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Abstract

Radars are known for their ability to obtain a wealth of information
about the spatial and temporal characteristics of rainfall fields. Unfor-
tunately, precipitation estimates obtained by weather radar are affected
by multiple sources of error, which have to be corrected for in order to
provide realistic rainfall estimates. This thesis specifically focuses on
the correction of weather radar data for its dominant sources of error,
so its product becomes directly applicable for hydrological purposes.

In general, weather radar measurement errors can be split into two
main groups: 1) errors related to reflectivity measurements of the radar,
and 2) errors related to the conversion of the measured reflectivity val-
ues into a rainfall intensity. The former type of errors result from the
characteristics of the radar (e.g. radar calibration), the surrounding
environment (e.g. blockage, clutter, signal attenuation), or from the
interpretation of reflectivity measurements (e.g. vertical profile of re-
flectivity, VPR). Errors related to the latter originate from continuous
spatial and temporal changes of the particle size distribution of the hy-
drometeors, in case of rainfall the so-called drop size distribution (DSD).
The relation between the radar reflectivity and rainfall rate is usually
described by a power law. Since both radar reflectivity and rainfall
intensity are related to the DSD, their effective relation changes con-
tinuously. This gives rise to the problem that similar radar reflectivity
values can result from different raindrop size distributions with different
rainfall intensities.

This thesis focuses specifically on weather radar rainfall measure-
ments in stratiform precipitation. In North-Western Europe this type of



precipitation is most dominant in winter and leads to the largest hydro-
logical response of catchments. Unfortunately, the quality of uncorrected
radar rainfall estimates starts decreasing at relatively close range from
the radar for this type of precipitation. Therefore, as a first approach,
a number of previously proposed radar error correction algorithms were
applied in this thesis. The implementation of these methods shows a
positive impact on the quality of the obtained precipitation measure-
ments as compared to rain gauges. However, the traditional approach
of applying a uniform Eulerian based algorithm for the entire radar um-
brella to correct for VPR, limits its impact to improve the corrected
weather radar precipitation measurements.

In order to obtain further improvements in the quality of weather
radar correction mechanisms, contrary to previous implementations, a
Lagrangian approach is proposed in this thesis. This is expected to be
highly beneficial, because precipitation fields are continuously changing
in space and time. For this purpose, the Rotational Carpenter Square
Cluster Algorithm (RoCaSCA) was developed to identify and discrimi-
nate between precipitation regions, which are then followed over time.
Within each precipitation region, using previously developed methods,
the type of precipitation is identified for each pixel discriminating be-
tween convective, stratiform and non-convective/non-stratiform precip-
itation. The latter two types of precipitation are then corrected for the
impact of VPR using a newly developed approach. After combining this
Lagrangian correction approach with previously proposed radar correc-
tion algorithms, radar reflectivity values are converted into rainfall rates
using a precipitation type dependent relationship.

For the winter half-year of study, results show that the newly pro-
posed procedure leads to a large improvement in the quality of weather
radar rainfall estimates up to distances of 150 km. After accounting for
all dominant error sources, radar precipitation estimates have a similar
quality as those obtained from in situ rain gauge measurements. There-
fore, contrary to traditional operational correction algorithms, there is
no need to perform a final bias correction using rain gauge data to gen-
erate reliable rainfall estimates.

It is recognized that after correcting for errors considerable differ-
ences between the measurements of both devices remain, either originat-
ing from unaccounted error sources, small-scale precipitation variability,
or from scale issues when comparing weather radar and rain gauge mea-
surements. However, instead of applying a bias correction procedure to
account for these differences, in this thesis the amount of uncertainty as-
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sociated with the weather radar rainfall measurement is identified. For
this purpose, two conceptual approaches were developed. Using the vol-
umetric weather radar data, the first approach is able to estimate the
amount of uncertainty originating from spatial and temporal variability
of the VPR. As a second procedure, the uncertainty originating from
the applied relation between radar reflectivity and rainfall rate is esti-
mated using a statistical technique, which assumes the two parameters
of the log-transformed relation follow a bivariate log-normal distribu-
tions. This assumption of log-normality was derived from the analysis
of a long-term DSD dataset obtained from disdrometer measurements
in the South of France. For stratiform precipitation, these two types
of uncertainty are assumed to have the most dominant impact on the
quality of radar rainfall measurements. Results confirm this hypothesis
and show that once either type of uncertainty is taken into account, a
large part of the difference between weather radar and rain gauge mea-
surements can be accounted for.

As a last aspect of this thesis, the hydrological impact of error-
corrected weather radar rainfall measurements is assessed by simulat-
ing the rainfall-runoff response of the medium-sized Ourthe catchment.
This basin is situated within the Belgian Ardennes region, a hilly envi-
ronment consisting of shallow sloping soils that give rise to a relatively
fast hydrological response to rainfall. Since this basin is one of the
major tributaries of the river Meuse before it enters The Netherlands,
understanding and simulating its response to rainfall is important for
operational flood forecasting. Using the corrected weather radar data
in a lumped hydrological model, discharge simulations have a similar
quality as those based on in situ rain gauge data. However, using the
latter type of data results in a serious underestimate of the largest flood
peak observed during the period of simulation. In case the weather radar
data are used, including information on the uncertainty originating from
both considered sources, much better simulations of the observed flood
peak are obtained. This shows the benefit of using weather radar data
in rainfall-runoff applications. Since the resolution of operational hy-
drological models increases and the quality of radar rainfall estimates
is expected to improve even further as a result of new technology (po-
larimetry), it is anticipated that the possibilities of applying weather
radar information in hydrology will only increase further in the near
future.
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Voorwoord /Preface

Indien men mij tien jaar geleden gezegd zou hebben dat dit proefschrift
het resultaat zou zijn van een door mij uitgevoerd promotieonderzoek,
zou ik diegene niet hebben geloofd. Zowel tijdens mijn Bachelor Bo-
dem, Water en Atmosfeer als gedurende een groot deel van mijn Master
Hydrology and Water Quality in Wageningen heb ik nooit stilgestaan
bij een wetenschappelijke carriere. Ik wilde consultant worden, en dan
bij voorkeur bij één of ander prestigieus kantoor aan de Amsterdamse
Zuidas, London of New York. Om mijn kans op het krijgen van een
dergelijke topbaan te bevorderen verbreedde ik mijn studiepakket met
een jaar lang economische vakken en werd ik actief in het studenten-
leven. Het enige dat aan het eind van mijn studie nog aan mijn CV
ontbrak was internationale ervaring. Maar aangezien het mijn droom
was om stage te lopen in de Verenigde Staten, het land van de onbe-
grensde mogelijkheden, kon ik ook aan deze eis voldoen. Zo was ik
destijds overtuigd.

Vanaf augustus 2006 liep ik stage in de onderzoeksgroep van Peter
Troch aan de University of Arizona voor een periode van 7 maanden.
Mijn onderzoekswerkzaamheden waren erg afwisselend en varieerden
tussen veldwerk, afvoermodelering, sneeuwhydrologie, neerslagmetingen
en flash floods. Met name deze laatste twee onderwerpen boeiden mij
enorm. Hoe gaaf was het om in het ruige landschap van Arizona (waarin
ik als een cowboy rondliep) onderzoek te doen naar hevige zomerse
onweersbuien die in de bergen extreme afvoeren kunnen veroorzaken.
Tegelijkertijd was het erg frustrerend dat de interne klokken van een
groot aantal regenmeters onregelmatige tijdsprongen maakten waardoor
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het nagenoeg onmogelijk was om de exacte periode van een bui te
bepalen. Achteraf gezien is deze stage van grote invloed geweest op
mijn latere keuzes. Tk kwam erachter dat de hydrologische wetenschap
toch wel erg interessant was!

Hoewel ik na het afronden van mijn studie allereerst nog op zoek
ben gegaan naar die zo fel begeerde topbaan, ben ik hiermee vrij snel
gestopt. Voor mijn gevoel was ik nog niet klaar met studeren en het
idee van een promotieonderzoek trok inmiddels meer dan een baan in
het bedrijfsleven. In het voorjaar van 2007 had ik hierover een zeer
goed gesprek met Remko Uijlenhoet, die net was aangesteld als nieuwe
hoogleraar Hydrologie en Kwantitatief Waterbeheer in Wageningen. Hij
was betrokken bij het Europese project Hydrate, dat zich richte op het
analyseren en voorspellen van extreme neerslag die kan leiden tot flash
floods. Weerradarmetingen speelden hierbij een essenti€le rol. Gegeven
mijn ervaring in Arizona en de wetenschap slechts in beperkte mate
gebruik te hoeven maken van foutieve regenmeterdata, leek mij dit een
geweldig promotie onderzoek. Weerradarmetingen hadden minder last
van dergelijke fouten was mijn onschuldige overtuiging destijds ©.

Zeer gemotiveerd startte ik in september 2007 mijn promotieonder-
zoek, waarbij we in eerste instantie weerradarinformatie voornamelijk
wilden gebruiken voor het verkrijgen van ruimtelijke neerslag. Hierbij
poogden we ruimtelijke variaties aan druppelgrootteverdelingen geme-
ten aan de grond te koppelen aan de weerradarmetingen. Vervolgens
zou deze informatie dan gebruikt kunnen worden in een hoge reso-
lutie neerslag-afvoermodel waarbij expliciet individuele hellingen wer-
den gemodelleerd. Na dit geimplementeerd te hebben zouden we dan
eventueel kunnen kijken naar ruimtelijke variaties in reistijdenverdeling-
en. Hoewel een hoog ambitieniveau nooit verkeerd is, realiseer ik mij
inmiddels dat het nagenoeg onmogelijk is dit in een tijdsperiode van
vier jaar af te ronden.

Uiteindelijk heb ik mij de afgelopen jaren voornamelijk gefocused op
het verkrijgen van nauwkeurige neerslaginformatie uit weerradarda-ta
en de invloed van ruimtelijke variaties in druppelgrootteverdelingen. Dit
blijkt toch niet zo eenvoudig te zijn, zoals u in dit proefschrift kunt lezen.
Weerradarmetingen bevatten vele fouten. In plaats van met standaard-
methodes weerradargegevens te corrigeren met regenmeterdata (deze
kunnen nog steeds leiden tot een hoop onzekerheid en worden helaas
nog te vaak toegepast!) ben ik in samenwerking met Remko en post-
doc Hidde Leijnse correcties gaan toepassen gebasseerd op onze fysische
kennis van de radar en de neerslag. De weerradar geeft iedere 5 minuten



een enorme hoeveelheid informatie over het ruimtelijk neerslagveld. De
grote uitdaging hierbij is deze informatie efficiént te verwerken. Gelukkig
had ik tijdens het afstudeervak van mijn Master bij Paul Torfs de lagere
programmeertaal C+4 geleerd, iets waar ik tot de dag van vandaag
profijt van heb. Het eerste jaar van mijn promotie hebben we met name
reeds bekende correctiemethodes geimplementeerd, wat leidde tot hoofd-
stuk 2 van dit proefschrift. Aan de hand van deze ervaring ontstonden
vele nieuwe ideeén tot het verder verbeteren van de kwaliteit van weer-
radarmetingen, die worden besproken in de hoofdstukken 4, 5 en 6 van
dit proefschrift.

Since the topic of my PhD was initially focused on flash floods, I
got the opportunity to stay for 5 months in the research group of Guy
Delrieu at the Laboratoire d’étude des Transferts en Hydrologie et En-
vironnement in Grenoble from October 2008 to February 2009. This
institute is world-famous for its physical approach to correct volumetric
weather radar data. Together with Nan Yu, a Chinese PhD student in
Grenoble, and under the supervision of Guy, Remko and postdoc Brice
Boudevillain, I kept myself busy with precipitation scaling-law theory
and its impact on the applied radar reflectivity - rainfall intensity re-
lationship. The work done during this period directly lead to Chapter
3 of this thesis and is the foundation of some of the ideas presented in
later chapters.

Vanaf 2011 ben ik intensief gaan samenwerken met Marjolein van
Huijgevoort, die haar promotieonderzoek richtte op droogte in globale
hydrologische modellen. Onderzoeksresultaten op basis van deze model-
gegevens hebben een grote maatschappelijk impact. Helaas biedt de
kwaliteit van veel modellen ruimte voor verdere verbetering, waar ik
graag aan wilde werken. Toen ik bij toeval (hoewel ik mij dat soms
afvraag) aan het einde van mijn promotie een vacature voor een postdoc
positie voor het opzetten van een nieuw globaal hydrologisch model in
de groep van Xubin Zeng aan de University of Arizona tegenkwam, heb
ik hier op gesolliciteerd. Deze positie bood de ideale mogelijkheid mijzelf
de komende jaren te verbreden en door te ontwikkelen in de wetenschap.

Eind maart 2012, toen ik afreisde naar Arizona, was mijn proefschrift
nog niet af. Hoewel Remko en ik er van overtuigd waren dat dit in
de eerste maanden in Tucson zou gebeuren, heeft dit toch wat langer
op zich laten wachten. De combinatie van een nieuwe baan met een
nieuw onderwerp, zonnige temperaturen en een zwembad in de tuin bood
hierbij teveel afleiding.

Het moge duidelijk zijn dat er een hoop mensen een rol hebben
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gespeeld in mijn ontwikkeling de afgelopen jaren. Allereerst wil ik mijn
promotor en dagelijks begeleider Remko Uijlenhoet bedanken voor zijn
tijd, inzet maar bovenal de gezelligheid in de afgelopen jaren. Remko, ik
weet dat ik je een hoop vrijdagmiddagen van je weekend heb afgehouden
tijdens langdurige besprekingen. Daarnaast blijven mij een hoop inter-
essante en gezellige Europese projectbesprekingen en conferenties bij,
waar ik met heel veel plezier op terug kijk. Dank voor je enthousiasme
en het delen van je kennis en ervaringen op alle momenten van de dag!

Vervolgens bedank ik mijn co-promotor Hidde Leijnse, die na de
eerste 2 jaar in Wageningen weerradaronderzoeker werd bij het Konin-
klijk Nederlands Meteorologisch Instituut (KNMI). Hidde, wij hadden
de afgelopen jaren een hoop interessante discussies over mogelijke ver-
beteringen in de weerradarmetingen. De positiviteit en het enthousiase
die jij hierbij uitstraalde werken erg motiverend. Dank hiervoor!

I would also like to thank my second co-promotor Guy Delrieu for
allowing me to work in his research group in Grenoble. Guy, your critical
assessment has always motivated me to come up with better solutions
and answers. Many thanks for this! When it comes to my stay in
Grenoble I also wish to thank Brice Boudevillain and Nan Yu for many
interesting discussions.

Verder wens ik Paul Torfs te bedanken die mijn begeleider was tijdens
zowel mijn Bachelor als Master afstudeervak. Paul, je interesse voor nu-
merieke problemen, lagere programmeertalen en computertoepassingen
in het algemeen hebben mij erg geholpen bij het tot stand komen van dit
proefschrift zowel als mijn huidige positie. Dank hiervoor! Verder wil
ik Patrick Bogaart, Ruud Hurkmans, Ype van der Velde, Olda Rakovec,
Ryan Teuling, Henny van Lanen en Piet Warmerdam bedanken voor
interessante discussies de afgelopen jaren. Deze hebben mij zeker hy-
drologisch gevormd. With respect to this latter aspect I also want to
thank Peter Troch and Steve Lyon for the interesting work and discus-
sions, which resulted in my decision to pursue a PhD.

Een persoon die ik absoluut niet mag vergeten te noemen is Joris
Eekhout, mijn kamergenoot in Wageningen. Joris, het delen van een
kamer met jou heb ik als zeer prettig ervaren. Ik denk dat wij uit-
stekend in staat waren op de juiste wijze onze frustraties op het gebied
promoveren, wetenschap, het universitaire bedrijf, zowel als politiek en
maatschappij te delen. Hierbij zetten de “Louis van Gaal Klassieker” op
youtube en het “Had je een probleem” op dumpert vaak de juiste toon.
Ik kijk dan ook met veel plezier terug op deze periode! Verder wens ik de
overige collega’s van de leerstoel Hydrologie en Kwantitatief Waterbe-
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heer en van de voormalige leerstoel Bodemnatuurkunde, Ecohydrologie
en Grondwaterbeheer te bedanken!

Tijdens mijn promotieperiode heb ik de nodige studenten begeleid
tijdens hun Bachelor en Master thesis. Ondanks dat veel van de onder-
werpen niet direct van toepassing waren op mijn huidige onderzoek heb
ik het begeleiden van studenten als zeer prettig en interessant ervaren.
Boudewijn, Kay, Karlijn, Erik, Tjeerd, Deen, Katie, Marjolein, Jouke,
Sihine en Tung, bedankt voor deze samenwerking!

Dit onderzoek had nooit kunnen plaatsvinden als ik geen gebruik had
kunnen maken van data uit Belgi€. Daarom wil ik Laurent Delobbe van
het Koninklijk Meteorologisch Instituut in Belgi¢ bedanken voor het ver-
strekken van de ruwe volumetrische radardata en zijn interesse voor mijn
vorderingen. Next to that, I wish to thank Philippe Dierickx for provid-
ing lots of information on raingauge and discharge measurements taken
by the Hydrological Service of the Walloon Region of Belgium (MET-
SETHY). Ook wil ik Albrecht Weerts en Paolo Reggiani van Deltares
in Delft bedanken voor het verstrekking van het hydrologische model
gebruikt in hoofdstuk 2.

Tenslotte will ik nog een aantal mensen in de privé-sfeer bedanken.
Allereerst mijn beiden paranimfen Gertjan Dijkstra en Anton van den
Broek. Gertjan, wij kennen elkaar al sinds de middelbare school. Dank
voor alle gezelligheid de afgelopen 1,5 decennia. Anton, ook jij bedankt
voor al je gezelligheid, inclusief je no nonsense houding en realisme met
betrekking tot mijn wetenschappelijke vorderingen en de impact hiervan!

Mijn ouders en zusje Renate voor hun onvoorwaardelijke steun, liefde
en motivatie die ze mij gaven om mijzelf te blijven ontwikkelen. Uit de
grond van mijn hart, dank hiervoor! Last I wish to thank my fiancée
Karen Casas, whom I met last year at the beginning of Summer in
Tucson. This last year in Tucson has been an amazing experience mainly
due to your pressence. Our love brought the final piece of this thesis,
the cover photo. This photo was taken while visiting your family in
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CHAPTER 1

Introduction

1.1 Background

Weather radars are able to obtain a wealth of information on the spatio-
temporal properties of precipitation (Zawadzki, 1975; Joss and Lee,
1995; Smith et al., 2001). RADAR, which is an acronym for Radio
Detection And Ranging, was developed before and during World War 2
to detect enemy objects using reflected radio waves. A radar transmits
a short pulse of electromagnetic radiation into the atmosphere, which
is then reflected by particles in the atmosphere (e.g. airplanes, birds,
insects, rain drops) or the surrounding environment (e.g. mountains,
trees, ocean waves). Part of the reflected signal is transferred back to
the radar where its intensity (and in case of coherent or Doppler radars
also its phase) is measured. From the intensity of the observed reflected
signal it is possible to make an estimate of the occurrence and strength
of the precipitation field.

Because of its ability to detect precipitation, meteorologists have
used these images for over half a century to identify precipitation and
issue warnings/forecasts in case heavy rainfall is observed. Nowadays,
however, professional meteorologists are not the only ones interested in
radar images to issue precipitation ‘forecasts’. Widely available weather
radar imagery, presented on the Internet and on mobile Apps, is influenc-
ing many people’s daily decisions. By assessing and extrapolating these
images, we have turned the weather radar into our own personal virtual



weatherman, whom we consult for questions like: 1) What should/can I
wear?, 2) When will T leave/go home/to work?, 3) Should I take an um-
brella today?, etc. As such, weather radars have become an important
part of our lives.

Besides the meteorological community, hydrologists have also be-
come interested in the ability of weather radars to provide estimates of
surface precipitation. Especially the detailed information on the spatial
variation of precipitation intensities is very appealing to hydrologists.
Historically, rain gauges were used for to measure surface precipitation
amounts. However, their small size, limited spatial representativity, and
relatively high maintenance cost, together with the much more detailed
information provided by weather radars makes weather radars very at-
tractive for hydrological use. Nowadays, more and more operational
centers are starting to use radar information to monitor the hydrological
system. In case (extreme) precipitation is observed, warnings/forecasts
on the occurrence of possibly local (flash)floods can be issued (Collier
and Knowles, 1986; Joss and Waldvogel, 1990; Carpenter et al., 2001;
Vivoni et al., 2006).

Unfortunately, radar precipitation estimates are far from perfect as
they are affected by multiple sources of error. This makes it difficult to
use weather radar information directly for hydrological purposes. His-
torically, rain gauge information was used to adjust the weather radar
data for bias errors and hence to improve the quality of radar rainfall
estimates. Unfortunately, this procedure has a number of limitations.
Firstly, many of the errors arise from the reflection of the radar signal
off the surrounding landscape, known as clutter. Although these ground
clutter returns have different signal properties than precipitation, it is
difficult to distinguish and remove them in case artifacts are embedded
within a larger precipitation system. Secondly, since the spatial den-
sity of many operational gauge networks is rather course compared to
the typical spatial variability of precipitation fields (Berne et al., 2004a)
and most types of radar error are spatially variable as well, correcting
for bias errors can still lead to errors in precipitation estimates. Thirdly,
up to recently, much of the rain gauge information was not available in
real-time. This made it impossible to adjust radar data for bias errors
until rain gauge measurements became available (typically after sev-
eral hours). Therefore, to improve the hydrological potential of weather
radar measurements, many efforts have been devoted to automatically
correcting these precipitation estimates for the most dominant sources
of error. In general, these can be divided into two main categories: 1)
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Figure 1.1: Overview of possible sources of error affecting weather
radar measurements. Source: M. Peura, Finnish Meteorological
Institute.

radar reflectivity measurement errors (Section 1.2) and 2) errors related
to converting the radar reflectivity aloft to precipitation intensity on the
ground (Section 1.3) (Jordan et al., 2000; Chumchean et al., 2008). Both
types of error sources need to be addressed before the true hydrological
potential of weather radar can be exploited.

1.2 Reflectivity measurement errors

As explained in the previous section, radar reflectivity measurements are
affected by multiple sources of error. An overview of the different possi-
ble sources of error is presented in Fig. 1.1. In general, radar reflectivity
measurement errors can be subdivided into three main groups, related
to 1) the characteristics of the radar, 2) the surrounding environment
and 3) interpretation of reflectivity measurements.

An error related to the characteristics of the radar is:

1. Radar calibration — The intensity of the returned signal measured
by a radar depends on both the amount of transmitted power
and on the conversion from the power entering the antenna feed
to digital values by the radar receiver. Erroneous calibration of
the radar will result in an under- or overestimation of the true
reflectivity values (Ulbrich and Lee, 1999; Atlas, 2002).

The errors related to the surrounding environment comprise:



1. Beam blockage — In case the radar is located in a mountainous
environment or close to tall buildings, signal interaction with these
objects can result in (partial) beam blockage. This results in an
underestimation of the atmospheric reflectivity value (e.g. Delrieu
et al., 1995; Germann and Joss, 2002; Germann et al., 2006).

2. Clutter — Fixed objects such as mountains, trees, buildings, or
wind turbines that are close to the radar can cause spurious echoes,
even if these objects are not in the main radar beam. This results
in an overestimation of the atmospheric reflectivity value (e.g. Del-
rieu et al., 1995; Gabella and Perona, 1998; Dinku et al., 2002).

3. Anomalous propagation — While propagating through the atmo-
sphere the microwave signal encounters gradients in the refrac-
tive index of air perpendicular to the propagation direction. This
causes the beam to bend. At radio frequencies, the refractive in-
dex of air depends mainly on pressure, temperature, and humidity.
Therefore, vertical profiles of these variables determine to what
degree the radar beam is bent towards or away from the earth
surface. Usually, standard atmospheric profiles are used to obtain
an estimate of the measurement height at a given distance from
the radar. However, due to temporal changes in the vertical pro-
file of the index of refraction, the actual height changes over time.
Significant deviation of the true propagation path from that result-
ing from a standard atmosphere is called anomalous propagation
(AP). Strong bending of the beam towards the earth’s surface can
cause severe ground clutter. If the opposite occurs, overshooting
of precipitation can take place and atmospheric reflectivity values
are underestimated (e.g. Fabry et al., 1997; Steiner and Smith,
2002).

4. Wet radome attenuation — In case intense precipitation occurs di-
rectly on top of the radar, a film of water is able to form on the
radome. This film attenuates the microwave signal leaving and
entering the radome. This results in an underestimation of the
atmospheric reflectivity value (Germann, 1999).

5. Path-integrated attenuation — Operational weather radars com-
monly transmit at three possible frequencies or wavelengths to
measure precipitation, i.e. X-band (8-12 GHz or ~3 cm), C-band
(4-8 GHz or ~5 cm), and S-band (2-4 GHz or ~10 cm). Lower fre-
quency radars require larger antennas to have beam widths similar



to those operating at higher frequencies. Higher frequencies suf-
fer more from signal attenuation, especially for X-band radar, but
also for C-band during intense precipitation (Delrieu et al., 1991,
2000). An attenuated signal leads to a decrease of the measured
reflectivity value, and in extreme cases or at long ranges can cause
total signal loss, leading to radar ‘blindness’. On the other hand,
radars operating at lower frequencies have a lower weather signal-
to-clutter ratio. The effect of clutter is hence larger than for radars
operating at higher frequencies.

The errors related to the interpretation of reflectivity measurements
comprise:

1. Vertical profile of reflectivity (and associated range effects) — Based
on the vertical wind field, precipitation events can usually be di-
vided into convective and non-convective, where for the former
vertical wind speeds typically exceed 1 to 3 m s~!. The core of a
convective precipitation system is usually formed aloft, before de-
scending towards the earth’s surface while simultaneously moving
in the direction of the dominant horizontal wind field. Therefore,
convective systems usually exhibit a complicated 3-dimensional
reflectivity structure. Radar reflectivity measured at a given el-
evation does not necessarily correspond to the reflectivity at the
surface (Yuter and Houze Jr., 1995a; Steiner et al., 1995). Non-
convective precipitation can be subdivided into stratiform and
non-stratiform precipitation. The former is characterized by a
strong vertical stratification of the atmosphere. Stratiform pre-
cipitation is generally formed well above the freezing level, result-
ing in snow and ice particles. Because ice reflects radio waves
much less efficiently than liquid water, radar reflectivities mea-
sured above the freezing level are generally lower than those well
below it. Just below the zero-degree isotherm melting of snow
gives rise to relatively large, water-coated particles, which lead
to larger reflectivities than well below the freezing level. This is
known as the bright band (BB). Non-stratiform precipitation is
usually observed in the transition from convective to stratiform
precipitation within meso-scale convective systems. For this type
of precipitation, the vertical variation of the precipitation field
contains characteristics of both convective and stratiform precip-
itation (Houze Jr., 1997). This variation of the vertical profile of
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reflectivity (VPR) coupled with the dependence of the radar beam
height and size on range can lead to misinterpretation of radar
reflectivity measurements (e.g. Fabry and Zawadzki, 1995; Smyth
and Illingworth, 1998; Cluckie et al., 2000).

2. Temporal sampling effects — Volumetric weather radars scan the
atmosphere at multiple elevation angles to obtain detailed 3-D
information on precipitation. Using a larger number of elevation
angles will result in a more detailed representation. However, this
also leads to a decrease in the temporal scanning frequency at a
given radar elevation. Since precipitation properties are constantly
changing in space and time, the scanning strategy has an influence
on errors caused by unobserved changes in the precipitation field
in both space and time.

1.3 Rainfall estimation by radar

The second source of error that influences the quality of the radar pre-
cipitation estimates is related to the conversion of the measured radar
reflectivity Z [mm® m™] to rainfall intensity R [mm h~!]. Usually, a
power-law relationship is assumed to exist between both variables (Mar-
shall et al., 1955; Battan, 1973):

Z = AR". (1.1)

Both radar reflectivity and rain rate are moments of the drop size
distribution (DSD). Therefore, the parameters A and b also depend on
the DSD. More specifically, by assuming that the drop sizes are ex-
ponentially (Marshall and Palmer, 1948), gamma (Ulbrich, 1983), or
lognormally (Feingold and Levin, 1986) distributed, it can be shown
that the possible range of the Z-R exponent is constrained (Sekhon and
Srivastava, 1971; Smith and Krajewski, 1993; Steiner et al., 2004). For
a lognormal DSD, Smith and Krajewski (1993) found b to vary between
1 and 3.125, while for the gamma distribution Steiner et al. (2004) ob-
tained values between 1 and 1.63.

Given the fact that conventional weather radars are unable to mea-
sure raindrop size distributions, non-polarimetric estimates of A and b
cannot be obtained from these radars (and would not be necessary be-
cause R could be directly derived from the DSD otherwise). An estimate
of their values can in principle be obtained from disdrometer informa-
tion (Tokay and Short, 1996; Atlas et al., 1999; Uijlenhoet et al., 2003b).
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Another option is to combine radar and rain gauge measurements of Z
and R, respectively. However, differences in sampling characteristics
limit the representativity of these results (Kitchen and Blackall, 1992;
Steiner and Smith, 2004).

Instead, operational weather radars generally use a single fixed Z—
R relation that is representative of the dominant type of precipitation
(Battan, 1973). On average, these relations make optimal use of the in-
formation on average drop size distributions (Zhang et al., 2011). How-
ever, given the fact that the actual DSD is variable in space and time,
the assumption of a fixed Z—R-relation will lead to errors in the retrieved
precipitation intensity.

1.4 Error correction and rainfall estimation

During the past decades different techniques have been developed to
correct for the errors described in Sections 1.2 and 1.3, resulting in a
serious improvement in the quality of radar precipitation estimates (e.g.
Kitchen and Jackson, 1993; Andrieu et al., 1997; Ciach et al., 1997;
Sdnchez-Diezma et al., 2000; Tabary, 2007; Gourley et al., 2009). Joss
and Lee (1995) implemented a stepwise algorithm identifying clutter,
correcting for beam occultation, radar calibration errors and VPR ef-
fects using either a climatological or real-time profile estimate. Anag-
nostou and Krajewski (1999a,b) developed a similar system for an en-
vironment where topography causes no serious problems. Delrieu et al.
(2009) implemented a more elaborate error correction algorithm for a
series of extreme precipitation events in a mountainous environment in
the southern part of France. Besides correcting for the errors mentioned
above, the type of precipitation (convective vs. stratiform) was identi-
fied as well. This resulted in a radar product of which the quality is
comparable to that of dense rain gauge measurements available.
However, many of these studies made use of rain gauge measurements
to correct for any remaining bias in the weather radar precipitation esti-
mates. Most studies on the quality of radar error correction have focused
predominantly on convective precipitation in thunderstorms or in meso-
scale convective systems. If these events are slow-moving, long-duration
high-intensity precipitation can lead to severe (flash) flooding, especially
in mountainous environments. Long-term investigations of the influence
of different correction mechanisms for stratiform situations have been
presented in some papers (Vignal and Krajewski, 2001; Borga, 2002;
Germann et al., 2006; Bellon et al., 2007). Unfortunately, these studies
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did not attempt to verify the quality of the adjusted radar precipitation
estimates by using them as an input to a hydrological model.

1.5 Radar measurements and hydrology

The hydrological potential of weather radar has been investigated for
individual precipitation events (e.g. Hossain et al., 2004; Berne et al.,
2005; Vieuxr and Bedient, 1998; Ogden et al., 2000; Berenguer et al.,
2005; Smith et al., 2007) as well as on a longer term basis (Borga, 2002;
Neary et al., 2004). Most of these studies identify the main benefit of us-
ing radar to be the ability to obtain precipitation information at a high
resolution in both space and time. Unfortunately, only few of them cor-
rected for all significant sources of error, which makes it difficult to assess
to true potential of weather radar for hydrology. Given the challenging
nature of measuring precipitation amounts, together with the difficulty
of modeling the resulting catchment behavior, the uncertainties in the
resulting model output will be significant. This has triggered the re-
cent interest in the use of ensemble stream flow simulations for flood
forecasting (e.g. Carpenter and Georgakakos, 2006; Cloke and Pappen-
berger, 2009; Germann et al., 2009; Rossa et al., 2011).

Because volumetric weather radars provide a wealth of information
on the characteristics of the precipitation field at a much higher spa-
tial resolution than typical networks of rain gauges (Joss and Waldvo-
gel, 1990), these instruments are interesting for hydrology. However, if
radar precipitation estimates are not corrected for all dominant sources
of error, these errors can propagate through the hydrological model, re-
sulting in erroneous discharge simulations ( Vivoni et al., 2007; Collier,
2009).

Even if weather radar data are corrected for the most dominant
sources of error, considerable uncertainty around the estimated precip-
itation values remains. This uncertainty is caused by uncorrected error
sources or by unknown properties of the precipitation field. Therefore,
to improve the quality of operational rainfall-runoff forecasts using radar
data, this uncertainty needs to be accounted for ( Villarini and Krajew-
ski, 2010). During the last decade, a number of approaches has been
developed to account for these uncertainties using specialized multiplica-
tive and additive statistical error models based on the spatial correla-
tion structure of the precipitation field (e.g. Ciach et al., 2007; Germann
et al., 2009; AghaKouchak et al., 2010; Seo and Krajewski, 2011). How-
ever, in order to apply these data-intensive methods, long term precipi-
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tation data from different storm types observed in different seasons are
needed. Recently, a limited number of such long data sets has become
available (e.g. Ouereem et al., 2009; Boudevillain et al., 2011; Wright
et al., 2012; Smith et al., 2012), but this is certainly not sufficient for
large-scale operational application. Therefore, there is a need to es-
timate the uncertainty in weather radar precipitation estimates using
volumetric weather radar data alone.

1.6 Areas of interest

In the current thesis, the different aspects of weather radar correction
and its potential for hydrology are assessed using data obtained from two
different regions within Europe. The main region of study is the Ourthe
region in Belgium, while an increased understanding on the different
aspects of drop size distributions and Z—R relations was obtained using
data from the Cévennes-Vivarais region, France.

1.6.1 The Ourthe region, Belgium

The hilly plateaus of the Ardennes, part of the Meuse basin, are situated
in the eastern part of Belgium (see Fig. 1.2) and display maximum ele-
vations of around 650 m ASL. The hydrologic response can be classified
as rain-fed with some snow in winter. This results in a runoff regime
that can be classified as highly variable, giving rise to low discharges in
summer and high discharges in winter (Leander et al., 2005).

Within the Ardennes region a weather radar is situated from which
the volumetric information is available at a five-minute resolution for the
winter period October 1, 2002 until March 31, 2003. During this winter
half-year most storms had a stratiform character, for which bright bands
could already be observed within 1000 m from the surface.

Directly to the North of the radar lies the ~1600 km? Ourthe catch-
ment, which has been the focus of previous studies (Berne et al., 2005;
Driessen et al., 2010). Its outlet is situated in the North near Tabreux,
at approximately 60 km from the radar. Rain gauge information in the
region is available for 69 rain gauges, of which 10 are situated inside the
watershed.

1.6.2 The Cévennes-Vivarais region, France

The results presented Chapter 3 were based on data collected within the
Cévennes-Vivarais region in the South of France. This region is prone
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Figure 1.2: The left panel shows the location of the Ourthe re-
gion, with a 200 by 200 km box indicating the area shown in the
right panel. The right panel shows a topographic map of the Bel-
gian Ardennes, where the solid lines represent the channel network.
The white line indicates the Ourthe catchment (1600 km?). Also
shown are the position of the radar (e), catchment outlet (A), the
meteorological station (o), and the position of the rain gauges (+)
(Hazenberg et al., 2011a).
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Figure 1.3: Overview of the Cévennes-Vivarais Mediterranean
Hydro-meteorological Observatory (OHMCV) in the South of
France, which is the region of focus in Chapter 3.

to heavy and long-lasting rainfall events that occasionally lead to severe
flash floods. As part of the Cévennes-Vivarais Mediterranean Hydro-
meteorological Observatory (OHMCV, www.ohmev.fr), near the city of
Ales data were available from an optical OTT /Parsivel disdrometer as
well as a tipping bucket raingauge. In addition, data from two Meteo
France S-band radars situated near Nimes and Bollene, at distances of
about 48 and 57 km from Ales, respectively, have been applied. An
overview of this region is presented in Fig. 1.3.

1.7 Research questions and thesis outline

This thesis deals with the potential of using weather radar data for hy-
drological purposes. More specifically, the research presented in this
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thesis mainly deals with the quality of radar precipitation estimates
during a winter period. In Western Europe and many other temperate
regions of the world, precipitation is usually of stratiform type in the
winter period. A dominant source of error affecting radar rainfall esti-
mation for this type of precipitation is the vertical profile of reflectivity
(VPR) (e.g. Battan, 1973; Smith, 1986; Joss and Pittini, 1991). In order
to improve the quality of weather radar surface precipitation estimates,
data have to be corrected for VPR effects. So far, this has not been
straightforward (Kirstetter et al., 2010a).

From a hydrological perspective, the largest flood peaks are usu-
ally observed during the winter period in Western Europe. In order to
learn more about the complex processes that govern the response of a
catchment to precipitation, it is vital to have accurate and robust mea-
surements of this precipitation as well as a clear understanding of the
associated uncertainties.

These considerations lead to the following research questions, which
will be addressed in this thesis:

1. What are the most dominant sources of error in radar precipi-
tation estimation and what is the best way to correct for them
(Chapters 2 and 5)?

2. How are the parameters of the Z—R relation related to the charac-
teristics of the DSD, and how do these parameters relate to each
other (Chapter 2)?

3. Isit possible to develop a method that is efficiently able to discrimi-
nate between regions with different precipitation types (Chapters 4
and 5)7

4. For a given precipitation region, is it possible to improve the radar
estimates of the vertical profile of reflectivity, and to provide un-
certainties of these estimates (Chapter 5)7

5. How well can the response of a catchment be modelled using cor-
rected radar precipitation estimates (Chapter6)?

6. What are the contributions to the uncertainties in hydrologic model
output of VPR (Chapter 5) and DSD/Z—R (Chapter 3) uncertain-
ties relative to hydrologic model parameter uncertainties (Chap-
ter 6)7
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CHAPTER 2

Measuring rainfall using weather radar

2.1 Introduction

Weather radars have long been recognized for their ability to obtain
spatio-temporal information about storm fields at a much higher resolu-
tion than conventional rain gauge networks (Zawadzki, 1975; Joss and
Lee, 1995; Smith et al., 2001; Berne et al., 2004a). Therefore, large-scale
implementation of these systems during the last decades would in prin-
ciple make this instrument an important tool for rainfall monitoring in
the framework of hydrological applications such as (flash)flood forecast-
ing (Collier and Knowles, 1986; Joss and Waldvogel, 1990; Carpenter
et al., 2001; Vivoni et al., 2006).

Unfortunately, data obtained by weather radars are known to be
affected by multiple sources of error. Interaction with the nearby envi-
ronment can result in (partial) beam blockage and backscatter, which
especially play a dominant role in mountainous regions. This results ei-
ther in an under- or overestimation of the amount of precipitation (e.g.
Delrieu et al., 1995; Gabella and Perona, 1998; Germann and Joss, 2002;
Germann et al., 2006; Dinku et al., 2002). Other sources of error are

This chapter is a slightly modified version of: Hazenberg, P., H. Leijnse,
and R. Uijlenhoet (2011), Radar rainfall estimation of stratiform winter
precipitation in the Belgian Ardennes, Water Resour. Res., 47, W02507,
d0i:10.1029/2010WR009068.
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related to temporal changes of the index of refraction (e.g. Fabry et al.,
1997; Steiner and Smith, 2002), variability of the drop size distribution
(e.g. Waldvogel, 1974; Berenguer and Zawadzki, 2008), and variability
of the vertical profile of reflectivity (VPR) (e.g. Fabry and Zawadzki,
1995; Smyth and Illingworth, 1998; Cluckie et al., 2000).

During the past decades different techniques have been developed to
correct for these types of errors, resulting in a serious improvement in
the radar data quality (e.g. Kitchen and Jackson, 1993; Ciach et al.,
1997; Pellarin et al., 2002; Gourley et al., 2009). Joss and Lee (1995)
implemented a stepwise algorithm identifying clutter, and correcting for
beam occultation, radar calibration errors and VPR effects using either
a climatological or real-time profile estimate. Anagnostou and Krajewski
(1999a,b) developed a similar system for an environment where topog-
raphy causes no serious problems. In all of these studies rain gauge
measurements were used to correct for any final bias. A different ap-
proach was taken by Delrieu et al. (2009) for a series of extreme precip-
itation events within a mountainous environment in the southern part
of France. Besides correcting for the errors mentioned above, the type
of precipitation (convective vs. stratiform) was identified as well. This
resulted in a radar product of which the quality is comparable to that
of rain gauge measurements.

The impact of radar correction steps for stratiform precipitation sys-
tems occurring within a winter period has received less attention. During
such situations, the upper part of the atmosphere consists of snow and
ice particles. The melting of these particles results in a stronger return
signal, known as the bright band, and causes the amount of precipita-
tion to be overestimated by the weather radar. For the snow/ice region
above the bright band a significant decrease in the returned reflectivity
signal can be observed. Especially at further ranges, reflectivity samples
originate from these two regions, which has a detrimental impact on the
quality of the radar product (Fabry et al., 1992; Kitchen and Jackson,
1993; Bellon et al., 2005). Long-term investigations of the influence of
different correction mechanisms for such stratiform situations have been
presented in some papers (Vignal and Krajewski, 2001; Borga, 2002;
Germann et al., 2006; Bellon et al., 2007). Unfortunately, these studies
did not attempt to verify the quality of the adjusted radar product by
using it as an input to a hydrological model.

The hydrological potential of weather radar has been investigated
for both individual precipitation events (e.g. Hossain et al., 2004; Berne
et al., 2005; Vieux and Bedient, 1998; Ogden et al., 2000; Smith et al.,
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2007) or on a longer term basis (Borga, 2002; Neary et al., 2004). Most
of these studies identify the benefits of using radar (i.e., the ability to
obtain spatial-temporal properties of the precipitation field at a high
resolution). Unfortunately, only few of them corrected for all significant
types of measurement errors. As a consequence, obtained results using
weather radar rainfall information as an input to a hydrological model
are highly dependent on the quality of the data and the environment of
application.

This chapter addresses the importance of correcting volumetric radar
reflectivity data, and the applicability of these correction steps for long-
term real-time hydrological purposes. The region studied is situated
in the Belgian Ardennes mountain range and focuses on a winter half-
year during which most of the precipitation has a stratiform character.
Volumetric radar data is corrected for errors associated with attenua-
tion, ground clutter and anomalous propagation conditions, VPR, and
advection. It was decided not to correct for the remaining final bias
between the amount of precipitation estimated by the radar and a rain
gauge network. This to get a better understanding of the quality of the
radar and because of inherent scale problems between both devices (e.g.
Austin, 1987; Kitchen and Blackall, 1992; Steiner et al., 1999; Ciach
and Krajewski, 1999a; Morin et al., 2003).

The chapter is organized as follows. Section 2.2 will give an overview
of the study area and data availability. Section 2.3 focuses on the dif-
ferent radar correction steps that have been implemented, followed by
a comparison with rain gauge measurements for a series of events (Sec-
tion 2.4). Next, a whole winter period is analyzed (Section 2.5). The
different implementations are discussed in Section 2.6, in which we will
also present an application to real-time hydrological modeling at the
catchment scale.

2.2 Study area and data availability

The hilly plateaus of the Ardennes, part of the Meuse basin, are situated
in the eastern part of Belgium (see Fig. 2.1) and display maximum ele-
vations of around 650 m ASL. The hydrologic response can be classified
as rain-fed with some snow in winter. This results in a runoff regime
that can be classified as highly variable, giving rise to low discharges in
summer and high discharges in winter (Leander et al., 2005).

In 2001 a C-band Doppler radar was installed at an elevation of
600 m ASL near the village of Wideumont, close to the border with
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Figure 2.1: The left panel shows the location of the study area,
with a 200 by 200 km box indicating the area shown in the right
panel. The right panel shows a topographic map of the Belgian Ar-
dennes, where the solid lines represent the channel network. The
white line indicates the Ourthe catchment (1600 km?). Also shown
are the position of the radar (e), catchment outlet (A), the meteo-
rological station (o), and the position of the rain gauges (+).

Luxembourg. The radar has two scan sequences; one every five minutes
at five different elevations and a second scan at another ten elevations
every fifteen minutes. In this study the five-minute data were used to
obtain areal information about the precipitation field. The reflectivity
data from the second scan serves only to obtain an initial estimate of the
VPR. A summary of the characteristics of the weather radar is presented
in Table 2.1.

Directly to the North of the radar lies the ~1600 km? Ourthe catch-
ment, which has been the focus of previous studies (Berne et al., 2005;
Driessen et al., 2010). Its outlet is situated in the North near Tabreux,
at approximately 60 km from the radar. Rain gauge information in the
region is available for 42 rain gauges, of which 10 are directly situated
inside the watershed. Besides that, hourly temperature and potential
evaporation data are available from the weather station near St. Hubert
(see Fig. 1.2).

This study analyzes the spatial and temporal characteristics of rain-
storms and the resulting catchment response of the Ourthe for the period
from October 1, 2002 until March 31, 2003. During this winter half-year
most storms had a stratiform character, for which bright bands could
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Table 2.1: Characteristics of the C-band Doppler radar at Wideu-
mont used in this study.

Parameter Value
Coordinates lat/lon [°] 49.91, 5.51
Height [m ASL] 600
Frequency [GHz] 5.64

PRF [Hz| 600

Beam width [°] 1

Antenna diameter [m] 4.2
Maximum range [km] 240
Scanning sequences 2

Pulse length [m)] 250 (scan 1)

500 (scan 2)
Recurrence interval [min] 5 (scan 1)
15 (scan 2)
Elevations [°] 0.3, 0.9, 1.8, 3.3, 6.0 (scan 1)
0.5, 1.2, 1.9, 2.6, 3.3,
4.0, 4.9, 6.5, 9.4, 17.5 (scan 2)

already be observed within 1000 m from the surface. Radar data are not
available for the second week of November and for one day at the end of
March. These periods are left out of the analysis. For the hydrological
analysis they are substituted by rain gauge data.

2.3 Radar reflectivity analysis

The general measurement equation of the radar can be stated as follows:

P(r) = CZTLQ(T) (2.1)
where P(r) is the received power [W] for a given elevation at a range
7 [m] from the radar, C [Wm® mm™°] is the radar constant and Z,,(r)
is the measured reflectivity [mm®m™]. Both the radar reflectivity and
rainfall intensity R [mm h™!] are dependent on the raindrop size distri-
bution. The relationship between both parameters is generally assumed
to follow a power law (Marshall and Palmer, 1948; Marshall et al., 1955;

Battan, 1973)
Z =aR’, (2.2)
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where the parameters a and b are a function of the raindrop size distri-
bution and vary with precipitation type (Ulbrich, 1983). Before radar
data can be used for hydrological purposes, errors related to the environ-
ment and spatio-temporal atmospheric variations should be accounted
for (Andrieu et al., 1997). Based on the characteristics of the weather
radar (see Table 2.1) and the Ardennes mountain range, it was there-
fore decided to correct the data for losses due to attenuation, artifacts
due to clutter, range effects due to VPR, and potential errors due to
finite sampling of rainfall. Although the radar data may be affected by
other types of errors (e.g. radome attenuation, radar calibration, partial
beam filling, blockage and overshooting), these four are considered to be
the main sources of error for the environment under study. The follow-
ing sections present an in-depth overview of the different steps taken to
correct for these four sources of errors.

2.3.1 Signal attenuation

Signal attenuation can become a source of error for operational C-band
weather radars, especially during high rainfall intensities, and depends
on both the raindrop size distribution and temperature (e.g. Delrieu
et al., 1991, 1997; Berenguer et al., 2002). One method to correct for
attenuation was developed by Hitschfeld and Bordan (1954) (HB algo-
rithm). The measured radar reflectivity is the product of two terms

Zm(1r) = Zo(r)A(r), (2.3)

where Z, () [mm®m~3] is the apparent reflectivity at a given height not

subject to any attenuation. In this study, it is assumed that the radar is
well-calibrated and there are no signal losses due to wet radome effects.
Then, the amount of two-way path-integrated attenuation (PIA) [dB] is
given by

2ln10 [~
10
In this last equation k(s) [dBkm™] is the specific attenuation at a dis-

tance s [km]. The relation between the reflectivity and specific attenu-
ation can also be stated as a power law

A(r) = exp [— k(s)ds] . (2.4)

Z = ck?. (2.5)

On the basis of Egs. (2.3), (2.4) and (2.5), the apparent reflectivity can
be expressed as
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Z(r)
n r( Zm(s 1/d d
- ()

In case of severe attenuation the denominator of Eq. 2.5 becomes
small, causing the HB algorithm to become unstable. Another algorithm
(originally developed for space-borne radar, see Marzoug and Amayenc,
1994), which is not prone to this source of error, makes use of a mountain
reference (Delrieu et al., 1997; Bouilloud et al., 2009). Unfortunately, in
the current study mountainous returns are limited to a region close to
the radar and cannot be applied for attenuation correction. Although
it can be expected that the amount of PIA is limited for the stratiform
precipitation encountered during a winter period (Delrieu et al., 1999,
2000; Uijlenhoet and Berne, 2008), the maximum amount of PTA was
set to 10 dB to prevent the algorithm from becoming unstable. The
parameter values of the Z—k relation (Eq. 2.5) were estimated based on
drop size distributions sampled in the Netherlands (Uijlenhoet, 2008),
with ¢=7.34x10° and d = 1.344. These were assumed to originate from
similar storm systems as those observed in the Ardennes region.

Za(r) =

(2.6)

2.3.2 Anomalous propagation and clutter identification

Radar data in mountainous environments can be contaminated by ground
clutter (GC) due to side lobe reflections from and/or (partial) blockage
by topography (e.g. Delrieu et al., 1995; Gabella and Perona, 1998; Pel-
larin et al., 2002). Anomalous propagation (AP) occurs in situations
where the vertical gradient of refractivity is large in the lower part of
the atmosphere, causing the radar signal to bend down towards the sur-
face, resulting in ground echoes (e.g. Alberoni et al., 2001; Steiner and
Smith, 2002; Cho et al., 2006; Berenguer et al., 2006). Especially at
longer ranges, AP-induced GC can result in serious overestimates of the
amount of precipitation (Andrieu et al., 1997).

In literature, multiple GC identification techniques have been pro-
posed, using either pulse to pulse reflectivity fluctuations ( Wessels and
Beekhuis, 1994), radial Doppler velocity information (Joss and Lee,
1995), spatial reflectivity information (Alberoni et al., 2001), or dual
polarization data (Giuli et al., 1991). Other sources of data have also
been used to identify GC, such as a digital elevation models (DEM),
temperature, or satellite information (e.g. Delrieu et al., 1995; Michel-
son and Sunhede, 2004; Fornasiero et al., 2006). Nowadays, most GC
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identification algorithms make use of a classification scheme using multi-
ple information criteria (e.g. Joss and Pittini, 1991; Joss and Lee, 1995;
Steiner and Smith, 2002; Grecu and Krajewski, 2000; Berenguer et al.,
2006; Cho et al., 2006). In the framework of this study it was decided
to use the identification tree as proposed by Steiner and Smith (2002),
because no radial velocity information was available. The original algo-
rithm was extended to all elevations to also identify GC pixels for the
higher radar elevations as well. In the first step, a polar pixel is identified
as GC if it has a minimum vertical extent less then 500 m. Next, radar
pixels for which spatial variability and vertical variability both exceed a
threshold value are identified as clutter. Further details of this method
can be found in Steiner and Smith (2002). Within mountainous envi-
ronments beam occultation causes a decrease in the total beam power,
resulting in an underestimation by the radar (Delrieu et al., 1995). For
this type of error no corrections were implemented because the Wideu-
mont radar is situated at a relatively high altitude within the region. It
is assumed that most of the observed GC is caused by side lobe inter-
ception instead of direct blockage of the main beam, and that therefore
no beam occultation occurs.

2.3.3 Identification of the vertical profile of reflectivity

As explained in the introduction, variation in the vertical structure of the
precipitation field can be a serious source of error, especially for strati-
form precipitation (Andrieu et al., 1997; Seo et al., 2000). Kitchen et al.
(1994) applied a correction method which updates the shape of a theoret-
ical stratiform VPR using local meteorological characteristics. Results
showed significant improvement in the estimated amount of precipita-
tion. Germann and Joss (2002) estimate a spatially variable apparent
VPR based on measured volumetric weather radar data for regions up
to 70 km from the radar (the meso- scale). What these investigators
and others (e.g. Dinku et al., 2002; Jordan et al., 2003) did not consider
is the fact that the radar sampling volume increases with range.

A method which does take this aspect into account is the inverse
VPR identification technique of Andrieu and Creutin (1995), which was
extended for volumetric radar data by Vignal et al. (1999). The main
assumptions behind this method are a spatially uniform VPR over a cer-
tain region and the decomposition of the spatial variation of the apparent
reflectivity Z,(r) (Eq. (2.3)) into a horizontal and vertical component

Za(r) = ZrEr(x)20(y). (2.7)
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Here Zrpr(x) is the reflectivity at a certain reference level at distance x
from the radar, z,(y) is the apparent vertical profile of reflectivity, which
is influenced by the increase of the radar beam volume as a function of
range. This latter effect can be written in a simplified way as

2(y) = [ 100.9)=()dy. (28

where f is the power distribution of the radar signal, 6y is the radar
beam width and z(y) represents the actual average vertical reflectivity
signal. The numerical solution discretizes z(y) into finite intervals of a
few hundred meters. For each of these increments at a given range from
the radar, its contribution to the total power distribution of the trans-
mitted signal is calculated. In order to estimate the discretized profile
of z(y), two types of information are needed. First, an initial estimate
of the VPR, for which either a climatological profile or one estimated
from the sampled volumetric data can be used. The second type of in-
formation needed are the so-called ratio functions, which represent the
ratio of one of the higher elevations with respect to the bottom one as a
function of distance. Theoretical ratio functions are also calculated for
the initial VPR using the characteristics of the radar. Then, using an
inverse optimization scheme (Menke, 1989) the initial VPR is adjusted
in such a way as to minimize the difference between the theoretical and
measured ratio functions.

This inverse method is well able to identify VPRs for stratiform sit-
uations with low level bright bands (Borga et al., 1997). Therefore, in
this study this technique is applied to obtain a VPR estimate. Dur-
ing winter, most of the storm systems passing over the Ardennes have
an echotop well below 6 km. The estimates of the VPR are therefore
performed up to a height of 6 km at 250 m increments in the current
study. The power distribution at a given distance from the radar for the
different intervals was calculated based on the radar characteristics. It
is decided to use only the information within a fifteen-minute window
to diminish the effect of temporal changes in the VPR (Fabry et al.,
1992; Bellon et al., 2005; Joss et al., 2006). The initial VPR estimate is
obtained by combining all volumetric data of both scanning sequences
(see Section 2.2) within a fifteen-minute window for distances between
10 to 50 km from the radar. Next, based on the fifteen-minute inter-
val volumetric data for the first scanning sequence the ratio profiles are
estimated up to a distance of 100 km. This is done by calculating the
ratios of the measured reflectivity values for the four higher elevations
(2-5) with respect to the bottom elevation reflectivity values. These are
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subsequently averaged over all polar radar cells at a given range. Once
both the initial VPR estimate and the four sampled ratio profiles are
obtained, the inverse optimization method is applied from which a final
spatially averaged VPR is obtained.

Although different studies have shown improved radar rainfall esti-
mates when this method is applied (Andrieu et al., 1995; Anagnostou and
Krajewski, 1999b; Vignal et al., 1999), a critical aspect is the assumption
of a spatially uniform profile. Vignal et al. (2000) therefore identified
the VPR for regions of 20x20 km. Delrieu et al. (2009) proposed first to
select the type of precipitation system (convective, stratiform and unde-
fined) and then estimate the VPR for each type separately. To analyze
the option of using a local VPR, in this study a profile is also estimated
based on the polar reflectivity data sampled over the Ourthe catchment
only. In this manner, a catchment-scale VPR is obtained, which also
improves the consistency between the spatial and temporal meteorologi-
cal scales (Germann and Joss, 2002). No precipitation identification has
been performed because in general, during the period of interest, most
precipitation originates from stratiform systems only.

2.3.4 Beam integration and grid conversion

After correcting for the three mentioned types of error (associated with
attenuation, ground clutter and VPR, respectively), the final step is to
obtain a 2D-corrected polar reflectivity field. Similar to other radar cor-
rection algorithms operating in a mountainous environment (e.g. Joss
and Lee, 1995; Germann and Joss, 2002; Delrieu et al., 2009), a weighted
average was taken over the different radar elevations up to a height of
2500 m. Polar cells which were identified as GC are not taken into ac-
count. Each elevation at each point was weighted using 1/(h+1), where
h is the height [m] of the measurement, because of the assumption that
lower elevations give a better estimate of the true reflectivity at the sur-
face. The maximum measurement elevation of 2500 m was identified
because most precipitation systems in this region for the period of inter-
est have a small vertical extent. This maximum is similar to the study
of Anagnostou and Krajewski (1999b). After this aggregation step, all
polar points are converted to a Cartesian grid by averaging those cor-
responding to a given Cartesian grid cell. In case a Cartesian cell does
not contain at least three corresponding polar points, interpolation with
respect to the three nearest points is performed.
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2.3.5 Storm field advection and Z—R conversion

Because of the temporal scanning strategy of the radar it is necessary to
take the advection velocity of the precipitation field into account (e.g.
Fabry et al., 1994; Jordan et al., 2000). To correct for this source of
error a correlation-based technique is applied (e.g. Rinehart and Garvey,
1978; Tuttle and Foote, 1990; Anagnostou and Krajewski, 1999a). The
Cartesian grid is subdivided into 20 x 20 km grid blocks. For each of
these, the advection direction and velocity are calculated by maximizing
the correlation between two consecutive reflectivity (dBZ) fields. It is
known that in case of a spatially homogeneous precipitation field, or
due to the influence of residual GC, the obtained advection direction
and velocity could differ from the actual ones when calculated in this
manner (Tuttle and Foote, 1990; Li et al., 1995). In order to minimize
this possibility, advection directions are averaged over 40 x 40 km grid
blocks removing those values with correlation < 0.7. Using the resulting
advection field, the radar data are then interpolated in time at 30-second
intervals. Growth and decay of the storm field are not considered here.

To convert the obtained radar reflectivity to an equivalent rainfall
rate (Eq. (2.2)), the Marshall-Palmer relationship Z = 200R*¢ is applied
(Marshall et al., 1955). This relationship is generally assumed to be
representative for stratiform situations (Battan, 1973). Radar data are
then avaraged into hourly intervals.

One problem not accounted for in the current algorithm implemen-
tation is related to possible temporal changes in the transmitted power
of the weather radar in Eq. 2.1 (Ulbrich and Lee, 1999). Steady clutter
points could be used to get an indication of such changes. Results based
on a few steady polar GC points for the Wideumont radar indeed showed
a non-constant backscatter. Unfortunately, it is difficult to isolate such
variations from apparent changes in the refractivity or from temporal
changes in vegetation and the occurrence of snow at the surface (Del-
rieu et al., 1995). It was therefore decided not to take this aspect into
account.

In many studies an additional step is performed to remove any resid-
ual bias with respect to rain gauge measurements (e.g. Krajewski et al.,
1996; Smith and Krajewski, 1991; Ciach and Krajewski, 1999a; Seo and
Breidenbach, 2002; Goudenhoofdt and Delobbe, 2009). Such a final step
is not implemented here, because we feel that by correcting the data
based on the volumetric measurements only, the full hydrological poten-
tial of weather radar in a hilly environment can be analyzed.
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2.4 The importance of the different correction
steps

In this section the influence of the correction steps is analyzed by com-
paring 42 hourly radar-rain gauge pairs for three rainfall events typical
to the region for a winter period. In order to reduce the effect of sam-
pling differences between radar and rain gauge measurements (Joss and
Lee, 1995), hourly rainfall accumulations are compared.

2.4.1 Event 1: A stratiform system

The first event selected was a fast moving stratiform system which
started at around 20:00 UTC and lasted for about 9 hours. Average
reflectivities in the range 30-43 dBZ were observed, as well as a clear
bright band at around 1800 m above the radar.

In the upper part of Fig. 2.2 the total event accumulation for the
uncorrected (a) and corrected radar data (b) are presented. Comparison
of both plots immediately shows the impact of both the clutter correction
and advection algorithm. Not taking the former into account leads to
an overestimation of the amount of precipitation. While for the latter
the observed small-scale pattern in (a) do not represent reality.

For each time step, at a given polar radar pixel at a 10-50 km dis-
tance, the reflectivity values sampled at one of the higher radar ele-
vations were normalized with the lowest elevation by taking the ratio.
Based on these ratios for each 250 m interval up to a height of 6 km
a frequency plot was created. This frequency is indicated by the gray
shading in Fig. 2.2c. Such a frequency diagram is similar to the CFAD
profile by Yuter and Houze Jr. (1995b) or the meso-y profile by Ger-
mann and Joss (2002). Besides the occurrence of a bright band, it can
also be observed that the distribution of VPRs is very broad.

The average VPR calculated from the frequency distribution is in-
dicated by the dotted line. As explained in Section 2, beam broadening
was not taken into account for this profile. Together with the measured
reflectivity ratios in Fig. 2.2d (dashed lines), it serves as the initial
VPR estimate. Using the inverse identification method of Andrieu and
Creutin (1995) the final VPR was estimated, which is used to correct
radar data for VPR effects. This profile is indicated by the black line in
Fig. 2.2c. Compared to the initial VPR obtained from the radar data,
it can be observed that especially the bright band is more intense for
the final profile. In order to indicate how well this final profile is able
to represent a spatially averaged VPR, the characteristics of the radar
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were used to estimate the theoretical ratio functions. When compared
to the observed ratio functions, it can be observed that they show a
good correspondence. The differences that do occur are related to the
spatial non-uniformity of the VPR as represented by the spread in gray
shading areas in Fig. 2.2c.

The correspondence between the corrected radar rainfall estimates
and the different rain gauges is shown in Fig. 2.3. Hourly precipitation
depths are well correlated in (a), although overall radar rainfall esti-
mates are lower than those from the rain gauges. This is also confirmed
by the storm accumulations in (b). Linear regression without inter-
cept between the different radar-rain gauge pairs (gray line) confirms
the underestimation by the radar. At the hourly and total event scale
the regression-based underestimation was about 29% and 34%, respec-
tively. Such large differences are not uncommon for radar-rain gauge
comparisons, especially for stratiform systems.

To investigate whether the observed errors can be related to range
effects, the lower panel of Fig. 2.3 shows the event accumulation ratios
and Nash-Sutcliffe (NS) coefficients (Nash and Sutcliffe, 1970) of the
different radar-rain gauge pairs as a function of distance from the radar.
A Radar/Gauge ratio less than one (c) indicates an underestimation
by the radar. In both (c) and (d) a range effect can be observed. Up
to about 60 km the behavior is rather constant. At greater distances
the difference between both instruments increases. It is expected that
this is due to the usage of a global VPR. The estimated profile in Fig.
2.2¢c generally tends to give more weight to the reflectivity values close
to the radar. For the current event, storm cells observed further away
from the radar had a slightly different average VPR than presented in
Fig. 2.2c, and were therefore not always properly VPR-corrected. This
reveals a drawback of estimating one single VPR profile for the entire
radar umbrella (Vignal et al., 1999).

Table 2.2 presents the influence of the different correction steps on
the radar-rain gauge comparison statistics. Uncorrected (raw) radar
data are well able to capture the dynamic pattern of the storm system
as indicated by the large coefficient of determination (p?). However, the
correspondence between these radar rainfall estimates and those from
the raingauge is poor, containing an overall positive bias and very small
Nash-Suthcliffe statistic. A large improvement in the quality of the data
is obtained when correcting for clutter (as could be observed from Figs.
2.2a and b). Correcting for attenuation leads to a bias improvement.
The implementation of the VPR correction method on average does not
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Figure 2.2: Upper panels show the total storm accumulation for
uncorrected (a) and fully corrected (b) radar data for the event on
October 22-23, 2002. White areas correspond to severe ground clut-
ter leading to an overestimation. Panel ¢) shows the initial estimate
of the VPR, the final VPR obtained using the inverse method, and
a frequency plot of the measured normalized VPR (similar to the
CFAD of Yuter and Houze Jr. (1995b)). Panel d) shows the mea-
sured reflectivity and simulated reflectivity ratios using the obtained
final VPR. Different colors represent the ratio between a given ele-
vation and the lowest one. The data for panels ¢) and d) correspond

to a fifteen-minute time window sampled around 11:00 PM UTC on
October 22.
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Figure 2.3: Comparison of rainfall intensities and accumulations
from 42 rain gauges and the corresponding radar pixels for the
event on October 22-23, 2002. The upper panels show scatter
plots of the hourly a) and total event b) rainfall accumulation for
the 42 pairs. The gray lines correspond to the linear regression
between the two, of which the slope is given by s. The bottom
panels show the quality of the radar measurement as a function
of range from the radar, where radar/gauge ratio was defined as
> Radarrainfall/ ) Gaugerainfall for a given gauge. NS is the Nash-
Sutcliffe statistic (Nash and Sutcliffe, 1970).
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Table 2.2: Evaluation of the influence of the different radar cor-
rection steps for the event on October 22-23, 2002. Column headers
correspond to: Raw - no radar correction, Clut - correction only for
clutter, Atten - correction also for attenuation, VPR - correction
also for VPR, Advec - correction also for advection. The last two
columns represent the results for the 10 gauges within the Ourthe
catchment using either a global (G-VPR) or catchment (C-VPR)
VPR estimate. The statistics were calculated on the basis of hourly
information and represent the coefficient of determination (p?), the
ratio Y, Radarrainfall/ )’ Gaugerainfall and the Nash-Sutcliffe statis-

tic (NS).

Statistic Raw Clut Atten VPR Advec G-VPR C-VPR
0> 0.85 0.87 0.86 0.84 0.85 0.95 0.95
>R/>G 1.19 059 0.67 0.66 0.66 0.76 0.75
NS -4.53 0.60 0.66 0.65 0.65 0.85 0.85

improve the correspondence between both types of data. As mentioned
before, the estimated VPR depends heavily on the data sampled close to
the radar. Therefore, the benefit of the VPR correction at close ranges
may be counteracted by worse results at larger distances. This latter
phenomenon can also be observed in Fig. 2.3c and d. For the current
event, advection correction did not lead to any serious improvements in
the measurement quality of the weather radar data.

In the last two columns of Table 2.2 the impact of using either a
global or local VPR is presented, comparing the radar results to the 10
gauges situated inside the catchment. Estimating a VPR based on the
volumetric data sampled above the Ourthe catchment only does not lead
to any improvement. The main reason for this is related to the large
size of the catchment and the fact that it is situated close to the radar.
Both aspects result in a large overlap with the reflectivity data used to
obtain the global VPR estimate. Differences in the obtained local and
global VPR shapes are therefore small.

Overall it can be stated that for this event, up to about 60 km the
radar was able to estimate the actual rainfall accumulation well. On
average, up to these distances the bias between both instruments is
about 25%. At larger distances from the radar, spatial variability of the
VPR makes it impossible to obtain better results. Instead of applying
one global profile estimate, a spatially varying estimate would probably
improve the overall statistics for this event.
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2.4.2 Event 2: Large scale stratiform system

The second event analyzed here took place on December 22, 2002 and
started around 3:00 UTC, lasting for about 13 hours. From the volu-
metric radar data (not shown) a clear bright band could be observed
at a height of 1800 m above the radar. The precipitation system was
relatively uniform and very widespread covering almost the full radar
image with average reflectivities in the range 20-30 dBZ.

The widespread character of the precipitation system causes some
unwanted results for the GC and advection algorithms (Fig. 2.4a and
b). Although most GC is filtered out, some clutter-contaminated spots
are still observed. This is related to the fairly uniform reflectivity field,
which decreases the amount of spatial irregularity. Some clutter is there-
fore not identified. As explained in Section 2.3.5, a spatially homoge-
neous precipitation field and/or residual GC might result in an incor-
rect identification of the advection direction (Tuttle and Foote, 1990;
Li et al., 1995). Even though we tried to correct for this, some arti-
facts (straight/blocky lines) of this problem can be observed Fig. 2.4b,
although their impact is small.

The spatial variability of the vertical profile is rather limited, as
shown by the narrow frequency diagram of the normalized VPR in Fig.
2.4c. The good correspondence between the observed and simulated
ratio profiles in (d) was therefore expected, giving a lot of confidence in
the final VPR estimate.

The radar-rain gauge comparisons in Fig. 2.5 show an underestima-
tion of the radar for both the hourly (a) and total event accumulations
(b). For the hourly data, the overall spread is much larger than in Fig.
2.3, which is due to variations in the type of precipitation, probably
changing from showers into drizzle and vice versa. Especially for the
latter the Marshall-Palmer Z—R relationship is known not to be repre-
sentative, but underestimates precipitation intensities (Battan, 1973),
as is also clearly the case here. As a result, the radar underestimates
the amount of precipitation.

The overall statistics in Table 2.3 reveal a poor correspondence be-
tween the 42 radar and rain gauge points. Again the biggest improve-
ment is made by correcting for GC. VPR correction removes the in-
fluence of the overestimation due to the bright band, resulting in an
increase in the radar quality as seen by the Nash-Sutcliffe statistic (NS).
Correcting for attenuation leads to some improvements with respect to
the bias in Table 2.3, while advection correction has no serious influence
due to the moderate reflectivity variations and velocity of the observed
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Figure 2.4: As Fig. 2.2, for the event on December 22, 2002. The
data for panels c¢) and d) correspond to a fifteen-minute time window
around 9:00 AM UTC on December 22.
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Figure 2.5: As Fig. 2.3, for the event on December 22, 2002.
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Table 2.3: As Table 2.2, but for the event on December 22, 2002.
Statistic Raw Clut Atten VPR Advec G-VPR C-VPR

0’ 077 079 078 083 0.83 0.87 0.86
>R/>G 1.03 0.68 0.72 0.69 0.69 0.72 0.69
NS -4.89 054 054 058 0.58 0.71 0.67

precipitation field.

The slightly worse result when using a catchment-based VPR, esti-
mate instead of the global VPR are related to a slightly larger normalized
bright band size estimated on the basis of the catchment reflectivity data
(not shown here). Correcting the radar data based on this VPR leads to
smaller reflectivity values and rainfall estimates and thus slightly worse
results.

2.4.3 Event 3: Fast moving frontal stratiform system

During the third event analyzed here, large overall accumulations could
be observed in the Ardennes region, which resulted in the largest flood
peak measured within the half-year period. The event started on Jan-
uary 1, 2003 at around 10:00 UTC and had a total duration of about 42
hours. Radar images (not shown) revealed that the storm consisted of
a series of fast moving stratiform showers exhibiting considerable hor-
izontal variability of the reflectivity field and, from time to time, well-
developed bright bands at around 1500 m above the radar.

Figs. 2.6a and b again show the positive influence of the differ-
ent radar correction steps on the overall storm accumulations. For the
current event hourly radar-gauge values line up well in Fig. 2.7a. On av-
erage an underestimation by the radar (29%) can be observed. A closer
look at the accumulations in (b) reveals that only five gauges measured
much more precipitation than was estimated by the radar. These gauges
are all situated to the South-West of the radar. There are three possible
reasons for these differences between both instruments. As mentioned,
the observed storm field was highly variable in space (Fig. 2.6c), espe-
cially in the South-Westward direction from the radar. This resulted
in some precipitation to be identified as GC. Spatial variability in the
VPR might have produced inappropriate corrections when using the
global VPR estimate for the South-Westward region. Besides that, it
is possible that the usage of the Marshall-Palmer Z—R relationship was
not optimal due to local variation in the type of precipitation for this
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Figure 2.6: As Fig. 2.2, for the event on January 1-3, 2003. The
data for panels ¢) and d) correspond to a fifteen-minute time window
around 9:00 AM UTC on January 2.
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Figure 2.7: As Fig. 2.3, for the event on January 1-3, 2003.

region.

No range effects can be observed in Figs. 2.7c and d. Up to large
distances from the radar both statistics stay rather constant. During
this event the temporal variability in the estimated VPR was limited
as compared to the October event (Event 1). Therefore, using a single
VPR for the whole radar umbrella was beneficial.

Table 2.4 presents the influence of the different correction steps on
the average hourly goodness-of-fit statistics of the radar-rain gauge com-
parisons. Except for attenuation which does not play a serious role here,
each correction step improved the quality of the data. This on average
leads to an overall radar product quality that is comparable to that of
the rain gauges.
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Table 2.4: As Table 2.2, but for the event on January 1-3, 2003.
Statistic Raw Clut Atten VPR Advec G-VPR C-VPR

0’ 0.84 0.86 0.85 0.86 0.87 0.90 0.90
YR/>G 15 0.93 1.05 0.88 0.89 1.11 1.10
NS -5.13 077 069 075 0.78 0.86 0.86
L L
SN TR T .
2osf |1 ! ¥ w I WW Wl M W
g, | &

Oct Nov Dec Jan Feb Mar
Date, winter period, 2002-2003

Figure 2.8: Average ratios of the daily radar and rain gauge val-
ues for the half-year dataset. Vertical bars indicate the 10-90%
percentile range for the 42 rain gauges. The gray stars indicate the
three events that have been presented in Section 2.4.

2.5 Overall radar/rain gauge comparison

Results presented in the previous section showed that the impact of a
given correction step strongly depends on the spatio-temporal charac-
teristics of the precipitation system. Only the GC algorithm has a clear
overall positive impact during all three storms. The next step is to have
a closer look at the performance of the currently implemented radar
correction algorithm for the total half-year dataset. Such an overall
analysis reduces the influence of the individual storm types and enables
one to obtain a better understanding concerning the general quality of
the algorithms.

Figure 2.8 presents the overall ratios of radar-gauge accumulations
for days based on hours when both instruments measure precipitation
(R > 0.1 mm h™!). The average ratio values for the 42 events vary
considerably in time without containing any immediate trends. The
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Figure 2.9: Comparison between the hourly radar and rain gauge

values for the half-year dataset. Panels a) and b) simular similar to
Figs. 2.3c and d, respectively.

impact of changes in the transmitted power of the weather radar (Eq.
(2.1)) is therefore assumed to have been small.

Overall results lie close to the ratio value of 1, although from Table
2.5 it can be seen that on average the underestimation is about 28%.
However, for a given day, considerable variability is observed between
the different gauges as indicated by the width of the bars corresponding
to the 10th and 90th percentiles. The average half-year underestimation
by the radar for each radar-gauge pair separately is presented in Fig.
2.9a and varies between 5-45% underestimation without showing any
range effects. Range effects can be observed from the obtained half-year
Nash-Sutcliffe statistics (Fig. 2.9d), where the radar quality starts to
decrease beyond 70 km from the radar. During the winter half-year, the
average height of the bright band was between 1000-2000 m above the
radar elevation. Therefore, the snow region above it starts to be sampled
by the lowest radar elevation at a distance of around 70 km. Even though
the correction algorithm takes the effects of VPR into account, its quality
apparently decreases at these long ranges. This can be related to the
fact that the estimated VPR mostly depends on the data measured close
to the radar. Similar behavior could also be observed when analyzing
Event 1. This again shows the difficulty of taking all types of variability
in the precipitation field into account. Besides that, it can be expected
that differences in sampling characteristics between the radar and rain
gauge such as height and measurement volume will also play a greater
role at larger distances (Austin, 1987; Gabella et al., 2000).
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Table 2.5: Evaluation of the influence of the different radar cor-
rection steps for hourly precipitation values of the half-year dataset.

Column headers are the same as to those in Table 2.2.
Statistic Raw Clut Atten VPR Advec G-VPR C-VPR

p° 0.67 0.72 071 072 0.73  0.72 0.72
YR/YG 569 077 081 077 073 0.7 0.74
NS -66.8 0.70 0.67 0.70 0.70  0.70 0.69

Table 2.5 presents the half-year goodness-of-fit statistics. As ex-
pected, the largest improvements in the quality of the radar data were
obtained after correction for GC, followed by adjusting for VPR. Correc-
tion for attenuation only has a positive effect on the radar-gauge ratio
but has a slightly negative impact on the other statistics. A possible ex-
planation could be the usage of an inappropriate Z—k relationship for the
Ardennes region, leading to incorrect estimation of the average amount
of PIA. However, the influence of attenuation at C-band for this type of
stratiform systems is small, as expected (Delrieu et al., 1999, 2000). For
individual more intense events, such as the ones presented for October,
this correction did have a positive impact. Correcting for advection has
only a benificial impact in case of faster moving storm systems of consid-
erable variability. During the winter half year, most stratiform storms
were slow moving spatially homogeneous systems. Therefore, advection
correction has no major impact.

The implementation of a VPR estimate based on the volumetric
radar data measured above the catchment does not improve results,
compared to applying a global VPR estimate. This could already be
observed from the analysis of the individual events, but is different from
results obtained in other studies (Vignal et al., 2000). As explained, a
significant overlap exists between the areas used to obtain global and
catchment VPR estimates. This results in almost identical profiles for
both regions.

2.6 Discussion

2.6.1 Algorithm implementation

Removal of GC using the algorithm proposed by Steiner and Smith
(2002) showed large improvements in the quality of the radar rainfall
estimates. Analysis of the third event in Section 2.4.3 showed that for
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some specific cases, it might be too sensitive. In addition, for Event 2
in Section 2.4.2 it could be observed that some isolated clutter areas
cannot be identified in case of widespread and spatially homogeneous
precipitation. Some pixels might have been identified as clutter, while
they contained a mixture of both clutter and precipitation. The impact
of removing these pixels is expected to be small, because in order to
obtain a 2D polar radar estimate, a weighted average of all elevations,
corrected for VPR effects, is taken. The radar data used in the current
study originate from an early stage of operation. Nowadays, applying
Doppler velocity information to discriminate clutter from precipitation
has become a standard operational procedure. Unfortunately, these data
were not available for the current study. Therefore, it is expected that
the erroneous clutter identification and removal still observed in this
study will decrease when using more recent data.

Correction for attenuation showed a positive impact only for a few
events but had zero or even a slightly negative impact on the overall rain-
fall estimation capability of the weather radar. As said, the parameters
of the Z—k relationship in Eq. (2.5) were obtained from disdrometer
measurements in the Netherlands, which might not have been fully rep-
resentative for the hilly environment of the Belgian Ardennes. Moreover,
attenuation is not a major source of error for the Belgian winter climate
at C-band in the first place. Wet radome attenuation (Germann, 1999)
due to rain and snow might have resulted in additional attenuation for
some events. However, it is very difficult to correct for this source of
error in an operational environment. Therefore, correction for this was
not attemted.

The success of the VPR identification algorithm is highly depen-
dent on the spatial variability of the storm field, as was shown by the
spread of the frequency diagram of the normalized profiles in Figs. 2.2c,
2.4c and 2.6c. Here the reflectivity information was accumulated over
fifteen-minute intervals. Berne et al. (2004b) showed that based on such
aggregation periods, the estimated VPR is representative on average
for an area of about 100 km?2. In this study, the algorithm is applied
at such a high temporal resolution to minimize the effect of temporal
changes in the VPR. According to Bellon et al. (2005) such an imple-
mentation could give rise to a highly variable average VPR estimate,
which is not representative for ranges further from the radar. In this
study we were only interested in the quality of the radar up to a range of
100 km. Therefore, the possible detrimental effects of obtaining a VPR
estimate at such a high temporal resolution were considered not to be
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problematic. A possible future improvement though, might be to focus
on smaller areas for VPR estimation.

Such areas could either be obtained by taking only the volumetric
weather radar data sampled above a certain catchment into account,
or by focusing more specifically on a given storm cell. Although the
former method did not improve the quality of the radar data for the
region inside the Ourthe catchment, it can be expected that especially
for distances further away such an approach would improve the impact
of correcting for VPR. With respect to the latter, it could be possible to
make use of a cell-tracking algorithm (Dizon and Wiener, 1993; Handw-
erker, 2002). Such an approach will ensure that the obtained average
VPR is representative for a given storm-cell. Variability in the shape of
the VPR for different storm cells as was observed for Event 1 can then be
taken into account. Besides that, such a cell-tracking algorithm can also
be applied to obtain advection direction information. Erroneous cross-
correlations, of which the impact for some time steps could be observed
in Fig. 2.4b, are then removed.

Based on Fig. 2.8 we assume that there were no serious trends in
the transmitted power of the weather radar. However, in this study
no specific information concerning absolute radar calibration was avail-
able. Overestimation in the amount of transmitted power can result
in an underestimation of the amount of precipitation (Ulbrich and Lee,
1999) as estimated by the radar as seen in this study. Atlas (2002)
presents a historical overview on how to identify radar calibration prob-
lems. In a operational environment, Holleman et al. (2010) use the sun
to correct for this error source, while Ulbrich and Lee (1999) used dis-
drometer measurements to identify any resulting bias due to calibration
issues. Another problem might be the choice of the Marshall-Palmer
Z—R relationship which on average might not be optimal for the type
of precipitation in the Belgian Ardennes. This aspect will surely play
a role in the temporal variability of the type of precipitation. Different
types of precipitation contain different drop size distributions, resulting
in variations of the Z—R relationship (Creutin et al., 1997; Uijlenhoet
et al., 2003a), as could also be observed during Event 2. Polarimet-
ric weather radar could result in an improved understanding of these
variations.

2.6.2 Hydrological potential of the weather radar

This study analyzed the quality of the weather radar precipitation mea-
surements based on individual radar-rain gauge pairs. As explained,
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range effects and sampling differences complicate comparison between
both devices (Austin, 1987; Kitchen and Blackall, 1992; Gabella et al.,
2005). However, it can be expected that this difference becomes smaller
when aggregating over longer time periods (Borga et al., 2006) or over
a catchment (Vignal et al., 2000). One of the main benefits of using
weather radar with respect to rain gauges is the fact that one ob-
tains much more information about the precipitation field. However,
for the hydrological analyses presented here, we will only use catchment-
averaged rainfall information. Given the lumped model that is currently
operationally used by Dutch water management authorities, and given
the typical response that can be observed within the Ardennes during
a winter period, this is not unreasonable. The hydrological results pre-
sented below should be interpreted as a worst case; actually using the
full potential of weather radar (i.e. high spatial resolution, combined
with a distributed hydrological model) is highly likely to lead to larger
improvements than if only rain gauge data are used. This is subject of
ongoing investigations.

Measured and simulated hydrographs are presented in Fig. 2.10,
where both the radar and rain gauge data have been applied to simulate
the discharge response of the Ourthe catchment using the operational
HBYV model (Bergstrom, 1976, 1992; Lindstrom et al., 1997). This model
is used by the Dutch authorities to simulate the discharge of the river
Meuse for the purpose of operational water management. It has been cal-
ibrated for the Ourthe using over 30 years of data ( Velner, 2000; Booij,
2002). At the scale of the Ourthe catchment simulation is performed
using a single lumped version of the model. Therefore, weather radar
data are averaged over the catchment while the rain gauge information
is first interpolated before being averaged. Both model simulations are
started 6 months in advance using measured catchment average rain
gauge values in order to create similar initial conditions for both types
of input data.

From the results in Fig. 2.10 it can be observed that the overall dif-
ferences in obtained hydrographs using either rainfall source are small.
The Nash-Sutcliffe values using the radar or rain gauge precipitation as
an input are 0.88 and 0.89, respectively. Up to the beginning of Novem-
ber the simulated hydrograph based on the radar data is closer to the
observed discharges than the hydrograph obtained from the rain gauge
data. The discharge peak at the beginning of January 2003 is underes-
timated by both hydrographs. This difference is probably related to the
lumped character of the model, which cannot take spatial variability of
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Figure 2.10: Observed and simulated hydrographs for the half-
year dataset using catchment-average rain gauge and radar data.

soil moisture into account. It should be noted that for the radar, a larger
underestimation of the maximum discharge peak is observed. Evaluation
of the third event in Section 2.4 shows little difference between rainfall
estimates obtained by radar and rain gauges. The observed difference
in the absolute size of the simulated discharge peak, therefore, does not
occur as a result of erroneous precipitation estimates by radar during
that event. A closer inspection of Fig. 2.10 reveals that the simulated
hydrograph based on the radar data starts to underestimate observed
discharges during the second half of December 2002. During this pe-
riod it can be observed from Fig. 2.8 that the radar underestimated the
amount of precipitation for several days, as could also be observed for
Event 2 (Section 2.4.2). This resulted in lower storage in the catchment
before the event of 1-3 January, leading to lower simulated discharge
peak. Overall, these simulations clearly reveal the potential of applying
weather radar information without using any rain gauge information for
operational water management.

2.7 Conclusion

In this chapter the effects of different radar correction steps and their
impact on radar rainfall estimates have been investigated for stratiform
winter precipitation within a hilly environment. Especially for the more
temperate regions, where discharges are largest and cause the biggest
problems in winter, correct estimation of the amount of precipitation
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for this type of rainfall is important. Based on the current analysis it
could be observed that the largest improvement in the quality of the
radar data was observed after GC removal. Attenuation correction as
expected lead only to an improved quality of the radar data for some
of the more intense events. Overall, correcting for attenuation did not
have a significant impact on the quality of the data. Correcting for
advection of the precipitation field only improves the results for faster
moving precipitation systems as presented in Section 2.4.3. For large-
scale, slow-moving systems (Section 2.4.1 and 2.4.2) taking advection
into account is not necessary.

The impact of correcting for the VPR is highly dependent on the
spatial variability of the storm system under consideration. The im-
plemented algorithm to obtain a global estimate of the VPR is heavily
influenced by measurements taken close to the radar. Therefore, for
cases with highly spatially variable storm systems, such an estimated
profile does not always lead to improved results for distances further
away. Up to a distance of 70 km from the radar it could be observed
that the quality of the corrected radar product became comparable to
that of the rain gauges, except for a slight underestimation. At distances
beyond 70 km from the radar this quality decreases, although some of
this can be related to sampling differences between both instruments.

Overall, the corrected radar data yield slightly lower precipitation
amounts than the rain gauges. However, within the current hydrological
operational environment this does not immediately lead to erroneous
rainfall-runoff simulations (Fig. 2.10). In the future, one of the main
challenges is to take the spatial variability of the precipitation system
into account. Polarimetric radars, which are gradually replacing non-
polarimetric radars all over the world, have the potential to lead to
further improvements.
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CHAPTER 3

Variability of raindrop size distribution and its effect
on radar reflectivity - rain rate relations

3.1 Introduction

Extreme precipitation events that occasionally lead to flash floods are
known to exhibit considerable spatio-temporal gradients, which makes
the correct estimation of the amount of precipitation during such catas-
trophic events both very important and challenging ( Delrieu et al., 2005;
Uijlenhoet and Sempere-Torres, 2006). However, the spatial distribution
of most conventional raingauge networks is too coarse to grasp this vari-
ability (Berne et al., 2004a). Weather radars are in principle able to
collect this type of information. Unfortunately, even though it is nowa-
days possible to correct for many sources of error related to the measur-
ing characteristics of the radar (e.g. Andrieu and Creutin, 1995; Andrieu
et al., 1997; Delrieu et al., 2009; Bouilloud et al., 2010), one still faces the
problem of converting the measured reflectivity values into precipitation
intensities.

Generally, the relationship between the radar reflectivity factor Z

This chapter is a slightly modified version of: Hazenberg, P., Y. Nan,
B. Boudevillain, G. Delrieu, and R. Uijlenhoet (2011), Scaling of rain-
drop size distributions and classification of radar reflectivity-rain rate rela-
tions in intense Mediterranean precipitation, J. Hydrol., 402 (3-4) , 179-192,
10.1016/j.jhydrol.2011.01.015.
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[mm®m™3] and the rainfall intensity R [mm h™!] is assumed to follow a

power law (Marshall et al., 1955; Battan, 1973):
Z = AR’ (3.1)

In principle the parameters A and b in Eq. (3.1) can be obtained by
combining the information sampled by both the weather radar and a
rain gauge network. Unfortunately, differences in the sampling charac-
teristics of both devices complicate the representativity of these results
(Kitchen and Blackall, 1992; Steiner and Smith, 2004). Such scale prob-
lems do not occur when raindrop size distributions are sampled by dis-
drometers, from which it is possible to estimate both Z and R directly
and simultaneously. In case of disdrometers, the generality of the esti-
mated parameters A and b only depends on the type of instrument used
(Campos and Zawadzki, 2000; Tokay et al., 1999), the mathematical
fitting technique applied (e.g. Steiner and Smith, 2000; Chapon et al.,
2008), and the representativity of the disdrometer measurement to esti-
mate radar reflectivity values (Chandrasekar and Bringi, 1987; Austin,
1987; Steiner and Smith, 2004).

Both radar reflectivity and rain rate are functions of the precipita-
tion’s drop size distribution (DSD), which is generally assumed to follow
some statistical distribution (e.g. exponential (Marshall and Palmer,
1948), gamma ( Ulbrich, 1983), or lognormal ( Feingold and Levin, 1986)).
Because both the rainfall intensity and radar reflectivity are functions
of the DSD, it is possible to relate the parameters A and b to these
statistical distributions. Such analyses show that for a given distribu-
tion assumption, the possible range of the Z— R exponent is constrained
(Sekhon and Srivastava, 1971; Smith and Krajewski, 1993; Steiner et al.,
2004). For a lognormal DSD, Smith and Krajewski (1993) found this
exponent to vary between 1-3.125, while for the gamma distribution
Steiner et al. (2004) obtained a range between 1-1.63.

Sempere-Torres et al. (1994, 1998) showed that all previously pro-
posed distributions can be represented by a scaling law that depends on
the drop diameter and one rainfall integral parameter. A direct result
of this assumption is that the physical range of the allowed values for
the exponent b is fixed, independent of the type of predefined distribu-
tion (Uijlenhoet, 1999). Once this relationship is known any change in
estimated Z—R parameters can directly be related to changes in DSD
formation processes associated with different meteorological conditions
(Waldvogel, 1974; Ulbrich, 1983).

Such variations of the DSD arise between different climates, the type
of generation process (e.g. continental vs. maritime), and because
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of variations in the vertical velocity field (e.g. Battan, 1973; Austin,
1987; Uijlenhoet et al., 2003b, 2006; Rosenfeld and Ulbrich, 2003; Ul-
brich and Atlas, 2007). This latter property allows a discrimination
between convective and stratiform rainfall (Houze Jr., 1993; Yuter and
Houze Jr., 1995a). During convective events, spatial variability in ver-
tical wind velocities causes strong horizontal rainfall gradients (Zeng
et al., 2001). The DSDs measured in such situations generally consist
of large raindrops, because smaller ones are filtered out by updrafts
and evaporation below cloud level (Steiner et al., 1995; Tokay et al.,
1999). These horizontal variations and the associated vertical velocities
are much smaller in stratiform conditions. Here, the formation of rain-
drops originates from the melting of snow flakes and ice crystals below
the zero degree isotherm. Around this elevation melting snow flakes
cause an increased radar reflectivity signal known as the bright band
(Klaassen, 1989; Sdnchez-Diezma et al., 2000). While falling, smaller
drops are created by drop interactions and spontaneous break-up, re-
sulting in vertical variations of the DSD (Fabry and Zawadzki, 1995;
Huggel et al., 1996).

This chapter aims to improve our understanding regarding the vari-
ability in Z—R relationships between different rainfall events using dis-
drometer data collected in the Cévennes-Vivarais region in the South of
France, a region known to be prone to heavy rainfall and associated flash
floods. Based on the scaling-law theory of Sempere-Torres et al. (1994) a
new technique is proposed to estimate the parameters of the normalized
DSD and the resulting coefficients of the Z—R relationship. The latter
values are compared to results obtained by statistical least-squares fit-
ting techniques applied to direct calculations of both Z and R from mea-
sured individual spectra. Nowadays, weather radar observations allow
to descriminate between regions of convective and stratiform precipita-
tion (Steiner et al., 1995; Sdnchez-Diezma et al., 2000; Delrieu et al.,
2009). Reflecting the inherent differences regarding the meteorological
processes behind both types of precipitation, for each event a so-called
fraction of convective activity was estimated from the disdrometer data,
in a similar way as such radar-based discrimination techniques do. This
improves our understanding concerning the observed Z—R parameters
and the normalized DSD for a given type of precipitation (Tokay et al.,
1999; Atlas et al., 1999; Lee and Zawadzki, 2005).

Section 3.2 describes the region of study, the employed dataset, and
how to discriminate between convective and stratiform precipitation.
In Section 3.3 the details behind the scaling-law theory are explained,

45



including a new parameter estimation method. This technique is used
to obtain the parameters in Eq. 3.1 and these results are compared
to direct statistical fitting techniques. Section 3.4 explains the details
behind raindrop formation processes and control mechanisms, which are
expected to be dominant in different types of precipitation. Results for
a couple of characteristic events and the overall dataset are presented in
Section 3.5, finishing with conclusions in Section 3.6.

3.2 Dataset

The Cévennes-Vivarais region in the South of France is prone to heavy
and long-lasting rainfall events that occasionally lead to severe flash
floods. In order to improve the understanding of the micro-physical
properties behind such extreme storms, an optical OTT/Parsivel dis-
drometer was installed in the autumn of 2004 near the city of Ales, as
part of the Cévennes-Vivarais Mediterranean Hydro-meteorological Ob-
servatory (OHMCV, www.ohmev.fr). This disdrometer is able to sample
32 different particle size classes (ranging from 0 to 26 mm for variable
diameter increments between 0.125 up to 3 mm) and 32 different ve-
locity classes with a measurement time interval of 10 seconds that were
aggregated into one-minute intervals. In the vicinity of the disdrome-
ter (2 m) a tipping bucket raingauge is located. In addition, two Meteo
France S-band radars are situated near Nimes and Bollene, at a distance
of about 48 and 57 km from the disdrometer, respectively. An overview
of the region is presented in Fig. 3.1.

The dataset used here covers a period of 2.5 years. A total of 70
rain events were selected, which all contained a minimum one-minute
rainfall intensity of 1 mm h™! and an overall accumulation of at least
5 mm. The data set covers different meteorological origins, ranging from
1) short-duration high-intensity summer storms, 2) autumn mesoscale
convective systems that typically generate flash floods within this re-
gion, 3) shallow convective events triggered by the Cvennes-Vivarais
orography, and 4) long-lasting stratiform winter events. Erroneous one-
minute disdrometer samples were removed when the average difference
between the actual and theoretical raindrop terminal velocities (Beard,
1976, 1977) was more than 40%. An overview of the types of events
selected is presented in Fig. 3.2.

Unfortunately, no information on the vertical wind velocities was
available. In order to discriminate between convective and stratiform
samples, for each event the percentage of one-minute samples that con-
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Figure 3.1: Location of the disdrometer in Ales within the
Cévennes-Vivarais Mediterranean Hydro-meteorological Observa-
tory (OHMCYV) in the South of France. Also presented are the po-
sitions of the two Météo-France S-band weather radars near Nimes
and Bollene, with 50 and 100-km range markers.
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tained reflectivities exceeding 43 dBZ was estimated. This reflectivity
threshold was used by Delrieu et al. (2009) to discriminate convective
regions in the weather radar data. Although such a straightforward de-
lineation will not lead to perfect estimates of the amount of convection
(Steiner et al., 1995; Delrieu et al., 2009), it does give a first indication
concerning the convective character of any particular event. For each
of the selected rainfall events, the fraction of convectivity obtained in
this manner can also be observed in Fig. 3.2. From this figure it can be
observed that, in general, events which contain for a given duration, a
larger percentage of convection tend to have a larger overall precipitation
depth.

It is known that intra-event DSD variability can be caused by changes
from convective to stratiform conditions (Tokay and Short, 1996; Atlas
et al., 1999; Ulbrich and Atlas, 2007; Chapon et al., 2008). Such within-
storm discrimination was not performed here, because the main interest
lies here on the inter-event Z—R variability.

3.3 Methodology

3.3.1 Drop size distributions and Z—R relations

As mentioned in the introduction, both the radar reflectivity factor
and rainfall intensity are related to the drop size distribution, N(D)dD
(m™3). For raindrops with diameters between D and D +dD (mm) the
following mathematical relations hold

I pen(Di)

7 - fooo DSN(D)dD » (3.2)

6m x 1074 iZm .
Dy n(D; 3.3
1r ATP; (Di) (3.3)

R=6mx 107 fo D*o(D)N(D)dD =
where v(D) is the theoretical raindrop terminal fall velocity (m s™!),
n(D;) is the number of detected raindrops in a given diameter class i,
m is the number of diameter classes identified by the disdrometer, and
Ap (m?) and ATp (s) are the sampling area (54 cm?) and sampling
interval (1 minute) of the OTT /Parsivel disdrometer, respectively. Ap-
plying Eqgs. (3.2) and (3.3) one is able to obtain estimates of the rainfall
intensity R and radar reflectivity Z for each spectrum measured by the
disdrometer.
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3.3.2 Normalization theory

By expressing the DSD as a scaling law, Sempere-Torres et al. (1994,
1998) demonstrated that all previously proposed DSD parameterizations
mathematically collapse into one single formulation. Besides being able
to provide estimates regarding the parameter values of the Z—R rela-
tionship, more importantly this method provides information about the
intrinsic microphysical properties of the drop size distribution. The main
assumption is that most of the DSD variability can be explained by the
diameter D and one reference variable, commonly taken as the rain rate
R. Mathematically this can be expressed as the scaling law

N(D,R) = R®g(R"D), (3.4)

where a and 3 are scaling parameters and g(x) is the normalized rain-
drop size distribution with 2 = R™®D. The main benefit of such a scaling
law is that no functional shape is imposed apriori for g(x), and that it
naturally leads to power-law relationships between the different rainfall
integral variables, such as Eq. (3.1) (Uijlenhoet, 1999). If Eq. (3.4) is sub-
stituted in the theoretical expression of the radar reflectivity Eq. (3.2),
a power law of the form of Eq. (3.1) is obtained, where the parameters

A and b are defined as
A= ‘[Ooo 2%g(x)dz, and (3.5)

b=a+170. (3.6)

As such, the Z—R exponent is a function of the scaling parameters o
and [ only, while the prefactor is determined by the sixth order mo-
ment of g(z). Introducing Eq. (3.4) into (3.3) yields the self-consistency
constraints:

1=6m x 1074cv/(;oo 3" (x)dz, and (3.7)

l=a+(4+d)ps, (3.8)
where the terminal fall speed is assumed to follow the power law rela-
tionship of Atlas and Ulbrich (1977)

v(D) = eD?, (3.9)

with ¢ = 3.778 and d = 0.67 (if v is expressed in m s™! and D in mm).
According to Sempere-Torres et al. (1994) a power law is the only func-
tional form that leads to consistency between the different rainfall in-
tegral variables. For the scaled raindrop size distribution g(z) different
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functional shapes have been proposed. Here both the exponential and
gamma distribution
g(x) = k" exp(-Ax) (3.10)

are applied, which for y = 0 leads to the exponential distribution. An
equation for the Z—R prefactor is obtained by calculating x as a function
of X and p using Egs. (3.5), (3.7), and (3.10):

)\4+d+/1,
= 3.11
N rx 104 (4+d + p) (3:11)
where T'() denotes the gamma function. This yields
r r
A=k (7+:u) _ (7+:u) )\7(3—d). (312)

AT+ 6 x 1074l (4 + p + d)

3.3.3 A novel approach to estimate the scaling-law pa-
rameters

The final step is to obtain the scaling exponents and coefficients of the
normalized DSD from the measured raindrop size distributions. In the
literature different techniques have been presented based on moment
estimation methods (e.g. Ulbrich, 1983; Tokay and Short, 1996; Smith,
2003). For a given DSD, the moment of the order m can be defined as

Uy = f D™N(D, R)dD. (3.13)
0
Equation (3.2) for the reflectivity Z is a special case of this equation for

the moment of order m = 6, whereas the rainfall rate R is related to the
moment of order m = 3+d. Substitution of Eq. (3.4) into (3.13) leads to

Q= 0, ™, where (3.14)
O = fooo 2" g(x)dx, and (3.15)
Ym =a+ (m+1)6. (3.16)

Hence, the scaling exponents o and 8 can be obtained by fitting a power
law between different integral variables €2, and the rainfall intensity
R, where according to Eq. (3.16) the exponent should follow a linear
relationship with the moment order m + 1, with intercept o and slope £.

Different methods have been proposed to estimate the scaling coef-
ficients of g(x) in Eq. (3.10). Sempere-Torres et al. (1998) propose to
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fit the parameters of g(x) for a given functional shape based on non-
linear regression, while Chapon et al. (2008) calculated these coefficients
based on a moment method (Tokay and Short, 1996; Smith, 2003) at
every timestep. A drawback of this latter approach is that it does not
lead directly to any bulk estimates at the event scale. Uijlenhoet (1999)
developed a slightly different approach using the characteristics of a dis-
tribution function. Unfortunately, this method is rather time consum-
ing, especially for large DSD samples. Therefore, here a new method is
proposed, which takes into account the values of the prefactors of the
power laws between the rainfall integral moments (2,,, and R. In case of
a gamma DSD, these prefactors can be written as a function of g(z) in
the following way

F(m+p+1)

e (3.17)

Om =K /0 " exp(-Ax)dx = K
By taking the ratio of the prefactors for two consecutive moment orders,
using Eq. (3.17) one is able to obtain a linear relationship between the
ratios 0,,+1/60, and the moment order m + 1:

Omsr  T(m+p+2) ALy 1
- == 1)—. 3.18
oo 3 mrped) AT (MDY (3-18)

This equation implies that the normalized gamma DSD parameters p
and A can be estimated from the intercept and slope of a linear regression
between 6,,,11/6,, and the moment order m + 1, analogous to Eq. (3.16)
for the scaling exponents. It is then possible to obtain an estimate
for k using Eq. (3.11). Both scaling exponents and coefficients were
obtained by calculating the parameters 7, and the ratios 6,,+1/6,, for
those moments (2 < m < 5), which are known to be least sensitive to
sampling problems (Smith et al., 1993; Uijlenhoet et al., 2006). Finally,
the exponent of the Z—R relationship is obtained using Egs. (3.6) and
(3.8), and the prefactor is calculated from Eq. (3.12).

3.3.4 Statistical evaluation

The quality of the obtained Z—R relationship, assuming either an expo-
nential (EXP) or gamma (GAM) function for the normalized drop size
distribution, will be assessed by different goodness-of-fit statistics de-
rived from the measured and estimated rainfall rate time series. These
include the storm’s root mean square error (RMSE), the model efficiency
(R2, also known as Nash-Sutcliffe coefficient in hydrology), the total bias
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error (TBE) and the mean absolute error (MAE):

N
RMSE = | —— S [R; - (Z;/A) ]2, (3.19)
N-24
1 N (7. 1/b72
o N xR - (Z5/A) 7]
Ro=1 Var(R) (3.20)
TBE = ]ZV:R-—]ZV:(Z-/A)U” (3.21)
- J J .
j=1 j=1
_ 1 &R - (Z;/A)"|
MAE = 100%- = 3 R) (3.22)

j=1
In this chapter the results of the scaling-law based Z—R parameter values
will be compared to two direct regression techniques based on the (Z, R)
pairs derived for each individual spectra from (3.2) and (3.3). Although
it has been advocated elsewhere to perform regression on R as a function
of Z (Campos and Zawadzki, 2000; Morin et al., 2003), here the inverse
is performed, predicting the behavior of Z on the basis of R. This is
done to be consistent with the presented normalization method, where
the rainfall rate R serves as the reference variable. The first and most
straightforward method, termed as the LG method hereafter, performs
linear regression on the logarithmic values of both the radar reflectivity
and rain rate. In general, the LG method gives relatively more weight
to the smaller radar reflectivity and rainfall intensity values. This may
not result in an optimal fit for the most intense phases of an event.
Therefore, also a non-linear regression method is applied. This method,
referred to as the NR method hereafter, has been implemented to de-
rive an optimal value for the Z—R exponent using the Newton-Raphson
optimization technique. For this latter method, once the optimal expo-
nent has been obtained, the prefactor Z—R serves to remove overall bias
between the estimated and measured rainfall accumulations. This can
be done by estimating A as:

j=N 1/b
4 [_Zj—l 2
v
Z§:1 Rj

b
(3.23)

As such the implemented NR method leads to a zero TBE between the

estimated and actual rain rate (Ciach and Krajewski, 1999b; Steiner and
Smith, 2000).
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3.4 Raindrop evolution and control mechanisms

Combining Eq. (3.6) and (3.8) results in a relationship between the ob-
tained scaling coefficients and the Z—R exponent. This relationship
can be used to infer information about the type of control mechanisms
shaping the drop size distribution. Uijlenhoet (1999) and Uijlenhoet
et al. (2003a) explain that for cases where processes like coalescence and
break-up are in equilibrium, the obtained scaling exponents are a=1
and S=0, which results in a Z—R exponent b =1, i.e. a linear Z—R rela-
tion. This type of condition is known as equilibrium rainfall (Blanchard
and Spencer, 1970; List et al., 1987) and corresponds to homogeneous
precipitation (Jameson and Kostinski, 2002a). During these situations
all characteristic raindrop sizes, like the mean raindrop diameter and
standard deviation, are constant and changes in reflectivity and rainfall
rate values are a direct result of changes in the number concentration
of the DSD. Therefore, this type of precipitation is said to be number-
controlled.

The opposite happens when variations in reflectivity and rainfall
rate are caused by changes in the characteristic drop sizes. The most
extreme case is when the number concentration of the DSD is constant.
Uijlenhoet et al. (2003a) show that during these conditions the sum of
« and 8 becomes zero and precipitation is non-homogeneous (Jameson
and Kostinski, 2002b), leading to a so-called size-controlled drop size
distribution. Steiner et al. (2004) explain that based on the gamma dis-
tribution, during such size-controlled situations the exponent b becomes
1.63. This also follows from Eqgs. (3.6) and (3.8). Because of the assump-
tion of a constant number concentration, the number of drops formed
by break-up needs to be equal to that removed by coalescence. Overall
changes in the DSD in such situations can occur as a result of accretion
of cloud droplets and/or evaporation (Rogers et al., 1991). In general,
these extreme types of control mechanisms will be barely encountered.
Therefore, the shape of the DSD in most natural rain originates from
a mixture of both size- and number-control processes (Uijlenhoet et al.,
2003a; Steiner et al., 2004).

The different DSD formation controls enable one to speculate about
their importance during convective and stratiform situations, which re-
sult from different meteorological drop formation processes. In general,
convective events contain a high number concentration of rain drops and
are influenced by large vertical velocities (Ulbrich and Atlas, 2007). As
such, the overall time available for interactions and the resulting number
of interactions are large, favoring the type of conditions during which an
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equilibrium state could be reached. Generally, for these events the Z—R
exponent b is therefore expected to be closer to 1 (Atlas et al., 1999;
Prat and Barros, 2009).

For most stratiform systems the vertical extent is much smaller
and raindrops mainly start to interact below the zero degree isotherm
(Klaassen, 1989; Fabry and Zawadzki, 1995; Huggel et al., 1996). The
type of drop size distribution originating from such stratiform situations
is, as a result, mainly dependent on the relative size concentration of ice
particles above the bright band and whether they are in the form of
snow flakes or rimed ice crystals. Generally, a large concentration of
snowflakes results in relatively large drop sizes and a stronger bright
band after melting, as compared to droplets originating from rimed ice
crystals (Fabry and Zawadzki, 1995; Huggel et al., 1996). In other words,
during stratiform conditions raindrop spectra can contain both large and
small average drop diameters, leading to a larger range in Z—R exponent
values (Yuter and Houze Jr., 1997; Atlas et al., 1999). The behavior of
the Z—R exponent during these conditions is therefore difficult to assess
in advance.

3.5 Results and discussion

This section presents an analysis of the DSD properties and correspond-
ing Z—R relationships for three events. Next, these results are general-
ized based on the data for all 70 events. The three events took place in
the autumn season and are typical for the type of systems which may
lead to flash floods in the Cévennes-Vivarais region.

3.5.1 Event 1

The first event observed was part of a mesoscale convective system which
took place during the night of September 14, 2006. Hot and humid air
masses originated from the Mediterranean in the South. While moving
North, the air was lifted due to relief and resulted in large precipita-
tion intensities. Figure 3.3 presents the time series of the one-minute
reflectivities and rainfall rates as measured by the disdrometer. The es-
timated fraction of convectivity based on a threshold of Z = 43 dBZ was
about 48%, indicating that a considerable part of this event contained
convective precipitation, as can also be expected from the large rainfall
intensities (Churchill and Houze Jr., 1984; Steiner et al., 1995; Testud
et al., 2001).
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Figure 3.3: Time series of the one-minute reflectivity (dBZ) and
rainfall rate (mm h™') data as measured by the disdrometer for
the event on September 14, 2006. Dots correspond to the five-
minute measurements, which for reflectivities were obtained from
the 1 km? radar pixel directly above the disdrometer, based on the
measurements by the radar at Bollene at a range of 57 km (black
dots), while for the rain rates they were sampled by a nearby tipping
bucket rain gauge (gray dots).



Also added in Fig. 3.3 are the observed five-minute radar reflectivity
factor values sampled by the weather radar at Bollene and rainfall in-
tensities from the nearby tipping bucket rain gauge. Both types of data
show a very good correspondence with the disdrometer measurements.
This shows that the point measurements of the disdrometer are quite
representative for measurements made by an S-band weather radar at a
distance of about 57 km. The total rainfall accumulation registered by
the disdrometer during this period is about 104 mm.

Figure 3.4a presents the values of the exponents ~,, calculated by
logarithmic regression between a rainfall integral variable of moment m
and the rain rate R (Eq. (3.14), for 0 <m < 6). The error bars indicate
the 68% confidence limits obtained from 100 bootstrap samples (Efron
and Tibshirani, 1993). The fit was performed over the central moments
(2 >m <5) in order to minimize instrumental effects that might occur
measuring the smaller and larger rain drops. Except for the smallest
normalized diameters, the overall fit in panels (a) and (b) of Fig. 3.4 is
very good, as shown by the high value of the coefficient of determination
r2 of the linear relation following from DSD scaling-law theory. Based
on the estimated values for o and f3, obtaining the former by Eq. (3.8)
to preserve self-consistency, the Z—R exponent b was calculated using
Eq. (3.6). An exponent of 1.43 corresponds quite well to the value of 1.4
used for the summertime-convective NEXRAD Z-R relationship, which
is known to hold well for convective precipitation systems (Fulton et al.,
1997).

Figure 3.4b displays the values of the ratios 0,,+1/0pm (Eq. (3.18), for
0 <m < 6). The linear fit predicted by theory holds perfectly for the
gamma distribution. For the exponential distribution the fit between
the moments of interest (3 < m +1 < 6) is not very good due to the
corresponding DSD shape parameter value u = 0, forcing the intercept
of Eq. (3.18) to be zero. The associated coefficient of determination r?
only 0.44. However, this latter aspect does not lead to deviating results
for the exponential distribution in Fig. 3.4c. The normalized DSD data
can be seen to exhibit an exponential shape, which is well fitted by
both parameterizations. Such an exponential distribution has also been
observed during similar types of precipitation systems (Sempere-Torres
et al., 1998).

The reflectivity values and the rainfall rates as measured by the dis-
drometer are plotted in Fig. 3.5a. Also presented in this plot are the
optimal Z—R relations for the normalized exponential and gamma pa-
rameterizations and the two least-squares fitting methods LG and NR.
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Their values and statistics are given in Table 3.1. The fits are almost
identical for the EXP, GAM and LG methods and vary only with respect
to the value of the prefactor A. The parameters obtained by the NR
method are different. This fit performs rather well for the largest inten-
sity values. In Fig. 3.5b the overall rainfall accumulation for the four
estimation methods is compared to the actual amount of rainfall sam-
pled by the disdrometer. Between the four different techniques overall
differences in total accumulations are small, although as a consequence
of its implementation, only zero-bias is observed for the NR method.
On the other hand, the RMSE and R? in Table 3.1 for this method are
rather poor as compared to the other three techniques.

In order to place the results obtained by the various adjustment
techniques in a wider perspective, we follow the methodology proposed
by Bouilloud et al. (2010) who defined so-called equifinality patterns
by calculating various assessment criteria (e.g. TBE, R?) between Z-R
transformed and rainrate timeseries for a systematic exploration of the
Z-R parameter space. Fig. 3.6 presents the results for the 14 September
2006 event, from which one may note there exists an equifinality pat-
tern in terms of the R? criterion as presented by the hyperbolic shape (in
Fig. 3.6a) in the (A, b) parameter space, organized along the zero TBE
line (in Fig. 3.6b).The most optimal Z—R parameter pairs are therefore
those which perform well for both statistics. Of the four methods, espe-

Figure 3.4 (preceding page): Scaling analysis of the drop size
distributions for the event on September 14, 2006. The slopes (a)
and the ratios of intercepts (b) estimated by regression between a
rainfall integral moment vs. R. From the slopes v, vs. the moment
m + 1 the scaling exponents («, ) are obtained, from which the
corresponding Z—R exponent b can be estimated. The coefficient of
determination R? is indicated as well. A regression of the ratio of
the intercepts 6,,+1/6,, on the moment m + 1 yields estimates of the
parameter values of g(z), assuming either a gamma or an exponen-
tial distribution. These shapes are presented in (c) together with
the scaled spectra, the prefactor of the Z—R relationship and the
coefficient of determination 2. Both in (b) and (c) the exponential
and gamma parameterizations are presented by a dashed and solid
line, respectively. Error bars in (a) and (b) indicate the 68% con-
fidence intervals obtained from 100 bootstrap samples (Efron and
Tibshirani, 1993).

99



60

a1
o
I

Reflectivity (dBZ)
N
o

w
o
I

1 2 5 10 20 50 100
Rain rate (mm h™)

Cumulative rainfall (m

01:05 02001 0257 0353
2006-09-14 Time

Figure 3.5: Plot (a) shows the one-minute rainfall rate vs. the re-
flectivity as sampled by the disdrometer for the event on September
14, 2006. The different lines in (a) correspond to the obtained Z—R
relationships for the four different estimation techniques. Plot (b)
presents a time series of the event accumulation as sampled by the
disdrometer (DSD-R) and the rainfall rate estimates based on the
four Z—R relationships in (a) and the measured reflectivity values.



Table 3.1: Parameter values of the radar reflectivity — rain rate
relationship Z = AR? based on the four estimation methods and the
resulting goodness-of-fit statistics (Eqgs. (3.19-3.22)) for the five-
minute data for the event on September 14, 2006. The overall ac-
cumulation by the disdrometer was 104.1 mm of rainfall. Units of
RMSE, R?, TBE and MAE are [mm h™!], [-], [mm] and [%], respec-
tively.

Method A b RMSE R? TBE MAE
EXP 353 1.43 36.3 0.88 244 185
GAM 316 1.43 383 0.87 -5.8 19.2
LG 324 144 37.0 0.88 -2.35 18.6
NR 1077 1.13 50.3 0.77 0.0  33.1

cially the EXP and the LG estimates lie within this optimal region. Also
indicated in this figure are the error bars of the four methods, indicat-
ing the 68% confidence intervals based on the bootstrap method (Efron
and Tibshirani, 1993). It can be observed that for the NR method the
uncertainty bars are largest, which is caused by its dependence on the
largest reflectivity and intensity values. For the other three methods the
uncertainties in the A and b estimates are small.

3.5.2 Event 2

The second event treated was part of a larger period of widespread
rainfall lasting over a day. The events started at around 4:55 AM on
November 21, 2007, and had a duration of about 6 hours. Precipitation
originated from the warm sector of a large-scale Atlantic cyclonic system
extending form the UK down to the South of France, moving behind a
slow-moving cold front. As compared to Fig. 3.3, the observed timeseries
for the current event are much more moderate, with most reflectivities
and rainfall rates between 25-35 dBZ and 3-15 mm h~!, respectively.
Nevertheless, due to the duration of this event the overall accumulation
was 35.1 mm. According to the threshold (Z > 43 dBZ), no convective
activity was observed. Although it can be observed from the timeseries
in Fig. 3.7 that this event could be characterized by two different phases.

In Fig. 3.8 the analyses of the raindrop size spectra are presented.
The different nature of this event as compared to the previous resulted
in a slightly larger exponent b. The newly proposed method to fit the
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Figure 3.6: Statistical evaluation of the efficiency coefficient R?
(part (a)) and total bias error (part (b)), for different values of A and
b, using measured reflectivity and rainfall rate values for the event on
September 14, 2009. In panel (a) the outer gray line represents and
efficiency of R? = 0.4, increasing in steps of 0.1 for each consecutive
line inward. In part (b) the bottom gray line represents a total bias
error of =60 mm, increasing by 20 mm for each consecutive line. A
total bias error of zero (mm) is represented by the the dashed gray
line. Also plotted in both pannels are the optimal parameter values
obtained by the different estimation methods (EXP, GAM, LG and
NR), and their 68% confidence intervals from 100 bootstrap samples
(Efron and Tibshirani, 1993).
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Figure 3.7: Same as Fig. 3.3, but for the event on November 21,
2007.

scaling parameters, for the gamma distribution results in a perfect fit in
Fig. 3.8b. This clearly indicates that this method is well able to estimate
the scaling-law parameters. For the current event, these parameters are
larger, resulting in a smaller Z—R prefactor and more concave shape of
the gamma distribution in Fig. 3.8c. The fit for the exponential distri-
bution with respect to the ratios of consecutive intercepts in Fig. 3.8b
is rather poor. However, especially for larger normalized raindrops, this
distribution fits the normalized DSD better as compared to the gamma
distribution. As a result, the coefficient of determination R? of both
distributions in Fig. 3.8c is similar.

Figure 3.9a shows the regression analysis between the reflectivity
and rainfall rates. The observed variation in Z—R pairs correspond to
two different intra-event stages. For the first half of the event a given
reflectivity value corresponds to a larger rainfall rate as compared to the
second half of the event. Such intra-event variability was not taken into
account when fitting the Z—R parameters. The EXP and LG methods fit
the second stage of this event better, resulting in an underestimation of
the amount of rainfall during the first stage (Fig. 3.9b). The non-linear
NR fit results in a balance between both phases, where it first slightly
underestimates and then overestimates the amount of precipitation for
a given reflectivity Z. This results in a zero TBE (see Table 3.2). The

63



355 spectra, 366529 drops

2.0 a)
£ o
> 1.5 1 e
= e
c P 4
Q101 e~
8_ _e - a: —-0.10
X 05 . B: 0.23
s 5.2 b: 1.52
ool .-~ R% 1
o 1 2 3 4 5 6 7
DSD moment + 1 (m + 1)
34 .
b) Exponential: Gamma:
£ K: 4.84x10% Kk 2.96x10™
<3 \: 6.22 \: 26.35
e 21 R:-8.38 W 15.28
@ R% 1
s .| -
I o o=t
o D - = Exponential
O___-—" — Gamma
o 1 2 3 4 5 6 7
DSD moment+1 (m + 1)
10* S .
5 c) N Exponential: Gamma:
r . A: 97 A 79
=10 R% 0.23 R 0.26
o 10°
e
< 10t
8 10° L
o N
lo—l \
0 1 2 3 4
x =D/RP

Figure 3.8: Same
2007.

64

as Fig. 3.4, but for the event on November 21,



N
o
1

Reflectivity (dBZ)
w
o

€ 204 b) )

E -

T 30-

=

©

o 201

2

T

S 101

£ LG

]

O o NR
05:38  07:06  08:34  10:02

2007-11-21 Time
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2007.
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Figure 3.10: Same as Fig. 3.6, but for the event on November 21,
2007.

normalized GAM fit results in a break in the slope in between both
phases. As such it underestimates the first stage and overestimates the
second one. This shows that, even though the scaling method tries to
normalize to observed DSD variability with respect to rainfall, it is not
able to grasp all intra-event variability, as could also be observed from
the scatter in Fig. 3.8c.

In Table 3.2 the goodness-of-fit statistics of the Z—R fit for this event
are presented. As could already be expected from Fig. 3.9 and 3.10, the
quality of the EXP, LG and NR methods is similar. Only the GAM
method results in a less optimal fit. This emphasizes again the occur-
rence of a larger range of optimal Z—R parameter pairs, although totally
different from the previous event. In Fig. 3.10 this behavior is presented.
This plot shows that the NR method performs slightly better as com-
pared to the EXP and LG methods. For the current event the range
of optimal exponents b lies between 1.65-1.90, while the prefactor A is
less than 100. These ranges compare well with the relationship for oro-
graphic rain Z = 31R"™ (Blanchard, 1953) and steady rain Z = 67.6 R1-%
(Sivaramakrishnan, 1961) according to Battan (1973), which were sam-
pled during similar meteorological conditions. Orographic rainfall is
known to contain a large number of small raindrops, leading to rela-
tively small values of the prefactor A (Rosenfeld and Ulbrich, 2003), as
could also be observed from the normalized DSD in Fig. 3.8c.

As expected from Section 3.4, neither of the normalization methods
(EXP or GAM) produces an exponent value in the range 1.65-1.90.
From control theory it is expected that the value of the exponent b
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Table 3.2: Same as Table 3.1, but for the event on November 21,
2007. Overall accumulation by the disdrometer was 35.1 mm.

Method A b RMSE R? TBE MAE
EXP 97 1.52 20.4 0.85 0.11 14.1
GAM 79 1.52 29.9 0.67 -4.79 18.4
LG 81 1.59 19.4 0.86 -0.77 13.5
NR 71 1.68 17.1 0.89 0.0 126

should lie in the range between 1-1.63. The fact that for this event a
larger optimal exponent is observed, is probably related to the fact that
the two intra-event stages contain a different prefactor A (see Fig. 3.9a,
where both stages overlap each other). In order to obtain the best fits for
both regions using a single prefactor therefore results in a larger value
for the slope b. Although this value is physically unrealistic, statistically
it leads to a better fit.

3.5.3 Event 3

The third event presented here in detail took place on October 22,
2008. Previous to this event, on October 19-21 considerable rain was
already observed at Ales. The current event therefore resulted in local
flash floods within the region. Radar images (not shown here) revealed
that during the evening before, small scale showers originating from the
Mediterranean Sea came to a halt above the mountainous area North
of Ales. During the night these showers evolved into a series of con-
vective cells of larger reflectivity, which transformed into a squall line
that was pushed Eastward at around 1400 UTC. The time series of the
event selected during this period is presented in Fig. 3.11. The explained
meteorological characteristics can clearly be observed from this series,
where the first 45 minutes contained moderate rainfall intensities with
reflectivity values smaller than 43 dBZ. During the second convective
phase, intensities increased strongly. This event presents a clear exam-
ple of a mixture type of precipitation, where the second phase can be
identified as convective.

Microphysical analysis of the exponents between the power laws of
the different rainfall integral parameters versus rain intensity (Fig. 3.12a)
leads to a slightly larger scaling exponent 8 as compared to the previous
two events, resulting in a Z—R exponent of b = 1.41. The values of
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Figure 3.11: Same as Fig. 3.3, but for the event on October 22,
2008.

the scaling coefficients for this event are smaller compared to the other
two events, leading to a larger value of the prefactor A, exceeding a
value of 400. Such values for both Z—R parameters correspond well to
a thunderstorm type of rain according to the list of 69 relationships as
presented by Battan (1973).

The coefficients of determination in Fig. 3.12c¢ show that the nor-
malized gamma fit clearly outperforms the exponential one. This also
leads to a better overall fit between Z and R in Fig. 3.13 and Table 3.3.
Comparing the results of the two normalized methods to the direct least-
squares fitting techniques shows that the results for the GAM and LG
methods are almost identical. As for the former two events, the results
of the LG method are close to either one of the microphysical techniques.
This is probably due to the fact that for the microphysical methods log-
arithmic regression was performed between a given moment of the DSD
vs. rainfall rate R (Eq. 3.14), resulting in an almost identical value
for the Z—R exponent. Although overall differences between the four
fitting techniques are small, the NR performs slightly better. This indi-
cates again the occurrence of equifinality in Z—R parameter estimates,
as shown in Fig. 3.14.
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Figure 3.13: Same as Fig. 3.5, but for the event on October 22,
2008.

Table 3.3: Same as Table 3.1, but for the event on October 22,
2008. Overall accumulation by the disdrometer was 43.5 mm.

Method A b RMSE R? TBE MAE
EXP 446 1.41 21.8 0.95 25 19.6
GAM 410 1.41 224 0.95 -0.02 19.8
LG 419 1.39 25.0 0.94 -1.41 20.3
NR 198 1.61 20.0 0.96 0.0 26.1
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Figure 3.14: Same as Fig.3.6, but for the event on October 22,
2008.

3.5.4 Inter-event Z—R variability

The previous sections showed that different meteorological characteris-
tics lead to considerable variation in microphysical rainfall properties.
Similar types of analyses were performed on the entire dataset of 70 rain-
storms. The overall variability in Z—R relations for the different events
is presented in Fig. 3.15. As could already be observed for the three
individual events discussed above, the obtained A and b values behave
very similarly between the EXP, GAM and LG methods. As explained
before, this is probably related to the fact that for both microphysical
methods, logarithmic regression was performed between rainfall integral
variables and rainfall rate.

For the NR method a slightly different behavior can be observed.
The largest range in Z—R parameters is found for this technique, where
large prefactors tend to correspond to small exponent values and vice
versa (Atlas et al., 1999; Steiner and Smith, 2000). For some events this
even leads to exponents in excess of 2. Although such values might be
optimal from a statistical point of view and have been observed in snow
(Sekhon and Srivastava, 1970), in general they tend to be rather large
(Battan, 1973; Rosenfeld and Ulbrich, 2003) and physically unrealistic
(Uijlenhoet et al., 2003a; Steiner et al., 2004). During the second event
it could be observed that these large values generally occur as a result
of intra-event variations. In that particular case an actual intra-event
change in the prefactor A was compensated through a larger exponent
b. Similar reasonings lie behind the exceptionally large values of b fitted
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Figure 3.15: Optimal Z—R parameter values obtained by the four
different methods for all 70 events. The different colors and symbols
correspond to the fraction of the event for which the reflectivity
exceeded 43 dBZ, as shown by the legend in (d).

by the NR method for some of the events presented in Fig. 3.15.

The goodness-of-fit statistics for the 70 events are shown in Fig. 3.16.
Although the Z—R parameters for the two microphysical methods are
derived in a totally different manner as compared to the two least-
squares fitting techniques, the overall differences in the statistics are
small. Especially between the EXP, LG and NR methods, the ranges of
the RMSE and R? (exceeding 0.70) are similar. For the GAM method
slightly larger ranges in goodness-of-fit statistics can be observed. Ap-
parently, although that gamma distribution is well able to represent the
normalized DSD shapes (see also Fig. 3.4, 3.8, and 3.12), in case one is
interested in relating Z to R this distribution does not necessarily lead
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to the best results. Joss and Gori (1978) found that when aggregating
over larger intervals the DSD tends to become more exponential, which
might result in a slightly better fit for the normalized exponential dis-
tribution as compared to the gamma one. Next to that, below cloud
evaporation observed in more tropical regions (Sauvageot and Lacauz,
1995; Atlas et al., 1999) likely does not play a major role here, hence
increasing the amount of smaller droplets arriving at the ground and
leading to a more exponential DSD shape. Also for larger droplets, it
can be observed from Fig. 3.4 and 3.8 that the fit of the exponential
distribution is rather good. The larger raindrops have a bigger effect on
the higher moments of the DSD, like the reflectivity Z. This explains
why for a given reflectivity factor the gamma fit overestimates the rain-
fall rate for certain events, leading to a more negative TBE as compared
to the exponential DSD (Fig. 3.15). As explained in Section 3.3.4, this
latter statistic is always zero for the NR method, which makes it more
appealing from a hydrological perspective.

3.5.5 Storm-type specific Z—R values and microphysical
parameter ranges

Besides presenting an overview, Fig. 3.15 also provides the convective
character of the 70 events. Recall that this was based on a threshold
value of 43 dBZ to indicate convective DSD samples. In Section 3.4 it
was tried to explain the variability of the Z—R exponent between convec-
tive and stratiform events based on raindrop size distribution evolution
and control mechanisms. Convective events in general have larger num-
ber concentrations and higher vertical extents. Overall this increases the
amount of coalescence and break-up and decreases the time required to
reach equilibrium conditions (e.g. Blanchard and Spencer, 1970; Hu and
Srivastava, 1995; Prat and Barros, 2009). As a result, observed DSD
spectra are more number-controlled.

For stratiform events such an analysis is not so straightforward. Drop
interaction starts to occur below the zero-degree isotherm. Variability
with respect to this height of the bright band and the question whether
solid hydrometeors are present in the form of snow flakes or rimed ice
crystals have a large impact on the types of raindrop size distributions
observed. Therefore, for stratiform conditions a much larger range of
exponents b can be expected, ranging from a number-controlled to a
size-controlled situation.

A recent study by Lanza and Vuerich (2009) showed that the OT-
T /Parsivel disdrometer, which was also used in this chapter, generally
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the four different methods for the 70 events on the basis of different
goodness-of-fit statistics.
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overestimates the precipition intensity. Since this overestimation occurs
during both stratiform and convective precipition, it is expected that
the relative differences between the Z—R relationships for the different
types of precipitation as presented in Fig. 3.15, will not be significantly
affected. Next to that, it has been suggested that the OTT /Parsivel dis-
drometer generally understimates the amount of smaller raindrops while
overestimating the amount of larger raindrops. However, since the pa-
rameters of the normalized drop size disdribution were obtained based
on the central moments (2 > m < 5) of the DSD (see e.g. Fig. 3.4a and
b), such instrumental effects were minimized.

The large dataset of 70 precipitation events clearly shows this ex-
pected type of behavior. Based on the EXP, GAM and LG results, more
than half of the more serious convective events have exponents between
1-1.5. For the more stratiform type of events this range is much larger,
between 1.2-2.0. This larger range in exponents b for the more strati-
form precipitation events can also be observed for the scaling exponents
a and B (see Fig. 3.17). Note that the combination of o and 3 defines
the value of the exponent b (see Eq. 3.6). Events which contain at least
30% of convective activity exhibit values of a > —0.20 and 3 < 0.25. Only
for one of the 70 events an almost perfect number-controlled situation
(8 = 0) occurs. For all other events, size-controlled mechanisms play a
role in determining the scaling exponents of the normalized DSD and as
such the value for exponent b.

Fig. 3.15 also shows that generally smaller values of the exponent
b result in larger values of the prefactor A. This inverse relation has
also been observed for tropical maritime rain by Atlas et al. (1999).
However, for the 70 events studied here, for a given value of the exponent
b generally larger fractions of convectivity lead to larger prefactor values
as compared to the more stratiform situations. The results for the NR
method shows a slightly different behavior as compared to the other
three. As explained, the optimal Z—R parameter pair resulting from this
method depends heavily on the largest values measured. In addition, the
associated parameter estimates exhibit larger 68% confidence intervals,
as could also be observed from Fig. 3.6, 3.10, and 3.14. But even for
this method, the more convective events contain larger prefactor values
for a given Z—R exponent.

This behavior is different from that reported by Atlas et al. (1999)
and Tokay and Short (1996). Besides the fact that in this study no
intra-event separation was performed, differences with respect to these
two studies are probably related to the more continental character of the
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ent colors and symbols correspond to the fraction of the event for
which the reflectivity exceeded 43 dBZ, as shown by the legend.

precipitation events observed in the Cévennes-Vivarais region as com-
pared to the more maritime character of the precipitation events ana-
lyzed by Atlas et al. (1999) and Tokay and Short (1996). For continental
convective precipitation the Z—R prefactor generally tends to be larger
compared to maritime convection (Rosenfeld and Ulbrich, 2003). In ad-
dition, in the Cévennes-Vivarais region many stratiform events have an
orographic origin. This type of precipitation system generally tends to
have a smaller median raindrop diameter and thus a smaller value of the
prefactor A.

These latter characteristics can also be observed by analyzing the
scaling-law parameters in Fig. 3.18. Events which have a more convec-
tive character either have smaller value of A for the exponential distribu-
tion or a combination of either a smaller value of A or y for the gamma
distribution, as compared to the more stratiform events. This indicates
a larger amount of small and large drops for the convective events within
the Cévennes-Vivarais region, which could also be observed when com-
paring Fig. 3.4c to 3.8c. Such behavior is different from DSDs observed
in more tropical regions, where wind sorting and below cloud evapora-
tion decreases the amount of small raindrops resulting in a more concave
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DSD shape ( Yuter and Houze Jr., 1995b; Sauvageot and Lacauz, 1995;
Atlas et al., 2000; Atlas and Ulbrich, 2000). Apparently, climatological
conditions within the Cévennes-Vivarais region, together with a smaller
vertical extent of the precipitation systems as compared to the tropics,
prevents this from happening. A similar reasoning probably also ex-
plains the fact that here a relatively large amount of large normalized
raindrops are observed as compared to the tropical maritime situations.
Due to the smaller vertical convective extents, the time for raindrop in-
teractions to occur is smaller. This therefore decreases the amount of
destruction of large raindrops by collisions.

The resulting smaller values of both 1 and/or A for the more convec-
tive precipitation events therefore lead to larger values of the prefactor
A as compared to more stratiform type of events. From Fig. 3.17c it
can be observed that for the more stratiform type of events the overall
range in values of y is rather large. As indicated in Section 3.4, during
these situations raindrops originate from either snow flakes or rimed ice
crystals. As a result, the observed DSDs for this type of precipitation
can exhibit both small and large drop spectra (Yuter and Houze Jr.,
1997), which is reflected by the large range in observed p values.

3.6 Summary and conclusions

This chapter presented the results of a hydrometeorological analysis of
2.5 years of disdrometer data collected in the South of France. In total
70 events were selected, of which both the reflectivity Z, the rainfall rate
R, and the microphysical characteristics were identified. With respect to
the latter aspect, based on the single-moment DSD normalization the-
ory, a new method was presented by which the scaling-law parameters
could be estimated. Compared to previous techniques presented in the
literature, the main benefit of the current method is that the estimation
process is much faster, leading to bulk event-based estimates of the dif-
ferent scaling-law coefficients and exponents. From these characteristics
it is then possible to calculate the parameters of the Z—R relationship
(Eq. 3.1) per event.

The objectives of this chapter were twofold, namely 1) to compare
the obtained results from the newly proposed estimation method with
respect to two more traditional Z—R parameter estimation techniques,
and 2) to estimate the fraction of convectivity for each of the 70 events
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and investigate whether a different type of event (convective vs. strat-
iform) leads to a different behavior in both the Z-R coefficients and
microphysical parameter values. With respect to the first point the fol-
lowing main conclusions can be drawn:

1. The newly proposed estimation technique is well able to obtain
estimates of both the different microphysical rainfall properties,
as well as the parameter values of the Z—R relationship. From
Fig. 3.4b, 3.8b, and 3.12b it can be observed that the mathemat-
ically expected linear relation as implied by Eq. 3.18 does indeed
hold, especially for the normalized gamma distribution. But even
the slightly worse fit as obtained from the exponential distribution
does not immediately lead to a deviating fit of the normalized DSD.
Especially for larger normalized diameters the fit of the exponential
distribution for most events outperforms the gamma distribution.
Because the higher moments of the DSD depend more on these
larger drop sizes, for a lot of events the estimated Z—R prefactors
from the exponential distribution are statistically slightly better as
compared to those obtained from the normalized gamma fit (see
Fig. 3.16).

2. When these Z—R parameters are compared to the results of the
two statistical least-squares fitting techniques, overall results are
very similar, although all methods produce different parameter es-
timates. The individually analyzed events showed that especially
the differences between the EXP, GAM and LG methods are small,
which is probably related to the fact that for the former two log-
arithmic regression was performed between the different moments

Figure 3.18 (preceding page): Analysis of the normalized DSD
parameters for the 70 events analyzed. Plot (a) shows the self-
consistency relationship between the parameters x, A and the Z-
R prefactor A, assuming an exponential distribution. In (b) the
values k and A\ are presented, assuming a gamma distribution. Also
shown are the self-consistency relations for a given value of 1 based
on Eq. 3.11. Plot (c) presents the variability of u and the Z-R
exponent A, based on the gamma distribution. The presented lines
for A correspond to Eq. 3.11. The different colors and symbols
correspond to the fraction of the event for which the reflectivity
exceeded 43 dBZ, as shown by the legend in (a).
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of the DSD versus the rainfall intensity. Therefore, the imple-
mented mathematical techniques of the normalized DSD analyses
and the direct logarithmic regression are similar. The non-linear
statistical regression method, NR, gives rise to slightly different
results for individual events, although its overall behavior is still
quite similar. A positive aspect, which is a direct consequence of
the way in which it was implemented, is the fact that it produces
zero overall bias at the event scale. However, the uncertainty in
its Z—R parameter estimates is much larger as compared to the
other three methods and the zero bias does not always lead to
proper intra-event behavior (see e.g. the RMSE in Table 3.1). In
addition, intra-event variability can result in exponent b estimates
which are, although statistically optimal, physically too large and
unrealistic.

. The fact that different techniques lead to similar statistical results

gives rise to the possibility of equifinality. This means there is a
larger range of values A and b which provides an equally good fit
between values of R estimated via the Z—R relationship and those
computed directly from the observed DSDs.

With respect to the second aspect of this chapter, a similar approach

was adopted as in the local operational weather radar precipitation clas-
sification scheme. Convective regions were identified as those having a
reflectivity exceeding 43 dBZ. Although this straightforward method is
not able to identify all types of convection, it does give a first estimate

of the overall convective fraction. Based on these results it can be con-
cluded that:
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4. Precipitation which contains a larger convective fraction generally

exhibits smaller values of the exponent b. This property can be
related to the fact that convective precipitation is generally as-
sociated with larger raindrop number concentrations and larger
vertical extents. Both aspects increase the overall interaction time
between raindrops, leading to a more number-controlled situation
and thus smaller values of the prefactor. For the more stratiform
precipitation a much larger range of prefactor values is observed.

. For a given Z—R exponent the convective events generally exhibit a

larger prefactor A. This latter aspect is different from DSD studies
performed in tropical regions ( Tokay and Short, 1996; Atlas et al.,
1999), for which the precipitation had a maritime character. For



the region of study, the more convective precipitation generally
exhibits smaller values of A and/or p as compared to the more
stratiform type. It is assumed that the latter properties are the
result of less below cloud evaporation of the smallest droplets, and
less destruction of large raindrops due to a more limited vertical
precipitation extent, as compared to more tropical regions.

In this chapter some limited attempts have been made to compare
the disdrometer-derived results to local weather radar samples. Al-
though measured reflectivities by the disdrometer were comparable to
those obtained from the radar (see Fig. 3.3, 3.7, and 3.11) a more ex-
tensive analysis should also have to focus on differences in sampling
characteristics and vertical raindrop size distribution variations, which
are beyond the scope of this study. This also holds for intra-event vari-
ability of the DSD.
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CHAPTER 4

Precipitation region identification using a contour
tracing grid-based algorithm

4.1 Introduction

In Chapter 2 the current potential of weather radar correction methods
were presented. In order to improve the quality of the VPR correction
algorithm, in Section 2.6 it was mentioned that more emphasis should
be placed on smaller areas, more specifically by focusing on precipitation
regions. There are multiple ways to identify precipitation regions from
volumetric weather radar. However, a main constraint to implement
this identification step is that the applied segmentation method should
be computationally efficient, in order to be applicable for real-time pur-
poses. The current chapter describes the details of a method that was
specifically developed to deal with this issue.

Over the last decades, increasing amounts of spatial geographic data
from spaceborne satellite and ground-based radar, remote sensing, and
other types of data, have led to a considerable focus on smart and effi-
cient solutions to extract the most essential information from different
types of spatial images (e.g. Wang et al., 1997; Jain et al., 1999; Sheik-

This chapter is a slightly modified version of: Hazenberg, P., P.J.J.F. Torfs,
H. Leijuse, and R. Uijlenhoet (2013), RoCaSCA: A contour tracing grid-based
algorithm to identify similarity regions and clusters in spatial geographical
data, In prep.
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holeslami et al., 2000). Many of these methods either use a specific
image segmentation technique or apply some kind of cluster identifica-
tion method. The foremost benefit of identifying the dominant regions
in a spatial image is that it leads to a considerable data reduction (Zam-
peroni, 1981; Inesta et al., 1996; Shih and Wong, 1999).

In general, three different types of spatial segmentation can be per-
formed: 1) thresholding, 2) edge detection and 3) region extraction
(Rosenfeld and Kak, 1982; Fu and Mui, 1981; Zucker, 1976; Jain et al.,
1999). However, many image segmentation algorithms make use of a
combination of these three types (e.g. Chang et al., 2004; Wagenknecht,
2007; Wu et al., 2009).

Connected-component labeling is a widely used procedure in spatial
image segmentation. The method was specifically developed for grid-
based binary data, where neighboring pixels of a similar type are linked
and assigned a unique label (the connected component) (Rosenfeld and
Pfaltz, 1966; Rosenfeld, 1970; Dillencourt et al., 1992). For cases where
the application uses a continuous image, the connected-component label-
ing is preceded by a thresholding step to transform the input into binary
information (Fu and Mui, 1981; Jain et al., 1999). Most connected-
component labeling algorithms can be classified into three categories:
1) multi-pass algorithms, 2) two-pass algorithms, and 3) single-pass al-
gorithms, where the number of passes defines how many times a given
input image is being analyzed sequentially ( Wu et al., 2009).

Another type of image segmentation method which is often applied
for binary image data makes use of a tracing-type algorithm e.g. con-
tour or border-tracing methods (e.g. Freeman, 1974; Ren et al., 2002).
Instead of specifically focusing on regions of connected pixels, contour-
tracing techniques are mainly used for boundary detection. However,
since boundary shapes define the semantics of an image, contour tracing
techniques are able to extract the dominant information, leading to con-
siderable data reduction. In general, such contours are obtained using
a single outer border traverse procedure without repetition (Freeman,
1974; Zamperoni, 1981; Testi et al., 2001). However, a number of algo-
rithms that are able to deal with inner borders have been developed as
well (Xiao et al., 2001; Chang et al., 2004; Ren et al., 2002). Unfortu-
nately, according to Wagenknecht (2007) many contour-tracing methods
still have difficulties dealing with single pixel or inner contour regions.

Chang et al. (2004) implemented an image segmentation method,
where the properties of both the contour tracing method and the connec-
ted-component labeling method were merged. By combining the benefits
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of both techniques, a highly efficient single-pass algorithm was developed
(Wu et al., 2009; He et al., 2009).

A drawback of both the connected-component labeling as well as the
tracing-type algorithms is the fact that these methods only define an
equivalent region which is closed-connected. As such, these algorithms
assume that regions are separated by a hard boundary (Fu and Mui,
1981). For many application in hydrology, like weather radar precipi-
tation region identification, such a hard boundary is too strict (Steiner
et al., 1995; Johnson et al., 1998). Instead, cluster identification can
be used, which also makes use of a certain proximity measure. How-
ever, this technique does not specifically make use of a hard boundary
to identify a given region (Gath and Geva, 1989; Jain et al., 1999).

Historically, cluster identification algorithms can be divided into hi-
erarchical and partitional methods (Jain et al., 1999; Ma and Chow,
2004). The former results in a nested series of clusters which are obtained
using either an agglomerative bottom-up or a divisive top-down ap-
proach, where successively clusters are merged (split) into larger (smal-
ler) clusters (Jain et al., 1999). Examples of partitional clustering tech-
niques are variants of the K-means and fuzzy C-means algorithms. Gen-
erally, these methods link individual objects to a given cluster based on
some kind of distance or cost function criterion which is to be optimized.
These algorithms are dependent on the initial choice and the number
of clusters. Since such estimates are subjective, generally these algo-
rithms are run multiple times (e.g. Gath and Geva, 1989). Originally,
a drawback of partitional identification methods was their dependency
on a predefined number of output clusters and initial guess positions,
however, during the last decades a number of algorithms have been de-
veloped in which this process was automated (e.g. Gath and Geva, 1989;
Wong et al., 2001).

Another way to perform cluster identification is to make use of a
density or grid based algorithm (Ma and Chow, 2004). These types are
generally computationally more efficient, partitioning the data space
first into a grid structure, before clusters can be identified. The main
benefit of grid-based approaches over other partitioning techniques is
that they are able to identify clusters of arbitrary shapes, positioned in
a nested sequence or containing a concave shape, while being insensitive
to outliers (Wang et al., 1997; Agrawal et al., 1998; Sheikholeslami et al.,
2000; Ma and Chow, 2004; Lin et al., 2007). However, compared to seg-
mentations techniques, cluster identification methods are computation-
ally inefficient. This especially holds when dealing with large amounts

85



of gridded data as obtained within many hydrological applications, e.g.
weather radar data.

This chapter presents an image segmentation method that was specif-
ically developed to identify regions, using a tracing-type algorithm ap-
proach. However, compared to previously defined algorithms (e.g. Suzuki
et al., 2003; Chang et al., 2004; He et al., 2009) the implementation pre-
sented in the current chapter is not limited to direct neighbor linking
only. On the contrary, connecting-component labeling forms a special
case, but the algorithm developed here also has similarities to the den-
sity and grid-based cluster algorithms. As such, the image segmentation
method presented here is specifically interesting to be used in earth
science applications, e.g. weather radar image analysis. By applying
the computational efficiency provided by most segmentation methods,
in combination with a flexible distance metric similar to most cluster
identification methods, the algorithm presented here merges both types
of approaches.

This chapter is organized as follows. Section 4.2 presents the main
aspects of the contour-based cluster algorithm presented here, by fo-
cusing on neighboring (Section 4.2.1) and non-neighboring pixels (Sec-
tion 4.2.2). In Section 4.3 the potential of our algorithm are presented
for a number of typical examples for grid-based. Section 4.4 finishes
with conclusions as well as some discussion.

4.2 The rotational carpenter square cluster al-
gorithm (RoCaSCA)

The aim of the algorithm presented in the current chapter is to identify
regions within a given continuous weather radar image, represented by
a grid of [ x b pixels. A region is then defined as a minimum of N,
pixels which receive a similar label. All pixels belonging to a given region
exceed a user-defined reflectivity threshold 7" and lie within a maximum
inter-pixel distance Ij in the horizontal and I, in the vertical direction.
By providing the possibility of using variable lengths for I, and I, the
current algorithm is able to deal with rectangular grid pixels.

4.2.1 Connecting neighboring pixels

As explained in the introduction, the segmentation algorithm developed
in the current chapter takes a similar approach as the tracing-type algo-
rithm developed by Chang et al. (2004). As such, regions are identified
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using first a contour tracing algorithm to identify their boundaries, fol-
lowed by a similar approach to label the inner pixels of a precipitation
region.

In their paper, Chang et al. (2004) used the contour tracing method
originally developed by Haig and Attikiouzel (1989). This method takes
a clockwise search approach to identify the next contour pixel based
on the eight neighboring pixels, which could be implemented in a single
function call. The interest here lies in finding the next neighbor that lies
within given distances I, and I, in the horizontal and vertical direction,
respectively. Therefore, this procedure is executed in four individual
steps, using the properties of a carpenter square with dimensions [, + 1
and I, + 1. Computationally, a carpenter square can be represented by
two separate vectors. By reversing the order of either of these vectors,
the carpenter square (CS) can rotate and move in four different direc-
tions around a given boundary. Another benefit of applying a CS is that
the algorithm becomes rotationally invariant. As such, pixels belonging
to a given precipitation region are clustered together. Hence, we call
this the Rotational Carpenter Square Cluster Algorithm (RoCaSCA).

In Fig. 4.1a the basic graphical representation of this procedure is
shown for a precipitation region represented by a single pixel, which
exceeds the predefined threshold T'. After encountering the first pixel
belonging to a given contour (second panel of Fig. 4.1a), the CS rotates
along the boundary of the cluster. This rotation continues until the
initial position is reached again by the CS (last panel in Fig. 4.1a).
As such, the contour delineation uses a a single outer border traverse
procedure similar to other algorithms (Chang et al., 2004; Wagenknecht,
2007). Rotation of the CS (i.e. reversing either the horizontal or vertical
vector) is implemented as part of an internal procedure. This means that
once a positive pixel is identified, the CS traverses to its initial position
in 4 steps (for clarity, the internal rotation procedures are shown as
separate steps in Fig. 4.1). During each step only one side of the CS
is being analyzed to contain the next positive boundary pixel (i.e. the
vector perpendicular to the moving direction). In case no new boundary
pixel is encountered the CS is rotated in clockwise direction by reversing
the tangent vector and moving the position of the other vector one pixel.
In Fig. 4.1b and ¢ the contour tracing procedure of RoCaSCA for two
horizontally (b) and diagonally (c) neighboring pixels is shown. When
a new boundary pixel is encountered by the perpendicular vector of the
CS, the CS either moves to the next position forward (i.e. when the new
pixel is encountered at a corner point (Fig. 4.1b)), or rotates in clockwise
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Figure 4.1: General technique behind the contour tracing algo-
rithm of RoCaSCA for a) an individual pixel, b) two horizontally
neighboring pixels, and c) two diagonally neighboring pixels. The
color of the carpenter square indicates its direction of movement for
the four different directions (i.e. red (right), blue (up), green (left)
and black (down)). These directions and coloring are also indicated
by the arrows on top of each subplot, where the left (right) indi-
cates its last (next) direction. A closed (open) circle on top of a
subplot indicates a(n) (anti)clockwise shift in the direction of the
carpenter square, where the former (latter) indicates when a new
pixel belonging to the same cluster is identified. Gray pixels will be
left out from further analyses by RoCaSCA.

o

direction before moving forward (i.e. when new pixel is not encountered
elsewhere by the perpendicular vector of the CS (Fig. 4.1c)).

The complete segmentation procedure of RoCaSCA to label neigh-
boring connected-object pixels is presented in Fig. 4.2. Here the follow-
ing steps are performed:

1. Define the size of the CS with length 2 in both horizontal the
(I, = 1) and vertical (I, = 1) direction, respectively.

2. Sequentially scan the input image until the first pixel (> T) is
identified belonging to the contour of a given precipitation region
(Fig. 4.2a).

3. Perform the rotational CS procedure as shown in Fig. 4.1 to iden-
tify the region boundary until the first pixel is encountered again
(Fig. 4.2b).

4. Start connecting the inner pixels of a given region using an inward
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Figure 4.2: Example of the combined step of tracing the outer
(a-b) and inner (d-e) contour for a given region and labeling all
individual pixels (c-f) using a connected component approach to
identify all inner pixels part of a given region, as implemented in

RoCaSCA.

facing CS, until all are labeled (Fig. 4.2¢,f). The inward facing CS
moves between the identified boundaries of the outer contour.

5. In case an inner contour is identified (Fig. 4.2d), the inward fac-
ing CS identifies the inner boundary by rotating in the opposite
direction (Fig. 4.2e).

Besides identifying individual precipitation regions, RoCaSCA also
immediately identifies boundary pixels not part of the identified region
(gray pixels in Fig. 4.1 and 4.2). These pixels are left out of further
analyses while passing through the rest of the image. The amount of
memory used as part of this identification procedure consists of two grids
(one input grid and one output grid of size (I+1p+1) x (b+1,+1)) as well
as the information on the position and size of the CS. The dimensions
of the input grid are increased to remove any possible boundary effects
at of the border the image.

4.2.2 Connecting non-neighboring pixels

The previous section described the most basic implementation of Ro-
CaSCA, where only neighboring object pixels are labeled as part of the
same precipitation region. This implementation leads to similar results

89



-.:ﬁ -n: -E:' -E: -u:
Ao < < o o <« Vo Voo

R OEOw

Figure 4.3: Example of two non-neighboring (light-green) pixels
becoming part of the same precipitation region as a result of an
increased size of the carpenter square. The colors and the symbols
above each subplot have a similar meaning as in Figure 4.1.

as other connected-component labeling (e.g. Dillencourt et al., 1992; Fio-
rio and Gustedt, 1996; Suzuki et al., 2003; Chang et al., 2004; Wu et al.,
2009; He et al., 2009) and tracing-type algorithms (Chang et al., 2004).
However, for many precipitation systems as observed by weather radar,
non-neighboring pixels can belong to the same rainfall region (Steiner
et al., 1995; Johnson et al., 1998). Therefore, the capabilities of most
standard segmentation algorithms provide too strict dependencies since
they only label connected pixels. RoCaSCA does not have such a limi-
tation. By increasing the size of each side of the CS, the assumption of a
hard boundary is relaxed, making it more flexible to identify precipita-
tion regions. Here lies the main benefit of applying RoCaSCA compared
to other image segmentation algorithms. Increasing the size of the CS
(i.e. the size of the two vectors) does not lead to any changes in the
specific programming code.

A simple example of the use of RoCaSCA to label non-neighboring
pixels to the same region is presented in Fig. 4.3, by increasing the
length of each side of the CS. It can be observed from this figure that the
individual rotating steps are similar to the ones presented in Figure 4.1.

In Fig. 4.4 the implementation of RoCaSCA to label a larger pre-
cipitation region of loosely connected pixels is presented. The different
steps performed are similar to the procedure executed in Fig. 4.2. In
case one would only be interested in labeling neighboring pixels, analysis
of Fig. 4.4 would lead to a total of three different precipitation regions.
However, the increased size of the CS identifies a single contour, in-
stead of three. Note from Fig. 4.4c that pixels that do not surpass the
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Figure 4.4: Example of the combined step of tracing the outer
(a-b) and inner (d-e) contour for a given hypothetical precipitation
region and labeling all individual pixels (c-f) belonging to that re-
gion using a connected component approach, as implemented within
RoCaSCA. The red box in (f) delineates the minimal requirement
to start the inner-contour identification procedure.

threshold value T but are part of the identified contour, get temporarily
a value (dashed blue pixels) different from the excluded objects (gray
pixels). To identify the inner cells of a given region (Fig. 4.4d,e), Ro-
CaSCA temporarily assumes these boundary pixels to be part of the
same precipitation region. In order to proceed with identification of an
inner contour boundary, a rectangle of I, x I, background pixels should
be identified (red square in Fig. 4.4f) before its delineation is executed
(Fig. 4.4g).

4.2.3 RoCaSCA implementation specifics and complexity

In the previous sections the basic ideas behind RoCaSCA were presented.
For the current implementation, in line with Chang et al. (2004), the
following properties hold:

91



1. Each pixel belonging to the boundary contour is analyzed a max-
imum amount of 21y + 21, times, depending on the complexity of
the boundary.

2. Pixels belonging to the same precipitation region are assigned the
same label.

Many weather radar rainfall cell-tracking algorithms as presented in
the literature identify precipitation regions at different levels of inten-
sity (e.g. Dizon and Wiener, 1993; Johnson et al., 1998; Handwerker,
2002). Given the fact that a precipitation region identified at a higher
threshold also belongs to a region at a lower threshold, the algorithm
was implemented in a hierarchical manner (see Section 5.3.4). This en-
sures that computation time is optimized when identifying precipitation
regions for a higher reflectivity threshold. For volumetric weather radar
data, the raw polar image data contains a vertical boundary that is pe-
riodic (i.e. the pixel to the left of the left boundary is the right-most
pixel). Pixels exceeding the reflectivity threshold at both sides of this
boundary actually belong to the same precipitation region. In the cur-
rent implementation of RoCaSCA, these pixels are indeed identified as
belonging to the same cluster (see Section 4.3.1 and Fig. 4.5).

4.2.4 Runtime comparison: RoCaSCA vs. FLCCL

In order for RoCaSCA to be a useful tool for precipitation region iden-
tification using the information provided by volumetric weather radar,
its computation time should be short. Given the complexity to iden-
tify precipitation regions and correct for all sources of error affecting
weather radar measurements, only an efficient algorithm can be used for
real-time applications. To give an indication of the computation speed
of RoCaSCA with respect to traditional image segmentation methods,
it will be compared to the Fast Linear Connected Component Labeling
(FLCCL) algorithm. The FLCCL algorithm, as developed by He et al.
(2009), is the fastest segmentation algorithm in the world for 2D binary
data (Wu et al., 2009).

RoCaSCA was originally developed to efficiently segment a weather
radar image into its dominant precipitation regions, providing the possi-
bility of taking both a flexible distance metric and transition pixels into
account. This is completely different from the purpose of FLCCL, which
purely focuses on connected component labeling. Therefore, in case the
computation speed of RoCaSCA is of a similar order of magnitude as
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the FLCCL algorithm, it can be considered as a useful tool for real-time
precipitation region identification purposes.

For the comparison of RoCaSCA with respect to FLCCL, a total of
94 binary images of 512 x 512 pixels are used. These images are gener-
ally used as standard testing material to assess the computation speed of
a given segmentation algorithm (Suzuki et al., 2003; He et al., 2009; Wu
et al., 2009). They are subdivided into 5 different categories; natural,
noise, photo, special and textural images. Next to that, random binary
images are created for varying grid dimensions, with n = 2,4, ...,2048
pixels on each side. For each of these images, binary values were ran-
domly drawn from a binomial distribution with probability of success
varying from p = 0.02,0.04,..,0.98. By using RoCaSCA as a standard
segmentation algorithm it is compared to FLCCL. Based on this last test
example, it becomes possible to assess its computational efficiency for
varying image sizes with varying pixel density. The comparison was exe-
cuted on a notebook (Intel(R) Core(TM) 2 Duo CPU T9300 @ 2.50GHz,
2048 MB Memory, Ubuntu Linux OS)

4.3 Results

4.3.1 Runtime comparison
Neighbor connecting

As explained in Section 4.2.4 the 94 test images are separated into 5 dif-
ferent categories. An example of a typical image used in each category
is presented in Fig. 4.5. Also presented at the bottom of each label is
the runtime and the number of identified components. As anticipated,
both algorithms identify a similar amount of connected components, al-
though the runtime of RoCaSCA is slightly slower compared to FLCCL.
However, the overall segmentation time of RoCaSCA is very short.
Histograms of the runtime of RoCaSCA and FLCCL to segment
all 94 images are given in Fig. 4.6. RoCaSCA has most difficulty with
connecting components in noisy images. In general, noisy images contain
irregularly shaped contour boundaries, which take a relatively long time
to be identified. For images that contain more closely connected regions,
RoCaSCA runs much faster, since the number of CS rotations is much
smaller (see also Fig. 4.5). From this figure it also immediately becomes
clear why FLCCL is the fasted neighbor segmentation algorithm in the
world, its runtimes are considerably shorter than those of RoCaSCA.
To gain a better understanding on the computation speed difference
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Figure 4.5: Example of each of the 5 categories of images used
to test to computation speed of RoCaSCA with respect to FLCCL.
Each image has a size of 512 x 512 pixels. At the bottom of the
image, for both algorithms the number of connected components
and the computation speed (msec) is given.

between both algorithms, the ratios of both computation times are taken
and presented in Fig. 4.7. For the 94 test images RoCaSCA on average is
about 6.5 times slower than FLCCL. However, it should be emphasized
that FLCCL was specifically developed and optimized for connecting
neighboring pixels. The fact that RoCaSCA is able to achieve runtimes
similar order of magnitude as FLCCL shows it is efficient to identify
individual regions, especially, when considering the fact that RoCaSCA
runs relatively fast for natural images that contain continuous areas.
This type of images are generally also observed by weather radar.

To further test the capabilities of RoCaSCA, a number of random
binary images with varying grid sizes are created. In Fig. 4.8 the runtime
results of this analysis are presented, as well as those of using the FLCCL
algorithm. In general, both RoCaSCA and FLCCL run more efficiently
in case the pixel density is lower or higher (i.e. a small and large value
of the binomial distribution probability p). However, the overall impact
of density variability is small. Similar to the previous results, RoCaSCA
is slower than FLCCL, with runtime increasing for larger images. From
Fig. 4.9 it can be observed that this increase in runtime is about linear
with a slope of 2. This indicates that the runtime of RoCaSCA doubles
in case the input grid becomes twice as large, just as FLCCL. Again this
shows that RoCaSCA is an efficient algorithm to be applied for image
segmentation.
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Figure 4.6: Histograms of the runtime (msec) used for segmen-
tation by RoCaSCA and FLCCL for the five different test image
categories.
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Figure 4.8: Runtime comparison (msec) between FLCCL (a) and
RoCaSCA (b) to segment random binary images of varying sizes
n =2,4,...,2048 and different densities. The image size is given by
the different gray shades, while densities are created by randomly
drawing from the binomial distribution for probability values p =

0.02,0.04, ...,0.98.
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Non-neighbor connecting

In the previous section, the ability of RoCaSCA to link neighboring pix-
els was tested. Overall, runtime results are very promising, although its
efficiency is not as good as FLCCL. However, as explained before, Ro-
CaSCA was not specifically developed nor optimized to handle linking of
neighboring pixels only. On the contrary, connected component labeling
is just a special case. In Fig. 4.9 the runtime statistics of RoCaSCA
for both neighboring (I, = I, = 2) and non-neighboring (I, = I, > 2)
pixels are shown. For increasing maximum inter-pixel distances I and
I, runtime on average only slightly increases. However, this effect is
hardly noticeable.

The results presented in Fig. 4.9 also show the limitation of FLCCL.
Even though this algorithm outperforms RoCaSCA when focusing on
connected pixel labeling, it was not developed for and is unable to deal
with the linking non-neighboring pixels to the same region. Therefore,
in practice, this algorithm is not very useful to identify precipitation
regions on weather radar images, since for this type of image two non-
neighboring pixels can belong to the same precipitation region in case
their proximity lies within a certain user-defined distance (e.g. Johnson
et al., 1998). As such, RoCaSCA provides a much more useful alterna-
tive, which is quite computationally efficient as well.

As a last example, in Fig. 4.10 the runtime and number of delineated
components by RoCaSCA for varying sizes of the CS are presented. This
example provides a clear overview of the potential of RoCaSCA to link
non-neighboring pixels to the same region.

4.4 Conclusion and discussion

In the current chapter a grid-based image segmentation algorithm is
presented which is able to label pixels belonging to the same region us-
ing the properties of a rotational carpenter square. RoCaSCA can be
defined as a tracing type image segmentation method, where a region
or cluster is identified by delineating first its outer contour. Once the
outer boundary is known, inner regions and contours are defined in a
similar manner. This approach results in a single-pass segmentation
algorithm with considerable similarities to the contour tracing identi-
fication method of Chang et al. (2004). However, compared to their
algorithm, the method presented here is not dependent on neighboring
pixels only. On the contrary, the current chapter shows the ability of
RoCaSCA to also link non-neighboring pixels to the same region by in-
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Figure 4.10: Example of the segmentation potential of RoCaSCA
for varying sizes of the CS, I and I, given on the x and y-axis.
The number of identified regions is presented on the top right of
each panel, while at the bottom left the runtime (msec) is given.
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creasing the size of the CS. This enables closely located pixels to become
part of the same region, but also filters the impact of noise.

In order for RoCaSCA to be applicable to identify precipitation re-
gions on weather radar images for real-time applications, its implemen-
tation should be efficient. Therefore, its computation speed has been
compared to the FLCCL algorithm, which is generally accepted as the
fastest segmentation algorithm in the world (He et al., 2009; Wu et al.,
2009). Results show that the computation speed of RoCaSCA is of a
similar order of magnitude as that of FLCCL, although the latter clearly
outperforms RoCaSCA. However, since FLCCL is not able to deal with
the linking of non-neighbor pixels to the same region, it is not very use-
ful for precipitation region identification. RoCaSCA, on the other hand,
is shown to be highly efficient when it comes to linking non-neighboring
pixels. This makes this algorithm very useful to be applied for the iden-
tification of precipitation regions.
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CHAPTER D

Region based VPR identification and uncertainty
estimation

5.1 Introduction

The wide-scale implementation of weather radar systems over the last
decades has increased our understanding of precipitation dynamics. These
devices provide information at a much higher spatial and temporal reso-
lution than conventional rain gauge networks (Zawadzki, 1975; Joss and
Lee, 1995; Smith et al., 2001; Zhang et al., 2005; Gourley et al., 2009).
However, quantitative estimation of precipitation by weather radar is af-
fected by many sources of error related to the physical characteristics of
both the instrument, the surrounding environment and the atmosphere
(e.g. Waldvogel, 1974; Delrieu et al., 1995; Fabry et al., 1997; Gabella
and Perona, 1998; Steiner and Smith, 2002; Dinku et al., 2002; Germann
et al., 2006; Uijlenhoet and Berne, 2008).

Over the last decades a large number of methods has been proposed
to correct for these different error sources (see e.g. Joss and Waldvogel
(1990); Andrieu et al. (1997); Villarini and Krajewski (2010); Hazenberg

This chapter is a slightly modified version of a manuscript submitted to J.
Geoph. Res.: Hazenberg, P., P.J.J.F. Torfs, H. Leijnse, G. Delrieu, and R. Ui-
jlenhoet (2013), Identification and uncertainty estimation of vertical reflectiv-
ity profiles using a Lagrangian approach to support quantitative precipitation
measurements by weather radar.
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et al. (2011a) and the references therein). A dominant source of error re-
sults from vertical variations in hydrometeor properties (including their
size distribution and phase) known as the vertical profile of reflectivity
(VPR) (e.g. Battan, 1973; Smith, 1986; Joss and Pittini, 1991). This
especially holds for stratiform systems, where snow and ice particles at
higher altitudes generally lead to a decrease in the returned radar sig-
nal. Around the zero degree isotherm, the melting of snow gives rise
to relatively large, water-coated particles. Within this region, known as
the bright band (BB), the return signal is intensified. Since radar beam
height and beam volume both increase with distance (the so-called range
effect), for stratiform precipitation, serious overestimation of surface re-
flectivity by radar occurs when sampling within the melting layer, while
above this region underestimation takes place. Overall, this has a detri-
mental impact on the quality of radar precipitation estimates (Fabry
et al., 1992; Kitchen and Jackson, 1993; Bellon et al., 2005). An exam-
ple of the impact of the VPR on the quality of the radar measurement
for a typical stratiform profile is presented in Fig. 5.1a and b.

Due to vertical mixing by intense up and down drafts, such a clear
vertical segmentation of the hydrometeor size distribution is generally
not observed for convective precipitation. Therefore, identification of
the impact of a convective VPR on the measurement characteristics of
the radar is not straightforward.

In meso-scale convective systems, once the dominant convective ac-
tivity decreases, the precipitation system evolves towards a stratiform
type of precipitation (Yuter and Houze Jr., 1995a; Uijlenhoet et al.,
2003b). During this transition phase with moderate precipitation in-
tensities, before the formation of a BB occurs, the coalescence of small
raindrop particles generally leads to an increase of reflectivity towards
the surface (see Fig. 5.1d) (Yuter and Houze Jr., 1995¢). Therefore,
rainfall intensities for this transition type of precipitation tend to be
underestimated by the weather radar, especially as the range increases
(Fig. 5.1e).

Historically, the physical properties of the VPR for different types of
precipitation are well known (Austin and Bemis, 1950; Battan, 1973).
However, due to a dominant focus on weather radar measurements of
convective precipitation, correcting for the impact of range effects and
VPR in stratiform precipitation only started to receive attention since
the middle of the 1970s and early 1980s of the previous century (Harrold
and Kitchingman, 1975; Smith, 1986; Collier, 1986).

Since then, two main approaches have been developed to correct for
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Figure 5.1: Example of the impact of the vertical profile of re-
flectivity (VPR) for stratiform (upper panels) and transition/non-
stratiform precipitation (lower panels) for the C-band weather radar
used in the current study. Left panels present the average shape of
the VPR, generally assumed to be spatially uniform for a given type
of precipitation. Middle panels show the impact of the VPR on the
radar measurement for five different elevation angles. Right panels
present the identified ratio profiles, defined as the ratio of one of the
higher elevation angles with respect to the lowest one as a function
of distance.
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the impact of range and VPR effects. The first approach uses an empiri-
cal range-dependent correction function for a given type of precipitation
and season. This function can either be obtained from historical/cli-
matological information ( Collier, 1986) or estimated from the apparent
scaling properties of the radar measurements (Chumchean et al., 2004).
However, since the height of the bright band varies over time, real time
implementation of such an approach does not immediately lead to an
increase in the quality of the weather radar measurements.

A second way is to estimate the VPR at a given point (Kitchen
et al., 1994; Smyth and Illingworth, 1998) or to identify its mean profile
representative for a larger region (Smith, 1986; Andrieu and Creutin,
1995; Germann and Joss, 2002). Based on such profiles and the mea-
surement characteristics of the radar, it is then possible to correct for
the impact of VPR as a function of range. The benefit of the former
procedure to apply point corrections is that the small scale variability
of the VPR is taken into account, that is generally also observed from
in situ measurements by vertically pointing radars (Joss and Waldvo-
gel, 1990; Fabry and Zawadzki, 1995; Cluckie et al., 2000; Berne et al.,
2004b; Martner et al., 2008). However, for many precipitation systems
such local variabilities are difficult to identify by most conventional radar
systems. Therefore, the latter approach provides a compromise, where
a mean representative VPR is estimated for either a static fixed part
of the radar umbrella (Vignal et al., 1999, 2000; Seo et al., 2000; Ger-
mann and Joss, 2002; Vignal and Krajewski, 2001) or for a given type
of precipitation (Delrieu et al., 2009; Kirstetter et al., 2010a).

These second type of methods, estimate the VPR based on an Eule-
rian procedure without specifically taking the temporal movement and
change in spatial location of the precipitation field into account. Es-
timation and correction of the VPR for a given precipitation region
using a Lagrangian approach, to the authors’ knowledge, has not been
performed so far. Nevertheless, for highly dynamical systems like pre-
cipitation, such an approach would seem to be highly recommended.
Therefore, the current chapter presents a Lagrangian-based VPR, cor-
rection method that focuses on precipitation regions and their temporal
evolution. The correction method proposed here combines and extends
the VPR identification methods proposed by Smith (1986) and Andrieu
and Creutin (1995).

Even though correcting weather radar measurements for range and
VPR effects improves the quality of the radar surface rainfall prod-
uct, still considerable differences with respect to the measurements from
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rain gauges are expected. These can be attributed to uncorrected er-
ror sources or to the differences in the measurement characteristics of
both devices. However, instead of using in situ rain gauge information
for radar bias correction (e.g. Austin, 1987; Kitchen and Blackall, 1992;
Steiner et al., 1999; Ciach and Krajewski, 1999a; Morin et al., 2003;
Goudenhoofdt and Delobbe, 2009), we believe much more information
can be obtained by focusing on weather radar rainfall uncertainty esti-
mates. This approach is in line with Villarini and Krajewski (2010) who
note that after having corrected for many of the weather radar measure-
ment errors, the next step “we should be focusing on is the characteriza-
tion of the total uncertainties associated with radar-rainfall estimates of
the true ground rainfall”. Over the last decade a number of studies have
tried to address this issue (e.g. Ciach et al., 2007; Villarini et al., 2009;
Germann et al., 2009; Mandapaka et al., 2010; Kirstetter et al., 2010b).
However, none of these approaches identified the impact of VPR vari-
ability on radar measurement uncertainty. Therefore, besides focusing
on the correction of weather radar data for range and VPR effects, the
current chapter also presents a method to identify radar-rainfall uncer-
tainties due to VPR variability.

This chapter is organized as follows. In Section 5.2 the study area
and a brief summary of a recently developed region delineation method
is presented. Section 5.3 describes the VPR identification procedure
and uncertainty estimation technique developed within this study. The
impact of this approach is presented in Section 5.4 for three precipitation
events. Sections 5.5 and 5.6 present the discussion and conclusions,
respectively.

5.2 Materials and methods

5.2.1 Study area and radar characteristics

In this study the impact of VPR correction and uncertainty estimation
is assessed using data from a C-band Doppler weather radar installed
at an elevation of 600 m ASL of the Belgian Ardennes region in the
eastern part of Belgium (see Fig. 5.2). During the winter half-year most
precipitation observed in this region has a stratiform character, with
BBs usually occurring below 2000 m above the surface. In the current
study three events were selected that were observed within the region
during the winter of 2002-2003. For a description of these events the
reader is referred to Chapter 2.
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Figure 5.2: Topographic map of the Belgian Ardennes. Also shown
are the location of the radar (e) and the location of the rain gauges
(4). The inset shows the location of the study area, with a 200 by
200 km box indicating the area shown in the figure.

The radar has two scan sequences; one every five minutes at five dif-
ferent elevations and a second scan at another ten elevations every fifteen
minutes. In this study the five-minute data were used to obtain areal
information about the precipitation field. The impact of an idealized
stratiform and transition precipitation type VPR on the measurement
capabilities of this weather radar are presented in Fig. 5.1. A summary
of the radar characteristics is presented in Table 2.1.

To assess the quality of the radar precipitation estimates, a total of
64 hourly rain gauges were used, situated up to a distance of 150 km
from the radar (see Fig. 5.2).

5.2.2 Precipitation region identification

As explained in Section 5.1, the VPR correction method presented in
this chapter focuses on precipitation regions in which for each cell the
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rainfall type will be identified. In order to perform such analyses, a
flexible method is needed that is able to identify such regions from con-
tinuous polar-based volumetric weather radar data. For this purpose,
the recently developed grid-based Rotational Carpenter Square Cluster
Algorithm (RoCaSCA) was applied to the polar (r,0) grid observed by
the lowest elevation angle of the radar. RoCaSCA is able to label pixels
belonging to the same region using a tracing type image segmentation
method (Chang et al., 2004; Wagenknecht, 2007). Regions or clusters
are identified by delineating first their outer contours, followed by a pro-
cedure to delineate inner regions and contours in a similar manner. Such
a single-pass segmentation algorithm is generally assumed to be compu-
tationally efficient (Suzuki et al., 2003; He et al., 2009; Wu et al., 2009).
However, compared to other image segmentation algorithms, RoCaSCA
is not limited to linking neighboring pixels only. Especially this latter
property makes RoCaSCA highly suitable to delineate precipitation re-
gions. Similar distance characteristics were also used in other studies
to identify and track convective storm cells from weather radar images
(e.g. Johnson et al., 1998; Handwerker, 2002).

In Fig. 5.3 the outer contour delineation procedure of RoCaSCA is
presented for a hypothetical precipitation image with three separate re-
gions with reflectivity values larger than a user-defined threshold. The
identification is performed by rotating a carpenter square along the outer
boundary of a given precipitation region. Since the sides of the carpen-
ter square in the current hypothetical example have a size of 3, non-
neighboring cells can be identified as belonging to the same precipitation
region. The final outcome results in two different precipitation regions
(two separate regions have been merged because of their proximity to
each other) identified by RoCaSCA (see Fig. 5.3). For further details
concerning the region or cluster identification procedure, the reader is
referred to Chapter 4.

Once a region has been delineated, each pixel is identified as strati-
form (Sdnchez-Diezma et al., 2000), convective (Steiner et al., 1995) or
non-stratiform type of precipitation before VPR estimation takes place
(see also Delrieu et al. (2009)).
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Figure 5.3: General technique behind the contour tracing algo-
rithm of RoCaSCA for a hypothetical precipitation field. The color
of the carpenter square indicates its direction of movement for the
four different directions (i.e. red (right), blue (up), green (left) and
black (down)). These directions and coloring are also indicated by
the arrows on top of each subplot, where the left (right) indicates
its last (next) direction. A closed (open) circle on top of a subplot
indicates a(n) (anti)clockwise shift in the direction of the carpen-
ter square, where the former (latter) indicates when a new pixel
belonging to the same cluster is identified.
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5.3 VPR identification and uncertainty estima-
tion

5.3.1 Identification of the VPR for a given precipitation
region

The VPR identification procedure implemented in the current chapter
combines the characteristics of the algorithms presented by Smith (1986)
and Andrieu and Creutin (1995). Both algorithms assume the VPR to
be spatially uniform over a given region. As such, it becomes possible to
decompose the spatial variation of the apparent reflectivity Z,(r, h) as
measured by the weather radar into a horizontal and vertical component

Za(T', h) = ZREF(T)ZQ(T,h). (51)

Here, Zgrpr(r) is the reflectivity at the chosen reference level at
distance r, and z,(r,h) is the apparent vertical profile of reflectivity,
which is influenced by the increase in height and volume of the radar
beam as a function of range. In Smith (1986) this profile is represented
by a simple piecewise linear function, similar to Fig. 5.1a. Unfortu-
nately, computational limitations prohibited proper implementation of
the VPR estimation proposed method by Smith (1986) until a decade
later (Kitchen et al., 1994; Smyth and Illingworth, 1998).

In Andrieu and Creutin (1995) the VPR follows a step profile of n,
increments, where within a given height interval increment, the vertical
reflectivity component A z; is assumed to be constant. Since, it is possi-
ble to calculate the proportion of the beam section within a given height
increment using the characteristics of the radar, according to Andrieu
and Creutin (1995) the normalized VPR can be defined as

za(r,h):/f2(90,h)z(h)dh:iﬁi(r,A)Azi, (5.2)

where f2 is the half-power beam distribution of the radar signal, 6 is the
radar beam width, A is the elevation angle, 3; = fhli”l f2(6o, h, A)dh, and
z(h) represents the actual average vertical reflectivity profile assumed
to be constant over the region.

To estimate the shape of the VPR for a given precipitation event,
ratio profiles q(r, A1, A;) obtained from the volumetric weather radar
measurement were used (i.e. the ratio between the measured reflectivity
at a higher elevation j with respect to the lowest one (see Fig. 5.1 right
panels)). For the VPR given by Eq. 5.2, these profiles are defined as
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In order to estimate the actual VPR, an initial discretized profile was
adjusted using an inverse optimization procedure (Menke, 1989), mini-
mizing the difference between the theoretical and observed ratio profiles.
This initial apriori VPR could either be obtained from climatological in-
formation or from volumetric radar measurements.

Since its first appearance, variations of the VPR estimation method
of Andrieu and Creutin (1995) have been presented in a number of pa-
pers (e.g. Borga et al., 1997; Vignal et al., 1999, 2000; Seo et al., 2000;
Delrieu et al., 2009; Hazenberg et al., 2011a). The most detailed im-
plementation was presented by Kirstetter et al. (2010a), who tried to
estimate the VPR for a given type of precipitation (convective, strati-
form, non-stratiform). These authors also presented the limitations of
this approach, focusing on the difficulties of obtaining an initial VPR
from volumetric weather radar data, and the observation uncertainties
influencing the estimated ratio functions. These uncertainties, together
with the large degree of freedom in the parameters of the step profile,
can result in erroneous estimates of the VPR.

Kirstetter et al. (2010a) tried to limit the impact of these uncer-
tainties using a range-related weighting function to estimate the initial
median VPR for a given type of precipitation and employed only those
reflectivity profiles for which the spatial variability at a given range was
limited. In the current chapter, we try to account for the impact of
these measurement variabilities without performing any predefined se-
lection. However, instead of performing an unconstrained optimization
procedure with many degrees of freedom, linear constraints are intro-
duced between the parameters of the stepwise VPR. These constraints
are similar to what was originally proposed by Smith (1986). The main
benefit of this approach is that it ensures the VPR follows a physically
realistic profile for a given type of precipitation (see Fig. 5.1a and d),
as is observed from in situ vertically pointing radar measurements (e.g.
Joss and Waldvogel, 1990; Fabry and Zawadzki, 1995; Martner et al.,
2008).
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5.3.2 Theoretical piecewise linear VPRs

The current chapter presents a method to estimate VPRs for both strat-
iform and non-stratiform precipitation, where the latter is assumed to
contain either transition type precipitation or snow. We do not intend
to identify VPRs for convective precipitation, since we feel that the hor-
izontal variability in vertical variations of the hydrometeor properties,
as explained in the introduction, is too large to result in appropriate
estimates of VPRs. In Fig. 5.4 the specific piecewise linear shapes are
presented, which form the basis of our estimation method. For stratiform
precipitation, this representation enables one to focus on five different
vertical regions comprising a total of ten linear layers each with slope
A =dz/dh. These regions exhibit the following properties:

1.

Layers hy —hs (rain): Vertical variation of the VPR mainly occurs
due to collisional and spontaneous breakup as well as coalescence
of raindrops, influenced by vertical and horizontal variation of the
wind field, orographic effects and below BB evaporation (Austin,
1987). Therefore, no a priori directions of the slopes A; are defined
for these layers.

. Layers hg—hs (BB): Large rain drops developed as part of the BB

start to collapse, within these layers, and raindrop fall velocities
increase (Stewart et al., 1984). Hence, within this region the VPR
is assumed to decrease towards the surface (A; > 0).

Layers hs — hy (BB): The melting and aggregation of snow parti-
cles causes a liquid water coating at their surface, which results
in an intensification of the returned radar reflectivity signal (the
BB) (Austin and Bemis, 1950; Smith, 1986; Klaassen, 1988, 1989;
Russchenberg, 1992; Steiner and Smith, 1998). Hence, within these
layers the slopes A of the VPR are positive in downward direction
(A; <0).

. Layer h7 — hg (snow): Descending snow flakes and ice crystals ag-

gregate leading to a moderate increase of the returned radar sig-
nal while descending (Stewart et al., 1984; Willis and Heymsfield,
1989). The slope is therefore assumed to be positive towards the
surface (Ag > 0).

. Layers hg—hio (snow): Within this region, snow flakes and ice crys-

tals are formed, which interact and slowly descent. Although in
general reflectivities are small and slightly increasing downwards,
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we allow for a secondary maximum to occur as a result of enhanced
aggregation within the dendritic growth region (-10 °C to —17 °C)
(Hobbs et al., 1974; Steiner and Smith, 1998). Hence, Ag can have
both signs, while Ajg <0.

For non-stratiform precipitation, less vertical variability is expected.
Therefore, the VPR of non-stratiform precipitation is represented by a
piecewise linear shape consisting of only four linearly sloping layers. As
such, it is expected that both transition type precipitation containing
mostly rain drops, as well as snow can be represented by such a piecewise
linear profile.

For stratiform precipitation the actual values of z; are bounded by
constraining the allowed reflectivity values as well as enforcing interde-
pendence between the piecewise linear segments (see Table 5.1). This
approach limits the number of degrees of freedom, ensuring a physically
realistic shape of the VPR. In order to reduce the number of estimated
parameters for stratiform precipitation, the majority of the height pa-
rameters (h) presented in Fig. 5.4a can be obtained directly from vol-
umetric radar measurements (see Section 5.3.4). The slopes (A) and
remaining heights (h) are then estimated using a Monte Carlo optimiza-
tion approach, minimizing the difference between the observed and sim-
ulated ratio profiles. Although Monte Carlo simulations are known to
be time-intensive, for the current VPR parameterization this approach
gives proper results within an acceptable amount of time for operational
practices.

5.3.3 Radar rainfall variability estimation from VPR un-
certainty

The VPR identification method presented in the previous section can be
regarded as a median field bias correction for an identified precipitation
region of a given type. In practice, however, considerable local fluctua-
tions around the median VPR are expected due to horizontal variability
in vertical variations of the precipitation microstructure (size, shape,
number concentration and phase of the hydrometeors) (Joss and Wald-
vogel, 1990; Hazenberg et al., 2011b). In addition, since radar measure-
ments at different elevation angles are not performed simultaneously,
temporal evolution of the VPR results in further deviations from the
median profile. Therefore, besides correcting for VPR effects, we also
wish to obtain an estimate of the amount of uncertainty around its me-
dian value and assess its impact on weather radar rainfall estimation.
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Figure 5.4: Theoretical vertical reflectivity profiles for stratiform
(panel (a)) and non-stratiform precipitation (e.g. transition, snow)
(panel (b)). Different height (h) and slope parameters (A) are op-
timized with respect to observed ratio profiles using a Monte Carlo
optimization approach, where A = dz/dh.
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Table 5.1: Minimum and maximum values of the normalized VPR
segments A z; (Eq. 5.2) at the corner of each piecewise linear seg-
ment as presented in Fig. 5.4. Different precipitation types are rain
(R), bright band (BB), and snow (S).

Stratiform Non-stratiform
Height Type Min Max Type Min Max
hy R 0.30 1.40 R/S  0.40 1.40
ho R 0.20 1.50 R/S 030 1.20
hs R 0.20 1.50 R/S 0.20 1.00
hy BB Zhs  2.00 R/S  0.00 0.05
hs BB zp,  10.00
he BB 0.30 zp,
h7 BB 0.25  zp,
hs S 0.05 0.50
ho S 0.01 0.40
h1o S 0.00 0.05

An example of the variability in observed ratio profiles for the pre-
cipitation event described in Section 5.4.1 is presented in Fig. 5.5 (top)
for different percentile statistics. This figure was obtained after having
identified the stratiform pixels within a precipitation region identified
by RoCaSCA (see Section 5.2.2). It can be observed that close to the
radar the median ratio profile indeed has an expected value of about 1
(see also Fig. 5.1), although considerable deviations occur for the other
percentiles. As mentioned, these deviations result from horizontal varia-
tions in the vertical variability of the precipitation microstructure, from
temporal changes in the precipitation field as well as from the radar
sampling properties.

However, once these percentiles are scaled with respect to the me-
dian by calculating their ratio, these overall deviations become rather
constant with range (Fig. 5.5 (middle)). Similar results (not shown
here) were obtained for other time steps and during other precipitation
events. Therefore, based on this property, we propose to account for
VPR variability by reformulating Eq. 5.3 as follows:

S Bi(r, A A 2
Y Bi(w, ADA 2

qpr(r, A1, Aj) = fran(r, A1 4j) = fp (5.4)

where ¢p is the estimated ratio profile for a given percentile value P.
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The factor fp is a scaling factor for a given ratio percentile, which re-
sults from the observed uniform deviation as a function of range. After
rescaling the observed ratio profiles for a given percentile (¢p) using
this factor, the majority of the observed variability is accounted for (see
Fig. 5.5(bottom)). The remaining variability is then taken into account
by identifying a normalized segmented VPR (A z; p) representative for
the normalized ratio profiles of a given percentile (gn,p).

It was decided to estimate the scaling factor fp as part of the Monte
Carlo procedure explained in Section 5.3.2 while identifying the VPR,
since for some precipitation regions it is difficult to obtain such well
defined ratio profiles as in Fig. 5.5. Hence, for a given ratio profile per-
centile, both the piecewise linear segmented VPR A z; and the scaling
factor fp are estimated. By selecting a broad range of percentiles (here
20 — 80) based on experience obtained for the region of study, we be-
lieve that the majority of the VPR uncertainty can be identified and
accounted for. Next to that, this approach enables one to study its
impact on radar rainfall estimation uncertainty.

5.3.4 Practical implementation

The previous sections described the specific VPR identification and un-
certainty estimation method used here. The complete algorithm to es-
timate a VPR for a given precipitation region and type is implemented
as follows:

1. Identify ground clutter and pixels containing positive reflectivity
values and remove these pixels from further analyses (see Chapter 2
for further details).

2. Use RoCaSCA to identify precipitation regions for the radar data
obtained at the lowest elevation and track each of these regions
over time. As such, the implementation follows a Lagrangian pro-
cedure.

3. For each region, identify the precipitation type of each individual
polar radar pixel, i.e. convective (Steiner et al., 1995), stratiform
(Sdnchez-Diezma et al., 2000), or non-stratiform precipitation.

4. For all stratiform pixels within a given precipitation region, cal-
culate the 20", 40", 50", 60", 80" percentiles of the estimated
BB height sampled at the different polar points (Sdnchez-Diezma
et al., 2000). These heights are assumed to correspond to hs, hy,
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Figure 5.5: Variability in observed ratio profiles as represented
by different percentiles for the precipitation event described in Sec-
tion 5.4.1 on October 22, 2002 at 20:30 UTC. Upper two panels
present the ratios of the weather radar measurements at elevations
2 (a) and 3 (b) with respect to the lowest one. In the middle two
panels (c¢) and (d), the ratios with respect to the median profiles are
shown. Based on the mean values in panels (c) and (d), as a final
step, the original ratio profiles presented in panels (a) and (b) were
rescaled. In panels (e) and (f) these normalized ratio profiles are
shown.
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hs, hg, h7 in Fig. 5.4, which reduces the number of parameters to
be estimated in the stratiform VPR optimization procedure.

Then, for each precipitation region of a given type:

5.

10.

11.

Estimate the echo top, corresponding to hip and hy in Fig. 5.4 for
stratiform and non-stratiform precipitation, respectively. The echo
top was defined as the maximum elevation at which the reflectivity
Z >1 dBZ.

Calculate the ratios between the reflectivities measured at higher
elevations with respect to the lowest. Then, based on all ratio
information at a given distance from the radar, obtain a number
of percentiles (see Fig. 5.1c and f, and 5.5). Here, we used the
20t 30th, 40t", 50", 60, 70'", and 80th percentiles.

Identify the final ratio profiles for a given percentile by aggregating
temporally over a number of consecutive time steps to increase the
robustness of the statistics. In current study, all ratio information
sampled within 60 minutes of the time step of study for the moving
precipitation system was taken into account.

Estimate the slope parameters A, the scaling factor fp and the
remaining height parameters i based on the procedure explained
in Sections 5.3.2 and 5.3.3 using a Monte Carlo based optimiza-
tion procedure, minimizing the sum of squared differences between
the theoretical and observed ratio profile quantiles for a given per-
centile.

Based on each of the identified normalized segmented VPRs (z; p)
and scaling factors fp obtained for a given ratio profile percentile,
calculate VPR correction factors for each radar elevation as a func-
tion of range.

In order to obtain a final 2D radar reflectivity field, a weighted
average of all VPR corrected elevations is taken (for details, see
Chapter 2). This approach decreases the impact and uncertainty
of an individual measurement at a given elevation (Joss and Lee,
1995).

As a final step, the reflectivity data are transformed into rainfall
intensities using the Marshall-Palmer relationship Z = 200R' for
stratiform precipitation (Marshall et al., 1955) and Z = 250R®
for non-stratiform precipitation (Battan, 1973).
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The identification of precipitation regions by RoCaSCA was done
at two different reflectivity levels, >7 and >23 dBZ, using a carpenter
square of size 3 and 2, respectively. These reflectivity values correspond
to a precipitation of >0.1 and >1.0 mm h™', respectively in case a Mar-
shall and Palmer Z = 200R® relationship is assumed (Marshall et al.,
1955). In order to ensure that each precipitation region contains enough
statistical information, to obtain robust ratio profile estimates, each re-
gion should have a minimum area of 2500 (>7 dBZ) and 2000 (>23 dBZ)
km?, respectively. These sizes are similar to the minimum areas origi-
nally proposed by Vignal et al. (1999, 2000), although for the current
approach, their locations and actual sizes vary dynamically in time. In
case it becomes impossible to estimate a VPR for a given pixel identi-
fied as being part of a region surpassing the larger threshold (>23 dBZ),
if available, the VPR estimated for the region identified at the smaller
threshold level (>7dBZ) is used.

As a next step, tracking of each of these regions is performed by
moving each of the identified pixels forward in time using the velocity
estimate of the previous time step if possible, or else based on the mean
wind information. Then, a region observed during two time steps, is
identified as a tracking pair in case their area overlap with >10 %.

Temporal information obtained through the tracking of each region
is used to increase the amount of data on which the different ratio profile
statistics are based. It was decided to perform up to 1 hour of temporal
aggregation to obtain the ratio statistics from the volumetric data (sim-
ilar to Delrieu et al. (2009); Kirstetter et al. (2010a)), which is defined
as ‘backward’ identification. Potential problems arise for precipitation
regions identified at larger distances from the radar (>100 km), for which
it can be difficult to obtain any ratio information. Therefore, as a second
approach, temporal aggregation of the ratio profiles was also performed
using the reflectivity information sampled both 1 hour before and after
a given time step (‘back/forward’ identification). If a precipitation re-
gion moves closer to the radar, it is expected that the quality of the ratio
profile statistics improves. Although for real time implementation such
an approach is impossible to implement, this latter approach enables
one to identify how much the quality of the weather radar precipitation
estimates observed at larger ranges can potentially be improved, while
more information on the precipitation system becomes available (as it
possibly moves towards the radar).

To assess the quality of the Lagrangian VPR identification method
presented in this chapter, VPR identification was also implemented for
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the entire radar volume for given precipitation type (the Eulerian per-
spective). This approach takes all volumetric reflectivity information
sampled by the radar into account, but does not distinguish between
different precipitation regions. As a last procedure, the global static Eu-
lerian and local dynamic Lagrangian VPR identification methods were
merged, where it is tried to correct for VPR locally for each precipitation
region separately, while for the remainder part of the radar umbrella,
the global estimate is used to correct for VPR effects. The benefit of this
combined procedure is that also reflectivity points that are not identified
as part of a precipitation region are still VPR-corrected based on global
information.

5.4 Results

5.4.1 Event 1: A stratiform system

The first event presented this chapter, is a fast moving stratiform system
that started to be observed by the radar during the late afternoon on
October 22, 2002 and lasted until the early morning of the next day.
The corrected rainfall intensity field measured by the radar is presented
in Fig. 5.6 for a number of time steps. Also shown in this figure are the
precipitation regions identified by RoCaSCA at >7 (red) and >23 (black)
dBZ. RoCaSCA is well able to discriminate between the different pre-
cipitation regions, although at the >7 dBZ level during a number of time
steps, multiple cells merge into a single region. This generally does not
occur at the >23 dBZ level.

The specific region characteristics for the stratiform precipitation
region (>23 dBZ) that was first recognized in the South-West corner of
the radar image at 18:00 UTC (see Fig. 5.6), are presented in Fig. 5.7.
The increase in the region mean reflectivity during the first hour can be
related to the high altitude of the initial radar measurements (i.e. re-
duction of returned signal due to snow and the possibility overshooting).
From 18:30 UTC onward, it becomes possible to estimate the median
height of the BB and its uncertainty (as represented by the 20-80th inter
percentile range, see Fig. 5.7b). Overall, the temporal variation of the
BB height for this precipitation region is rather small and has a simi-
lar depth (Hpp, in Fig. 5.4) as observed in other studies (Gourley and
Calvert, 2003; Zhang et al., 2008).

The resulting panels of Fig. 5.7 present the properties of the esti-
mated VPR, obtained by aggregating the ratio profile information dur-
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Figure 5.6: Temporal evolution of the stratiform precipitation sys-
tem as observed by the weather radar on October 22, 2002 up to a
distance of 225 km. The time steps (UTC) of the different snapshots
are presented in the upper right hand corner of the different panels.
The boundaries of the major precipitation regions for which VPRs
are estimated, as identified by the cluster algorithm RoCaSCA at
> 7 (red) and >23 (black) dBZ, are presented as well.
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ing the previous hour (backward, red) or from both the previous and the
next hour (back/forward, green). With the latter option it is expected
that for precipitation regions observed at further ranges from the radar,
using the information obtained within the next hour, especially for pre-
cipitation region situated further away from the radar, a better estimate
of the VPR can be obtained.

In Fig. 5.7c estimates of the strength of the BB are given (255, Rain
in Fig. 5.4). Although the results for both methods line up well, it can
be observed that around 20:30 UTC a deviation occurs. This arises
from the decrease in estimated BB strength from 21:00 UTC onward.
The combination of back- and forward temporal aggregation causes the
volumetric radar data sampled at these time steps to be used earlier
in time, as part of the ratio profile identification procedure. Since the
assumption of a temporally stable VPR is clearly violated during this
hour, a difference between both estimates of the BB size occurs.

The total variation of the VPR scaling factor fp (Fig. 5.7d) ranges
between 60-140%. This indicates that the horizontal variation of the
vertical precipitation structure as well as temporal differences between
the different radar scans have a considerable impact on the measured
ratio profile variability. The approach presented in the current chapter
is able to account for this overall variability. Figure 5.7e presents the
quality of the estimated VPR to simulate the observed ratio profile be-
tween the lowest two elevations, using the Nash-Sutcliffe statistic (Nash
and Sutcliffe, 1970). Overall, the correspondence between the observed
and simulated ratio profiles is good. Only during the later phase of the
event (after 22:00 UTC) the quality of the fit decreases for the highest
ratio percentiles. This can be related to the fact that the cell starts to
decompose and looses its spatial coherence (see Fig. 5.6), leading to an
increase in ratio variability.

In order to identify the spatial variability of the VPR between dif-
ferent precipitation systems, similar characteristics presented in Fig. 5.8
were identified for the precipitation region (>23 dBZ) observed in the top
panels of Figure 5.6. The sampling of this region by the weather radar
has considerable temporal overlap with the region presented Fig. 5.7.
Visual analysis of Fig. 5.6 already reveals a clear difference between
both regions, where the former (Fig. 5.8) is more elongated, while the
latter (Fig. 5.7) has a more spiral structure. Although the estimate
height of the BB is similar between both systems, indicating a rather
uniform height of the zero degree isotherm, the identified strength of the
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BB varies considerable and is smaller for the former. This clearly shows
the possibilities of differentiating between different precipitation regions
using an automatic procedure.

Figure 5.9 presents the comparison between the hourly region-based
Lagrangian VPR-corrected radar rainfall accumulations and the 64 rain
gauges based on the combined back- and forward obtained ratio infor-
mation. It should be noted that none of the radar measurements were
bias-corrected using rain gauge information. This allows an objective
assessment of the true quality of corrected radar data. Although consid-
erable variability between both instruments is observed, the corrected
radar data correspond well with the gauge measurements. On average,
the hourly and event-based rainfall accumulations obtained from the
radar slightly underestimate the precipitation amounts sampled by the
gauges (see Fig. 5.9a and b). The impact of range effects is strongly
reduced once the weather radar data is corrected for VPR effects, as re-
flected by the rather constant bias as a function of range in Fig. 5.9¢ (see
also Table 5.2). It should be noted that the hourly deviations between
both devices increases with distance (Fig. 5.9d). This can be explained
by the increase in measurement height difference between both devices
and the possible impact of wind drift (Gabella and Perona, 1998; Seo
et al., 2000; Gabella et al., 2000, 2005).

Figure 5.7 (preceding page): Temporal evolution of the strat-
iform anti-clockwise rotating precipitation region for the 23 dBZ
reflectivity threshold. Upper two panels show the region’s mean
(black line) and median (dashed line) reflectivity (a) and estimated
height of the bright band (b) as observed by the weather radar.
The uncertainty in these measurements is given by the gray con-
tour region, representing the 20-80th inter percentile range. The
bottom three panels present the estimated bright band strenght (c,
zpp,rAIN in Fig. 5.3), the spatial VPR uncertainty factor f, and
the goodness-of-fit between the simulated and observed ratio profiles
for the lowest two elevations as respresented by the Nash-Sutcliffe
statistic (NS) (Nash and Sutcliffe, 1970). These results were ob-
tained by aggregating using all ratios observed within the previous
hour (backward, solid line/red region) or using the next hour ratio
information as well (back/forward, dashed line/green region). The
uncertainty in the VPR measurements is represented by the differ-
ent contour regions and define the 20-80th inter percentile ranges.
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Figure 5.8: As Fig. 5.7, but for the precipitation system first ob-
served in the upper panels of Figure 5.6.
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total event b) rainfall accumulation. The correspondence between
the weather radar corrected using the median VPR (dots) w.r.t.
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linear regression. The bottom panels show the quality of the radar
measurement as a function of range from the radar, where radar/-
gauge ratio is defined as ) Radar rainfall/ ) Gauge rainfall. NS is
the Nash-Sutcliffe statistic (Nash and Sutcliffe, 1970). The uncer-
tainty in the radar rainfall estimates as a result of VPR variability
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Different colors correspond to the gauges as shown in Fig. 5.2.

127



In Table 5.2 the quality of the region-based VPR, correction (R) is
compared to the implementation of a global estimation of the VPR (G),
and a combination of both approaches (G&R). For completeness, the
impact of not correcting for VPR is also given (N). In general, VPR-
correction leads to a large improvement in radar rainfall estimation qual-
ity. The quality of the region-based VPR-corrected radar measurements
(R), based on the ratio information from the previous hour (backward)
decreases considerably beyond 100 km. This can be related to visibility
problems if a region is still located far away. By taking the volumet-
ric data of the next hour into account as well (back/forward), VPR-
correction also leads to improved results at these distances (see also first
hour in Fig. 5.7).

When compared to the global VPR-corrected radar measurements
(G), the region-based technique (R) performs less well. This is because
not all radar measurements are VPR-corrected with the latter approach,
as well as the difficulty to identify a VPR for a region located at longer
distances from the radar. The combination of applying region-based
VPR-correction for pixels belonging to a precipitation cell and a global
VPR-correction elsewhere (G&R), gives a slight improvement in both
the hourly and event based bias statistics beyond 50 km when compared
with the global correction (G). However, the latter observation is not
reflected by the Nash-Sutcliffe statistic.

Besides the impact of median VPR radar rainfall correction, the
impact of VPR uncertainty on the radar measurements is also presented
in Fig. 5.9. As explained in Section 5.3.3 this uncertainty was obtained
using the ratio profiles for different percentiles. It can be observed that
the overall variability as a result of VPR-effects is considerable. What
is striking about this figure is that, when compared with the rain gauge
accumulations, the majority of the difference between radar-gauge pairs
can be attributed to the uncertainty in the estimated VPR.

In Fig. 5.10 the impact of VPR-uncertainty on the quality of the
three different identification approaches is assessed using the ratio pro-
file information obtained during the previous hour (backward identifi-
cation). From the top panel it can be observed that the overall impact
of VPR~uncertainty increases with range, as was also reflected by the
decrease of the Nash-Sutcliffe statistic in Table 5.2. Close to the radar
(<50 km) the overall VPR uncertainty is similar for the three different
approaches. This can be related to the relatively large size of the differ-
ent precipitation zones observed during this event and the fact that most
ratio information is obtained close to the radar. Therefore, the global
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VPR estimates (G) for the type of precipitation field observed during the
current event are quite similar to the region-based VPR-estimates (R).
Further from the radar, the overall uncertainty of the region-based VPR-
estimate increases. With the other two approaches (G and G&R) similar
radar rainfall uncertainty estimates are obtained. For these ranges the
differences between R on the one hand and G and G&R on the other
hand, may be caused by the fact that for first approach, no VPR cor-
rection is applied and hence no uncertainty is attributed.

Comparing these results with the rain gauge measurements, it can
be observed that for all three approaches, the majority of the maximum
rainfall accumulations are higher than those estimated by the gauges,
whereas the minimum accumulations are lower than the gauge accumu-
lations. This result again confirms that the majority of the precipitation
differences between both devices can be attributed to VPR-variability.
Ounly for the region-based approach (R) at longer distances from the
radar (>100 km), the maximum precipitation intensities are still under-
estimated by the radar compared to the gauges, which again is probably
caused by the fact that not during all time steps a VPR could be es-
timated for precipitation systems further away from the radar. Radar
data observed during these time steps were not VPR corrected using the
region-based approach only.

5.4.2 Event 2: Large scale stratiform system

As a second example to present the possibilities of region-based VPR-
identification and uncertainty estimation, a large-scale precipitation sys-
tem observed on December 22, 2002 is analyzed. In Fig. 5.11 the rainfall
intensity field as observed by the radar is presented. Compared to the
event described in Section 5.4.1, precipitation intensities for the current
event are much smaller. Generally, such type of widespread precipitation
is expected to produce drizzle.

The characteristics of the precipitation region as identified by Ro-
CaSCA (>7 dBZ) are shown in Fig. 5.12. Also for the current event,
the mean cell reflectivities increase while moving closer to the radar (i.e.
influence of overshooting and the measurement of snow). However, even
once its location is close to the radar (beyond 5:00 UTC) the reflectivity
field still intensifies. Similar behavior is also observed for the estimated
height of the BB, which increases as well. The explanation for this is
that both occur as a result of increased solar activity during the morning,
resulting in an influx of energy. At around 9:00 UTC it can be observed
from Fig. 5.12b that the variability in the estimated BB-height changes.
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Figure 5.10: Impact of radar rainfall estimation uncertainty on
hourly accumulations for the radar pixels above the 64 rain gauge
locations for four different distance intervals from the radar. In the
upper panels box plots present the ratios between the maximum
(a) and minimum (b) with respect to the median VPR-corrected
radar event accumulation. In the lower panels the maximum (c) and
minimum (d) VPR-corrected event accumulations are compared to
the measurements obtained from the rain gauges.
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Figure 5.11: As Fig. 5.6, but for the large-scale stratiform precip-
itation system observed on December 22, 2002.
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Detailed analyses (not presented here) show that this resulted from a
situation of two BB heights (with 200m height difference) at different
horizontal locations. Unfortunately, due to the widespread character of
this event, the current implementation of RoCaSCA was unable to dis-
tinguish between both regions. This can also be observed from Fig. 5.12¢
where for about an hour (09:00-10:00 UTC), considerable differences be-
tween both aggregation methods (backward and back/forward) occur,
reflecting the situation of two different BB heights.

The impact of the two different BB levels for a period of about two
hours can also be observed in Fig. 5.13. In general, the radar underesti-
mates the amount of precipitation as compared to the gauges. However,
the identification of a single spatially uniform VPR is unable to account
for all horizontal variability of the vertical precipitation variability in
a situation with two different BB levels. Hence, this leads to an over-
estimation of the rainfall intensities for a number of gauges, while at
other locations an underestimation is observed. This is further reflected
by the variability of the Nash-Sutcliffe statistic, which does not show a
clear tendency with range.

In Table 5.3 the quality of the region-based VPR-corrected radar
measurements are presented as a function of range. As a result of the
large-scale character, only a single precipitation region at both intensity
levels was identified for the majority of the event. Therefore, it was
decided to present only the results for region based VPR (R), since
both the global (G) and the combined (G&R) approach make use of the
same reflectivity data. VPR-correction results in a large improvement
in the quality of the radar rainfall estimates. However, making use of
the weather radar data observed during the next hour (back/forward)
does not lead to a quality improvement. This can be attributed to the
widespread character of the current system, from which it is possible
to obtain proper ratio information based on reflectivity data from the
previous hour alone.

Although the uncertainty in the identified VPR explains some of
the variability between the radar and gauge accumulations, considerable
differences between both devices are still observed. As mentioned, the
main part of this event consisted probably of drizzle. Application of the
Marshall-Palmer relationship therefore resulted in an underestimation
of the rainfall intensity. Hence, for the current event it is expected
that the majority of the difference between the radar-gauge pairs can be
related to the characteristics of the DSD, which deviate from standard
stratiform precipitation for this event.
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Figure 5.12: As Fig. 5.7, but for the large-scale stratiform precip-
itation system observed on December 22, 2002.
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Table 5.3: As Table 5.2, but for the large-scale stratiform precipitation system observed on December 22,
2002.

E(R/G) SR/Y G NS
(km) 0-50 50-100 100-150  0-50 50-100 100-150  0-50 50-100 100-150
N 066 0.62 041 0.66 0.62  0.44 049 0.30  0.03
Riackward 0.78 0.77  0.68 0.78 0.79  0.72 059 042  0.50
Riack/forward 078 0.76  0.66 0.77 078  0.71 0.60 0.44  0.46
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5.4.3 Event 3: Fast-moving frontal stratiform system

As a last example, the performance of the VPR-identification and un-
certainty estimation procedure is tested for a fast-moving frontal pre-
cipitation system. The event started on January 1, 2003 around 10:00
UTC and had a total duration of about 42 hours. The precipitation re-
gion identified by RoCaSCA (not shown here) was much smaller in size
and better defined than for the event of October, 2002 (see Section 5.4.1
and Fig. 5.6. Therefore, a clearer deviation can be expected between
the result obtained using the region-based VPR-estimate and applying
a global VPR-estimate.

In Fig. 5.14 the quality of the region-based VPR-corrected radar
rainfall estimates are presented. Although on average the radar slightly
underestimates the amount of precipitation, the majority of the radar-
gauge pairs match well. Only for a number of gauges situated in the
South at relatively close distance (within 60 km, light blue points) the
understimation by the radar is considerable during a number of hours.
Since these gauges are situated in the same region, it is expected that
the observed underestimation results from other sources of error not
taken into account here (e.g. DSD variability). From the lower panels
of Fig. 5.14 it can be observed that the impact of range effects is well
accounted for using the region-based VPR estimates. In addition, the
variability in the hourly estimates for the different radar-gauge pairs is
rather constant, as can be observed from the relatively large values of
the Nash-Sutcliffe statistic. Hence, after correcting, the current event
was well captured by the radar.

In Table 5.4 the impact of the region-based VPR identification (R)
is again compared to identification in a global (G) or combined (G&R)
manner. Up to 100 km the region-based estimate is well able to es-
timate the amount of precipitation based on the information obtained
during the previous hour (backward) and gives better results compared
to applying a global VPR identification procedure. In case the ratio
information observed during the next hour is taken into account as well
(back/forward), also beyond these distances the quality of the region-
based VPR corrected radar data increases. Again this can be attributed
to the visibility problems affecting a precipitation region which is lo-
cated at further range from the radar. However, by applying the com-
bined procedure (G&R) a major part of the radar-gauge difference can
already be accounted for using the precipitation data obtained during
the previous hour alone. An important result, since this procedure can
be implemented in real-time operational weather radar applications.
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Figure 5.14: As Fig. 5.9, but for the fast-moving frontal stratiform
system observed on Januari 1-3, 2003.
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Figure 5.15: As Fig. 5.10, but for the fast-moving frontal strati-
form system observed on Januari 1-3, 2003.

Also for the current event, the major part of the variability in the
observed radar-gauge difference can be accounted for by taking the un-
certainty in the estimated VPR into account (see Fig. 5.14 and Fig. 5.15
(bottom)). The impact of VPR uncertainty for the three different ap-
proaches is further demonstrated in Fig. 5.15. Close to the radar, region-
based VPR correction leads to smaller uncertainties as compared to a
global estimate. This is a direct consequence of the fact that with the
former procedure spatial variability in the characteristics of the VPR
between different zones is accounted for. With the latter approach, all
variability is combined, leading to an increase of the VPR uncertainty.
The combined procedure estimates a VPR using the region-based esti-
mate if available, and applies the global estimate elsewhere. As a result,
the overall variability lies between the other two approaches.
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5.5 Discussion

The constrained piecewise linear VPR identification procedure presented
in the current chapter results in improved quantitative precipitation es-
timates by weather radar. The procedure proposed here focuses specifi-
cally on identifying and tracking precipitation regions of given type. The
importance of such an implementation has been addressed in a number
of papers (Fabry et al., 1992; Vignal et al., 1999; Delrieu et al., 2009).
These authors recognized the necessity to estimate the VPR within a
region of uniform precipitation with limited spatial variability regarding
vertical variations of the precipitation microstructure. We believe the
Lagrangian approach presented here provides a way forward in reaching
this goal.

The results shown in the current chapter reveal that up to distances
of about 100 km, proper identification of the VPR for a given precip-
itation region can be achieved. Unfortunately, beyond this distance,
visibility problems prevent proper identification of the ratio profiles. It
is expected that these ranges are extended during summer conditions
and in warmer climates (i.e. larger vertical extent of precipitation and
higher level of the BB). However, for operational applications, we pro-
pose to make use of the combined global and regional VPR identification
approach (G&R). Although this approach is computationally more in-
tensive, experience has shown it can be implemented in real-time. In
addition, the results presented here show that up to distances of 150
km this combined procedure provides proper quantitative precipitation
estimates.

For regions closer to the radar, thresholding at >7 dBZ results in
relatively large regions, although the delineation of precipitation regions
has a positive impact on the quality of the estimated VPR. Hence, it
was decided in this study to add a second threshold of >23 dBZ, similar
to what was historically proposed as part of many storm cell identifica-
tion and tracking procedures (Dizon and Wiener, 1993; Johnson et al.,
1998; Handwerker, 2002). In its current implementation, these thresh-
olds therefore function to delineate uniform precipitation regions. For
the type of systems observed within the Ardennes region, this assump-
tion holds rather well for the second threshold level (>23 dBZ). However,
the results of this study have shown that considerable variability is still
encountered within a given delineated region (see Section 5.4.2) and
this uncertainty can have an impact on the identified VPR. Therefore,
as a next step, the identification of precipitation regions could be im-
proved further by making use of multiple variables such as reflectivity,
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BB height and echotop information. These properties can all be ob-
tained from conventional volumetric radar measurements. The usage of
polarimetric radar information provides even more possibilities (Seliga
and Bringi, 1976; Doviak and Zrnic, 1993). In principle, RoCaSCA
should be able to take multiple properties into account, although its
current 2-dimensional implementation should then be extended.

Even if such an extension would provide the possibility to further dis-
criminate between precipitation regions, the random nature of hydrome-
teor size interactions and the temporal differences between the measure-
ments at different radar elevations will always result in uncertainty and
variability in the observed ratio profiles. The VPR uncertainty identifi-
cation method presented here provides a manner to take this variability
into account. These results have indicated that the overall uncertainty
due to the VPR can be considerable, and is able to account for a large
part of the observed radar-gauge differences. Such an approach, there-
fore, provides a direct way to take VPR uncertainty into account and
should be identified together with other radar rainfall uncertainty iden-
tification procedures (Villarini and Krajewski, 2010). The importance
of the latter aspect could also be observed from the analyses presented
in Section 5.4.2.

The current uncertainty identification procedure is not able to dis-
criminate deviations of the observed DSD from ‘standard’ stratiform
conditions. Such deviations can have a large impact on the rainfall
measurement capabilities of the radar. The possibility of being able to
discriminate between different precipitation regions, as presented in the
current chapter, could also provide extra information that is usable to
identify such situations. Detailed analyses of the different precipitation
regions and their physical properties (e.g. BB height and depth, verti-
cal structure) could for instance result in the identification of a region
specific Z — R relationship. Another option would be to make use of
real-time rain gauge networks, which nowadays have similar temporal
resolutions as radar. Merging the obtained precipitation region iden-
tification procedure with measurements from rain gauges would allow
estimation of region specific Z — R relationships. This would then fur-
ther improve radar rainfall estimates.

5.6 Conclusion

In this study a Lagrangian procedure to estimate the vertical profile
of reflectivity from volumetric weather radar data was presented. Al-
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though the dynamic nature of precipitation stimulates the use of such
a procedure, such an approach has not been implemented before, to
the authors knowledge. The developed tracing type cluster identifica-
tion algorithm RoCaSCA is well able to delineate precipitation regions
at different levels of intensity, without focusing on linking neighboring
pixels only. By tracking each of these regions in time, it is possible to
extract the reflectivity ratio information in a Lagrangian manner. The
VPR is then identified by combining and extending the methods origi-
nally proposed by Andrieu and Creutin (1995) and Smith (1986) for two
different piecewise linear profiles discriminating between stratiform and
non-stratiform precipitation.

The results presented in this chapter show that for the region of
study, up to a distance of 100 km, the VPR identification method is able
to correct for range effects. Beyond this distance, reduced visibility of the
radar due to overshooting and sampling within the snow region decreases
the possibility to obtain proper ratio information. The identification of
a representative VPR therefore becomes difficult.

Two methods are proposed to increase the effective VPR identifica-
tion range. The first approach uses data observed within the next hour
as well. During this second hour, some of the precipitation regions move
closer to the radar, leading to an increase in the quality of the ratio data.
However, for precipitation regions moving away from the radar, this ob-
viously does not lead to improved results of the estimated VPR. Also for
situations where the assumption of a temporally stable VPR is violated,
the quality of the estimated VPR is not improved by taking a second
hour into account. As a second approach, the Lagrangian region-based
procedure was combined with an Eulerian global VPR identification ap-
proach. This latter option enables one to estimate a VPR, for all positive
reflectivity pixels that were not used in the Lagrangian approach. Re-
sults show that this approach is able to generate proper quantitative
precipitation estimates up to a distance of 150 km. Since this proce-
dure only takes the precipitation information of the previous hour into
account, another benefit of this procedure is that it can be implemented
in real-time. As such, this latter approach provides better possibilities
as compared to the former.

In general, considerable spatial variability in the characteristics of the
VPR are observed. Therefore, besides implementing a region-based me-
dian VPR estimation procedure, this chapter also presents an approach
to identify the impact of VPR uncertainty on weather radar measure-
ments. To the authors’ knowledge, such a procedure to estimate radar
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rainfall uncertainty resulting from VPR identification uncertainty has
not been presented before. Analyses of two precipitation events showed
that this type of uncertainty is able to account for the majority of radar-
gauge differences. Although this partly holds for another event analyzed
here as well, further deviations between the measurements of both de-
vices are caused by variations of rainfall microstructure.

In the current chapter, we have not tried to implement any bias cor-
rection mechanisms to account for such deviations. For the future, we
believe it can become possible to identify these situations by performing
extended analyses on the characteristics of the identified precipitation
regions (e.g. size, velocity, characteristics of the delineated VPR). As
such, we hope to be able to recognize such variations in the DSD from
volumetric radar data. Polarimetric radars, which are gradually replac-
ing non-polarimetric radars all over the world, could provide even more
possibilities. Such an approach would allow the corrected weather radar
data to be directly applicable for hydrological applications, using the
rain gauge information only for verification. These results have not
been presented here, but will be the focus of future contributions.
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CHAPTER O

Hydrological potential of weather radar

6.1 Introduction

To account for the complexity to measure the amount of surface pre-
cipitation and model the resulting catchment response, nowadays oper-
ational hydrological centers start to make use of ensemble stream flow
simulations for flood forecasting (e.g. Carpenter and Georgakakos, 2006;
Cloke and Pappenberger, 2009; Germann et al., 2009; Rossa et al., 2011).
The motivation behind this approach is generally to account for three
different types of uncertainty: 1) in the input data, 2) from tempo-
ral changes in the catchment response resulting in uncertainty in the
hydrological model parameters, and 3) due to a limited understand-
ing and representativity of the applied hydrological model (Dawdy and
Bergmann, 1969; Obled et al., 1994; Arnaud et al., 2011). The current
chapter focuses on the first two types of uncertainty and their interrela-
tionship.

The impact of the variability and uncertainty in the observed pre-
cipitation on the modeled discharge response of a catchment has been
a research topic in hydrology for many years (Dawdy and Bergmann,

This chapter is a slightly modified version of a manuscript submitted to Water
Resour. Res. : Hazenberg, P., H. Leijuse, and R. Uijlenhoet (2013), Con-
ceptual radar rainfall ensemble generation and its impact on the catchment
hydrological response during cold season precipitation.
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1969; Wilson et al., 1979; Woods and Sivapalan, 1999). It is generally
accepted that the spatial variability of precipitation becomes impor-
tant when focusing on large basins (>3000-10000 km?), as well as for
small-scale intense convective showers within urban, arid or mountain-
ous catchments, where shallow sloping soils lead to a fast runoff response
(Anguetin et al., 2010). For most other cases, a correct representation
of the basin mean rainfall input provides sufficient information to model
the rainfall-runoff response. Any additional variability in the precipi-
tation field will be filtered by the catchment through its hillslopes and
channel network (Wilson et al., 1979; Obled et al., 1994; Segond et al.,
2007; Nicotina et al., 2008; Younger et al., 2009).

Traditionally, rain gauges have been used to obtain precipitation es-
timates at the (sub)catchment scale. However, measurement errors and
limited spatial representativeness, give rise to considerable uncertainty
around the mean basin precipitation value estimated from rain gauges
(Moulin et al., 2009). Therefore, a number of methods have been devel-
oped to account for the amount of uncertainty around the mean estimate,
such as conditional simulation or perturbation of the rainfall signal with
a stochastic variable (Clark and Slater, 2006; Pauwels and De Lannoy,
2006; McMillan et al., 2011; Rakovec et al., 2012a). However, the ac-
curacy of these methods depends on the density of the employed gauge
network and the assumed representation of stochastic variability.

Volumetric weather radars provide a wealth of information on the
characteristics of the precipitation field at a much higher spatial resolu-
tion than rain gauges (Joss and Waldvogel, 1990). Unfortunately, rain-
fall measurements by radar are known to be affected by multiple sources
of error, leading to unrealistic estimates of catchment-scale precipitation
intensity (Joss and Pittini, 1991; Steiner et al., 1999; Seo and Breiden-
bach, 2002; Borga, 2002; Dinku et al., 2002; Hazenberg et al., 2011a).
If not properly accounted for, these biases can propagate through the
hydrological model resulting in erroneous discharge simulations ( Vivoni
et al., 2007; Collier, 2009).

In general, volumetric weather radar measurement errors can be sep-
arated into 1) reflectivity measurement errors and 2) reflectivity conver-
sion errors (Jordan et al., 2000; Chumchean et al., 2008). The former are
related to the characteristics of the radar (e.g. location, radar calibra-
tion, wavelength, etc.) and the surrounding measurement environment
(e.g. type of precipitation, bright band contamination, range effects,
etc.). Errors related to the latter are associated with temporal changes
in the hydrometeor phase and the shape of the size distribution, result-
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ing in the problem that similar radar reflectivity values Z [mm®m™] as
measured by radar can be the result of two completely different raindrop

size distributions with different rainfall intensity values R [mm h™1].

To improve the measurement capability of the radar, different meth-
ods have been developed to systematically correct for errors related to
the characteristics of the radar (e.g. Hitschfeld and Bordan, 1954; Del-
rieu et al., 1995; Pellarin et al., 2002; Ulbrich and Lee, 1999; Joss and
Lee, 1995; Delrieu et al., 1999, 2000; Serrar et al., 2000; Steiner and
Smith, 2002), and the surrounding environment (e.g. Smith, 1986; An-
drieu and Creutin, 1995; Vignal et al., 1999; Steiner et al., 1995; Gourley
et al., 2009). In order to account for variability in the radar rainfall Z—
R relationship, it is nowadays well accepted to use a precipitation type
specific Z—R relation (e.g. Austin, 1987; Fulton et al., 1997; Haddad and
Rosenfeld, 1997; Uijlenhoet et al., 2003b; Zhang et al., 2011).

However, once the weather radar signal has been corrected for er-
rors, considerable uncertainty around the estimated precipitation value
remains, either due to aspects unaccounted for, imperfect error correc-
tion algorithms, or from small-scale temporal changes of the precipita-
tion field. To improve the quality of operational rainfall-runoff forecasts
using radar data, this uncertainty needs to be accounted for ( Villarini
and Krajewski, 2010). Therefore, a number of approaches have been
developed based on specialized additive and multiplicative statistical er-
ror methods, taking into account the spatial correlation structure of the
precipitation field (e.g. Ciach et al., 2007; Germann et al., 2009; AghaK-
ouchak et al., 2010; Seo and Krajewski, 2011). In order to apply these
data intensive methods, long term precipitation data comprising differ-
ent storm types observed in different seasons are needed. Even though
such long term series nowadays become more available (e.g. Overeem
et al., 2009; Wright et al., 2012; Smith et al., 2012), in many operational
environments insufficient data has been stored or the rain gauge density
is too limited to apply these procedures and obtain an estimate of the
radar-rainfall uncertainty characteristics.

In the current chapter, we present two different approaches to ac-
count for the amount of uncertainty in the radar-rainfall signal, based
on the volumetric information directly. As such, the method as devel-
oped in Chapter 5 is used to estimate the uncertainty originating from
vertical variation in the precipitation field, i.e. resulting from reflectivity
interpretation errors. Next to that, a stochastic procedure is proposed to
estimate the uncertainty that arises from the applied radar reflectivity-
rainfall rate conversion. The main benefit of these approaches is that
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both can be applied in a real-time operation setting, without having to
analyze long term radar-rain gauge records a priori.

As mentioned above, besides the uncertainty that originates from
precipitation measurements, a considerable fraction of the total uncer-
tainty in rainfall-runoff modeling can be associated with the parame-
ter values and process representation of the hydrological model. Every
hydrological model is a simplification of the true behavior of a catch-
ment, using a limited number of parameters to describe the hydrological
response (Carpenter et al., 2001). As such, different parameter sets
can lead to similar results, i.e. the equifinality problem (Beven, 2000).
Therefore, the second part of this chapter focuses on the impact of the
radar-rainfall estimation uncertainty on the hydrological response of a
basin and how this relates to the uncertainty originating from parameter
variability.

This chapter is set up as follows. Section 6.2 presents the region
of the study and the details behind the applied hydrological model.
In Section 6.3, the two different methods to obtain an estimate of the
amount of radar-rainfall uncertainty are presented. The first aspect fo-
cuses on the observed variability of vertical profile of reflectivity (VPR,
see Chapter 5), while the second approach uses a statistical technique
to generate Z—R uncertainty. In Section 6.4 the generated uncertainty
from weather radar measurements is compared to observations by rain
gauges, proceeding with an analysis focusing on the impact of precipita-
tion uncertainty on the rainfall-runoff simulations. Sections 6.5 and 6.6
present the discussion and conclusions, respectively.

6.2 DMaterials and methods

6.2.1 Study area and radar characteristics

Weather radar measurement uncertainty estimation in this study is per-
formed for the C-band Doppler radar situated in the hilly plateaus of the
Ardennes region in the eastern part of Belgium (see Fig. 6.2). Volumetric
information of the precipitation field is available at five different scanning
elevations at a five-minute temporal resolution, sampled during the pe-
riod October 2002 until March 2003. During this winter half-year most
precipitation has a stratiform character, with the zero degree isotherm
usually situated in the lowest 2 km of the atmosphere. As such, spatial
and temporal variations of the vertical profile of reflectivity (VPR) have
a large impact on the measurement quality of the radar (Berne et al.,
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Table 6.1: Basin size (km?) and maximum and minimum Nash-
Sutcliffe (NS) statistics of the 200 optimal parameters sets obtained
from 100,000 Monte Carlo simulations. Different subbasins are or-
dered from upstream to downstream. The station numbers (Nr)
correspond to the values given in Fig. 6.1

Station Nr Size (km?) NSpue NSmin

Ourthe 1 1620.0 0.872 0.863
Ortho 6 385.1 0.895 0.886
Mabompré 5 322.0 0.842 0.832
Nisramont 4 32.0 0.893 0.890
Hotton 3 222.8 0.899 0.896
Durbuy 2 263.7 0.914  0.913
Tabreux 1 394.2 0.910  0.909

2005; Hazenberg et al., 2011a).

In the Ardennes region a network of 64 rain gauges is available within
a 150 km distance from the radar (see Fig. 6.2). These hourly rain gauges
are used here both for radar-gauge comparisons at the point and catch-
ment scale, and for the calibration and validation of the hydrological
model employed to simulate the discharge response of the Ourthe catch-
ment upstream of Tabreux (see Section 6.2.2). In order to obtain a mean
catchment precipitation estimate from the rain gauge data, the inverse
distance weighting methodology was applied (Goovaerts, 2000).

Within the Ourthe basin runoff measurements are performed at six
different locations (see Fig. 6.1). The size of each of the (sub)basins
upstream of these points is given in Table 6.1. Both the rain gauge
and discharge data are available at a hourly resolution for the period
1995-2005.

6.2.2 Rainfall runoff simulations

The current study uses the hydrological topography-based TOPMODEL
(Beven and Kirkby, 1979; Beven et al., 1995) to simulate the discharge
response at the 6 different outlets as presented in Fig. 6.1. The semi-
distributed soil moisture accounting TOPMODEL, as implemented by
Nguyen (2011), provides a compromise between fully physically-based
models and lumped conceptual models (Robson et al., 1993). The model
uses a limited number of parameters while effectively making use of a
catchment’s topographic index distribution and channel width function.

149



50.591 *

Elevation

[m]

> 700
o 600
250 500
S

- 400

300
200
100
0

49.5

4.5 5 55 6
Longitude (°)

Figure 6.1: The small panel shows the location of the study area,
with a 200 by 200 km box indicating the area shown in the right
panel. The main panel shows a topographic map of the Belgian
Ardennes, where the solid lines represent the channel network. Also
shown are the position of the radar (e) and the position of the
rain gauges (+). Discharge measurements are taken at six different
locations given by the white A, of which the numbers correspond
to Table 6.1.
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The 5 physically interpretable parameters are 1) Tp, representing the
lateral transmissivity at the topsoil (m? h™!), 2) a shape parameter m,
indicating the rate of exponential decline of transmissivity with depth
(m), 3) a time constant T, for the mean residence time of vertical flow
per unit of deficit (h m™), 4) S,.maez, indicating the maximum root
zone deficit (m), and 5) v*, indicating the mean channel flow velocity
(km h™1).

Since different parameter sets are able to generate similar results
(the equifinality problem), the generalized likelihood uncertainty esti-
mation (GLUE) methodology (Beven and Binley, 1992; Beven, 2000,
2009) was used. In this manner, the best 200 parameter sets were se-
lected out of 100,000 Monte Carlo simulations, using the hourly rainfall
as obtained from the rain gauge measurements and discharge data for
the period 1995-2005 to ensure a sufficient size of the calibration period
(Brath et al., 2004). The optimal Nash-Sutcliffe (NS) statistics (Nash
and Sutcliffe, 1970) obtained for this calibration period are presented in
Table 6.1. An example of the resulting dotty plots from this calibration
procedure is presented in the bottom panel of Fig. 6.2 for the Ourthe
basin. The upper part of Fig. 6.2 also presents the interdependencies
between the different parameter values. From these panels, it can be
observed that m and S;.me: show a dependence, while this can not be
discerned for the other parameter combinations.

In the current work, discharge simulations for the Ourthe at Tabreux
are performed, both in a lumped and distributed manner. For flood
forecasting in medium-sized basins, generally distributed models are pre-
ferred over lumped ones, providing more detailed information. However,
the former do not always lead to a better performance at the outlet
(Carpenter and Georgakakos, 2006). For the distributed case, TOP-
MODEL was implemented for each of the six subbasins described in
Table 6.1. Downstream catchments use upstream simulated discharge
originating from the parameter set providing the best simulation. As
such, TOPMODEL was calibrated for the Ourthe in a lumped, as well
as a distributed manner for each of the 6 subbasins, where except for
the two subbasins upstream of Ortho and Mabompré, all basins receive
upstream simulated inflow through the channel network.

Since only a limited radar dataset was available, it was decided not to
recalibrate TOPMODEL based on these data, even though we recognize
that variations in precipitation input can give rise to different optimal
parameter sets. However, recalibration can lead to compensation of
model parameters in case the radar data contain errors regarding the
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estimated precipitation input (Andreassian et al., 2001; Brath et al.,
2004).

6.3 Radar-rainfall estimation and uncertainty
identification

6.3.1 Error correction of weather radar data

As explained in the Introduction, weather radar rainfall measurements
are known to be affected by multiple sources of error. Therefore, as a
first step, contamination from clutter and anomalous propagation have
been identified within each of the five radar elevations using the raw
polar data (Steiner and Smith, 2002). The uncontaminated volume
data are then used to discriminate between convective, stratiform and
non-stratiform precipitation based on documented algorithms (Steiner
et al., 1995; Sdnchez-Diezma et al., 2000; Delrieu et al., 2009). For the
latter two rainfall types the vertical profile of reflectivity (VPR) is esti-
mated for each storm region (see Chapter 5 and Section 6.3.1). Based
on this VPR estimate, measured radar data can be corrected for mean
deviations within the observed vertical precipitation field. Since it is
recognized that each type of precipitation requires a specific power-law
Z—R relationship to convert the measured reflectivity to a rainfall es-
timate, Z = 300 R'* was applied for convective (Fulton et al., 1997),
Z =200 RS for stratiform (Marshall et al., 1955) and Z = 250 R'® for
non-stratiform precipitation (Battan, 1973), respectively. As a last step,
the volumetric data are converted to a single 2D Cartesian 1-km reso-
lution rainfall grid, interpolating the clutter contaminated regions with
corrected radar data. For the current radar and region of study, these
different sources of error were considered to have the most dominant
impact on the rainfall measuring capabilities of the radar (Hazenberg
et al., 2011a). The radar data are not corrected for temporal changes in
the transmitted power since these were expected not to play a significant
role during the period of study.

In the current chapter two different sources are identified that lead to
uncertainty around the measured radar precipitation value. One source
focuses on the amount of uncertainty originating from spatial and tem-
poral variations of the VPR, while the second one focuses on the uncer-
tainty associated with the Z—R relationship. Both implementations are
described in the following sections.

It was decided not to correct the weather radar data for any addi-
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Figure 6.2: Lower panel provides dotty plots of the Nash-Sutcliffe
(NS) statistic for the 5 different parameters of TOPMODEL. These
parameters represent: Tj for the lateral transmissivity at the topsoil
(m? h7!), m for the rate of exponential decline of transmissivity
with depth (m), Ty for the mean residence time of vertical flow per
unit of deficit (h m‘l), Sr2maz for the maximum root zone deficit
(m), and v* for the mean channel flow velocity (km h™!). The
inter-dependencies between the different parameters is presented in
the upper four panels. Only the results are shown for which the
simulations obtained a NS value >0.8.
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tional bias with respect to the rain gauges. This because of the difficulty
to account for the influence of scale issues when comparing the measure-
ments of both devices (e.g. Austin, 1987; Kitchen and Blackall, 1992;
Steiner et al., 1999; Ciach and Krajewski, 1999a; Morin et al., 2003), and
because of issues related to the quality of gauge measurements (Molini
et al., 2001; Habib et al., 2001). Since the weather radar is corrected for
the most dominant sources of error, by taking the impact of measure-
ment uncertainty into account, in the current study a true assessment
of the potential of weather radar within an operational setting is per-
formed, without employing rain gauge data to adjust weather radar data
in any way.

6.3.2 Uncertainty identification from VPR

Spatial and temporal variations in the vertical distribution of hydrom-
eteor properties (including their size distribution and phase), have a
large impact on the measurement capabilities of radar (e.g. Battan, 1973;
Smith, 1986; Joss and Pittini, 1991). Especially for stratiform systems,
the melting of snow flakes below the zero degree isotherm results in an
intensification of the return signal known as the bright band, leading to
an overestimation of surface precipitation by radar if not accounted for.
For the snow region above the bright band, on the other hand, the re-
turned signal is much smaller than that from the precipitation observed
at the surface, resulting in an underestimation of the surface rainfall
rate. Overall, this can have a detrimental impact on the quality of radar
precipitation estimates (Fabry et al., 1992; Kitchen and Jackson, 1993;
Bellon et al., 2005).

In Chapter 5 a Lagrangian procedure was presented to estimate the
VPR for stratiform and non-stratiform precipitation from volumetric
weather radar data for a given precipitation region. This method com-
bines the characteristics of the VPR identification procedures originally
presented by Smith (1986) and Andrieu and Creutin (1995), where the
VPR is assumed to be spatially uniform for a large part of the radar um-
brella. This enables one to decompose the apparent reflectivity Z,(r, h)
as measured by the weather radar into a horizontal and vertical compo-
nent

Za(ryh) = ZrErp(r)ze(r, h), (6.1)

where Zrpr(r) is the reflectivity at the chosen reference level at a dis-
tance r from the radar, and z,(r,h) is the apparent vertical profile of

154



reflectivity (VPR). Chapter 5 assumed the VPR can be described by a
piecewise linear function. To estimate the actual shape of this piecewise
linear VPR for a given precipitation region from the volumetric radar
measurements, ratio profiles g(r, Ai, A;) are obtained (i.e. the ratios
between the measured reflectivity at a higher elevation j with respect
to those at the lowest one):

Za('r, Aj) _ Za(T7 Aj)
Za(/r'7A1) B Za(/nAl).

q(r, A1, Aj) = (6.2)

In this manner, the median of all ratios at a given range obtained
within the last 60 minutes, together with the measurement character-
istics of the radar, are used to estimate the median VPR. As such, a
piecewise linear VPR is estimated minimizing the difference between
the theoretical and observed ratio profiles.

Even though correcting weather radar measurements for range and
VPR effects improves the quality of the radar surface rainfall prod-
uct, considerable differences with respect to the measurements from rain
gauges are expected to remain. These variations result from local fluctu-
ations around the median VPR due to horizontal variability in vertical
variations of the precipitation microstructure (size, shape, number con-
centration and phase of the hydrometeors) (Joss and Waldvogel, 1990;
Hazenberg et al., 2011b). In addition, since radar measurements at dif-
ferent elevation angles are not performed simultaneously, the temporal
evolution of the VPR leads to further deviations from the median pro-
file. Therefore, besides correcting for VPR effects, we also wish to obtain
an estimate of the amount of uncertainty around its median value and
assess its impact on weather radar rainfall estimation.

To estimate this uncertainty, again use can be made of the infor-
mation contained in observed ratio profiles information. These profiles
show considerable variability for a given distance from the radar. In
Chapter 5 it was found that once these percentiles are scaled with re-
spect to the median, these overall deviations become rather constant
with range. As such, instead of making use of the median ratio profile
only, at a given distance, usage was made of the 20th, 30th, 40th, 50th,
60th, 70th and 80th percentile values of the observed ratio value to es-
timate 7 possible shapes of the VPR. These profiles can then be used to
generate 7 different VPR-corrected radar rainfall fields, from which an
estimate of the amount of uncertainty associated with VPR variability
can be obtained. For further details on the specific implementation of
this method, the reader is referred to Chapter 5.
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Since the gauge information and hydrological simulations are avail-
able at an hourly resolution, VPR-corrected five-minute weather radar
rainfall fields for a given VPR percentile are aggregated to hourly esti-
mates. This ensures the uncertainty of the VPR is properly aggregated
in time, without merging different percentile values for different five-
minute time steps. This latter approach could lead to a minimization
of the random variability around the VPR, which would underestimate
the true uncertainty around the median VPR profile. In addition, since
the ratio profiles are estimated using the data obtained within the last
60 minutes, by aggregating the five-minute VPR-corrected radar data
for a given ratio percentile, we aim to ensure that uncertainty estimates
of VPR variability are temporally consistent. As such, for each hour,
7 different VPR-corrected weather radar estimates are generated, from
which the uncertainty due to vertical variations of the precipitation field
can be estimated.

6.3.3 Uncertainty identification from Z—R variability

For a given event, precipitation phase and drop size distribution N (D)
continuously change in space and time as a result of external meteoro-
logical forcings or due to interactions among droplets. Both the radar
reflectivity factor Z and rainfall intensity R are related to the drop size
distribution, N(D)dD (m™3), with

Z:foooDGN(D)dD, (6.3)

and

R=6mx 107" fooo D*u(D)N(D)dD, (6.4)

where D (mm) is the equivalent spherical drop diameter and v(D)
(m s71) is the theoretical raindrop terminal fall velocity (m s™!). The de-
pendence between the radar reflectivity factor and rain rate is generally
described by a power-law relationship (Battan, 1973)

Z=AR (6.5)

In case the terminal fall velocity is assumed to follow a power-law re-
lationship, the prefactor A becomes a function of N (D), while the ex-
ponent b can be related to the temporal evolution of N(D) (Uijlenhoet
et al., 2003a; Steiner et al., 2004; Hazenberg et al., 2011b). Since it is
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impossible to measure N (D) using conventional weather radar, the pa-
rameters of the Z—R relationship are assumed to be fixed values for a
given type of precipitation (Battan, 1973), even though in reality these
parameters vary in space and time (e.g. Waldvogel, 1974; Uijlenhoet and
Berne, 2008; Schleiss et al., 2009; Jaffrain et al., 2011; Schleiss and
Berne, 2012).

Fixed Z—R parameter values can be estimated from disdrometer or
combined radar-gauge data analyses (Battan, 1973; Austin, 1987). Gen-
erally, these analyses show a negative correlation between the logarithm
of the prefactor A and the exponent b (Bouilloud et al., 2010; Hazenberg
et al., 2011b). As such, as a first order approximation, the relationship
between the logarithm of the prefactor A and the exponent b is assumed
to follow a bivariate normal distribution (Mood et al., 1974).

Instead of trying to generate spatially coherent fields of drop size
distribution from which Z—R parameters can be derived (Schleiss et al.,
2009; Schleiss and Berne, 2012), a practical statistical approach is adop-
ted here. Logarithmic values of the prefactor A for a given precipitation
type are randomly drawn from a normal distribution with mean and
standard deviation as given in Table 6.2. Based on these random esti-
mates of the logarithm of the prefactor, the expected value and standard
deviation of the exponent, as well as the correlation between both param-
eters (see Table 6.2), the properties of the bivariate normal distribution
are used to generate random values of b (Mood et al., 1974).

Using this statistical procedure, 50 probable realizations of the Z—R
power-law parameters for each precipitation type are obtained. These
relationships are used to transform the observed five-minute radar reflec-
tivity field into 50 equally likely corresponding rainfall intensity fields,
which are then aggregated into hourly intervals without assuming any
temporal consistency among different realizations. We are aware that
this approach does not take temporal coherence into account, which
might result in an underestimation of the true uncertainty in the radar
precipitation signal (e.g. Rakovec et al., 2012b), especially regarding the
uncertainty originating from Z—R variability. However, the approach
presented here does provide a first order indication of the amount of
uncertainty related to radar conversion errors.

6.3.4 Implementation of both uncertainty generation me-
thods

The two methods as described in the previous two sections are used
to obtain uncertainty values around the mean radar precipitation esti-
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Table 6.2: Parameters used to generate random estimates of the
Z—R power-law parameters for a given precipitation type. The as-
sumed value of the prefactor is given by E(A), while the properties
of its logarithmically transformed distribution are given by its ex-
pected value E(log(A)) and standard deviation sd(log(A)). For the
exponent b the mean and standard deviation are given by E(b) and
sd(b). The parameters are assumed to follow a bivariate normal
distribution (Mood et al., 1974), with an assumed negative correla-
tion p(log(A),b) between the logarithm of the prefactor A and the
exponent b.

Type E(4) E(log(4)) sd(log(4)) E(5) sd(5) p(log(A)0)
Conv. 300 5.659 0.3 1.4 0.08 -0.6
Strat. 200 5.293 0.1 1.6 0.1 -04
Non-Strat. 250 5.517 0.1 1.5 0.15 -0.5

mates. As such, based on the variability in the observed VPR 7 different
ensemble members are obtained, while using the uncertainty regarding
the Z—R parameters 50 realizations are generated.

In order to analyze the total radar rainfall estimation uncertainty
during the winter half-year of study, the bootstrap method is applied to
generate an ensemble of 1000 half-year radar precipitation realizations.
For a given hourly estimate, the total rainfall estimation uncertainty is
then obtained using

Py - P
Prrpe = —2— 10 (6.6)
Pso

where the subscript indicates a given precipitation intensity percentile.
Given the computational constraints, it was decided to select 100 half-
year precipitation time series as input for our hydrological model. As
such, the impact of precipitation estimation and model parameter un-
certainty was assessed using 100 precipitation and 50 parameter ensem-
bles, respectively. The resulting uncertainty in the discharge, similar to
Eq. 6.6, is estimated as

_ QQO - QlO
QUnc = QE)O . (67)

158



6.4 Results

6.4.1 Radar-Gauge analysis

In Fig. 6.3 the quality of the hourly corrected weather radar rainfall
estimates as compared to rain gauge observations are presented. These
weather radar observations were corrected using the median VPR esti-
mate and the three storm type specific Z—R relations. The relatively
large correlation between the individual radar and gauge measurements
indicates that the radar is capable to observe most precipitation. For
the winter period analyzed here, both correlation and Nash-Sutcliffe
(NS) statistic (Nash and Sutcliffe, 1970) slowly decrease with distance
from the radar, which can be related to range-dependent sampling is-
sues. More specifically, since the sample volume and measurement height
both increase with distance from the radar, larger differences between
both devices occur. However, on average up to a distance of 150 km
the radar-gauge ratio values are around one, as can be observed from
the lower part of Fig. 6.3. This indicates that the implemented cor-
rection steps lead to weather radar precipitation measurements that on
average provide estimates similar to what is observed by in situ rain
gauges. Nevertheless, considerable differences between radar and gauge
measurements can occur during individual intervals, generally increasing
with range from the radar.

To provide more detail regarding the temporal quality of the radar
measurements, the half-year daily mean hourly and daily radar-gauge
ratios and their variability are presented in Fig. 6.4. These values
were obtained for cases when both instruments measure precipitation
(R >0.1 mm). Both for the hourly and for the daily values, considerable
differences between both devices are observed, with mean ratios close to
one, similar to Fig. 6.3c and d. However, no immediate trends can be
identified. This indicates that the quality of the corrected weather radar
rainfall estimates is rather constant in time during the period of study.

To obtain more information on the variability between the radar
and rain gauge measurements, in Fig. 6.5a the probability density func-
tions of the radar-gauge bias are given. For the complete dataset the
mean bias between both estimates lies close to zero (-0.01 mm h™!) in-
dependent of distance from the radar (see also Fig. 6.5b and Table 6.4).
Once the bias estimates are differentiated with respect to rainfall in-
tensity, considerable variations are observed. For the lowest intensity
range (0.1-0.5 mm h™!) the radar on average slightly overestimates the
rainfall with a bias of 0.13 mm h™!, while for the larger intensity val-
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Figure 6.4: Daily averaged radar and rain gauge ratios for hourly
(upper panel) and daily (lower panel) rainfall data for the half-
year dataset. Vertical bars indicate the 10-90% percentile range for
the 69 rain gauges. In case less than 10 positive radar and gauge
measurements were available, only the mean ratio value is given.

161



ues (>2.0 mm h7!) the radar underestimates with 0.52 mm h™! (see
Table 6.4). However, since during the majority of hours precipitation
intensities are low, for the complete dataset mean bias values are close
to zero. In Fig. 6.5b, besides the mean also the standard deviation of
the error distribution of radar with respect to gauge is presented. These
values generally increase with distance from the radar, again pointing
to the impact of sample volume and measurement height increase with
range.

Even though the weather radar on average is capable to estimate
hourly precipitation values, these results show that considerable differ-
ences between both devices occur. Since the radar values are known
to display a considerable amount of uncertainty, in the current study
the variability of the VPR and Z-R relation was taken into account
separately, to generate a number of precipitation realizations (see Sec-
tion 6.3). Therefore, in Fig. 6.5¢ and d the half-year error functions are
provided for the radar-gauge bias using the realization that minimizes
the difference between both devices. Compared to Fig. 6.5a the opti-
mal density functions are much narrower. On average the biases are
slightly lower as compared to the mean correction steps. Except for the
largest intensity range (>2.0 mm h™!), the standard deviation decreases,
indicating a narrowing of the error distribution (see Table 6.4). This es-
pecially holds when taking the uncertainty in the vertical precipitation
field into account (Fig. 6.5¢). In Table 6.4 also the mean and standard
deviation of the error function are given for those realizations that lead
to the maximum and minimum radar-gauge bias. The former are all
positive, while the latter are negative. This indicates that, on average,
both weather radar rainfall ensemble generation methods provide pre-
cipitation ranges encompassing the amounts observed by rain gauges.

In Fig. 6.6a and b the relative uncertainty due to VPR and Z-R
variability as defined by Eq. 6.6 is presented for a given surface rain-
fall intensity. The uncertainties obtained from both sources generally
decrease considerably with intensity. When comparing both sources of
uncertainty, it can be observed that the mean uncertainty due to vari-
ability associated with the VPR lies around 0.8, while that due to Z-R
variability is about 0.3. At the point scale, this corresponds to an uncer-
tainty in the estimated radar rainfall value of 40% and 15%, respectively.

The bottom part of Fig. 6.6 presents the precipitation estimation un-
certainty for a given individual radar-gauge pair. The uncertainty due
to VPR variability increases up to a distance of 70 km. Closer to the
radar, measurements are performed at lower elevation well within the
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Figure 6.5: Panel (a) presents a density plot of the half-year mean
hourly bias (mm) between corrected weather radar and observed
rain gauge precipitation estimates for all data and three different
intensity ranges (mm h~!). Panel (b) shows the mean (black dots)
and standard deviation (gray dots) of the bias as presented in panel
(a) for the 69 gauges as a function of range from the radar. Panels
on the right present the optimal bias values as obtained from VPR
(panel ¢) and Z-R (panel d) variability estimates (by minimizing
the difference between hourly radar and gauge estimates).
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Table 6.3: Half-year mean hourly bias (mm) and standard devi-
ation (in brackets) between corrected weather radar and observed
rain gauge precipitation estimates for all data and three different
intensity ranges. Impact of obtained radar rainfall uncertainty from
VPR and Z—-R variability is presented by the bias w.r.t. the opti-
mal (minimal difference with rain gauge), minimum and maximum

estimated hourly radar values.

Intensity range (mm h~!)

All 0.1-0.5 0.5-2.0 >2.0

Mean -0.01 (0.87)  0.13 (0.43)  -0.02(0.85)  -0.52 (0.85)
o Optimal -0.12 (0.6)  -0.01 (0.29) -0.15(0.58) -0.47 (1.2)
£ Min -0.43 (0.82)  -0.11 (0.32)  -0.51(0.67)  -1.44 (0.67)

Max +0.30 (1.22) +40.21 (0.57) +0.33(1.2)  40.58 (1.2)
= Optimal -0.04 (0.69) +0.1(0.34) -0.07(0.66) -0.53 (1.34)
ry Min -0.13 (0.78)  40.08 (0.35) -0.15(0.69)  -0.91 (0.69)

Max +0.17 (1.2)  +0.19 (0.61) +0.16(1.18) +0.06 (1.18)

liquid precipitation region. As such, additional VPR uncertainty due to
variability in the size of the bright band for stratiform precipitation, or
due to measurements within the snow region have a limited impact on
the quality of the radar rainfall estimates. For distances beyond 70 km
these additional sources of uncertainty are almost always part of the
radar measurement and become rather constant irrespective of range.
Such distance effects are not observed when considering the uncertainty
originating from Z—R variability. This is because a given radar reflectiv-
ity rainfall rate relationship is applied to the whole rain field for given
precipitation type.

6.4.2 Radar rainfall estimation at the catchment scale

So far hourly precipitation measurements from individual radar-rain
gauge pairs have been analyzed. Even though the uncertainty in the
weather radar measurement was taken into account, range effects and
sampling differences complicate comparison between both devices (Austin,
1987; Kitchen and Blackall, 1992; Gabella et al., 2005; Borga et al.,
2006). To improve the spatial coherence, the measurements of both
instruments are aggregated to the scale of the different catchments as
described in Section 6.2.1.

In Fig. 6.7 the correspondence between the hourly radar and gauge
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Figure 6.6: Upper panels present the hourly relative radar pre-
cipitation uncertainty estimate (Pyy., see Eq. 6.6) obtained from
taking the uncertainty in VPR (a) or Z-R (b) into account. Hor-
izontal lines present the mean of the hourly estimates (E(Pyp.)).
Mean uncertainty, for each of the individual gauges (lower panel) as
a function of range from the radar, taking the uncertainty in VPR
(black) and Z—R (gray) into account. In the upper panels the size
of a dot indicates the density of the original data.
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measurement for the Ourthe catchment and the 6 subcatchments as
described in Table 6.1 is given. Even though considerable variability can
be observed at the catchment scale, overall the measurements of both
instruments line up very well. Similar to the comparisons between the
individual radar and gauge measurements. Also at the catchment scale
corrected weather radar data on average resemble the estimates from
the rain gauges quite well. However, in addition to providing a mean
catchment value, ensembles of radar catchment rainfall realizations are
also available from our methods to generate variability due to the VPR
and the Z—R relation.

Some additional statistical information using the corrected weather
radar information as well as the impact of the generated precipitation
ensembles is given in Fig. 6.8. The large correlation values between the
radar and gauge measurements indicate again that the radar is capable
of observing precipitation. On average larger uncertainty ranges are
observed when taking the variability in the VPR into account. This is
similar to Fig. 6.6 where VPR variability lead to larger precipitation
ranges. This is not the case, however, for the subcatchment upstream
of Ortho, which lies directly adjacent to the radar. At this close range,
the uncertainty in the estimated VPR is rather small, since most radar
measurements are taken within the liquid precipitation region close to
the surface. The rather large uncertainty range taking Z—R variability
into account originates from residual clutter that still affects weather
radar measurements during some hours.

Similar to Fig. 6.7, the radar-gauge ratios in Fig. 6.8b are close to
one, indicating relatively small biases between radar and gauge measure-
ments. The Nash-Sutcliffe (NS) statistic (Nash and Sutcliffe, 1970) in

Fig. 6.8c shows a similar behavior as the correlation coefficient.

To gain more information on the radar-gauge bias at the catchment
scale, the half-year error distribution for all catchments jointly is given
in Fig. 6.9. When compared to the individual distribution in Fig. 6.5a,
the distribution at the catchment scale is narrower. As such, mean bias
values are close to zero and variances are smaller (see Table 6.5). The
results shown in Fig. 6.9b indicate that the variance of the error dis-
tribution slightly decreases with catchment size, although it should be
emphasized that the limited number of catchments studied prevents us
from drawing any firm conclusion. However, these results do confirm
previous observations, where range effects and sampling differences be-
tween radar and gauge measurements have been reported to decrease
with spatial scale (Creutin et al., 1997; Vignal et al., 2000).
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Figure 6.9: Similar to Fig. 6.3 for the half-year radar and rain
gauge hourly catchment mean precipitation estimates. In panel (b)
the mean (black dots) and standard (gray dots) of the bias are
presented as a function of catchment size.

In Fig. 6.9c and d the error distribution using the optimal radar
realizations due to variability in VPR and Z—R relation is shown. As
expected, the optimal ensemble member leads to a narrower distribution
with a mean closer to zero. The uncertainty generated by both radar
ensemble methods is given in Fig. 6.10. The spread of the distribution
decreases slightly with precipitation intensity, in line with the individual
radar-gauge measurements (see Fig. 6.6). In addition, at the catchment
scale, the realizations generated on the basis of VPR variability yield
larger uncertainty ranges varying between 0.51-0.74, which corresponds
to a measurement uncertainty of 26-37% (see Table 6.5). The ensemble
generated on the basis of Z—R variability varies between 0.19-0.23 for
the different catchment sizes, indicating a mean catchment uncertainty
of 10-12%. From Fig. 6.10b it can be observed that these values are
independent of catchment size.
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Figure 6.10: Upper panel presents the hourly catchment mean
relative radar precipitation uncertainty estimate (P, see Eq. 6.6)
obtained from taking the uncertainty in VPR (black) or Z-R (gray)
into account (similar to Fig. 6.4). In the lower panel, the hourly
estimates E(Pyy. for each of the 7 catchments are presented as a
function of catchment size, taking the uncertainty in VPR (black)
and Z-R (gray) into account. In the upper panel the size of a dot
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6.4.3 Hydrological potential of weather radar

In the previous sections the quality of the radar to measure precipitation
and the impact of both radar precipitation ensemble generation meth-
ods was analyzed. Overall, corrected weather radar and rain gauge data
correspond well, where the variability in VPR gives rise to a larger un-
certainty in the precipitation estimates than the variability in the Z—R
relationship. In the current section, the application of weather radar
data and the associated precipitation uncertainty is assessed within a
rainfall-runoff modeling setting.

Figure 6.11 presents the TOPMODEL discharge simulations of the
Ourthe catchment for the period considered. These results are obtained
using both the uncertainty sources in the radar rainfall estimates (from
50 ensembles based on VPR and Z—R variability) and using the 200
optimal parameter sets of the rainfall-runoff model (see Table 6.1). In
case rain gauge data are used as input, only the hydrological model
parameter uncertainty is taken into account.

In general, it can be observed from Fig. 6.11 that TOPMODEL is
able to simulate the observed discharge of the Ourthe for either type of
precipitation input quite well. This is also shown in Table 6.5, where
maximum Nash-Sutcliffe (NS) statistics are given for a given precipita-
tion time series in combination with a given parameter set. Based on
Fig. 6.11a it can be observed that a considerable fraction of uncertainty
in the simulated discharge response originates from variability in the
optimal parameter set. However, not a single parameter set is able to
generate the observed peak discharge (grey regions). When taking the
uncertainty in the observed radar precipitation values into account as
well, simulated peak discharge ranges do encompass the observed values.

Table 6.5 presents the median simulated peak discharges (Qps;s0)
and their uncertainty range as given by the 1st (Qpg,1) and 99th (Qps.99)
percentiles. In case the observed peak values lie within the simulated
uncertainty ranges, these values are presented in bold. Using both ver-
sions weather radar ensembles, this specifically holds for the Ourthe as a
whole (as was also shown in Figs. 6.11b and c¢) and for the subcatchment
of Mabompré using the ensemble generated on the basis of VPR vari-
ability. For all other subcatchments all of the different input time series
lead to simulated peak values smaller then the observations. However,
simulations based on the weather radar precipitation ensembles provide
a much better resemblance in terms of peak discharges.

For each hourly timestep, the relative uncertainty of the simulated
discharges Qune (see Eq. 6.7) as a function of the observed discharge is
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Figure 6.11: Discharge observations and simulations for the Our-
the catchment as performed by TOPMODEL using the 50 optimal
parameter sets for the three different types of precipitation input.
The median of the simulated values is given by the red line, while
the uncertainty range as represented by the 1st and 99th percentiles
is given by the gray band. Insets show details of model performance
during peak discharge.
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Table 6.5: Half-year observed (Obs) and simulated discharge statistics (S) using the three different types of
precipitation input based on the 50 optimal parameter values of TOPMODEL for the 7 different catchments.
Qpops are the observed peak flow dischages (m?® s7!), NS the Nash-Sutcliffe statistic, E(Qgrpe the mean relative
simulated runoff uncertainty (see Eq. 6.7). The simulated peak flow uncertainty ranges are given by Qpg n for
the different simulations, where N indicates the given percentile. Cases for which the observed peak discharge
falls within the simulated uncertainty range are given in bold.

Ourthe Ortho Mabompré Nisramont Hotton Durbuy Tabruex

Qpovs 380 130 98 237 269 315 380
NS 0.87 0.83  0.82 0.87 0.88 0.93 0.91
£ Qpsso 234 97 76 179 229 278 331
= Qpsa 207 84 69 175 216 272 302
O Qpsge 251 110 83 183 239 282 338
E(Qune) 0.18 0.14 0.8 0.05 0.07 0.03 0.06
NS 0.83 084  0.81 0.88 0.89 0.91 0.89
x Qpss 331 84 107 203 254 304 352
& Qpsa 250 68 82 198 239 296 300
Qpsogo 397 103 139 212 264 311 366
E(Qune) 0.21 0.15  0.22 0.05 0.09 0.03 0.08
NS 0.81 082  0.76 0.88 0.88 0.9 0.87
e Qpsso 354 90 117 199 249 296 353
N QPsi 256 76 99 194 231 289 308
Qpsgo 391 103 135 206 258 299 359
E(Qune) 0.19 0.15  0.19 0.05 0.08 0.03 0.07
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Figure 6.13: Upper panel shows the mean relative discharge uncer-
tainty as simulated by TOPMODEL using the 50 optimal parameter
sets for the three different types of precipitation input (similar to
the horizontal lines in Fig. 6.12). Lower panel provides the relative
additional runoff uncertainty obtained when taking precipitation
uncertainty into account.

given in Fig. 6.12. Smaller discharges generally give rise to larger un-
certainty ranges, similar to that observed for precipitation (see Figs. 6.6
and 6.10). In Fig. 6.13a the mean catchment discharge uncertainty (sim-
ilar to the red lines in Fig. 6.12) is presented as a function of catchment
size. At first sight, relative discharge uncertainty seems to increase with
catchment size, similar to the observations of Carpenter and Georgakakos
(2004). However, differentiation between the lumped and the distributed
implementation shows that for a given implementation, the overall un-
certainty shows a rather constant behavior. More specifically, in case
the upstream mean simulated dicharge values are used as input, overall
mean uncertainty values are smaller.
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From Fig. 6.13a as well as Table 6.5 it can further be observed that
discharge uncertainty increases when radar rainfall ensembles are used as
input. However, their overall increase is limited as shown in Fig. 6.13b,
which is obtained by taking the ratio between the mean discharge simula-
tion uncertainty using the weather radar ensembles with respect to that
obtained from using the rain gauge information. The added uncertainty
due to the precipitation ensembles is rather constant with catchment
size. In particular, the added uncertainty associated with variability of
the VPR or Z—R relation is found to be 18% and 5%, respectively.

6.5 Discussion

6.5.1 Precipitation uncertainty generation

The results presented in the current chapter show that when properly ac-
counting for all known dominant sources of error affecting weather radar
rainfall estimates, precipitation estimates correspond well to those ob-
tained from in situ rain gauge measurements. Chapter 2 already noted
the importance of taking different sources of error into account, how-
ever, results presented there were not as promising. In the current study,
further improvements in the quality of the weather radar rainfall mea-
surements are related to an improved VPR estimation method for each
precipitation region separately (see Chapter 5) and the use of a specific
precipitation type dependent Z—R relationship. Even though consider-
able differences between weather radar and rain gauge measurements
still occur, from a hydrological perspective both provide precipitation
estimates of comparable quality as shown in Figs. 6.3, 6.7 and 6.11. As
such, any additional bias removal in the radar data using the rain gauge
information becomes unnecessary for the studied winter period.

Instead, the goal of the current chapter has been to present two
separate weather radar precipitation ensemble generation methods, ac-
counting for uncertainty related to either reflectivity measurement er-
rors (from VPR) or reflectivity conversion errors (from Z-R relations).
Both uncertainty generation methods are able to account for the major-
ity of the differences between radar and gauge measurement as shown
in Figs. 6.5 and 6.9, and Tables 6.3 and 6.4.

It was decided not to combine both uncertainty generation meth-
ods, since the uncertainty in the VPR can be related to spatial and
temporal variability in the drop size distribution and phase, giving rise
to variability in the Z—R relationship. As such, both methods cannot
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directly be merged since this would lead to an overestimation of the
actual uncertainty. In practice, given the characteristics of the weather
radar, additional sources of uncertainty can be expected, both having an
additive (e.g. radar calibration and beam overshooting) and multiplica-
tive (e.g. signal attenuation, partial beam shielding) impact. However,
given the operational environment, the studied winter period and the
implemented radar correction steps, we believe these additional sources
of error only lead to limited additional uncertainty. As such, the two
uncertainty generation sources here are considered to be dominant.

Given the fact that there is a relations between both VPR and Z—R
uncertainty, one can hypothesize why the former leads to much larger
uncertainty ranges in precipitation estimates even though the obtained
variability in the latter results in values spanning most of the observed
relationships obtained from disdrometer measurements (Battan, 1973).
We expect that the generated VPR uncertainty leads to slight overesti-
mations of the true uncertainty in the spatial VPR field. This is due to
the fact that the estimated ratio profiles, as needed in Eq. 6.2, are not
obtained simultaneously. Since the vertical behavior of the precipitation
field changes continuously, small differences in sample times between dif-
ferent scans can lead to an overestimation of the true uncertainty. On
the other hand, the current implementation of the Z—R uncertainty gen-
eration method is expected to underestimate the observed radar-rainfall
uncertainty. As explained in Section 6.3.3, this is because no tempo-
ral consistency in the generated Z—R parameters is implemented in the
current version of the algorithm.

6.5.2 Impact of precipitation uncertainty on runoff re-
sponse

The use of corrected weather radar data for rainfall-runoff modeling
leads to a similar performance as when applying rain gauge information.
What is interesting about the current results is the relatively limited im-
pact of radar rainfall uncertainty on the simulated hydrological response
as compared to the uncertainty originating from parameter variability
of TOPMODEL. The latter impact is much larger. On the other hand,
this does not hold for the simulation of peak flows. For these situa-
tions, taking the impact of radar rainfall uncertainty into account leads
to improved results. As such, from an operational perspective using
precipitation ensembles improves forecast performance.

The fact that uncertainty in model parameters has a larger impact
on the runoff uncertainty simulations than rainfall variability can partly
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be attributed to the rather simple representation of TOPMODEL to
estimate the hydrological response of the catchments. In reality the hy-
drological response of a catchment is rather complex. Next to that, since
catchments behave as non-linear filters and precipitation has an inter-
mittent character, large uncertainties in rainfall estimates are filtered
out into a continuous runoff signal. This can also be observed when the
results presented in Fig. 6.10 are compared to those in Fig. 6.13. Radar
ensembles represent a total of 26-37% to 10-12% in terms of precipi-
tation uncertainty for the variability from VPR and Z-R, respectively.
However, this results in an additional mean runoff uncertainty of only
18% and 5%, respectively.

The fact that using radar rainfall ensembles improves peak flow esti-
mates does not directly indicate that mean catchment rainfall originating
from either rain gauge or radar measurements underestimates the true
catchment rainfall input. During the days before the peak flow period,
weather radar and gauge measurements correspond well (see Fig. 6.2
and Chapter 5). An alternative explanation can be related to the fact
that none of the optimal parameter sets were specifically obtained by
calibrating TOPMODEL on peak flows. As such, all parameters provide
optimal results for the complete discharge time series, including low flow
situations. This can lead to a general underestimation of peak flow re-
sponse. Therefore, by using precipitation realizations that slightly over-
estimate the actual amount of precipitation, better peak flow estimates
are obtained. These results indicate that a limited representativity of
the hydrological model parameters can partly be corrected for using
ensemble precipitation estimates.

A final important aspect to discuss is the dominant impact of the
use of upstream discharge inflow within the distributed modeling frame-
work. As explained in Section 6.2.2, the upstream inflows originate from
the time series generated using the most optimal simulation response.
Therefore, no uncertainty in simulated upstream input is taking into
account. Any differentiation between simulations and observations up-
stream is therefore still observed downstream. Since the use of mean
radar or gauge precipitation input has been shown to underestimate
peak discharges (Fig. 6.11a), downstream peak discharges are underesti-
mated as well. Additional uncertainty generated using the precipitation
ensemble input on the downstream catchment response, provides insuffi-
cient variability to account for this underestimation (see also Fig. 6.13).
However, it was decided not to use measured upstream discharges to
assess all aspects of the hydrological model, as the use of an ensemble of
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upstream inflows would result in too large computational demands and
was considered to be beyond the scope of the current chapter.

6.6 Summary and conclusions

In this chapter different manners of generating precipitation ensembles
from volumetric weather radar data and their potential for rainfall-runoff
uncertainty modeling are assessed. There are two important motivations
for the application of such an ensemble approach: 1) radar rainfall esti-
mates are uncertain, 2) ensemble stream flow simulations provide a more
complete representation of the model response by identifying both in-
put and parameter uncertainty (e.g. Carpenter and Georgakakos, 2006;
Germann et al., 2009). However, compared to previous approaches, in-
stead of employing purely statistical methods to generate precipitation
uncertainty, in the current study two conceptual approaches are used
that allow the generation of ensembles from volumetric weather radar
data directly using the observed variability of the VPR and the Z-R
relations. These data are used to simulate the hydrological discharge
response of a 1600 km? catchment and 6 subcatchments using the con-
ceptual TOPMODEL. Since an ensemble of 200 optimal parameter sets
were available for rainfall-runoff simulations, an assessment of the in-
teraction between rainfall and model parameter uncertainty could be
made.
From these analyses the following main conclusions can be drawn:

1. In case one properly accounts for all dominant sources of error,
weather radars are able to provide precipitation estimates with
similar quality to those obtained from in situ rain gauge mea-
surements. Any additional source of uncertainty associated with
the difference between both instruments can for the major part
be accounted for by generating precipitation ensembles based on
the variability in either the VPR or the Z—R relation. At the
point scale, these two methods generate an uncertainty of the es-
timated hourly radar rainfall amounts of around 40% and 15%,
respectively, slowly decreasing when aggregating over larger re-
gions. Uncertainty arising from variability in the VPR slightly
increases with distance from the radar, as a result of the increase
in sample volume and measurement height with range.

2. Because of the large correspondence, hydrological simulations with
TOPMODEL using corrected weather radar data provides similar
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results as when rain gauges are used, even though in the current
study the former have not been bias-corrected using the latter.
The additional uncertainty in the generated precipitation ensem-
bles provide improved peak flow uncertainty estimates compared
to using a single precipitation estimate alone. As such, the usage
of precipitation ensembles both leads to improved mean catchment
precipitation estimate and to an added uncertainty that accounts
for the limited representativeness of hydrological model parame-
ters.

. In the current study, variability of the hydrological model parame-
ters gives much larger simulated discharge uncertainty ranges than
the uncertainty arising from the application of precipitation ensem-
bles. For the complete winter period the additional uncertainty
as a result of precipitation variability is much smaller (< 20%),
than the uncertainty related to the equifinality of the hydrological
model parameters. These results show the dominant impact of
catchments to filter the precipitation input, leading to a decrease
in input uncertainty in the discharge response by halve.

. For the distributed simulation cases, the inflow from the upstream
channel network has a significant reducing impact on the simulated
discharge uncertainty. This can be related to the fact that a sin-
gle upstream discharge input value was used, instead of applying
additional simulated variability. For the medium-sized catchments
analyzed here, these results show the dominant importance of the
channel network in the hydrological response of catchments.

Based on these results, one might question the usefulness of precip-

itation ensembles, even though such procedures have been advocated
in the literature (Ciach et al., 2007; Villarini and Krajewski, 2010).
However, it should be emphasized that the results presented here were
obtained during a winter period when the majority of precipitation has
relatively small intensities and spatial variations are relatively small. As
such, threshold behavior in the hydrological response, possibly moving
from complete infiltration to overland flow are not expected to occur
based on the applied precipitation ensembles.
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CHAPTER 7

Discussion

7.1 Introduction

A central theme of this thesis has been to focus on the impact of cor-
recting volumetric weather radar measurements for all known sources of
error, so that its precipitation product becomes directly useful for hy-
drology without using rain gauges for adjustment. The results presented
in Chapters 5 and 6 show that in case the data are corrected properly
for the most dominant individual error sources, the radar rainfall prod-
uct has a similar quality as can be obtained from in situ rain gauge
measurements, although considerable differences between both devices
remain. It should be noted that these results were obtained during a
winter half year, when the majority of precipitation systems observed
are of stratiform type and have a relatively uniform character.

Another central aspect of this thesis is the lack of knowledge on the
actual Z—R relation. As shown in Chapter 3, the parameters of this
relation vary between and during different precipitation events. There-
fore, applying a single relationship for a given precipitation type will
result in considerable uncertainty. Unfortunately, the impact of ground
clutter, partial beam blockage and the distance between the weather
radar and disdrometer limited the possibilities to investigate the rela-
tionship between the three-dimensional character of the precipitation
field as measured by the radar and the raindrop samples taken by the
disdrometer. However, it is fully recognized and advocated in this the-
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sis that the quality of the weather radar rainfall product can only be
improved by considering these small-scale precipitation properties.

This chapter provides some further thoughts on these aspects by
analyzing volumetric weather radar measurements in combination with
disdrometer data for a mesoscale convective system (MCS). This event
was observed on August 25-27, 2010 in The Netherlands and led to some
of the largest precipitation sums ever recorded in this country (Brauer
et al., 2011; van de Beek et al., 2013). Weather radar precipitation
measurements taken within an MCS are known to be a challenge (Zhang
and Smith, 2003; Delrieu et al., 2005; Borga et al., 2007; Krajewsk: et al.,
2010), since these systems show considerable small-scale variability in
the precipitation characteristics. Therefore, the impact of the chain of
weather radar correction steps as developed as part of this thesis are
assessed and compared to the operational radar rainfall product. Next
to that, given the fact that the employed weather radar and disdrometer
are at close distance, and that radar visibility aspects do not cause a
major problem, it is possible to provide a first assessment on the link
between the three-dimensional properties of the precipitation field and
the rainfall measurements taken at the surface.

Based on the analyses presented here, an attempt is made to put the
results of this thesis in a proper perspective and assess their benefits and
limitations. This subsequently leads to a number of suggestions on how
to possibly proceed with further improving the quality of radar rainfall
measurements for hydrological applications.

7.2 Data availability and event description

The Royal Netherlands Meteorological Institute (KNMI) operates two
weather radars, one in De Bilt and one in Den Helder in the Netherlands.
Only data from the former radar are analyzed here. The weather radar
in De Bilt is a C-band Doppler radar located on top of a tower at 44
m above sea level and operating at 5.6 GHz (i.e. at a wavelength of
5.3 cm). Volumetric information is obtained every 5 minutes for 14 scan
elevations (0.3°, 0.4°, 0.8°, 1.1°, 2.0°, 3.0°, 4.5°, 6.0°, 8.0°, 10.0°, 12.0°,
15.0°, 20.0°, and 25.0°). In close vicinity of the radar (within 1 km)
an OTT Parsivel disdrometer is located, which provides information
on the observed raindrop sizes and their fall velocities at a one-minute
resolution. This disdrometer is similar to one used to analyze the DSD
data observed in the southern part of France in Chapter 3. Next to that,
at a national level information from a network of 34 rain gauges operated
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Figure 7.1: Upper panel shows the number of raindrops per di-
ameter size interval as sampled by the disdrometer for the event
on 25-27 August, 2010. Also indicated are the 7 different tempo-
ral phases, between which considerable variability in the DSD is
observed. Lower panel presents the median (black line) and the
10-90th percentile drop diameter.

by KNMI is available. These data are aggregated to hourly intervals and
will be compared to the precipitation measurements as obtained from
the weather radar.

Between 25 and 27 August 2010 a long-duration mesoscale convective
system was observed above the Netherlands. The event originated from a
narrow band of low pressure passing over the country from the direction
of the English Channel towards Southern Denmark, in between high
pressure zones over Southern Europe and Scotland. In the eastern part
of the Netherlands, total event accumulations were extreme leading to
local event accumulations exceeding 150 mm (Brauer et al., 2011).

At De Bilt this event led to over 18 hours of near-continuous precip-
itation, resulting in an accumulation exceeding 50 mm. The time series
of the number of drops per diameter class as observed by the disdrometer
are given in Fig. 7.1.

Based on visual inspection of these drop size data, it is decided to
divide this time series into seven different sub-event periods. The tran-
sition between the different periods is given by the dashed lines and
Roman numbers in Fig. 7.1. To provide additional information on the
specific spatial patterns of the rainfall field, for each of these 7 peri-
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Y-coordinate radar (km, WGS84-31N)

X-coordinate radar (km, WGS84-31N)

Figure 7.2: Each panel shows a temporal snapshot of the spatial
precipitation field as observed by radar for each of the 7 different
phases as identified in Fig. 7.1. The date and time of each snapshot
are given at the bottom left and right of each panel. The location
of the radar is indicated by the +. The map presents the location
of The Netherlands within Western Europe.

ods an example of the two-dimensional rainfall field as measured by the
weather radar is presented in Fig. 7.2.

The mesoscale convective system (MCS) as shown in panels a-b of
Fig. 7.2 consists of widespread rainfall containing mostly stratiform pre-
cipitation (as will be shown later). Locally embedded convective precip-
itation as part of this MCS is observed close to the radar during phase
III (Fig. 7.2c). During phase IV (Fig. 7.2d) the convective activity has
transformed into a squall-line moving in an eastward direction situated
just North of the radar. Because of this, only some remnants of this
line of convective activity were observed by the disdrometer during this
phase. During the afternoon of August 26 another squall-line of con-
vective precipitation moves from the South-West in a North-Eastward
direction. However, this system passes East of the radar. The final
phases of the storm again consist mainly of widespread precipitation
moving in an Eastward direction.
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Figure 7.3: Total wet radome attenuation as obtained from the
mean of the reflectivity value of all identified clutter pixels with a
dry weather reflectivity exceeding 55 dBZ for the event on 25-27
August, 2010.

7.3 Volumetric error correction and rainfall es-
timation

7.3.1 Weather radar error correction steps

The operational weather radar product as provided by KNMI uses a
Doppler clutter filter to identify stationary echoes. This filter is applied
to all pixels, and can cause an underestimation of precipitation-related
reflectivity. Next, the reflectivity information for all elevation scans
is linearly interpolated in altitude to the 1500 m level, resulting in a
two-dimensional polar weather radar product (a so-called constant al-
titude plan position indicator (CAPPI)). This product is transformed
into Cartesian grid by selecting the individual polar pixel lying closet
to the Cartesian pixel. For operational purposes, these data are then
bias-corrected using rain gauge data. However, this latter procedure is
not available in real-time. Therefore, the non-bias corrected operational
product will be compared to the result of implementing a detailed radar
error correction procedure.

For the current event different sources of error possibly affecting the
quality of the weather radar rainfall measurements are identified. In line
with Chapter 6 the following steps are identified to correct for individual
sources of error:
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Clutter (Clu) — Clutter and anomalous propagation are identified
using both a fixed dry weather clutter map and applying the algo-
rithm originally developed by Steiner and Smith (2002) to identify
variable clutter sources. For the current event anomalous propaga-
tion was not observed, however, the latter algorithm is in principle
able to detect and correct for this.

. Radar calibration (RaC) — The sensitivity of the receiver and the

alignment of the radar at KNMI is operationally monitored by
using the position of the sun (Holleman et al., 2010). Detailed
analysis shows that during the current event radar reflectivities
are underestimated by 1 dBZ.

Precipitation region and type identification — RoCaSCA is used to
identify individual precipitation regions for which the reflectivity
exceeds 7 and 23 dBZ (see Chapter 5). Next, the volumetric infor-
mation is used to identify convective, stratiform and undefined pre-
cipitation type (Steiner et al., 1995; Sdnchez-Diezma et al., 2000;
Delrieu et al., 2009). For the current event, the basic threshold
for convection was set at 35 dBZ.

. Path-integrated attenuation (Att) — Based on the disdrometer data

in combination with the identified types of precipitation from the
volumetric radar data, the parameters of the power-law relations
between reflectivity and specific attenuation Z = ¢ k% are obtained
for each type of precipitation. These parameters are given in Ta-
ble 7.1.

Wet radome effect (WRa) — Given the long duration of precipi-
tation observed at the radar site, the occurrence of a wet radome
results in an underestimation of the atmospheric reflectivity. To
assess the impact of wet radome effects, the time series of the mean
reflectivity of all fixed clutter pixels with a dry weather reflectivity
7 exceeding 55 dBZ is presented in Fig. 7.3. From this figure it
can be observed that the total amount of wet radome attenuation
is considerable. Therefore, for each time step volumetric weather
radar data are corrected for signal attenuation using the estimates
obtained from the fixed background clutter pixel signal loss.

Vertical profile of reflectivity (VPR)— The identification method as
presented in Chapter 5 is used to correct stratiform and undefined
precipitation for the impact of VPR.



Table 7.1: Parameters of the reflectivity-rain rate relation Z =
A RY and the reflectivity-specific attenuation relation Z = ¢ k¢ as es-
timated from the observed disdrometer data for the complete event
as well as for each individual precipitation type for the event on
25-27 August, 2010.

Type A b c (x10%) d

All 229 1.28 1.04 1.334
Convective 404 1.25 1.24 1.394
Non-Stratiform 163 1.17 0.51 1.258
Stratiform 268 1.34 045 1.131

7. Radar reflectivity-rainfall rate relation (Z—-R)— Instead of applying
the Marshall-Palmer relation Z = 200 R* (Marshall et al., 1955)
which is applied operationally, the disdrometer data are used to
identify the optimal Z—R relation for a given rainfall type. The
parameters of this relation are given in Table 7.1.

7.3.2 Spatial accumulations and radar-gauge comparison

In Fig. 7.4 the impact of each individual error correction step on the to-
tal event rainfall accumulations is presented. Maximum accumulations
in the eastern part of the Netherlands for the operational product lie
between 40 and 50 mm. As mentioned above, actual accumulation ob-
served within this region exceeded 150 mm. As such, the operational
product leads to a strong underestimation of the observed precipitation.
From an operational perspective, such a performance can have a detri-
mental impact on whether the appropriate warnings and precautions
can be taken by hydrological authorities, especially when it comes to
responding properly during such an extreme precipitation event.

The overall underestimation by the operational product resulted
from the fact that, except for clutter, none of the individual error sources
as identified above were corrected for. Next to that, the implemented
operational clutter Doppler filter was too strict, removing part of the re-
flectivity from actual precipitation. This resulted in a further decrease
in the estimated precipitation. When correcting for each individual error
source, the weather radar rainfall product changes completely. Correct-
ing for each individual error source leads to an increase in the total
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Figure 7.4: Spatial overview of the accumulated precipitation as
estimated from the weather radar for the event on 25-27 August,
2010. The operational product as distributed by the Royal Nether-
lands Meteorological Institute (KNMI) is given in the top-left panel.
Other panels indicate the impact of each additional radar error cor-
rection step on the total storm accumulations. These correspond
to no correction (Unc), clutter identification (Clu), radar calibra-
tion (RaC), path-integrated attenuation (Att), wet radome effects
(WRa), vertical profile of reflectivity (VPR) and precipitation type
specific reflectivity-rain rate relation (Z-R).
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Figure 7.5: Comparison of rainfall accumulations from 34 rain
gauges and the corresponding radar pixels for hourly (gray e) and
total event (black +) interval for the event on 25-27 August, 2010.
The operational product as obtained by the Royal Netherlands Me-
teorological Institute (KNMI) is given in the top left panel. Other
panels indicate the impact of each additional radar error correction
step. These correspond to no correction (Unc), clutter identification
(Clu), radar calibration (RaC), path-integrated attenuation (Att),
wet radome effects (WRa), vertical profile of reflectivity (VPR) and
precipitation type specific reflectivity-rain rate relation (Z—R). The
gray and black lines correspond to linear regression between the two
for the hourly (H) and total event (T) interval, of which the slope is
given in the legend. The dashed lines represent the 1:1 correspon-
dence.

accumulation, as expected. The final corrected product, locally, leads
to an estimated rainfall accumulation of about 120 mm for the eastern
part of the Netherlands. Even though this value still underestimates the
rain gauge observations, these results definitely show the positive im-
pact of correcting the radar for each individual source of error. This is
in agreement with what was shown in the remainder of this thesis when
analyzing the impact of radar error correction for winter precipitation in
Belgium. Also for the current event, the corrected weather radar rainfall
product outperforms the operational product.

Figure 7.5 presents the comparison between rainfall accumulation
from the 34 rain gauges and the corresponding radar pixels. Results are
shown for hourly and total event accumulations. Each individual correc-
tion step yields an incremental improvement in the quality of the radar
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Figure 7.6: Spatial overview of the mean ratio between the hourly
rainfall accumulations for the 34 radar and rain gauge pairs for
the event on 25-27 August, 2010. The operational product as ob-
tained by the Royal Netherlands Meteorological Office (KNMI) is
given in the topleft panel. Other panels indicate the impact of each
additional radar error correction step. These correspond to no cor-
rection (Unc), clutter identification (Clu), radar calibration (RaC),
path-integrated attenuation (Att), wet radome effects (WRa), ver-
tical profile of reflectivity (VPR) and precipitation type specific
reflectivity-rain rate relation (Z—R).

precipitation measurements. Linear regression results using the hourly
estimates still show a large underestimation by the weather radar. This
is caused by a large underestimation by the radar for a number of indi-
vidual gauge locations during hours when high precipitation intensities
were observed (exceeding 10 mm h~!). The impact of these individual
hours decreases when focusing on the total event accumulations. How-
ever, total event accumulations are still underestimated.

It is recognized here that from a hydrological perspective, correct
estimation of the large hourly precipitation amounts is important, since
extreme precipitation events can have a severe societal and economic im-
pact. As such, even though the impact of the algorithms implemented
here lead to a considerable quality improvement in weather radar rainfall
estimates, there is still room for further improvements. Therefore, to as-
sess the limitations of the currently implemented procedures, Figs. 7.6
and 7.7 provide spatial information on the mean ratio of the individ-
ual radar and gauge measurements for the hourly and event rainfall
accumulations, respectively. Although precipitation accumulations are
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Figure 7.7: Spatial overview of the ratio between the total event
rainfall accumulations for the 34 radar and rain gauge pairs for
the event on 25-27 August, 2010. The operational product as ob-
tained by the Royal Netherlands Meteorological Office (KNMI) is
given in the topleft panel. Other panels indicate the impact of each
additional radar error correction step. These correspond to no cor-
rection (Unc), clutter identification (Clu), radar calibration (RaC),
path-integrated attenuation (Att), wet radome effects (WRa), ver-
tical profile of reflectivity (VPR) and precipitation type specific
reflectivity-rain rate relation (Z—R).

underestimated by the radar at almost every location, a slightly larger
underestimation occurs in the middle of the Netherlands for a horizon-
tal band moving from East to West, just North of the radar. This band
corresponds with the direction of the squall-line as shown in panel ¢ of
Fig. 7.2.

One possible explanation might be the underestimation of the amount
of signal attenuation in the forward and backward direction of the squall-
line. The parameters of the Z—k relation for the convective type of pre-
cipitation were obtained from disdrometer measurements taken close to
the radar. Even though some convective activity was observed at the
location of the radar (phase III in Fig. 7.1), these data do not origi-
nate from the squall-line itself. Also, no DSD data were sampled as
part of the second squall-line observed in the afternoon of August 26
(see Fig. 7.2e). This could have led to a further underestimation of the
amount of attenuation in the eastern part of the Netherlands, the region
were the largest hourly accumulations were observed.

Another possible explanation related to this issue is related to the
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applied reflectivity-rain rate relations. In case the DSD derived Z—R
relation for convective type of precipitation is not representative for the
squall-line, this can lead to further underestimations of the precipitation
intensity by weather radar.

7.4 Radar rainfall error identification - Where
to go from here?

The results presented in the previous section showed a large improve-
ment in the quality of the weather radar rainfall data, after correcting for
each individual source of error. However, considerable bias with respect
to in situ rain gauge measurements remains in the corrected weather
radar data. It was mentioned above that a possible explanation could
be related to the employed disdrometer data, which were sampled close
to the weather but might not be representative for both squall-lines
observed during this event.

Another aspect that has not been taken into account so far, but which
has been a central focus of this thesis, is the uncertainty associated with
the weather radar measurements. In order to provide some more detail
on both of these aspects, Sections 7.4.1 and 7.4.2 focuses on the weather
radar observations taken close to the radar in combination with the drop
size measurements (see Fig. 7.1). Based on these analyses, a number of
possible directions can be defined on how to further improve volumetric
weather radar measurements.

7.4.1 Radar rainfall uncertainty estimation

A large part of this thesis has been focusing on the estimation of the
amount of uncertainty around the measured radar reflectivity value.
Two methods were used to obtain an estimate of this, either based on
the variability of the VPR or on the uncertainty in the Z—R relation.
However, both uncertainty estimates are affected by small-scale variabil-
ity in the observed reflectivity field as well as by the temporal sampling
properties of the radar (see also Sections 5.5 and 6.5). To gain more
understanding on these aspects, the reflectivity values as measured by
radar and obtained from the disdrometer for the complete event and for
the 7 different phases are presented in Fig. 7.8. The median reflectivity
value of the radar data was obtained from all volumetric reflectivities
measured between 500-1000 meter elevation within a distance of 2 km
from the radar. The underestimation by the radar as compared to the
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Figure 7.8: Comparison between mean one-minute reflectivity ob-
tained from the DSD data for five-minute interval and the me-
dian five-minute reflectivity value estimated from all volumetric
weather radar measurements at elevations between 500 and 1000
meter within 2 km from the radar. Error bars for DSD data indi-
cate the minimum and maximum one-minute reflectivity observed
during the five-minute interval, while error bars for the weather
radar measurements present the observed 10th and 90th reflectivity
percentile. Different panels represent the complete event (All) and
the 7 different phases as identified in Fig. 7.1. The slope of the lin-
ear regression line between both properties is given by s, while the
dashed line represents the 1:1 relation.

disdrometer measurements taken at the surface can be related to radar
calibration and wet radome attenuation issues, which were shown above
to affect the radar measurements. However, it can be observed that
within a given five-minute time step, the overall variability in reflectiv-
ity values is considerable within such a small region. Next to that, when
comparing different individual one-minute reflectivity values for a given
five-minute interval, again considerable variability is observed. There-
fore, given the fact that volumetric measurements at a given location are
not continuous, reflectivity measurements will give rise to a considerable
measurement uncertainty, even when weather radar data are perfectly
corrected for all possible sources of error and use is made of the optimal
Z—R relation.

Further away from the radar, a large measurement volume results in
reflectivity measurements which are an integral of these small scale vari-
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ations in drop size distributions. However, given the fact that the radar
measurement is performed during a small time-step, it is difficult to as-
sess how representative this measurement is for the five-minute interval.
Fortunately, both of the methods presented in this thesis partly account
for this type of uncertainty, limiting its overall impact, especially, when
aggregating the weather radar measurements over time and space. This
was also observed when comparing point-scale to the catchment-scale
measurements in this thesis (see Chapters 2 and 6). However, it is rec-
ognized that it is important to consider the small-scale variability aspect
when comparing weather radar and rain gauge data.

7.4.2 Precipitation microphysics - Impact of spatial and
temporal variations

To provide additional details on these small-scale precipitation aspects,
in line with Chapter 3, the scaling law theory is used to assess the proper-
ties of the observed DSDs (Sempere-Torres et al., 1994, 1998; Uijlenhoet,
1999). In Fig. 7.9 the normalized spectra and the scaled raindrop size
distribution g(z) for the gamma and exponential distribution are pre-
sented for the complete event as well as for each individual phase. From
both distributions the parameters of the Z—R relation are derived (see
Section 3.3 for more detail). For each of the different phases a different
Z—R relation is obtained. This immediately provides some indications
on the uncertainty that arises when using a single Z-R relation. In
addition, it also motivates the use of an ensemble of Z—R relations to
account for this uncertainty (see Chapter 6).

As explained in Chapter 3 the DSD varies between different precip-
itation types and meteorological origins. As such, these DSDs observed
at the surface are the final result of continuous drop interactions aloft.
Therefore, all volumetric weather radar data sampled within a distance
of 30 km from the radar are used to obtain the contoured frequency by
altitude diagram (CFAD), as originally developed by Yuter and Houze
Jr. (1995b). For each phase, these CFADs are temporally accumulated
as shown in Fig. 7.10. The dominant occurrence of stratiform precipi-
tation can immediately be observed from these panels, as the clear ap-
pearance of a bright band is visible during almost all phases. Only for
Phases III and VII its impact is less pronounced. During Phase III, as
explained above, convective precipitation is observed in the region sur-
rounding the radar, while Phase VII originates from the rain-out phase
of the widespread system. The normalized DSDs for these panels also
show marked differences compared to the other phases. Both have a
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Figure 7.9: Scaling analysis of the drop size distributions for the

event on 25-27 August, 2010. Different panels show the normalized

spectra for the complete event (All) and for the 7 different phases as

identified in Fig. 7.1. The scaled raindrop size distribution g(x) for

the gamma and exponential distribution is given by the solid and

dashed lines. The prefactor A of the Z—R relations based on either

distribution, as well as the exponent b for each period are shown in
the legend.

much more pronounced concave shape (see Fig. 7.9). Also during phase
IV the obtained Z—R parameters are different from the other strati-
form phases and give rise to both a smaller prefactor A and exponent
b. However, these pronounced differences in the obtained DSDs are not
reflected in the accumulated CFAD, which shows a similar shape and
bright band pattern as observed during Phases I, II, V and VI. Only
at the surface a considerably larger fraction of higher reflectivity values
is observed. As mentioned above, during Phase IV a squall line passes
North of the radar. Some remnants of this convective type of precipita-
tion are observed at De Bilt and have been captured by the volumetric
measurements. These are reflected in the observed rain drop size distri-
butions, where in Fig. 7.1 during some instances quite a large number
of drops is observed.

It was speculated in Chapter 3 that in case of convective precipita-
tion, the high number concentration of raindrops and the influence of
large vertical velocities leads to a large amount of raindrop interactions
(Ulbrich and Atlas, 2007). This favors conditions during which an equi-
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Figure 7.10: Accumulated Contoured Frequency by Altitude Dia-
grams (CFADs) ( Yuter and Houze Jr., 1995b) for the volumetric re-
flectivity data observed within a distance of 30 km from the weather
radar for the event on 25-27 August, 2010. Different panels repre-
sent the complete event (All) and the 7 different phases as identified
in Fig. 7.10.

librium state could be reached, resulting in a Z—R exponent b closer to
1 (Atlas et al., 1999; Prat and Barros, 2009). For the current event this
is not observed for Phase III. Even though this phase is most influenced
by convective precipitation, for this phase the highest Z-R exponent was
obtained. We expect that this results from the fact that the type of pre-
cipitation observed during this phase originates from a combination of
both convective and stratiform precipitation, as Fig. 7.10 shows a slight
bright band signature. The complete dataset observed during this phase
consists of a mixture of precipitation types, leading to relatively larger
value of the Z-R exponent, similar to the results presented in Fig. 3.9.
For Phase VII an exponent close to one is observed. However, given
the relatively low reflectivity values and the small rain drop concentra-
tions, it is difficult to assess what gave rise to this low exponent value.
A possible explanation is the relatively limited number of observations
that were obtained during this phase. In case these originate from the
same active remnant of the widespread system, with raindrop interac-
tions taking place in a rather constant manner in time, the resulting
temporal behavior of the observed DSD can be relatively constant as
well, leading to a small value of the exponent close characteristic of a
number-controlled situation.

198



7.4.3 A small-scale 4-dimensional approach - The holy
grail for weather radar rainfall estimation?

These in-depth analyses of the small-scale aspects of the observed pre-
cipitation field from volumetric radar and disdrometer measurements
show the difficulty of relating point-scale information to the variability
of the precipitation system aloft. First, because of the smaller scale vari-
ability of the precipitation field, changing constantly in space and time.
Second, because of the difficulty to infer any general information on the
three-dimensional properties of the precipitation field from point mea-
surements at the surface. More specifically, even though the selection
of intra-event phases in Fig. 7.1 makes sense from a visual perspective,
the volumetric weather radar data in the region above the disdrome-
ter for a number of phases shows a much more complicated behavior.
This partly results from the fact that a relatively large region around
the radar was used to generate the accumulated CFAD profiles. Most
convective precipitation cells have a much smaller radius than 30 km.

Therefore, based on these results and what has been presented in this
thesis, the only way to move forward in improving precipitation mea-
surements by weather radar is by focusing on the small-scale aspects of
the precipitation field, effectively taking the variability and uncertainty
into account. Standard approaches focusing on a fixed spatial region of
the radar umbrella or a specific rainfall type, can contain too large vari-
ations in the small-scale properties of precipitation (precipitation phase
and DSD).

As such, it is necessary to develop efficient methods that are able
to detect these small-scale variations and to identify relatively uniform
regions within the observed precipitation field. In this thesis, by develop-
ing RoCaSCA and taking a Lagrangian approach to follow the evolution
of a precipitation region of given type, a first step in this direction was
taken. In addition, the techniques developed as part of this thesis in-
clude two different ways to assess the uncertainty in the weather radar
precipitation measurements.

However, the precipitation regions identified by RoCaSCA are still
too large. This is because in its current implementation, RoCaSCA
only takes the reflectivity information into account as sampled by a
given radar elevation. As a next step forward, the algorithm needs to be
extended by taking the full three-dimensional properties of the precipita-
tion field into account and the sampling characteristics of the radar. By
tracking this information for a number of consecutive time steps, a full
four-dimensional procedure should be developed from which it should be
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able to identify relatively uniform regions within the identified regions.
The temporal information can then be used to infer information on the
small-scale processes and their temporal evolution. By linking this in-
formation to local disdrometer measurements taken at the surface, it
is expected that the next quality improvement in the radar estimated
precipitation rates can be obtained, which is extremely useful for hydro-
logical applications.

Polarimetric radars, which are gradually replacing non-polarimetric
radars all over the world, have the potential to contribute to this small
scale four-dimensional approach. The added information obtained by
taking the differential reflectivity into account, could provide extra in-
formation, which could be used by RoCaSCA to discriminate individual
precipitation regions in more detail. This also holds for making use of
the information available from X-band radars, which generally provide
reflectivity data at a much higher resolution.

It is also anticipated that the focus on smaller cells within a given
precipitation region as the focus of radar error correction, will result
in smaller uncertainties around the mean radar precipitation estimates.
However, it is expected that considerable uncertainty will always remain,
as shown by the results presented in Fig. 7.5. However, smaller regions
will lead to less uncertainty in the estimated VPR, decreasing the total
variability in the estimated radar-precipitation field (see Section 5.5).
Next to that, a given Z—R relation, in case it is derived from DSD data,
will be more representative for a smaller region than when used for a
given precipitation type observed within the entire radar umbrella.
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CHAPTER &

Conclusions

In this thesis the possibilities for estimating precipitation amounts from
volumetric weather radar data and its potential for hydrology have been
assessed. A number of research questions were defined as the central
focus of this thesis. Based on the research results presented here, the
following answers to these questions can be given:

What are the most dominant sources of error in radar precipitation
estimation and what is the best way to correct for them?

In Fig. 1.1 an overview of the different sources of error was presented
and further details were provided in Sections 1.2 and 1.3. Based on
the results presented in this thesis it is clear that the answer to this
questions is far from straightforward and depends on the region of study,
the characteristics of the weather radar and the type of precipitation
observed.

For the Ourthe region, the combined effects of clutter and precipita-
tion region-based VPR correction resulted in the largest improvement in
the quality of the weather radar precipitation product. However, each of
the other error correction algorithms, such as taking the full volumetric
radar information into account and the use of different Z—R relations
based on precipitation type, definitely had a beneficial impact on the
weather radar rainfall product.

A completely different situation could be observed for the mesoscale
convective system analyzed in the discussion (Chapter 7). These analy-
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ses showed that each of the identified errors indicated in Fig. 1.1 had an
impact on the radar precipitation estimates. Therefore, in order to prop-
erly estimate surface precipitation amounts using radar, is to account
for each error source because the impact of each error source depends on
the precipitation event. The novel precipitation region-based approach
in combination with precipitation type identification as taken in this
thesis is shown to yield good results, and is the proper direction to go
when dealing with weather radar precipitation estimation.

How are the parameters of the Z—R relation related to the character-
istics of the DSD, and how do these parameters relate to each other?

The fact that both the radar reflectivity and rainfall rate are inher-
ent properties of the DSD implies that the values of the parameters of
the Z—R relation depend on the DSD as well. More specifically, the
prefactor A can be directly related to a scaled DSD, while the exponent
b results from its temporal behavior. The results shown in Chapter 3
indicate that there is a negative correlation between both parameters.
Convective precipitation is generally associated with a smaller exponent
than stratiform precipitation. This can be related to the larger amount
of drop interactions, resulting from a higher number concentration and
larger overall interaction time. For the prefactor, such general obser-
vations on behavior specific for different types of precipitation cannot
be made, and results depend heavily on the atmospheric environment
shaping the DSD. The negative correlation between both parameters,
however, does provide the possibility to gain some insight in the amount
of uncertainty that can be expected when using a given fixed Z—R rela-
tion.

Is it possible to define a method that is efficiently able to discriminate
between regions with different precipitation types?

In this thesis, the grid-based image segmentation algorithm Ro-
CaSCA was presented, which is efficiently able to detect precipitation
regions within the radar umbrella. RoCaSCA is shown to be highly effi-
cient when it comes to linking non-neighboring pixels. This makes this
algorithm very useful for the identification of precipitation regions, which
can then be tracked in time. By combining this information with the
three-dimensional measurements taken by the weather radar, it becomes
possible to assign precipitation types to a given precipitation area. This
can then be used to obtain an improved understanding on their temporal
behavior.
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For a given precipitation region, is it possible to improve the radar
estimates of the vertical profile of reflectivity, and to provide uncertain-
ties of these estimates?

As part of this thesis, a constrained piecewise linear VPR identifica-
tion method was developed, which leads to improved quantitative surface
precipitation estimates by weather radar. The procedure proposed here
is focused specifically on identifying and tracking precipitation regions
of a given type. It was shown that up to distances of about 150 km,
proper identification of the VPR is achieved by combining the region-
based Lagrangian procedure developed in this thesis with the classical
Eulerian VPR identification approach. In general, considerable spatial
variability in the characteristics of the VPR can be observed. Therefore,
the median VPR correction procedure was extended with a method to
identify the uncertainty around a given VPR estimate. This uncertainty
can easily be obtained from the volumetric weather radar measurements.
The analyses presented in this thesis show that this type of uncertainty
accounts for the majority of the radar-gauge differences when dealing
with stratiform precipitation systems.

How well can the response of a catchment be modelled using corrected
radar precipitation estimates?

If the weather radar data are properly corrected for all known sources
of error, their quality is comparable to rain gauge measurements for
the winter half-year analyzed in this thesis. Therefore, the simulated
discharges of a medium-sized catchment do not show large differences
when either corrected radar or rain gauge data are used as the input
of a hydrological model. The simulated discharges using weather radar
data correspond well to observations. Besides that, the results presented
in this thesis show that using weather radar precipitation ensembles,
a better correspondence to the observed flood peak occurs than when
using rain gauge information. Because weather radar provides much
more detailed information on the spatial structure of the precipitation
field, it is anticipated that simulations of catchment response will have
an even higher quality when using a spatially-distributed high-resolution
hydrological model. Only by using such a model can the full potential of
corrected weather radar data be exploited. This can only lead to further
improvements in the modelled hydrological response.
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What are the contributions to the uncertainties in hydrologic model
output of VPR and DSD uncertainties relative to hydrologic model pa-
rameter uncertainties?

As part of this thesis, two separate procedures were developed to
assess the uncertainty in weather radar precipitation estimates: 1) orig-
inating from the variability of the VPR; and 2) resulting from the applied
Z—R relation. At the point scale this leads to an overall uncertainty in
the estimated surface precipitation amounts of around 40% and 15%, re-
spectively. These numbers slowly decrease when aggregating over larger
scales. However, compared to the uncertainty in hydrological model out-
put that originates from uncertainty in the hydrological model parame-
ters, the impact of precipitation uncertainty on the catchment response
is an order of magnitude smaller. This shows that the dominant impact
of catchments is to filter the precipitation, leading to a approximately
50% decrease of input uncertainty in the discharge response.
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Samenvatting

Weerradars bieden de mogelijkheid tot het verkrijgen van een enorme
hoeveelheid informatie over de ruimtelijke en temporele karakteristieken
van regenbuien. Omdat actuele neerslagschattingen van weerradars wor-
den beinvloed door meetfouten, dient hiervoor gecorrigeerd te worden.
Dit proefschrift richt zich op het corrigeren van weerradarmetingen voor
de meest dominante meetfouten, waardoor het neerslagproduct direct
toepasbaar wordt voor het operationele waterbeheer.

Fouten in weerradarmetingen kunnen in het algemeen worden on-
derverdeeld in twee categorieén: 1) fouten in de reflectiviteitsmetingen
van de weerradar en 2) fouten die ontstaan tijdens het converteren van
een gegeven reflectiviteit naar een neerslagintensiteit. Fouten die on-
derdeel uitmaken van de eerste categorie ontstaan ten gevolge van de
karakteristieken van de radar (b.v. onnauwkeurigheden in de radarcali-
bratie), de locatie van de weerradar (b.v. het blokkeren van het signaal
door hoge obstakels, de interactie van het signaal met het landschap en
de demping van het signaal), of ten gevolge van het foutief interpreteren
van radarmetingen (b.v. door vertikale variaties in het reflectiviteits-
profiel). Meetfouten die vallen onder de tweede categorie ontstaan ten
gevolge van ruimtelijke en temporele variaties in de grootteverdeling van
hydrometeoren, in het geval van regen dus de druppelgrootteverdeling.
Over het algemeen wordt de relatie tussen de radarreflectiviteit en de
regenintensiteit beschreven door een machtsrelatie. Aangezien zowel de
radarreflectiviteit als de regenintensiteit functies zijn van de druppel-
grootteverdeling, verandert deze machtsrelatie continu. Dit leidt tot
het probleem dat twee identieke reflectiviteitswaardes het gevolg kun-

205



nen zijn van verschillende druppelgrootteverdelingen met verschillende
neerslagintensiteiten.

Dit proefschrift houdt zich specifiek bezig met het meten van re-
gen met behulp van weerradar tijdens stratiforme buien. In Noordwest
Furopa is deze vorm van neerslag met name dominant gedurende de
winter. Dit leidt vervolgens tot de grootste hydrologische reactie van
stroomgebieden. Een groot nadeel van het gebruik van weerradar tij-
dens stratiforme buien is dat de kwaliteit van de metingen reeds op
korte afstand van de radar sterk afneemt. Om de kwaliteit hiervan te
verbeteren is in dit proefschrift allereerst gepoogd gebruik te maken van
bestaande weerradarcorrectiemethodes. Hoewel het implementeren van
deze methodes leidt tot een verbetering in de kwaliteit van de weerradar-
regenmetingen, laten deze methodes veel mogelijkheden open tot verdere
kwaliteitsverbetering. Dit is het gevolg van het relatief uniforme karak-
ter van de bestaande correctiemethodes, die slechts in beperkte mate
rekening houden met de ruimtelijke variatie van het neerslagveld.

Aangezien de karakteristiecken van regenbuien ruimtelijk en tem-
poreel variéren, stelt dit proefschrift een vernieuwde aanpak voor, die
zou moeten leiden tot een verbetering van de kwaliteit van de weer-
radar regenmetingen. Hierbij wordt er specifiek onderscheid gemaakt
tussen verschillende ruimtelijke neerslagzones en de ontwikkeling hier-
van in de tijd. Om dit te kunnen bewerkstelligen wordt er gebruik
gemaakt van het speciaal hiervoor ontwikkelde Rotational Carpenter
Square Cluster Algoritme (RoCaSCA), dat op efficiénte wijze in staat
is neerslagzones te identificeren en te onderscheiden, waarna de ont-
wikkeling van een gegeven zone gevolgd kan worden in de tijd. Voor
een gegeven geidentificeerde neerslagzone wordt vervolgens voor ieder
pixel bepaald tot welk type neerslag het behoort, waarbij onderscheid
gemaakt wordt tussen convectieve, stratiforme en niet-stratiforme /niet-
convectieve neerslag. Vervolgens wordt er voor de laatste twee typen
neerslag een nauwkeurige schatting gemaakt van de vertikale neerslag-
structuur op basis van een nieuw ontwikkelde methode, voortbouwend op
reeds bestaande technieken. Deze regionale aanpak voor het corrigeren
van weerradarmetingen is vervolgens gecombineerd met bestaande cor-
rectiemethodes, waarna voor het verkrijgen van neerslagintensiteiten uit
gecorrigeerde radarreflectiviteitsgegevens er gebruik gemaakt wordt van
een neerslagstype-afhankelijke machtsrelatie.

Analyses laten zien dat voor een winterhalfjaar de vernieuwde cor-
rectiemethode tot een sterke verbetering in de kwaliteit van het regen-
product leidt tot afstanden van 150 km van de radar. Wanneer gecor-
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rigeerd wordt voor dominante foutenbronnen, zijn de weerradarschat-
tingen van gelijke kwaliteit als metingen met behulp van regenmeters
op de grond. Hierdoor is het niet noodzakelijk gebruik te maken van
deze regenmetergegevens voor een aanvullende correctie van systema-
tische fouten, hetgeen tradioneel wel in operationele algoritmes wordt
toegepast.

Ondanks de sterke kwaliteitsverbetering van het regenproduct van
de weerradar verkregen met behulp van de vernieuwde correctiemeth-
ode, blijven er verschillen ten opzichte regenmeters bestaan. Deze zijn
het gevolg van niet geidentificeerde foutenbronnen, kleinschalige neerslag
variaties, alsmede schaalproblemen die voortkomen uit meetverschillen
tussen radar en regenmeters. Echter, in plaats van gebruik te maken van
bestaande methodes waarbij radarmetingen op basis van regenmeters
gecorrigeerd worden, is er in dit proefschrift de voorkeur aan gegeven
inzicht te krijgen in de onzekerheid van radarmetingen. Speciaal hier-
voor zijn twee conceptuele methodes ontwikkeld. Allereerst worden de
volumetrische weerradargegevens op efficiénte wijze gebruikt voor het
verkrijgen van een schatting van de ruimtelijke en temporele variatie
van het verticale reflectiviteitsprofiel. Daarnaast is er een statistische
methode toegepast waarmee een schatting gemaakt kan worden van de
onzekerheid als gevolg van de conversie van reflectiviteit naar regenin-
tensiteit. Hierbij wordt aangenomen dat de twee parameters van de
machtsrelatie (waarvan er één is log-getransformeerd) een bivariate log-
normale verdeling hebben. De veronderstelling van log-normaliteit werd
verkregen op basis van de analyse van een meerjarig gegevensbestand
van druppelgrootteverdelingen verkregen met behulp van een disdrome-
ter in Zuid-Frankrijk. Beide vormen van onzekerheid kunnen dominant
worden verondersteld in stratiforme neerslag, hetgeen bevestigd wordt
in dit proefschrift. Resultaten laten zien dat, indien de onzekerheid in
weerradarregenmetingen wordt meegenomen, de verschillen ten opzichte
van regenmeters verklaard kunnen worden.

In het laatste deel van dit proefschrift zijn de hydrologische mogelijk-
heden van de gecorrigeerde radarregenmetingen geanalyseerd aan de
hand van neerslag-afvoersimulaties van het Ourthe stroomgebied. Dit
stroomgebied bevindt zich in de heuvelachtige Belgische Ardennen, waar
dunne hellende bodems leiden tot een relatief snelle hydrologische reactie
in geval van regen. Aangezien dit stroomgebied één van de grotere zij-
takken van de rivier de Maas vormt voordat deze Nederland instroomt,
is het correct voorspellen van het afvoergedrag van dit stroomgebied
van groot belang voor operationele hydrologische diensten in Nederland.
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Gecorrigeerde weerradarregenmetingen bieden even goede resultaten in
het voorspellen van de hydrologische reactie van dit stroomgebied als
wanneer regenmetergegevens worden gebruikt. Echter, het gebruik van
regenmetergegevens leidt tot een forse onderschatting van de grootste
afvoerpiek in de studieperiode. Dit is niet het geval wanneer de weer-
radarinformatie gebruikt wordt. Het gebruik van gecorrigeerde weer-
radargegevens, inclusief de informatie over de meetonzekerheden afkom-
stig van één van beide methodes, leidt tot een sterk verbeterde voor-
spelling van de afvoerpiek. Dit toont het voordeel aan van het gebruik
van weerradarinformatie in neerslag-afvoertoepassingen. Gegeven het
feit dat de resolutie van de toegepaste hydrologische modellen verder
zal toenemen, de radar in staat zal zijn op steeds hogere resolutie neer-
slagmetingen te geven en de kwaliteit van weerradars door middel van
nieuwe technieken (zoals polarimetrie) alleen maar toe zal nemen, ligt
het in de lijn der verwachting dat het gebruik van weerradarinformatie
voor hydrologische toepassingen in de nabije toekomst sterk zal toene-
men.
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