and dispersing clay with a dispersing solution of sodium carbonate and
sodium polyphosphate. Dispersion was completed by ultrasonic treatment (Van Does-
burg, 1996). Next, the destroyed size fraction was washed over the original sieve. The
material left on the sieve was taken as the sand fraction. Aggregate weight fractions25

were calculated as:

Aggregate weight fraction(1..4)=
total weight fraction(1..4)−weight sand fraction(1..4)

total sample weight

C and N contents could only be determined for uncorrected fractions (because the
877
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sand correction includes the loss of organic material). However, we assumed that the
sand fractions of the aggregate fractions and total sample did not contain C or N (just
inert minerals). The aggregate C fractions were calculated as:

Aggregate C fraction(1..4)=
g C fraction(1..4)

g C total sample

The aggregate N fractions were calculated in a similar fashion.5

2.2 Intra-macro-aggregate (iM) fractions

Next, the small en medium sized macro-aggregate fractions were combined into one
250–2000µm macro-aggregate fraction. Breaking up this macro-aggregate fraction
will, according to the aggregate formation model, result in the release of clay and
silt (<53µm), micro-aggregates (53–250µm), and course POM and sand (>250µm).10

These intra-macro-aggregate fractions will be indicated by “iM”. A “micro-aggregate
isolator”, as described by Six et al. (2002), was used to break up the macro-aggregates
while minimizing the break down of the released iM-micro-aggregates. Ten grams of
macro-aggregates were immersed in deionized water on top of a 250µ mesh screen
and shaken with 50 glass beads (4 mm diameter). A continuous water flow through the15

device flushed all released iM-micro-aggregates immediately onto a 53µm sieve, thus
avoiding further disruption. After complete breakup of the macro-aggregates, coarse
iM-POM and sand remained on the 250µm mesh screen. The iM-micro-aggregates
and the iM-clay and silt fraction were separated by the 53µm sieve. Weight, C and N
fractions were calculated as mentioned above.20

2.3 Statistics

The SPSS (v 11.5) General Linear Model was used to calculate univariate analysis of
variance and to evaluate FACE and N-fertilization treatment and species effects. Differ-
ences between means were considered significant when the P-value of the UNIANOVA
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F-test was <0.05.

3 Results

At the end of the fifth growing season, average soil C and N percentages of the top
10 cm of the mineral soil in the sampled rings (1–4) were 1.19 and 0.12% respectively
(Table 1). The average bulk density was 1.22 g soil · cm−3.5

3.1 Whole sample fractionation

The small macro-aggregate (250–1000µm) weight fraction was the largest fraction
making up one-third of the total sample weight (Table 2). The second largest weight
fraction was the large macro-aggregate (>2000µm) fraction. FACE and N fertiliza-
tion treatments had no effect on aggregate weight fractions. However, differences10

in species did change the weight distribution among the aggregate fractions signifi-
cantly. Populus euramericana, as compared to P. alba and nigra, increased the micro-
aggregate (53–250µm) and small macro-aggregate fractions and decreased the large
macro-aggregate fraction.

Based on C content, the small macro-aggregate aggregate fraction was again the15

largest holding on average 44% of the carbon (Table 3). FACE and N fertilization
treatments had no effect on the C distribution. However, P. euramericana increased
the small macro-aggregate C fraction while it decreased the large macro-aggregate C
fraction. These trends were close to being significant (0.05<P<0.10).

Most N was contained in the small macro-aggregate fraction, making up almost one-20

third of the total (Table 4). Again, only a species effect was observed. P. euramericana
decreased the medium (1000–2000µm) and large macro-aggregate N fractions.
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3.2 Intra-macro-aggregate (iM) fractions

The combined small and medium macro-aggregates consisted of, on average by
weight percentage, 57% iM-micro-aggregates, 24% iM-coarse POM and sand, and
15% iM-clay and silt particles. FACE and N fertilization treatments and poplar species
had no significant effect on the iM-aggregate weight fractions. Although, FACE did in-5

crease the iM-micro-aggregate weight fraction, i.e. 0.60 (FACE) vs. 0.53 (ambient) with
limited significance (P=0.104) (Table 5).

FACE did, however, significantly increase the iM-micro-aggregate C fraction. FACE
did not affect the iM-clay and silt and iM-coarse POM and sand C fractions (data not
shown). N treatment and poplar species had no effect on the iM-C fractions.10

The iM-N fractions were not affected by either FACE or N treatment. Populus eu-
ramericana, however, did increase the iM-micro-aggregate N fraction as compared to
P. alba and nigra.

4 Discussion

In preparation of the POPFACE experiment the experimental field was ploughed during15

the Fall of 1998 (Hoosbeek et al., 2004). At that time the structure of the loamy A
horizon was characterized by coarse prismatic peds (FAO, 1990). Five years after
establishment of the plantation, three litter layers (L, F and H) had formed on top of
the mineral soil. Underneath, the structure of the A horizon had changed into fine
and medium sized blocky and granular aggregates. In the F, H and A horizons many20

arthropods and few earthworms were observed. Afforestation obviously changed the
structure of the top soil within 5 years.

We hypothesized that FACE treatment, through an increase of net primary production
and increased C input into the soil, would increase the formation of macro-aggregates
and subsequently the formation of micro-aggregates. We also expected N-fertilization25

to have a positive effect on aggregate formation because of increased N availability to
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plants and soil flora and fauna.

4.1 Whole sample fractionation

The results of whole sample fractionation showed no FACE or N fertilization effect
on aggregate formation. Instead, a species effect was observed. Fewer large sized
and more small sized macro-aggregates were present under P. euramericana. More-5

over, P. euramericana increased the formation of micro-aggregates. According to the
model of aggregate formation, in which micro-aggregates are formed within macro-
aggregates, this increase of micro-aggregates under P. euramericana may be ex-
plained in two ways: 1) More large sized macro-aggregates broke up prior to sampling
which increased the number of released micro-aggregates. 2) More small sized macro-10

aggregates are being formed and subsequently more micro-aggregates are being re-
leased. Explanation 1 assumes increased disruption or degradation of large macro-
aggregates under P. euramericana. Also, it assumes that the large macro-aggregate
fraction was not replenished by newly formed large macro-aggregates. Explanation
2 assumes an increase in the speed of the cycle of aggregate formation, resulting15

in an increase of macro-aggregate formation and subsequently an increase of micro-
aggregate formation. Explanation 1 seems unlikely because there is no good reason
for increased disruption of large macro-aggregates and the subsequent lack of forma-
tion of new large sized macro-aggregates under P. euramericana. Explanation 2 is
supported by estimates of fresh plant remains entering the soil. Lukac et al. (2003)20

calculated the amount of C transferred into the soil via fine roots during the first rota-
tion (POPFACE) as a result of fine root production and turnover. They estimated the C
input for respectively P. alba, nigra and euramericana under ambient CO2 to be: 124,
128 and 170 (g/m2); and under FACE respectively: 189, 232 and 309 (g/m2). The
actual amount of C entering the soil was thought to be higher because root respiration25

and exudation was not accounted for. However, on average, under ambient CO2 and
FACE, 42% more C entered the soil via fine roots under P. euramericana as compared
to under alba and nigra. Hoosbeek et al. (2004) estimated the input of C into the soil
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with the C3/C4 stable isotope method during the second and third year. Again, most
C entered the soil under P. euramericana, i.e. on average 16 and 15% more new C in
respectively 2000 and 2001 as compared to P. alba and nigra. The observed larger
C inputs and increase of small macro-aggregate and micro-aggregate fractions un-
der P. euramericana are in agreement with the cycle of aggregate formation model.5

The larger input of fresh litter under P. euramericana increased the number of sites for
microbial activity and the number of nucleation centers for aggregation. Enhanced mi-
crobial activity induced an increase of binding of organic matter and soil particles into
macro-aggregates. More enclosed organic matter was decomposed and was subse-
quently associated with mineral particles. Increased association resulted in increased10

formation of micro-aggregates and long term stabilization of soil organic matter.
As with the weight fractions, the large and medium macro-aggregate C fractions

decreased, and the small macro-aggregate C fraction increased under P. eurameri-
cana. However, the micro-aggregate C fraction did not significantly increase under
P. euramericana. Elliott (1986), Gupta and Germida (1988) and Six et al. (2000) also15

found that macro-aggregates contain relatively more C than micro-aggregates. Elliott
(1986) regarded the organic matter in macro-aggregates to be highly susceptible to
mineralization and found the C in micro-aggregates to be more recalcitrant. Under
P. euramericana more fresh plant C was incorporated into small macro-aggregates.
During decomposition part of the C was lost as CO2 from the macro-aggregates and20

another part was associated with mineral parts contributing to the formation of micro-
aggregates. This loss of CO2 and formation of micro-aggregates decreases the C to
mineral particles weight ratio. This may explain why the micro-aggregate weight frac-
tion significantly increased under P. euramericana, while the micro-aggregate C fraction
also increased but not significantly.25

Like the weight and C fractions, the large and medium macro-aggregate N fractions
decreased under P. euramericana. A species effect on the small macro-aggregate and
micro-aggregate N fractions was probably obscured by the relatively high C/N ratio
of the fresh plant material as compared to the lower C/N ratio of the older organic
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matter included in the macro-aggregates. Likewise, the decrease of C/N ratio during
decomposition and humification probably caused an absence of a species effect on the
micro-aggregate N fraction.

4.2 Intra-macro-aggregate (iM) fractions

The isolated iM-micro-aggregate weight fraction was larger under FACE than under5

ambient CO2, although with limited significance (Table 5; P=0.104). However, based
on C, the iM-micro-aggregate fraction was significantly (P=0.003) larger under FACE.
These results may seem to contradict the fact that the small and medium macro-
aggregate fractions, that harbored these iM-micro-aggregate fractions, were not af-
fected by FACE. However, the fractions remaining on the sieves after wet sieving rep-10

resent aggregate fractions with a certain minimum aggregate stability. Similar weight
fractions may still include aggregates with different stabilities above a certain mini-
mum. Although the small and medium macro-aggregate fractions were not affected
by FACE, the average stability of the small and medium macro-aggregate fractions
formed under FACE may have been higher. A higher stability causes a slower macro-15

aggregate turnover, which enhances the formation of iM-micro-aggregates inside (Six
et al., 2000). So, after five years of treatment, FACE increased the formation of the
iM-micro-aggregate C fraction probably due to increased stability of small and medium
macro-aggregates. Eventually, these iM-micro-aggregates will be released from the
“nursery” and increase the “free” micro-aggregate C fraction as fraction of the whole20

soil. Through this mechanism, FACE increases the stabilization and protection of soil
C in iM-micro-aggregates, as shown by our results, and will eventually, as we expect,
also increase the stabilization and protection of soil C in “released” micro-aggregates.

4.3 Forest FACE experiments

Until recently, increased atmospheric CO2 concentration was reported to have no sig-25

nificant effect on soil C sequestration at forest FACE experiments (Houghton, 2003;
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Lichter et al., 2005; Norby et al., 2002; Schlesinger and Lichter, 2001). After six years
of CO2 enrichment at the Duke Forest FACE experiment, Lichter et al. (2005) did not
detect a significant FACE effects on soil C content. However, the C content of the
mineral top soil (0–15 cm) averaged over the FACE and control rings significantly in-
creased during the experiment due to regrowth. Physical fractionation suggested that5

this increase occurred entirely within the free light fraction in which SOM is not pro-
tected against decomposition. The iPOM and iM-micro-aggregate C fractions were
not affected by FACE. Lichter et al. (2005) concluded that forest soils are unlikely to
sequester significant additional quantities of atmospheric C associated with CO2 fertil-
ization because of the low rates of C input to refractory and protected SOM pools.10

Recently, Jastrow et al. (2005) raised the question whether the lack of a FACE effect
on soil C content is a general response or a function of (1) the low statistical power
of most experiments, and/or (2) the magnitude of CO2-stimulated C inputs relative to
the duration of the experiments. At the Oak Ridge deciduous forest FACE experiment,
organic C in the surface 5 cm of the soil increased linearly during 5 years of CO2 enrich-15

ment, while C in the ambient plots remained relatively constant (Jastrow et al., 2005).
A significant FACE effect on soil C was observed for the top 5 cm. Sampling of a thicker
soil increment, e.g. 0–15 cm, would have “diluted” the increase of C which would have
resulted in a non-significant effect. A meta-analysis of 35 independent experimental ob-
servations from a wide range of ecosystems showed that CO2 enrichment increased20

soil C by 5.6% (Jastrow et al., 2005). According to Jastrow et al. (2005), this result sup-
ports the generality of the observed increase of soil C under FACE at the Oak Ridge
experiment.

At the EuroFACE site we also observed a significant larger increase in total soil
C% after 5 years of CO2 enrichment (Hoosbeek et al., 2006). Chemical fractionation25

revealed that this increase occurred within the labile soil C fraction. The question
remained whether the observed larger increase of total soil C and the increase of
labile soil C under FACE would eventually result in long-term C sequestration in stable
organic matter fractions. The results of physical fractionation presented in this study
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reveal that:

1. Species has an effect on the formation of macro-aggregates. The choice of
species in a plantation or the effect of global change on species diversity, may
therefore affect the stabilization and protection of soil C in aggregates.

2. Increased atmospheric CO2 concentration increases the stabilization and pro-5

tection of soil C in micro-aggregates being formed within macro-aggregates. This
mechanism increases the C sink of forest soils under increasing atmospheric CO2
concentration.
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Table 1. Carbon and nitrogen weight percentages of the mineral top soil in the sampled rings
(1–4), October 2003.

Treatment C % N % Bulk density
(g soil · cm−3)

n mean s.e. mean s.e. mean s.e.

CO2 Ambient 12 1.18 0.04 0.11 0.00 1.26 0.02
FACE 12 1.20 0.03 0.13 0.01 1.17 0.04

N Ambient 12 1.20 0.04 0.12 0.01 1.21 0.03
Fertilized 12 1.18 0.03 0.12 0.00 1.23 0.04

Species Alba 8 1.17 0.04 0.12 0.01 1.20 0.05
Nigra 8 1.17 0.04 0.12 0.01 1.22 0.05
Euramericana 8 1.23 0.05 0.13 0.01 1.23 0.04
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Table 2. Effect of FACE, N-fertilization and species on sand free aggregate weight fractions.

Aggregate weight fractions
Treatment 53–250µm 250–1000µm 1000–2000µm >2000µm

n mean s.e. mean s.e. mean s.e. mean s.e.

CO2 Ambient 12 0.09 0.01 0.33 0.02 0.15 0.01 0.22 0.02
FACE 12 0.09 0.01 0.33 0.02 0.15 0.01 0.24 0.03

N Ambient 12 0.09 0.01 0.31 0.02 0.15 0.01 0.24 0.02
Fertilized 12 0.09 0.01 0.35 0.02 0.15 0.01 0.22 0.03

Species Alba 8 0.08 0.01 0.28 0.03 0.17 0.01 0.27 0.03
Nigra 8 0.08 0.01 0.31 0.01 0.15 0.01 0.26 0.02
Euramericana 8 0.10a 0.01 0.40b 0.02 0.13c 0.01 0.16d 0.03

a Significant species effect (P=0.032) on 53–250µm aggregate weight fraction.
b Significant species effect (P=0.004) on 250–1000µm aggregate weight fraction.
c Possible species effect (P=0.106) on 1000–2000µm aggregate weight fraction.
d Significant species effect (P=0.043) on >2000µm aggregate weight fraction.
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Table 3. Effect of FACE, N-fertilization and species on sand free aggregate C fractions.

Aggregate C fractions
Treatment 53–250µm 250–1000µm 1000–2000µm >2000µm

n mean s.e. mean s.e. mean s.e. mean s.e.

CO2 Ambient 12 0.13 0.01 0.46 0.03 0.18 0.01 0.26 0.03
FACE 12 0.11 0.01 0.42 0.03 0.19 0.01 0.29 0.04

N Ambient 12 0.12 0.01 0.41 0.03 0.18 0.01 0.29 0.03
Fertilized 12 0.12 0.01 0.47 0.03 0.19 0.01 0.26 0.03

Species Alba 8 0.11 0.01 0.39 0.04 0.20 0.02 0.31 0.04
Nigra 8 0.12 0.01 0.42 0.03 0.19 0.01 0.32 0.03
Euramericana 8 0.14 0.01 0.51a 0.03 0.16 0.01 0.19b 0.03

a Possible species effect (P=0.069) on 250–1000µm aggregate carbon fraction.
b Possible species effect (P=0.057) on >2000µm aggregate carbon fraction.
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Table 4. Effect of FACE, N-fertilization and species on sand free aggregate N fractions.

Aggregate N fractions
Treatment 53–250 µm 250–1000 µm 1000–2000 µm >2000µm

n mean s.e. mean s.e. mean s.e. mean s.e.

CO2 Ambient 12 0.09 0.01 0.32 0.02 0.15 0.01 0.23 0.04
FACE 12 0.09 0.01 0.30 0.02 0.14 0.01 0.22 0.03

N Ambient 12 0.09 0.01 0.32 0.02 0.14 0.01 0.24 0.03
Fertilized 12 0.08 0.01 0.31 0.02 0.15 0.01 0.22 0.03

Species Alba 8 0.08 0.01 0.30 0.03 0.17 0.01 0.27 0.04
Nigra 8 0.10 0.01 0.33 0.03 0.17 0.01 0.29 0.03
Euramericana 8 0.08 0.01 0.31 0.03 0.10a 0.01 0.12b 0.01

a Significant species effect (P=0.009) on 1000–2000µm aggregate nitrogen fraction.
b Significant species effect (P=0.006) on >2000µm aggregate nitrogen fraction.
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Table 5. Isolated iM-micro-aggregate weight, C and N fractions.

iM-micro-aggregate
Treatment weight fraction C fraction N fraction

n mean s.e. mean s.e. mean s.e.

CO2 Ambient 12 0.53 0.01 0.63 0.01 0.73 0.06
FACE 12 0.60a 0.03 0.71b 0.02 0.75 0.03

N Ambient 12 0.57 0.03 0.66 0.02 0.70 0.05
Fertilized 12 0.57 0.02 0.67 0.02 0.78 0.04

Species Alba 8 0.56 0.03 0.68 0.03 0.68 0.05
Nigra 8 0.56 0.03 0.66 0.02 0.66 0.04
Euramericana 8 0.58 0.04 0.67 0.02 0.87c 0.05

a Possible CO2 treatment effect (P=0.104) on iM-micro-aggregate weight fraction.
b Significant CO2 treatment effect (P=0.003) on iM-micro-aggregate C fraction.
c Significant species effect (P=0.020) on iM-micro-aggregate N fraction.
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