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Abstract 

Soil fertility decline and erratic rainfall are major constraints to crop productivity on 

smallholder farms in southern Africa. Crop production intensification along with efficient use 

of chemical fertiliser is required to produce more food per unit area of land, while rebuilding 

soil fertility. The objective of this thesis was to identify appropriate crop production 

intensification options that are suitable to the socio-economic and biophysical conditions of 

selected smallholder maize-based farming systems in southern Africa. Three sites that formed 

a gradient of intensity of crop and livestock production were selected for the study. Murehwa in 

Zimbabwe is characterised by the largest intensity followed by Ruaca and lastly Vunduzi both 

in central Mozambique. In all three sites, maize is a key staple and cash crop. A literature 

review, field methods based on participatory research, and modelling tools were combined in 

analysing potential crop production options across an agricultural intensification gradient. A 

meta-analysis on maize grain yield under rain-fed conditions revealed that conservation 

agriculture required legume rotations and high nitrogen input use especially in the early 

years. Reduced tillage without mulch cover leads to lower yields than with conventional 

agriculture in low rainfall environments. Mulch cover in high rainfall areas leads to smaller 

yields than conventional tillage due to waterlogging, and improved yields under CA are likely 

on well drained soils. Crop productivity under conservation agriculture depends on the ability 

of farmers to achieve correct fertiliser application, timely weeding, and the availability of 

crop residues for mulching and systematic crop rotations which are currently lacking in 

southern Africa. An additive design of within-row intercropping was compared to a 

substitutive design with distinct alternating rows of maize and legume (local practice) under 

no-till in the Ruaca and Vunduzi communities of central Mozambique. Intercropping 

increased productivity compared to the corresponding sole crops with land equivalent ratios 

(LER) of between 1.0 and 2.4. Maize yield loss was only 6-8% in within-row intercropping 
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but 25-50% in the distinct-row option. Relay planting of maize and cowpea intercropping 

ensured cowpea yield when maize failed thus reduced the negative effects of dry spells. The 

residual benefits of maize-pigeonpea intercropping were large (5.6 t ha-1) whereas continuous 

maize (0.7 t ha-1) was severely infested by striga (Striga asiatica). The accumulation of 

biomass which provided mulch combined with no tillage increased rainfall infiltration. 

Intensification through legume intercropping is a feasible option to increase crop productivity 

and farm income while reducing the risk of crop failure especially where land limitation. 

Cattle manure in combination with chemical fertiliser that included N, P, Ca, Zn, Mn were 

evaluated for their potential to recover degraded soils and to support sustainable high crop 

productivity in Murehwa, Zimbabwe over nine years. The experiment was established on 

sandy and clay soils in two field types. Homefields were close to the homestead and 

relatively more fertile than the outfields due to previous preferential allocation of nutrients. 

Maize grain yields in sandy soils did not respond to the sole application of fertiliser N 

(remained less than 1 t ha-1); manure application had immediate and incremental benefits on 

crop yields in the sandy soils. A combination of 25 t ha-1 manure and 100 kg N gave the 

largest treatment yield of 9.3 t ha-1 on the homefield clay soils, 6.1 t ha-1 on clay outfield, 7.6 t 

ha-1 on sandy homefield and 3.4 t ha-1 in the eighth season. Despite the large manure 

applications of up to 25 t ha-1, crop productivity and soil organic carbon build-up in the 

outfield sandy soils was small highlighting the difficulty to recover the fertility of degraded 

soils. Manure can be used more efficiently if targeted to fields closest to homesteads but this 

exacerbates land degradation in the outfields and increases soil fertility gradients. The 

NUANCES-FARMSIM model for simulating crop and animal productivity in mixed crop-

livestock farming systems was used to perform trade-off analysis with respect to crop residue 

management, animal and crop productivity in Murehwa, Zimbabwe. Retaining all maize 

residues in the field led to severe losses in animal productivity but significant gains in crop 
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productivity in the long-term. Yield increased 4 to 5.6 t farm-1 for RG1, and from 2.8 to 3.5 t 

farm-1 for RG2. Body weight loss was on average 67 kg per animal per year for RG1 and 93 

kg per animal per year for RG2. Retention of all crop residues reduced farm income by 

US$937 and US$738 per year for RG1 and RG2 respectively. Farmers who own cattle have 

no scope of retaining crop residues in the field as it results in significant loss of animal 

productivity. Non-livestock farmers (60% of the farmers) do not face trade-offs in crop 

residue allocation but have poor productivity compared to livestock owners and have a 

greater scope of retaining their crop residues if they invest in more labour to keep their 

residues during the dry season. This study has revealed that crop production intensification 

options developed without considering the biophysical conditions as well as socio-economic 

circumstances of farmers are nuisances. External ideas should be used to stimulate local 

innovations to push the envelope of crop production without creating new constraints on 

resource use. 

 

Key words: crop production, intensification, extensification, farming systems, tradeoff 

analysis, maize, legume, manure, fertiliser, southern Africa
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1.1 Poor crop productivity on smallholder farms in southern Africa 

Poor soils and unreliable rainfall are the major constraints to food production and 

sustainability of smallholder agriculture in southern Africa. These challenges are further 

compounded by low incomes, labour and land constraints faced by the majority of 

smallholder farmers Sanginga and Woomer (2009). The high costs, lack of credit, delays in 

the delivery and poor transport and marketing infrastructure all hamper fertilizer use by 

smallholder farmers (Buresh and Giller, 1998); average application rates of 8 kg ha-1 are 

often mentioned (Sanchez, 2002). Locally, household and farm characteristics, social and 

human capital, and farmer perceived damaging effects of fertilisers on soil fertility hinder 

fertiliser use (Mapila et al., 2012). The net result is continuous soil nutrient mining 

(Stoorvogel et al., 1993). Nitrogen is commonly deficient; soil analyses and crop responses 

have also revealed small concentrations of plant available phosphorus in most of the cropped 

lands due to continuous cultivation.  

Besides soil fertility, climate variability has been identified as the major constraint to 

agricultural productivity with rainfall variability (both within and across seasons) being the 

most critical (Phillips et al., 1998; Challinor et al., 2007). Inter-annual rainfall variability has 

increased since the late 1960s, and this is shown by droughts which have become more 

intense and widespread (Fauchereau et al., 2003). The risk of crop failure resulting from 

erratic rainfall is also a strong disincentive to the purchase and use of fertilizers on 

subsistence crops (Probert et al., 1995). Options that increase infiltration of rainwater and 

minimize evaporative losses such as conservation agriculture (Hobbs et al., 2008), or legume 

technologies that add N to the soil through biological nitrogen fixation (Giller, 2001) are 

desirable. However, these crop production options need to be adapted to the local 

biophysical, socio-cultural and economic conditions of the smallholder farmers in southern 

Africa.  
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1.2 Diversity of smallholder farming systems 

The presence or absence of cattle across many regions in southern Africa often distinguishes 

the dominant farming system although maize appears to be a common major crop. Cattle are 

important for the provision of draught power, milk, manure, meat and as insurance and a 

symbol of wealth (Thornton and Herrero, 2001; Rufino et al., 2007). Maize is an important 

food security as well as cash crop for the majority of farmers in southern Africa (Dowswell et 

al., 1996). The combination of biophysical factors such as soil type and climate, socio-

economic factors such resource ownership and access to markets determines farmers’ 

production orientation within each locality. At farm level, limited labour and inadequate 

resources such as cattle manure or chemical fertilisers often force farmers to apply only on 

limited portions of the farm each year leading to heterogeneous soil fertility status across the 

fields (Mtambanengwe and Mapfumo, 2005; Tittonell et al., 2007). Success of crop 

production intensification options thus depends largely on site specific recommendations that 

considers local constraints and opportunities to improve crop yield (Cassman, 1999). To 

understand this diversity, three sites differing in population density, intensity of interaction 

between crop and livestock production, and input use were selected for this study (Section 

1.7). The choice of crop intensification options tested in each site were based on review of 

previous work, socio-economic circumstances of farmers, as well as consideration to address 

their short and long-term needs.  

 

1.3 State of the art: soil fertility replenishment options 

A basket of technologies within the broad framework of integrated soil fertility management 

(ISFM) (Vanlauwe et al., 2010) include agroforestry, grain legumes, green manures, 

inorganic fertilizers, cattle manure, and conservation agriculture (CA). These have been 

proposed as possible solutions to address soil fertility decline and improve crop productivity 
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on smallholder farms in Africa. Research has revealed that neither organic nor chemical 

fertiliser applied alone is good enough to improve crop productivity (Chivenge et al., 2009; 

Chivenge et al., 2011). Some of these strategies work well on research stations and in specific 

farmers’ circumstances, but cannot be assumed to be appropriate to the majority of 

smallholder farmers in southern Africa (Mafongoya et al., 2006; Giller et al., 2009). A major 

challenge is therefore to identify appropriate crop production intensification options suitable 

to the biophysical and socioeconomic conditions for farmers. 

 

The most readily available nutrient source to smallholder farmers is cattle manure although 

its effectiveness in improving crop yields is limited to a great extent by the poor nutrient 

contents and the small amount produced relative to cropped areas (Giller et al., 1997; 

Mugwira, 1998; Zingore et al., 2008). The potential of legume based technologies is limited 

by lack of information, seed costs, and poor market infrastructure (Graham and Vance, 2003). 

Conservation agriculture is limited by small crop productivity and the competition for crop 

residues between alternative uses (Giller et al., 2009; Rufino et al., 2011).  Agroforestry trees 

and green manures used for soil fertility improvement are adopted by farmers when they have 

multiple uses such as contribution to the household diet (Giller, 2001). The suggested and 

most promising intensification options are those based on integrating legumes into the maize-

based farming systems, and use of cattle manure due to the low cost and local availability 

(Mafongoya et al., 2006). New insights are needed on how these will fit in farming systems 

of different land use intensities, constraints and opportunities. 
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1.4 A new pathway: the paradigm of ecological intensification 

The Green Revolution in the 1960s was based on the use of high yielding varieties, large 

quantities of fertilizer, pesticides, herbicides and intensive management to meet the food 

demands of an increasing population (Douglas et al., 2002). The side effects of intensification 

soon followed marked by reduction in biodiversity, increased incidence of pests and diseases 

due to monocropping, reductions in soil quality and pollution (Conway and Barbie, 1988; 

Matson et al., 1997). Concerns about the long-term sustainability and environmental 

consequences of such high input use and management required new approaches to sustainable 

agriculture (Conway and Barbie, 1988; Matson et al., 1997; Tscharntke et al., 2005). The 

paradigm of ecological intensification of agriculture means manipulating nature’s functions 

to design sustainable production systems that use less inputs and leads to positive biophysical 

and socio-economic outcomes (Cassman, 1999; Doré et al., 2011; Hochman et al., 2011; 

Tittonell and Giller, 2013). It entails efficient use of pesticides, chemical fertilizers, water and 

fossil fuels, and development of locally adapted varieties. Thus, the major pillar of ecological 

intensification is increasing resource use efficiency i.e. resource capture efficiency × resource 

conversion efficiency (Trenbath, 1986; de Wit, 1992).  

Ecological intensification in developed and developing countries will take different pathways 

in the short term. In the developed countries reductions in fertiliser inputs are needed due to 

environmental concerns (e.g. Tamminga, 2003). In Africa fertiliser inputs need to be 

increased to sustain large crop productivity while minimizing negative effects on the 

environment. In less favourable environments such as those in southern Africa, feasible 

ecological intensification options include integration of crop and livestock production, 

increased crop diversification, and agroforestry systems that promote nutrient and soil 

conservation (e.g. Cassman and Harwood, 1995; Mafongoya et al., 2006). Tittonell and Giller 

(2013) also suggested that manipulating planting dates, crop spacing, cultivar selection and 
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weeding intensities may be important to achieve large crop productivity. Recently, Ryschawy 

et al. (2012) identified mixed crop-livestock systems as the most suitable pathway to 

environmental and economic sustainable agriculture although there is no guarantee that inputs 

are always used efficiently and that outputs are always positive on the environment.  

 

1.5 Trade-offs in resource allocation 

The smallholder farming sector of southern Africa is dominated by the maize-based mixed 

crop-livestock systems (Dixon et al., 2001). In these systems, manure and mineral forms of 

nutrients to apply to the whole farm are often limited (Giller et al., 2011). The use of scarce 

crop harvest residues for livestock feed during the dry season limits the options available for 

carbon input into the fields. In situations of erratic rainfall, crop residues maybe needed for 

soil cover  to increase infiltration and reduce moisture losses (Adekalu et al., 2007), thus 

creating strong trade-offs between crop and  livestock productivity (Rufino et al., 2011). Poor 

crop productivity in combination with the importance attached to cattle intensifies the trade-

offs for crop harvest residue uses. Quantification of trade-offs is needed for crop and animal 

production to identify a farm level pathway that reduces competition for crop residues uses 

and to improve farm benefits from both crop and animal production.  

 

1.6 Rationale of the study 

Previous initiatives and proposed technologies have often failed to alleviate problems of soil 

fertility and food production on smallholder farms as they have been promoted based on their 

technical efficiencies obtained with adequate nutrients and optimum management but without 

consideration of the diversity and complexity of the livelihoods of farmers (Giller et al., 

2011). According to van Ittersum (2011), the low hanging fruit has been plucked suggesting 

that the easier ways to improve crop production are no longer feasible; new innovative 

options are needed. Expansion of crop production through opening additional land is no 
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longer feasible due to increasing population and a limited land resource base. On the other 

hand fertiliser inputs are beyond the reach for most smallholders and low-cost nutrient input 

sources are limited. There is a need for crop production systems that use nutrients and water 

more efficiently to maximise productivity because these resources are limited under the 

conditions of southern Africa. 

An understanding of the biophysical and socioeconomic factors that influence the 

smallholder environment, as well as the farmers’ goals and aspirations is required in order to 

design sustainable crop production systems (Ojiem et al., 2006). There is need to consider the 

variations caused by differences in farm size, quantity, type and condition of livestock, soil 

and crop management, food consumption patterns, sources of income, and production 

objectives among the different farmer resource groups (Shepherd and Soule, 1998; Tittonell 

et al., 2005). New crop production systems should be effective within the constraints of 

farmer resource endowment, and acceptable risk (Snapp et al., 2003). 

The major hypothesis of this thesis is that crop production intensification options differ in 

importance according to bio-physical and socio-economic conditions of farmers. It thus 

follows that locally adapted options are more appropriate in removing the binding constraints 

of poor soils, unreliable rainfall and drought that are characteristic of southern Africa. 

 

1.6 Objectives  

In this study, I attempt to identify appropriate crop production intensification options that are 

suitable to the socio-economic and biophysical conditions of selected smallholder maize-

based farming systems in southern Africa with emphasis on building soil fertility. 
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Specific objectives 

a) To characterize three selected contrasting maize-based smallholder farming systems 

in southern Africa and to identify the major opportunities and constraints to crop 

production intensification. 

b) To review literature on the long-term effects of no-tillage and/or residue retention 

management on maize grain yield under rain-fed conditions, and to draw lessons on 

the appropriateness of these management options for smallholder farmers in southern 

African. 

c) To explore the potential of maize-grain legume intercropping to alleviate the 

biophysical and socio-economic constraints faced by smallholder farmers in central 

Mozambique. 

d) To evaluate the potential of cattle manure application to improve crop productivity 

and rebuild fertility in degraded soils in smallholder mixed crop-livestock farming 

systems in Murehwa, Zimbabwe. 

e) To quantify trade-offs and identify opportunities for crop residue uses in a 

smallholder mixed crop-livestock systems in Murehwa, Zimbabwe. 

1.7 Study setting 

The study was performed in Zimbabwe and Mozambique. I intentionally selected sites with 

contrasting maize based-farming systems depending on the intensity of integration between 

crop and livestock production. The intensity of crop-livestock integration was important as it 

defines nutrient availability especially where farmers cannot afford mineral fertilisers. A 

gradient of intensity of crop production can be established from Murehwa, Zimbabwe to Ruaca 

and through to Vunduzi in Mozambique (Table 1.1, Fig. 1.1). In all three sites, maize is the 

key staple and cash crop. In Murehwa, farmers generally manage a mixed crop-livestock 

system with one large field close to the homestead demarcated into smaller plots fenced and a 
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few others scattered away from the homestead and not fenced. Use of both manure and 

fertilizer is prevalent although quantities are often not sufficient to meet crop needs. In Ruaca 

and Vunduzi, farmers increase production through extensive cultivation i.e. a large area gives 

more yield even though the amount obtained per unit area is the same or smaller. Distance to 

outfields where maize for sale is normally grown ranges between 4-8 km. Slash and burn is a 

very common system of land clearance and input use is marginal; farmers in Ruaca use cattle 

manure only in vegetable gardens. The different socioeconomic and biophysical conditions in 

the study sites were used to develop the research questions for on-farm experimentation.  

Table 1.1 Major attributes and differences in the study sites in Murehwa, Zimbabwe and Ruaca 
and Vunduzi in central Mozambique.  

Attribute Site 

Murehwa Ruaca Vunduzi 

Mean annual rainfall (mm) 800 1000 800 

Predominant soils Sandy Sandy Sandy 

Altitude (masl) 1300 700 300 

Main crop Maize Maize Maize 

Largest land size (ha) 3 15 7 

Cattle ownership (% of HHs) 40 25 0 

Manure use in main crop Yes No No 

Fertiliser use in main crop Yes No No 

Population density (km-2) 104 22 25 
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Fig. 1.1. Map of southern Africa showing the geographical location of Murehwa in 
Zimbabwe, and Ruaca and Vunduzi in central Mozambique. 

1.8 Thesis outline  

Chapter 2 is a literature review that provides an understanding of the effects of long-term 

tillage and/or residue retention practices on maize grain yield under contrasting soil textures, 

crop rotation, N fertiliser input and rainfall. The relationship between annual rainfall 

variability and its effect on maize grain yield is also explored using data from southern 

Africa. The analysis is used to draw major lessons on the suitability of conservation 
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agriculture practises for southern Africa because in this region there is a strong need for 

effective water conservation practices to avert the devastating effects of erratic rainfall.  

In Chapter 3, I present an explorative study on maize-grain legume intercropping in 

smallholder farming systems (Ruaca and Vunduzi) of central Mozambique. This study was 

motivated by the outcome of the literature review which identified legume integration as a 

key requirement to improve crop productivity. This paper evaluates the suitability of maize-

legume intercropping to alleviate the biophysical and socio-economic constraints faced by 

smallholder farmers in Ruaca and Vunduzi communities, central Mozambique. I discuss the 

technical performance of the intercrop systems in relation to the socio-ecological 

environment and farmers’ goals in these two sites.  

Chapter 4 uses data from a long-term experiment to identify and explore pathways to restore 

soil fertility in degraded outfields using a combination of mineral fertilisers and cattle manure 

in Murehwa, Zimbabwe. I discuss how limited manure quantities can be allocated across the 

fields to maximise crop productivity benefits in the context of the smallholder mixed crop-

livestock systems. Chapter 5 quantifies the intensity of trade-offs in crop residues uses across 

farm types in smallholder mixed crop-livestock farming systems in Murehwa, Zimbabwe. 

The implications of crop residue management on crop and livestock productivity are assessed 

in order to identify opportunities to optimize use of crop residues for soil fertility and 

livestock feed. 

In Chapter 6, I place the crop production intensification options into the broader context of 

the smallholder farming systems in southern Africa. The nuances and nuisances of each 

option are discussed in relation to opportunities and constraints across farming systems. The 

implications of the findings of this thesis are discussed in relation to the design of productive 

and sustainable farming systems. Lastly, the major conclusions drawn from the study and 

recommendations for future research are highlighted. 
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Abstract 

Conservation agriculture is being promoted through reduced tillage, permanent soil cover and 

crop rotations across many regions of the world to meet the high demands for food from a 

dwindling land resource base while enhancing soil fertility. Recently there has been a sustained 

promotion of conservation agriculture in southern Africa to encourage its adoption in the 

predominantly maize (Zea mays L.) based farming systems. However, maize yields under rain-

fed conditions are often variable and there is need for analyses that help to unravel the factors 

that contribute/affect crop yield under conservation agriculture practice and to identify windows 

of opportunity for improved impact in southern Africa. Maize grain yield data from long-term 

experiments (at least 5 years) under rain-fed conditions were analysed to provide an 

understanding of the combined effect of long-term tillage and / or residue retention on maize 

grain yield under contrasting soil textures, nitrogen input and climate through a meta-analysis. 

Variability of yield with time was measured through stability analysis. Analyses showed a clear 

increase in maize yield over time with conservation agriculture practices that include rotation 

and high input use in low rainfall areas, but there was no difference in system stability under 

those conditions. We observed a strong relationship between maize grain yield and annual 

rainfall with an average r2 of 0.63. The following conclusions were made from the meta-analysis: 

(a) mulch cover in high rainfall areas leads to lower yields due to waterlogging (92% of data), (b) 

reduced tillage with no mulch cover leads to lower yields in semi-arid areas (56% of data), (c) 

conservation agriculture practices require high inputs especially N for improved yield (73% of 

data), (d) increased yields are obtained with rotation but calculations often do not include the 

variations in rainfall within and between seasons (63% of data), (e) rainfall is the most important 

determinant of yield in southern Africa and no tillage and mulch management practice in its 

present form can offset the detrimental effects of rainfall variability (average r2=0.63) , (f) soil 
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texture is important in the temporal development of conservation agriculture effects, improved 

yields are likely on well drained soils (85% of data), and (g) most experimental designs were 

poorly formulated resulting in effects being incorrectly attributed to the interacting components 

of conservation agriculture. Based on these observations, we propose a simple experimental 

design that can help to unravel the effects of tillage, mulch and rotation on crop yields. It is clear 

from this analysis that conservation agriculture needs to be targeted and adapted to specific bio-

physical conditions for improved impact. Success of conservation agriculture in southern Africa 

will depend on the promotion of other good agronomic practices such as correct (amount and 

type) fertiliser application, timely weeding and systematic crop rotations.  

Key words: conservation agriculture/ maize grain yield / meta-analysis/stability analysis/ rain-

fed conditions/ southern Africa 
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2.1 Introduction   

Knowledge of specific crop responses to tillage and surface crop residues as affected by soils, 

climate and N fertilisation is necessary in the selection of appropriate tillage and crop residue 

management strategies for improved crop production (Aina et al., 1991). Smallholder agriculture 

in southern Africa is characterised by mouldboard ploughing and hand-hoeing that is often 

thought to lead to land degradation and excessive nutrient losses (Fowler and Rockstrom, 2001; 

Knowler and Bradshaw, 2007). To combat this scourge, conservation agriculture is being 

promoted through reduced tillage, permanent soil cover and crop rotations (FAO, 2008). The 

effectiveness of conservation agriculture for controlling excessive water run-off and soil erosion 

is well documented (Adams, 1966; Alberts and Neibling, 1994; Choudhary et al., 1997; Barton et 

al., 2004; Scopel et al., 2004a) and it is expected that this contribution can be measured in terms 

of crop yield. Other benefits associated with conservation agriculture include reduction in the 

input costs for crop production and profit maximisation (Dumanski et al., 2006; Knowler and 

Bradshaw, 2007).  

Conservation agriculture emerged in the 1970s mostly in the USA and became an acceptable 

practice in the USA, Brazil, Argentina, Canada and Australia mainly because of its ability to 

combat increased soil erosion and land degradation, and because of lower fuel costs (Dumanski 

et al., 2006; Harrington, 2008). Conservation agriculture is mostly adopted by large scale 

mechanized farmers with the concomitant widespread use of glyphosate for weed control 

(Derpsch, 1999; Derpsch, 2005). Conservation agriculture was developed and adopted widely by 

farmers in South America mainly because it significantly reduced soil erosion, decreased labour 

costs and generally led to higher income and a better standard of living for the farmers (Ribeiro 

et al., 2007; Lahmar, 2010).  
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Implementing conservation agriculture in Africa, particularly the semi-arid regions, presents 

challenges different from where conservation agriculture originated. In semi-arid regions (300–

500 mm annual rainfall), particularly southern Africa, success of conservation agriculture 

depends on the ability of farmers to retain crop residues and to ensure adequate weed control 

(Giller et al., 2009). Farming systems are predominantly mixed crop-livestock systems with low 

crop productivity and most crop residues are grazed in situ by livestock or transported to the 

kraal to improve quantity and quality of manure (Murwira, 1995; Mapfumo and Giller, 2001; 

Erenstein, 2002; Zingore et al., 2007). Rainfall is unimodal and erratic with high variability both 

within and between seasons, and droughts are common (Challinor et al., 2007) Combined 

mechanical and hand weeding are the preferred and cheaper weed control methods, and use of 

herbicides is uncommon (Siziba, 2007). Crop rotations are often non-systematic with maize 

grown continuously for 3-5 years, and are aimed at exploiting residual fertility rather than at 

benefiting the following crops in the rational sequence (Mapfumo and Giller, 2001). Fertiliser 

use is inadequate mainly due to high transaction costs and inefficiencies throughout the 

production and consumption chain (Quinones et al., 1997). On the other hand, the little fertiliser 

available is often not the correct type required for various crops and most farmers are not 

familiar with its correct usage (Sanginga and Woomer, 2009).  

Manipulating tillage and mulch management to improve water infiltration and reduce water loss 

from the soil surface in crop fields has potential to substantially improve crop yields and soil 

conditions in the semi-arid tropics (Hussain et al., 1999; Findeling et al., 2003; Tarkalson et al., 

2006). Conventional tillage practices alter soil structure and increase porosity of the upper layer. 

This increases the initial water infiltration into the soil but total infiltration is often decreased by 

subsoil compaction (Aina et al., 1991; Azooz and Arshad, 1996; Gómez et al., 1999). Cultivated 
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soils may lose a lot of rainfall as run-off and large amounts of soil through erosion (Duley, 

1940). Intensive rainfall on bare soil leads to surface sealing and soil compaction, resulting in 

localised waterlogging and poor soil infiltration (Castro et al., 2006). The mulch component of 

conservation agriculture controls soil erosion by reducing raindrop impact on soil surface, 

decreasing the water runoff rate and increasing infiltration of rainwater (Lal, 1989; Barton et al., 

2004). Under semi-arid conditions mulches also play an important role in conservation of soil 

water through reduced soil evaporation (Scopel et al., 2004a). In theory, reduced tillage and 

surface cover increase soil water available for crop growth by increasing infiltration and by 

limiting run-off and evaporation losses (Fig. 2.1). However, mulching is not positive in all 

circumstances; under continuous rainfall mulches have little effect on soil water status (Unger et 

al., 1991). Prolonged dry periods may also cause the benefits of mulching to diminish due to 

continued evaporation (Jalota and Prihar, 1990). Intensive rainfall in mulched fields can cause 

waterlogging because of reduced evaporation (Araya and Stroosnijder, 2010) leading to reduced 

soil aeration (Cannell et al., 1985).  
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Fig. 2.1. The major components of the conservation agriculture practice at the soil-atmosphere 
interface showing how tillage and mulch management affect infiltration, soil moisture 
availability and crop growth. Tillage alters soil structure and increase porosity of the upper layer 
and enhances the initial infiltration while mulch reduces raindrop impact on soil surface, 
increasing infiltration of rainwater and reducing evaporation. 

Interactions between the components of conservation agriculture and their effects on crop yields 

are complex and often site-specific and long-term experiments are necessary to provide a better 

understanding. They provide unique information on the sustainability of crop production systems 

and the interactions between management practices and the broader environment (Powlson et al., 

2006). Sustainability is defined as the ability of a system to maintain productivity despite major 

disturbances such as intensive stress or a large perturbation (Conway, 1985; Hansen, 1996). 

Practically, long-term experiments enable observations on changes in crop growth patterns and 

management effects on slow-moving factors such soil organic matter which cannot be done in 

any other way (Jenkinson, 1991; Mitchell et al., 1991). They are important for designing 

cropping systems with high and stable crop yields and low production risk (Raun et al., 1993; 
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Stanger et al., 2008). We analysed maize grain yield data from rain-fed long-term studies on 

tillage and residue management from semi-arid to sub-humid environments. Maize grain yield is 

important because it is the staple food crop for most of southern Africa where it constitutes more 

than 50% of the diet for most people and can be grown under widely varying rainfall and edaphic 

conditions (Eicher, 1995; Smale, 1995; Sileshi et al., 2008). We mainly focused on one of the 

pillars of sustainable land management which is to maintain or enhance productivity (Dumanski 

and Smyth, 1994). Crop yield is important because it is the most common and useful parameter 

used to evaluate the acceptability by farmers of any production practice (Gameda et al., 1997; 

Abeyasekera et al., 2002).    

The objective of this paper was to use data from long-term studies to provide an understanding of 

the effects of long-term tillage and/or residue retention practices on maize grain yield under 

contrasting soil textures, crop rotation, N fertiliser input and climate through meta-analysis. An 

analysis of the relationship between annual rainfall variability and maize grain yield was also 

carried out using data from southern Africa. This meta-analysis was used to draw major lessons 

for southern Africa because in this region there is a strong need for effective soil and water 

conservation practices to avert the effects of recurrent droughts. Analysing data from other 

regions provide an indication of the likely impact (ex ante) on food security of promoting 

reduced tillage and mulch-based cropping practices. It was also intended to understand the 

interactions between maize yield and rainfall, given its high variability under the climatic 

conditions of southern Africa.  
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2.2 Materials and methods  

2.2.1 Meta-analysis 

Maize grain yield data was obtained from long-term studies (> 5 years) on tillage and crop 

residue management under rain-fed conditions established in semi-arid and sub-humid 

environments from across the whole world. Treatments had to be from randomised plots with at 

least three replications. Studies (see Table 2.1) were obtained from refereed journals, book 

chapters or peer reviewed conference proceedings through online searches. Our search was 

comprehensive including the following keywords and their combinations: conservation 

agriculture, long-term, reduced tillage, no-tillage, maize yield, corn yield, sub-humid, semi-arid, 

rain-fed, southern Africa. We also contacted key experts who are working on conservation 

agriculture. We collected information on climate (mainly rainfall), altitude, soil texture of the 

experimental site, agronomic management (rate of N fertiliser applied) as reported by the 

primary authors (Table 2.1). These factors were considered to have significant influence on the 

effect sizes. Data required for the meta-analysis was in the form of treatment mean ( X ), its 

standard deviation ( XSD ) and the number of replicates ( n) mentioned in the experimental 

design. Several authors presented statistical data in different formats such as standard error 

( XSE ) and coefficient of variation ( %CV ). These forms were converted to standard deviation 

( XSD ) using the following equations: X XSD SE n   and
100

%
( )X

CV
SD X  . 
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Meta-analysis allows quantitative analyses of experimental results reported by other authors 

and the estimation of effect sizes (Glass, 1976; Ried, 2006; Borenstein et al., 2009). The 

analysis increases the statistical power available to test hypotheses, and differences in 

response between treatments under different environments (Gates, 2002; Borenstein et al., 

2009). The effect size found in each individual study can be considered an independent 

estimate of the underlying true effect size, subject to random variation. All studies contribute 

to the overall estimate of the treatment effect whether the result of each study is statistically 

significant or not. Data from studies with more precise measurements are given more weight, 

so they have a greater influence on the overall estimate (Gates, 2002). However, meta-

analysis has potential weaknesses due to publication bias and other biases that may be 

introduced in the process of locating, selecting, and combining studies (Egger et al., 1997; 

Noble, 2006). Publication bias is the tendency on the part of investigators, reviewers, and 

editors to submit or accept manuscripts for publication based on the direction or strength of 

the study findings (Dickersin, 1990). To overcome these challenges, our searches were 

carried out online in order to get results from all parts of the world as long as they originated 

from semi-arid and sub-humid environments. We identified the factors in our analysis such as 

mean annual precipitation, soil texture and N fertiliser input which could affect the effect 

sizes and employed the random effects model (Ried, 2006). 

2.2.2 Treatments for the meta-analysis 

In our analysis we were interested in treatments that could allow effects of tillage and mulch 

on maize grain yield to be disaggregated (Table 2.2). The effect of tillage was analysed by 

comparing conventional tillage and no-tillage treatments, and therefore conventional tillage 

was used as the control treatment. No-tillage without rotation was compared with no-tillage 

with rotation to determine the effect of rotation thus no-tillage without rotation was used as 

the control treatment. Similarly effect of mulching was analysed by comparing no-tillage 
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without mulch and no-tillage with mulch, and therefore no-tillage without mulch was the 

control treatment. Moderators of maize yield response were; crop rotation, soil texture, mean 

annual precipitation and N input.  

Table 2.2. A short description of the tillage treatments used for the evaluation of tillage and 
mulch effects on maize yield. 

Tillage management option Short description 

Conventional tillage (CT) Mouldboard ploughing is the major means of 
seedbed preparation and weed control; most crop 
residues are eaten by livestock and the little left 
are buried in the soil. The most widely practiced 
tillage technique used by communal farmers with 
animal draught power in southern Africa. 
 

No-tillage/reduced tillage (NT) Practice of minimising soil disturbance, ranges 
from reducing the number of tillage passes, 
tillage depth or stopping tillage completely. Weed 
control is accomplished primarily with 
herbicides.  

No-tillage + rotation (NTR) As described in (2) above. Main crop of maize in 
a rotation sequence with legumes such as soybean 
(Glycine max) or cowpea (Vigna unguiculata (L.) 
Walp). 

No-tillage + mulch (NTM) No-tillage plus previous crop residues to achieve 
at least 30% soil cover after planting. Generally 
referred to as conservation agriculture (CA) 
treatment.  
 

 

2.2.3 Meta-analysis calculations 

In our analysis, we used the mean difference (Equation 1.1) in yield between the treatment 

and control because of its ease of interpretation (Ried, 2006). The yield difference is also 

more relevant when comparing potential gains to required investment and input costs (Sileshi 

et al., 2008). To obtain overall treatment effects across studies, the differences between 

treatment and control were weighted (Equation 1.3). The weight given to each study was 

calculated as the inverse of the variance (Equation 1.2). The random effects model was the 
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most appropriate model to calculate effect sizes as it assumed that studies were drawn from 

different populations and this could influence the treatment effect. Soil texture, nitrogen 

input, crop rotation and amount of seasonal rainfall were chosen as covariates and their effect 

tested on the magnitude of response (mean differences) each with a time component. Due to 

asymmetry in data distribution between treatments and covariates, conservation agriculture 

practices (NT, NTR and NTM) were combined together when analysing the effects of 

covariates. Rainfall was categorised using long-term mean annual of sites to form mean 

annual precipitation (MAP) classes as low (< 600 mm), medium (600–1000 mm) and high 

(>1000 mm) based on FAO guidelines (Fischer et al., 2001). Soil texture was categorised as 

clay, sandy, loamy and silt clay loam (Brown, 2003) and N fertiliser input was categorised as 

low (<100 kg ha-1) and high (>100 kg ha-1) (Osmond and Riha, 1996).  
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2.2.4 Rainfall variability and maize yields  

In sub-Saharan Africa, when sufficient nutrients are available, rainfall variability (both within 

and across seasons) is the most critical determinant of crop yield (Waddington, 1993; Phillips 

et al., 1998). In this region, 89% of cereal production is rain-fed (Cooper, 2004). We 
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evaluated the relationship between maize yield and annual rainfall variability in southern 

Africa using non-linear regression (Bergamaschi et al., 2007). We used data from three sites 

with sub-humid climate where long-term conservation agriculture experiments were 

established in 1988: (i) the Institute of Agricultural Engineering (17o42’ S, 31o06’ E , 1600 m 

above sea level and 18 km north of Harare), (ii) Domboshawa Training Centre (17o35’ S, 

31o10’ E,  1600 m above sea level and 33 km north of Harare), and (iii) Makoholi Research 

Station (19o 34’S, 30o 47’ E, 1200 m above sea level and 270 km south of Harare). The first 

site is characterised by deep, well-drained, red clay soils while Domboshawa Training Centre 

(DTC) and Makoholi Research Station are characterised by inherently infertile granite-

derived sandy soils (Nyamapfene, 1991). Both Institute of Agricultural Engineering and 

Domboshawa Training Centre receive rainfall of about 750 to 1 000 mm per year but 

Makoholi Research Station receives between 450 and 650 mm per year (Vincent and 

Thomas, 1960; Moyo, 2003).  

2.2.5 Yield stability analysis 

A stable system shows a small change in response to changes in the environment (Lightfoot 

et al., 1987). We regarded each tillage practice as a system and the stability of the system in 

this study is measured by linear regression of treatment yield against the environmental mean 

yield; the environmental mean is the average of all the treatments in a given year (Piepho, 

1998; Hao et al., 2007; Grover et al., 2009). A regression coefficient smaller than one 

indicates a higher stability (Bilbro and Ray, 1976). The regression model is shown in 

Equation 1.6 

 ij i i j ijy u d     (0.6) 

 where yij is the treatment mean of the ith treatment at the jth environment, µi is the ith 

treatment mean in all environments, βi is a regression coefficient corresponding to the ith   
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treatment, uj is an effect of the jth  environment and dij is a random deviation from the 

regression line (Eberhart and Russell, 1966; Piepho, 1998). 

2.3 Results and discussion  

2.3.1 Summary statistics of weighted mean differences 

Summary statistics showed large variations in maize yield among the treatments across the 

regions considered (Fig. 2.2). Reduced tillage with rotation had a positive overall effect on 

maize yield while reduced tillage (with or without mulch) and continuous maize had negative 

overall effect on yield compared with the control. Lal (1997) observed that tillage treatments 

were only significant in three out of eight seasons but maize yield depended more on the 

amount of rainfall received and its distribution during the season. This observation clearly 

shows that besides tillage and mulch management, more factors are important for maize yield 

increases thus we explore these factors in the sections that follow. 
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Fig. 2.2. Summary statistics of maize grain yield weighted mean differences (t ha−1) in the 
treatments used for the meta-analysis. The middle lines are the median values, data show that 
no-tillage with continuous maize had the largest range but the smallest mean. 
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2.3.2 Reduced tillage, continuous maize 

There was no change in weighted mean differences in maize grain yield over time, and 

therefore no-tillage had no positive effect on maize yield compared with conventional tillage 

(Fig. 2.3). Results showed that in the first 10 years, crop yields were lower than the 

conventional tillage practice. At the beginning of the experiment, reduced tillage practices 

often resulted in smaller yields than the control, but this was not true for all years. These 

results are similar to results of (Kapusta et al., 1996) who reported no difference in yield 

between no-tillage and conventional ploughing on poorly drained soils after 20 years of 

continuous no-tillage. Dam et al. (2005) reported that after 11 years, maize yields were not 

affected by tillage and residue practices but climate-related differences seemed to have a 

greater influence on the variation in yields. When residues were completely removed, yield 

reductions for maize were attributed to decreased soil water storage and excessive surface 

soil temperatures, especially in climates where conditions of moisture stress occurred during 

the growing season (Doran et al., 1984). Evidence from Switzerland showed that ploughing 

could be dispensed under cool moist conditions without loss in yield for crops such as wheat 

and rape but with maize, no-tillage resulted on average over 10% less yield than in tillage 

experiments (Anken et al., 2004).   
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Fig. 2.3. Weighted mean differences in maize grain yield over time between continuous no-
tillage and continuous conventional tillage. Effect sizes show yield benefits in some years but 
yield decreases in other years, overall there is no clear effect. 

2.3.3 No-tillage, maize-legume rotation 

There was an increase in yield in no-tillage with rotation over no-tillage without rotation as 

shown by the positive overall weighted mean difference (Fig. 2.4) in maize – legume 

rotations. Most of the studies reporting crop yields with rotation showed positive effects in 

no-tillage systems agreeing with the results of (Karlen et al., 1991; Karlen et al., 1994), who 

reported that rotations are likely to produce higher yields across soil fertility regimes. Higher 

yield for no-tillage in rotation than in monocropping is attributed to a combined effect of 

multiple factors that include reduced pest infestations, improved water use efficiency, good 

soil quality as shown by increased organic carbon, greater soil aggregation, increased nutrient 

availability and greater soil biological activity (Van Doren et al., 1976; Griffith et al., 1988; 

Hernanz et al., 2002; Wilhelm and Wortmann, 2004; Agyare et al., 2006; Kureh et al., 2006). 

Other authors report that the yield increase is often higher in low-yielding environments than 
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in high-yielding environments (Lauer and Oplinger, 1996; Porter et al., 1997). The higher 

yield increase of rotated crops is low-yielding environments means that this production 

strategy shows promise for most environments in southern Africa. The results of the meta-

analysis suggest that rotation should be an integral component of tillage practices for 

supplying nutrients to maize (Francis and King, 1988; Chikowo et al., 2004) and also for 

breaking pests and disease life cycles as found in other studies (Jordan and Hutcheon, 2003; 

Sandretto and Payne, 2007).  
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Fig. 2.4. Weighted mean differences in maize grain yield over time between no-tillage with rotation 
and continuous conventional tillage without rotation. Although effect sizes are generally positive, real 
yield benefits start after 20 years of production. 

2.3.4 No-tillage with mulch, continuous maize 

There was no effect of no-tillage + mulch on yield over the conventional tillage, and after 10 

years there even seems to be strong negative effect (Fig. 2.5). These results are in contrast 

with the general belief that conservation agriculture effects emerge in the long-term. Results 

from the Laikipia conservation agriculture project in Kenya show that maize yields were 

virtually the same under plots managed under conventional tillage and those managed under 
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conservation agriculture (Kaumbutho and Kienzle, 2007). Mulch cover associated with no-

tillage practices promotes soil water retention (Blevins et al., 1971) and reduces soil 

temperature (Burrows and Larson, 1962) which delays maize emergence and early-season 

growth. Some authors (Van Doren et al., 1976; Mupangwa et al., 2007) have also found that 

neither mulching nor tillage practice had a significant effect on maize grain yield on different 

soil textures and Lal (1997) reported positive effect of no-tillage + mulch in only 3 of 8 

seasons. It has been observed that the effectiveness of mulch is limited in environments of 

limited rainfall (Tolk et al., 1999). The lack of clear benefits on maize grain yield with mulch 

suggests that it may be better to allocate crop residues as livestock feed instead of keeping it 

for mulch. Probert (2007) did a modelling exercise using long-term experimental data and 

concluded that retaining increasing proportions of residues reduces evaporation and run-off 

but the long-term average yields show only small effects of residue retention on crop yields 

and the transpiration component of the water balance. Probert (2007) further observed that 

with no change in transpiration, the reductions in run-off and evaporation must be balanced 

by increases in drainage. These findings are further supported by a similar modelling exercise 

using data from Brazilian Cerrados (Scopel et al., 2004a). Vogel (1993) suggested that no-

tillage in combination with tied ridging is the most suitable tillage technique for the sub-

humid regions because it prevents waterlogging and increased root depth; whereas mulching 

is likely to be the best conservation tillage technique for the semi-arid regions due mainly to 

reduced topsoil water losses. 
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Fig. 2.5.  Weighted mean differences in maize grain yield over time between continuous no-
tillage + mulch and continuous conventional tillage without mulch. 

2.3.5 Effect of mean annual rainfall and rainfall variability 

2.3.5.1 Effect of mean annual rainfall 

Maize yield was higher with conservation agriculture practices (NT, NTR and NTM) when 

mean annual precipitation was below 600 mm and lower when mean annual precipitation was 

above 1000 mm (Fig. 2.6). This might be attributed to moisture conservation in low rainfall 

areas under conservation agriculture and compromised drainage in high rainfall areas. These 

results agree with Hussain et al. (1999) who reported that yields under conservation 

agriculture practices were 5–20% lower than under conventional tillage practices in wet 

years, but were 10–100% higher in relatively dry year. Higher crop yield with the 

conservation agriculture practice than with conventional tillage in a dry year was also 

reported by Lueschen et al. (1991).  Temporal variability in yield is mainly affected by 

environmental factors with precipitation having the strongest effect (Hu and Buyanovsky, 

2003; Mallory and Porter, 2007; Grover et al., 2009).  
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Fig. 2.6. Weighted mean differences between conservation agriculture practices (NT, NTR 
and NTM) and conventional tillage over time as affected by mean annual precipitation. A, 
effect sizes show clear yield benefits with time when annual rainfall is below 600 mm. B, 
effect sizes do not show a clear trend in yield benefits when annual rainfall is between 600 
and 1000 mm. C, effect sizes show a clear decrease in maize yield under conservation 
agriculture when mean annual precipitation is above 1000 mm. 

2.3.5.2 Effect of rainfall variability 

Variation in total seasonal rainfall across seasons was responsible for major yield fluctuations 

across treatments in the 3 experiments of the dataset that were conducted in Zimbabwe (Fig. 

2.7).  Rainfall was highly variable across sites and across seasons, at Domboshawa, rainfall 

varied between 438 and 1396 mm with a mean value of 823 mm. It caused low yields across 
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all treatments especially in 1989/90, 1991/92 (drought year) and 1996/97. At the Institute of 

Agricultural Engineering, rainfall ranged between 481 and 1163 mm with a mean of 889 mm. 

At Makoholi, rainfall was low but variation between seasons was very high (between 164 

mm and 998 mm) with a mean of 559 mm. In two seasons of contrasting total rainfall, the 

conventional tillage practice had considerable higher yields than the mulched and reduced 

tillage treatments, suggesting the absence of benefits of tillage when extreme weather events 

occur.  The low yield during the high rainfall years could be attributed to inefficient water use 

due to waterlogging that affected nutrient uptake and crop growth (Griffith et al., 1988). The 

water conservation effect of mulch on maize yield under low rainfall was not observed during 

the drought of 1991/92 (Nehanda, 1999; Moyo, 2003). The temporal development of 

conservation agriculture effects in these three sites seems to be affected more by the amount 

of seasonal rainfall and soil texture rather than by tillage and mulch management practices. 

At Domboshawa and Makoholi, both sites characterised by sandy soils, recorded virtually 

zero grain yield during drought years. There are greater chances of conservation agriculture 

effects developing at the Institute of Agricultural Engineering which is characterised by a 

combination of fertile red clay soils and good seasonal rainfall averaging 850 mm in most 

seasons. The build-up of conservation agriculture effects on sandy soils is a challenge 

because sandy soils readily lose soil quality during continuous cropping due to compaction, 

loss of organic matter and acidification (Juo et al., 1996). IN 
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Fig. 2.7. The relationship between total annual rainfall and maize grain yield as affected by 
tillage practice from long-term sites in Zimbabwe. There was a strong correlation between the 
amount of rainfall and maize grain yield as rainfall accounted for on average 63% of the 
variation in all sites. 

 

2.3.6 Effect of soil texture 

Analysis with soil texture and duration of experiment showed that in clay soils weighted 

mean differences were mostly negative but were positive in both loam and sandy soils (Fig. 

2.8). There was no significant difference between conservation agriculture treatments (NT, 

NTR and NTM) and conventional tillage on maize yield on silt clay loams with time. 

However, there was an improvement in maize grain yield on loamy and sandy soils. Dick and 

Van Doren (1985) also reported yield reductions of maize associated with no-tillage on heavy 



Chapter	2‐	A	meta‐analysis	of	maize	grain	yield	under	CA 

37 
 

clay, very poorly drained soils and suggested crop rotations and use of disease resistant 

cultivars as possible solutions. However, Van Doren et al. (1976) reported that maize grain 

yields are insensitive to tillage over a wide range of soil textures, cropping systems, climate 

conditions, and experiment durations as long as equal plant densities and adequate weed 

control were maintained. The reduction in crop yields on poorly drained soils under 

conservation agriculture was also reported by (Griffith et al., 1988). Increased yields on well 

drained soils are attributed to more efficient use of water and improved physical properties 

(Griffith et al., 1986). Low yields in poorly drained soils are attributed to allelopathy (Yakle 

and Cruse, 1984) and plant pathogens (Tiarks, 1977). Kapusta et al. (1996) reported that 

continuous maize production under no-tillage is most successful on well-drained soil, rather 

than on either imperfectly or poorly drained soil, especially under wet soil conditions. It has 

also been suggested that maize monocropping has drastic adverse effects on soil quality and 

crop yield especially under conditions of low traffic and no-tillage with mulching (Lal, 1997). 

Most soils in southern Africa have biophysical limitations (poor nutrient concentrations, 

acidity, coarse texture), that limit biomass accumulation therefore combinations of legume 

rotations and mineral nitrogen fertilisation is the most viable option for sustainable 

agriculture in this region (Chikowo et al., 2004).  
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Fig. 2.8. Weighted mean differences between conservation agriculture practice (NT, NTR 
and NTM) and conventional tillage over time as affected soil texture. A, effect sizes do not 
show any increase in yield over time in silt clay loam soils. B, effect sizes do not show any 
increase in yield over time in sandy soils. C, effect sizes show substantial increases in yield 
over time in loam soils. D, effect sizes show loss in yield over time in clay soils. 

 

2.3.7 Effect of nitrogen fertiliser input 

Nitrogen is often the most limiting nutrient for maize produced in the tropics (Osmond and 

Riha, 1996)(Osmond and Riha, 1996). At nitrogen fertiliser applications of below 100 kg N 

ha-1 there were fewer yield advantages of conservation agriculture over conventional tillage 

but more yield benefits were obtained with high applications of above 100 kg N per hectare 
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(Fig. 2.9). The results agree with Díaz-Zorita et al. (2002) who reported in a review that 

maize yields were increased more by nitrogen fertilisation than tillage under sub-humid and 

semi-arid regions of Argentina. These results show that conservation agriculture practices are 

input intensive therefore improved crop yields under conservation agriculture depend on the 

ability of farmers to use fertiliser in sufficient quantities and correct proportions. The current 

average fertiliser use by smallholder farmers in Africa is at 8 kg ha-1 (Groot, 2009) and 

considerable effort is required to improve its use (Sanginga and Woomer, 2009). While the 

fertiliser rates categories considered are quite high and most farmers in southern Africa 

cannot afford such rates, fertiliser remains important to alleviate nutrient constraints. 
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Fig. 2.9. Effect of nitrogen input on the weighted mean differences between conservation 
agriculture (NT, NTR and NTM) and conventional tillage over time. Effect sizes show yield 
increases when nitrogen input is above 100 kg ha-1.  

Most crop residues in semi-arid areas are derived from maize, millets and sorghum, which are 

traditionally known for their poor quality due to high C:N ratios, generally greater than 60 

(Cadisch and Giller, 1997; Handayanto et al., 1997). Although crop residues are often on the 

soil surface, there is a greater chance of partial incorporation and decomposition as the season 

progresses (Parker, 1962). The wide C:N ratio and the relatively large amounts of readily 
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decomposable carbon compounds leads to prolonged nitrogen immobilisation by micro-

organisms, rendering the nitrogen unavailable for crop growth in the short term (Giller et al., 

1997) thus high nitrogen inputs are required when poor quality crop residues are used as 

mulch.  

2.3.8 Yield stability analysis  

There was no treatment effect on stability as a regression between environmental and 

treatment mean for soil texture (Table 2.3 and Fig. 2.10) and for duration of experiment 

(Table 2.4 and Fig. 2.11)  with regression coefficients ranging from 0.94 to 1.06 and r2 values 

ranging between 0.92 and 0.99.  The regression analysis for no-tillage with mulch practice 

had a smaller regression coefficient in sandy soils showing an advantage of mulch based 

systems to optimise moisture availability in soils of poor drainage. Our hypothesis that 

reduced tillage and residue retention leads to more stable yields was not supported by the 

data.  

Table 2.3. Linear regression equations and r2 values for tillage practice maize grain yield 
means for clay and sandy soils. P > |t| is the probability of a greater absolute value of the 
slope (/t/) 

Soil texture Tillage treatment Regression equation r2 Slope P > /t/ 
Clay Conventional y = 0.49 + 1.01x 0.94 <0.0001 

No-till y = -0.246 + 1.01x 0.93 <0.0001 
No-till + mulch y = 0.045 + 1.06x 0.92 <0.0001 

 
Sand Conventional y = -0.005 + 1.001x 

 
0.99 <0.0001 

No-till y = -0.180 + 1.045x 0.98 <0.0001 
No-till + mulch y = 0.259 + 0.942x 0.99 <0.0001 
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Fig. 2.10. Linear regressions for tillage practice maize grain yield means on the environmental maize 
grain yield means for clay and sandy soils. Slopes were compared among treatments at P < 0.05. 

Table 2.4. Linear regression equations and r2 values for the tillage system maize grain yield 
means on the environmental maize grain yield means for short-term and long-term trials. P > 
|t| is the probability of a greater absolute value of the slope (/t/) 

Duration Tillage treatment Regression equation r2 Slope P > /t/ 

< 10 years Conventional y = -0.132 + 1.03x 0.97 <0.0001 

No-till y = -0.043 + 0.99x  0.96 <0.0001 

No-till + mulch y = 0.496 + 0.953x 0.95 <0.0001 

 

> 10 years Conventional y = -0.060 + 0.99x 

 

0.91 <0.0001 

No-till y = 0.0393 + 1.009x 0.91 <0.0001 

No-till + mulch y = 0.236 + 0.970x 0.82 <0.0001 

 

2.3.9 Lessons for southern Africa 

Competition for crop residue use, low fertiliser use, non-use of herbicides, labour shortage, 

erratic rainfall, lack of crop rotations and poor soils combine to offer many challenges for the 

practice of conservation agriculture among smallholder farmers in southern Africa (Siziba, 

2007; Giller et al., 2009). It is clear from the meta-analysis that the success of conservation 
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agriculture in improving crop yields depends on appropriate targeting to climatic and edaphic 

conditions with adequate inputs (fertiliser and herbicides). Farmers are unlikely to adopt all 

the conservation agriculture practices and success will not come from the pre-packed 

technologies alone but from how farmers adapt and apply them depending on resources 

availability, production objectives (benefits) and biophysical circumstances (Ojiem et al., 

2006). In situations of crop-livestock integration where competition for crop residue uses is 

strong, intercropping with grain legumes can be a viable strategy to achieve surface cover 

because the legume will cover the area between rows of the main crop and help conserve 

moisture (Scott et al., 1987). In cases were linkages to markets for grain legumes can be 

secured, legume production can be an excellent opportunity for farmers to increase land size 

allocated for legumes and improve rotation with main cereal crops.  Alternatively planting 

basins can be an efficient method of moisture conservation if they can be maintained after 

weeding operations (Mupangwa et al., 2007; Mupangwa et al., 2008).  
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Fig. 2.11. Linear regressions for the tillage practice maize grain yield means on the 
environmental maize grain yield means for short-term (< 10 years) and long-term (> 10 
years). Slopes were compared among treatments at P < 0.05. 
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2.3.10 Challenges with long-term experiments 

Long-term trials are designed to help identify and recommend production systems with 

beneficial effects on the environment as well as crop productivity across variable 

environments over time. However, in long-term trials when the cropping system has 

approached a new equilibrium, it is difficult to attribute effects to particular factors as the 

interactions between the factors (tillage, mulch, rotation, soil texture and rainfall) involved 

are so subtle and site-specific that proper experimental designs are required. Sources of 

variations where crop residues are retained increase as yield varies across seasons to the 

extent that the effect of mulch will not be explicitly identified. Results from this meta-

analysis suggest that yields decline due to continuous monoculture effects and this is more 

pronounced on sandy soils of low inherent fertility (Lal, 1997). These monoculture effects 

will become more pronounced with time, diminishing the influence of tillage practices on 

maize yield. Reduction in maize grain yield with continuous maize and no-tillage have been 

recorded and attributed to unknown underground effects which need further research (Wolfe 

and Eckert, 1999; Fischer et al., 2002). Well-designed long-term experiments are still 

desirable across different agro-ecological conditions to unravel the effects of mulch, tillage 

and rotation on maize grain yield. We propose a simple experimental design (Fig. 2.12) that 

we expect can be used to identify the effects of different components. We also propose that 

the analysis of studies across seasons should take into consideration variability in rainfall to 

avoid overestimating treatment effects. 
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Fig. 2.12. Simple factorial design to unravel the effects of tillage, mulch and rotation on crop 
yields. Major plots should be established side by side with one being for cereal-legume 
rotation and the other being for legume-cereal rotation, this allows the study of both cereal or 
legume continuous monocropping effects. 

2.4 Conclusions  

The factors considered in our analysis covered most of the environments where rain-fed 

agriculture is practiced and gives us a basis to draw the following conclusions. Positive 

impacts of moisture conservation on crop yield in soils of poor drainage are likely to occur in 

low rainfall environments, and maize yield was lower in no-tillage without rotation compared 

with conventional tillage but higher when rotation was practised. Results clearly showed that 

the successful practice of conservation agriculture required high inputs, especially nitrogen 

fertiliser. Under rain-fed agricultural conditions where total rainfall and its distribution is 

important for crop production, yield stability analysis results showed that under drought or 

too much rainfall, no treatments can offset the effects of these extreme conditions. Incentives 

for abandoning the plough still exist through savings in fuel, labour, and wear and tear of 
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farm implements however this need to be quantified in a separate analysis. Very few studies 

if any can disaggregate the effects of the three principles (reduced tillage, mulch cover and 

crop rotation) on maize grain yield and thus well designed long-term experiments are still 

desirable across different agro-ecological conditions to unravel the effects of mulch, tillage 

and rotation on maize grain yield. Improving maize yields under conservation agriculture in 

southern Africa depends on the ability of farmers to practice crop rotation and given that on 

average they plant legumes on 5% of the land, we propose that conservation agriculture be 

repackaged to reflect the diversity of farming systems and other biophysical and socio-

economic considerations for improved impact. Our analyses have shown that success of 

conservation agriculture in southern Africa depends on the promotion of other good 

agronomic practices such as targeted fertiliser application, timely weeding and crop rotation. 



Chapter	2‐	A	meta‐analysis	of	maize	grain	yield	under	CA 

46 
 

 



Chapter	3	–	Maize–legume	intercropping	
 

47 
 

																																																																																		Chapter	3		
	
Maize-grain legume intercropping is an attractive 
option for ecological intensification that reduces 
climatic risk for smallholder farmers in central 
Mozambique 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
This chapter has been published as: 
 
Rusinamhodzi, L., Corbeels, M., Nyamangara, J., Giller, K.E. (2012). Maize-grain legume 
intercropping is an attractive option for ecological intensification that reduces climatic risk 
for smallholder farmers in central Mozambique. Field Crops Research 136, 12-22. 
 



Chapter	3	–	Maize–legume	intercropping	
 

48 
 

Abstract 

Many farmers in central Mozambique intercrop maize with grain legumes as a means to 

improve food security and income. The objective of this study was to understand the farming 

system, and to evaluate the suitability of maize-legume intercropping to alleviate the 

biophysical and socio-economic constraints faced by smallholder farmers in central 

Mozambique. To achieve this we characterised the farming systems and measured grain 

yields, rainfall infiltration, economic returns and acceptability of maize-legume intercrops 

under different N and P application levels. Two intercropping strategies were tested: (a) an 

additive design of within-row intercropping in which legume was intercropped with 

alternating hills of maize within the same row; maize plant population was the same as sole 

crop maize, and (b) a substitutive design with distinct alternating rows of maize and legume 

(local practice). Fertiliser treatments imposed on all treatments were: (i) no fertiliser, (ii) 20 

kg P ha-1, (iii) 20 kg P ha-1 + 30 kg N ha-1, and (iv) 20 kg P ha-1 + 60 kg N ha-1. Intercrops 

were relatively more productive than the corresponding sole crops; land equivalent ratios 

(LER) for within-row intercropping ranged between 1.1 and 2.4, and between 1.0 and 1.9 for 

distinct-row intercropping. Average maize yield penalty for intercropping maize and 

pigeonpea in the within-row was small (8%) compared with 50% in the distinct-row, design; 

average (season × fertiliser) sole maize yield was 3.2 t ha-1. Intercropping maize and cowpea 

in within-row led to maize yield loss of only 6%, whereas distinct-row intercropping reduced 

maize yield by 25% from 2.1 t ha-1 of sole maize (season × fertiliser). Cowpea yield was less 

affected by intercropping: sole cowpea had an average yield of 0.9 t ha-1, distinct-row 

intercropping (0.8 t ha-1) and the within-row intercropping yielded 0.9 t ha-1. Legumes were 

comparatively less affected by the long dry spells which were prevalent during the study 

period. Response to N and P fertiliser was weak due to poor rainfall distribution. In the third 

season, maize in rotation with pigeonpea and without N fertiliser application yielded 5.6 t ha-
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1, eight times more than continuous maize which was severely infested by striga (Striga 

asiatica) and yielded only 0.7 t ha-1. Rainfall infiltration increased from 6 mm h-1 to 22 mm 

hr-1 with long-term maize-legume intercropping due to a combination of good quality 

biomass production which provided mulch combined with no tillage. Intercropping maize and 

pigeonpea was profitable with a rate of return of at least 343% over sole maize cropping. 

Farmers preferred the within-row maize-legume intercropping with an acceptability score of 

84% because of good yields for both maize and legume. Intercropping increased the labour 

required for weeding by 36% compared with the sole crops. Farmers in Ruaca faced labour 

constraints due to extensification thus maize-pigeonpea intercropping may improve 

productivity and help reduce the area cultivated. In Vunduzi, land limitation was a major 

problem and intensification through legumes is among the few feasible options to increase 

both production and productivity. The late maturity of pigeonpea means that free-grazing of 

cattle has to be delayed, which allows farmers to retain crop residues in the fields as mulch if 

they choose to; this allows the use of no-tillage practises. We conclude that maize-legume 

intercropping has potential to: (a) reduce the risk of crop failure, (b) improve productivity and 

income, and (c) increase food security in vulnerable production systems, and is a feasible 

entry point to ecological intensification.  

Keywords: maize grain-legume intercropping, intensification, extensification, crop 

productivity, profitability, climatic risk 
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3.1. Introduction 

Legumes provide an important pathway to alleviate the constraints related to nitrogen (N) 

limitations in the soil and improve crop productivity. They can quickly cover the soil surface 

and reduce soil erosion (Giller and Cadisch, 1995), suppress weeds (Liebman and Dyck, 

1993), fix atmospheric N2 (Giller et al., 1994), reduce pests and diseases (van der Pol, 1992; 

Trenbath, 1993), spread labour needs (van der Pol, 1992) and improve the efficiency of land 

use (Morris and Garrity, 1993b, 1993a). Grain legumes are generally preferred by 

smallholder farmers in the tropics above green manures and cover crops because they ensure 

food security, improved diet and income (Giller, 2001). When intercropped with cereals, 

larger quantities of better quality organic matter inputs are produced leading to greater 

productivity benefits compared with continuous maize monocrops (Hartwig and Ammon, 

2002; Schmidt et al., 2003; Rochester, 2011). Multi-purpose grain legumes such as pigeonpea 

(Cajanus cajan (L.) Millsp.) have shown potential to be included in cereal-legume rotations 

in the tropics (Giller et al., 2009; Baudron et al., 2012). Due to these attributes, legumes are 

regarded as a critical component of conservation agriculture (Meyer, 2010), and results of a 

recent meta-analysis confirmed this suggestion (Rusinamhodzi et al., 2011). The contribution 

to the soil N-budget through biological N2-fixation is especially important in low-input 

farming systems such as those that prevail in central Mozambique. Thus cereal legume 

intercropping appears to be a useful component of ecological intensification (Doré et al., 

2011), an approach to produce more food per unit resource to achieve positive social 

outcomes without negative effects on the environment (Cassman, 1999; Hochman et al., 

2011).  

Despite the many benefits, the importance of legumes in the farming systems of the tropics is 

hampered by lack of information, seed costs, and poor market infrastructure (Graham and 

Vance, 2003). As a result the contribution of legumes to many smallholder farming systems 
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remains small (Giller, 2001). When legumes are intercropped, the planting of two or more 

crops either simultaneously or in relay increases the labour requirements compared with 

cereal monocropping which may limit the widespread use of legumes (Waddington et al., 

2007). In the field, deficiencies of phosphorus (P), potassium (K), sulphur (S), and 

micronutrients such as zinc (Zn), molybdenum (Mo) and boron (B) may limit legume growth 

and N2-fixation (O'Hara et al., 1988). Phosphorus availability is often regarded as the most 

limiting factor (Giller and Cadisch, 1995). At the farm level, it is important that grain 

legumes provide multiple benefits and are acceptable to farmers; farmer evaluations provides 

a basis for assessing the suitability of production options to their needs and local environment 

(Ashby, 1991; Rusinamhodzi and Delve, 2011). Thus we hypothesized that if maize-legume 

intercropping is more productive, economically viable, and is acceptable to the majority of 

farmers then it is a low cost pathway to remove the binding constraints of poor soils, 

unreliable rainfall and drought that are characteristic of central Mozambique. 

Central Mozambique is sparsely populated (Folmer et al., 1998) and characterised by 

extensive farming systems in which slash and burn, limited fertiliser use and continuous 

monocropping are common, and there is little crop-livestock integration. Soils are infertile 

(Maria and Yost, 2006) and the poor soil productivity is compounded by limited capital 

resource endowments, poverty and limited market participation. A major challenge in central 

Mozambique is to improve soil and crop productivity to meet the food security and cash 

needs of smallholder farmers without creating new constraints (Mafongoya et al., 2006). 

Grain legume crops provide a good starting point as intensification and diversification 

options due to their multi-purpose nature (food, fodder and soil fertility) and the small initial 

capital investment required. Development agencies in central Mozambique worked with the 

government extension department to introduce new varieties of grain legumes, particularly 

improved pigeonpea and cowpea varieties, in the mid-2000s. They encouraged farmers to 
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intercrop these legumes with maize as a way of improving soil productivity, food security 

and income. The initiative was based on known benefits of introducing legumes in maize-

dominated cropping systems of southern Africa (Jeranyama et al., 2000; Giller, 2001; Snapp 

et al., 2003; Waddington et al., 2007). Although the initiative was targeted at overcoming 

prevailing soil fertility problems, there were no best practice guidelines and intercropping had 

not been systematically studied to develop site-specific recommendations for farmers 

interested in the new cropping systems.  

Inclusion of legumes as intercrops requires rearrangement of the planting patterns through 

substitutive or additive designs to maintain the productivity of the main crop (Liebman and 

Dyck, 1993; Giller, 2001). Competition can also be reduced by staggering the planting dates 

of the companion crops in the intercropped system (Francis et al., 1982). Staggered planting 

is also used for reducing risk of total crop failure when expected rainfall is uncertain and 

within-season fluctuations are common (Cooper et al., 2008). In central Mozambique, the 

promoted intercropping strategy was a substitutive design where two rows of maize alternate 

with a row of the legume reducing the plant population for both maize and legume compared 

with sole crops. Yet in southern Malawi, maize is intercropped with pigeonpea in the same 

row in an additive design. The space lost to the pigeonpea is compensated by sowing three 

maize seeds per planting station thus maintaining the plant population of maize which results 

in no substantial yield loss (Sakala et al., 2000).  

Intercropping systems have not been studied in central Mozambique; we studied maize-

pigeonpea and maize-cowpea intercropping under farmers’ conditions for three years from 

2008 to 2011 in the Ruaca and Vunduzi communities in central Mozambique. The central 

objective of this study was to understand the farming system, and to evaluate the suitability of 

maize-legume intercropping to alleviate the biophysical and socio-economic constraints faced 

by smallholder farmers in central Mozambique. In Ruaca, grain yields, rainfall infiltration, 
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economic returns and acceptability of maize-pigeonpea intercropping were compared for two 

intercrop combinations and sole crops under different N and P application levels. In Vunduzi, 

grain yields of maize-cowpea intercrops were compared for two intercrop combinations and 

sole crops under different N and P application levels. In addition, we assessed the proportion 

of farmers practising maize-pigeonpea intercropping each season. 

 

3.2. Materials and Methods 

3.2.1 Study areas 

The experiments were conducted in the Ruaca (18o50’S, 33o11’E; 700 masl; mean seasonal 

rainfall of 900 mm) and Vunduzi (18o46’S, 34o20’E; 300 masl; mean seasonal rainfall of 700 

mm) villages in central Mozambique. Rainfall occurs between October and April in a 

unimodal distribution pattern. Soils in both sites are predominantly sandy of extreme poor 

fertility (Table 3.1) classified as Haplic Lixisols (FAO). The extensive farming systems are 

characterized by slash and burn and no mineral fertilisers are used. Farmers traditionally 

grow food crops such as maize (Zea mays L.), sorghum (Sorghum bicolor (L.) Moench) and 

pearl millet (Pennisetum glaucum (L.) R.Br.) (Rohrbach and Kiala, 2007). Local varieties of 

pigeonpea are grown on the edges of fields, and cowpea (Vigna unguiculata (L.) Walp.) in 

mixtures of more than three crops in fields close to the homestead. Fewer farmers grow 

groundnuts (Arachis hypogaea L.) as a sole crop often on small pieces of land. Maize is an 

important food and cash crop which is often intercropped with pigeonpea or cowpea in both 

sites. Cultivation on mountain slopes is common in Vunduzi whereas fields in Ruaca are 

fairly level. Labour shortages often lead to severe weed pressure which is only controlled by 

burning the entire field before seeding of the next crop. 



Ch
ap
te
r	
3	
–	
M
ai
ze
–l
eg
um

e	
in
te
rc
ro
pp
in
g	

 

5
4
 

 T
ab

le
 3

.1
. S

el
ec

te
d 

to
p-

so
il

 (
0-

20
 c

m
) 

pr
op

er
ti

es
 o

f 
re

pr
es

en
ta

ti
ve

 s
oi

l p
ro

fi
le

s 
in

 (
a)

 R
ua

ca
 a

nd
 V

un
du

zi
, a

nd
 (

b)
 f

ie
ld

s 
us

ed
 in

 th
e 

ra
in

fa
ll

 
si

m
ul

at
io

n 
ex

pe
ri

m
en

t i
n 

R
ua

ca
 v

il
la

ge
, c

en
tr

al
 M

oz
am

bi
qu

e.
 

(a
) 

  
  S

it
e 

B
ul

k 

de
ns

it
y 

(M
g 

m
-3

) 

pH
 

O
rg

an
ic

 

C
 (

%
) 

T
ot

al
 

N
 (

%
)

A
va

il
ab

le
 P

 

(m
g 

P
 k

g-1
) 

E
xc

ha
ng

ea
bl

e 

K
 (

cm
ol

c k
g-1

) 

E
xc

ha
ng

ea
bl

e 

C
a 

(c
m

ol
c k

g-1
) 

P
ar

ti
cl

e 
si

ze
 (

%
) 

C
la

y 
S

il
t 

S
an

d 

R
ua

ca
 

1.
5 

6.
0 

0.
6 

0.
04

 
3.

0 
0.

2 
2.

2 
9 

11
 

80
 

V
un

du
zi

 
1.

6 
5.

9 
0.

9 
0.

08
 

4.
0 

0.
4 

2.
8 

10
 

13
 

77
  

(b
) 

R
ai

nf
al

l s
im

ul
at

io
n 

ex
pe

ri
m

en
ta

l f
ie

ld
s 

F
ie

ld
 

 
 

 
 

 
 

 
  

  
  

0 
ye

ar
, c

on
ti

nu
ou

s 
m

ai
ze

 
1.

5 
5.

9 
0.

2 
0.

02
 

0.
7 

0.
1 

0.
5 

11
 

9 
80

 

1 
ye

ar
, m

ai
ze

-p
ig

eo
np

ea
 

1.
4 

6.
0 

0.
6 

0.
04

 
2.

8 
0.

2 
2.

2 
14

 
12

 
74

 

3 
ye

ar
s,

 m
ai

ze
-p

ig
eo

np
ea

  
1.

4 
5.

9 
1.

2 
0.

08
 

6.
9 

0.
3 

3.
6 

6 
5 

89
 

5 
ye

ar
s,

  m
ai

ze
-p

ig
eo

np
ea

  
1.

3 
6.

0 
1.

4 
0.

09
 

8.
4 

0.
3 

3.
8 

14
 

11
 

75
 



Chapter	3	–	Maize–legume	intercropping	
 

55 
 

3.2.2 On-farm trials  

Experiments in which maize was intercropped with pigeonpea were established on four farms 

with four replications per farm in Ruaca, and maize intercropped with cowpea was 

established on six farms with two replications per farm in Vunduzi. Replications were 

reduced in Vunduzi due to the relatively smaller fields compared to Ruaca. In Ruaca, 

pigeonpea was a priority cash crop because of a ready outside market, whereas in Vunduzi 

farmers preferred cowpea because their primary concern was food security. To reduce 

variability, all selected experimental fields were previously under continuous maize 

monocropping for at least five years prior to the establishment of the trials. In Ruaca, the 

treatments tested over three seasons (2008 to 2011) were: (a) maize sole crop (37 000 plants 

per ha), (b) pigeonpea sole crop (37 000 plants per ha) for the first two seasons followed by a 

maize sole crop, (c) within-row intercropping where maize and pigeonpea were planted 

within the same row (0.9 m between rows and 0.45 m between maize and pigeonpea plants 

within the row, three plants per station to give a population of 37 000 maize plants and 37 

000 pigeonpea plants), and (d) distinct-row intercropping where two maize rows alternated 

with a single row of pigeonpea (2 m between rows of pigeonpea and 0.9 m between rows of 

maize to give a population of 24 667 plants of maize and 16 667 pigeonpea plants). The 

distinct-row intercropping treatment was considered local as farmers were practising it 

whereas the within-row treatment was adapted from southern Malawi (Sakala, 1994). Due to 

practical considerations we did not increase the plant population of the distinct-row intercrop 

option; it would be impossible to get between the rows and weed if normal population density 

of crops was maintained and the rows were separate.  

The experimental design was split-plot; major plots (6 m wide × 80 m long) were for crop 

arrangement and split into 16 sub-plots (6 m wide × 5 m long) for fertiliser treatments. 

Fertiliser treatments imposed on all sole and intercrop treatments were: (i) no fertiliser, (ii) 20 
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kg P ha-1, (iii) 20 kg P ha-1 +30 kg N ha-1, and (iv) 20 kg P ha-1+ 60 kg N ha-1. The plots for 

distinct-row intercropping treatment were wider (10 m wide x 80 m long) to accommodate 

more rows of pigeonpea. Maize and pigeonpea were planted simultaneously because 

pigeonpea grows slowly and offers little competition to maize. In the third season (2010-

2011), the residual benefits of pigeonpea were measured by planting maize in plots 

previously with sole pigeonpea. To maintain a sole crop of pigeonpea in the last season, 

continuous maize plots were split into two; continuous maize was planted in eight plots and 

sole pigeonpea was planted in the remaining eight plots. 

In Vunduzi, the treatments tested for the same period were: (a) maize sole crop (37 000 plants 

per ha), (b) cowpea sole crop (111 000 plants per ha), (c) within-row intercropping where 

maize and cowpea were intercropped within the same row (0.9 m between rows and 0.45 m 

between maize and cowpea plants within the row, three plants per station to give a population 

of 37 000 maize plants and 37 000 cowpea plants), and (d) distinct-row, intercropping with 

two maize rows alternated with a single row of cowpea (0.9 m between rows of maize to give 

a population of 24 690 plants of maize and 18 500 cowpea plants). The experimental design 

was split-plot with the major plots (6 m wide × 40 m long) being for crop arrangement were 

split into 8 sub-plots of 6 m width × 5 m length for fertiliser treatments. The plots for distinct-

row intercropping treatment were wider (10 m wide × 40 m long) to accommodate more rows 

of cowpea. Cowpea was planted 6 weeks after maize to reduce competition to maize 

(Shumba et al., 1990), and it was the standard local practice. Fertiliser treatments in Vunduzi 

were the same as in Ruaca. Phosphorus was applied in the planting holes for both maize and 

legumes but N was spot applied as a top dressing on maize at four and eight weeks after 

planting. It was not possible to quantify the residual benefits of cowpea in Vunduzi because 

maize failed totally the preceding season. 
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The experiments were established without tillage in both sites: planting and weeding was 

done with minimal soil disturbance using hand hoes. In Ruaca, fewer than 20% of the farmers 

own livestock and tillage implements, and the majority use hand hoes for land preparation 

and planting. In Vunduzi, farmers do not own cattle and only use hand hoes for land 

preparation and planting. Cattle were decimated in this area due a combination of the long 

civil war and livestock diseases, and tsetse fly (Glossina spp.) is still prevalent in the area. 

Previous crop residues were retained in-situ but soil cover at planting was less than 10% in all 

seasons mainly due to termite attacks. The seeds of maize hybrid SC513 (137 days to 

maturity), improved pigeonpea ICEAP00040 and cowpea (erect type short season, 75 days to 

maturity variety derived from IT18) were planted into moist soil.  

3.2.3 Soil sampling and analysis 

In 2008, soil was sampled in experimental fields from 0-20 cm depth, air-dried, sieved and 

stored prior to analysis. Bulk density was calculated as mass of oven dry soil core divided by 

volume of the core; undisturbed soil cores were taken using metal rings of 8 cm internal 

diameter and height of 5 cm. Soil texture analysis was done through the hydrometer method, 

pH was measured with a digital pH metre in a 1:2.5 (w/v) soil: deionised water suspension. 

Total C and N were analysed through dry combustion using a carbon/hydrogen/nitrogen 

Analyzer (Leco-CNS2000). The K and Ca concentrations were determined by flame 

photometry, and plant available P using the Bray method (Anderson and Ingram, 1993). Data 

from a selected soil profile most representative of the soil in each site is presented in Table 1. 

 

3.2.4 Crop yield and rainfall measurements 

Daily rainfall was measured with a rainfall gauge in the experimental fields. Grain and 

above-ground biomass yield measurements were estimated from 3 rows × 2 m sub-plots in 

the centre of each plot after physiological maturity. Pigeonpea and cowpea pods were 
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harvested when they turned brown, dried and shelled by hand. Maize and legume grain yield 

was calculated at 12% moisture content and stover on dry weight basis. Sub-samples for 

stover were taken and dried at 70oC for moisture correction. Maize was harvested in mid-

April and pigeonpea in mid-August. Cowpea was harvested three weeks after maize harvest.  

 

3.2.5 Infiltration measurements 

In 2010, water infiltration measurements were carried out in selected farmers’ fields using a 

portable rainfall simulator described by (Amezquita et al., 1999). A chronosequence of 

continuous maize-pigeonpea intercropping was established through farmer interviews and 

soil sampling; fields for the rainfall simulation experiment were selected based on similarity 

in soil properties (Table 3.1b). Durations of intercropping compared were: zero, one, three 

and five years; zero duration corresponded to continuous maize monocropping. Simulated 

rainfall with intensity of 70 mm hr-1 was applied for two hours on an area measuring 0.13 m2 

(0.325 m × 0.4 m) surrounded by a 4 cm buffer zone (Thierfelder and Wall, 2009). An 

intensity of 70mm hr-1 was chosen because it is a typical intensity for tropical and semi-arid 

rainfall (Hudson, 1993), and ensured uniformity of raindrop size. The small plots were 

confined using metal sheets leaving a single outlet leading into a small gutter where runoff 

was collected. Rainfall simulations were performed when the soil was close to field capacity 

(we allowed 2 days after rainfall events) in February 2010 when maize was at grain filling 

and pigeonpea was still in vegetative growth. Horton’s equation, which describes water 

infiltration as a continuous function in which infiltration rate decreases asymptotically from 

an initial value, was fitted to the infiltration data for the short duration fields (< 3 years of 

intercropping):  , where f is the maximum infiltration rate (mm hr-1) at 

time t, fc is the saturated soil infiltration rate (mm hr-1),  f0 is the initial infiltration rate (mm 

hr-1) at time zero, k is a constant that defines function  f, and t is time (Horton, 1940). 
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Infiltration characteristics in the longer duration fields (3 and 5 years of continuous 

intercropping) were well described by a sigmoidal decay curve characterized by a lag-phase 

of decrease of initial infiltration with four parameters:  where 

 

3.2.6 Farm surveys 

Focus group discussions were conducted in the study sites to identify local criteria used by 

farmers to categorise themselves into different resource groups (RG). The indicators of 

resource ownership were prioritised, and based on these; all farmers in the village were 

allocated to one of the identified resource groups. A total of 52 and 42 farmers were 

interviewed in Ruaca and Vunduzi respectively. Initial selection of farmers was random but 

some of the selected farmers were not willing to be interviewed and we had to select from 

those initially omitted. The interviews were conducted at the farmer’s homestead with the 

assistance of local extension officers to understand landholdings, crop types, typical crop 

rotations, nutrient inputs, and tillage and crop residue management. Socio-economic 

characteristics included family size, labour availability, months of food security, sources of 

income, proportion of off-farm income and production orientation. Land to labour ratio was 

calculated by dividing the land size and available labour per farm. Comparing households, 

small values of land: labour ratio indicate land limitation, larger values suggest labour 

limitation. A specific question was asked to ascertain the number of farmers who had planted 

the intercrops, this data was verified through transect walks and fields visits. 

A matrix scoring method on a scale of 1-20 was used to evaluate the maize-pigeonpea 

intercrops and the corresponding sole crops treatments in the 2009/2010 season using the 

criteria of food security, cash income, input costs, ease of weeding and time to maturity. A 

group of 23 farmers (14 women and 9 men) participated in the evaluation using a 
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combination of visual assessments, ranking and scoring procedures. Final scores were 

obtained by multiplying the scores given by farmers and the appropriate weight of each 

criterion (Pimbert, 1991), assigned through pairwise ranking. Acceptability of a treatment 

was calculated as the percentage of total score to the maximum possible score for each 

treatment. The full scoring procedure is described by (Rusinamhodzi and Delve, 2011). 

3.2.7 Labour data collection  

We estimated labour requirements by direct observation for each treatment from the 

experimental plots (480 and 800 m2). A regular team of farmers performed required activities 

on each plot at similar times of the day; the farmers were not informed that their activities 

were being timed. Important recordings were: activity, start time, number of people, 

treatment, plot size and end time. The average labour times for each task for each treatment 

were calculated and converted to person-days units (8 hours) per hectare. Weeding was done 

three times at three, six and nine weeks after crop emergence; reported data is total time for 

the three weeding stages. Data from “farmers’ recall” were not used because there were many 

confounding factors mainly related to planting densities, not having all treatments and the 

irregular nature at which farmers carried out their activities. 

 

3.2.8 Calculations and statistical analysis 

Intercrop productivity was analysed using the land equivalency ratio (LER) method (de Wit 

and van Den Bergh, 1965), computed using the following formula: 

where all yields are expressed in t ha-

1. LER is relative land requirements for intercrops compared to monocrops. LER values 

greater than 1.0 show that intercropping is more productive and those less than 1.0 show that 
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monocropping is more efficient. Competition was evaluated by computing the competitive 

ratio (CR) using the formula described by (Willey and Rao, 1980):  

crop x y
crop x

crop y x

LER Z
CR

LER Z

  
     

 

where Zx and Zy are the sown proportion of each crop in the mixture. The CR value gives the 

exact degree of competition by indicating the number of times one crop is more competitive 

than the other. Yield penalty was calculated as the percentage difference in yield between 

sole crop maize and intercropped maize; data reported for each intercrop treatment was 

calculated as an average for three seasons across fertiliser treatments. 

A principal components analysis was performed to determine the household characteristics 

that were most important for explaining variability between the identified farmer resource 

groups (McLachlan, 2005) in both Ruaca and Vunduzi. A partial budget analysis was done at 

farm level to understand the impact of moving from maize monocropping to maize-pigeonpea 

intercropping in Ruaca. The marginal rate of return (MRR) was calculated by expressing the 

difference between the net benefit of the treatments under comparison as a percentage of the 

difference of the total variable costs (Evans, 2005). Different price scenarios were used for 

both crops as significant price changes were observed; prices were often subdued soon after 

harvest but rose sharply as supply of produce diminishes especially in November and 

December. 

The generalized linear model (GLM) in SAS 9.2 (TS2MO) of the SAS System for Windows 

© 2002-2008 was used to test the individual and interactive effects of intercropping 

treatment, fertiliser application and season on crop yield. The interactions tested were 

intercrop treatment × fertiliser, and season × arrangement × fertiliser. In the analysis, 

intercropping treatments and fertiliser application were considered fixed factors while season 
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was considered as a random factor. The standard error of difference between means was 

calculated using the procedure described by Saville (2003). 

 

3.3. Results 

3.3.1 Rainfall distribution 

More rainfall was received in Vunduzi (mean of 947 mm and coefficient of variation of 15%) 

than in Ruaca (mean of 729 mm and coefficient of variation of 9%). Rainfall distribution was 

erratic and variable between sites and seasons (Fig. 3.1). Severe mid-season drought spells 

were common with only the 2008/09 season having well-distributed rainfall. There was a 

severe dry spell in the first half of the 200/10 season followed by excessive rainfall. By 

contrast there was heavy rainfall early in the 2010/11season until January and then a severe 

long dry spell in February and March. 
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Fig. 3.1. Cumulative rainfall distribution at the two experimental sites (Ruaca and Vunduzi) 
for three consecutive seasons. The rainfall pattern is unimodal and occurs between October 
and April, dates in parenthesis are the maize planting dates for each season. 
 

3.2 Grain yields and intercrop productivity in Ruaca 

Season (through rainfall distribution) and crop arrangement had a significant effect (p < 

0.001) on maize and pigeonpea grain yield, and intercrop productivity in Ruaca (Table 2 and 



Chapter	3	–	Maize–legume	intercropping	
 

64 
 

Fig.3.2); the interactions between fertiliser and intercrop treatments were weak. Maize yield 

in the within-row intercropping treatments was larger than in sole crop in both the 2009/10 

and 2010/11 seasons whereas the distinct-row intercropping resulted in significantly less 

yield than the sole crop in both the 2008/09 and 2009/10 seasons. The largest yield in sole 

maize was 2.3, 2.6 and 0.8 t ha-1 for 2008/09, 2009/10 and 2010/11 respectively; in the 

distinct-row intercropping treatment it was 0.8, 1.6 and 2.8 t ha-1 and in the within-row 

intercropping treatment 1.6, 2.8 and 5.8 t ha-1 (Fig.3.2). In the 2008/09 season, the response 

of maize to N and P fertilisation was significant; 20 kg ha-1 P and 60 kg ha-1N increased 

maize yields in the sole crop by 1.4 t ha-1, in the  within-row intercrop by 0.4 t ha-1, and by 

0.3 t ha-1 in the distinct-row intercropping treatment compared to no fertiliser application. 

Pigeonpea responded better to fertiliser application in the second and third season but not in 

all treatments (Fig.3.2b). Pigeonpea grain yield was 1.2 t ha-1 in sole crop, 0.8 t ha-1 in 

distinct-row intercrop and 1.0 t ha-1 in within-row intercrop in 2008/09 season and there was 

no response to fertiliser application (Fig.3.2b). In 2009/10, intercropping reduced 

significantly the yield of pigeonpea, the largest yield was 1.5 t ha-1 in sole crop, 0.7 t ha-1 in 

distinct-row and 0.9 t ha-1 in  within-row intercropping. The yield penalty of intercropping 

maize was compensated for by yield of the companion pigeonpea crop leading to LERs of at 

least one for all treatments across all seasons (Table 3.2). The yield penalty for intercropping 

maize and pigeonpea within the same row was small (8%) compared with the distinct-row 

option (50%). LERs for within-row intercropping were significantly larger than for distinct-

rows in all years. In the third year, sole maize yields in Ruaca were strongly suppressed (<0.8 

t ha-1) by heavy infestation with striga (Striga asiatica (L.) Kuntze) that was not observed in 

the intercrops or the sole pigeonpea plots.  Yields of maize grown as a sole crop after two 

previous years of sole pigeonpea yielded 4.8 t ha-1 without fertilizer and 5.9 t ha-1 with 

addition of only 20 kg P ha-1 (Fig. 3.3) and there was no response to N fertiliser application. 
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Competitive ratios (CR) were larger for maize (0.9 - 1.4) than for pigeonpea (0.7-1.1) in 

maize-pigeonpea intercropping.  

Table 3.2. Effect of intercropping, fertiliser application and season on the land equivalence 
ratios (LER) of maize-legume intercropping in Ruaca and Vunduzi.  
Treatment Fertiliser Maize-pigeonpea intercropping 

(Ruaca) 
Maize-cowpea 
intercropping 
(Vunduzi) a,b 

  2008/09 2009/10 2010/11 2010/11 

Distinct-row  No fertiliser 1.1 1.1 1.4 1.4 

20 kg P ha-1 1.0 1.1 1.2 1.8 

30 kg N + 20 kg P ha-1 1.1 1.0 1.2 1.7 

60 kg N + 20 kg P ha-1 1.0 1.2 1.3 1.9 

Within-row  No fertiliser 2.2 1.7 2.0 2.4 

20 kg P ha-1 1.4 1.7 2.4 2.0 

30 kg N + 20 kg P ha-1 1.4 2.0 2.0 2.2 

60 kg N + 20 kg P ha-1 1.5 1.9 2.1 2.0 

*SED   0.1 0.1 0.2 0.2 
aIn the 2008/09 season, farmers consumed the cowpea before the experiment could be 
harvested, LER not calculated  
bIn the 2009/10 season, the maize crop failed completely due to a prolonged mid-season dry 
spell, LER not calculated 
*Combined SED for treatment means  
 

3.3.3 Grain yields and intercrop productivity in Vunduzi 

Season (through rainfall distribution) and crop arrangement had a significant effect (p < 

0.001) on maize and cowpea grain yield in Vunduzi; fertiliser application had a significant 

effect on cowpea and not maize yield (Table 3.2 and Fig.3.2). In Vunduzi, the within-row 

intercropping strategy was more productive than the farmers’ two rows of maize alternating 

with a row of cowpea in 2010/11 when both crops yielded (Table 3.2). In the maize-cowpea 

intercrops, the poor productivity of maize due to long dry spells reduced competition, which 

led to relatively greater cowpea productivity. The intercropping treatments were at least equal 

to or more productive than the sole crop, as shown by the LERs (Table 3.2). In the first year 
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(2008/09), no cowpea yields were recorded in Vunduzi because farmers started consuming it 

due to their severe food insecurity before measurements could be made. In the 2009/10 

season, maize completely failed due to a prolonged dry spell lasting more than 55 days, yet 

cowpea survived and gave a significant harvest especially in plots where N and P fertiliser 

was applied (Fig 3.2a). We also observed that maize was affected more by the dry spells in 

plots that received N than plots that received only P fertiliser. Cowpea yield responded better 

to fertiliser application than maize. In Vunduzi, the yield penalty of intercropping maize and 

cowpea was 6% in the within-row treatment and 25% with distinct-rows. In the maize-

cowpea intercrop, the CRs for maize ranged from 1.2 to 1.8 and for cowpea 0.6 to 0.8. 

(a) cowpea grain yield, Vunduzi
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Fig.3.2. Effect of intercropping, N and P fertilization, and season on grain yield of (a) 
cowpea, (b) pigeonpea, (c) maize in Vunduzi, and (d) maize in Ruaca. Maize and legume 
yields plotted at different scales to allow easier visualization of effects. Error bars indicate the 
standard error of difference between means (SED). 
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3.3.4 Rainfall infiltration 

Intercropping maize and pigeonpea continuously for five years increased steady state rainfall 

infiltration from 6 mm hr-1 to 22 mm hr-1 compared with continuous maize monocropping 

(Fig. 3.4). There was more surface water run-off (94%) on plots that were under continuous 

maize than on plots that were intercropped since one year (88%), or three years (68%), and 

least (42%) run-off was recorded on plots that were since five years under intercropping. 

Infiltration characteristics in the sole maize field and the field that was intercropped since 

only one year, followed an exponential decrease whereas in the fields that had been 

intercropped since 3-5 years, the pattern followed a sigmoidal decay curve characterized by a 

lag-phase in decrease of infiltration.  
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Fig. 3.3. Effect of intercropping, rotation, and N and P fertilization on maize grain yield in 
Ruaca in the third (2010/11) season. 
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3.3.5 Economic analysis 

Weeding in sole maize required a total of 17.6 man days per hectare, in sole pigeonpea it 

increased to 18.2, to 22.3 in within-row intercrops, and to 26.4 man days per hectare in the 

distinct-row intercrops. On average, intercropping maize and pigeonpea increased weeding 

time by 36%. The analysis of benefits versus variable costs showed that integrating legumes 

into maize-based cropping systems increased profitability at all price scenarios for the crop 

grain sales with a minimum of 343% MRR (Table 3.3a). The MRR was greater without than 

with fertiliser mainly because the sole maize crop responded better to fertiliser than when 

intercropped. Farmers generally sold their produce immediately after harvest when prices 

were low; later in the year, maize prices increased by up to 140% and pigeonpea by up to 

50% of the initial price. Under these price scenarios, farmers’ earnings increase by 67% 

without fertiliser and 35% with fertiliser for the within-row intercropping treatment and, 36% 

without fertiliser and 61% with fertiliser for the distinct-row treatment (Table 3a). 
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Fig. 3.4. Simulated rainfall infiltration as affected by duration of intercropping in a sandy soil 
in Ruaca village, central Mozambique. Error bars indicate the standard error of difference 
between means (SED). 
 

3.3.6 Farmer evaluation of maize-pigeonpea intercrops in Ruaca 

Food security and cash income were identified by farmers as priority production objectives. 

Input costs, ease of weeding and time to maturity, in that order, were also important for 

evaluating maize-pigeonpea intercrops. Overall, farmers preferred intercrops over sole crops; 

although not currently practised, the within-row intercropping strategy was found to be the 

most acceptable to farmers (84%) followed by distinct-row intercropping, and sole maize was 

more acceptable than sole pigeonpea (Table 3.3b). Farmers in the richest and poorest 

resource group (see section 3.6) did not attend these evaluation meetings as a result the 

acceptability scores were for the middle resource group and did not differ between men and 

women.
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3.3.7 Diversity of farmers in the study areas in relation to the practise of maize-legume 

intercropping 

Four resource groups were identified in Ruaca using the size of cropped land, the number of 

cattle owned, the farmers’ production orientation and the characteristics of the main house 

(Table 3.4). Farmers in category RG1 were under-resourced and frequently worked as casual 

labourers for wealthier farmers in the village. Farmers in category RG4 depended on off-farm 

activities for most their livelihoods, provided an important link with traders and employed 

labourers. Only farmers in RG2 and RG3 were already practising maize-pigeonpea 

intercropping. In Vunduzi, field size and household characteristics were important as 

indicators of wealth status and three resource group categories were identified. Farmers in the 

best resourced group (RG3) regularly hired casual labourers because they cropped large areas 

and used the produce to pay for the labour. Only better-resourced farmers in RG2 and RG3 

practised maize-legume intercropping. Principal components analysis showed that more than 

97% of the variability in households in Ruaca was explained by the first three principal 

components, PC1 (89%), PC2 (6.7%) and PC3 (1.9%). In Ruaca, PC1 was strongly related to 

livestock ownership and PC2 was related to land size owned and area of land cropped. The 

variability in households in Vunduzi was explained by more factors as compared with Ruaca, 

the first three principal components accounted for only 74% of the variability, PC1 (42.3%), 

PC2 (20.3%) and PC3 (11.7%). In Vunduzi, PC1 was related to the area of land cropped and 

PC2 to the number of goats and pigs. 

The land: labour ratio was greater in Ruaca (1.6 ha person-1) than Vunduzi (0.6 ha person-1), 

however land utilization was greater in Ruaca (76%) than in Vunduzi (62%). In Vunduzi only 

2% of the farms were self-sufficient in food for 12 months whereas in Ruaca, 46% of the 

farmers were self-sufficient in food for 12 months. The proportion of farmers practicing 

maize-pigeonpea in Ruaca decreased from 85% in the 2007/08 season to 78% in 2008/09, 
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52% in 2009/10 and finally to 37% in the 2010/11 season. In Vunduzi, the proportion 

increased from 25% in 2007/08 to 32% in 2008/09, it was 34% in 2009/10 and finally to 66% 

in the 2010/11 season.  

3.4. Discussion 

3.4.1 Maize-legume intercrop productivity  

Our results suggest that maize-legume intercropping fits well within the biophysical and 

socio-economic conditions of smallholder farmers in central Mozambique and is a suitable 

starting point for ecological intensification. The maize-legume intercrop options studied were 

relatively more productive than the corresponding sole crops despite a strong response to 

seasonal variation in rainfall. Thus, grain yield results across seasons suggest that crop 

production in the two sites was water-limited (Harmsen, 2000). In a similar study spanning 

over 12 years in a loamy sand soil under sub-humid conditions in Zimbabwe, Waddington et 

al. (2007) reported that yield variations between seasons was mainly caused by rainfall 

fluctuations; maize yield was reduced when rainfall was below 600 mm with or without 

fertiliser application.  

Well-designed maize-legume intercrops in both time and space have been found to be highly 

productive (LER ≥ 1) and efficient in resource utilization under sub-humid conditions 

resulting in maintenance or improvement of the yield of the main crop (Baldé et al., 2011). 

The small yield penalty in within-row maize-pigeonpea intercropping showed that pigeonpea 

can provide an additional yield benefit without negatively affecting maize as has been 

reported previously (Sakala, 1994; Waddington et al., 2007). Intercropping cowpea with a 

non-legume has also been shown to increase the efficiency of the biological N fixation 

process and reduces the reliance of the legume on applied N (Rusinamhodzi et al., 2006). 

Cowpea was harvested when maize totally failed in Vunduzi in 2009/10 season suggesting 

that relay planted intercropping with short duration crops such as cowpea can reduce risk of 
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crop failure under erratic rainfall. Other authors have demonstrated that intercropping can 

reduce the risk of low yields or crop failure associated with drought or unpredictable rainfall 

(e.g. Ghosh et al., 2006). On the other hand, the failure of maize crop was beneficial to 

cowpea as there was no shading; Ofori and Stern (1987) suggested that cowpea yields are 

likely to be depressed due to shading by the companion maize crop. In 2010/11season, 

cowpea yields were not reduced even though maize yields were large (Table 3) suggesting 

reduced competition for resources. Jeranyama et al. (2000) reported that companion maize 

grain yields were not reduced when cowpea was relay planted because peak nutrient demands 

where temporally different. 

Effect of fertiliser application on maize yield was poor in both sites due the effects of dry 

spells which coincided with critical crop growth stages such as tasseling and silking. 

Pigeonpea yield responded significantly to the largest N input of 60 kg ha-1, Ghosh et al. 

(2006) reported that N is a limiting factor for growth of pigeonpea intercrop during the first 

half of the season, thus N fertiliser is necessary to improve productivity. Cowpea responded 

significantly to the application of N and P fertiliser in the seasons when it was harvested. The 

good response to fertiliser in cowpea was due to staggered planting; its maturity coincided 

with favourable moisture conditions later in the season. However, Ofori and Stern (1987) 

reported larger yield loss of cowpea with addition of N fertiliser in a silt loam soil under 

Mediterranean-type climate. 

Rotational effects of pigeonpea in sole and in intercrop were significant; the initial effect was 

through the reduction of Striga infestation. Continuous maize was heavily infested with 

Striga in the third season of the experiment leading to yield loss of up to 88% compared to 

maize after pigeonpea. Other studies have reported that Striga infestations can reduce maize 

yields by up to 80% (e.g. Ransom et al., 1990); both rotation and maize-legume intercropping 

are effective to overcome this challenge (Oswald and Ransom, 2001; Oswald et al., 2002). A 
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second effect was the residual N effect from pigeon pea. In our experiments, maize after 

pigeonpea did not respond to added N but only to P because pigeonpea has been found to 

contribute as much as 90 kg N ha-1 to the N nutrition of the next maize crop (Sakala et al., 

2000), which might have been sufficient under these conditions. 

 

3.4.2. Rainfall infiltration 

Rainfall infiltration improved significantly with duration of maize-pigeonpea intercropping. 

The infiltration curves were also different with long-term intercropping causing a lag-phase 

in infiltration rate, which was attributed to the high accumulation of biomass covering the soil 

surface and the concomitant increase in soil carbon (C) (Roth et al., 1988). Vachon and 

Oelbermann (2011) observed that the integration of N-rich legumes in maize-based systems 

leads to sequestration of C compared with sole crops. Pigeonpea was harvested two months 

before the start of the succeeding season which ensured crop residues retention and 

substantial soil C input. Myaka et al. 2006 reported that increased circulation of organic 

matter due to pigeonpea had a likely long-term effect on soil quality. The undisturbed 

continuous pore system and the absence of a hardpan due to no-till also contributed to the 

observed high infiltration (Thierfelder and Wall, 2009). The deep-rooting characteristic of 

pigeonpea is also thought to contribute significantly to improved infiltration (Godoy et al., 

2009). Our results suggest that maize-pigeonpea intercropping in the long-term may lead to 

greater rainfall infiltration resulting in more water being available for crop growth and offset 

the effects of dry spells. 
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3.4.3 Labour demand, profitability and acceptability  

Weeding time was increased by 36% in intercrops although the increase was not related to 

weed intensity but to the need to take care of pigeonpea which grows slowly compared to 

maize as well as difficulty in navigating through the crop mixtures. Our results are similar to 

Mucheru-Muna et al.(2009) who reported an increase in requirement for careful weeding 

operations in intercropping compared with sole cropping. However, other authors have 

reported lower weeding requirements in maize-legume intercropping systems due to weed 

suppression (Banik et al., 2006) caused by more crop biomass and better soil cover 

(Chamango, 2001). Given that in the study sites labour is normally priced on the basis of area 

worked than the amount of time spent weeding, it is likely that the variation in weeding costs 

is small between the treatments tested.  

The MRR showed that legume monocropping or intercropping with maize was far much 

more profitable than maize monocropping; profitability was directly related to the proportion 

of pigeonpea in the intercrop. However, Waddington et al. (2007) reported that low input sole 

maize was more profitable than when intercropped with pigeonpea or cowpea; low input sole 

maize was more attractive due to low costs and the a higher selling price than the legumes 

between 1994 and 2006 in Zimbabwe. In our study area, although maize was commonly sold, 

it was often sold only when the household food requirements have been achieved while 

pigeonpea could be sold immediately after harvest. Although farmers can increase their 

earnings if they delay selling their produce at harvest, investments in post-harvest storage and 

pest control strategies are required. Shifting from sole maize to maize-pigeonpea 

intercropping can achieve the objectives of improved cash income. 

Farmers’ evaluation of the intercrops was primarily based on the ability of the options to 

achieve food security and cash income while reducing input costs. Food security was related 

to yield of maize and cash income to the yield of pigeonpea. On input costs, sole maize 
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scored more than sole pigeonpea and the intercrops. Time to maturity was important because 

crops should mature early and close the food insecurity gap. Pigeonpea matures late thus the 

sole pigeonpea crop was scored below maize. This also means that cultivars of pigeon pea 

that mature early are most suitable for the farmers. Overall, the within-row intercropping 

strategy was preferred and farmers were willing to shift from the commonly practiced 

distinct-row intercrop due to its ability to maintain the yield of maize and the relatively high 

yield of the legume. In general, matching technological performance to farmers’ preferences 

is critical for widespread adoption as farmers prefer technologies that fit within their 

resources such as labour, capital and management demands ((Fujisaka, 1989; Chianu et al., 

2006). 
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3.4.4 The socio-ecological environment and potential for maize-legume intercropping 

Our results suggest that erratic rainfall distribution limited crop responses to added fertiliser 

despite the low fertility status of the soils (Maria and Yost, 2006). The low N status of the 

soils is favourable to stimulate legume N2-fixation but deficiencies of P and K potentially 

limit the process. Crops such as pigeonpea increase recycling of organic matter, N and other 

nutrients which is likely to have a long-term beneficial effect on soil fertility (Myaka et al., 

2006). The relatively high biomass productivity and late maturity of pigeonpea may delay 

free-grazing and enable in situ crop residue retention, combined with the weed-suppression 

ability (Gooding, 1962) may facilitate integration with no-tillage practises. Cowpea can also 

access sparingly soluble P and make it available for uptake by companion or succeeding crop 

(Vanlauwe et al., 2000). The deep rooted and long duration nature of pigeonpea means that it 

is suitable for anchoring the soil and preventing soil loss on the steep slopes that are found in 

Vunduzi and some parts of Ruaca. It may also induce a hydraulic lift, a redistribution of soil 

water from deeper in the soil profile to dry surface horizons by the root system (Sekiya and 

Yano, 2004), which may make more moisture available for the companion crop.  

Cowpea matures early which is critical to alleviate the food security constraints but had a 

significantly lower price because it was only sold locally to fellow villagers compared to 

maize and pigeonpea which had external markets. The high selling price for pigeonpea was 

particularly attractive to farmers as it was four times that of maize; pigeonpea grain prices 

ranged between 0.6 and 1.0 US$ per kg while that of maize ranged between 0.14 and 0.3 US$ 

per kg. The attractive market price for pigeonpea in Ruaca was similar to that in Ntcheu 

district, Malawi as reported by Ngwira et al. (2012). The number of farmers practicing 

intercropping in a season in Ruaca suggested that market opportunities for crops were 

important. Late maturity of pigeonpea coincided with free roaming livestock that destroyed 

fields in Ruaca and often caused a significant drop in number of farmers growing it the 
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following season. On the other hand, the absence of cattle alone was not enough in Vunduzi 

to stimulate widespread production of pigeonpea; the sudden jump in proportion of farmers 

practicing intercropping in 2009/10 was explained by the emergence of a market for 

pigeonpea.  

Although farmers were diverse and distinct resource groups were identified, they all had 

similar expectations from their field crop production activities. Farming systems analysis 

suggested that labour shortage was a greater constraint in Ruaca than in Vunduzi. Land 

limitation in Vunduzi is an increasing problem because expansion of cropped area is limited 

by the neighbouring Gorongosa National Park. Despite a larger land: labour ratio in Ruaca, 

there was significantly greater land utilization compared with Vunduzi which contributed to 

more farmers being food self-sufficient. Land utilization in Vunduzi was limited by the steep 

slopes and rugged terrain which is less common in Ruaca. Our results showed that maize-

legume intercropping required extra labour compared with sole crops; in Vunduzi land sizes 

were small and farmers were more likely to meet the labour requirements of intercropping 

than farmers in Ruaca. In Ruaca, farmers needed to reduce the land cultivated per season to 

be able to manage the intercropping systems or to hire extra labour. However, the loss in 

production due to reduction in land area could be compensated by the greater productivity of 

the intercrops.  

 

3.5. Conclusion 

The relatively high crop productivity and economic benefits of the maize-legume 

intercropping systems were attractive to farmers’ to address their critical objectives of food 

security and cash income although intercropping required 36% more labour compared with 

the monocrops. The within-row intercropping strategy maintained the yield of the main maize 

crop and was a more acceptable crop production option for farmers. Maize-legume 
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intercropping could be more profitable if farmers can delay selling their produce immediately 

after harvest. In situations of land limitation and insufficient fertiliser inputs, legume 

intercropping may provide a pathway for ecological intensification. In extensive farming 

systems, labour saved by reducing land area may offset the increased labour demand for 

intercropping. Maize-pigeonpea intercropping significantly increased rainfall infiltration in 

the long-term due to a better soil cover with residues, more C inputs and no-tillage, and 

possibly improved soil structure. The relatively high biomass productivity and late maturity 

of pigeonpea delays free-grazing and enables in situ crop harvest residue retention which 

matches well with no-tillage practises. Maize-legume intercropping reduces the risk of crop 

failure, improves productivity per unit area, improves profitability and can provide a pathway 

to food security in vulnerable production systems. 
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Abstract 

Soil fertility decline is a major constraint to crop productivity on smallholder farms in Africa. 

The objective of this study was to evaluate the long-term (up to nine years) impacts of 

nutrient management strategies and their local feasibility on crop productivity, soil fertility 

status and rainfall infiltration on two contrasting soil types and different prior management 

regimes in Murehwa, Zimbabwe. The nutrient management strategies employed in the study 

were: a control with no fertiliser, amendments of 100 kg N ha-1, 100 kg N + lime, three rates 

of manure application (5t, 15t and 25 t ha-1) in combination with 100 kg N ha-1, and three 

rates of P fertiliser (10, 30 and 50 kg P ha-1) in combination with 100 kg N, 20 kg Ca, 5 kg Zn 

and 10 kg Mn ha-1. Maize grain yields in sandy soils did not respond to the sole application of 

100 kg N ha-1; manure application had immediate and incremental benefits on crop yields in 

the sandy soils. A combination of 25 t ha-1 manure and 100 kg N gave the largest treatment 

yield of 9.3 t ha-1 on the homefield clay soils, 6.1 t ha-1 on clay outfield, 7.6 t ha-1 on sandy 

homefield and 3.4 t ha-1 in the eighth season. Yields of the largest manure application in the 

outfields were comparable to yields with 100 kg N in combination with 30 kg P, 20 kg Ca, 5 

kg Zn and 10 kg Mn ha-1 in the homefields suggesting the need to target nutrients differently 

to different fields. Manure application improved rainfall infiltration in the clay soils from 21 

to 31 mm hr-1 but on the sandy soils the manure effect on infiltration was not significant. 

Despite the large manure applications, crop productivity and SOC build-up in the outfield 

sandy soils was small highlighting the difficulty to recover the fertility of degraded soils. The 

major cause of poor crop productivity on the degraded sandy soils despite the large additions 

of manure could not be ascertained. The current practice of allocating manure and fertiliser to 

fields closest to homesteads exacerbates land degradation in the sandy outfields and increases 

soil fertility gradients but results in the most harvest for the farm. On clay soils, manure may 

be targeted to outfields and mineral fertiliser to homefields to increase total crop productivity. 
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Farmers who owned cattle in the study site can achieve high manure application rates on 

smaller plots, and manure application can be rotated according to crop sequences. Consistent 

application of manure in combination with mineral fertilisers can be an effective option to 

improve crop yield, SOC and moisture conservation under smallholder farming conditions. 

Combined manure and mineral fertiliser application can be adapted locally as a feasible entry 

point for ecological intensification in mixed crop-livestock systems.  

 

Key words: cattle manure, maize production, crop-livestock systems, degraded soils, nutrient 

gradients, integrated soil fertility management (ISFM), ecological intensification (EI). 



Chapter	4	–	Pushing	the	envelope	
 

  
 

                                                                         84 
 

4.1 Introduction 

Farming systems in southern Africa exhibit a close integration between crops and livestock. 

Crop residues are used as livestock feed during the dry season (de Leeuw, 1996), and manure 

is an important source of nutrients for crop production (Murwira et al., 1995; Zingore et al., 

2008). This synergistic  relationship is widespread in farming systems, but varied in its 

ecological and economic complexity (McCown et al., 1979). In the maize-based farming 

systems of southern Africa, cattle are the main livestock and are grazed in a communal 

system during the day and kept in kraals close to homesteads at night. Cattle are herded in the 

communal rangelands during the rainy season and graze freely both rangelands and crop 

fields during the dry season. Benefits in these mixed crop-livestock systems are skewed 

towards cattle owners because they have access to crop residues from non-livestock owners; 

non-livestock owners only benefit if cattle deposit significant amounts of manure whilst 

grazing in their fields (Rufino et al., 2007). Manure availability is critical in these smallholder 

systems because mineral fertiliser use, as in the whole of sub-Saharan Africa, has remained 

far below the amounts required to sustain crop production (Sanchez, 2002; Bekunda et al., 

2010). On the other hand household manure production is often insufficient for optimum 

application to all fields of the farm (Zingore et al., 2007a, 2007b; Rufino et al., 2011). 

A combination of shortages of labour, fertiliser and manure often leads to preferential 

allocation of nutrients to fields close to the homestead resulting in highly nutrient deficient 

outfields (Mtambanengwe and Mapfumo, 2005; Zingore et al., 2007a). The outfields on 

sandy soils are typically characterized by deficiencies of N, P and S, high acidity, low soil 

organic carbon (SOC) and low water holding capacity (Zingore et al., 2007a). These multiple 

nutrient deficiencies in combination with low organic matter content render these soils non-

responsive to application of NPK fertiliser. The differences in soil fertility resulting from 
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variable farmer management practices require adapted nutrient management strategies to 

improve nutrient use efficiencies (Zingore et al., 2007b; Tittonell and Giller, 2013). A 

combination of mineral fertiliser and manure has shown promise to improve crop 

productivity of the nutrient depleted outfields (Dunjana et al., 2012). However restoration of 

the fertility of degraded soils is likely to be hampered by the need to maximise returns to 

limited nutrient resources which is assured in homefields compared with the degraded 

outfields (Zingore et al., 2007a). 

Large quantities of good quality manure are necessary to achieve and sustain high crop 

productivity (Powell and Mohamed-Saleem, 1987; Snapp et al., 1998). Good quality manure 

should be anaerobically composted with added plant material, contain N greater than 1.8% 

and to be free of sand (Murwira et al., 1995; Rufino et al., 2007; Tittonell et al., 2010b).  

Applications of about 17 t ha-1 manure have been found to be effective in the short term in 

improving SOC, P, pH, base saturation  and the restoration of crop productivity of a degraded 

sandy soil in north-east Zimbabwe (Zingore et al., 2008). In a similar study, annual 

applications of three or six tons of manure for five years on a sandy soil at Grasslands 

Research Station, Zimbabwe raised the fertility of the soils by progressively increasing the 

cation exchange capacity, the exchangeable bases and pH (Grant, 1967). Nyamangara et al. 

(2001) demonstrated that manure application of 12.5 t ha-1 per year or 37.5 t ha-1 once in 

three years significantly improved the structural stability and water retention capacity of 

sandy soils with low organic matter content. However, such application rates are only 

possible on small fields (< 0.5 ha) or for farmers who own many livestock. Both of the 

former studies reported results of three year investigations; the long-term recovery of 

degraded soils and their ability to support sustainable high crop productivity are not fully 

understood.  Our major hypothesis is that long-term application of manure and mineral 

fertiliser can restore fertility of degraded soils and offset the yield and SOC differences 
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between homefields and outfields which could be a sustainable and feasible entry point for 

ecological intensification. We also hypothesised that the rate of recovery of degraded soil 

depends on soil type.   

In this paper the results of a 9-year agronomic experiment conducted in north–east Zimbabwe 

are described and discussed. The first three years results of this experiment were reported 

earlier by Zingore et al. (2007b). The overall objective of the experiment was to improve 

nutrient use efficiency through strategic application of limiting nutrients, and to identify a 

pathway to restore soil fertility of degraded outfields using a combination of mineral 

fertilisers and manure. We measured crop grain yield as it is the basis for household food 

security and income (Jayne and Jones, 1997), and SOC as it is an important determinant of 

soil fertility and sustainability (Körschens et al., 1998; Lal, 2006). In addition we measured 

rainfall infiltration as affected by long-term manure application using simulated rainfall. 

Water infiltration into the soil is an important soil quality indicator that is strongly affected 

by land management practices such as organic matter inputs (Lal, 1990; Franzluebbers, 

2002), and is especially important under water-limited crop production. Manure avaialbility 

is a great constraint at farm the scale, thus we quantified feasible manure quantities and the 

corresponding current manure application rates to various plots across the farm. 

4.2. Materials and methods 

4.2.1 Site description 

Manjonjo (17o49’S; 31o33’ E, 1300 metres above sea level - m.a.s.l.) and Ruzvidzo (17o51’S; 

31o34’E, 1300 m  m.a.s.l.) villages are located in Murehwa smallholder farming area, 80 km 

north east of Harare. Murehwa is located in agro-ecological region II (Vincent and Thomas, 

1960) which receives annual rainfall of between 750 and 1000 mm in a unimodal pattern. 

Mid-season dry spells are common. The soils in the area are predominantly granitic sandy 
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soils (Lixisols: FAO, 1998) of low inherent fertility with intrusions of dolerite derived clay 

soils (Luvisols; FAO, 1998) that are relatively more fertile (Nyamapfene, 1991). Cattle 

ownership varies widely among households (Zingore et al., 2007a). Other small livestock 

such as goats and local chickens are also important. Farmers who own cattle use manure 

together with small amounts of mineral fertiliser they can afford on small areas of the farm 

resulting in improved crop productivity. Maize (Zea mays L.) is the dominant staple crop 

while groundnut (Arachis hypogaea L.), sweet potato (Ipomoea batatas (L.) Lam.) and 

sunflower (Helianthus annuus L.) are important crops.  

The communal grazing area is characterised by the Miombo woodland dominated by 

Julbernardia globiflora (Benth.) Troupin, Brachystegia boehmii Taub. and Brachystegia 

spiciformis Benth. (Mapaure, 2001). Grass species of the genus Hyparrhenia are 

predominant, and Andropogon, Digitaria, and Heteropogon spp. are also common species. 

Sporobolus pyramidalis P. Beauv., a grass of poor grazing quality often dominates in 

overgrazed areas and perennially wet ‘vlei’ areas of the veld.   
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4.2.2 Experimental design 

Initial farming system and field characterization revealed the occurrence of soil fertility 

gradients due to previous soil fertility management on both clay and sandy soils (Zingore et 

al., 2007a). Fields close to the homestead (i.e. 0-50 m) were relatively more fertile and called 

homefields, and those far away from the homestead (i.e. 100-500 m) were relatively less 

fertile and called outfields (Table 4.1). Thus the experiment was established on fields with 

contrasting soil types (Manjonjo- sandy soil, Ruzvidzo - red clay soil) and previous nutrient 

management intensity. The sand plus silt content of clay homefield was 56%, clay outfield 

58%, sandy homefield 15% and sandy outfield 12%. Initial characterisation showed that both 

soils were deficient in N and P, confirming that they were the most limiting nutrients across 

soil types; whereas K was deficient only in the sandy soils (Table 4.1). Experimental fields 

were tilled using an ox-drawn mouldboard plough at the start of the rainy season. All 

previous crop harvest residues were grazed by cattle during the dry season. The experiment 

was located on four fields (clay homefield, clay outfield, sandy homefield, and sandy 

outfield) on two farms, one on each soil type. Experimental treatments were laid out in a 

randomized complete block design (RCBD) with three replications on 6 m × 4.5 m plots in 

each field. The experiment was run for nine seasons starting with the 2002/2003 season. No 

crops were sown in the fourth season (2005/2006) and the seventh season (2008/2009) due to 

logistical problems, fields had been tilled but weeds were allowed to grow. The initial 

treatments were: 

i. Control (no amendment added) 

ii. 100 kg N ha-1 

iii. 100 kg N ha-1 +  10 kg P ha-1 (i.e. 5 tons manure ha-1),  

iv. 100 kg N ha-1 +  30 kg P ha-1 (i.e. 15 tons manure ha-1),  



Chapter	4	–	Pushing	the	envelope	
 

  
 

                                                                         90 
 

v. 100 kg N ha-1 +  30 kg P ha-1, (i.e. 15 tons manure ha-1), dolomitic lime (500 kg ha-1)  

vi. 100 kg N ha-1 + 10 kg P ha-1,  

vii. 100 kg N ha-1 + 30 kg P ha-1,  

viii. 100 kg N ha-1 + 30 kg P ha-1, dolomitic lime (500 kg ha-1) 

ix. 100 kg N ha-1 + dolomitic lime (500 kg ha-1) 

Mineral fertiliser N was applied as ammonium nitrate (AN, 34.5% N) and P as single super-

phosphate (SSP), 20% P2O5). After the first season, the following treatments were modified: 

treatment (v) was modified to manure equivalent of 50 kg P ha-1 plus 100 kg N ha-1, and 

treatment (viii) was modified to 50 kg P ha-1 (SSP) plus 100 kg N ha-1. Application of 

dolomitic lime was discontinued because it had small effects on maize yield. Results from the 

initial four years showed no significant grain yield response to addition of N and P alone 

(Zingore et al., 2007b), and results from a pot experiment suggested that Ca and 

micronutrient  deficiencies limited the response of maize to N and P (Zingore et al., 2008). 

Treatments that received mineral fertilisers only (AN and SSP) were modified in the 6th 

season (2006/2007) to include Ca, Mn and Zn. This allowed assessment of the potential to 

increase maize yields and P use efficiency with Ca and micronutrient additions to mineral 

fertiliser treatments especially on degraded sandy soils compared with manure treatments. 

Potassium (K) was not included in the fertiliser treatments which in retrospect was an 

oversight in the design. From the sixth season, the treatments were: 

i. Control (no amendment added) 

ii. 100 kg N ha-1 

iii. 100 kg N ha-1 + 10 kg P ha-1 (i.e. 5 tons manure ha-1) 

iv. 100 kg N ha-1 + 30 kg P ha-1 (i.e. 15 tons manure ha-1) 

v. 100 kg N ha-1 + 50 kg P ha-1 (i.e. 25 tons manure ha-1) 

vi. 100 kg N ha-1 + 10 kg P ha-1  + 20 kg Ca ha-1 + 5 kg Zn ha-1 + 10 kg Mn ha-1 
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vii. 100 kg N ha-1 + 30 kg P ha-1  + 20 kg Ca ha-1 + 5 kg Zn ha-1 + 10 kg Mn ha-1 

viii. 100 kg N ha-1 + 50 kg P ha-1 + 20 kg Ca ha-1 + 5 kg Zn ha-1 + 10 kg Mn ha-1 

ix. 100 kg N ha-1 + 500 kg lime ha-1 

Aerobically composted solid cattle manure was applied annually on a dry-weight basis. 

Manure was dug and heaped without cover for two months before application to the fields, 

mimicking local management. To reduce variability, cattle manure was collected from the 

same farm every year and contained 20% C, 1.1% N, 0.18% P, 0.20% Ca, 0.08% Mg, 0.64% 

K, 800 mg kg-1 Fe, 22 mg kg-1 Cu, 280 mg kg-1 Mn, 112 mg kg-1 Zn (Zingore et al., 2008). 

Manure was spread evenly on the surface covering the whole plot and incorporated (0-10 cm) 

into the soil using hand hoes before planting. Basal and top-dressing fertiliser was spot-

applied at each planting hill. Ammonium nitrate fertiliser was applied as top-dressing in two 

50 kg N ha-1 amounts at three and six weeks after crop emergence in all plots except the 

control. A medium maturity, drought tolerant hybrid maize variety SC525 was planted at a 

spacing of 90 cm between rows and 25 cm within the row to give a plant population of 44444 

plants ha-1. All plots were weeded manually four times during each season.  
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Fig. 4.1. (a) Measured total seasonal (October-May) rainfall received during the experimental 

period in Murehwa, (b) seasonal rainfall distribution in the last three seasons standardised by 

days after planting 
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4.2.3 Soil and manure sampling and analysis  

In 2002 (baseline) and in 2011 (after nine seasons), soil samples were taken from the 

experimental fields using an auger (0-20 cm depth), air-dried and, sieved prior to analysis. 

Total C and N in soil and manure were analysed through dry combustion using a 

carbon/hydrogen/nitrogen analyzer (Leco-CNS2000). Available P was measured by the Olsen 

method (Olsen et al., 1954). Soil pH was measured with a digital pH metre in a 1:2.5 (w/v) 

soil: deionised water suspension, Ca and Mg were determined by atomic absorption 

spectroscopy and K by flame photometry after extraction in ammonium acetate, and cation 

exchange capacity (CEC) by the ammonium acetate method as described by Anderson and 

Ingram (1993).  

 

4.2.4 Rainfall infiltration measurement  

Artificial rainfall was generated by a portable rainfall simulator based on single full cone 

nozzle principle and calibrated following the procedure of Panini et al. (1993) and 

Nyamadzawo et al. (2003). Simulated rainfall with intensity of 35 mm h-1 was supplied from 

a height of 5 m on a surface area of 2.25 m2 (1.5 m × 1.5 m). Uniformity of size and 

distribution of raindrops was achieved at this rainfall intensity. Measurements were taken 

from the central 1 m2 confined using metal sheets leaving a single outlet leading into a small 

gutter where runoff was collected. The nozzle was checked and adjusted; three rain gauges 

were installed in the wetted buffer area to check the uniformity of rainfall distribution. Water 

for the simulation experiment was collected from the communal borehole closest to the 

experimental field. The rainfall simulations were carried out in October 2009 under dry 

conditions (less than 5% soil moisture); simulations continued until steady state runoff was 

attained on the clay soils. On the sandy soils, rainfall simulations continued for more than 5 

hours because it was not possible to reach steady state infiltration. Infiltration was estimated 
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by calculating the difference between applied rain and runoff. The irregular infiltration 

patterns in sandy soils meant the data could not be modelled. A sigmoidal decay curve 

characterized by a lag-phase of decrease of initial infiltration was used to describe the clay 

soil infiltration data. The model had four parameters:  where ii is initial 

infiltration rate, if is final infiltration rate,  , K is the infiltration rate decay 

coefficient.  

 

4.2.5 Crop yield measurement 

Maize was harvested after physiological maturity; yield was estimated from a net plot of 5.4 

m2 (2.7 m × 2 m) in the centre of the plot to avoid border effects. Grain was shelled from the 

cob by hand and separated from stover (leaves stalk and core).  Grain weight was measured 

using a digital scale, and moisture content taken immediately to correct yields to 12.5% 

moisture. Stover sub-samples were dried in the oven at 70 ºC until constant mass to convert 

fresh stover yields measured in the field to dry matter. 

 

4.2.6 Manure collection estimates 

An on-farm survey was carried out in September 2011 to estimate the amount of manure that 

households (who owned cattle) collected from their kraal in Manjonjo village. We also 

estimated the manure application rates for the various plots to which manure was applied. 

Twenty five farmers were interviewed, a specific question was asked on the number of carts 

collected from the kraal per farm. The mass of manure contained in a local standard cart (1 

m3) was measured using a digital scale. Total amount of manure collected was obtained by 

multiplying the number of carts collected by the standard mass of manure in a cart per farm. 
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Sub-samples of manure were collected, oven dried and moisture content used to express 

manure on a dry weight basis.  

A boundary line was fitted to establish the relationship between amount of manure collected 

and number of cattle owned per farm. Boundary lines were fitted through boundary points 

that corresponded to the largest manure quantity (y) at each value of the number of cattle (x) 

using the model:  The most suitable boundary line model was obtained by 

minimizing the root mean squared error (RMSE) between the fitted boundary line and the 

boundary points using the Solver function in MS Excel. 

 

4.2.7 Statistical analysis 

The generalized linear mixed model (GLMM) in GenStat 14th Edition (VSN, 2011) was used 

to test the effects of nutrient management treatment, soil and field type, season and their 

interaction on crop yield. Maize grain yields data were tested for normality and found to be 

normally distributed using the Shapiro-Wilk W test (Shapiro and Wilk, 1965). Three models 

were used in the analyses: Model 1 (combined model) was used to describe maize yield 

across both clay and sandy soils, Model 2 (clay soil) to describe maize yield under clay soil 

and Model 3 (sandy soil) to describe maize yield under sandy soils. Model 1 aimed at testing 

the general effect of the factor ‘soil type’ on maize yields. In Model 2 and Model 3, the effect 

of ‘nutrient management’ and ‘field type’ was further specified for the two soil types in order 

to test their specific effects on maize yield. In the analysis, nutrient management treatments, 

soil and field type were considered fixed factors while season was considered a random 

factor. Nutrient management, soil and field types were considered fixed factors because these 

were specifically determined and their effects on yield were of major interest. The fixed 

effects were tested by sequentially adding terms to the fixed model. Season was considered a 

random factor due to the fact that the effect of season under rainfed conditions is nested in the 
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interaction of amount × distribution of rainfall, and cannot be determined experimentally. It is 

also unlikely that the duration of the experiment covered all the possible combinations of 

amount × distribution of rainfall. The major interest on the seasonal effect was also on the 

variation among them rather than the specific effects of each on crop yield in each treatment. 

A multiple correlation analysis was performed to understand the relationship between maize 

grain yield and other measured variables such as bulk density, SOC and rainfall infiltration 

using data from the 2009/2010 season. 
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Table 4.2. Output of the GLMM procedures for explaining variability of maize grain yields in 
the long-term trial in Murehwa (2002–2011). Model 1 (combined model) was used to test the 
general effect of the factor ‘soil type’ on maize yields. The effect of ‘nutrient management’ 
and ‘field type’ was further specified for the two soil types in order to test their specific 
effects on maize yield in Models 2 (clay soil) and 3 (sandy soil).   
   Model DF F Value Pr > F

COMBINED MODEL    231 10.41  <.0001

     season 6 35.32 <.0001

     soil 1 426.27 <.0001

     field 1 298.06 <.0001

     treatment 8 95.03 <.0001

     field*treatment 8 3.54 0.0006

     soil*treatment 8 6.42 <.0001

     season*treatment 43 3.96 <.0001

     soil*field 1 2.22 0.137

     soil*field*treatment 8 0.78 0.6165

     season* soil*field*treatment 147 1.67 <.0001

CLAY SOIL 115 7.43 <.0001

   season 6 21.32 <.0001

   field 1 90.02 <.0001

   treatment 8 47.62 <.0001

   field*treatment 8 1.46 0.172

   season*field*treatment 92 2 <.0001

SANDY SOIL 115 11.12 <.0001

   season 6 19.43 <.0001

   field 1 294.46 <.0001

   treatment 8 59.84 <.0001

   field*treatment 8 3.88 0.0003

   season* field*treatment 92 2.29 <.0001

 

4.3. Results 

4.3.1 Experimental factors on maize grain yield 

Total seasonal rainfall did not vary strongly among the seasons with the 2005/06 season 

recording the least rainfall (Fig. 4.1a). However, intra-seasonal rainfall distribution varied 

strongly (Fig.4.1b); there were large differences in rainfall received during the critical grain 

filling stage, ca. day 80 after planting. Treatment (nutrient management), soil type, field type 
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and season all had significant (P<0.0001) effects on crop grain yield (Table 4.2). The 

interaction of all the four factors was also significant on crop grain yield. Analysis of residual 

variances showed that soil type had the strongest (F = 426) effect on yield followed by field 

type and nutrient management, and lastly season (Model 1). Under each soil type (Models 2 

and 3), field type, cropping season and nutrient management were significant on crop grain 

yield (P<0.001). On sandy soils (Model 3), field type had a stronger effect on crop yield than 

on clay soils. As a result, the interactions between field type and nutrient management were 

weak on clay soils (P=0.172) and stronger in sandy soils (P=0.0003) (Table 4.2). The strong 

effects of field type on grain yield suggest that targeting of nutrients to homefields and 

outfields is important for efficient use of limited nutrient resources at the farm-scale. 

A multiple correlation analysis between maize grain yield, soil bulk density, SOC measured 

in the 8th season and final water infiltration rate showed that maize grain yield was strongly 

(P<0.05) correlated with SOC and negatively correlated with soil bulk density (Table 4.3). 

Final infiltration was positively correlated to SOC but negatively correlated with soil bulk 

density.  

Table 4.3. Correlations between maize grain yield and other measured parameters using data 
obtained in 2009/2010 season. 
Variable by variable Correlation Significance

Bulk density Grain yield -0.3881 0.3421

SOC Grain yield 0.9079 0.0018

SOC Bulk density -0.5921 0.122

Infiltration Grain yield 0.155 0.714

Infiltration Bulk density -0.845 0.0083

Infiltration SOC 0.4843 0.2239
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4.3.2 Short term (≤ 3 years) maize grain yields  

On the sandy soils, the effects of nutrient management strategies in the first season on maize 

grain yield were apparent in the homefield but not in the outfield (Fig. 4.2a &4.2b). The 

smallest (<0.1 t ha-1) yields on control plots for the first three seasons were observed on the 

outfield sandy soil (Fig. 4.2a).  Application of manure had a cumulative effect on crop yield; 

application of 100 kg N + 25 t ha-1 manure in the sandy outfield increased yield from 0.5 t ha-

1 in the first season to 2.7 t ha-1 in the third season. In the sandy homefield, the largest yield 

was 4.4 t ha-1 obtained with 100 kg N + 25 t ha-1 manure but decreased to 3.4 t ha-1 in the 

third season although it was still the largest yield among all the treatments (Fig. 4.2b). In the 

third season, application of 100 kg N ha-1alone did not increase crop yield significantly in 

both outfield and homefield sandy soils. In most cases, the yields of NP fertiliser treatments 

were in between the yields of 100 kg N and 100 kg N + manure treatments. 
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(a) sandy outfield
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100 kg N + 15 tons manure ha-1(i.e. 30 kg P ha-1)
100 kg N + 5 tons manure ha-1 (i.e. 10 kg P ha-1)
100 kg N + 10 kg P (SSP) + 20 kg Ca + 5 kg Zn + 10 kg Mn ha-1

100 kg N + 30 kg P (SSP) + 20 kg Ca + 5 kg Zn + 10 kg Mn ha-1

100 kg N + 50 kg P (SSP) + 20 kg Ca + 5 kg Zn + 10 kg Mn ha-1

100 kg N + 25 tons manure ha-1 (i.e. 50 kg P ha-1)
100 kg N + 500 kg lime ha-1

 
Fig. 4.2. Nutrient management strategies and seasonal maize grain yield trends in (a) sandy 
outfield, (b) sandy homefield, (c) clay outfield and, (d) clay homefield in Murehwa. 
Treatments receiving mineral fertilisers only (AN and SSP) were modified in the 6th season 
(2006/2007) to include Ca, Mn and Zn. Error bars are the standard error of differences 
(treatment × season) 
 



Chapter	4	–	Pushing	the	envelope	
 

  
 

                                                                         101 
 

On the clay soils, there were no significant yield differences between control and application 

of 100 kg N ha-1 in the first three seasons on both field types (Fig. 4.2c &4.2d). In general, in 

the first year, control yields in the clay outfields were less than half those in the clay 

homefields (Fig. 4.2c & 4.2d). The largest control yield of 2.1 t ha-1 was recorded in the first 

season in the homefield but decreased in the two successive seasons. The yield of the control 

on the outfield was 0.8 t ha-1 in the first season and did not change significantly in the second 

and third seasons. The largest yield (4.3 t ha-1) in the first three seasons on the clay outfield 

was obtained with 100 kg N + 25 t ha-1 manure in the second season, however, yield declined 

after the second season, as for all treatments. In the first season, yields attained with manure 

were less than with N+P fertiliser, but by the third season yields attained with manure were 

larger than with N+P fertiliser in the clay homefield. On the clay outfield, yields from manure 

treatments were consistently greater than from N and P treatments. 

 

4.3.3 Long term maize (> 3 years) grain yields 

After the third season, significant yield benefits were recorded in treatments that combined 

fertiliser and manure, and showed incremental benefits in successive seasons (Fig. 4.2).  The 

largest yields for the experimental period were recorded in the eighth season (a season that 

had good rainfall distribution); on the homefield sandy soils application of 100 kg N + 25 t 

ha-1 of manure resulted in the largest grain yield of 7.6 t ha-1 for the experimental period. The 

corresponding treatment in the outfield sandy soils yielded only 3.4 t ha-1 and was not 

significantly different from the application of 100 kg N + 15 t ha-1of manure in all seasons. 

The largest yield in the clay outfield was obtained with application of 100 kg N + 25 t ha-1 

manure; top yields were 6.1 t ha-1 for the outfield and 9.3 t ha-1 for the homefield. The largest 

yield of 6.1 t ha-1 in the outfield in the 8th season obtained with the application of 25 t ha-1 
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manure, was the same as yield obtained in the homefield with the application of 100 kg N ha-

1 + 50 kg P ha-1 + 20 kg Ca ha-1 + 5 kg Zn ha-1 + 10 kg Mn ha-1. In the ninth season, maize 

grain yields were smaller relative to the eighth season, however, manure based treatments out 

yielded the fertiliser-based treatments on all fields. The ninth season received less rainfall 

than the eighth season.  

4.3.4 Comparison of initial and final seasons 

In the sandy outfield maize grain yield declined by 50% from 0.2 t ha-1 in the first season to 

0.1 t ha-1 (Fig. 4.3a) in the final season. In the sandy homefield, a loss of 0.4 t ha-1 between 

the first and final season due to lack of inputs was significant (Fig. 4.3b). In the clay 

outfields, the yield decline due to lack of inputs was small compared with the other three 

fields (Fig.4.3c). In the clay homefield, lack of nutrients reduced yield significantly from 2.1 t 

ha-1 in the first season to 0.7 t ha-1 in the final season (Fig. 3d). On clay soils, in both field 

types, long-term application of 100 kg N ha-1 maintained yields around 2 t ha-1. In sandy 

soils, long-term application of 100 kg N ha-1 maintained yields below 1 t ha-1 and approached 

zero in sandy outfields.  

Additions of Ca and micronutrients increased yield in the long term in the outfields for both 

sandy and clay soils (Fig. 4a & 4c) compared with the first season. However, the opposite 

results were recorded in the corresponding homefields, yields declined in the final season 

with respect to the first (Fig. 4b & 4d). The restoration of crop productivity in the degraded 

sandy soils was only relevant when a combination of mineral fertiliser and manure were used 

(Fig. 4.3). In the final season, maize grain yields with N + manure application in the outfields 

were comparable to yield with the equivalent P fertiliser treatment the homefields. The 

difference in yield between mineral fertilisers, and a mixture of N fertiliser and manure was 

largest in the sandy outfields (Fig. 4.3). Yields of corresponding nutrient management 
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treatments on outfields were significantly smaller than on homefields after nine seasons for 

both soil types.   

 

Fig. 4.3. Maize grain yield gaps in (a) sandy outfield, (b) sandy homefield, (c) clay outfield, 

and (d) clay homefield under different nutrient management strategies at the start (2002) and 

end (2011) of the experiment in Murehwa. NPCaSZnMn refer to the treatments which 

received N, P, Ca, S, Zn and Mn in the form of inorganic fertiliser, error bars are the standard 

error of mean.
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4.3.5 Comparative yield advantage of manure 

On the sandy soils, manure treatments often yielded better than the equivalent mineral 

fertiliser treatments, even with Ca and micronutrients (from the sixth season onwards), for the 

entire experimental period (Fig.4.4a & 4.4b). The superiority of manure treatments was 

especially apparent in the long-term. On the clay soils the trend was different to that obtained 

on the sandy soils (Fig. 4.4c & 4.4d). On the homefield clay soils yields from treatments with 

application of manure were not significantly different from those from treatments with the 

equivalent mineral fertiliser treatments in the first three seasons.  Application of 100 kg N + 5 

t ha-1 manure resulted in similar grain yields as those from the treatments with the mineral 

fertiliser equivalent (10 kg P ha-1) for the whole experimental period, whilst the larger 

manure applications showed larger yields than the equivalent P fertiliser treatments in the 

eight and nine seasons. In the clay outfields, yields from manure treatments were superior to 

those from the equivalent mineral P fertiliser treatments but the magnitude of the difference 

was fairly constant during the experimental period.  
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Fig. 4.4. Seasonal effect on maize grain yield differences between manure (M) and fertiliser 

(F) treatments at equivalent amount of phosphorus application in (a) sandy outfield, (b) sandy 

homefield, (c) clay outfield, (d) clay homefield in Murehwa, dotted line is line of no yield 

difference.
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4.3.6 Maize response to incremental manure and P applications 

Maize grain yield generally increased with increased amounts of manure and P applied. In the 

sandy outfield, response to manure application was poor in the first season; maize yield of 0.3 

t ha-1 without manure application was only increased to 1.0 t ha-1 with application of 15 t 

manure ha-1
, and was 0.5 t ha-1 with application of 25 t manure ha-1 (Fig. 4.5a). Response in 

the homefield was significant; in the first season, application of 5 t manure ha-1 doubled 

maize grain yield compared with where manure was not applied. Manure applications beyond 

5 t ha-1 did not result in significant yield increase in either the initial or final season on 

outfield sandy soils. On clay soils, maize grain yield increased significantly with increasing 

manure application up to 15 t ha-1 manure, beyond which yield declined (Fig. 4.5b). 

Application of 5 t ha-1 manure on clay homefield depressed yields in the first seasons relative 

to 100 kg N ha-1 only. Generally maize grain yield response to incremental additions of 

manure in the final season was superior to the response in the first season.  
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Fig. 4.5. Maize grain yield response to increasing manure application rates (a) in sandy and 
(b) clay soil, maize grain yield response to increasing P application rates in (c) sandy soil and 
(d) clay soil in the first and final season as affected by field type in Murehwa. Error bars are 
the standard error of differences (s.e.d). 
 

Maize grain yield responses to incremental additions of P fertiliser were similar to the pattern 

observed with incremental manure additions (Fig. 4.5c & 4.5d). The application of 30 kg P 

ha-1 fertiliser seemed to be the maximum amount of P required to achieve the largest maize 

grain yield on both clay and sandy soils, field types and first and final season. For example, 
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application of 30 kg P ha-1 increased yield from 2.9 t ha-1 to 6.2 t ha-1, but declined to 4.7 t ha-

1 in the clay homefield in the first season. Surprisingly, yield response to P application was 

poor in the final season compared with the first season in both sandy and clay homefields. 

4.3.7  Comparison of initial and final soil fertility statuses 

Compared with the initial values, most soil properties changed during the experimental 

period widening the gap between the soil fertility statuses of the fields and soil types than 

closing them. Long-term application of manure increased the N concentration in the soils 

although the changes were not significant relative to the initial status and also to the control 

treatment across the four fields (Table 4.1). The pH results were rather inconsistent, pH was 

larger than the initial years across all treatments although treatment differences were not 

significant. Available P increased significantly with the application of 100 kg N + 25 t ha-1 

manure on both soils in all field types while it decreased or remained unchanged in the 

control and the 100 kg N ha-1 treatment. The largest increase in P with application of 100 kg 

N + 25 t ha-1 manure was observed in the outfields, P increased from 3.9 to 10.8 and 2.4 to 

9.0 mg kg-1 for sandy outfield and clay outfield respectively. Cation exchange capacity 

increased significantly in sandy soils but increases in clay soils were not significant. Manure 

application also led to significant increases in base cations and base saturation.  

The change in SOC concentration in the soil (0-20 cm) over time was proportional to the 

amount of C added in manure. SOC increased significantly with the application of 100 kg N 

+ 25 t ha-1 manure on both soils in all field types while it decreased or remained unchanged in 

the control and the 100 kg N ha-1 treatment (Table 4.1). At the end of the experiment, the 

treatment with the lowest application of manure (100 kg N ha-1 + 5 t manure ha-1) in 

combination with 100 kg N ha-1 resulted in an increase in SOC from 0.5% to 0.8% in sandy 

homefield, 0.3% to 0.5% in sandy outfield, from 1.4% to 1.53% in clay homefield, and from 
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0.8 to 0.82% in clay outfield. The largest manure application of  100 kg N + 25 t ha-1 

increased SOC from 0.50%  to 0.86% in sandy homefield, 0.30 to 0.49% in sandy outfield, 

1.40% to 1.84% in clay homefields and 0.8% to 0.97% in clay outfield (Table 4.1). 

 

4.3.8 Effect of manure application on rainfall infiltration 

Water infiltration was difficult to determine on the sandy soils due to excessive drainage and 

suspected water repellence (Fig. 4.6a). On the outfield sandy soils, application of 100 kg N + 

25 t ha-1 manure significantly increased time to run-off from 89 minutes (control) to 210 

minutes. In the homefield, there was no difference in time to run-off as well as the infiltration 

patterns between control and application of 100 kg N + 25 t ha-1 manure (Fig. 4.6a). The 

simulations continued for five hours, final infiltration was very small (5 mm hr-1) and there 

was no difference in final infiltration between treatments and between fields. 

Application of 100 kg N + 25 t ha-1 manure on the homefield clay soils led to a final 

infiltration of 31 mm hr-1 after 3 hours compared with 27 mm hr-1 for the control. On the 

outfield clay soils with application of 100 kg N + 25 t ha-1 manure, runoff started after 48 

minutes and final infiltration was 29 mm hr-1 after 2.5 hours (Fig. 4.6b). The difference in 

infiltration between clay field types was larger for the control treatments but smaller with 

application of 100 kg N + 25 t ha-1 manure.  

The irregular infiltration patterns in sandy soils meant the data could not be modelled.  On 

clay soils, the reduction in infiltration rate was not instantaneous resulting in a sigmoidal 

decay curve (Fig. 4.6b).  
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Fig.4.6. Rainfall infiltration in a sandy soil (a) and clay soil (b) as affected field type and 
manure application in Murehwa. Degradation caused by previous management diminishes at 
larger organic inputs (hi) and worsen without organic inputs (li). The sigmoidal model with 

four parameters:  where ii is initial infiltration rate, if is final infiltration 

rate,  , K is the infiltration rate decay coefficient was used to describe 
infiltration in clay soils. 
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4.3.9 Farm-level feasible manure quantities 

In Manjonjo village, only 38% of farmers owned cattle. Cattle numbers ranged from one to 

13 with an average of five per farm for the farmers who owned cattle. Cattle ownership was a 

major determinant of manure availability. The upper boundary line of the relationship 

between the amount of manure measured and number of cattle owned per farm was 

linear:  (Fig. 4.7a). Results suggest that 

at least six heads of cattle were required to achieve the minimum application of 5 t ha-1 used 

in the experiment if the target on the farm is a hectare each year. The lower boundary line 

showed that the amount of manure collected under poor management is sometimes very small 

despite relatively large cattle numbers. Thus the amount of manure available per farm varied 

across households even with the same number of cattle. Beyond cattle ownership, manure 

application rates varied greatly between fields mainly due to management decisions and 

availability of mineral fertilisers. A greater proportion of the cultivated land in the village 

was subdivided into plots of sizes of between 0.1 and 0.5 ha (Fig. 4.7b). It was estimated that 

on average 30% of the cultivated plots of cattle owners received manure every season at an 

average application rate of 4.1 t ha-1 with a range of 0.4 - 17.5 t ha-1 (Fig. 4.7b). The 

application rates achieved by farmers suggest that the yield improvements we have reported 

especially related to effects of 5 t ha-1 manure are possible on some fields for farmers who 

own cattle.  
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Fig. 4.7. (a) The relation between livestock ownership and manure collected from the kraal, 
(b) variations in cultivated field sizes and manure application rates, only for fields where 
manure was applied in Manjonjo village, Murehwa.   

 

4.4. Discussion 

4.4.1 Management and biophysical factors 

The variability in fertility status of fields due to previous management and its effects on crop 

productivity were apparent on both clay and sandy soils. Cropping season, nutrient 

management strategies and their combinations also had significant effects on maize grain 

yield (Table. 4.2). The variability in total rainfall between seasons was small (Fig. 4.1), which 

suggested that the effect of season on crop yield could have been due to differences in intra-

seasonal rainfall distribution. Rainfall in the study region is often poorly distributed over the 

season with periods of both low and high rainfall which result in yield fluctuations across 

seasons (Challinor et al., 2007). The yield data reported here were recorded in trials that were 
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generally well managed, planting was with the first effective rains each season, plots were 

kept weed free and fertilisers were applied at the right time. Nitrogen fertiliser was split 

applied to avoid losses and improve nutrient use efficiency which is critical especially in the 

sandy soils characterised by rapid drainage. 

Crop productivity differed strongly between soil types as expected because the sandy soils 

had very low nutrients and organic matter content compared with clay soils that were 

inherently more fertile (Table 1; Nyamapfene, 1991). On the other hand, soil fertility 

gradients (homefields vs. outfields) are known to influence the response of crops to added 

nutrients (Vanlauwe et al., 2006; Zingore et al., 2007a); thus homefields had larger yields 

than outfields. The differences in crop responses were due to differences in soil organic 

matter, base cations and micronutrient inputs. In the long term, the history of management as 

well as the seasonal management and soil type were critical in determining yields agreeing 

with previous findings on short-term crop responses (Zingore et al., 2007b). 

 

4.2 Response of crop yields to manure versus fertiliser applications 

Although fertiliser is considered critical for sustainable crop production, the potential of 

fertiliser alone to restore soil fertility on the depleted sandy soils was very poor. The delayed 

response to nutrients often act as disincentive to smallholder farmers because the building of 

soil fertility takes much more time than is required to deplete it (Tittonell et al., 2012). The 

delayed increase in crop yields was more pronounced on the outfield sandy soils due to a 

combination of previous inadequate nutrient management and inherent infertility. The four 

field types we studied clearly followed different pathways in rebuilding soil fertility as shown 

by the maize grain yield. It appeared possible to restore soil fertility for the red clay soils in a 

reasonably short time while it requires much more time to recover degraded sandy soils.  
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Our results showed the importance of supplementary manure addition on crop productivity, 

especially on the degraded and non-responsive sandy soils; the core of integrated soil fertility 

management (Vanlauwe et al., 2010). There was an increase over time in the yield difference 

between mineral, and combined organic and mineral nutrient management strategies. The 

long-term relative yield increases of combining manure with mineral fertiliser were much 

greater on the more degraded outfield sandy soils than fertiliser alone. Results agree with 

Chivenge (2011) who observed after a meta-analysis a significant yield increases when 

fertiliser was used in combination with organic matter. Crop yields with manure treatments 

were always larger than with mineral fertiliser at equivalent P application rate in sandy soils 

(Fig. 4.5). This could have been due to potassium (K) deficiencies. Potassium availability 

was especially poor in the sandy soils (Table 1) but was not included in the treatments; 

deficiency of K often leads to slow growth and lower yields due to poor water use efficiency 

and poor N uptake (Leigh and Jones, 1984; Ashley et al., 2006). Results suggest that manure 

was superior to mineral fertiliser due to increase in soil organic carbon and possibly the 

supply of K, Mg and micronutrients. The high permeability of sandy soils suggests that there 

was also a risk of nutrient leaching resulting in small crop yields (Nyamangara et al., 2003; 

Dempster et al., 2012).  Manure allows synchrony between nutrient release and crop uptake 

in sandy soils of excessive drainage (Murwira and Kirchmann, 1993). The value of manure in 

conjunction with mineral fertiliser on sandy soils in Zimbabwe has also been noted by other 

authors (Mugwira, 1984, 1985; Mugwira and Shumba, 1986). 

Maize grain yield response to incremental manure inputs was characterised by an exponential 

rise to the maximum when the amount of manure approached sufficiency for both first and 

final year yields. Maximum yield was observed to occur at manure application rates of 15 t 

ha-1 yr-1. These results were similar to those reported by Nyamangara et al. (2003) who 

observed that annual application of 12.5 t ha-1 of manure in combination with 60 kg N ha-1 
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was the best strategy to ensure large crop yields and small leaching risk on sandy soils. On 

very sandy soils such as those we studied, the first and last increments of fertiliser inputs 

were often poorly utilized for increasing growth leading to a sigmoidal response pattern (cf. 

Mathews and Hopkins, 1999).  

4.3 Soil organic carbon 

Soil organic carbon increased in plots that received manure and was proportional to C input. 

SOC increases were greater in the clay soil than in the sandy soil. Soil with high clay content 

has a higher SOC stabilisation rate than soils with low clay content (Zhang et al., 2010). In 

soils of high clay content, SOC is protected from decomposition through macro- and micro-

aggregation and physicochemical binding with silt and clay particles (Six et al., 2002). In 

general, soil organic matter increases are therefore primarily related to amount of C input in 

sandy soils and to soil disturbance in clay soils  (Chivenge et al., 2007). In a review of long-

term experiments, Edmeades (2003) found that manure led to stronger increases in organic 

matter than inorganic fertiliser application.  

We observed a high correlation (r = 0.91, Table 4.3) between SOC and maize grain yield i.e. 

plots with large SOC had the largest maize yields especially in the long term. Soil organic 

carbon increases crop yield by increasing available soil water capacity in sandy soils, 

improving supply of nutrients and by enhancing soil structure and other physical properties 

(Lal, 2006). We conclude that in mixed crop-livestock systems where crop residues are not 

retained in situ, routine manure application provides one of the most locally adapted 

pathways to restoring soil organic matter and consequently soil fertility. 
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4.4 Rainfall infiltration  

Water infiltration was significantly greater on clay soils than on sandy soils. Differences can 

mainly be attributed to the structural characteristics of the soils in each field. Time to pond 

and run-off was shorter on clay than on sandy soils; larger pores in sandy soils allowed water 

to drain easily. The irregular infiltration pattern on the sandy soil appeared to suggest 

preferential flow and the rapid drainage characteristics of the soil meant that the soil 

continuum was not uniformly wet and thus was characterised by uneven water infiltration 

(Ritsema et al., 1993). The sudden decrease in infiltration on sandy soils could have been 

caused by some entrapped air which would lower the hydraulic conductivity (Wang et al., 

1998), and repellence in the sandy soils (Dekker and Ritsema, 1994). Water repellence is the 

retardation of surface water infiltration due to the hydrophobicity of organic matter in sandy 

soils (Brandt, 1969). Low pH which is characteristic of the sandy soils of our study sites has 

been found to increase soil water repellence (Woche et al., 2005). The water supply at a rate 

of 35 mm hr-1 coupled with the initial dry conditions (less that 5% soil moisture) was not 

sufficient to cause immediate surface ponding and run-off. In the end, infiltration decreased 

substantially which could be a result of surface compaction caused by raindrop impact.  The 

lack of significant difference in final infiltration between homefields and outfields on sandy 

soils could have been due to the extremely high sand content of 85% and 87% respectively 

(Table 4.1). 

On clay soils, plots receiving manure had a larger steady state water infiltration rate showing 

the importance of organic matter inputs in improvement of soil physical properties (Chivenge 

et al., 2007; Dunjana et al., 2012). Organic matter is important for soil aggregate stability and 

good soil structure which improve water infiltration (Franzluebbers, 2002). The decrease in 

infiltration rate was more consistent on the clay soils than on sandy soils; the relatively high 
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SOC content and uniformity of pores ensured that steady-state infiltration could be 

established within a relatively short time from dry conditions. The significantly different 

infiltration rates between homefields and outfields in clay soils could have been due to 

differences in SOC. Nyamadzawo et al. (2003) observed that the amount of C in the top 0-5 

cm soil was the single largest determinant of variation in steady state infiltration rates, 

suggesting that soil C was an important factor in soil properties. Annual application and 

residual effects of manure have been observed to reduce runoff significantly by between 2 

and 62%; a strong relationship was observed between amount of manure application and run-

off (Gilley and Risse, 2000).  

The correlation coefficient between maize yield and water infiltration was small (r = 0.15, 

Table 4.3) mainly due to lack of significant difference in infiltration rates between plots on 

sandy soils yet large differences in grain yield. Large infiltration rates may also lead to small 

yields as they may lead to waterlogging especially on shallow soils and leaching of crop 

nutrients beyond the root zone. However, in this agro-ecological zone, large rainfall 

infiltration is desirable to store moisture in the soil and offset the negative effects of poor 

rainfall distribution on crop yields. 

4.5 Applicability and limitation of results 

We sought to explore the potential to recover degraded soils using cattle manure i.e. “pushing 

the envelope” - what options are available to facilitate innovations around manure use and go 

beyond current crop productivity. The results after 9 years of substantial (minimum 5 t 

manure yr-1) organic inputs did not show a breakthrough. The fertility of the outfields still 

could not be brought equal to the homefields (Table 4.1). In most cases, the initial soil 

fertility differences were maintained between fertile homefields and degraded outfields. 

Potassium concentration remained small and could have been limiting crop productivity in 
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the fertiliser treatments especially on the sandy soils. However, in the combination of manure 

and N treatments, sufficient K was applied through manure but yields remained much smaller 

on the outfields compared with homefields. The sandy soils were deeper (ca. 150 cm) than 

the clay soils (ca. 68 cm), and not susceptible to waterlogging, thus it appears that the failure 

to recover crop productivity was not linked to soil depth. The initial SOC in the sandy 

outfields may have been too small to achieve large yields: Kay and Angers (1999) suggested 

that irrespective of soil type, if SOC contents are below 1%, it may not be possible to achieve 

maximum yields. The SOC on sandy soils and clay outfields were below this value and maize 

grain yield and SOC were correlated (Table 3). However a comprehensive review of 

literature by Loveland and Webb (2003) suggested that a threshold SOC value for maximum 

crop production is elusive as it depends on management and other biophysical limitations 

such as rainfall and soil type.  

The clay soils maintained a larger potential for sustaining crop productivity than sandy soils. 

Considering the relevance of the results, the sandy soils are of great importance in the study 

site because they occupy approximately 75% of the land area. Moving from 1 t ha-1 of maize 

grain yield in the first year to 2.7 t ha-1 in the ninth season represented a 170% increase in 

crop productivity for the sandy outfield for the best performing treatment. However, 2.7 t ha-

1was significantly smaller than yields obtained in other fields e.g. 4.6 t ha-1 in the sandy 

homefield, 5.6 t ha-1 in the clay outfield or 7.3 t ha-1 in the clay homefield. Results suggest 

recovery of severely degraded sandy soils may be beyond the reach of the majority of 

smallholders who face resource constraints.  

Manure availability is the critical factor that determines how the results we reported here can 

be deployed by the majority of smallholder farmers in mixed crop-livestock systems (Rufino 

et al., 2011). In one of the villages of the study, about 38% of the farmers owned cattle, and 
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roughly 30% of the fields received manure every season. Cattle ownership is locally 

considered among farmers as an epitome of development thus the integration of crop and 

livestock is important to these farming systems. Roughly close to a tonne (0.94 tons) of 

manure per animal per year can be generated for recycling under current management (Fig. 

4.7a). Our estimates of manure collected per animal were similar to that reported by Scoones 

(1990), who obtained a relationship of 0.88 tons per animal per year. Cattle spend much of 

the time during the day in non-arable areas where excretion of more than half of the manure 

takes place reducing the amount of manure available (Rufino et al., 2011). The combination 

of manure availability and average farm size suggest that there is insufficient manure for all 

fields every season. Improved crop productivity with manure use will depend on how much 

mineral fertiliser individual farmers can access, and on farm and field specific management 

related to application rates and crop sequences. 

The central question remains: where can farmers’ best allocate manure on the farm, in 

outfields or homefields to maximize benefits?  Recommended figures of 10 tons ha-1 yr-1 

(Grant, 1981) are only possible on small areas of land. Farmers in our study site demarcated 

their fields into manageable plots of about 0.1- 0.5 ha (Fig. 4.7b) in which larger manure rates 

were applied every other year. On smaller plots, larger and more effective manure application 

rates are feasible (Zingore et al., 2008). Our results suggest that crop productivity was greater 

in the homefields than outfields after nine years of applying manure which shows a constraint 

to recovery of degraded soils. Farmers already target manure to fields close to the household 

to ensure food self-sufficiency (Mtambanengwe and Mapfumo, 2005; Zingore et al., 2007a). 

Thus the limited quantities of manure available can be targeted to small plots and not the 

whole farm to improve its effectiveness on crop productivity.  
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Beyond crop yields, we have seen that manure increased rainfall infiltration in clay soils and 

C sequestration. This aligns the paradigm of ecological intensification (Cassman, 1999), 

where  crop production systems need to go beyond increasing crop productivity to address 

undesirable environmental consequences. The integrated nature of most smallholder 

production systems (Thornton and Herrero, 2001), suggest that the results reported here are 

widely relevant to the majority of smallholder farming systems, and it is imperative to find 

locally adapted strategies to improve manure use. 

 

4.5 Conclusions 

Manure application in combination with mineral fertilisers resulted in larger yields on clay 

than on sandy soils both in the short and long term. The potential for soil fertility restoration 

was poor if only mineral fertilisers were added. Yields of the largest manure application in 

the outfields were comparable with yields with the largest fertiliser P application in the 

homefields. Yields on sandy outfields remained significantly smaller than on the other field 

types despite the substantial manure inputs. Our results suggest that at farm scale, manure is 

used more efficiently in the homefields. Increase SOC resulted in improved rainfall 

infiltration in the clay soils; the SOC increase in sandy soils did not increase infiltration. 

Application rates we used are feasible in Murehwa because farmers manage small (0.1-0.5 

ha) fields, but the amounts of manure available are insufficient for the area of cropland at 

village scale. We conclude that consistent application of manure in combination with mineral 

fertiliser improves crop productivity in both short and long term and is a sustainable locally 

adapted option for ecological intensification in mixed crop-livestock systems of smallholder 

farmers.
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                                                                         Chapter 5   
 
 
Crop residue use and trade-offs on smallholder crop-
livestock farms in southern Africa: implications for 
intensification 
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Abstract 

Decisions to use crop residues as soil cover for conservation agriculture create trade-offs for 

farmers who own cattle in crop-livestock systems. Trade-off analyses among soil C, crop and 

animal and crop productivity were analysed using NUANCES-FARMSIM (FArm-scale 

Resource Management SIMulator) model. The model simulates crop and livestock 

production including feedbacks between systems’ components by linking the sub-models 

FIELD (Field-scale Interactions, use Efficiencies and Long-Term soil fertility Development) 

and LIVSIM (livestock simulator). Manure decomposition, manure C and N dynamics were 

simulated using the HEAPSIM sub-model. Retention on topsoil the soil of 0, 25 50, 75 and 

100% of the maize stover yield produced per farm, and use of the remainder as animal feed in 

the dry season were compared. The impact of the crop residue allocations on crop and animal 

productivity as well as SOC dynamics over a 12 year period in Murehwa, Zimbabwe was 

quantified for two farm types. Retaining 100% maize residues in the field led to an annual 

loss of on average 68 kg body weight per animal and 93 kg body weight  for cattle on farms 

of the relatively wealthiest farmers (Resource Group 1) who had most land and cattle and 

RG2 respectively, and is therefore unsustainable for livestock production. The effect on crop 

yield was an increase in farm yield of 1.6 t farm-1 yr-1 and 0.7 t farm-1 yr-1 for RG1 and RG2 

respectively. Farmers who did not own cattle (RG3 and RG4) have a greater scope of 

retaining their crop residues if they invest in more labour to keep the residues during the dry 

season. Farmers in RG3 can obtain an extra 1 t farm-1 yr-1 of maize if they retain all residues 

and apply the same rate of fertiliser currently applied by RG1 farmers, whereas RG3 farmers 

will improve by 0.7 t farm-1 yr-1. However, improved crop productivity for RG3 and RG4 is 

limited by lack of access to fertiliser. We conclude that at current productivity, farmers who 

own cattle have limited scope to allocate crop residues for soil cover as it leads to significant 

loss in animal productivity and economic value. 
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5.1 Introduction 

Conservation agriculture (CA) based on crop residue retention in combination with minimum 

tillage and crop rotations or intercrops actively promoted in many parts of the tropics (cf. 

FAO, 2008) including southern Africa (Giller et al., 2009). Smallholder agriculture in 

southern Africa is often characterized by mixed crop-livestock systems (Thornton and 

Herrero, 2001) in which livestock traction for tillage and feeding of crop harvest residues to 

livestock are common practices (Lal, 1991; Erenstein, 2002; Rao and Hall, 2003). Livestock 

are an important source of food and income, and can be used as a kind of insurance with 

which food can be bought when crops fail to generate cash (Stroebel et al., 2008). In 

particular, cattle support crop production through the provision of draught power and manure, 

Cattle manure is important as fertiliser and in some instances, the only resource to sustain soil 

fertility (Murwira, 1995). These multiple roles suggest that the sustenance of livestock is 

critical for whole farm productivity. In this study, the costs and benefits of feeding livestock 

with crop harvest residues are assessed. 

It is doubtful whether smallholder farmers in general can produce sufficient crop residues to 

satisfy the dual objectives of improved crop production through CA and of sustained 

livestock production (Giller et al., 2009). Promotion of CA therefore could potentially reduce 

the amount of feed and threaten the integration of crop and livestock production on 

smallholder farms. Yet integration of crop and livestock production is considered to be a key 

pathway to improve productivity, efficiency and sustainability of smallholder agriculture 

(Bationo and Mokwunye, 2002; Franzluebbers, 2007; Rufino, 2008).  

For example in Zimbabwe, supplementary feed sources in the form of crop residues are 

needed to feed livestock during the dry season when the quality of the feed of the communal 

grazing areas is insufficient (de Leeuw, 1996). It is estimated that crop harvest residues 

(stover) in the dry savanna zones of Sub Saharan Africa contribute to between 40 and 60% of 
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the total dry matter intake of cattle during the dry season (Standford, 1989; de Leeuw, 1996). 

The use of crop residues as livestock feed combined with uncontrolled grazing during the dry 

season suggest that maintaining a permanent mulch of crop residues in the field throughout 

the year is not feasible. Thus the introduction of  CA  leads to trade-offs on cattle body 

weight and crop yield because of reduced feed intake in the dry season after allocating the 

crop residues for soil cover (Naudin et al., 2012). 

Competition for the available crop residues also exists across different farm types. Cattle-

owners have free access to the crop residues of non-cattle owners, thereby limiting the 

options available for carbon input into the soils of the latter. Denying access to crop residues 

by livestock would impact negatively on animal productivity and reduces the amount of 

manure available for crop fertilisation (Rufino et al., 2011).  

The poor crop productivity in combination with the importance attached to cattle intensifies 

the trade-offs for crop harvest residue uses but quantification of these trade-offs in terms of 

crop and livestock production is still lacking. The objective of this study was to quantify the 

farm level benefits related to the allocation of maize harvest crop residues for livestock feed 

or for soil fertility management. The farming system and cattle management at Murehwa, 

Zimbabwe was studied. In this farming community, ruminant production traditionally 

depends on natural pastures (Jingura et al., 2001) supplemented by crop harvest residues. Our 

hypotheses were that under the smallholder crop-livestock systems, non-livestock owners can 

rebuild soil fertility and crop productivity best by retaining crop residues in the fields, while 

livestock owners can derive the most benefits if they offer crop residues to livestock and use 

manure for soil fertility replenishment.  
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5.2 Materials and methods 

5.2.1 Study site 

Murehwa smallholder farming area is located about 80 km east of Harare and lies between 

17° and 18° S latitude, and 31° and 32° E longitude, at an altitude of about 1 300 m. The 

population density is about 104 people km-2. The climate is sub-humid with average annual 

rainfall of 750 mm distributed in a unimodal pattern between December and April. The soils 

are mostly granitic sandy soils (Lixisols) of poor fertility with infrequent intrusions of more 

fertile dolerite-derived clay soils (Luvisols) (Nyamapfene, 1991). The farming system is   a 

mixed crop-livestock system with maize (Zea mays L.) as the dominant staple crop, although 

some farmers do not own cattle. Other crops commonly cultivated include groundnut 

(Arachis hypogaea L.), sweet potato (Ipomoea batatas (L.) Lam.), sunflower (Helianthus 

annuus L.) and a variety of vegetables, mostly brassicas. Cattle are the main livestock and are 

grazed in a communal system where they graze freely in the rangeland during the day and are 

kept in kraals close to the homesteads at night. Cattle are important for traction, manure 

production, as well as for fulfilling other economic and social requirements. The communal 

grazing area is characterised by the natural miombo woodland of Julbernardia globiflora 

(Benth.) Troupin, Brachystegia boehmii Taub. and Brachystegia spiciformis Benth. trees 

(Mapaure, 2001). Grass species of the genus Hyparrhenia are predominant, and Andropogon, 

Digitaria and Heteropogon spp. are also common species. Sporobolus pyramidalis P. Beauv 

often dominates in the overgrazed areas and perennially wet areas of the veld.  In the dry 

season, most crop fields are used for cattle grazing, and cattle eat crop residues to 

complement the poor quality grazing that remains.  
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5.2.2 Farm diversity 

A total of 80 farmers were interviewed in Manjonjo village, Murehwa in August 2011. We 

aimed to interview all farmers in the village, but 6 farmers were absent at the time of the 

interviews. The interviews were conducted at the farmer’s homestead with the assistance of 

local extension officers to understand landholdings, crop types, typical crop rotations, 

fertiliser and manure inputs, tillage and crop residue management, and cattle management. 

Focus group discussions were conducted and the indicators of resource ownership were 

prioritised according to Zingore (2007a), and based on these, all farmers in the village were 

allocated to one of the previously identified four resource groups (RG1, RG2, RG3 and RG4, 

Table 5.1a). Socio-economic characteristics included family size, labour availability, months 

of food security, sources of income, proportion of off-farm income and production 

orientation. 

5.2.3 Modeling framework 

We used the NUANCES-FARMSIM model (van Wijk et al., 2009) to simulate and 

understand the trade-offs in the use of crop residues in relation to the biophysical conditions 

under which production takes place. The sub-model FIELD simulates crop production and 

the dynamics of C and nutrients in the soils, and LIVSIM simulates animal production and 

reproduction of the herd. The models are linked dynamically and management is described 

using decision rules (Rufino et al., 2011). Manure accumulation and C, N and P dynamics of 

manure were simulated using the HEAPSIM sub-model (Rufino et al., 2007). The total 

amounts of manure on the heap at the start of the season represented the manure input into 

the fields.  
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Table 5.1: (a) Characteristics of farm types and resource groups used in the model 
simulations classified according to the typology for the communal area of Murehwa, and (b) 
soil analysis of different field types belonging to the different farmer resource groups from 
Zingore et al., (2007a). 

(a) Farm characteristics 

Resource group Wealthier Medium-wealthier Medium-poor Poor 

  RG1 RG2 RG3 RG4 

Household size 7 5 6 5 

Proportion in the 
village (%) 

6 35 26 33 

Livestock owned ca. 10 cattle <10  cattle No  cattle No  cattle 

Farm size (ha) 2.2 1.6 1 0.7 

Homefield (ha) 1.2 0.8 0.6 0.4 

Outfield (ha) 1 0.8 0.4 0.3 

Cattle heads (#) 10 5 0 0 

Fertiliser use  

Fertiliser N per farm 
(kg) 

120 60 35 15 

Homefields (kg  N 
ha-1) 

67 50 33 20 

Outfields (kg  N ha-1) 40 25 38 0 

Fertiliser P (kg  P 
farm-1) 

17 10 4 1 

Homefields (kg  P 
ha-1) 

10 10 5 0 

Outfields (kg  P ha-1) 4 2 1 0 

Resource exchanges Hire labour and share 
draught power 

Do  not sell or hire 
labour, share draught 

power 

Sometimes sell 
labour or exchange it 

for draught power 

Sell  labour and/or 
exchange it for 
draught power 

Land holding (ha) >3 2-30 <2 <1 

Food self-sufficiency Self-sufficient, able to sell 
grain and vegetables 

Self-sufficient, able 
to sell grain and 

vegetables 

Purchase grain and 
sell vegetables 

Purchase food or 
receive food aid 

(b) Soil characteristics 

Field type Homefield Outfield Homefield Outfield Homefield Outfield Homefield Outfield 

Clay + silt (%) 12 15 9 8 13 15 12 14 

Bulk  density (kg  
dm-3) 

1.42 1.51 1.43 1.52 1.48 1.43 1.56 1.49 

SOC (g kg-1) 5.6 4.1 6 2.2 4 3.3 3.8 3 

TSN (g kg-1) 0.6 0.41 0.62 0.22 0.45 0.31 0.36 0.29 

CEC (cmolc kg-1) 4.5 1.5 3 2 3 2 2 3 

Ext.  P (mg kg-1) 8 4 9 4 4 3 5 3 

pH  (1:2.5 water)  5.2 4.7 5.4 4.2 5 4.1 4.7 3.9 
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5.2.4 Simulation of crop production and soil organic matter and nutrient dynamics 

Crop production is calculated as the product of resource availabilities and efficiencies 

(Tittonell et al., 2010a). FIELD calculates yields on a seasonal basis using resource 

interactions to predict light-determined, water- and nutrient-limited crop yields (N, P and K). 

Seasonal availability of soil nutrients is calculated following the QUEFTS approach (Smaling 

and Janssen, 1993) and soil organic matter dynamics with a 4-pool soil C model following 

first-order kinetics. The FIELD model was modified to incorporate soil texture effects on the 

rate of decomposition of the active soil organic matter pool, and also to the incorporate soil C 

saturation based on soil texture (Hassink, 1997). Detailed explanations of the model structure 

were provided by Tittonell et al. (2008; 2010a). 

The cropping system considered in the simulated scenarios was continuous maize production 

in line with current farmers’ practice. A 12 year rainfall dataset for the site was used to 

represent the climatic/rainfall variability in the simulations. Manure application was based on 

the manure production calculated by LIVSIM, taking into account losses due to manure 

partition between grazing areas and the kraal as well as manure decomposition and losses on 

the heap, storage and application, calculated by HEAPSIM. The manure applied to the fields 

was targeted to the homefields for RG1 and RG2 in line with current farmer practices. 

Homefields in Murehwa refer to fields close to the homestead which have historically 

received more nutrients than fields far away resulting in better soil fertility.  

The FIELD model was previously parameterized to simulate long-term changes in SOC in a 

chronosequence of land use in Zimbabwe as well as against long-term data on maize 

responses to manure, and N and P application in Murehwa (Zingore et al., 2011). A mulch of 

crop residues improves water use efficiency (WUE) by improving available moisture in drier 

periods through increased rainfall infiltration and reduced soil evaporation. WUE is the 
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product of water capture and conversion efficiency. The water capture efficiency was allowed 

to increase by 10%  with mulching (Wang et al., 2011) during the drier years, when rainfall 

was below the long-term average of 750 mm per season. The major assumption was that the 

impact of mulch is relevant to the water capture efficiency and not the water conversion 

efficiency. To simulate the effect of CA on crop yields, FIELD was parameterized against 

long-term maize yield data from a tillage and residue management experiment on a sandy soil 

at Domboshawa, Zimbabwe (Vogel, 1993; Nehanda, 2000). 

 

5.2.5 Simulation of livestock production 

The sub-model LIVSIM was used to simulate cattle production in time (Rufino et al., 2011). 

The LIVSIM model was parameterized and tested previously for the same location by Rufino 

et al. (2009; 2011). LIVSIM also simulates manure excreted. Livestock productivity of 

individual animals is determined by the genetic potential of the breed and the feed available. 

At herd level, decision rules for herd management such as weaning age, management of 

reproduction, lactation, and feeding groups are incorporated into the model. Reproduction is 

simulated stochastically using probabilities associated with bodyweight and age 

combinations. Maximum and minimum bodyweights are calculated by interpolation from the 

upper and lower estimated boundaries of animal growth (Rufino et al., 2011).  

The amount of feed from pastures available for livestock was based on total biomass 

estimations in the field (Dury, 2007). During the rainy season (from December, to May) the 

quantity of grass biomass available from rangelands was assumed to be non-limiting; only 

quality effects were taken into account for livestock productivity.  In the dry season (from 

June, to November) the quantity of pasture biomass was only a third of that available in the 

rainy season, and both quality and quantity of the grasses limited livestock productivity. 

Feeding with crop harvest residues is then an important option to maintain productivity. In 
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southern Africa, animals may lose up to 30% of their maximum summer body weight during 

the dry winter period without supplementary feeding (Van Niekerk, 1974). Feeding of 

concentrates was not considered in the analyses, following current farmers’ practices. Herd 

size was restricted to a maximum of 10 for RG1 and five for RG2. Only a maximum of one 

bull was allowed to remain in the herd and other bulls were sold when they reached an age of 

two years. The cows were allowed a maximum of five lactations before they were replaced. 

LIVSIM is a stochastic model whose outcomes differ with every run; the results presented are 

average model outcomes of 500 runs. LIVSIM was parameterised for the dominant cattle 

breed in the region, the Mashona. 

5.2.6 Trade off analyses: description of scenarios 

For RG1 and RG2 farmers, five different scenarios of crop residue retention for soil surface 

cover were analysed: 0, 25, 50, 75 or 100% of the total crop harvest residues left on the field, 

and the effect of these practices on crop yields and animal productivity were evaluated: The 

rest of the crop residues were used as livestock feed in the dry season. The 0% crop residue 

retention represented current farmer’s management where all crop residues are grazed by 

cattle.  The crop residues available per month per animal was calculated as the total maize 

stover harvested per farm divided by the product of number of cattle × months of dry season. 

In open grazing systems, significant quantities of manure are deposited in the grazing areas or 

in fields of other farmers, and manure that accumulates in the kraal decomposes, resulting in 

significant losses in manure, and relatively small quantities being available for application to 

the fields (Rufino et al., 2007). A manure collection efficiency of 40% was assumed for the 

proportion of the manure that is collected in the kraal. The manure on the heap (40% of total) 

is further reduced in quantity via decomposition which was simulated through HEAPSIM. 

Because management decisions such as changing the time spend in the kraal can affect the 

amount of manure that ends up in the kraal, we also performed a sensitivity analysis with 
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respectively higher and lower values (20 and 60%) for manure collection efficiencies of and 

the impact of these on crop productivity where quantified. With the above simulated 

scenarios, we assumed that cattle did not access crop residues from non-cattle farmers (RG3 

and RG4). For RG3 and RG4 farmers, two scenarios were analysed: 0 or 100% of crop 

harvest residues left on the field. On top of these, also two levels of fertilisation were 

assessed, a baseline fertilizer (Table 5.1) based on current practices of RG3 and RG4 farmers, 

and one fertilization rate as used by RG1 farmers, assuming under this scenario that RG3 and 

RG4 farmers could afford this amount of fertiliser.  

Besides farm types, we also used field types (homefields, outfields) to distinguish observed 

differences in soil fertility and responses to inputs. The field types used and their distribution 

over the farm types (Table 5.1) were based on detailed field classification over the resource 

groups reported previously by Zingore et al., (2007a). The field characteristics used in the 

simulations are summarised in Table 5.1b.  

5.2.7 Crop residues cover 

The amounts of crop residues corresponding to 0, 25, 50, 75 and 100% retention were 

assessed with respect to providing soil cover using the equation proposed by Gregory (1982). 

Percentage cover for randomly distributed flat residue elements is calculated as: 

( )1 exp mA Mcover    , where M is residue biomass (g), and Am is a cover coefficient (m2 kg-

1). The biomass-to-cover relationship reaches a plateau at high rates of biomass additions, so 

considerable residue decomposition may occur before cover decreases. The value of Am 

reported in literature can be as small as 0.114 to as large as 0.40 for decomposed and 

relatively undecomposed crop residues respectively (Gregory, 1982). We used the value of 

0.114 and 0.27 for Am to calculate the percentage cover of crop residues retained in the 
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scenarios for non-decomposed maize residues composed of stalks and leaves, and residues 

that underwent decomposition composed mainly of stalks; the leaves being decomposed. 

5.2.8 Farm economic returns and food supply 

A partial budget analysis was used at farm level to assess the expected gains or losses on 

farm income, food supply and energy balance, in relation to retaining various proportions of 

crop residues in the field. In the analysis both crop and animal production components were 

considered for RG1 and RG2 while only the crop production component was considered for 

RG3 and RG4 farmers. Costs for animal production included cattle herding as farmers often 

hire herd boys throughout the season. Other costs included vaccination or pest control often 

paid per month and livestock tax. Crop production costs were for fertilisers, maize seed, and 

external labour for carrying crop residues to the kraal and manure from the kraal and 

applying in the fields. The value of manure was estimated based on arrangements in the 

village where manure is exchanged for chemical fertiliser. Costs of inputs and producer 

prices of maize were collected from the relevant service suppliers. The energy and protein 

supply was estimated using the content of these in milk and maize. Milk energy values for the 

Mashona cattle used in the simulations were based on the values reported by Mandibaya et 

al.(2000). 

Data is presented and reported for individual years as well as means calculated from model 

outcomes over the 12-year period. The capacity of farm production to meet the dietary 

(energy and protein) needs was calculated based on the guidelines of the World Health 

Organisation (WHO and FAO, 1995). The protein and energy balance was calculated as the 

difference between the family needs and their production on a per capita basis in each 

resource group. 
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5.3. Results 

5.3.1 Maize productivity 

The initial effects of crop residues retention on simulated maize grain yields were small but 

by the 12th year the gap between the crop retention scenarios widened (Fig. 5.1). The effects 

of mulch were larger on the more fertile homefields than the outfields. The initial simulated 

maize productivity for the RG1 homefield was 2.7 t ha-1 and increased to 3.8 t ha-1 after 12 

years with 100% crop residue retention but declined to 2.1 t ha-1 without crop residue 

retention (Fig. 5.1a). Retaining 50% of the crop residues produced did not increase maize 

yields with respect to the initial year whereas 75% and 100% retention led to substantial 

increases. In the RG1 outfield, the simulated effect was smaller, retaining 0 and 25% crop 

residues did not change crop yields after 12 years but retention of 50, 75 and 100% led to 

yield gains of 0.14, 0.3 and 0.5 t ha-1 respectively (Fig. 5.1b).  In the RG2 homefield, all but 

100% crop residue retention led to loss in maize productivity in the final year compared to 

the first. Retaining 0, 25, 50 and 75% residues led to simulated yield reductions of 1.0, 0.7, 

0.4 and 0.2 t ha-1 respectively, while 100% had a marginal yield advantage of only 0.03 t ha-1 

(Fig. 5.1c). In the RG2 outfield, retaining 50% crop residues had a neutral effect on crop 

yields (Fig. 5.1d). Retaining 0 or 25% crop residues reduced simulated productivity by 0.03 t 

ha-1, 75% and 100% led to increases of 0.04 t ha-1 in each case. 
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Fig. 5.1. Simulated maize productivity in homefield and outfields of farmers in RG1 and RG2 
at different rates of crop residues retention, 0% CR corresponds to current practice of feeding 
all crop residues to livestock. Data points are the averages of the 500 simulation runs.  
 
According to the model simulations, farmers belonging to RG3 and RG4 harvested small 

yields that continued to decline at current management practices, especially for the 

homefields (Fig. 5.2a). Simulated maize grain yield in R3 homefield declined from 1.4 t ha-1 

to 1.1 t ha-1 after 12 years, in the RG3 homefield the decline was from 1.1 t ha-1 to 0.7 t ha-1 

(Fig. 5.2a). Simulations showed that the current poor productivity (0.1-1.4 t ha-1) of maize 
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cannot be increased by crop residue retention alone even if all the crop residues were retained 

(Fig. 5.2a & Fig. 5.2b), partly because the amounts of crop residue produced are too small. 

Crop residues stabilised yields in the absence of fertiliser. The fields are in a low productivity 

trap, of which they can only escape through external input of nutrients. The model outcomes 

suggested that long term retention of crop residues with application of 60 kg N and 10 kg P 

ha-1 has a potential to double the current yields (Fig. 5.2c). RG3 and RG4 are the farm 

categories most constrained by resource limitations with little opportunities to improve 

nutrient input use. According to the model simulations application of fertiliser and crop 

residue retention can increase yield from 0.8 t ha-1 for RG4 to about 1.4 t ha-1 after 12 years. 

For the RG3 farmers, maize yields can be improved from about 1.4 t ha-1 to 1.9 t ha-1 after 12 

years if they can retain all previous crop residues (Fig. 5.2c).  
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Fig. 5.2. Simulated maize productivity at current management, with crop residue retention, 
and with crop residue retention and improved fertilization for non-cattle owners. All crop 
residues produced are retained in situ for farmers in resource groups, RG3 and RG4, 
improved fertilisation refers to 67 kg N and 10 kg P ha-1. 
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Maize production harvest at the farm level can be improved from 0.84 to 1.82 t farm-1 yr-1 for 

RG3 farmers, and from 0.32 to 1.24 t farm-1 yr-1 if they can retain crop residues and apply 67 

kg N and 10 kg P ha-1 (Table 5.2).  

 
Table 5.2. Simulated maize production by farmers from RG3 and RG4 farmers under the 
baseline scenario, crop residue retention and crop residue retention with improved fertiliser 
application scenarios. Improved fertiliser is 67 kg N ha-1 and 10 kg P ha-1 used by RG1 farmers.  
Scenario and resource 
group 

Grain yield  
(t farm-1) 

Stover yield 
(t farm-1) 

Stover 
returned to 
soil (t farm-1) 

SOC  
(t farm-1) 

Current production  
RG3 0.84 ± 0.05 1.26 ± 0.10 0.14 ± 0.01 4.76 ± 1.70 
RG4 0.32 ± 0.04 0.48 ± 0.08 0.06 ± 0.01 4.62 ± 1.31 

Crop residue retention (100%) 
RG3 1.08 ± 0.10 1.68 ± 0.13 1.46 ± 0.02 7.44 ± 0.89 
RG4 0.44 ± 0.06 0.66 ± 0.08 0.59 ± 0.00  5.13 ± 0.97 

Crop residue retention plus improved fertiliser 
RG3 1.82 ± 0.18 2.73 ± 0.37 2.46 ± 0.05 11.70 ± 0.56
RG4 1.24 ± 0.14 1.86 ± 0.22 1.71 ± 0.02  7.12 ± 0.50 

 

5.3.2 Animal productivity 

Substantial body weight increases were observed in the model simulations in response to the 

increasing proportion of crop residues offered to animals and due to the dry season cycles. As 

expected, largest body weights were simulated when animals were offered 75 or 100% of the 

crop residues available, withholding crop residues always resulted in the lowest simulated 

body weight. Offering 100% of the residues to animals led to an average simulated body 

weight of 4066 kg per farm (or 407 kg per animal in a herd of both young and adult animals) 

which was reduced to 3394 kg (or 339 kg per animal) when all residues were retained in the 

field for RG1 farmers (Table 5.3). Similar trends were simulated for RG2 farmers, the largest 

body weight of 2187 kg (or 437 kg per animal) was simulated with all residues fed to 

livestock and was reduced to 1772 kg (or 354 kg per animal) when all residues were retained 
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in the field. Simulated milk production as well as excreted N followed similar trends (Table 

5.3). The simulated amount of produced manure was directly related to dry matter intake as 

expected. 

5.3.3 Soil organic matter dynamics 

Model simulations showed clearly that retention of crop residues in combination with manure 

increased SOC (0-20 cm) especially in the long-term. The retention of all (100%) or 75% 

crop residues produced appeared to increase SOC in the long term (Fig. 5.3). Compared with 

the current practise of removing crop residues from the field, retention of crop residues was 

beneficial especially in the homefields characterised by high crop productivity. Without 

residues in the RG1 homefield, simulated SOC declined from 16 t ha-1 to 10 t ha-1 over 12 

years (Fig.5.3a) but increased substantially to 23 t ha-1 when all the crop residues were 

retained in the field. Simulated SOC for the other crop residues proportions were in between 

with 50% crop residues maintaining the initial SOC content. In the outfield, retention of all 

crop residues increased SOC above the initial 12 t ha-1 while 75% crop residues maintained 

SOC at the baseline content after 12 years (Fig. 5.3b). In the RG2 homefield, the largest crop 

residues retention and 75% retention arrested SOC decline but declined with all other 

treatments (Fig. 5.3c). In the RG2 outfield, all crop residue retention rates led to SOC loss 

although it was slowed with 100% crop residues (Fig. 5.3d).  
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Fig. 5.3. Simulated soil organic carbon dynamics in the top 0-20 cm soil layer using different 
proportions of crop residue retention in the field. RG refer to resource groups. 

At current practice, simulated SOC declined from 12 t ha-1 to 6 t ha-1 on RG3 farms and from 

9 t ha-1 to 4 t ha-1 on RG4 farms over the 12-year simulations (Fig.5.4a). Crop residue 

retention slowed the decline to 9 and 8 t ha-1 for RG3 home and outfields respectively (Fig. 

5.4b). The decline did not change for RG3 outfields but slowed down on the homefield where 

final SOC was 6 t ha-1 after 12 years, down from 9 t ha-1 in the first year (Fig 5.4b). When 

crop residues were combined with fertiliser inputs, simulated SOC after 12 years was larger 

than the initial value due to incremental amounts of crop residues retained on the soil surface 
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(Fig. 5.4c). The model results showed that crop residue retention offered no opportunity to 

rebuild SOC, especially when crop productivity was small, but in combination with fertiliser 

inputs, SOC increased (Fig. 5.4c).  

(a) Current production
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Fig. 5.4. Soil organic carbon dynamics for farmers in resource groups (RG3 and RG4) at (a) current 
production where crop residues are removed, (b) crop residue are retained but at current fertiliser 
application rates, and (c) crop residue retention with improved fertiliser application. In the scenario of 
crop residue retention, all produced crop residues are retained because farmers in RG3 and RG4 do 
not own cattle. 
 

5.3.4 Feedbacks between crop and livestock production 

Model simulations showed that crop residue retention was positively correlated with crop 

productivity but negatively correlated with animal productivity (Fig. 5.5). The model 

predicted that retaining all crop residues in the field led to losses of about 70 kg live weight  

per animal, 0.7 t manure, 350 kg milk, and increases of 8 tons SOC, 1.6 t maize grain yield 

per farm for RG1 farmers per year (Table 5.3). For RG2 farmers, it led to a loss of 94 kg live 

weight per animal, 0.5 t manure, 300 kg milk, and increases of 6.5 t SOC and 0.7 t maize 

grain per year. Dry matter intake by cattle across the crop residue retention scenarios was 

directly proportional to the amount of crop residues offered as feed. Without additional crop 

residues as feed, animals of RG1 farmers consumed 15.1 t farm-1 yr-1 and it increased to 17.5 

t farm-1 yr-1 when all crop residues were offered to animals (Table 5.3). Simulated manure 

availability decreased from 1.6 to 1.2 t farm-1 when crop residues were withheld from feeding 

the animals. For RG2, the model predicted that animals consume 8.8 t farm-1 yr-1 of dry 
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matter with when crop residues were offered but only 7.6 t farm-1 yr-1 when all residues were 

kept for soil cover. The trade-off between crop yield and animal body weight was strong (2.4 

kg maize grain per 1 kg body weight of livestock), but the shape of the curve depends on the 

efficiency with which manure is collected (Fig. 5.5). The amount of manure applied, and thus 

the collection efficiency of manure had a significant effect on simulated maize grain yield 

(Fig. 5.5a & 5.5b). Improving collection efficiency from 20 to 60% resulted in a simulated 

yield increase of 0.6 t farm-1 yr-1 at baseline (crop residue removal) scenario and this yield 

difference was maintained even when all residues were retained in situ. The efficiency of 

manure collection did not affect simulated livestock production, at 100% crop residue 

retention there was no difference in simulated body weight of animals for all manure 

collection efficiencies (Fig. 5.5b). Simulated milk yield was also directly related to the 

simulated body weight of animals and decreased with increases in crop residues retained, but 

not with manure collection efficiency. 
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Fig.5.5. Trade off in animal or crop productivity, (a) crop productivity against animal live 
weight per farm and (b) crop productivity versus milk produced for the household. Three (20, 
40 and 60%) manure recovery efficiencies were considered during the simulations. Manure 
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recovery efficiency is the % of manure accumulated in the kraal to total manure excreted by 
animals. The manure recovered in the kraal is further reduced due to losses during storage. 
Data shown are the average values for the 12-year of simulation
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5.3.6. Farm economic and energy balance analysis 

Model outputs of crop yield and animal productivity at the farm level were used to calculate 

the economic and food status of the crop residue scenarios. The current practice of allocating 

all crop residues to animals results in the largest gross margin of US$7429 per year for RG1 

and decreased to US$6497 when all crop residues were allocated to the crops (Table 5.4). For 

RG2 farmers, the decrease was from US$4037 to US$3299. Farmers in RG3 and RG4 can 

increase gross margin from US$67.00 and USD10 to US$250 and US$116 respectively if 

they retain crop residues and apply 67 kg N and 10 kg P ha-1 of fertiliser. The protein balance 

was positive for all crop residue retention scenarios for RG1 and RG2 farms, it increased 

from 23 g capita-1 day-1 to 38 g capita-1 day-1 if RG1 farmers retained 100% crop residues due 

to increased crop productivity. RG3 and RG4 farms experienced a negative protein balance 

with the largest deficit being 44 g capita-1 day-1 at current farming practices which could be 

reduced to a negative 28 g capita-1 day-1 with retention of crop residues in the field and crop 

fertilisation (Table 5.4). Both RG1 and RG2 farms had a positive balance on their energy 

production and consumption per capita at all crop residue retention scenarios and increased 

from 17 MJ capita-1 day-1 to 26 MJ capita-1 day-1 with 0% and 100% crop residue retention 

respectively due to increased crop productivity. For RG2 farms the increase was small, from 

16 to 21 MJ capita-1 day-1. Positive changes in energy balances were simulated when crop 

residues were retained in the poorest resource groups, for RG3 farms from negative 3 to 

positive 4 MJ capita-1 day-1 and from negative 6 to positive 2 MJ capita-1 day-1 for RG4 

farms. 

 

 



Ch
ap
te
r	
5‐
	C
ro
p	
re
si
du
e	
us
e	
an
d	
tr
ad
e‐
of
fs
		

 

1
4
5
 

 T
ab

le
 5

.4
. T

ot
al

 f
ar

m
 b

en
ef

it
s,

 g
ro

ss
 m

ar
gi

n,
 e

ne
rg

y 
an

d 
pr

ot
ei

n 
pr

od
uc

ti
on

, a
nd

 e
ne

rg
y 

an
d 

pr
ot

ei
n 

ba
la

nc
es

 p
er

 f
ar

m
 f

or
 e

ac
h 

of
 th

e 
re

so
ur

ce
 g

ro
up

s 
in

 
M

ur
eh

w
a,

 %
C

R
 r

ef
er

s 
to

 th
e 

pe
rc

en
ta

ge
 o

f 
cr

op
 r

es
id

ue
s 

re
ta

in
ed

 in
 th

e 
fi

el
d.

 D
et

ai
ls

 a
nd

 e
xp

la
na

ti
on

 o
f 

th
e 

ca
lc

ul
at

io
n 

ar
e 

sh
ow

n 
in

 th
e 

ap
pe

nd
ix

. 

P
ro

du
ct

io
n 

sy
st

em
 

R
G

1 
R

G
2 

R
G

3 
R

G
4 

%
 C

R
 

%
 C

R
 

%
 C

R
  

%
C

R
 

0 
25

 
50

 
75

 
10

0 
0 

25
 

50
 

75
 

10
0 

0 
10

0 
0 

10
0 

L
iv

es
to

ck
 p

ro
du

ct
io

n 

T
ot

al
 c

os
ts

 (
U

S
$ 

yr
-1

) 
48

0 
48

0 
48

0 
48

0 
48

0 
42

0 
42

0 
42

0 
42

0 
42

0 
0 

0 
0 

0 

T
ot

al
 v

al
ue

 o
f 

liv
es

to
ck

 (
U

S
$)

 
72

83
 

71
10

 
68

98
 

64
26

 
59

68
 

39
81

 
37

93
 

35
54

 
32

55
 

30
77

 
0 

0 
0 

0 

G
ro

ss
 M

ar
gi

n 
(U

S$
) 

68
03

 
66

30
 

64
18

 
59

46
 

54
88

 
35

61
 

33
73

 
31

34
 

28
35

 
26

57
 

0 
0 

0 
0 

M
ai

ze
 p

ro
du

ct
io

n 

In
co

m
e 

(U
S$

 f
ar

m
-1

 y
r-1

) 
10

60
 

11
66

 
12

72
 

13
52

 
14

84
 

74
2 

76
9 

82
2 

90
1 

92
8 

22
3 

48
2 

85
 

32
9 

T
ot

al
 v

ar
ia

bl
e 

co
st

s 
(U

S
$ 

yr
-1

) 
43

4 
44

4 
45

4 
46

7 
47

5 
26

6 
26

9 
27

4 
28

0 
28

5 
15

6 
23

2 
75

 
21

7 

G
ro

ss
 m

ar
gi

n 
(m

ai
ze

 p
ro

du
ct

io
n)

 
(U

S$
 y

r-1
) 

62
6 

72
2 

81
8 

88
5 

10
09

 
47

6 
49

9 
54

7 
62

1 
64

2 
67

 
25

0 
10

 
11

2 

F
ar

m
 b

en
ef

its
 

G
ra

nd
 to

ta
l c

os
ts

 (
U

S
$ 

yr
-1

) 
91

4 
92

4 
93

4 
94

7 
95

5 
68

6 
68

9 
69

4 
70

0 
70

5 
15

6 
23

2 
75

 
21

7 

T
ot

al
 f

ar
m

 in
co

m
e 

(U
S

$ 
yr

-1
) 

83
43

 
82

76
 

81
70

 
77

77
 

74
52

 
47

23
 

45
62

 
43

76
 

41
56

 
40

04
 

22
3 

48
2 

85
 

32
9 

G
ro

ss
 m

ar
gi

n 
(U

S$
 y

r-1
) 

74
29

 
73

52
 

72
35

 
68

30
 

64
97

 
40

37
 

38
73

 
36

81
 

34
56

 
32

99
 

67
 

25
0 

10
 

11
2 

F
oo

d 
en

er
gy

 b
al

an
ce

 p
er

 c
ap

ita
 

(M
J 

da
y-1

) 
17

 
19

 
21

 
23

 
26

 
16

 
17

 
18

 
21

 
21

 
-3

 
4 

-6
 

2 

P
ro

te
in

 b
al

an
ce

 p
er

 c
ap

ita
 (

g 
da

y-1
) 

23
 

27
 

33
 

35
 

38
 

20
 

20
 

22
 

26
 

27
 

-3
8 

-2
3 

-4
4 

-2
8 

  



Chapter	5‐	Crop	residue	use	and	trade‐offs		
 

146 
 

5.4. Discussion  

5.4.1 Intensity of trade-offs 

The objective of this paper was to quantify the farm level benefits related to the allocation of 

maize harvest residues for livestock feed or for soil fertility management. Our results show 

that from an economic perspective it is logical that  farmers prioritise the sustenance of 

livestock with crop residues over soil fertility management. Results showed that strong trade-

offs between crop and livestock production exist in crop residue management (Fig. 5.5). It 

appears that due to the poor crop productivity in the system, there is no middle ground in crop 

residue use: livestock farmers need them as livestock feed and non-livestock farmers need 

them for soil cover and nutrient inputs. Results supported our hypothesis that livestock 

owners can derive the most benefits if they offer crop residues to livestock and use manure 

for soil fertility replenishment while non-livestock owners can rebuild soil fertility and crop 

productivity best by retaining crop residues in the fields. 

Livestock are mostly kept as a store of wealth and income generation (Table 6) and the loss 

of body weight due to shortage of feed in the dry season is a threat to animal condition and 

survival. The simulated gross margin of US$7429 for livestock farmers is many times more 

than that of non-livestock farmers (Table 5.4). The single rainfall season exacerbates the 

competition for crop residues as farmers prioritise production of food crops and are unwilling 

to invest in fodder production due to labour and capital constraints.  

Although farmers who do not own livestock do not have to feed animals, the crop residues of 

their fields are mostly eaten by the cattle of neighbouring cattle owners. As a result, their 

fields show a negative C balance resulting in declining soil fertility despite little manure 

droppings from the grazing animals. They could address this by keeping the crop residues on 

their fields. However, the opportunities to achieve this require investments either in labour to 
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carry residues away or in fencing off their fields for protection from cattle. The first option 

appears feasible as the resource-poor farmers often have large households with sufficient 

labour (Table 5.1). However, removing crop residues from the field exposes the soil surface 

for long periods in the dry season and the full benefits of crop residue mulching on crop 

productivity might not be realised.  

In much of southern Africa, crop and livestock production are closely integrated. A large herd 

of cattle can produce large amounts of manure which may lead to high crop productivity 

(Rufino et al., 2011). However, based on amounts of C input back to the soil, the livestock 

pathway is not the most efficient; crop residues add more C to the soil on a mass basis. In the 

open grazing systems such as those in this study site, 60-70% of the manure produced is lost 

in the rangelands as well as through handling and storage (Schleich, 1986). Heap composting 

of manure without cover which is common in the study area results in loss of N through 

volatilisation and leaching (as well as C through aerobic decomposition) (Kirchmann and 

Witter, 1989), reducing the nutrient content of manure. On the other hand, livestock facilitate 

nutrient concentration in manure which may have positive short-term effects on crop yield 

(Zingore et al., 2007b). With crop residues more C is kept in the cropping system although 

positive effects on crop yield mainly occur in the long-term as the high C:N ratios of cereal 

crop residues such as maize often lead to short-term nutrient immobilisation (Palm et al., 

2001). Thus in the early years of crop residue retention, extra nutrient inputs are needed. 

5.4.2 Options to alleviate trade-offs  

Many authors have suggested that trade-offs can be alleviated through increased biomass 

production (cf. Giller et al., 2009; Naudin et al., 2012; Valbuena et al., 2012). However, 

previous work in Murehwa has shown that there is no simple pathway to increase crop 

biomass as the poor sandy soils often do not respond to added nutrients (Zingore et al., 
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2007b). Instead, it is manure in combination with fertiliser application that improves crop 

productivity (Rusinamhodzi et al., 2013). The erratic rainfall distribution patterns often 

characterised by long dry spells are another important barrier to increased crop productivity 

in southern Africa (e.g. Rusinamhodzi et al., 2012). Excessive as well as insufficient seasonal 

rainfall often lead to small yields as shown in a long-term trial in Zimbabwe (Rusinamhodzi 

et al., 2011).  At present, options to increase biomass to overcome the trade-offs appear 

limited. Lessons from Lake Alaotra region in Madagascar have revealed that in mixed crop-

livestock smallholder farming systems there is potential to achieve soil cover and feed if 

cover crops such as Vicia villosa Roth and Stylosanthes guianensis Aubl. are integrated into 

the cropping systems (Naudin et al., 2012). However, green manure cover crops are often not 

valued by farmers because they lack short-term benefits such as contribution to the household 

diet (Giller, 2001), and require substantial labour input. 

5.4.3 Threshold crop residue cover for CA 

A soil cover of 30% is often suggested as the minimum threshold to achieve the benefits of 

mulching, especially in relation to erosion control  (Baker et al., 2002). In this study we 

considered a minimum soil cover of 30% although this value is rather arbitrary and larger 

levels of soil cover lead to greater reductions of soil erosion. On the other hand small 

amounts of cover (< 30%) may have beneficial effects (Findeling et al., 2003) as the 

relationship between runoff/erosion reduction and mulch cover is exponential.  Estimates 

show that a minimum of 1.3 t of maize crop residues are required per hectare to cover at least 

30% of the soil surface, but this value increases to 3.1 t when decomposition over time is 

considered (Fig. 5.6). Soil cover is also important under water limited conditions as it 

influences the soil water balance positively by increasing rainfall infiltration and reducing 

evaporation (Scopel et al., 2004b). The capacity of crop residues to provide sufficient cover is 

mainly dependent on the presence of leaves which have a larger area to mass ratio than straw 
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yet the leaves are easily degraded on the soil surface.  In the RG1 homefield, farmers can 

achieve 30% cover by retaining 25% of the crop residues produced if they can be preserved 

with all the leaves. In the RG1 outfield, 75% retention of crop residues with minimum leaf 

loss can achieve 30% soil cover; all residues cannot achieve 30% cover when partial 

decomposition is considered. In the RG2 homefield, 30% soil cover can be achieved by 

retaining 50% of crop residues produced when partially decomposed. By contrast, in the RG2 

outfield, retention of all crop residues produced did not achieve the minimum threshold under 

all conditions. It appears that reducing the decomposition of crop residues by removing crop 

residues from the field might be useful for farmers to achieve the minimum amount of 

residues required, although the benefits of keeping the soil covered throughout the whole year 

such as protection against wind erosion and moisture conservation will be lost.  
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Fig.5.6. The relationship between mass and the corresponding soil cover provided by maize 
crop residues, dotted line represents the relationship when crop residues have leaves and solid 
line is mass cover relationship when crop residues have lost leaves. RG refers to resource 
groups, Am is a cover coefficient (m2 g-1) of crop residues. The dashed lines show the 
threshold (%) needed for effective soil cover and the data points correspond to cover 
provided by 0, 25, 50, 75 and 100 % of crop residues based on current productivity for each 
field type in Murehwa, Zimbabwe. 
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5.4.4 Crop residue allocation and maize productivity  

Model predictions showed that maize grain yield increased in the long-term when previous 

crop resides were retained but only on the more fertile fields or in combination with adequate 

nutrient inputs (Fig. 5.1 & 5.2). It appears that although RG3 and RG4 farmers could retain 

residues in the field they also need to provide adequate chemical fertiliser inputs for 

improved crop productivity. The need for extra inputs, especially N, to increase crop 

productivity in combination with crop residue retention has previously been confirmed in a 

meta-analysis (Rusinamhodzi et al., 2011) and also through a CA component omission study 

(Thierfelder et al., 2013). Relatively few farmers in the region are able to use much fertiliser. 

RG1 and RG2 Farmers are likely to derive the most benefits if they chose to retain some of 

their crop residues as they can afford to purchase fertiliser and apply it in combination with 

cattle manure. The residence time of RG1 and RG2 cattle grazing in the fields of RG3 RG4 

farmers’ is short because the crop residues produced there are often small and significant 

manure deposition might not occur.  

Our simulations showed that crop yields with crop residues retention increased substantially 

in the long term but short-term benefits were small. Yield increases due to crop residue 

retention under sub-humid climate in the short term are mainly due to ability of mulch to 

increase rainfall infiltration, reduce evaporation losses especially during dry spells (Lal, 

1995; Adekalu et al., 2007). In the long term, addition of SOC to the soil is more important 

(Chivenge et al., 2007). Crop residues retention may lead to N immobilisation requiring 

farmers to use large N inputs which they cannot afford (Giller et al., 2009). The short term 

needs of farmers may be a barrier to the realisation of the long-term benefits of improved 

crop production. The first two benefits can be instantaneous but are highly variable 

depending on soil and weather interactions; the latter needs time to develop as we have 

shown in this study.   
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5.4.5 Crop residue allocation and animal productivity 

Animal productivity was negatively related to the proportion of maize crop residues retained 

in the field as soil cover (Table 5.3, Fig. 5.5). This underlined the importance of crop residues 

in providing feed during the critical dry season. Contribution of maize residues to dry matter 

intake by cattle per annum has been estimated to be approximately 25% in the dry season 

(Rufino et al., 2011). Maize stover is also considered to be the only important nutritious 

forage during the dry season where 75% of the feed still come from the dry pastures (Methu 

et al., 2001). In this study, herd size was restricted during the simulations to 10 animals for 

RG1 and 5 for RG2 in line with observations; thus total herd live weight was used as the most 

important indicator of productivity. Retention of up to 50% of crop residues produced 

appeared to have a relatively small effect on animal body weight. On average only 23 kg per 

animal was lost per year compared with 70 kg per animal if all crop residues were retained in 

the field. The loss in bodyweight also affected milk yield, 356 kg of milk was lost per year if 

RG1 farmers did not feed their crop residues to their animals. If farmers chose to keep 50% 

of their residues and use the other to feed animals, the loss in milk yield decreased to 155 kg 

per year. In contrast to crop productivity, allocation of crop residues to livestock feed has 

immediate positive effects on livestock production. This means that allocation of crop 

residues to livestock feed will remain attractive to farmers with livestock, and it will be 

difficult to convince them otherwise. If market conditions improve, it could also mean that a 

viable option for farmers is to aim for the short term gain in livestock productivity, and use 

the manure produced and money earned to buy mineral fertiliser with which crop production 

can be increased. These types of short and long- term interactions were beyond the scope of 

this study, but will be the focus of future work.      
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5.4.6 Crop residues allocation and soil organic carbon  

Crop residue retention and manure inputs are possible options to build soil C under the 

conditions of smallholder farming. The model predicted that SOC the 0-20 cm top soil layer 

increases significantly when 75-100% of crop residues are retained in combination with 

manure, especially for RG1 and RG2 farmers. According to the model simulations SOC in 

fields of RG3 and RG4 farmers did not increase when crop residues were returned with 

baseline fertiliser application, but increased when fertiliser application was improved. These 

results support the hypothesis that SOC changes are directly linked to the amount of organic 

matter input to the soil up to a given level (saturation point) and that the inputs must exceed 

the amounts lost through decomposition (Rasmussen and Parton, 1994; Six and Jastrow, 

2002). The soils in the study sites used for the simulation scenarios were coarse-textured 

sandy soils (Nyamapfene, 1991). Faster degradation of SOC by micro-organisms occurs in 

sandy soils than in clay soils due to less physical protection. Thus large inputs of organic 

matter are needed annually to compensate for the high losses (Chivenge et al., 2007).  
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Fig.5.7. The relationship between simulated maize grain yield and simulated soil organic 

carbon was described by the ‘S’ shaped equation max

1 .c bc

Y
Y

K e


 , where Yc is maize grain 

yield at a given amount of SOC, Ymax is the maximum yield simulated under the conditions 
of the site, K is a constant, b is the relative rate of change of SOC and c is the amount of 
SOC. Data used are simulated yearly mean values for the 12 year simulation period for all the 
field types. 
 

The relationship between simulated maize grain yield and SOC followed a sigmoidal pattern 

characterised by an initial lag phase in which increases in SOC did not result in significant 

maize grain yield (Fig. 5.7). The next phase was linear relationship up to a maximum yield.  

In most soils, the relationship between SOC and crop yield exhibit a linear relationship often 

up to a limit beyond which other factors limit crop yield (e.g. Loveland and Webb, 2003; 

Tittonell et al., 2008; Lal, 2010). Our results suggested that SOC needed to increase 

substantially before high yields can be achieved especially in the nutrient-depleted outfields. 

When fertiliser inputs are limited, crop nutrients have to be supplied from the breakdown of 
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soil organic matter. Kay and Angers (1999) suggested that when SOC was smaller than 1%, it 

is difficult and may not be possible to obtain significant crop yields. However, our 

simulations suggested that in this site maize yield responses to added nutrients were possible 

even when SOC remains less than 1%. 

5.4.7 Crop residue allocation and farm economic value 

According to our model simulations, retention of all crop residues in the field reduced farm 

economic value by US$937 per year for RG1 farms and US$738 per year for RG2 farms 

(Table 5.4).  The calculated loss in income was significantly larger for RG1 than for RG2 

farms suggesting that there is a direct relationship between income and the number of cattle 

owned. The monetary value of the production systems of cattle owners and non-cattle owners 

were not comparable. The prices of meat products are determined by the market and are often 

competitive whereas maize prices are set by the government and often very low. A 

comprehensive review by Barret (1991) revealed that cattle in the communal areas of 

Zimbabwe play a significant role in storage of wealth, most cash generated from cropping 

activities is often invested in buying animals for future use. Due to the relatively large crop 

productivity of cattle owners, it is likely that they can invest income from crops in building 

the cattle herd thus increasing their economic value more than non-cattle owners. The 

simulated quantities of milk produced per farm decreased when animal bodyweight decreased 

resulting in less income for farmers. The analysis also revealed a large dependence of farm 

profit on animal productivity, implying that maintenance of animal bodyweight is needed to 

for improved farm income. Livestock can be disposed of at any time when cash is needed 

especially when paying for school fees and other immediate cash needs, thus the use of crop 

residues for animal feed takes precedence.  Although we analysed cattle production in terms 

of economic value of cattle, milk production and manure produced, the actual value of cattle 
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is greater due to other uses such as insurance, security, asset protection and status display 

(Moll, 2005).  

One of the key objectives of farmers is to be self-sufficient in food, especially in the staple 

crop maize. Decisions to allocate all crop residues to cattle resulted in the highest profit and 

the largest food supply for RG1 farmers. On the other hand, the protein balance was 

improved when crop residues were retained, mainly caused by improved maize production. 

The food energy deficit for RG3 and RG4 farms was large in the baseline scenario (no 

retention of crop residues on the field) but could be addressed if farmers improved their crop 

management by retaining crop residues and applying fertiliser. The absence of milk also 

created negative protein balances for RG3 and RG4 farmers. The model simulations suggest 

that the baseline scenario i.e. feeding crop residues to livestock maximises profits for 

livestock owners while retaining all crop residues in the field maximises profits for non-

livestock owners.  

5.4.8 Opportunities for intensification 

Management decisions on crop residue uses are made at the farm level. Maize harvest 

residues play an important role in the smallholder farming systems in Murehwa as maize is 

planted on more than 60% of the cropped area and primarily used as stock feed for cattle 

owners. Due to refusals and trampling, a substantial part of the maize residues carried to the 

kraal are not consumed by cattle but serve as bedding material and improve manure quality 

(Nzuma and Murwira, 2000). There are opportunities to use sorghum (Sorghum bicolor (L.) 

Moench) and finger millet (Eleusine coracana (L.) Gaertn) residues for soil cover as they are 

generally left in the field and burnt before the next crop is planted.  

Crop-livestock integration is considered the backbone of smallholder agricultural production 

in the tropics (Thornton and Herrero, 2001) because of benefits of manure application 
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(Murwira et al., 1995) and traction. Rufino et al. (2011) concluded from a simulation study 

that the best way for crop-livestock integration was achieved with small rates of fertiliser, 

partial retention of crop residues in combination with small rates of manure. It was apparent 

from our study that most manure production occurs without crop residues being offered to 

livestock (Table 4), thus manure will always be available to RG1 and RG2 even if they 

choose to retain crop residues in the field. However, crop residues are important in improving 

manure quality through reduced N losses (Kirchmann and Witter, 1989). The choice for 

tillage that farmers can use under these circumstances should allow the chance to apply 

manure while retaining crop residues on the surface. Planting basins are being promoted for 

this purpose albeit with more labour input. 

The macro-economic conditions in Zimbabwe in the last decade have limited the options 

available for smallholder farmers to improve their production systems. For example, during 

the farming system survey and analysis we observed that all farmers who owned livestock 

could not afford to provide concentrates or supplementary feeding beyond crop residues. 

Such management decisions have implications on the quality of manure produced and the 

subsequent crop productivity. Small investments in forage legumes could be beneficial to the 

animal diet and help improve the conditions of livestock and quality of manure.  

Farmers who do not own cattle (RG3 and RG4), have options to fence off their fields or to 

carry crop residues to the homestead after harvest and then bringing them back to the field at 

planting. Although substantial labour and capital is required for such activities, it is probably 

the best option for C input in their cropping systems. The challenge here is to encourage poor 

farmers who often have a range of short-term, simultaneous objectives such meeting their 

food demands that may or may not ensure the maintenance of soil fertility, which is important 

in the longer term. 
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5.5 Conclusions 

The trade-offs in crop residue uses were strong for farmers who own cattle and where maize 

harvest residues are needed to sustain animal productivity in the dry season. There is little 

scope for crop residue retention in the field for RG1 and RG2 farmers as it will lead to loss in 

animal productivity. Retention of all crop residues reduced farm income by US$937 and 

US$738 per year for RG2 and RG3 farmers respectively. Although fields are converted to 

communal pastures during the dry season, individual farmers have the prerogative to fence-

off their fields and protect their residues. The presence of trade-offs for 40% of farmers in a 

village who own cattle cannot be used to deny the opportunity for C input for 60% of farmers 

who do not own cattle. Crop residue retention is the only acknowledged opportunity for C 

input into the fields of non-cattle owners and our simulations showed the potential to improve 

crop productivity if adequate extra nutrients in the form of chemical fertiliser can be 

achieved. We conclude that to maintain productivity of animal and crops, more than half of 

the amount of the crop residues may be allocated for livestock feeding and less than half left 

on the field for farmers who own cattle. Non-livestock owners can improve productivity by 

investing more in labour to manage and protect their crop residues from cattle of 

neighbouring farmers and some chemical fertiliser inputs, but will result in reduced feed 

supply for cattle at the village scale.  
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6.1 Introduction 

Poor soils, in combination with erratic rainfall, poorly functioning markets and fragmented 

policies, are a threat to food security on smallholder farms in Africa. Soil fertility decline 

continues unabated because rates of nutrient inputs remain far below optimum (Sanchez, 

2002). Several initiatives have failed to address these challenges because they have been 

products of ‘closed box innovations’ by scientist and development practitioners with scant 

attention to farmers’ needs and priorities. Where farmers have been involved, inadequate 

capital has limited the scope to expand or improve their current circumstances. Insufficient 

farm resources against multiple objectives and uses create trade-offs in resource allocation 

limiting the available options for improved resource use and increased productivity. Erratic 

rainfall and in some cases non-responsive poor soils reduce significantly the returns to 

investments (Zingore, 2006).  

Attempts to address the problem of poor crop productivity on smallholder farms in Africa 

need to take a holistic approach for addressing the constraints from field scale to farm and 

beyond in both space and time. Thus, I combined several methodologies in pursuit of 

appropriate crop production intensification options for selected maize-based farming systems 

of southern Africa. The general purpose of this thesis was to identify appropriate crop 

production intensification options that are suitable to the socio-economic and biophysical 

conditions of selected smallholder maize-based farming systems in southern Africa with 

emphasis on building soil fertility. Soil fertility restoration is important because poor nutrient 

management in the past is one of the major underlying causes of current poor crop 

productivity on most smallholder farms in sub Saharan Africa (Buresh et al., 1997; Zingore et 

al., 2007b).  

In this chapter I synthesize the main findings and draw relevant conclusions in the context of 

smallholder farming systems in southern Africa. This will be achieved by discussing the 
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relevance (nuances) and lack of it (nuisances) for the tested intensification technologies 

across smallholder farms. In southern Africa, farming systems are dominated by mixed crop-

livestock systems but vary in intensity of interaction between these production components. It 

is therefore quite obvious that there are no ‘silver bullet’ solutions to the constraints that the 

diverse populations of farmers face in each locality.  

6.2 Extensification versus intensification systems 

Crop production extensification is a means of increasing production by extending the area 

under cultivation while maintaining or reducing quantities of input per unit area (Erenstein, 

2006). Intensification is the opposite, an increase in the productivity of existing land through 

increased inputs of external resources in the production of food and cash crops and livestock 

(Table 6.1). In central Mozambique and Zimbabwe both extensification and intensification of 

agricultural production takes place. A gradient from extensification to intensification can be 

established across the three sites of my study (Fig. 6.1). Extensification is often noted by the 

large labour input and relatively large land sizes (Erenstein, 2006) which are common in 

Ruaca and Vunduzi (Chapter 1, Table 1.1). In comparison, Murehwa characterised by high 

crop-livestock interactions (Chapter 4) maybe be considered to be more land constrained and 

thus intensification is needed to increase crop production. In Murehwa, the relatively strong 

crop and livestock integration provides manure and the supplementary N input through 

fertiliser allows farmers to achieve the largest crop productivity among the three sites. Land 

utilisation (proportion of cropped to land owned) was larger in Murehwa than the other sites 

(ca. 85%). In contrast, in central Mozambique farmers largely depend on shifting cultivation 

(bush fallowing) and in some instances grass fallowing for soil fertility restoration. 
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Table. 6.1. Contrasting characteristics between extensification and intensification of 
agricultural production systems. Adapted from Boserup (1965). 
Characteristics  Extensive systems  Intensive systems  

Fallow length long short 
Productivity low high 
Efficiency high variable but lower 
Population density low high 
Technology simple often complex 
Fertilizing of soil none or little high 
Land tenure communal ownership individual/family 
Economic systems usually subsistence usually market 
Socio-political complexity generally less generally greater 
 

Although currently the population density is low in central Mozambique (Chapter 1, Table 

1.1), population growth in the near future and a limited natural resource base require choices 

that use natural resources in a more intensive and sustainable way to meet current and future 

food needs. Population pressure is already evident in Ruaca where farmers are reducing 

fallow periods and shift to some form of intensification albeit with limited nutrient inputs. In 

Vunduzi and Ruaca, burning of crop residues is common as an easy option for land clearance 

especially due to the presence of wild mucuna (Mucuna spp. (L.) DC.) which causes 

intensely itchy dermatitis, and also farmers consider burning as important for soil fertility 

improvement. The burning of crop residue and cultivation on steep slopes is leading to a 

decline of soil organic matter, soil erosion and to soil degradation. Burning results in changes 

in soil physical, chemical and biological properties,  and may have long term negative 

implications on sustainability (Davis and Condron, 2002). However, burning has short term 

benefits on crops as it leads to considerable enrichment of the soil with nutrients especially P, 

K, Ca, and an increase in pH (Kyuma et al., 1985). Substantial N fertiliser may be needed 

under such conditions to boost initial crop growth. 

 



Chapter	6‐	General	discussion		
 

164 
 

 

Fig.6.1. Relative differences in characteristics of the study sites, land utilization is the ratio of 
total land under crops to total land owned. Vunduzi is characterised by small input use, small 
land utilization and low intensity of crop-livestock integration. In Ruaca, input use is similar 
to Vunduzi but has larger land utilization and crop-livestock integration. In Murehwa, all 
attributes considered were relatively larger than in the other two sites. Variability in resource 
ownership among households was larger in Murehwa than in all the three sites. Arrows show 
possible development pathways. 
 

6.3 Adequate fertiliser use is elusive 

Chemical fertilisers are needed for improved crop productivity, but their use in southern 

Africa falls below crop requirements averaging about 16 kg ha-1 (Morris et al., 2007). 

Permanent cultivation often leads to deficiencies in N and P, and annual applications are 

required each year to improve crop productivity. The barriers to higher fertiliser use vary 

greatly between and within countries due to differences in socio-economic conditions of the 

farming communities. Locally, household and farm characteristics, social and human capital, 

and farmer perceived effects of fertilisers on soil fertility are important determinants (Mapila 

et al., 2012). Green and Ng’ong’ola (1993) identified crop type, farming system, credit 

access, off-farm income and regular labour in that order as important determinants of 
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fertiliser use. Additionally, biophysical conditions such as amount of rainfall, and soil type 

determine amount and or type of fertiliser to be applied in a given situation (Nkonya et al., 

1997). The risk of crop failure resulting from poor rainfall is a strong disincentive to the 

purchase and use of fertilizers on the subsistence crops (Probert et al., 1995). A combination 

of these factors and how they influence fertiliser use are summarised in Fig. 6.2; socio-

economic conditions seem to have an overriding effect on fertiliser use and are likely to 

persist in the future. Crop production intensification requires some form of nutrient inputs as 

previously mentioned (Table 6.1) and their success in increasing productivity will depend on 

how much and what form of additional fertiliser farmers can afford to apply to their fields. 

Legumes have potential to add substantial amounts of N to cropping systems if crop residues 

are returned and if they have small harvest indices (Giller, 2001). However provision of N 

alone is not adequate, P is needed especially for effective biological nitrogen fixation (Vance 

et al., 2002). In mixed crop-livestock systems, manure can be a good source of P but is an 

unreliable source of N especially in the short term (Chapter 4) thus for such situations 

additional N is required.  

 
Fig.6.2. Summary of the determinants of fertiliser use, socio-economic factors play a major 
role in fertiliser use. 
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6.2 Crop intensification options  

The short-term needs of farmers to provide for their families must be met in combination 

with long-term sustainability of agricultural production systems. The sites studied experience 

different challenges to improved crop productivity at all scales from plot, farm, village and 

beyond. The multi-scale analysis in the preceding chapters showed clearly the importance of 

targeting options for improving crop productivity to the conditions of farmers in agreement 

with other authors (Giller et al., 2009; Erenstein et al., 2012). The thesis followed the 

approach proposed by Ojiem et al. (2006) in analysing the suitability of crop production 

intensification in both space and time. 

In the following subsections, the relevance of three crop production intensification options 

are discussed in relation to the biophysical and socio-economic conditions in the three study 

sites. Conservation agriculture (CA) based on minimum tillage, crop residue retention and 

crop rotation and associations is considered due to the prominence it has been given in recent 

years as the answer to the poor crop productivity on small farms in southern Africa. In 

southern Africa, moisture and nutrient conservation is needed to harness the erratic rainfall 

received.  Maize-legume intercropping is revisited and analysed in the context of low input 

agriculture, the need for intensification and persistent dry spells prevalent in Mozambique and 

the rest of southern Africa. The role of manure in improving crop productivity in the context 

of mixed cop-livestock systems is considered because it is the C input most readily available 

for cattle owners. 

a. What role for conservation agriculture? 

When the study was initiated, CA was being promoted vigorously as the most appropriate 

crop production option for smallholder farmers in southern Africa. Despite lack of sufficient 

empirical evidence on the technical performance and relevance of CA in southern Africa 
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before 2009, substantial global literature on CA existed that could be used to draw lessons on 

its suitability for this region. A global dataset was used to determine the biophysical 

environments where CA could be most successful and explain why it could fit in some places 

and not in others as described below. A meta-analysis of no-till and crop residue management 

(Chapter 2) showed clearly that potential positive effects of a technology cannot be assumed 

to be relevant in every place (Fig. 2.6). Positive impacts of CA on crop yield through 

moisture conservation were observed in low rainfall environments. It was apparent that 

improving maize yields under CA depended on the duration and promotion of good 

agronomic practices such as targeted fertiliser application, timely weeding and crop rotations. 

It has long been known that crop rotation is part of good agronomy under all tillage practices 

so these results are not peculiar to CA. Legume production as currently practised does not 

cover more than 10% of cultivated area (e.g. Mapfumo and Giller, 2001) under most 

smallholder farms in Zimbabwe, meaning that only 10% of the cultivated area may be rotated 

with legumes per year. For many years, most farmers in southern Africa have not been able to 

achieve sufficient fertilisation and crop rotations and it is unlikely that they will do so simply 

because CA has been introduced. It is also likely that farmers who can achieve the crop 

management required already have relatively high crop productivity and may not see major 

benefits of shifting from current practices. Conservation agriculture required more N fertiliser 

inputs especially in the short-term (Fig. 2.9b) together with a complete change of how crop 

and animal production components are integrated at the farm level (Chapter 5). The minimum 

requirements required for successful CA in much of southern Africa do not exist, and the 

technology thus faces impediments to its implementation.  

Much of the research on CA has been conducted at the plot level, focusing on the effects of 

CA on soil quality, with little effort on how CA fits into the broader farming systems (Giller 

et al., 2009; Baudron et al., 2012). Retention of crop residues in the field as a mulch is not 
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feasible for most farmers due to competition for livestock feed (Chapter 5).  The need for 

investments in more fertiliser results in CA being unattractive for most farmers. Retention of 

crop residues will lead to depressed yields in the short term due to immobilization of N. This 

contrasts sharply with farmers’ needs; the main objectives of farmers in the study sites were 

to achieve food security and cash income. Therefore the short term needs of farmers maybe a 

threat to the uptake of CA.  Whilst short-term crop yield response to CA are highly variable, 

yields often improve in the long-term when continued accumulation of crop residues result in 

increased SOC and nutrients being available for crop growth.  

In Murehwa I observed that sorghum and finger millet residues were not preferred by 

livestock and may have greater potential to be used as mulch. However, the land area 

allocated to these crops was significantly smaller than maize. There is a dearth of data to 

properly establish a mechanistic relationship of factors that affect crop residue decomposition 

on the soil surface to understand their persistence under the conditions of southern Africa. 

Termite activity results in a rapid removal of surface applied crop residues with potential to 

lose all the surface mulch before the expected benefits to crops are realised. Such information 

is important in devising proper post-harvest crop residue management. Currently farmers who 

are testing CA remove crop residues from the field (Fig. 6.3) and bring them back at time of 

planting, investing substantial labour in the process. Even though farmers can protect their 

residues ex situ; it appears that through this practice the important function of soil protection 

is lost.  
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Fig.6.3. Protection of maize residues in the dry season at Manjonjo village, Murehwa. The 

practice involved substantial labour input carrying crop residues to the makeshift structure 

and back to the fields at planting. Farmers invested substantial labour into this practice and 

indicated they did this to qualify for free fertiliser inputs.  

 

b. Revisiting intercropping   

Maize-pigeonpea intercropping showed promise to address the constraints of food security 

and income faced by farmers in central Mozambique. Farmers faced numerous constraints 

related to market access for inputs and outputs and lack of capital among a plethora of 

challenges. Extension support is weak, especially at the local level. The benefits of 

introducing legumes either in crop rotations or through intercropping to increase yields in 

cereal-dominated cropping system are well-known in Africa (e.g. Chikowo et al., 2006; 

Adjei-Nsiah et al., 2007; Ncube et al., 2007; Sileshi et al., 2008). Intercropping is the only 

feasible option to grow two or more crops per year because much of southern Africa is 
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characterized by a unimodal rainfall pattern (Taljaard, 1986) that only permits a single 

cropping season each year. Intercropping provides the possibility of a greater total yield than 

would be obtained from either sole crop (Willey, 1979; Seran and Brintha, 2010). Grain 

legume intercrops are preferred because besides providing soil cover between the rows of the 

main crop, they are potential sources of plant nutrients that complement or supplement 

inorganic fertilisers and help to ensure food security. The substitutive design promoted by the 

local non-governmental development organisation where two rows of maize alternated with a 

row of pigeonpea reduced the plant population for both maize and legume and resulted in 

smaller yields. I showed in Chapter 3 that a simple innovation of rearranging crops to plant in 

an additive design reduced plant competition and led to substantial yield benefits even 

without added nutrient inputs. Although this knowledge was being used in some parts of 

Malawi, conveyance of that knowledge and the required best practice guidelines was missing.  

Maize grain yield after pigeonpea was up to 6 t ha-1 (Chapter 3, Fig. 3.3) highlighting the 

potential of pigeonpea in improving productivity in low input systems. Although the 

relatively large crop productivity and economic benefits of the maize-legume intercropping 

systems that were attractive to farmers, intercropping increased labour required by 36% 

compared with monocropping of maize. In extensive farming systems, labour saved by 

reducing land area may offset the increased labour demand for intercropping. The intercrop 

treatments were under no-tillage which allowed the development of an undisturbed 

continuous pore system in the soil, accumulation of organic matter on the soil surface and 

increased water infiltration. The other major strength of intercropping is the reduction in risk 

of total crop failure. Intercropping maize and drought resistant legumes such as pigeonpea 

and cowpea showed great potential to cushion farmers against the devastating effects of 

prolonged dry spells in central Mozambique. Although crop productivity improved with 

legume intercropping, the marketing conditions remain fragmented and pose a serious threat 
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to continued intercropping especially for pigeonpea. Delayed selling of produce increased 

profits for farmers but the critical need for cash income often forced farmers to sell their 

produce immediately after harvest. I also showed that results at the plot level were not the 

only consideration for the continued practice, the presence of an assured market and 

interactions with livestock were particularly key factors (Fig. 6.4). Roaming livestock early in 

the dry season prefer the growing pigeonpea plants than the dry maize crop residues resulting 

occasionally in total yield loss for farmers. Thus, intercropping maize with long duration 

pigeonpea is suitable in areas with small livestock densities and guaranteed market, whereas 

short duration grain legumes are needed in areas with perennial food shortages.  

Cropping seasons
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Fig.6.4. The proportion of farmers practicing maize-pigeonpea intercropping between 2007 
and 2011 in the study sites in central Mozambique. Proportions are based on a total of 52 
households in Ruaca and 43 households in Vunduzi that were tracked every season.  
 

c. Where to apply manure? 

In mixed crop-livestock systems of Murehwa, manure application has potential to improve 

crop productivity especially in the long term. Cattle do not generate organic matter or 
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nutrients, but they are important in their transfer especially from grazing land to croplands. 

The passage of organic matter via their rumen systems in which the first degradation starts 

helps in the concentration of nutrients in manure. However, manure on the smallholder farms 

in southern Africa are often of poor quality containing significant quantities of sand and 

being stored in the open. This results in slow release of nutrients from the manure. An 

important dilemma in manure management and use under smallholder farm conditions is to 

determine where to apply given their limited quantities against multiple objectives of 

improving crop productivity versus restoration of degraded fields (Fig.6.5). In Murehwa, 

homefields refer to fields closest to the homestead that receive most of nutrient inputs and 

better crop management resulting in larger fertility than midfields and outfields. Fields that 

exhibit fast responses to nutrient inputs are often allocated the limited resources because they 

are considered by farmers less risky to investments (Tittonell et al., 2007).  Results of a 9-

year experiment on soil restoration reported in Chapter 4 supported this hypothesis and 

suggested that maximum yield benefits were realised if nutrients were targeted to responsive 

than degraded sandy soils. 
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Fig.6.5. Dilemma of allocating limited manure quantities, restoration of soil fertility versus 

yield maximization on smallholder farms in mixed-crop livestock systems. Options include 

maintaining the different fields at their current fertility (A, B and C) or rebuilding fertility in 

degraded fields (D) at the expense of homefields (E) to achieve the soil fertility of midfields.  

 

Chemical fertiliser used alone did not increase crop yields especially on sandy soils and there 

was no potential for soil fertility restoration, yields in sandy outfields remained significantly 

smaller than in the other field types. The largest yield in the clay outfield was obtained with 

application of 100 kg N + 25 t ha-1 manure; top yields were 6.1 t ha-1 for the outfield and 9.3 t 

ha-1 for the homefield (Chapter 4, Fig. 4.2). Manure application in degraded outfields has 

potential to rebuild soil fertility. Results, however, suggested that manure was used more 

efficiently for increased crop production in the more fertile homefields than the degraded 

outfields.  
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The demarcation of fields into small plots (0.1-0.5 ha) allows farmers to achieve large 

application rates of manure on some fields that improve crop yields. Best maize yield were 

obtained with combined manure and fertiliser application, which showed the importance of 

integrated soil fertility management (Vanlauwe et al., 2010).  

 

6.3 Contribution to current debates 

a. Ecological intensification 

The paradigm of ecological intensification was first proposed by Cassman (1999), and is 

considered as a promising direction for crop production systems (Doré et al., 2011; Tittonell 

and Giller, 2013). This new pathway is premised on improving crop production by 

maximising resource capture and conversion efficiencies (de Wit, 1992; Giller et al., 2006), 

with emphasis on adaptation to local settings. In situations of land limitation and insufficient 

chemical fertiliser inputs, legume intercropping may provide a pathway for ecological 

intensification. The late maturity of pigeonpea forces farmers to exclude cattle from crop 

fields. This enables in situ crop harvest residue retention, combined with the relatively large 

biomass productivity builds soil carbon, improves rainfall infiltration and increases crop 

yields (Chapter 3). For mixed crop-livestock farming systems, I was able to show that 

consistent application of manure in combination with chemical fertiliser improves crop 

productivity in both short and long term and is a sustainable locally adapted option for 

ecological intensification (Chapter 4). When quantities of good quality manure are small, 

application can be targeted to small areas for efficient use. Good quality manure refers to 

manure that is anaerobically composted with added plant material, must contain N greater 

than 1.8% and to be free of sand (Chapter 4). 
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b. Trade-off analysis 

In southern Africa poor crop productivity limits the availability of crop harvest residues 

especially in the dry season against multiple objectives creating trade-offs for their uses. The 

importance attached to livestock means that the little crop residues available on the farm are 

allocated for livestock feed restricting the potential for adoption of CA (Erenstein, 2002). 

Trade-off analysis with respect to crop residue retention and animal and crop productivity 

(Chapter 5) was done for a mixed crop-livestock systems in Murehwa, Zimbabwe using the 

NUANCES-FARMSIM model that simulates feedbacks between crop and livestock 

production systems by linking the sub-models of crop (FIELD, (Tittonell et al., 2010a) and 

animal production (LIVSIM (Rufino, 2008). The sub-models are linked by the manure 

management sub-model HEAPSIM (Rufino et al., 2007). The loss of an annual average of 67 

and 93 kg per animal live weight for RG1 and RG2 respectively, and reduced manure 

production due to reduced biomass intake when residues were left in the field underlined the 

importance of choices that farmers make (Chapter 5). Retaining all maize residues in the field 

led to severe losses in animal productivity but significant gains in crop productivity in the 

long-term. However, the gains in crop productivity with crop residue retention appear too 

little to offset the loss in animal productivity. The poor selling price and a virtual absence of a 

market for maize during the last few years in the study area suggest that current management 

by farmers of feeding crop residues to cattle is the most appropriate. Traditionally farmers do 

not produce forages in this area despite legume, grass and agroforestry species being 

available for this purpose (Delve et al., 2001; Sumberg, 2002; Njarui and Mureithi, 2010), 

thus alternative sources of feed are limited.   

Crop residue management decisions are made at the farm level and the choice of feeding 

animals or the soil only pertains to less that 40% of the farmers who own livestock in 

Manjonjo village, Murehwa. The remaining 60% of farmers have the prerogative to leave 
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their residues on the field where they will be grazed by the cattle of neighbouring farmers or 

carried home for protection (Fig. 6.3). As shown in Chapter 5 crop residues retention is one 

opportunity for C input into the cropping system on non-livestock owners and these farmers 

should invest in keeping their crop residues for soil fertility amelioration. Cattle owners 

collect most of their crop residues from the field to use as feed during the critical dry season 

(Mtambanengwe and Mapfumo, 2005) and in turn use manure for C input. Non-livestock 

owners should therefore find a way of keeping their crop residues to improve soil fertility as 

there are no benefits of giving up their crop residues. The communal grazing rules allow 

cattle to access fields in the dry season for crop harvest residues but do not override 

individual farmers’ decision on crop harvest residue use (Dore, 2001). The forestry resources 

are being degraded and quantities of leaf litter are inadequate to significantly contribute to C 

input. Green manures have faced resistance because they do not contribute to immediate 

family benefits such as food to the farm, yet they require substantial labour inputs. In some 

cases farmers are not aware of the existence of these green manure cover crops (Jama et al., 

2000). 

c.  Farmer involvement in the research process 

This thesis was aimed at targeting technologies to the needs of farmers by recognising the 

spatial and temporal variability due to differences in biophysical and socio-economic 

conditions i.e. creating so-called ‘recommendation domains’. A key component of the 

research reported in this thesis was the involvement of farmers not only in extracting 

information from them but to discuss with them feasible opportunities for increased crop 

production (Chapter 3 and Chapter 4). Farmer participation in setting the research agenda in 

agricultural research and development is important as it allows exploration of options that are 

appropriate under their conditions (Johnson et al., 2003; Rusinamhodzi and Delve, 2011). 

Farmer evaluations especially in the intercropping treatments (Chapter 3) provided a basis for 
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making recommendations about the relevance of the cropping system to their needs (e.g. 

Abeyasekera et al., 2002). The approach is necessary to reveal intrinsic farmer preferences 

for new technologies against established technologies, opportunities as well as constraints for 

their widespread use (Chianu et al., 2006). Farmers in Mozambique strongly believed that 

fertilizers kill the soil yet they also recognized that mataka haana ndimu (soils have lost 

fertility). They strongly rely on local methods to rebuild soil fertility and integration with 

legumes seems the most promising entry point. Efforts to improve fertiliser use may need to 

overcome this initial resistance. 

 

6.4. Conclusions and future research needs 

I have worked in Murehwa for the past 12 years and it is remarkable to notice the gradual 

decline in farm sizes. The standard farm sizes were originally three hectares but they are 

continuously being subdivided each time a male child starts a family. In some parts of 

Malawi and Zimbabwe, landholdings are already very small (below 1 ha) limiting the options 

available to diversify as farmers are often forced to dedicate most of their land to the staple 

food crops, mostly maize instead of legume crops (Thierfelder and Wall, 2010).  Small farm 

sizes are particularly suited to intercropping to provide a chance to increase crop yields. The 

most critical question that remains is: can farmers derive the most benefits of emerging 

technologies with such very small land sizes?  There is need to determine the minimum farm 

size for a defined resource group type of farmers that could derive the most benefits from a 

defined crop production option under a defined environment i.e. how small is beautiful 

(Giller, 2012).  

I also had the opportunity to work in central Mozambique for the past five years; in 

Mozambique the situation is not of shrinking farm sizes but limitation for shifting cultivation 

and fallowing due to increasing population pressure in the sites I studied. Therefore, there is 
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need for crop production intensification. In Ruaca there is need to demonstrate and convince 

farmers to use manure that is often left in the cattle pens. The lessons from Murehwa 

(Chapter 4) suggest that farmers in Ruaca could potentially use cattle manure to improve crop 

productivity especially in fields around the homesteads that are cultivated each year.   

I have observed that for many years, farmers in Vunduzi who have been occupying land 

adjacent to the Gorongosa National Park have resisted to be moved and prefer co-habitation 

with the wild animals. It is clear that farmers are causing massive land degradation due to 

cultivation on the steep slopes of the mountain without soil and water conservation methods 

and urgent solutions are needed (Müller et al., 2012). It is unlikely though that they derive 

direct benefits from the park and the fact that they inherited ancestral land strengthens their 

position not to move. Current feasible options for these farmers revolve around intercropping 

to maximize crop yields and reduce soil loss. Pigeonpea is the most suitable for the 

conditions of erratic rainfall as the deep roots allows it to anchor the soil and access soil 

water from deeper horizons (Sekiya and Yano, 2004). 

In conclusion, ecological intensification of crop production is needed to address the persistent 

food shortages in southern Africa. This thesis has revealed the occurrence of local 

opportunities to increase current crop productivity which in some cases do not need 

substantial capital inputs by the farmers, but more efficient use. My study also revealed that 

despite the large technical efficiency, some production options such as CA might not fit 

within the broader farming system as well as within the farmers’ production orientation and 

resource capacities, thus “silver bullets” do not exist.  

I hope that the findings reported in this thesis will be useful to scientists and development 

practitioners in formulating pathways for crop production intensification in southern Africa. I 

strongly believe that this thesis has provided ample evidence that local conditions of farmers 
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are critical in defining the success of new interventions. Local opportunities exist to 

successfully push the envelope of crop production. 
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Appendix 1. Bias test for dataset used for meta-analysis 
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Appendix 3 - Simulation of crop production 

Here we illustrate in short how crop yields are calculated using the QUEFTS approach  

Light determined yield:   pLDY PAR FRINT LCvE       

Where PAR is the amount of incident photosynthetically active radiation, FRINT is the 

fraction of PAR captured by plant, and LCvEp is the light or radiation conversion efficiency. 

The product FRINT × LCvEp is the radiation use efficiency (RUE). 

Water limited yield:    RainfallWLY FRCAP TCvE       

Where FRCAP is fraction of rainfall captured which varies depending on biophysical 

conditions, crop types and management. TCvE is the water conversion efficiency, the product 

of FRCAP × TCvE is the water conversion efficiency (WUE). Nutrient limited yields: 

Example for N, NLY N availability NCtE NCvE       

The same approach is used for both P and K, NCtE is the capture efficiency of the mineral N 

available to the crop and NCvE is the conversion efficiency of the N taken up by the crop into 

biomass. Nitrogen uptake (Eq. 1.4) is taken as the minimum between N availability and target 

N uptake so that when N limits crop production N uptake approaches N availability and the 

value of NCtE approaches unity. 

  target
max min

( , )

( )

Min LDY WLY
NUPT

NCvE NCvE 


 
    

NCvE is calculated as the maximum value between NCvEmin and NCvEmax corrected for the 
availability of water, P and K (Eq. 1.5). 

  min max( , )NCvE Max NCVE NCVE WRF PRF KRF        

WRF, PRF and KRF are reduction factors accounting for availability of water, P and K 

calculated as in Eqs. 1.6-1.8. 
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target

Rainfall
W

FRCAP
WRF

WTRA


 
   
 

    

 

  availability

arg
P

t et

P
PRF

PUPT


 
   
 

    

 

  availability

target
K

K
KRF

KUPT


 
   
 

    

Finally the resource-limited yield (RLY) is taken as the minimum between NLY, PLY and 

KLY.  
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Appendix 4 - Simulation of animal production 

In LIVSIM, the difference (Difference Max W) between actual weights (Wt) to maximum 

weight (W max) is calculated by the following equation:  max, 1t tDifference Max W W W   

  

 1 min ( , )tActual Growth AWG Difference MaxW     

where Actual Growth per month is the minimum of Difference Max W at the maximum 

growth allowed by the metabolisability of the feed (AWG) in kilograms per month. 

The monthly probability of conception is calculated as: 

 1/12Prob  Conception = 1 - (1- Annual CalvingRate)    

The attainable milk yield is calculated as: 

 Milk Yield Potential Milk Yield Age Effect Condition Factor     

Where condition index is calculated as:  

min,

max, min,

t t

t t

W W
Condition Index

W W





 

Manure production is calculated by: 

  1FaecalDM DMI DMD      

Where DMD is dry matter digestibility which is an input into the model. 

Herbage intake is described by: 

 , ,a z g g zDMI DMPI RI     
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Where DMIa,z,g is dry matter intake expressed in kg DM d-1, DMPIg is the potential dry matter 

intake expressed in kg d-1, and RIz the relative intake (dimensionless).  The potential intake 

(DMPI) is calculated by: , 0.0107
(1 )

a
a g

g

BW
DMPI

DMD
 


   

Where BW is bodyweight (kg), and DMD is dry matter digestible (g(kg DM)-1). 

 ,
,

,

( / )

1 ( / )

q
z g

z g q
z g

Ba K
RI

Ba K



   

Both q and K are dimensionless coefficients; K describes the capability of an animal to graze.  

 0.36K b BW     

Where b is a dimensionless coefficient, this approach takes into account both herbage 

biomass and the animal’s capability to harvest grasses.  
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Summary 
Soil fertility decline and erratic rainfall are major constraints to crop productivity on 

smallholder farms in southern Africa. Crop production intensification along with efficient use 

of chemical fertiliser is required to produce more food per unit area of land, while rebuilding 

soil fertility. In Africa, the need to feed the hungry is most urgent yet farmers in this region 

experience some of the most brutal biophysical and socio-economic conditions. The objective 

of this thesis was to identify appropriate crop production intensification options that are 

suited to the socio-economic and biophysical conditions of selected smallholder maize-based 

farming systems in southern Africa. Three sites that formed a gradient of intensity of crop and 

livestock production were selected for the study. Murehwa in Zimbabwe is characterised by the 

largest intensity followed by Ruaca and lastly Vunduzi both in central Mozambique. In all 

three locations, maize is a key staple and cash crop. 

Targeting of crop production options adapted to local conditions are needed to end perennial 

food shortages and poverty. The paradigm of ecological intensification is considered in 

identifying crop production systems that use inputs efficiently and lead to positive 

biophysical and socio-economic outcomes. Suggested feasible options include integration of 

crop and livestock production, increased crop diversification (intercropping), and 

conservation agriculture which promote nutrient and soil conservation. 

A literature review, field methods based on participatory research, and modelling tools were 

combined in analysing potential crop production options across an agricultural intensification 

gradient. In addition a trade-off analysis was performed to provide insights into the 

consequences of allocating crop residues for animal feed or for soil fertility on total farm 

production and economic value.  
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A meta-analysis on maize grain yield under rain-fed conditions revealed that conservation 

agriculture required legume rotations and high nitrogen input use especially in the early 

years. The overall effect of NT without mulch depressed yields by 0.2 t ha-1 although the 95% 

CI of the WMD ranged between -1.8 and 1.8 t ha-1) when compared to conventional tillage. 

No till with rotation had a positive WMD of 0.1 t ha-1 while no till without mulch had an 

overall WMD of -0.1 t ha-1 over conventional tillage. Reduced tillage with no mulch cover 

leads to lower yields than conventional tillage in low rainfall environments; mulch cover in 

high rainfall areas leads to lower yields due to waterlogging and improved yields under CA 

are likely on well drained soils. Generally higher yields were obtained in the long term 

especially when rotation was practised. The detrimental effects of rainfall variability in 

southern Africa are difficult to offset even with conservation agriculture. The analysis 

revealed that conservation agriculture needs to be targeted and adapted to specific bio-

physical conditions for improved impact. Crop productivity under conservation agriculture in 

southern Africa will depend on the ability of farmers to achieve correct (amount and type) 

fertiliser application, timely weeding, and the availability of crop residues for mulching and 

systematic crop rotations which are currently lacking.  

An additive design of within-row intercropping was compared to a substitutive design with 

distinct alternating rows of maize and legume (local practice) under no-till in the Ruaca and 

Vunduzi communities, central Mozambique. Intercropping increased productivity compared 

to the corresponding sole crops with land equivalent ratios (LER) of between 1.0 and 2.4. 

Maize yield loss was only 6-8% in within-row intercropping but 25-50% in the distinct-row 

option. Relay planting of maize and cowpea intercropping ensured cowpea yield when maize 

failed thus reduced the negative effects of dry spells. The residual benefits of maize-

pigeonpea intercropping were large (5.6 t ha-1) whereas continuous maize yielded only 0.7 t 

ha-1 and was severely infested by striga (Striga asiatica). The accumulation of biomass which 
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provided mulch combined with no tillage increased rainfall infiltration. Intercropping was 

preferred by the majority of farmers due to increased farm harvest and profitability, even 

though the labour required for weeding increased by 36%. Where land limitation is a major 

problem as in Vunduzi, intensification through legume intercropping is a feasible option to 

increase crop productivity and farm income while reducing the risk of crop failure. 

Nutrient management strategies that included manure in combination with chemical fertiliser 

that included N, P, Ca, Zn, Mn were evaluated for their potential to recover degraded soils 

and to support sustainable high crop productivity in Murehwa, Zimbabwe. The experiment 

was established on sandy and clay soils in two field types. Homefields were close to the 

homestead and relatively more fertile than the outfields due to previous preferential allocation 

of nutrients. Maize grain yields in sandy soils did not respond to the sole application of 100 

kg N ha-1; manure application had immediate and incremental benefits on crop yields in the 

sandy soils. A combination of 25 t ha-1 manure and 100 kg N gave the largest treatment yield 

of 9.3 t ha-1 on the homefield clay soils, 6.1 t ha-1 on clay outfield, 7.6 t ha-1 on sandy 

homefield and 3.4 t ha-1 in the eighth season. Yields of the largest manure application in the 

outfields were comparable to those with optimum fertiliser application in the homefields 

suggesting the need to target nutrients differently to different fields. Despite the large manure 

applications of up to 25 t ha-1, crop productivity and soil organic carbon build-up in the 

outfield sandy soils was small highlighting the difficulty to recover the fertility of degraded 

soils. Manure can be used more efficiently if targeted to fields closest to homesteads but this 

exacerbates land degradation in the outfields and increases soil fertility gradients. Combined 

manure and mineral fertiliser application can be adapted locally for improved total farm 

productivity in mixed crop-livestock systems.  

The NUANCES-FARMSIM model for simulating crop and animal productivity in mixed 

crop-livestock farming systems was used to perform trade-off analysis with respect to crop 
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residue management, animal and crop productivity. The study site was Murehwa, Zimbabwe 

chosen among the three study sites because of the strong intensity of interaction crop and 

livestock production. Proportions (0, 25, 50, 75 and 100%) of maize stover produced per farm 

were allocated either to soil as mulch or animal feed during the dry season. Retaining all 

maize residues in the field led to severe losses in animal productivity but significant gains in 

crop productivity in the long-term. Yield increased 4 to 5.6 t farm-1 for RG1, and from 2.8 to 

3.5 t farm-1 for RG2. Body weight loss was on average 67 kg per animal per year for RG1 

and 93 kg per animal per year for RG2. Retention of all crop residues reduced farm income 

by US$937 and US$738 per year for RG1 and RG2 respectively. Non-livestock farmers (60% 

of the farmers) do not face trade-offs in crop residue allocation but have poor productivity 

compared to livestock owners. They have a greater scope of retaining their crop residues if 

they invest in more labour to keep their residues during the dry season. Farmers who own 

cattle cannot allocate crop residues for mulch at current productivity as it will lead to reduced 

animal productivity and farm economic value.  

It is clear that intercropping maize and legumes is attractive to farmers for both nutrition and 

income although the existence of a market for the legume is crucial. Conservation agriculture 

conflicts with livestock and has large initial input demands such as nitrogen fertiliser which is 

beyond the reach of the majority of farmers in southern Africa. Manure use with 

supplementary nitrogen fertiliser improves crop productivity in mixed-crop livestock systems 

and is a good starting point to ecological intensification. 

This study has revealed that crop production intensification options developed without 

considering the biophysical conditions as well as socio-economic circumstances of farmers 

are nuisances. External ideas should be used to stimulate local innovations to push the 

envelope of crop production without creating new constraints on resource use. 
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Samenvatting 

De afname van de bodemvruchtbaarheid en onregelmatige regenval zijn belangrijke 

randvoorwaarden voor de productiviteit op kleinschalige landbouwbedrijven in zuidelijk 

Afrika. Intensivering van de gewasproductie door middel van efficiënt gebruik van kunstmest 

en het wederopbouwen van de bodemvruchtbaarheid is nodig om meer voedsel per 

oppervlakte-eenheid van land te produceren. De noodzaak om de hongerigen te voeden is 

hoogst dringend in Afrika, maar boeren daar ervaren een aantal van de meest acute 

biofysische en socio-economische omstandigheden. Het doel van dit proefschrift was het 

identificeren van geschikte opties voor intensivering van de gewasproductie, die functioneel 

zijn voor de sociaal-economische en biofysische omstandigheden van specifieke maïs 

productiesystemen van kleinschalige boeren in zuidelijk Afrika.  Drie sites die een gradiënt 

van intensiteit van plantaardige en dierlijke productie vormden, werden geselecteerd voor de 

studie. Murehwa in Zimbabwe wordt gekenmerkt door de grootste intensiteit gevolgd door 

Ruaca en Vunduzi, beiden in centraal Mozambique. In alle drie locaties is maïs het 

belangrijkste voedsel- en marktgewas. 

Het aanpassen van opties voor gewasproductie aan de plaatselijke omstandigheden is nodig 

om blijvende voedseltekorten en armoede te bestrijden. Bij het identificeren van plantaardige 

productiesystemen die inputs efficiënt gebruiken en leiden tot positieve biofysische en socio-

economische resultaten, werd gebruik gemaakt van het paradigfma van ecologische 

intensivering. De gesuggereerde haalbare opties omvatten: de integratie van plantaardige en 

dierlijke productie, verhoogde diversificatie in de gewasteelt (mengteeltsystemen), en 

‘Conservation Agriculture’ (CA), dat nutriënten en bodembescherming bevordert. 
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Een literatuurstudie, participatief veldonderzoek, en simulatiemodellen werden gecombineerd 

in het analyseren van de potentiële opties van gewasproductie over een gradiënt van 

intensiteit van landbouwbeoefening. Daarnaast werd er een ‘trade-off’ analyse uitgevoerd om 

inzicht te krijgen in de gevolgen van altertnatief gebruik van gewasresten op de totale 

productie en het economische rendement. De alternativen betroffen gebruik van gewasresten 

als veevoeder, en als bodembedekking (‘mulch’), voor het verhogen van de 

bodemvruchtbaarheid.  

Uit een meta-analyse van maïs opbrengsten in semi-aride en sub-humide streken bleek dat 

CA rotaties met vlinderbloemigen en hoge stikstofbemesting noodzakelijk maakt, vooral in 

de eerste jaren. Het algemene effect van het afschaffen van de grondbewerking zonder een 

‘mulch’ van gewasresten is een afname van de maïs opbrengst van 0,2 t.ha-1 in vergelijking 

met conventionele grondbewerking. Echter, het 95% betrouwbaarheidsinterval van het 

gewogen gemiddelde verschil (WMD in het Engels) varieerde tussen -1,8 en 1,8 t ha-1. Geen 

grondbewerking met rotatie had een positieve WMD van 0.1 t ha-1, terwijl geen 

grondbewerking zonder een mulch van gewasresten een totale WMD had van -0,1 t ha-1 ten 

opzichte van conventionele grondbewerking. Verminderde grondbewerking zonder een 

mulch van gewasresten leidt tot lagere maïs opbrengsten dan conventionele grondbewerking 

in streken met weinig neerslag; in gebieden met hoge regenval leidt een mulch van 

gewasresten juist tot lagere maïs opbrengsten als gevolg van wateroverlast, tenzij er sprake is 

van goed gedraineerde gronden. Over het algemeen, werden hogere gewasopbrengsten pas 

verkregen op de lange termijn, en met name wanneer gewasrotaties werden toegepast. De 

nadelige gevolgen van varierende regenval in zuidelijk Afrika zijn moeilijk te compenseren, 

zelfs met CA. De analyse toonde aan dat voor een beter resultaat CA dient te worden 

aangepast aan de specifieke biofysische omstandigheden. In zuidelijk Afrika zullen de 

gewasopbrengsten met CA afhangen van het vermogen van de boeren om de juiste bemesting 
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(hoeveelheid en soort) te gebruiken, tijdig te wieden, en van de beschikbaarheid van 

gewasresten voor het bedekken van de grond en het gebruik van systematische gewasrotaties. 

Momenteel ontbreekt het hier aan. 

In een experimenteel ontwerp in de Ruaca en Vunduzi gemeenschappen in centraal 

Mozambique werd binnen-rij mengteelt vergeleken met afwisselende rijen van maïs en 

vlinderbloemigen (lokale praktijk) zonder grondbewerking. Mengteelt verhoogde 

gewasopbrengsten in vergelijking met de overeenkomstige monocultuur gewassen met land 

gelijkwaardige verhoudingen (LER in the Engels) tussen de 1,0 en 2,4. Het verlies aan maïs 

opbrengst was slechts 6-8% in binnen-rij mengteelt, maar bedroeg 25-50% in de optie met de 

afwisselende gewasrijen. Het zaaien van maïs en cowpea koeieboon (ook wel: oogjesboon)  

in mengteelt verzekerde een opbrengst met cowpea wanneer die van maïs mislukte, en dus 

verminderde het de negatieve effecten van droogte. De residuele effecten van de mengteelt 

met maïs en pigeonpea duivenerwt waren groot (5.6 t ha-1) in vergelijking met continu maïs. 

Deze leverde slechts 0,7 t ha-1 op en was ernstig aangetast door striga (Striga asiatica). De 

accumulatie van biomassa voor gebruik als mulch, in combinatie met geen grondbewerking, 

verhoogde de infiltratie van regenval. De meerderheid van boeren geeft de voorkeur aan 

binnen-rij mengteelt vangwege de verhoogde gewasopbrengst en winstgevendheid, hoewel de 

arbeid die nodig is voor het wieden steeg met 36%. Waar landgebrek een groot probleem is 

zoals in Vunduzi, is intensivering door binnen-rij mengteelt met vlinderbloemigen een 

haalbare optie voor een hogere gewasproductie en een hoger bedrijfsinkomen. Tegelijkertijd 

vermindert het risico van misoogsten. 

Strategieën voor het beheer van nutriënten die dierlijke mest combineren met kunstmest met 

N, P, Ca, Zn and, Mn, werden geëvalueerd op hun potentieel om gedegradeerde bodems te 

herstellen en om duurzame en hoge gewasproductie te bereiken in Murehwa, Zimbabwe. Het 

experiment werd uitgevoerd op zand- en kleigronden en in twee typen velden. Zogenoemde 



Samenvatting	
 

212 
 

‘thuisvelden’ waren dicht bij de boerehoeve gelegen en relatief vruchtbaarder dan de 

‘buitenvelden’ als gevolg van historische preferentiële toewijzing van nutriënten. Op de 

zandgronden resulteerde bemesting met enkel 100 kg N.ha-1 niet in hogere maïsopbrengsten; 

dierlijke mest gaf echter onmiddellijke, en over de seizoenen toenemende,  hogere 

gewasopbrengsten op de zandgronden. Een combinatie van 25 t ha-1 dierlijke mest en 100 kg 

N ha-1 als kunstmest gaf in het achtste seizoen de hoogste opbrengst (9,3 t ha-1) op de 

kleigronden van het thuisveld, 6.1 t ha-1 op de kleigronden van het buitenveld, 7.6 t ha-1 op de 

zandgronden van het thuisveld en 3.4 t ha-1 op de zandgronden van het buitenveld. De 

opbrengsten met de hoogste gebruik van dierlijke mest in de buitenvelden waren 

vergelijkbaar met die van een optimale bemesting met kunstmest in de thuisvelden. Dit 

suggereert de noodzaak om de verschillende beschikbare bronnen van nutriënten te richten op 

verschillende velden. Ondanks de topassing van hogere dierlijke mest hoeveelheden (tot 25 

ton ha-1) was de gewasproductie en de opbouw van de organische stof op de zandgronden van 

de buitenvelden klein. Dit wijst op de moeilijkheid om de vruchtbaarheid van gedegradeerde 

gronden te herstellen. Dierlijke mest kan efficiënter worden gebruikt indien zij wordt gericht 

op velden die het dichtst bij de boerehoeve liggen. Dit dit verergert echter landdegradatie in 

de buitenvelden en verhoogt de bodemvruchtbaarheidsgradiënten. Gecombineerd gebruik van 

dierlijke mest en kunstmest kan lokaal worden aangepast voor een betere totale productiviteit 

in gemengde gewas-veehouderijsystemen. 

Het NUANCES-FARMSIM model voor het simuleren van de productiviteit van gewassen en 

vee in gemengde gewas-veehouderijsystemen werd gebruikt om de trade-offs te analyseren 

tussen dierlijke en plantaardige productie met betrekking tot het beheer van gewasresten. Uit 

de drie locaties werd Murehwa in Zimbabwe gekozen simulatie locatie voor dit onderzoek 

vanwege de sterke interactie tussen de plantaardige en dierlijke productie. Verschillende 

verhoudingen (0, 25, 50, 75 en 100%) van maïs gewasresten geproduceerd op het bedrijf 
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werden toegewezen hetzij aan de bodem als mulch, hetzij als veevoeder tijdens het droge 

seizoen. Behoud van alle maïs gewasresten in het veld leidde enerzijds tot ernstige verliezen 

in productiviteit van vee, anderzijds tot een aanzienlijke gewas productiviteitswinst in de 

lange termijn. De opbrengst steeg naar 4-5,6 t per bedrijf voor RG1 en 2,8-3,5 t per bedrijf 

voor RG2. Gewichtsverlies van vee bedroeg gemiddeld 67 kg per dier per jaar voor RG1 en 

93 kg per dier per jaar voor RG2. Behoud van alle gewasresten verminderde 

landbouwinkomen met 937 en 738 US $ per jaar voor respectievelijk RG1 en RG2. Niet-

veehouders (60% van de boeren) worden niet geconfronteerd met deze afwegingen in de 

toewijzing van gewasresten maar de productiviteit van hun land is reeds lager in vergelijking 

met dat van veehouders. Ze hebben meer mogelijkheden om hun gewasresten te behouden 

indien zij investeren om deze gedurende het droge seizoen te behouden. Met de huidige 

productiviteit kunnen boeren die vee bezitten hun gewasresten niet als mulch gebruiken, 

omdat dat zal leiden tot een verminderde productiviteit van het vee en een lager economisch 

rendement van de boerderij. 

Het is duidelijk dat een mengteelt van maïs en vlinderbloemigen aantrekkelijk is voor boeren, 

zowel vanuit het voedings als een inkomensperpectivf. Voorwaarde is wel dat er een markt 

voor vlinderbloemigen is. CA conflicteert met veehouderij en vraagt om een grote initiële 

investering van o.a. stikstofbemesting, iets wat buiten het bereik ligt van de meerderheid van 

de boeren in zuidelijk Afrika. Het gebruik van dierlijke mest aangevuld met stikstofkunstmest 

verbetert de productiviteit van gewassen in de gemengde gewas- veehouderijsystemen en is 

een goed uitgangspunt voor ecologische intensivering. 

Deze studie heeft aangetoond dat opties voor intensivering van de plantaardige productie die 

ontwikkeld zijn zonder rekening te houden met de biofysische en sociaal-economische 

omstandigheden van de boeren, uitsluitend een last voor hen zijn. Externe ideeën moeten 

worden gebruikt om lokale innovaties ter verhoging van de plantaardige productie te 
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bevorderen, zonder dat deze nieuwe beperkingen creëren op het gebruik van de aanwezige 

hulpbronnen.  
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