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1. Introduction 

If results of investigations on évapotranspiration under special circumstar 

ces of soil and crop have to be transferred to practical conditions, the laws 

governing the influence of soils and crops on évapotranspiration should be 

known. 

Which data are required to describe how the various properties contribute 

to the final value of évapotranspiration and what level of accuracy in measure­

ment should suffice, follows from the process of evaporation. A model of this 

process was developed by VISSER (1962). 

The data needed to verify the working hypothesis embodied in the formulae 

evolved in that paper, include a direct measurement of actual évapotranspira­

tion from soil and crop. It should be determined daily, if not hourly, and 

with a high accuracy. Weighing of soil blocks i s then the only procedure poss i ­

ble. 

For this purpose a weighing machine has been constructed which i s capable 

of continuously indicating the changes in weight, due to évapotranspiration o r 

rainfall, of rather large soil blocks. The mechanism is described and p re l imi­

nary experiments with a prototype are discussed in this paper. 

2. Design requirements 

The weighing machine was to be made for a lysimeter, of which in our 
case two are situated on either side of a narrow corridor in a brickwork cel lar . 
The containers are of armed concrete and have inside dimensions of 120 x 140 
cm and a depth of 175 cm; the wall thickness i s 6 cm. They a re filled with 
different soils and the groundwater depth can be fixed at will. According to the 
moisture depletion curve of the soils, the maximum weight of the filled con­
tainers at practical groundwater levels could be estimated to be 7.5 tons. 
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The machine is to indicate continuously with a high sensitivity and 

accuracy the changes in weight of such a container. It was assumed that a 

weighing e r ro r of 0. 1 surface millimeters of water - or 168 grams - would 

be acceptable. 

The containers are sunk into the cellar to such an extent that the soil 

in them is level with the soil surface of the field. To exclude as far as 

possible any discontinuity in the vegetation, the weighing mechanism should 

be placed under the container. It then must be assembled on the spot because 

the containers can only be lifted a few inches by means of four jacks. The 

mechanism should be compact in vertical direction, since between the 

floor of the cellar and the bottom of the containers only 60 cm was available. 

Some working space should remain below the mechanism to give access for 

repairs . 

The indicating or registrating mechanism could be situated in the working 

corridor, this also making an easy observation possible. 

The possibility of adapting the design of MORRIS (1959) was rejected, 

mainly because of the high costs that then would be involved. 

3. Description of the machine 

3. 1 General principle 

When balancing a variable weight and registrating the changes with a 
high order of sensitivity and accuracy, the frictions in the transmission 
devices are the most difficult to deal with. It was decided that a hydraulic 
device would have the most favourable properties to eliminate the moving 
par ts of a t ransmission. 

The most essential part of the mechanism is a hydraulic jack of a 
particular type. It i s a steel pressure-cel l of which three are supporting 
the container on membranes that are protected by steel l ids. The pressure• 
cell is filled with oil that can be put under such a pressure that it is 
possible to lift the lid clear from the contact it has with the other steel 
par ts of the cell, making then the membranes the only surfaces supporting 
the container. This p ressure can be read from a manometer. When the 
supporting area of the membrane is known, the weight of the container 
can be calculated. 
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3.2 The weighing part of the mechanism 

3.2. 1 Design of the hydraulic pressure cell 

The pressure cell is c ircular, a cross section is shown in fig. 1. In 
the steel bottom plate, a wide and shallow pressure chamber was turned 
that has a connection with a pressure pipe. At the top the chamber is 
closed off by a membrane of 0. 05 mm Melinex, a polyester film. Over 
it is a sheet of 0. 2 mm teflon coated glass fabric to give strength to the 
membrane. The two films are glued together and are clamped to the 
bottom plate with a tapered steel ring. Use of a rubber O-ring guarantees 
a perfect sealing. On the membrane and fitting in the tapered ring res ts 
the lid, a tapered steel plate. A third plate is covering the tapered ring 
and plate, and supports the container. Fig. 2 gives a view of the con­
stituent parts of the cell. Some important details of the pressure cell, 
when not in use, are shown in fig. 3. Between the tapered plate within 
the ring and the plate covering it i s a tolerance of 0. 3 mm. The covering 
plate (f) is supported by the ring (c). The tapered plate (e) is cylindrical 
to a height of 1. 1 mm from its bottom. This part is projecting below 
the base of the tapered ring (c). There is a difference of 0. 1 mm between 
the radius of the cylindrical part of the tapered plate (e) and the smallest 
inside radius of the tapered ring (c). 

When pressure is built up in the cell, the membrane pushes the 
tapered plate (e) against the upper plate (f). When pressure increases, 
the plates of the three pressure cells will at a certain moment r i se and 
lift the container from the rings (c). It can be lifted 0. 8 mm (1.1 - 0. 3), 
then the base of (e) r ises above the top of (a) and the membrane exerts 
a counter force on the oil and the supporting area may become smaller . 

Condition for a friction free lift is that the plates r ise in a position 
which is parallel with the bottom plate and centered in ring (c). To recover 
a lost centered position, the pressure must be released so the tapered 
plate will come down, lose contact with the upper plate (f) and center i t ­
self in the ring in correct position. Pressure can then be applied again. 

To make sure that no contacts whatsoever remain between the lifted 
plates and the other metal parts of the pressure cell, tell-tale lamps on 

weak current circuits are used. 
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3.2.2 Diameter of the hydraulic pressure cell 

The diameter of the pressure cell originated from a compromise be­

tween the desire to get a sensitivity and an accuracy as high as is needed, 

and to keep the operating pressure at a level that would not necessitate 

an excess of technical precautions. The first demands for a small support­

ing area of the cell and consequently a high p ressure ; the second item de ­

mands a low one. 

As will be seen in 3, 3 it i s possible with a simple device to maintain 

a high reading accuracy of the changes in the height of the mercury-column 

which i s balancing the weight of the container. For that reason it was 

decided that a relatively low pressure of about two atmospheres would do. 

With the container weighing 7.5 tons, this would bring the supporting area 
2 

of the membranes at about 3750 cm . To guarantee a stable position of 
the container, the weight has to be divided over three supporting cells. This 

together with a limit to the available sizes of rubber O-rings, fixed the 

diameter of the supporting area of one membrane at 388 mm. The total 
2 

supporting area per container i s then 3548, 52 cm . With a load of 7. 5 tons 
this calls for a p ressure of up to 2. 1 atm. 

The overall diameter of the cell made, i s 430 mm; the overall height 

could be limited to 30 mm. 

3 .2.3 The position of the hydraulic pressure cells 

The position of the three identical cells under a container has to be such« 

that every cell sustains as near as possible a third part of the total weight. 

These positions are determined by the centres of gravity of three equal 

volume par ts of the container, but they have to be corrected experimentally 

because the filled container i s not a completely homogeneous block. 

It i s important that the three cells are situated in a horizontal plane, 

since this facilitates an even distribution of weight. The cells have there­

fore been put on a supporting frame with an evened horizontal upperside 

resting on brickwork posts . Since the container can only be lifted 0. 8 mm, 

this means the top plates of the cells have to remain horizontal will the 



- 5 

bottom plates rest only on the membranes, To affect this an iron 
frame identical to the one underneath the cells has been put between 
the cells and the containers, which have anyway an uneven bottom. 
In this case the bottom of the frame is even. It is isolated from the 
upper plates of the cells by a sheet of Pertinax to make it possible 
to check the cells separately with the mentioned weak current circuit. 

Fig. 4 shows the situation of the cells and frames relative to the 
base of the container. Fig. 5 and 6 give a view of the actual situation 
in the cellar. 

3. 3 The registrating_ part of the mechanism 

When the weighing mechanism operates, the pressure that is necessary 

to keep the container floating on the compressed oil is continuously indi­

cated by open mercury-manometers. Since there is no possibility to divide 

the variable weight of the container perfectly equally over the three cells 

and keep it like that, each cell has a manometer. In 3.4 it is explained how 

pressure differences between cells are being achieved. 

The cells are attached to their manometers with flexible plastic p r e s ­

sure tubes with an inside diameter of 6 mm. The manometers are of the 

U-type. The interesting thing about them is a device to multiply the changes 

in the height of the mercury-column that is balancing the load on the cell 

(see fig. 7). 

A manometer was made of perspex tubes with an inside diameter of 14 

mm. At a point above which the mercury is not expected to r i se , the open 

tube of the manometer changes into a tube with an inside diameter of 2 mm 

provided with a scale. On the mercury in the open tube a light, slightly 

coloured, oil is poured till an oil-meniscus shows in the narrow tube when 

a load is balanced. Now a change in the position of the mercury meniscus 

in the open tube of the manometer will show 49 t imes enlarged in the 

changing position of the oil-meniscus. A change in the height of the mercury , 

column, which balances the weight is enlarged 24j t imes. 

The capillary tube is inclined to about 10 to the horizontal, to facilitate 

reading of the oil-meniscus when standing on the floor of the cellar (see 

fig. 8). 
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The large factor with which the rise of mercury is multiplicated when 

it is converted into that of the oil-meniscus may cause the latter to go off 

the scale. Then the volume of oil on top of the mercury has to be reduced o r 

increased. A three-way tap has therefore been fixed at the lowest point of th< 

inclined tube, making it possible to connect it either with a reservoir for oil 

or with an outlet pipe, or closing both. 

The manometers are placed in a transparant vessel so the mercury 

columns can be surrounded with water of a constant temperature. 

3.4 The operating mechanism 

3.4. 1 The electric part of the mechanism 

It follows from what has been mentioned in 3.2 that there is a minimui 

as well as a maximum elevation of the containers. The minimum is neces 

sary for a free support of the container by the compressed oil. This is th< 

limit of frictionless weighing. The maximum is attained when the mem­

brane is at the point of bursting and would do so if the oil p ressure was 

increased. This is the limit of.membrane strain. 

It would be possible that the elevation would go over, respectively 

drop below these l imits. When a load is balanced by the mercury-column 

in the manometer, there is a certain volume of oil between mercury and 

membrane. The pressure in this oil is proportional to the balanced load 

and not to the volume of oil. When this pressure is constant, small losses 

of oil through leaks in the system would cause a decrease of the elevation 

at some very slow rate . This would also happen when the loss of oil 

should exceed the small quantity of oil flowing out of the manometer when 

the balanced weight is increasing. When there are no losses of oil, an 

increase in weight would also decrease the elevation because oil is t r an s ­

ported from the cell to the manometer. On the other hand would a decrease 

of balanced weight increase the elevation. In consequence of this and b e ­

cause the weighing is to be continuous, the elevation should be kept auto­

matically within the limits mentioned. 

This is accomplished by the use of electric contacts to detect the pos i ­

tion of the elevated par ts of the cell. Fig. 9 gives a close up of these 

contacts. Fig. 2, 5 and 6 show how they are attached to the cell. 
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On the upper plate, and isolated from it, is a central two-sided 

contact projecting between two one-sided contacts screwed on, and 

isolated from, the bottom plate. With the two-sided contact they form 

part of two separate electric circuits. 

To prevent the drawing of sparks at the contact points the electric 

circuits have a current of reduced voltage. In the conditions of the 

cellar, however, the contacts easily become dirty and contact-boosting 

is necessary. 

The one-sided contacts can be adjusted very accurately with a screw. 

The lowest one should be adjusted to break circuit when the elevation 

is just large enough for frictionless weighing. The upper one should clos< 

the circuit when the elevation comes to the critical straining limit of 

0. 8 mm. 

In fig. 10 a scheme is shown of the electric circuits governing the 

hydraulic mechanism. The contacts on the cells activate relay switches. 

These command solenoid valves which are parts of a hydraulic system. 

Tell-tale lamps show the action of these valves. The e lectr ic- together 

with the hydraulic part of the mechanism restore the required elevation 

when the contacts on the cells detect a deviation. 

3.4.2 The hydraulic part of the mechanism 

A scheme for the hydraulic part of the mechanism is shown in fig. 11. 

The solenoid valves are connected with the cells by plastic p ressure 

tubing. To each cell with its accessory manometer belong two solenoid 

valves. An admission valve is connecting the cell and manometer with a 

pressure cylinder, in which the oil pressure is maintained at a higher 

level than can be expected to be required in one of the cells. A discharge 

valve is connecting the cell with an outlet which discharges in a r eservoi r 

under atmospheric p ressure . 

When the admission valve opens, the volume of oil between membrane 

and mercury-column increases. Because the compression of this oil 

depends exclusively on the balanced weight, the elevation is bound to i n ­

crease. 

When the discharge valve opens the volume of compressed oil de­

creases as well as the elevation. 



- 8 

When in the p r e s s u r e cylinder the p r e s s u r e drops below a min imum 

value of about 2 . 5 a tm a p r e s so s t a t s t a r t s the motor dr iving a gear 

pump. This pumps oil out of the r e s e r vo i r through a f i l ter and via a 

p r e s s u r e r egula tor with a by-pass valve and a non - re tu rn valve into t he 

p r e s s u r e cyl inder . The p r e s s u r e in the cylinder i s indicated by a mano­

me t e r . 

Between p r e s s u r e cylinder and admission valves a r e a main stop 

valve and three handoperated va lves , one to each solenoid valve. The 

same p recaut ions have been taken between the d i scharge solenoid va lves 

and the r e s e r vo i r . They a r e n eces sa ry because .contacts and solenoid 

valves have to be t es ted without r isking an unwanted t r anspo r t of oi l . 

F ig . 12 shows the i ron case which holds both the e l e c t r i c - and 

hydraulic p a r t s of the mechan i sm. The contents of th is case a r e shown 

in fig. 13. Tr ip le core cords a r e connecting it with the con tac t - se t s on 

each of the cel ls and with the e lec t r ic main . 

3. 5 Some advantages of the design 

The mechanism descr ibed has some advantages when the design r e q u i r e ­

ments a re considered. 

a. The weighing mechanism can be assembled on the spot where i t wi l l 

opera te . To th is effect the container was lifted with j acks of the fami l iar kind, 

neun in fig. 5 in Ihn lyll haad «uwwf. The top of the br ickwork pos t s was cut 

off to such a height that the surface of the soil block in the container was at 

the same level a s the soi l surface surrounding it after the mechan ism was 

placed in posi t ion. On the pos t s the lower f rame was placed level in wet 

mo r t a r . When this had hardened, the p r e s s u r e ce l ls were put into posi t ion 

and after that the upper f r ame . Then the contacts were instal led and the c on ­

ta iner was lowered on the construct ion. Connecting the cel ls with the p l a s t i c 

tubing was the l as t action to be per formed under the container . 

b . The flow of the quanti t ies of oil when the balanced weight changes , i s 

v e ry smal l . Heavy rainfall will cause the quickest changes in weight. In the 

Netherlands about once a y ea r a r a in with an intensity of 1 mm p e r minute 

will occur during 5 m inu tes . During such a shower the weight of a conta iner 

will change with 1. 680 kg p e r minute . This will cause an i nc rease of the 

height of the me r cu ry column in each manometer of 0.40 cm and a t r a n spo r t 

of only 0 .03 cc oil p e r minute . So even in the mos t ex t reme c i r cums tances 

the loss of p r e s s u r e in the tubing due to friction of the flowing oil can only 

be of a theoret ica l s ignificance. 
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From this point of view the length of the tubing between cells, manome­
ters and operating mechanism is not a factor of importance to the accuracy 
or sensitivity of the machine. The case holding the operating mechanism, 
as well as the manometers could therefore be situated anywhere inside or 
outside the cellar. 

c. The mechanism has to be put into operation only once. After gaining 

a balance between load and mercury-columns, reading is possible at every 

moment. It only may be necessary to center the tapered plates in the cells by 

deflating once in a while, but this will not be frequently necessary. 

The registering part of the mechanism could and should in time be made 

self recording. 

d. The device can be easily adapted to larger or smaller weights by using 

cells with a larger or smaller supporting area of the membranes, or by-

adapting the range of the manometers. 

When the ratio between balanced weight and required pressure should 

become unfavourable for a high sensitivity and accuracy, the ratio between the 
inside diameter of the mercury tube and the reading tube should be adapted. 

4. Operation and calibration 

4 . 1 Operation 

To operate the machine, the contacts commanding the admission solenoid 

valves are closed. The tell-tale lamps, indicating when a free support on the 
membranes is attained, are connected. The hand-operated admission valves 

are then opened to admit p ressure . When the tell-tale lamps show that the 

container res ts free on the membrane, the particular hand-operated valve 

is closed again. It costs some time to reach the situation in which all three 

cells are supporting the container only on their membranes. This i s due to the 
fact that when the pressure in the cells increases there is not at once an even 
distribution of weight over the cells. Moreover, the position of the oil 

menisci in the reading tubes has to be adapted to the changes in weight that 

are to be expected. These positions influence of course the p ressures coun­

terbalancing the weight of the container and changing them affects the balance« 
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Having gained a lasting equilibrium, the contacts on the cells a re 

adjusted. After bringing the cells into operation, the first reading can 

be made. It is re commendable to adjust the oil menisci in the reading 

tubes in such a way that they occur in about the same reading interval. 

This facilitates a quick reading of the three tubes which i s of importanc 

with respect to item b in 4. 2. The starting position of the oil menisci 

will depend on the nature of the experiments that are going to be conduc 

ed. When for instance a continuous reduction of weight can be expected, 

this position should be chosen at the upper end of the reading tubes. 

Whenever the reading is going off the scale, the volume of oil in the 

capillaries has to be reduced or increased and readings have to be taker 

before and after the change. 

4. 2 Some possible sources of e r ro r 

There are some possible e r ro r s which are of importance due to the 

high accuracy demands made. 

a. When a solenoid valve opens, the pressure between membrane 

and mercury is no longer dependent on the balanced weight since the 

pressure on the other side of the valve is propagating towards the cell 

and its manometer and affects them. This causes the mechanism to be 

unbalanced during a short time after opening the valve. 

It has happened that a truck passing on a small road lying at a d i s ­

tance of some 40 meters caused a quiver strong enough to bring a con­

tact into action. The exceptionnally high sensitivity of the mechanism 

may then turn into a disadvantage. 

b. The container is susceptible to wind. A strong wind blowing into 
the narrow spaces between the walls of the cellar and the container will 
rock it, though imperceptable to the eye. This causes small changes 
in the distribution of the total weight over the three cells and results in 
an inconstant position of the oil menisci. The tubes should therefore be 
read as close to simultaneous as possible. 
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4. 3 Calibration 

The last paragraph of 4. 2 emphasizes the necessity of calibrating the 
weighing mechanism. Although the equivalence in weight of a change of 1 mm 
in the position of the oil menisci may be calculated on physical grounds, 
such calculations start from the assumption that some values used in the 
calculation are accurate and constant. These assumptions may be false. Ca­
libration accounts for a number of immeasurable details that cannot be im­
plicated in a calculation. 

Four calibration tests were performed at moments when no natural eva­
poration or rainfall could cause a change in weight of the container. In two 
of these tests the container was supplied in the course of two hours with 5 
surface mm of water in a continuous flow. The tubes were read with inter­
vals varying from 1 to 5 minutes, a reading before the flow of water started 
taken as a zero level. The difference between this zero reading and those 
during the test, expressed in mm change as a total of the position of the 
three oil menisci, was plotted against the amount of water supplied up to the 
moment of the readings. The diagram is shown in fig. 14. There is no signi­
ficant difference between the two tes ts . A straight line i s easily fitted to the 
data, according which one millimeter in total change in position of the oil 
menisci stands for a change in weight of 143 grams. 

The two other tests were performed when water was drained off instead 
of supplied. The diagram in fig. 15 shows that the outcome is a straight line 
which coincides, with a negative sign, with the one of fig. 14. Evidently it 
does not affect the mechanism whether the container loses or gains weight. 

The calibration tests were performed at a temperature of 8°C. The poss i ­
ble influence of a temperature factor has not yet been tested, 

4 .4 Magnitude of e r ro r s 

The figures 14 and 15 show a scatter which means that the movements of 
the oil menisci are not an absolute indication for a change in weight. An e r r o r 
analysis is therefore necessary. 
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The mean e r ror of the readings in fig. 14 and 15 can be calculated 

by S = / 2 x / (n-1) , where x is the deviation between the readings and thei: 

accessory value on the regression lines. Since it is a calibrated reservoir 

into or out of which the water was flowing, the e r ro r on the abscissa may 

be assumed to be virtually negligible. So x is the vertical distance from 

the dots to the regression lines. 

The mean e r ro r amounts to 175 grams or 0. 1042 surface mil l imeters 

of water. The calibration tests were performed at a temperature of 8 C. 

The possible influence of a temperature factor has not yet been tested. 

5. Conclusion 

It is clearly understood that, however correct the general principle of 

the device, the mechanical realization must be perfect to get the best r e ­

sults. The major part of the accuracy problem is the reducing of oil losses 

since this will keep the action of the solenoid valves at a minimum and con­

sequently reduce unnecessary disturbances of the balance. 

In the case of the prototype of the weighing machine discussed, leakage 

is reduced to an extremely low value. As a matter of fact the contacts and 

solenoid values could be dispensed with for long periods which had, of course, 

a favourable influence on the accuracy. It i s felt that it is possible to in­

corporate a few mechanical improvements and that a very accurate weighing 

mechanism will then be available for lysimeter work. 
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Fig . 1. C ross section of a hydraulic 

p r e s s u r e cel l . 

a. s teel bottom plate 

b . membrane 

c. t apered s teel r ing 

d. rubber O-ring 

e . t apered s teel plate 

f. s teel upper plate 

g. inlet opening 

F ig . 2. View of the constituent p a r t s of the 

hydraulic p r e s s u r e ce l l . The 

same symbols a re used as in fig. 1 

0.3 mm 
Fig. 3. Detail drawing of the hydraulic 

p r e s s u r e ce l l . The same symbols 

a r e used a s in fig. 1 
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Fig . 4. Situation of the cel ls and f r ames r e 

lative to the base of a container 

cr 33 
33 or 

*aÖ$ \ | *f 

Fig . 5. The front of a container with two of 

the ce l l s . 

a. br ickwork post 

b . lower f rame 

c. p r e s su r e cell 

d. upper f rame 

e. container 

F ig . 6. The third cell at the back. 

a. br ickwork post 

b . lower f rame 

c. pressure cell 

d. upper frame 



Fig . 7. Schematical drawing of the device to 

multiply the changes in the height of 

the me r cu ry column 

(m,-» m 2 )x49 = 01-02 
(m, - m;) — (m2-m^)x24/fe=O,-*02 

Fig. 8. View of the upper pa r t of the regis -

t rat ing mechanism. 

a. t r ansparan t v e s se l filled with wa t e r 

of a constant t empe ra tu r e , holding 

the manomete r s 

b . reading tubes with sca les 

c . t h ree-way taps 

d. oil r e s e rvo i r 

F ig . 9. The contacts on the cel ls to detect the 

position of the lifted p a r t . 

a. two-sided contact 

b . one-sided contact 

c . adjusting sc rews for the one-s ided 

contacts 



Main Switch 

Fig . 10. Scheme of the e lectronic c i rcui ts 

operating the mechanism 

F ig . 11. Scheme for the hydraulic par t of 

the mechanism. 

a. oil r e s e rvo i r 

b . filter 

c. gear pump 

d. p r e s su r e regulator with by -pas s 

e. non-re turn valve 

f. p r e s su r e cylinder 

g. main stop valves 

h. hand operated valves 

i . solenoid valves 

j . manometer 

' 3 ! F ig . 1 2 . View of the front of the i ron case 

holding both the e lectronic and hy. 

draulic p a r t s of the mechanism. 

Fo r the legend see fig. \\ 



Fig . 13. Close up of the contents of the 

case shown in fig. 12. Fo r the 

legend see fig. 11 
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Fig . 14. Results of two calibration t e s t s 

under conditions of water supply 
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Fig . 15. Results of two cal ibrat ion t e s t s 

under conditions of water d i scharge 


